WorldWideScience

Sample records for basin superstructure laden

  1. DEMOLISHING A COLD-WAR-ERA FULE-STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    International Nuclear Information System (INIS)

    LLOYD, E.R.; STEVENS, J.M.; DAGAN, E.B.; ORGILL, T.K.; GREEN, M.A.; LARSON, C.H.; ZINSLI, L.C.

    2009-01-01

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB) siding. The project's mission was to complete demolition of the structure over the KE Basin within six months of turnover from facility deactivation activities. The demolition project team applied open-air demolition techniques to bring the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives during the demolition; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovative approach that made demolition easier was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building and portions of the interior walls, and was an integral part of the multiple-layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by using heavy equipment to remove the CAB during demolition. The ability to perform this demolition safely and without spreading contamination (radiological or

  2. Toolbox for super-structured and super-structure free multi-disciplinary building spatial design optimisation

    NARCIS (Netherlands)

    Boonstra, S.; van der Blom, K.; Hofmeyer, H.; Emmerich, M.T.M.; van Schijndel, A.W.M.; de Wilde, P.

    2018-01-01

    Multi-disciplinary optimisation of building spatial designs is characterised by large solution spaces. Here two approaches are introduced, one being super-structured and the other super-structure free. Both are different in nature and perform differently for large solution spaces and each requires

  3. Superstructure of stapes

    International Nuclear Information System (INIS)

    Horiuchi, Yasuharu; Hunai, Hiroaki; Ichimura; Keiiti; Iinuma, Toshitaka; Oyama, Kazuyuki

    1989-01-01

    High-resolution Computed Tomography (HRCT) of the temporal bone has now become a routine test for the diagnosis of various temporal bone lesions. Correct assessment of such minute structures as ossicles, especially stapes, is important in the pre-operative HRCT evaluation. On the other hand, analysis for the reliability of HRCT findings has not been done, including the superstructure of the stapes. A retrospectively study was done in order to assess the availability of HRCT findings in axial overlapping scans in 226 ears, with respect to the superstructures of stapes. The study was concerned with the analysis of HRCTs of 148 normal ears, 71 ears of chronic otitis media and 7 ears of ossicular abnormalities. HRCT findings were compared to those of surgeries in pathological cases. The present study revealed that the superstructures of stapes are noted in 70% when the stapes is surrounded by air. The major limitations in the proper analysis of stapes by HRCT are partial volume averaging and effects of soft tissue silhouetting, this is especially so when the stapes is surrounded by soft tissue density. (author)

  4. Standard plans for timber bridge superstructures

    Science.gov (United States)

    James P. Wacker; Matthew S. Smith

    2001-01-01

    These standardized bridge plans are for superstructures consisting of treated timber. Seven superstructure types are includes: five longitudinal and two transverse deck systems. Both HS520 and HS25 loadings are included, along with L/360 and L/500 deflection criteria.

  5. Superstructures: First Cold Test and Future Applications

    International Nuclear Information System (INIS)

    J. Sekutowicz; C Albrecht; V Ayvazyan; R Bandelmann; T Buttner; P Castro; S Choroba; J Eschke; B Faatz; A Gossel; K Honkavaara; B Horst; J Iverson; K Jensch; H Kaiser; R Kammering; G Kreps; D Kostin; J Lorkiewicz; R Lange; A Matheisen; W -D Moller; H -B Peters; D Proch; K Rehlich; H Schlarb; S Schrieber; D Reschke; S Simrock; W Singer; X Singer; K Twarowski; T Weichert; M Wojtkiewicz; G Wendt; K Zapfe; M Liepe; M Huening; M Ferrario; E Plawski; C Pagani; P Kneisel; G Wu; N Baboi; C Thomas; H Chen; W Huang; C Tang; S Zheng

    2003-01-01

    Superstructures, chains of superconducting multi-cell cavities (subunits) connected by e/2 long tube(s) have been proposed as an alternative layout for the TESLA main accelerator [1]. After three years of preparation, two superstructures, each made of two weakly coupled superconducting 7-cell subunits driven by a single Fundamental Power Coupler (FPC), have been installed in the Tesla Test Facility linac for beam tests. Energy stability, HOM damping, frequency and field adjustment methods were tested. The measured results confirme Superstructures, chains of superconducting multi-cell cavities (subunits) connected by e/2 long tube(s) have been proposed as an alternative layout for the TESLA main accelerator [1]. After three years of preparation, two superstructures, each made of two weakly coupled superconducting 7-cell subunits driven by a single Fundamental Power Coupler (FPC), have been installed in the Tesla Test Facility linac for beam tests. Energy stability, HOM damping, frequency and field adjustment methods were tested. The measured results confirmed expectation on the superstructure performance and proved that an alternative layout for the 800 GeV upgrade of the TESLA collider is feasible. We report on the test and give here an overview of its results. The tests confirmed very good damping of HOMs in superstructures and thus has opened a possible new application of this concept to high current energy recovery machines. We have built two 1.5 GHz copper models of two superstructures: 2x5-cells and 2x2-cells to prove further improvement of HOM damping. This contribution presents also measured results on these models. d expectations on the superstructure performance and proved that an alternative layout for the 800 GeV upgrade of the TESLA collider is feasible. We report on the test and give here an overview of its results

  6. Laboratory Modeling of Self-Formed Leveed Channels From Sediment-Laden Flows Entering Still Water

    Science.gov (United States)

    Rowland, J. C.; Dietrich, W. E.

    2004-12-01

    Self-formed leveed channels constructed by deposition of suspended sediment from sediment-laden flows entering still water are common features in nature. Such channels drive delta progradation, develop at tidal inlets and occur where mainstem river flows empty into oxbows and blocked valley lakes. Presently there is no theory for the formation of such channels. This lack of theory is partly due to a lack of field or laboratory studies that provide insight about the mechanism controlling these self-formed, propagating channels. The creation of such features in the laboratory, have proved illusive to date. Our ongoing experiments aimed at modeling the formation of floodplain tie channels provide insight into the necessary conditions for levee formation and channel growth. Under conditions of steady water discharge, constant sediment feed rate, unimodal sediment distribution and invariant basin stage we are able to create subaqueous lateral bars (submerged levees) along the margins of a sediment laden jet. Our results highlight the sensitivity of channel formation to issues of scaling and experimental design. In the laboratory, levee formation has only been possible with the use of plastic particles (specific gravity ~1.5); complete bed alluviation and dune formation results from the use of particles with specific gravities of ~ 2.65 across a range grain diameters and shapes. We hypothesize this effect is related to high entrainment thresholds relative to suspension thresholds of small (< 100 mm) natural particles under conditions of reduced turbulence in laboratory scaled flows. Additionally, both the width to depth ratio and the form of the outlet channel introducing the sediment laden flow into the experimental basin exert a strong control on sedimentation pattern and levee growth. Continuing experiments are focused on generating emergent channel levees and a basin ward propagation of the channel by adjusting the form of the feed channel, varying basin stage, and

  7. Reynolds number and settling velocity influence for finite-release particle-laden gravity currents in a basin

    Science.gov (United States)

    Francisco, E. P.; Espath, L. F. R.; Laizet, S.; Silvestrini, J. H.

    2018-01-01

    Three-dimensional highly resolved Direct Numerical Simulations (DNS) of particle-laden gravity currents are presented for the lock-exchange problem in an original basin configuration, similar to delta formation in lakes. For this numerical study, we focus on gravity currents over a flat bed for which density differences are small enough for the Boussinesq approximation to be valid. The concentration of particles is described in an Eulerian fashion by using a transport equation combined with the incompressible Navier-Stokes equations, with the possibility of particles deposition but no erosion nor re-suspension. The focus of this study is on the influence of the Reynolds number and settling velocity on the development of the current which can freely evolve in the streamwise and spanwise direction. It is shown that the settling velocity has a strong influence on the spatial extent of the current, the sedimentation rate, the suspended mass and the shape of the lobe-and-cleft structures while the Reynolds number is mainly affecting the size and number of vortical structures at the front of the current, and the energy budget.

  8. Implementing Composite Superstructures in Large Passenger Ships

    DEFF Research Database (Denmark)

    Karatzas, Vasileios; Berggreen, Christian; Jensen, Jørgen Juncher

    2015-01-01

    This study focuses on the structural response of the part of the superstructure of a RoPax ferry that has been redesigned using composite materials. The composite superstructure is presented and subsequently compared to the existing steel design considering different loading conditions by the use...

  9. Voids and superstructures: correlations and induced large-scale velocity flows

    Science.gov (United States)

    Lares, Marcelo; Luparello, Heliana E.; Maldonado, Victoria; Ruiz, Andrés N.; Paz, Dante J.; Ceccarelli, Laura; Garcia Lambas, Diego

    2017-09-01

    The expanding complex pattern of filaments, walls and voids build the evolving cosmic web with material flowing from underdense on to high density regions. Here, we explore the dynamical behaviour of voids and galaxies in void shells relative to neighbouring overdense superstructures, using the Millenium simulation and the main galaxy catalogue in Sloan Digital Sky Survey data. We define a correlation measure to estimate the tendency of voids to be located at a given distance from a superstructure. We find voids-in-clouds (S-types) preferentially located closer to superstructures than voids-in-voids (R-types) although we obtain that voids within ˜40 h-1 Mpc of superstructures are infalling in a similar fashion independently of void type. Galaxies residing in void shells show infall towards the closest superstructure, along with the void global motion, with a differential velocity component depending on their relative position in the shell with respect to the direction to the superstructure. This effect is produced by void expansion and therefore is stronger for R-types. We also find that galaxies in void shells facing the superstructure flow towards the overdensities faster than galaxies elsewhere at the same relative distance to the superstructure. The results obtained for the simulation are also reproduced for the Sky Survey Data Release data with a linearized velocity field implementation.

  10. Theory-laden experimentation

    DEFF Research Database (Denmark)

    Schindler, Samuel

    2013-01-01

    light bending in 1919 by Eddington and others) to show that TDRs are used by scientists to resolve data conflicts. I argue that the rationality of the practices which employ TDRs can be saved if the independent support of the theories driving TDRs is construed in a particular way.......The thesis of theory-ladenness of observations, in its various guises, is widely considered as either ill-conceived or harmless to the rationality of science. The latter view rests partly on the work of the proponents of New Experimentalism who have argued, among other things, that experimental...... practices are efficient in guarding against any epistemological threat posed by theory-ladenness. In this paper I show that one can generate a thesis of theory-ladenness for experimental practices from an influential New Experimentalist account. The notion I introduce for this purpose is the concept...

  11. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  12. ELABORATION OF THE SUPERSTRUCTURE OF THE BULGARIAN HOTEL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Tanya Dabeva

    2010-12-01

    Full Text Available The purpose of the paper is to suggest some terms of reference for the elaboration of the superstructure of the Bulgarian hotel industry. The suggestions are based on the analysis of the superstructure at present. Its capacity, main types of accommodation establishments and their distribution by categories and territory are examined. An analysis is made of some resulting indices such as overnight stays and average stay. The main positive, respectively negative features of the superstructure have been analyzed. Concrete terms of reference have been given in order to overcome the problems specified.

  13. Multi-objective superstructure-free synthesis and optimization of thermal power plants

    International Nuclear Information System (INIS)

    Wang, Ligang; Lampe, Matthias; Voll, Philip; Yang, Yongping; Bardow, André

    2016-01-01

    The merits of superstructure-free synthesis are demonstrated for bi-objective design of thermal power plants. The design of thermal power plants is complex and thus best solved by optimization. Common optimization methods require specification of a superstructure which becomes a tedious and error-prone task for complex systems. Superstructure specification is avoided by the presented superstructure-free approach, which is shown to successfully solve the design task yielding a high-quality Pareto front of promising structural alternatives. The economic objective function avoids introducing infinite numbers of units (e.g., turbine, reheater and feedwater preheater) as favored by pure thermodynamic optimization. The number of feasible solutions found per number of mutation tries is still high even after many generations but declines after introducing highly-nonlinear cost functions leading to challenging MINLP problems. The identified Pareto-optimal solutions tend to employ more units than found in modern power plants indicating the need for cost functions to reflect current industrial practice. In summary, the multi-objective superstructure-free synthesis framework is a robust approach for very complex problems in the synthesis of thermal power plants. - Highlights: • A generalized multi-objective superstructure-free synthesis framework for thermal power plants is presented. • The superstructure-free synthesis framework is comprehensively evaluated by complex bi-objective synthesis problems. • The proposed framework is effective to explore the structural design space even for complex problems.

  14. A novel ethanol templating synthesis of ordered lamellar superstructured crystalline zirconia

    International Nuclear Information System (INIS)

    Liu Chao; Wang Bin; Ji Xiujie; Zhao Shanshan; Wu Jie; Jia Jianlong; Ma Dongxia

    2012-01-01

    Soft template technique has attracted great interest, because it is a facile, inexpensive and efficient synthesis strategy for ordered superstructural systems. Here, a novel ethanol template was used to synthesize the ordered lamellar superstructured crystalline zirconia (Lα-ZrO 2 ) without post-treatments and surfactants. ZrOCl 2 and NaOH were served as Zr source and precipitant, respectively. XRD analysis showed that Lα-ZrO 2 is crystalline. XPS spectra indicated the physical adsorption of ethanol molecules in Lα-ZrO 2 . TEM further observed and proved the 1.36-nm period of superstructure detected and calculated by SAXRD (1.35 nm), which is composed of 0.68-nm thick ZrO 2 and pore alternatively. In contrast, the template-free ZrO 2 (TF-ZrO 2 ) presents no superstructure and is poorly crystallized. As a soft template, ethanol presents the roles of (i) inducing the growth of zirconia layers, (ii) directing the self-assembly of ordered lamellar superstructure, and (iii) decreasing the crystallization temperature. The possible mechanism of ethanol serving as a soft template was proposed and discussed in thermodynamics.

  15. Nanoparticle assemblies and superstructures

    National Research Council Canada - National Science Library

    Kotov, Nicholas A

    2006-01-01

    ... building blocks of larger and more complex systems. Therefore, the present challenge of nanoscale science is to shift from making certain building blocks to organizing them in one-, two-, and three-dimensional structures. Such assemblies and superstructures are the next logical step in the development of nanoscience and nanotechnology. In this re...

  16. Retrofitting the Superstructure of a Large Passenger Ship Using Composites – A Demonstration

    DEFF Research Database (Denmark)

    Karatzas, Vasileios; Hjørnet, Niels; Berggreen, Christian

    2015-01-01

    In this work, the superstructure of a RoPax ferry has been redesigned using composite materials and the new design has been compared to the existing steel superstructure from a structural perspective. To this end, FE models have been developed and the superstructures have been subjected to loadin...

  17. Super-structure and building performance

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-11-01

    Full Text Available The super-structure consists predominantly of the load- and no-load-bearing walls-including all doors and windows and suspended floor slabs. The building envelope plays a significant role in the performance of a building, especially with regard...

  18. A novel ethanol templating synthesis of ordered lamellar superstructured crystalline zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chao, E-mail: liuchao_tj@yahoo.com; Wang Bin [Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology (China); Ji Xiujie, E-mail: jxjchem@yahoo.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University (China); Zhao Shanshan; Wu Jie; Jia Jianlong; Ma Dongxia [Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology (China)

    2012-03-15

    Soft template technique has attracted great interest, because it is a facile, inexpensive and efficient synthesis strategy for ordered superstructural systems. Here, a novel ethanol template was used to synthesize the ordered lamellar superstructured crystalline zirconia (L{alpha}-ZrO{sub 2}) without post-treatments and surfactants. ZrOCl{sub 2} and NaOH were served as Zr source and precipitant, respectively. XRD analysis showed that L{alpha}-ZrO{sub 2} is crystalline. XPS spectra indicated the physical adsorption of ethanol molecules in L{alpha}-ZrO{sub 2}. TEM further observed and proved the 1.36-nm period of superstructure detected and calculated by SAXRD (1.35 nm), which is composed of 0.68-nm thick ZrO{sub 2} and pore alternatively. In contrast, the template-free ZrO{sub 2} (TF-ZrO{sub 2}) presents no superstructure and is poorly crystallized. As a soft template, ethanol presents the roles of (i) inducing the growth of zirconia layers, (ii) directing the self-assembly of ordered lamellar superstructure, and (iii) decreasing the crystallization temperature. The possible mechanism of ethanol serving as a soft template was proposed and discussed in thermodynamics.

  19. Superstructure optimization of biodiesel production from microalgal biomass

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case study. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed and their significances are discussed....

  20. Interface magnons. Magnetic superstructure

    International Nuclear Information System (INIS)

    Djafari-Rouhani, B.; Dobrzynski, L.

    1975-01-01

    The localized magnons at an interface between two Heisenberg ferromagnets are studied with a simple model. The effect of the coupling at the interface on the existence condition for the localized modes, the dispersion laws and the possible occurrence of magnetic superstructures due to soft modes are investigated. Finally a comparison is made with the similar results obtained for interface phonons [fr

  1. 46 CFR 108.133 - Hull superstructure, structural bulkheads, decks, and deckhouses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull superstructure, structural bulkheads, decks, and deckhouses. 108.133 Section 108.133 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A... Protection § 108.133 Hull superstructure, structural bulkheads, decks, and deckhouses. Each hull...

  2. Control superstructure of rigid polyelectrolytes in oppositely charged hydrogels via programmed internal stress

    Science.gov (United States)

    Takahashi, Riku; Wu, Zi Liang; Arifuzzaman, Md; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    2014-08-01

    Biomacromolecules usually form complex superstructures in natural biotissues, such as different alignments of collagen fibres in articular cartilages, for multifunctionalities. Inspired by nature, there are efforts towards developing multiscale ordered structures in hydrogels (recognized as one of the best candidates of soft biotissues). However, creating complex superstructures in gels are hardly realized because of the absence of effective approaches to control the localized molecular orientation. Here we introduce a method to create various superstructures of rigid polyanions in polycationic hydrogels. The control of localized orientation of rigid molecules, which are sensitive to the internal stress field of the gel, is achieved by tuning the swelling mismatch between masked and unmasked regions of the photolithographic patterned gel. Furthermore, we develop a double network structure to toughen the hydrogels with programmed superstructures, which deform reversibly under large strain. This work presents a promising pathway to develop superstructures in hydrogels and should shed light on designing biomimetic materials with intricate molecular alignments.

  3. Superstructure for high current applications in superconducting linear accelerators

    Science.gov (United States)

    Sekutowicz, Jacek [Elbchaussee, DE; Kneisel, Peter [Williamsburg, VA

    2008-03-18

    A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.

  4. Unknown Aspects of Self-Assembly of PbS Microscale Superstructures

    Science.gov (United States)

    Querejeta-Fernández, Ana; Hernández-Garrido, Juan C.; Yang, Hengxi; Zhou, Yunlong; Varela, Aurea; Parras, Marina; Calvino-Gámez, José J.; González-Calbet, Jose M.; Green, Peter F.; Kotov, Nicholas A.

    2012-01-01

    A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints this field requires advancements in three principle directions: a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and micro-levels of organization; b) understanding of disassembly/deconstruction processes; and c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: 1) nucleation of early PbS NPs with an average diameter of 31 nm; 2) assembly into 100–500 nm octahedral mesocrystals; 3) assembly into 1000–2500 nm hyperbranched stars; 4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; 5) deconstruction into rods and cubooctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern–determining forces that include vander Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy harvesting devices which require organization of PbS components at multiple scales. PMID:22515512

  5. The Effects on the Operating Condition of a Passenger Ship Retro-fitted with a Composite Superstructure

    DEFF Research Database (Denmark)

    Karatzas, Vasileios; Hjørnet, N. K.; Kristensen, Hans Otto Holmegaard

    2016-01-01

    As sustainability and climate change have come on the politi-cal agenda, the shipping industry will have to be operating energy efficient ships. An appealing step to achieve this goal is by designing superstructures made out of Fiber Reinforced Plastics (FRP) aiming at the reduction of the ship......’s lightship weight. The benefits of a light superstructure become most prominent in large passenger ships, as the superstructures constitute a significant percentage of the lightship. Additional-ly, depending on the size of the ship, the superstructure may tower several decks above the weather deck, affecting...

  6. Erection of the Rokko island bridge superstructure. Rokko island kyojobu koji no seko

    Energy Technology Data Exchange (ETDEWEB)

    Tanino, A; Sakai, Y; Morikawa, Y; Sakoda, H; Egami, T; Maeda, Y; Shikata, H; Miyazaki, K [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    1993-10-20

    Erection of the superstructure of the Rokko Island Bridge (220 m long) was outlined which connects Rokko Island with Kobe City. The weight of the superstructure was nearly 7,300 tons, the highest single weight of any unit bridge structures ever installed in Japan. Because various ships cruised at the erection site every day, the superstructure was assembled and painted in a factory, and after shipped to its destination on a large barge, it was hoisted onto the previously constructed piers by three giant floating cranes (FC). Since it was most essential to match hook loads among the FCs, the hook load control system was developed in which hook load data of each FC were sent to a control center every 4-5 seconds by wireless transmission, and the data as well as their required control limits were graphically displayed to support a situation recognition, resulting in rapid and safe erection. The erection work started from that of piers in Aug. 1992, and that of the superstructure started in Nov. 1992 and ended in Feb. 1993. 13 figs., 4 tabs.

  7. High-resolution electron microscopy on incommensurate long-period superstructures of hexagonal-close-packed Cu-Sb alloy

    International Nuclear Information System (INIS)

    Onozuka, T.; Kakehashi, S.; Takahashi, T.; Hirabayashi, M.

    1989-01-01

    Hexagonal incommensurate long-period superstructures of the Cu-Sb alloys containing 18-20 at.% Sb have been investigated by means of superstructure imaging using a high-resolution electron microscope. Honeycomb-type distributions of hexagonal domains consisting of the commensurate superstructure of type 7a 0 -2H are observed. The incommensurabilities of superstructure can be interpreted well with a hexagonal model composed of the 7a 0 -2H domains surrounded by domain walls which contain higher Sb content than the domain interior. The observed image contrast is reproduced well with multislice computer simulations based on the structure models proposed for the 7a 0 -2H domain and the domain wall. (orig.)

  8. High-resolution electron microscopy on incommensurate long-period superstructures of hexagonal-close-packed Cu-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, T.; Kakehashi, S.; Takahashi, T.; Hirabayashi, M. (Tohoku Univ., Sendai (Japan). Inst. for Materials Research)

    1989-06-01

    Hexagonal incommensurate long-period superstructures of the Cu-Sb alloys containing 18-20 at.% Sb have been investigated by means of superstructure imaging using a high-resolution electron microscope. Honeycomb-type distributions of hexagonal domains consisting of the commensurate superstructure of type 7a{sub 0}-2H are observed. The incommensurabilities of superstructure can be interpreted well with a hexagonal model composed of the 7a{sub 0}-2H domains surrounded by domain walls which contain higher Sb content than the domain interior. The observed image contrast is reproduced well with multislice computer simulations based on the structure models proposed for the 7a{sub 0}-2H domain and the domain wall. (orig.).

  9. Turbulent Superstructures in Rayleigh-Bénard convection at different Prandtl number

    Science.gov (United States)

    Schumacher, Jörg; Pandey, Ambrish; Ender, Martin; Westermann, Rüdiger; Scheel, Janet D.

    2017-11-01

    Large-scale patterns of the temperature and velocity field in horizontally extended cells can be considered as turbulent superstructures in Rayleigh-Bénard convection (RBC). These structures are obtained once the turbulent fluctuations are removed by a finite-time average. Their existence has been reported for example in Bailon-Cuba et al.. This large-scale order obeys a strong similarity with the well-studied patterns from the weakly nonlinear regime at lower Rayleigh number in RBC. In the present work we analyze the superstructures of RBC at different Prandtl number for Prandtl values between Pr = 0.005 for liquid sodium and 7 for water. The characteristic evolution time scales, the typical spatial extension of the rolls and the properties of the defects of the resulting superstructure patterns are analyzed. Data are obtained from well-resolved spectral element direct numerical simulations. The work is supported by the Priority Programme SPP 1881 of the Deutsche Forschungsgemeinschaft.

  10. SELF-ORGANIZATION OF LEAD SULFIDE QUANTUM DOTS INTO SUPERSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Elena V. Ushakova

    2014-11-01

    Full Text Available The method of X-ray structural analysis (X-ray scattering at small angles is used to show that the structures obtained by self-organization on a substrate of lead sulfide (PbS quantum dots are ordered arrays. Self-organization of quantum dots occurs at slow evaporation of solvent from a cuvette. The cuvette is a thin layer of mica with teflon ring on it. The positions of peaks in SAXS pattern are used to calculate crystal lattice of obtained ordered structures. Such structures have a primitive orthorhombic crystal lattice. Calculated lattice parameters are: a = 21,1 (nm; b = 36,2 (nm; c = 62,5 (nm. Dimensions of structures are tens of micrometers. The spectral properties of PbS QDs superstructures and kinetic parameters of their luminescence are investigated. Absorption band of superstructures is broadened as compared to the absorption band of the quantum dots in solution; the luminescence band is slightly shifted to the red region of the spectrum, while its bandwidth is not changed much. Luminescence lifetime of obtained structures has been significantly decreased in comparison with the isolated quantum dots in solution, but remained the same for the lead sulfide quantum dots close-packed ensembles. Such superstructures can be used to produce solar cells with improved characteristics.

  11. Morphology-controlled hydrothermal synthesis of MnCO3 hierarchical superstructures with Schiff base as stabilizer

    International Nuclear Information System (INIS)

    Hu, He; Xu, Jie-yan; Yang, Hong; Liang, Jie; Yang, Shiping; Wu, Huixia

    2011-01-01

    Graphical abstract: MnCO3 microcrystals with hierarchical superstructures were synthesized by using the CO2 in atmosphere as carbonate ions source and Schiff base as shape guiding-agent in water/ethanol system under hydrothermal condition. Highlights: → The most interesting in this work is the use of the greenhouse gases CO 2 in atmosphere as carbonate ions source to precipitate with Mn 2+ for producing MnCO 3 crystals. → This work is the first report related to the small organic molecule Schiff base as shape guiding-agent to produce different MnCO 3 hierarchical superstructures. → We are controllable synthesis of the MnCO 3 hierarchical superstructures such as chrysanthemum, straw-bundle, dumbbell and sphere-like microcrystals. → The as-prepared MnCO 3 could be used precursor to fabricate the Mn 2 O 3 hierarchical superstructures after thermal decomposition at high temperature. -- Abstract: MnCO 3 with hierarchical superstructures such as chrysanthemum, straw-bundle, dumbbell and sphere-like were synthesized in water/ethanol system under environment-friendly hydrothermal condition. In the synthesis process, the CO 2 in atmosphere was used as the source of carbonate ions and Schiff base was used as shape guiding-agent. The different superstructures of MnCO 3 could be obtained by controlling the hydrothermal temperature, the molar ratio of manganous ions to the Schiff base, or the volume ratio of water to ethanol. A tentative growth mechanism for the generation of MnCO 3 superstructures was proposed based on the rod-dumbbell-sphere model. Furthermore, the MnCO 3 as precursor could be further successfully transferred to Mn 2 O 3 microstructure after heating in the atmosphere at 500 o C, and the morphology of the Mn 2 O 3 was directly determined by that of the MnCO 3 precursor.

  12. Vicarious revenge and the death of Osama bin Laden.

    Science.gov (United States)

    Gollwitzer, Mario; Skitka, Linda J; Wisneski, Daniel; Sjöström, Arne; Liberman, Peter; Nazir, Syed Javed; Bushman, Brad J

    2014-05-01

    Three hypotheses were derived from research on vicarious revenge and tested in the context of the assassination of Osama bin Laden in 2011. In line with the notion that revenge aims at delivering a message (the "message hypothesis"), Study 1 shows that Americans' vengeful desires in the aftermath of 9/11 predicted a sense of justice achieved after bin Laden's death, and that this effect was mediated by perceptions that his assassination sent a message to the perpetrators to not "mess" with the United States. In line with the "blood lust hypothesis," his assassination also sparked a desire to take further revenge and to continue the "war on terror." Finally, in line with the "intent hypothesis," Study 2 shows that Americans (but not Pakistanis or Germans) considered the fact that bin Laden was killed intentionally more satisfactory than the possibility of bin Laden being killed accidentally (e.g., in an airplane crash).

  13. 40 CFR 745.228 - Accreditation of training programs: public and commercial buildings, bridges and superstructures...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Accreditation of training programs: public and commercial buildings, bridges and superstructures. [Reserved] 745.228 Section 745.228... Accreditation of training programs: public and commercial buildings, bridges and superstructures. [Reserved] ...

  14. Antiphase boundaries, inversion, and ferroelastic domains in the striped-type superstructure of γ-brass Cu-Al alloys

    Science.gov (United States)

    Koyama, Y.; Hatano, M.; Tanimura, M.

    1996-05-01

    Features of the striped-type superstructure in γ-brass Cu-Al alloys have been investigated mainly by transmission electron microscopy in order to understand the role of a rhombohedral distortion in its stability. From dark field images taken from alloys exhibiting the superstructure, it was found that there exist two types of ferroelastic rhombohedral domains, which are in a twin relation. In other words, the superstructure is characterized by a periodic array of the ferroelastic domains as well as inversion antiphase boundaries. Because charge density waves should be responsible for the formation of the superstructure, as suggested in our previous paper [Phys. Rev. B 40, 5378 (1989)], the rhombohedral distortion must play a crucial role in their appearance. Presumably the distortion enlarges parallel portions of the Fermi surface. On the basis of the present experimental data, the interplay between the striped-type superstructure and the rhombohedral γ-brass structure is also discussed.

  15. Direct-write Bioprinting of Cell-laden Methacrylated Gelatin Hydrogels

    Science.gov (United States)

    Bertassoni, Luiz E.; Cardoso, Juliana C.; Manoharan, Vijayan; Cristino, Ana L.; Bhise, Nupura S.; Araujo, Wesleyan A.; Zorlutuna, Pinar; Vrana, Nihal E.; Ghaemmaghami, Amir M.

    2014-01-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least 8 days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms. PMID:24695367

  16. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels

    International Nuclear Information System (INIS)

    Bertassoni, Luiz E; Cardoso, Juliana C; Manoharan, Vijayan; Cristino, Ana L; Bhise, Nupura S; Araujo, Wesleyan A; Zorlutuna, Pinar; Vrana, Nihal E; Dokmeci, Mehmet R; Khademhosseini, Ali; Ghaemmaghami, Amir M

    2014-01-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms. (paper)

  17. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.

    Science.gov (United States)

    Bertassoni, Luiz E; Cardoso, Juliana C; Manoharan, Vijayan; Cristino, Ana L; Bhise, Nupura S; Araujo, Wesleyan A; Zorlutuna, Pinar; Vrana, Nihal E; Ghaemmaghami, Amir M; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-06-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms.

  18. Automatic recognition of ship types from infrared images using superstructure moment invariants

    Science.gov (United States)

    Li, Heng; Wang, Xinyu

    2007-11-01

    Automatic object recognition is an active area of interest for military and commercial applications. In this paper, a system addressing autonomous recognition of ship types in infrared images is proposed. Firstly, an approach of segmentation based on detection of salient features of the target with subsequent shadow removing is proposed, as is the base of the subsequent object recognition. Considering the differences between the shapes of various ships mainly lie in their superstructures, we then use superstructure moment functions invariant to translation, rotation and scale differences in input patterns and develop a robust algorithm of obtaining ship superstructure. Subsequently a back-propagation neural network is used as a classifier in the recognition stage and projection images of simulated three-dimensional ship models are used as the training sets. Our recognition model was implemented and experimentally validated using both simulated three-dimensional ship model images and real images derived from video of an AN/AAS-44V Forward Looking Infrared(FLIR) sensor.

  19. Role of Steric Hindrance in the Crystal Packing of Z′ = 4 Superstructure of Trimethyltin Hydroxide

    KAUST Repository

    Dey, S.; Schö nleber, A.; Mondal, S.; Ali, S. I.; van Smaalen, S.

    2018-01-01

    The roomerature crystal structure of trimethyltin hydroxide, (CH)SnOH, has been described by Anderson et al. [Cryst. Growth Des. 2011, 11, 820-826] as a 2a × 2b × 8c, 32-fold superstructure. We report a a × b × 8c, eight-fold superstructure

  20. Mach Number effects on turbulent superstructures in wall bounded flows

    Science.gov (United States)

    Kaehler, Christian J.; Bross, Matthew; Scharnowski, Sven

    2017-11-01

    Planer and three-dimensional flow field measurements along a flat plat boundary layer in the Trisonic Wind Tunnel Munich (TWM) are examined with the aim to characterize the scaling, spatial organization, and topology of large scale turbulent superstructures in compressible flow. This facility is ideal for this investigation as the ratio of boundary layer thickness to test section spanwise extent ratio is around 1/25, ensuring minimal sidewall and corner effects on turbulent structures in the center of the test section. A major difficulty in the experimental investigation of large scale features is the mutual size of the superstructures which can extend over many boundary layer thicknesses. Using multiple PIV systems, it was possible to capture the full spatial extent of large-scale structures over a range of Mach numbers from Ma = 0.3 - 3. To calculate the average large-scale structure length and spacing, the acquired vector fields were analyzed by statistical multi-point methods that show large scale structures with a correlation length of around 10 boundary layer thicknesses over the range of Mach numbers investigated. Furthermore, the average spacing between high and low momentum structures is on the order of a boundary layer thicknesses. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures of the Deutsche Forschungsgemeinschaft.

  1. Cryo-transmission electron microscopy of a superstructure of fluid dioleoylphosphatidylcholine (DOPC) membranes

    DEFF Research Database (Denmark)

    Klösgen, B; Helfrich, W

    1997-01-01

    a porous technical membrane. Sampling and cryofixation took place at various times within 3 weeks after the preparation. From the micrographs we infer that the small fraction of vesicles enclosing one another develop passages (connections) between the bilayers. In contrast, the superstructure is basically...... a feature of disconnected membranes. Among its modifications are isolated membrane bends or folds and a grainy membrane texture with a minimal grain spacing of 4-6 nm. In the extruded dispersions the passages and the superstructure seem to be formed mostly within the first day. The fraction of smooth...

  2. Study on superstructure in ion co-doped BiFeO3 by using transmission electron microscopy

    Science.gov (United States)

    Pu, Shi-Zhou; Guo, Chao; Li, Mei-Ya; Chen, Zhen-Lian; Zou, Hua-Min

    2015-04-01

    La3+ and V5+ co-doped BiFeO3 ceramics are synthesized by rapid liquid sintering technique. The modulated structure in Bi0.85La0.15Fe0.97V0.03O3 is investigated by using transmission electron microscopy (TEM). Two kinds of superstructures are observed in the samples. One is the component modulated superstructure and twin-domain, which is generated by La3+ ordered substitution for Bi3+ and frequently appears. The chemical composition of the superstructure is explored by x-ray energy dispersive spectroscopy (EDS). The model of the ordered structure is proposed. Simulation based on the model is conducted. The second is the fluorite-type δ-Bi2O3 related superstructure. The relation between the ferroelectric property and the microstructure of the sample is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 51372174, 11074193, and 51132001) and the Fundamental Research Funds for the Central Universities.

  3. Superstructure-based optimization of biorefinery networks: Production of biodiesel

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Orsi, Albert; Gani, Rafiqul

    2015-01-01

    through a practical case study for the production biodiesel from a variety of feedstock. The different biorefinery processing alternatives are represented in a superstructure and the associated data is collected and stored in a database. Once a specific biorefinery synthesis problem is formulated...

  4. Linking experiment and theory for three-dimensional networked binary metal nanoparticle–triblock terpolymer superstructures

    KAUST Repository

    Li, Zihui

    2014-02-21

    © 2014 Macmillan Publishers Limited. Controlling superstructure of binary nanoparticle mixtures in three dimensions from self-assembly opens enormous opportunities for the design of materials with unique properties. Here we report on how the intimate coupling of synthesis, in-depth electron tomographic characterization and theory enables exquisite control of superstructure in highly ordered porous three-dimensional continuous networks from single and binary mixtures of metal nanoparticles with a triblock terpolymer. Poly(isoprene-block-styrene-block-(N,N-dimethylamino)ethyl methacrylate) is synthesized and used as structure-directing agent for ligand-stabilized platinum and gold nanoparticles. Quantitative analysis provides insights into short-and long-range nanoparticle-nanoparticle correlations, and local and global contributions to structural chirality in the networks. Results provide synthesis criteria for next-generation mesoporous network superstructures from binary nanoparticle mixtures for potential applications in areas including catalysis.

  5. Enhanced fullerene–Au(111 coupling in (2√3 × 2√3R30° superstructures with intermolecular interactions

    Directory of Open Access Journals (Sweden)

    Michael Paßens

    2015-06-01

    Full Text Available Disordered and uniform (2√3 × 2√3R30° superstructures of fullerenes on the Au(111 surface have been studied using scanning tunneling microscopy and spectroscopy. It is shown that the deposition and growth process of a fullerene monolayer on the Au(111 surface determine the resulting superstructure. The supply of thermal energy is of importance for the activation of a Au vacancy forming process and thus, one criterion for the selection of the respective superstructure. However, here it is depicted that a vacancy–adatom pair can be formed even at room temperature. This latter process results in C60 molecules that appear slightly more bright in scanning tunnelling microscopy images and are identified in disordered (2√3 x 2√3R30° superstructures based on a detailed structure analysis. In addition, these slightly more bright C60 molecules form uniform (2√3 x 2√3R30° superstructures, which exhibit intermolecular interactions, likely mediated by Au adatoms. Thus, vacancy–adatom pairs forming at room temperature directly affect the resulting C60 superstructure. Differential conductivity spectra reveal a lifting of the degeneracy of the LUMO and LUMO+1 orbitals in the uniform (2√3 x 2√3R30° superstructure and in addition, hybrid fullerene–Au(111 surface states suggest partly covalent interactions.

  6. Turbulent thermal superstructures in Rayleigh-Bénard convection

    Science.gov (United States)

    Stevens, Richard J. A. M.; Blass, Alexander; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef

    2018-04-01

    We report the observation of superstructures, i.e., very large-scale and long living coherent structures in highly turbulent Rayleigh-Bénard convection up to Rayleigh Ra=109 . We perform direct numerical simulations in horizontally periodic domains with aspect ratios up to Γ =128 . In the considered Ra number regime the thermal superstructures have a horizontal extend of six to seven times the height of the domain and their size is independent of Ra. Many laboratory experiments and numerical simulations have focused on small aspect ratio cells in order to achieve the highest possible Ra. However, here we show that for very high Ra integral quantities such as the Nusselt number and volume averaged Reynolds number only converge to the large aspect ratio limit around Γ ≈4 , while horizontally averaged statistics such as standard deviation and kurtosis converge around Γ ≈8 , the integral scale converges around Γ ≈32 , and the peak position of the temperature variance and turbulent kinetic energy spectra only converge around Γ ≈64 .

  7. Nonlinear analysis of collapse mechanism in superstructure vehicle

    Science.gov (United States)

    Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.

    2017-04-01

    The EU directive 2001/85/EC is an official European text which describes the specifications for "single deck class II and III vehicles" required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.

  8. Scaling during capillary thinning of particle-laden drops

    Science.gov (United States)

    Thete, Sumeet; Wagoner, Brayden; Basaran, Osman

    2017-11-01

    A fundamental understanding of drop formation is crucial in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, the about-to-form drop is connected to the fluid hanging from the nozzle via a thinning filament. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids using theory, simulations, and experiments. In some of the applications however, the forming drop and hence the thinning filament may contain solid particles. The thinning dynamics of such particle-laden filaments differs radically from that of particle-free filaments. Moreover, our understanding of filament thinning in the former case is poor compared to that in the latter case despite the growing interest in pinch-off of particle-laden filaments. In this work, we go beyond similar studies and experimentally explore the impact of solid particles on filament thinning by measuring both the radial and axial scalings in the neck region. The results are summarized in terms of a phase diagram of capillary thinning of particle-laden filaments.

  9. Superconducting superstructure for the TESLA collider

    Energy Technology Data Exchange (ETDEWEB)

    Sekutowicz, J.; Tang, C. [DESY, MHF-SL, Hamburg (Germany); Ferrario, M. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1998-04-01

    The Authors discuss the new layout of a cavity chain (superstructure) allowing, the Authors hope, significant cost reduction of the RF system of both linacs of the TESLA linear collider. The proposed scheme increases the fill factor and thus makes an effective gradient of an accelerator higher. The authors present mainly computations that have performed up to now and which encouraged to order the copper model of the scheme, still keeping in mind that experiments with a beam will be necessary to prove if the proposed solution can be used for the acceleration.

  10. Topotactic transformations of superstructures: from thin films to two-dimensional networks to nested two-dimensional networks.

    Science.gov (United States)

    Guo, Chuan Fei; Cao, Sihai; Zhang, Jianming; Tang, Haoying; Guo, Shengming; Tian, Ye; Liu, Qian

    2011-06-01

    Design and synthesis of super-nanostructures is one of the key and prominent topics in nanotechnology. Here we propose a novel methodology for synthesizing complex hierarchical superstructures using sacrificial templates composed of ordered two-dimensional (2D) nanostructures through lattice-directed topotactic transformations. The fabricated superstructures are nested 2D orthogonal Bi(2)S(3) networks composed of nanorods. Further investigation indicates that the lattice matching between the product and sacrificial template is the dominant mechanism for the formation of the superstructures, which agrees well with the simulation results based on an anisotropic nucleation and growth analysis. Our approach may provide a promising way toward a lattice-directed nonlithographic nanofabrication technique for making functional porous nanoarchitectures and electronic devices. © 2011 American Chemical Society

  11. MEMBRANE BIOTREATMENT OF VOC-LADEN AIR

    Science.gov (United States)

    The paper discusses membrane biotreatment of air laden with volatile organic compounds (VOCs). Microporous flat-sheet and hollow-fiber membrane contactors were used to support air-liquid mass transfer interfaces. These modules were used in a two-step process to transfer VOCs fr...

  12. Role of Steric Hindrance in the Crystal Packing of Z′ = 4 Superstructure of Trimethyltin Hydroxide

    KAUST Repository

    Dey, S.

    2018-01-22

    The roomerature crystal structure of trimethyltin hydroxide, (CH)SnOH, has been described by Anderson et al. [Cryst. Growth Des. 2011, 11, 820-826] as a 2a × 2b × 8c, 32-fold superstructure. We report a a × b × 8c, eight-fold superstructure with orthorhombic P2cn symmetry and Z′ = 4. Structured diffuse scattering observed at the positions of presumed superlattice reflections along a∗ and b∗ might have appeared as Bragg reflections in the experiment by Anderson et al. Alternatively, Anderson et al. and the present work might have studied different polymorphs of (CH)SnOH. Crystalline (CH)SnOH constitutes polymeric chains arranged parallel to c. In the eight-fold superstructure at 220 K, the polymeric chains possess a distorted zigzag arrangement of linked linear O-Sn-O units with bent angle at oxygen of ∼139.2°. This structure is essentially different from the 8-helical arrangement in the published 32-fold superstructure model. The origin of the distorted zigzag structure is explained by steric hindrance between hydrogen atoms of adjacent hydroxy groups and (CH)Sn groups. Frustration in the packing of the chains is determined by steric hindrance between methyl groups of neighboring chains, which prevents the formation of interchain C-H···O hydrogen bonds.

  13. Who Should Decide How Machines Make Morally Laden Decisions?

    Science.gov (United States)

    Martin, Dominic

    2017-08-01

    Who should decide how a machine will decide what to do when it is driving a car, performing a medical procedure, or, more generally, when it is facing any kind of morally laden decision? More and more, machines are making complex decisions with a considerable level of autonomy. We should be much more preoccupied by this problem than we currently are. After a series of preliminary remarks, this paper will go over four possible answers to the question raised above. First, we may claim that it is the maker of a machine that gets to decide how it will behave in morally laden scenarios. Second, we may claim that the users of a machine should decide. Third, that decision may have to be made collectively or, fourth, by other machines built for this special purpose. The paper argues that each of these approaches suffers from its own shortcomings, and it concludes by showing, among other things, which approaches should be emphasized for different types of machines, situations, and/or morally laden decisions.

  14. Experimental Investigation of a Self-Sensing Hybrid GFRP-Concrete Bridge Superstructure with Embedded FBG Sensors

    OpenAIRE

    Wang, Yanlei; Li, Yunyu; Ran, Jianghua; Cao, Mingmin

    2012-01-01

    A self-sensing hybrid GFRP-concrete bridge superstructure, which consists of two bridge decks and each bridge deck is comprised of four GFRP box sections combined with a thin layer of concrete in the compression zone, was developed by using eight embedded FBG sensors in the top and bottom flanges of the four GFRP box sections at midspan section of one bridge deck along longitudinal direction, respectively. The proposed self-sensing hybrid bridge superstructure was tested in 4-point loading to...

  15. Different Neural Correlates of Emotion-Label Words and Emotion-Laden Words: An ERP Study

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2017-09-01

    Full Text Available It is well-documented that both emotion-label words (e.g., sadness, happiness and emotion-laden words (e.g., death, wedding can induce emotion activation. However, the neural correlates of emotion-label words and emotion-laden words recognition have not been examined. The present study aimed to compare the underlying neural responses when processing the two kinds of words by employing event-related potential (ERP measurements. Fifteen Chinese native speakers were asked to perform a lexical decision task in which they should judge whether a two-character compound stimulus was a real word or not. Results showed that (1 emotion-label words and emotion-laden words elicited similar P100 at the posteriors sites, (2 larger N170 was found for emotion-label words than for emotion-laden words at the occipital sites on the right hemisphere, and (3 negative emotion-label words elicited larger Late Positivity Complex (LPC on the right hemisphere than on the left hemisphere while such effect was not found for emotion-laden words and positive emotion-label words. The results indicate that emotion-label words and emotion-laden words elicit different cortical responses at both early (N170 and late (LPC stages. In addition, right hemisphere advantage for emotion-label words over emotion-laden words can be observed in certain time windows (i.e., N170 and LPC while fails to be detected in some other time window (i.e., P100. The implications of the current findings for future emotion research were discussed.

  16. Different Neural Correlates of Emotion-Label Words and Emotion-Laden Words: An ERP Study.

    Science.gov (United States)

    Zhang, Juan; Wu, Chenggang; Meng, Yaxuan; Yuan, Zhen

    2017-01-01

    It is well-documented that both emotion-label words (e.g., sadness, happiness) and emotion-laden words (e.g., death, wedding) can induce emotion activation. However, the neural correlates of emotion-label words and emotion-laden words recognition have not been examined. The present study aimed to compare the underlying neural responses when processing the two kinds of words by employing event-related potential (ERP) measurements. Fifteen Chinese native speakers were asked to perform a lexical decision task in which they should judge whether a two-character compound stimulus was a real word or not. Results showed that (1) emotion-label words and emotion-laden words elicited similar P100 at the posteriors sites, (2) larger N170 was found for emotion-label words than for emotion-laden words at the occipital sites on the right hemisphere, and (3) negative emotion-label words elicited larger Late Positivity Complex (LPC) on the right hemisphere than on the left hemisphere while such effect was not found for emotion-laden words and positive emotion-label words. The results indicate that emotion-label words and emotion-laden words elicit different cortical responses at both early (N170) and late (LPC) stages. In addition, right hemisphere advantage for emotion-label words over emotion-laden words can be observed in certain time windows (i.e., N170 and LPC) while fails to be detected in some other time window (i.e., P100). The implications of the current findings for future emotion research were discussed.

  17. Enigmatic cranial superstructures among Chamorro ancestors from the Mariana Islands: gross anatomy and microanatomy.

    Science.gov (United States)

    Heathcote, Gary M; Bromage, Timothy G; Sava, Vincent J; Hanson, Douglas B; Anderson, Bruce E

    2014-06-01

    This study focuses on the gross anatomy, anatomic relations, microanatomy, and the meaning of three enigmatic, geographically patterned, and quasi-continuous superstructures of the posterior cranium. Collectively known as occipital superstructures (OSSs), these traits are the occipital torus tubercle (TOT), retromastoid process (PR), and posterior supramastoid tubercle (TSP). When present, TOT, PR, and TSP develop at posterior cranial attachment sites of the upper trapezius, superior oblique, and sternocleidomastoid muscles, respectively. Marked expression and co-occurrence of these OSSs are virtually circumscribed within Oceania and reach highest recorded frequencies in protohistoric Chamorros (CHamoru) of the Mariana Islands. Prior to undertaking scanning electron microscopy (SEM) work, our working multifactorial model for OSS development was that early-onset, long-term, and chronic activity-related microtrauma at enthesis sites led to exuberant reactive or reparative responses in a substantial minority of genetically predisposed (and mostly male) individuals. SEM imaging, however, reveals topographic patterning that questions, but does not negate, activity induction of these superstructures. Although OSSs appear macroscopically as relatively large and discrete phenomena, SEM findings reveal a unique, widespread, and seemingly systemic distribution of structures over the occipital surface that have the appearance of OSS microforms. Nevertheless, apparent genetic underpinnings, anatomic relationships with muscle entheses, and positive correlation of OSS development with humeral robusticity continue to suggest that these superstructures have potential to at once bear witness to Chamorro population history and inform osteobiographical constructions of chronic activity patterns in individuals bearing them. Further work is outlined that would illuminate the proximate and ultimate meanings of OSS. Copyright © 2014 Wiley Periodicals, Inc.

  18. Effect of modeling of super-structure on the behaviour of reactor building raft

    International Nuclear Information System (INIS)

    Mondal, A.; Singh, A.K.; Roy, Raghupati; Verma, U.S.P.; Warudkar, A.S.

    2003-01-01

    The behaviour of the reactor building raft was studied when the stiffness of the super-structural elements is included in the analysis as compared to the results of conventional analysis ignoring the stiffness of the super-structural elements. The effect of the stiffness of the super-structures on the loss of contact of the raft under seismic environment was also investigated. In order to study the effect of horizontal springs on the behaviour of the raft particularly near the stressing gallery under seismic environment, a separate study has been carried out considering a 3D model consisting of solid elements supported on both horizontal and vertical springs. The model was analysed for all the forces applied at the top of the raft and the analysis results were compared with those of shell model. The following conclusions are drawn: (i) Idealisation of the reactor building raft using shell elements is adequate for estimating the design forces/moments on the raft. The design forces/moments obtained from FE model consisting of solid elements closely matches with those obtained from FE model with shell elements. Idealisation of the RB raft using shell elements will also reduce the problem size and the related computational efforts. (ii) The stiffness of the super-structure has significant effect on the behaviour of the raft. Consideration of the stiffness of the super structure reduces the design forces/moments significantly and hence, modelling of the stiffness of the super structure is necessary for economical design. (iii) Modelling of horizontal stiffness of the raft in terms of horizontal springs at the interface of the raft and the rock does not have significant effect on the behaviour of the raft and as such, is not required to be considered in the FE model. However, it is necessary to ensure adequate factor of safety against the overall stability of the raft

  19. Large-scale laboratory observations of wave forces on a highway bridge superstructure.

    Science.gov (United States)

    2011-10-01

    The experimental setup and data are presented for a laboratory experiment conducted to examine realistic wave forcing on a highway bridge : superstructure. The experiments measure wave conditions along with the resulting forces, pressures, and struct...

  20. Afghanistan, the Taliban, and Osama bin Laden: The Background to September 11

    Science.gov (United States)

    Social Education, 2011

    2011-01-01

    On May 1, 2011, a group of U.S. soldiers boarded helicopters at a base in Afghanistan, hoping to find a man named Osama bin Laden. Bin Laden, the leader of the al Qaeda terrorist network, was responsible for a number of terrorist attacks around the world, including those of September 11, 2001, that killed nearly 3,000 people in the United States.…

  1. Experimental Study of Properties of Pervious Concrete used for Bridge Superstructure

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Hertz, Kristian Dahl

    2014-01-01

    around freezing point are exposed to a harsh freeze-thaw impact, since bridges are not only cooled from the topside, as a normal road bed, but also from underneath. Hence, the demands to the moisture properties of the superstructure are strict in order to ensure the necessary durability. Pearl...

  2. Globalisation in Africa: Reflecting on Peter Jarvis's Superstructure and Substructure Model

    Science.gov (United States)

    Preece, Julia

    2017-01-01

    This paper reflects on Peter Jarvis' book "Globalisation, lifelong learning and the learning society," volume 2--in which he describes human learning within a global context and factors contributing to globalisation. He describes the relationship of power between countries manifested as the superstructure and sub structure. The paper…

  3. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  4. Simultaneous measurement of temperature and tensile loading using superstructure FBGs developed by laser direct writing of periodic on-fiber metallic films

    International Nuclear Information System (INIS)

    Alemohammad, Hamidreza; Toyserkani, Ehsan

    2009-01-01

    This paper addresses the development of superstructure fiber Bragg gratings (FBGs) by laser-assisted direct writing of on-fiber metallic films. A novel laser direct write method is characterized to fabricate periodic films of silver nanoparticles on the non-planar surface of as-fabricated FBGs. Silver films with a thickness of 9 µm are fabricated around a Bragg grating optical fiber. The performance of the superstructure FBG is studied by applying temperature and tensile stress on the fiber. An opto-mechanical model is also developed to predict the optical response of the synthesized superstructure FBG under thermal and structural loadings. The results show that the reflectivity of sidebands in the reflection spectrum can be tuned up to 20% and 37% under thermal and structural loadings, respectively. In addition, the developed superstructure FBG is used for simultaneous measurement of force and temperature to eliminate the inherent limitation of regular FBGs in multi-parameter sensing

  5. A novel high-temperature commensurate superstructure in a natural bariopyrochlore: A structural study by means of a multiphase crystal structure refinement

    International Nuclear Information System (INIS)

    Bindi, L.; Petricek, V.; Withers, R.L.; Zoppi, M.; Bonazzi, P.

    2006-01-01

    Additional X-ray diffraction effects yielding an eightfold commensurate superstructure [a=20.974(5)A] of the ideal pyrochlore structure were observed after annealing at 873K of a thallium-doped bariopyrochlore single crystal. Electron diffraction indicated the coexistence of two cubic phases, the pyrochlore structure and a new F-centred, cubic phase. The superstructure was solved and refined in the space group F4-bar 3m. The two phases were combined together and refined as independently diffracting to R=0.0628. The resulting unit-cell content is (A,-bar ) 20 Nb 16 Ti 2 O 53 (Z=8), with A=Ba, Tl, Ce, Th. For some atomic positions of the superstructure, third- and fourth-order anharmonic ADP's were used to account for the specific density shape having a continuous character as typical for ionic conductors. There are three distinct clusters in the superstructure, leading to a new structure type no longer strictly of pyrochlore-structure type

  6. Overcoming artificial spatial correlations in simulations of superstructure domain growth with parallel Monte Carlo algorithms

    International Nuclear Information System (INIS)

    Schleier, W.; Besold, G.; Heinz, K.

    1992-01-01

    The authors study the applicability of parallelized/vectorized Monte Carlo (MC) algorithms to the simulation of domain growth in two-dimensional lattice gas models undergoing an ordering process after a rapid quench below an order-disorder transition temperature. As examples they consider models with 2 x 1 and c(2 x 2) equilibrium superstructures on the square and rectangular lattices, respectively. They also study the case of phase separation ('1 x 1' islands) on the square lattice. A generalized parallel checkerboard algorithm for Kawasaki dynamics is shown to give rise to artificial spatial correlations in all three models. However, only if superstructure domains evolve do these correlations modify the kinetics by influencing the nucleation process and result in a reduced growth exponent compared to the value from the conventional heat bath algorithm with random single-site updates. In order to overcome these artificial modifications, two MC algorithms with a reduced degree of parallelism ('hybrid' and 'mask' algorithms, respectively) are presented and applied. As the results indicate, these algorithms are suitable for the simulation of superstructure domain growth on parallel/vector computers. 60 refs., 10 figs., 1 tab

  7. Analysis of connection element classes and locations and of some structural requirements for the mounting of different superstructure types on transport vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Đ. Majkić

    2011-04-01

    Full Text Available The paper presents the basic requirements for transport vehicles. A special request regarding the adaptation of transport vehicles for the transport of various types of cargo was taken into consideration. Superstructures and the situation arising after mounting superstructures on wheeled transport vehicles were analyzed and the following was described: console coupling, stirrups, simplex elastic coupling, two-way elastic and rigid connection elements. Vehicle torsional elasticity is provided by a proper choice of the type of connection between the superstructure and the vehicle chassis. Applying the instructions of vehicle manufacturers for using appropriate connections between the truck superstructure and the vehicle chassis provides positive torsional elasticity of the vehicle. The paper gives the general recommendations of the Volvo, Mercedes and Renault transport vehicle producers for the use of particular connection types of locations as well as structural requirements for the mounting of concrete mixers, tippers and truck tanks on their vehicles. Introduction Achieving a high level of transport effectiveness depends on a number of factors. One of the most important ones is the possibility to increase the payload share in the gross vehicle weight. This share depends on the net vehicle weight, a method of coupling the truck superstructure with the chassis frame as well as on the truck superstructure construction. Realization of this requirement is of significant importance, particularly for large business systems since it results in the reduction of number of necessary vehicles, more economic fleet maintenance and the fleet capacity increase. It is also relatively easy to adapt the vehicle for the transportation of other loads, depending on user's current needs. The adaptation is correctly performed if manufacturer's recommendations are followed during the mounting of the superstructure on the chassis. This paper gives the analysis of the

  8. Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography

    Science.gov (United States)

    Li, Sen-Sen; Shen, Yuan; Chang, Zhen-Ni; Li, Wen-Song; Xu, Yan-Chao; Fan, Xing-Yu; Chen, Lu-Jian

    2017-12-01

    A convenient approach to modulate the fingerprint textures of methyl red (MR) doped cholesteric liquid crystals by asymmetric photoalignment in the green-light waveband is presented, resulting in the generation of voltage-controllable helical superstructures. The interaction between the MR molecules and the incident light polarization determines the initial twisted planar geometry, providing a multivariant control over the stripe directions of fingerprint textures by applying a proper electric field. The key factors for precise manipulation of fingerprint stripes in a predictable and rewritable manner are analyzed theoretically and investigated experimentally, which involves the alignment asymmetry, the ratio of cell gap to natural pitch length, and the chirality of chiral dopant. Dynamic periodic fingerprint textures in shapes of dashed curve and dashed line are further demonstrated by utilizing a facile one-step polarization holography process using two beams with orthogonal circular and orthogonal linear polarizations, respectively. It is believed that the practical approach described in this study would enrich the research contents of self-assembled hierarchical superstructures using soft liquid crystal building blocks.

  9. Giant reversible magnetocaloric effect in flower-like β-Co(OH){sub 2} hierarchical superstructures self-assembled by nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguo; Feng, Chao; Xiao, Feng; Jin, Chuangui; Xia, Ailin, E-mail: liuxianguohugh@gmail.com, E-mail: eeswor@polyu.edu.hk [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Ma' anshan, PR (China); Or, Siu Wing [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Sun, Yuping [Center for Engineering Practice and Innovation Education, Anhui University of Technology, Ma' anshan, PR (China)

    2014-01-15

    A facile hydrothermal strategy is proposed to synthesize flower-like β- Co(OH){sub 2} hierarchical microspherical superstructures with a diameter of 0.5-1.5 µm, which are self-assembled by β - Co(OH){sub 2} nano sheets with the average thickness ranging between 20 and 40 nm. The magnetocaloric effect associated with magnetic phase transitions in Co(OH){sub 2} superstructures has been investigated. A sign change in the magnetocaloric effect is induced by a magnetic field, which is related to a filed-induced transition from the antiferromagnetic to the ferromagnetic state below the Néel temperature. The large reversible magnetic-entropy change –ΔS{sub m} (13.4 J/kg K at 15 K for a field change of 5 T) indicates that flower-like Co(OH){sub 2} superstructures is a potential candidate for application in magnetic refrigeration in the low-temperature range. (author)

  10. Enhanced thermophysical properties via PAO superstructure

    Science.gov (United States)

    Pournorouz, Zahra; Mostafavi, Amirhossein; Pinto, Aditya; Bokka, Apparao; Jeon, Junha; Shin, Donghyun

    2017-01-01

    For the last few years, molten salt nanomaterials have attracted many scientists for their enhanced specific heat by doping a minute concentration of nanoparticles (up to 1% by weight). Likewise, enhancing the specific heat of liquid media is important in many aspects of engineering such as engine oil, coolant, and lubricant. However, such enhancement in specific heat was only observed for molten salts, yet other engineering fluids such as water, ethylene glycol, and oil have shown a decrease of specific heat with doped nanoparticles. Recent studies have shown that the observed specific heat enhancement resulted from unique nanostructures that were formed by molten salt molecules when interacting with nanoparticles. Thus, such enhancement in specific heat is only possible for molten salts because other fluids may not naturally form such nanostructures. In this study, we hypothesized such nanostructures can be mimicked through in situ formation of fabricated nano-additives, which are putative nanoparticles coated with useful organic materials (e.g., polar-group-ended organic molecules) leading to superstructures, and thus can be directly used for other engineering fluids. We first applied this approach to polyalphaolefin (PAO). A differential scanning calorimeter (DSC), a rheometer, and a customized setup were employed to characterize the heat capacity, viscosity, and thermal conductivity of PAO and PAO with fabricated nano-additives. Results showed 44.5% enhanced heat capacity and 19.8 and 22.98% enhancement for thermal conductivity and viscosity, respectively, by an addition of only 2% of fabricated nanostructures in comparison with pure PAO. Moreover, a partial melting of the polar-group-ended organic molecules was observed in the first thermal cycle and the peak disappeared in the following cycles. This indicates that the in situ formation of fabricated nano-additives spontaneously occurs in the thermal cycle to form nanostructures. Figure of merit analyses have

  11. Enhanced thermophysical properties via PAO superstructure.

    Science.gov (United States)

    Pournorouz, Zahra; Mostafavi, Amirhossein; Pinto, Aditya; Bokka, Apparao; Jeon, Junha; Shin, Donghyun

    2017-12-01

    For the last few years, molten salt nanomaterials have attracted many scientists for their enhanced specific heat by doping a minute concentration of nanoparticles (up to 1% by weight). Likewise, enhancing the specific heat of liquid media is important in many aspects of engineering such as engine oil, coolant, and lubricant. However, such enhancement in specific heat was only observed for molten salts, yet other engineering fluids such as water, ethylene glycol, and oil have shown a decrease of specific heat with doped nanoparticles. Recent studies have shown that the observed specific heat enhancement resulted from unique nanostructures that were formed by molten salt molecules when interacting with nanoparticles. Thus, such enhancement in specific heat is only possible for molten salts because other fluids may not naturally form such nanostructures. In this study, we hypothesized such nanostructures can be mimicked through in situ formation of fabricated nano-additives, which are putative nanoparticles coated with useful organic materials (e.g., polar-group-ended organic molecules) leading to superstructures, and thus can be directly used for other engineering fluids. We first applied this approach to polyalphaolefin (PAO). A differential scanning calorimeter (DSC), a rheometer, and a customized setup were employed to characterize the heat capacity, viscosity, and thermal conductivity of PAO and PAO with fabricated nano-additives. Results showed 44.5% enhanced heat capacity and 19.8 and 22.98% enhancement for thermal conductivity and viscosity, respectively, by an addition of only 2% of fabricated nanostructures in comparison with pure PAO. Moreover, a partial melting of the polar-group-ended organic molecules was observed in the first thermal cycle and the peak disappeared in the following cycles. This indicates that the in situ formation of fabricated nano-additives spontaneously occurs in the thermal cycle to form nanostructures. Figure of merit analyses have

  12. Linking experiment and theory for three-dimensional networked binary metal nanoparticle–triblock terpolymer superstructures

    KAUST Repository

    Li, Zihui; Hur, Kahyun; Sai, Hiroaki; Higuchi, Takeshi; Takahara, Atsushi; Jinnai, Hiroshi; Gruner, Sol M.; Wiesner, Ulrich

    2014-01-01

    the intimate coupling of synthesis, in-depth electron tomographic characterization and theory enables exquisite control of superstructure in highly ordered porous three-dimensional continuous networks from single and binary mixtures of metal nanoparticles

  13. Dynamic self-organization in particle-laden channel flow

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Vreman, A.W.

    2006-01-01

    We study dynamic flow-structuring and mean-flow properties of turbulent particle-laden riser-flow at significant particle volume fractions of about 1.5%. We include particle–particle as well as particle–fluid interactions through inelastic collisions and drag forces, in a so-called four-way coupled

  14. DEPENDENCIES TO DETERMINE THE MEASURE OF DAMAGE AND CALCULATION OF RESIDUAL LIFE OF REINFORCED CONCRETE SUPERSTRUCTURE, EXPOSED TO SALT CORROSION

    OpenAIRE

    SAATOVA NODIRA ZIYAYEVNA

    2016-01-01

    In this paper we consider the current method of determining the measure of damage of concrete and reinforcement. The proposed dependence measures of damage, convenient for use in predicting the life of structures superstructures.The practical method of calculation determination of residual resource of the exploited superstructures developed. The main source of data for calculating the residual life are the parameters defined by the technical diagnosis.

  15. Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures

    NARCIS (Netherlands)

    Avci, Civan; Imaz, Inhar; Carné-Sánchez, Arnau; Pariente, Jose Angel; Tasios, Nikos; Pérez-Carvajal, Javier; Alonso, Maria Isabel; Blanco, Alvaro; Dijkstra, M.; López, Cefe; Maspoch, Daniel

    Self-assembly of particles into long-range, three-dimensional, ordered superstructures is crucial for the design of a variety of materials, including plasmonic sensing materials, energy or gas storage systems, catalysts and photonic crystals. Here, we have combined experimental and simulation data

  16. Numerical simulation of particle-laden turbulent channel flow

    NARCIS (Netherlands)

    Li, Y.; McLaughlin, J.B.; Kontomaris, K.; Portela, L.

    2001-01-01

    This paper presents results for the behavior of particle-laden gases in a small Reynolds number vertical channel down flow. Results will be presented for the effects of particle feedback on the gas-phase turbulence and for the concentration profile of the particles. The effects of density ratio,

  17. Analysis of metal-laden water via portable X-ray fluorescence spectrometry

    Science.gov (United States)

    Pearson, Delaina; Weindorf, David C.; Chakraborty, Somsubhra; Li, Bin; Koch, Jaco; Van Deventer, Piet; de Wet, Jandre; Kusi, Nana Yaw

    2018-06-01

    A rapid method for in-situ elemental composition analysis of metal-laden water would be indispensable for studying polluted water. Current analytical lab methods to determine water quality include flame atomic absorption spectrometry (FAAS), atomic absorption spectrophotometry (AAS), electrothermal atomic absorption spectrometry (EAAS), and inductively coupled plasma (ICP) spectroscopy. However only two field methods, colorimetry and absorptiometry, exist for elemental analysis of water. Portable X-ray fluorescence (PXRF) spectrometry is an effective method for elemental analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study sought to statistically establish PXRF's predictive ability for various elements in water at different concentrations relative to inductively coupled plasma atomic emission spectroscopy (ICP-AES). A total of 390 metal-laden water samples collected from leaching columns of mine tailings in South Africa were analyzed via PXRF and ICP-AES. The PXRF showed differential effectiveness in elemental quantification. For the collected water samples, the best relationships between ICP and PXRF elemental data were obtained for K and Cu (R2 = 0.92). However, when scanning ICP calibration solutions with elements in isolation, PXRF results indicated near perfect agreement; Ca, K, Fe, Cu and Pb produced an R2 of 0.99 while Zn and Mn produced an R2 of 1.00. The utilization of multiple PXRF (stacked) beams produced stronger correlation to ICP relative to the use of a single beam in isolation. The results of this study demonstrated the PXRF's ability to satisfactorily predict the composition of metal-laden water as reported by ICP for several elements. Additionally this study indicated the need for a "Water Mode" calibration for the PXRF and demonstrates the potential of PXRF for future study of polluted or contaminated waters.

  18. Optimal processing pathway for the production of biodiesel from microalgal biomass: A superstructure based approach

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass......, such as the harvesting of microalgal biomass, pretreatments including drying and cell disruption of harvested biomass, lipid extraction, transesterification, and post-transesterfication purification. The proposed model is used to find the optimal processing pathway among the large number of potential pathways that exist...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case with different choices of objective functions. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed...

  19. Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability.

    Science.gov (United States)

    Wang, Ling; Xu, Ming-En; Luo, Li; Zhou, Yongyong; Si, Peijian

    2018-02-12

    For three-dimensional bio-printed cell-laden hydrogel tissue constructs, the well-designed internal porous geometry is tailored to obtain the desired structural and cellular properties. However, significant differences often exist between the designed and as-printed scaffolds because of the inherent characteristics of hydrogels and cells. In this study, an iterative feedback bio-printing (IFBP) approach based on optical coherence tomography (OCT) for the fabrication of cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability was proposed. A custom-made swept-source OCT (SS-OCT) system was applied to characterize the printed scaffolds quantitatively. Based on the obtained empirical linear formula from the first experimental feedback loop, we defined the most appropriate design constraints and optimized the printing process to improve the geometrical fidelity. The effectiveness of IFBP was verified from the second run using gelatin/alginate hydrogel scaffolds laden with C3A cells. The mismatch of the morphological parameters greatly decreased from 40% to within 7%, which significantly optimized the cell viability, proliferation, and morphology, as well as the representative expression of hepatocyte markers, including CYP3A4 and albumin, of the printed cell-laden hydrogel scaffolds. The demonstrated protocol paves the way for the mass fabrication of cell-laden hydrogel scaffolds, engineered tissues, and scaled-up applications of the 3D bio-printing technique.

  20. Radiometric methods in the measurement of particle-laden flows

    Czech Academy of Sciences Publication Activity Database

    Zych, M.; Hanus, R.; Vlasák, Pavel; Jaszczur, M.; Petryka, L.

    2017-01-01

    Roč. 318, August (2017), s. 491-500 ISSN 0032-5910 Institutional support: RVO:67985874 Keywords : particle-laden flow * radiotracer * gamma absorption * cross-correlation * polymetallic nodules Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.942, year: 2016

  1. A Generic Methodology for Superstructure Optimization of Different Processing Networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Frauzem, Rebecca; Zhang, Lei

    2016-01-01

    In this paper, we propose a generic computer-aided methodology for synthesis of different processing networks using superstructure optimization. The methodology can handle different network optimization problems of various application fields. It integrates databases with a common data architecture......, a generic model to represent the processing steps, and appropriate optimization tools. A special software interface has been created to automate the steps in the methodology workflow, allow the transfer of data between tools and obtain the mathematical representation of the problem as required...

  2. Culture-Laden Imports: International Market Entry and Cultural Taboos

    Directory of Open Access Journals (Sweden)

    Brice William David

    2016-06-01

    Full Text Available This empirical study investigates American market responses to a Spanish product that is strongly culture-laden and may violate cultural taboos. Surveys were conducted in two contrasting US universities in Arkansas and California. Contrasting student majors were also chosen: Art and Business. The product is a life-sized baby doll, designed to be breast-fed rather than bottle-fed, which highlights the benefits and normality of breast-feeding babies. Although this product is popular in its original European market, US media accounts suggested strongly negative morality-based American reactions. This study found a strong overall non-acceptance of this product in all groups, but with significant differences between groups. Results quantify the market reaction and illuminate its cultural basis by comparing responses between two culturally different regions, two contrasting college majors, different genders, and different ethnicities. In doing so, this study helps to break new ground in the international marketing of culture-laden products.

  3. Different Neural Correlates of Emotion-Label Words and Emotion-Laden Words: An ERP Study

    OpenAIRE

    Zhang, Juan; Wu, Chenggang; Meng, Yaxuan; Yuan, Zhen

    2017-01-01

    It is well-documented that both emotion-label words (e.g., sadness, happiness) and emotion-laden words (e.g., death, wedding) can induce emotion activation. However, the neural correlates of emotion-label words and emotion-laden words recognition have not been examined. The present study aimed to compare the underlying neural responses when processing the two kinds of words by employing event-related potential (ERP) measurements. Fifteen Chinese native speakers were asked to perform a lexical...

  4. Comparative analysis of different joining techniques to improve the passive fit of cobalt-chromium superstructures.

    Science.gov (United States)

    Barbi, Francisco C L; Camarini, Edevaldo T; Silva, Rafael S; Endo, Eliana H; Pereira, Jefferson R

    2012-12-01

    The influence of different joining techniques on passive fit at the interface structure/abutment of cobalt-chromium (Co-Cr) superstructures has not yet been clearly established. The purpose of this study was to compare 3 different techniques of joining Co-Cr superstructures by measuring the resulting marginal misfit in a simulated prosthetic assembly. A specially designed metal model was used for casting, sectioning, joining, and measuring marginal misfit. Forty-five cast bar-type superstructures were fabricated in a Co-Cr alloy and randomly assigned by drawing lots to 3 groups (n=15) according to the joining method used: conventional gas-torch brazing (G-TB), laser welding (LW), and tungsten inert gas welding (TIG). Joined specimens were assembled onto abutment analogs in the metal model with the 1-screw method. The resulting marginal misfit was measured with scanning electron microscopy (SEM) at 3 different points: distal (D), central (C), and mesial (M) along the buccal aspect of both abutments: A (tightened) and B (without screw). The Levene test was used to evaluate variance homogeneity and then the Welsch ANOVA for heteroscedastic data (α=.05). Significant differences were found on abutment A between groups G-TB and LW (P=.013) measured mesially and between groups G-TB and TIG (P=.037) measured centrally. On abutment B, significant differences were found between groups G-TB and LW (Plaser method. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  5. Process for treating moisture laden coal fines

    Science.gov (United States)

    Davis, Burl E.; Henry, Raymond M.; Trivett, Gordon S.; Albaugh, Edgar W.

    1993-01-01

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  6. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    International Nuclear Information System (INIS)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P.T.

    2013-01-01

    The new ternary metal-rich boride, Nb 2 OsB 2 , was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U 3 Si 2 -structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B 2 dumbbells with B–B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB–LMTO–ASA), the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic Os–B, Nb–B and Nb–Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride. - Graphical abstract: Nb 2 OsB 2 is, to the best of our knowledge, the first fully characterized phase in the ternary Nb–Os–B system. It crystallizes (space group P4/mnc, 128) with a new twofold superstructure of the U 3 Si 2 structure type (space group P4/mbm, 127), and is therefore the first boride in this structure family crystallizing with a superstructure of the U 3 Si 2 structure type. We show that the distortions leading to this superstructure occurs mainly in the Nb-layer, which tries to accommodate the large osmium atoms. The consequence of this puckering is the building osmium dumbbells instead of chains along [001]. - Highlights: • First compound in the Nb–Os–B system. • New twofold superstructure of U 3 Si 2 structure type. • Puckering of Nb-layer responsible for superstructure occurrence. • Chemical bonding studied by density functional theory

  7. Uncertainty quantification in Eulerian-Lagrangian models for particle-laden flows

    Science.gov (United States)

    Fountoulakis, Vasileios; Jacobs, Gustaaf; Udaykumar, Hs

    2017-11-01

    A common approach to ameliorate the computational burden in simulations of particle-laden flows is to use a point-particle based Eulerian-Lagrangian model, which traces individual particles in their Lagrangian frame and models particles as mathematical points. The particle motion is determined by Stokes drag law, which is empirically corrected for Reynolds number, Mach number and other parameters. The empirical corrections are subject to uncertainty. Treating them as random variables renders the coupled system of PDEs and ODEs stochastic. An approach to quantify the propagation of this parametric uncertainty to the particle solution variables is proposed. The approach is based on averaging of the governing equations and allows for estimation of the first moments of the quantities of interest. We demonstrate the feasibility of our proposed methodology of uncertainty quantification of particle-laden flows on one-dimensional linear and nonlinear Eulerian-Lagrangian systems. This research is supported by AFOSR under Grant FA9550-16-1-0008.

  8. Self-organization of nickel nanoparticles dispersed in acetone: From separate nanoparticles to three-dimensional superstructures

    Directory of Open Access Journals (Sweden)

    I. Hernández-Pérez

    2017-02-01

    Full Text Available Sonochemical synthesis of monodisperse nickel nanoparticles (Ni-NPs by reduction of Ni acetylacetonate in the presence of polyvinylpyrrolidone stabilizer is reported. The Ni-NPs size is readily controlled to 5 nanometer diameter with a standard deviation of less than 5%. The as-prepared Ni-NPs sample was dispersed in acetone, for 4 weeks. For structural analysis was not applied to a magnetic field or heat treatment as key methods to direct the assembly. The transition from separate Ni-NPs into self-organization of three dimensions (3D superstructures was studied by electron microscopy. Experimental analysis suggests that the translation and rotation movement of the Ni-NPs are governed by magnetic frustration which promotes the formation of different geometric arrangements in two dimensions (2D. The formation of 3D superstructures is confirmed from scanning electron microscopy revealing a layered domain that consists of staking of several monolayers having multiple well-defined supercrystalline domains, enabling their use for optical, electronic and sensor applications.

  9. Drug-laden 3D biodegradable label using QR code for anti-counterfeiting of drugs.

    Science.gov (United States)

    Fei, Jie; Liu, Ran

    2016-06-01

    Wiping out counterfeit drugs is a great task for public health care around the world. The boost of these drugs makes treatment to become potentially harmful or even lethal. In this paper, biodegradable drug-laden QR code label for anti-counterfeiting of drugs is proposed that can provide the non-fluorescence recognition and high capacity. It is fabricated by the laser cutting to achieve the roughness over different surface which causes the difference in the gray levels on the translucent material the QR code pattern, and the micro mold process to obtain the drug-laden biodegradable label. We screened biomaterials presenting the relevant conditions and further requirements of the package. The drug-laden microlabel is on the surface of the troches or the bottom of the capsule and can be read by a simple smartphone QR code reader application. Labeling the pill directly and decoding the information successfully means more convenient and simple operation with non-fluorescence and high capacity in contrast to the traditional methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force.

    Directory of Open Access Journals (Sweden)

    Kaori Kuribayashi-Shigetomi

    Full Text Available This paper describes a method of generating three-dimensional (3D cell-laden microstructures by applying the principle of origami folding technique and cell traction force (CTF. We harness the CTF as a biological driving force to fold the microstructures. Cells stretch and adhere across multiple microplates. Upon detaching the microplates from a substrate, CTF causes the plates to lift and fold according to a prescribed pattern. This self-folding technique using cells is highly biocompatible and does not involve special material requirements for the microplates and hinges to induce folding. We successfully produced various 3D cell-laden microstructures by just changing the geometry of the patterned 2D plates. We also achieved mass-production of the 3D cell-laden microstructures without causing damage to the cells. We believe that our methods will be useful for biotechnology applications that require analysis of cells in 3D configurations and for self-assembly of cell-based micro-medical devices.

  11. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force.

    Science.gov (United States)

    Kuribayashi-Shigetomi, Kaori; Onoe, Hiroaki; Takeuchi, Shoji

    2012-01-01

    This paper describes a method of generating three-dimensional (3D) cell-laden microstructures by applying the principle of origami folding technique and cell traction force (CTF). We harness the CTF as a biological driving force to fold the microstructures. Cells stretch and adhere across multiple microplates. Upon detaching the microplates from a substrate, CTF causes the plates to lift and fold according to a prescribed pattern. This self-folding technique using cells is highly biocompatible and does not involve special material requirements for the microplates and hinges to induce folding. We successfully produced various 3D cell-laden microstructures by just changing the geometry of the patterned 2D plates. We also achieved mass-production of the 3D cell-laden microstructures without causing damage to the cells. We believe that our methods will be useful for biotechnology applications that require analysis of cells in 3D configurations and for self-assembly of cell-based micro-medical devices.

  12. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers

    International Nuclear Information System (INIS)

    Levato, Riccardo; Planell, Josep A; Engel, Elisabeth; Visser, Jetze; Malda, Jos; Mateos-Timoneda, Miguel A

    2014-01-01

    Bioprinting allows the fabrication of living constructs with custom-made architectures by spatially controlled deposition of multiple bioinks. This is important for the generation of tissue, such as osteochondral tissue, which displays a zonal composition in the cartilage domain supported by the underlying subchondral bone. Challenges in fabricating functional grafts of clinically relevant size include the incorporation of cues to guide specific cell differentiation and the generation of sufficient cells, which is hard to obtain with conventional cell culture techniques. A novel strategy to address these demands is to combine bioprinting with microcarrier technology. This technology allows for the extensive expansion of cells, while they form multi-cellular aggregates, and their phenotype can be controlled. In this work, living constructs were fabricated via bioprinting of cell-laden microcarriers. Mesenchymal stromal cell (MSC)-laden polylactic acid microcarriers, obtained via static culture or spinner flask expansion, were encapsulated in gelatin methacrylamide-gellan gum bioinks, and the printability of the composite material was studied. This bioprinting approach allowed for the fabrication of constructs with high cell concentration and viability. Microcarrier encapsulation improved the compressive modulus of the hydrogel constructs, facilitated cell adhesion, and supported osteogenic differentiation and bone matrix deposition by MSCs. Bilayered osteochondral models were fabricated using microcarrier-laden bioink for the bone compartment. These findings underscore the potential of this new microcarrier-based biofabrication approach for bone and osteochondral constructs. (paper)

  13. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers.

    Science.gov (United States)

    Levato, Riccardo; Visser, Jetze; Planell, Josep A; Engel, Elisabeth; Malda, Jos; Mateos-Timoneda, Miguel A

    2014-09-01

    Bioprinting allows the fabrication of living constructs with custom-made architectures by spatially controlled deposition of multiple bioinks. This is important for the generation of tissue, such as osteochondral tissue, which displays a zonal composition in the cartilage domain supported by the underlying subchondral bone. Challenges in fabricating functional grafts of clinically relevant size include the incorporation of cues to guide specific cell differentiation and the generation of sufficient cells, which is hard to obtain with conventional cell culture techniques. A novel strategy to address these demands is to combine bioprinting with microcarrier technology. This technology allows for the extensive expansion of cells, while they form multi-cellular aggregates, and their phenotype can be controlled. In this work, living constructs were fabricated via bioprinting of cell-laden microcarriers. Mesenchymal stromal cell (MSC)-laden polylactic acid microcarriers, obtained via static culture or spinner flask expansion, were encapsulated in gelatin methacrylamide-gellan gum bioinks, and the printability of the composite material was studied. This bioprinting approach allowed for the fabrication of constructs with high cell concentration and viability. Microcarrier encapsulation improved the compressive modulus of the hydrogel constructs, facilitated cell adhesion, and supported osteogenic differentiation and bone matrix deposition by MSCs. Bilayered osteochondral models were fabricated using microcarrier-laden bioink for the bone compartment. These findings underscore the potential of this new microcarrier-based biofabrication approach for bone and osteochondral constructs.

  14. Heat transfer in droplet-laden turbulent channel flow with phase transition in the presence of a thin film of water

    NARCIS (Netherlands)

    Bukhvostova, A.; Kuerten, J.G.M.; Geurts, B.J.; Grigoriadis, D.G.E.; Geurts, B.J.; Kuerten, H.; Fröhlich, J.; Armenio, V.

    2018-01-01

    In the field of multiphase systems droplet-laden channel flow presents a challenging topic not only because of how turbulent flow influences the mass and heat transfer properties of droplets but also how droplets modulate the flow. In this contribution we focus on droplet-laden turbulent channel

  15. A Critical Reassessment of Marxian Base-Superstructure Explanations of the Role of Education in Social Change.

    Science.gov (United States)

    Chun, Kyung-Kap

    1986-01-01

    Examines how four major versions of neo-Marxism (i.e., Hegelian, Phenomenological, Structuralist Marxism, and the Frankfurt School) attempt to overcome the base-superstructure thesis of the political economists of education. Considers the implicit social ontological and epistemological assumptions and the related theory of education of each.…

  16. Spatial scale effect on sediment dynamics in basin-wide floods within a typical agro-watershed: A case study in the hilly loess region of the Chinese Loess Plateau.

    Science.gov (United States)

    Zhang, Le-Tao; Li, Zhan-Bin; Wang, Shan-Shan

    2016-12-01

    Scale issues, which have been extensively studied in the domain of soil erosion, are considerably significant in geomorphologic processes and hydrologic modelling. However, relatively scarce efforts have been made to quantify the spatial scale effect on event-based sediment dynamics in basin-wide floods. To address this issue, sediment-runoff yield data of 44 basin-wide flood events were collected from gauging stations at the Chabagou river basin, a typical agro-basin (unmanaged) in the hilly loess region of the Chinese Loess Plateau. Thus, the spatial scale effect on event-based sediment dynamics was investigated in the basin system across three different spatial scales from sublateral to basin outlet. Results showed that the event-based suspended sediment concentration, as well as the intra- and inter-scale flow-sediment relationships remained spatially constant. Hence, almost all the sediment-laden flows can reach at the detachment-limited maximum concentration across scales, specifically for hyperconcentrated flows. Consequently, limited influence was exerted by upstream sediment-laden flow on downstream sediment output, particularly for major sediment-producing events. However, flood peak discharge instead of total flood runoff amount can better interpret the dynamics of sediment yield across scales. As a composite parameter, the proposed stream energy factor combines flood runoff depth and flood peak discharge, thereby showing more advantages to describe the event-based inter-scale flow-sediment relationship than other flow-related variables. Overall, this study demonstrates the process-specific characteristics of soil erosion by water flows in the basin system. Therefore, event-based sediment control should be oriented by the process to cut off the connectivity of hyperconcentrated flows and redistribute the erosive energy of flowing water in terms of temporality and spatiality. Furthermore, evaluation of soil conservation benefits should be based on the

  17. A Level-set based framework for viscous simulation of particle-laden supersonic flows

    Science.gov (United States)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-06-01

    Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.

  18. Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: Implications for the limits of biological control over the growth mode of abalone sea shells

    Directory of Open Access Journals (Sweden)

    Schneider Andreas S

    2012-09-01

    Full Text Available Abstract Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM [Gilbert et al., Journal of the

  19. Nanoparticles laden in situ gel for sustained ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Himanshu Gupta

    2013-01-01

    Full Text Available Proper availability of drug on to corneal surface is a challenging task. However, due to ocular physiological barriers, conventional eye drops display poor ocular bioavailability of drugs (< 1%. To improve precorneal residence time and ocular penetration, earlier our group developed and evaluated in situ gel and nanoparticles for ocular delivery. In interest to evaluate the combined effect of in situ gel and nanoparticles on ocular retention, we combined them. We are the first to term this combination as "nanoparticle laden in situ gel", that is, poly lactic co glycolic acid nanoparticle incorporated in chitosan in situ gel for sparfloxacin ophthalmic delivery. The formulation was tested for various physicochemical properties. It showed gelation pH near pH 7.2. The observation of acquired gamma camera images showed good retention over the entire precorneal area for sparfloxacin nanoparticle laden in situ gel (SNG as compared to marketed formulation. SNG formulation cleared at a very slow rate and remained at corneal surface for longer duration as no radioactivity was observed in systemic circulation. The developed formulation was found to be better in combination and can go up to the clinical evaluation and application.

  20. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    Science.gov (United States)

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.

  1. Simultaneous measurement of particle and fluid velocities in particle-laden flows

    International Nuclear Information System (INIS)

    Jin, D. X.; Lee, D. Y.

    2009-01-01

    For the velocity measurement in a particle-laden fluid flow, the fluid velocity and the inherently dispersed particle velocity can be analyzed by using PIV and PTV, respectively. Since the PIV result statistically represents the average displacement of all the particles in a PIV image, it is inevitable that the PIV result includes the influence of the dispersed particles' displacement if a single CCD camera is used to simultaneously measure the fluid velocity and the dispersed particle velocity. The influence of dispersed particles should be excluded before the PIV analysis in order to evaluate the fluid velocity accurately. In this study, the optimum replacement brightness of dispersed particles to minimize the false influence of dispersed particles on the PIV analysis was theoretically derived. Simulation results show that the modification of dispersed particle brightness can significantly reduce the PIV error caused by the dispersed particles. This modification method was also verified in the analysis of an actual experimental case of the particle-laden fluid flow in a triangular grooved channel

  2. Superstructure formation in PrNi_2Al_3 and ErPd_2Al_3

    International Nuclear Information System (INIS)

    Eustermann, Fabian; Hoffmann, Rolf-Dieter; Janka, Oliver; Oldenburg Univ.

    2017-01-01

    The intermetallic phase ErPd_2Al_3 was obtained by arc-melting of the elements and subsequent annealing for crystal growth. The sample was studied by X-ray diffraction on powders and single crystals. The structure of ErPd_2Al_3 was refined from X-ray diffraction data and revealed a superstructure of PrNi_2Al_3 - a CaCu_5 derivative (P6/m, a=1414.3(1), c=418.87(3) pm wR=0.0820, 1060 F"2 values, 48 variables). The same superstructure was subsequently found for PrNi_2Al_3 (P6/m, a=1407.87(4), c=406.19(2) pm, wR=0.0499, 904 F"2 values, 47 variables). In the crystal structure, the aluminium and transition metal atoms form a polyanionic network according to [T_2Al_3]"δ"-, while rare earth atoms fill cavities within the networks. They are coordinated by six transition metal and twelve aluminum atoms. In contrast to the PrNi_2Al_3 type structure reported so far, two crystallographic independent rare-earth sites are found of which one (1b) is shifted by 1/2 z, causing a distortion in the structure along with a recoloring of the T and Al atoms in the network.

  3. Investigation of superstructure damping identification for the HDR containment building

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Kot, C.A.; Srinivasan, M.G.

    1985-01-01

    A method for the estimation of first mode structural damping, developed by other investigators, was applied to shaker test data of the HDR containment building. Due to inadequate precision in the experimental phase measurements no valid results could be obtained. Based on modal analysis it was also noted that for systems such as the HDR building, contributions of higher modes are not negligible as was assumed in the original approach. Therefore, the procedure for the determination of superstructure damping using experimental data was extended to include the effects of higher modes. The extended method does not lead to any higher order nonlinear equations than the first mode approximation and was found to be as simple to apply as the original approach

  4. Novel superstructure of the rocksalt type and element distribution in germanium tin antimony tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Tobias [Department of Chemistry, Ludwig Maximilian University, Butenandtstraße 5-13, 81377 Munich (Germany); Welzmiller, Simon [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany); Neudert, Lukas [Department of Chemistry, Ludwig Maximilian University, Butenandtstraße 5-13, 81377 Munich (Germany); Urban, Philipp [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany); Fitch, Andy [European Synchrotron Radiation Facility, CS40220, 38043 Grenoble Cedex 9 (France); Oeckler, Oliver, E-mail: oliver.oeckler@gmx.de [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany)

    2014-11-15

    A superstructure of the rocksalt-type observed in quenched CVT-grown single crystals of Ge{sub 3.25(7)}Sn{sub 1.10(3)}Sb{sub 1.10(3)}Te{sub 6} was elucidated by X-ray diffraction using fourfold twinned crystals (space group P3{sup ¯}m1, a=4.280(1) Å, c=20.966(3) Å). The structure is built up of distorted rocksalt-type building blocks typical for long-range ordered GST materials and substitution variants thereof. In contrast to those phases, an exclusive ABC-type cubic stacking sequence of the Te-atom layers is present. High-resolution electron microscopy reveals spheroidal domains with this structure (average diameter 25 nm) whose stacking direction is perpendicular to the 〈1 1 1〉 directions of the basic rocksalt-type structure. Additional slab-like domains with a lateral extension up to 1 µm occasionally result in a hierarchical structure motif. Due to the similar electron counts of the elements involved, resonant diffraction was used in order to elucidate the element distribution in rocksalt-type building blocks of the stable layered compound 39R-Ge{sub 3}SnSb{sub 2}Te{sub 7} (R3{sup ¯}m, a=4.24990(4) Å, c=73.4677(9) Å). Sb tends to occupy the atom site close to the van der Waals gaps while Ge concentrates in the center of the building blocks. - Graphical abstract: High-resolution transmission electron micrograph, SAED pattern and reciprocal lattice section of X-ray single crystal data of Ge{sub 3.25}Sn{sub 1.1}Sb{sub 1.1}Te{sub 6} with an 11P-type superstructure of the rocksalt type. - Highlights: • A novel superstructure of the rocksalt-type in the system Ge–Sn–Sb–Te is elucidated. • It combines the cubic stacking of the HT phase with building blocks of the RT phase. • It indicates the ordering mechanism during the phase transition of GST materials. • A hierarchical structure motif is promising with respect to the reduction of κ{sub L}. • Resonant diffraction reveals the element distribution in 39R-Ge{sub 3}SnSb{sub 2}Te{sub 7}.

  5. Nb{sub 2}OsB{sub 2}, with a new twofold superstructure of the U{sub 3}Si{sub 2} type: Synthesis, crystal chemistry and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P.T., E-mail: boniface.fokwa@ac.rwth-aachen.de

    2013-07-15

    The new ternary metal-rich boride, Nb{sub 2}OsB{sub 2}, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U{sub 3}Si{sub 2}-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B{sub 2} dumbbells with B–B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB–LMTO–ASA), the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic Os–B, Nb–B and Nb–Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride. - Graphical abstract: Nb{sub 2}OsB{sub 2} is, to the best of our knowledge, the first fully characterized phase in the ternary Nb–Os–B system. It crystallizes (space group P4/mnc, 128) with a new twofold superstructure of the U{sub 3}Si{sub 2} structure type (space group P4/mbm, 127), and is therefore the first boride in this structure family crystallizing with a superstructure of the U{sub 3}Si{sub 2} structure type. We show that the distortions leading to this superstructure occurs mainly in the Nb-layer, which tries to accommodate the large osmium atoms. The consequence of this puckering is the building osmium dumbbells instead of chains along [001]. - Highlights: • First compound in the Nb–Os–B system. • New twofold superstructure of U{sub 3}Si{sub 2} structure type. • Puckering of Nb-layer responsible for superstructure occurrence. • Chemical bonding studied

  6. The early identification of anxiety-laden material with the aid of skin conductance measurements.

    Science.gov (United States)

    Lukens, H R

    1979-01-01

    Measured electrodermal responses (EDR), in the form of changes in skin conductivity, during administration of a calibration questionnaire (CQ) and a personal history questionnaire (PHQ) to each of 25 Ss. "Strong" changes were defined statistically for each S from the amplitudes of EDR evoked by the CQ. The free-floating anxiety of each S also was measured. As predicted on the grounds that questions of the PHQ were more likely than the non-personal questions of the CQ to intersect unresolved, anxiety-laden material, it was found that strong EDR evoked by the PHQ were significantly more likely to perseverate than those evoked by the CQ. Hence, the technique has potential clinical use in identifying anxiety-laden material. Free-floating anxiety did not correlate significantly with EDR data.

  7. Visualizing the photovoltaic behavior of a type-II p-n heterojunction superstructure

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Juanjuan, E-mail: xingjuanjuan@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Takeguchi, Masaki [Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Hashimoto, Ayako [Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Global Research Center for Environment and Energy Based on Nanomaterials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cao, Junyu; Ye, Jinhua [International Center for Materials Nanoarchitectonics (WPI-MANA), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-04-21

    Photovoltaic behavior of a CaFe{sub 2}O{sub 4}/ZnFe{sub 2}O{sub 4} p-n multi-junction was investigated with electron holography combined with an in situ light irradiation system. Potential profiles of the samples with and without light irradiation were extracted to measure the open circuit photovoltage generated either by the whole heterojunction superstructure or from each p-n junction. Investigation on the variation in the energy band configuration under light irradiation revealed the mechanism involved in the photoelectric effect, with respect to the properties of the heterojunction and its periodic quantum structure.

  8. Investigator Bias and Theory-Ladenness in Cross-Cultural Research: Insights from Wittgenstein

    Science.gov (United States)

    Tan, Charlene

    2016-01-01

    A relatively under-explored topic in the current literature on and methods for research in the field of comparative and international education is the problem of investigator bias in cross-cultural research. This article discusses the nature of and an approach to address investigator bias in research that originates from the theory-ladenness of…

  9. Optomagnetic Detection of MicroRNA Based on Duplex-Specific Nuclease-Assisted Target Recycling and Multilayer Core-Satellite Magnetic Superstructures

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Qiu, Zhen

    2017-01-01

    -efficiency, and potential for bioresponsive multiplexing. Herein, we demonstrate a sensitive and rapid miRNA detection method based on optomagnetic read-out, duplex-specific nuclease (DSN)-assisted target recycling, and the use of multilayer core-satellite magnetic superstructures. Triggered by the presence of target mi...

  10. Influencing feelings of cancer risk: direct and moderator effects of affectively laden phrases in risk communication.

    Science.gov (United States)

    Janssen, Eva; van Osch, Liesbeth; Lechner, Lilian; de Vries, Hein

    2015-01-01

    Evidence is accumulating for the importance of feelings of risk in explaining cancer preventive behaviors, but best practices for influencing these feelings are limited. This study investigated the direct and moderational influence of affectively laden phrases in cancer risk messages. Two experimental studies were conducted in relation to different cancer-related behaviors--sunbed use (n = 112) and red meat consumption (n = 447)--among student and nonstudent samples. Participants were randomly assigned to one of two conditions: (a) a cognitive message using cognitively laden phrases or (b) an affective message using affectively laden phrases. The results revealed that affective phrases did not directly influence feelings of risk in both studies. Evidence for a moderational influence was found in Study 2, suggesting that affective information strengthened the relation between feelings of risk and intention (i.e., participants relied more on their feelings in the decision-making process after exposure to affective information). These findings suggest that solely using affective phrases in risk communication may not be sufficient to directly influence feelings of risk and other methods need to be explored in future research. Moreover, research is needed to replicate our preliminary indications for a moderational influence of affective phrases to advance theory and practice.

  11. Color associations to emotion and emotion-laden words: A collection of norms for stimulus construction and selection.

    Science.gov (United States)

    Sutton, Tina M; Altarriba, Jeanette

    2016-06-01

    Color has the ability to influence a variety of human behaviors, such as object recognition, the identification of facial expressions, and the ability to categorize stimuli as positive or negative. Researchers have started to examine the relationship between emotional words and colors, and the findings have revealed that brightness is often associated with positive emotional words and darkness with negative emotional words (e.g., Meier, Robinson, & Clore, Psychological Science, 15, 82-87, 2004). In addition, words such as anger and failure seem to be inherently associated with the color red (e.g., Kuhbandner & Pekrun). The purpose of the present study was to construct norms for positive and negative emotion and emotion-laden words and their color associations. Participants were asked to provide the first color that came to mind for a set of 160 emotional items. The results revealed that the color RED was most commonly associated with negative emotion and emotion-laden words, whereas YELLOW and WHITE were associated with positive emotion and emotion-laden words, respectively. The present work provides researchers with a large database to aid in stimulus construction and selection.

  12. The monoclinic superstructure of the M2Pt6Al15 series (M=Ca, Sc, Y, La, Lu)

    International Nuclear Information System (INIS)

    Radzieowski, Mathis; Stegemann, Frank; Hoffmann, Rolf-Dieter; Janka, Oliver; Oldenburg Univ.

    2017-01-01

    The five ternary intermetallic compounds M 2 Pt 6 Al 15 (M=Ca, Sc, Y, La, Lu) were prepared from the elements by arc-melting. The crystal structure was determined via single crystal X-ray diffraction. The title compounds crystallize in a superstructure of the RE 0.67 Pt 2 Al 5 type structure (P6 3 /mmc) in the monoclinic crystal system with space group P12 1 /m1 (Sc 2 Pt 6 Al 15 : a=734.19(2), b=1628.96(10), c=734.19(2) pm, β=119.999(3) ; wR=0.0356, 3034 F 2 values, 68 variables). The superstructure can be derived by the superspace formalism using (3+2)D or (3+1)D interpretations of the diffraction data. The structural relation to the subcell structure is discussed on the basis of a group-subgroup scheme. In the crystal structure strongly bonded [Pt 2 Al 4 ] δ- slabs are alternatingly stacked with ordered layers containing M atoms and Al 3 triangles.

  13. Charge interaction between particle-laden fluid interfaces.

    Science.gov (United States)

    Xu, Hui; Kirkwood, John; Lask, Mauricio; Fuller, Gerald

    2010-03-02

    Experiments are described where two oil/water interfaces laden with charged particles move at close proximity relative to one another. The particles on one of the interfaces were observed to be attracted toward the point of closest approach, forming a denser particle monolayer, while the particles on the opposite interface were repelled away from this point, forming a particle depletion zone. Such particle attraction/repulsion was observed even if one of the interfaces was free of particles. This phenomenon can be explained by the electrostatic interaction between the two interfaces, which causes surface charges (charged particles and ions) to redistribute in order to satisfy surface electric equipotential at each interface. In a forced particle oscillation experiment, we demonstrated the control of charged particle positions on the interface by manipulating charge interaction between interfaces.

  14. Fishes and aquatic habitats of the Orinoco River Basin: diversity and conservation.

    Science.gov (United States)

    Lasso, C A; Machado-Allison, A; Taphorn, D C

    2016-07-01

    About 1000 freshwater fishes have been found so far in the Orinoco River Basin of Venezuela and Colombia. This high ichthyological diversity reflects the wide range of landscapes and aquatic ecosystems included in the basin. Mountain streams descend from the high Andes to become rapid-flowing foothill rivers that burst out upon vast savannah flatlands where they slowly make their way to the sea. These white-water rivers are heavily laden with sediments from the geologically young Andes. Because their sediment deposits have formed the richest soils of the basin, they have attracted the highest density of human populations, along with the greatest levels of deforestation, wildfires, agricultural biocides and fertilizers, sewage and all the other impacts associated with urban centres, agriculture and cattle ranching. In the southern portion of the basin, human populations are much smaller, where often the only inhabitants are indigenous peoples. The ancient rocks and sands of the Guiana Shield yield clear and black water streams of very different quality. Here, sediment loads are miniscule, pH is very acid and fish biomass is only a fraction of that observed in the rich Andean tributaries to the north. For each region of the basin, the current state of knowledge about fish diversity is assessed, fish sampling density evaluated, the presence of endemic species and economically important species (for human consumption or ornamental purposes) described and gaps in knowledge are pointed out. Current trends in the fishery for human consumption are analysed, noting that stocks of many species are in steep decline, and that current fishing practices are not sustainable. Finally, the major impacts and threats faced by the fishes and aquatic ecosystems of the Orinoco River Basin are summarized, and the creation of bi-national commissions to promote standardized fishing laws in both countries is recommended. © 2016 The Fisheries Society of the British Isles.

  15. The Origin of the Superstructure in Bi2Sr2CaCu2O8+dgr as Revealed by Scanning Tunneling Microscopy.

    Science.gov (United States)

    Kirk, M D; Nogami, J; Baski, A A; Mitzi, D B; Kapitulnik, A; Geballe, T H; Quate, C F

    1988-12-23

    Real-space images with atomic resolution of the BiO plane of Bi(2)Sr(2)CaCu(2)O(8+delta) were obtained with a scanning tunneling microscope. Single-crystal samples were cleaved and imaged under ultrahigh vacuum conditions at room temperature. The images clearly show the one-dimensional incommensurate superstructure along the b-axis that is common to this phase. High-resolution images show the position of the Bi atoms, revealing the structural nature of the superlattice. A missing row of Bi atoms occurs either every nine or ten atomic sites in both (110) directions, accounting for the measured incommensurate periodicity of the superstructure. A model is proposed that includes missing rows of atoms, as well as displacements of the atomic positions along both the a- and c-axis directions.

  16. The origin of the superstructure in Bi2Sr2CaCu2O(8+delta) as revealed by scanning tunneling microscopy

    Science.gov (United States)

    Kirk, M. D.; Nogami, J.; Baski, A. A.; Mitzi, D. B.; Kapitulnik, A.

    1988-12-01

    Real-space images with atomic resolution of the BiO plane of Bi2Sr2CaCu2O(8+delta) were obtained with a scanning tunneling microscope. Single-crystal samples were cleaved and imaged under ultrahigh vacuum conditions at room temperature. The images clearly show the one-dimensional incommensurate superstructure along the b-axis that is common to this phase. High-resolution images show the position of the Bi atoms, revelaing the structural nature of the superlattice. A missing row of Bi atoms occurs either every nine or ten atomic sites in both 110-line directions, accounting for the measured incommensurate periodicity of the superstructure. A model is proposed that includes missing rows of atoms, as well as displacements of the atomic positions along both the a- and c-axis directions.

  17. Particle-laden flow from geophysical to Kolmogorov scales

    CERN Document Server

    Clercx, Herman; Uijttewaal, Wim

    2007-01-01

    The dispersion of particles in a flow is of central importance in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples. These problems are characterized by strong nonlinear coupling between several dynamical mechanisms. As a result, processes on widely different length and time scales are simultaneously of importance. The multiscale nature of this challenging field motivated the EUROMECH colloquium on particle-laden flow that was held at the University of Twente in 2006. This book contains a selection of the papers that were presented.

  18. Contact assembly of cell-laden hollow microtubes through automated micromanipulator tip locating

    International Nuclear Information System (INIS)

    Wang, Huaping; Shi, Qing; Guo, Yanan; Li, Yanan; Sun, Tao; Huang, Qiang; Fukuda, Toshio

    2017-01-01

    This paper presents an automated contact assembly method to fabricate a cell-laden microtube based on accurate locating of the micromanipulator tip. Essential for delivering nutrients in thick engineered tissues, a vessel-mimetic microtube can be precisely assembled through microrobotic contact biomanipulation. The biomanipulation is a technique to spatially order and immobilize cellular targets with high precision. However, due to image occlusion during contact, it is challenging to locate the micromanipulator tip for fully automated assembly. To achieve pixel-wise tracking and locating of the tip in contact, a particle filter algorithm integrated with a determined level set model is employed here. The model ensures precise convergence of the micromanipulator’s contour during occlusion. With the converged active contour, the algorithm is able to pixel-wisely separate the micromanipulator from the low-contrast background and precisely locate the tip with error around 1 pixel (2 µ m at 4  ×  magnification). As a result, the cell-laden microtube is automatically assembled at six layers/min, which is effective enough to fabricate vessel-mimetic constructs for vascularization in tissue engineering. (paper)

  19. Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors.

    Science.gov (United States)

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-08-15

    The feasibility of stabilizing nickel-laden sludge from commonly available Al-rich ceramic precursors was investigated and accomplished with high nickel incorporation efficiency. To simulate the process, nickel oxide was mixed alternatively with gamma-alumina, corundum, kaolinite, and mullite and was sintered from 800 to 1480 degrees C. The nickel aluminate spinel (NiAl2O4) was confirmed as the stabilization phase for nickel and crystallized with efficiencies greater than 90% for all precursors above 1250 degrees C and 3-h sintering. The nickel-incorporation reaction pathways with these precursors were identified, and the microstructure and spinel yield were investigated as a function of sintering temperature with fixed sintering time. This study has demonstrated a promising process for forming nickel spinel to stabilize nickel-laden sludge from a wide range of inexpensive ceramic precursors, which may provide an avenue for economically blending waste metal sludges via the building industry processes to reduce the environmental hazards of toxic metals. The correlation of product textures and nickel incorporation efficiencies through selection of different precursors also provides the option of tailoring property-specific products.

  20. Perfusion directed 3D mineral formation within cell-laden hydrogels.

    Science.gov (United States)

    Sawyer, Stephen William; Shridhar, Shivkumar Vishnempet; Zhang, Kairui; Albrecht, Lucas; Filip, Alex; Horton, Jason; Soman, Pranav

    2018-06-08

    Despite the promise of stem cell engineering and the new advances in bioprinting technologies, one of the major challenges in the manufacturing of large scale bone tissue scaffolds is the inability to perfuse nutrients throughout thick constructs. Here, we report a scalable method to create thick, perfusable bone constructs using a combination of cell-laden hydrogels and a 3D printed sacrificial polymer. Osteoblast-like Saos-2 cells were encapsulated within a gelatin methacrylate (GelMA) hydrogel and 3D printed polyvinyl alcohol (PVA) pipes were used to create perfusable channels. A custom-built bioreactor was used to perfuse osteogenic media directly through the channels in order to induce mineral deposition which was subsequently quantified via microCT. Histological staining was used to verify mineral deposition around the perfused channels, while COMSOL modeling was used to simulate oxygen diffusion between adjacent channels. This information was used to design a scaled-up construct containing a 3D array of perfusable channels within cell-laden GelMA. Progressive matrix mineralization was observed by cells surrounding perfused channels as opposed to random mineral deposition in static constructs. MicroCT confirmed that there was a direct relationship between channel mineralization within perfused constructs and time within the bioreactor. Furthermore, the scalable method presented in this work serves as a model on how large-scale bone tissue replacement constructs could be made using commonly available 3D printers, sacrificial materials, and hydrogels. © 2018 IOP Publishing Ltd.

  1. Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Chul Ho, E-mail: chulsavio@hanmail.net [Department of Otolaryngology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Ahn, SeungHyun [Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Jae Whi; Lee, Byeong Ha [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Lee, Hyeongjin [Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kim, GeunHyung, E-mail: gkimbme@skku.edu [Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-03-01

    Tympanic membrane (TM) perforation is one of the most common otology complications. To date, there has not been reported TM regeneration using bioprinted scaffold. The purpose of this study was to evaluate the efficacy and feasibility of bioprinted polycaprolactone/collagen/alginate-mesenchymal stem cell (PCAMSC) scaffolds for the regeneration of subacute TM perforation. Sprague-Dawley rats were used in an animal model of subacute TM perforation. In the experimental group (n = 7), bioprinted 3D PCAMSC scaffold was placed on the perforation. The control group (n = 7) were treated with polycaprolactone/collagen/alginate (PCA) scaffold. Healing time, acoustic-mechanical properties, and morphological analysis were performed by otoendoscopy, auditory brainstem response (ABR), single-point laser doppler vibrometer (LDV), optical coherence tomography (OCT), and light microscopic evaluation. The closure of the TM perforation was achieved in 100% of the experimental group vs. 72% of the control group, and this difference was statistically significant (p < 0.05). The ABR threshold at all frequencies of the experimental group was recovered to the normal level compared to the control group. TM vibration velocity in the experimental group recovered similar to the normal control level. The difference are very small and they are not statistically significant below 1 kHz (p = 0.074). By OCT and light microscopic examination, regenerated TM of the experimental group showed thickened fibrous and mucosal layer. In contrast, the control group showed well regenerated but less thickened than experimental group. From these results, the cell-laden PCAMSC scaffold offers a significant advantage in the TM regeneration in a rat subacute TM perforation model. It may offer attractive opportunities in the conservative clinical treatment. - Highlights: • MSCs-laden scaffold was fabricated using a centrifugal spinning and cell-printing process. • The cell-laden scaffold showed the outstanding

  2. Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation

    International Nuclear Information System (INIS)

    Jang, Chul Ho; Ahn, SeungHyun; Lee, Jae Whi; Lee, Byeong Ha; Lee, Hyeongjin; Kim, GeunHyung

    2017-01-01

    Tympanic membrane (TM) perforation is one of the most common otology complications. To date, there has not been reported TM regeneration using bioprinted scaffold. The purpose of this study was to evaluate the efficacy and feasibility of bioprinted polycaprolactone/collagen/alginate-mesenchymal stem cell (PCAMSC) scaffolds for the regeneration of subacute TM perforation. Sprague-Dawley rats were used in an animal model of subacute TM perforation. In the experimental group (n = 7), bioprinted 3D PCAMSC scaffold was placed on the perforation. The control group (n = 7) were treated with polycaprolactone/collagen/alginate (PCA) scaffold. Healing time, acoustic-mechanical properties, and morphological analysis were performed by otoendoscopy, auditory brainstem response (ABR), single-point laser doppler vibrometer (LDV), optical coherence tomography (OCT), and light microscopic evaluation. The closure of the TM perforation was achieved in 100% of the experimental group vs. 72% of the control group, and this difference was statistically significant (p < 0.05). The ABR threshold at all frequencies of the experimental group was recovered to the normal level compared to the control group. TM vibration velocity in the experimental group recovered similar to the normal control level. The difference are very small and they are not statistically significant below 1 kHz (p = 0.074). By OCT and light microscopic examination, regenerated TM of the experimental group showed thickened fibrous and mucosal layer. In contrast, the control group showed well regenerated but less thickened than experimental group. From these results, the cell-laden PCAMSC scaffold offers a significant advantage in the TM regeneration in a rat subacute TM perforation model. It may offer attractive opportunities in the conservative clinical treatment. - Highlights: • MSCs-laden scaffold was fabricated using a centrifugal spinning and cell-printing process. • The cell-laden scaffold showed the outstanding

  3. Abnormal Congenital Location of Stapes’ Superstructure: Clinical and Embryological Implications

    Directory of Open Access Journals (Sweden)

    Vânia Henriques

    2016-01-01

    Full Text Available Congenital middle ear malformations are rare. Most part of them are usually associated with other malformations, such as aural atresia, microtia, and dysmorphic craniofacial features. A clinical case of a 24-year-old male with a right-sided conductive hearing loss since his childhood, without craniofacial malformation, is presented. He was proposed for exploratory tympanotomy under the suspicious diagnosis of otosclerosis. The surgery revealed an abnormal location of stapes’ superstructure, which was attached to the promontory and had an isolated and mobile osseous footplate in the oval window. A stapes prosthesis was inserted and resulted in closure of the air-bone gap by 25 dB. A review of the literature was also performed using MEDLINE. Two theories diverge on the embryologic origin of the stapes. Our findings seem to be in favour of the theory that defines two different embryologic origins to the stapes.

  4. Polymersomes with asymmetric membranes and self-assembled superstructures using pentablock quintopolymers resolved by electron tomography

    KAUST Repository

    Haataja, J. S.

    2018-01-09

    Polystyrene-block-poly(1,4-isoprene)-block-poly(dimethyl siloxane)-block-poly(tert-butyl methacrylate)-block-poly(2-vinyl pyridine), PS-b-PI-b-PDMS-b-PtBMA-b-P2VP, self-assembles in acetone into polymersomes with asymmetric (directional) PI-b-PDMS membranes. The polymersomes, in turn, self-assemble into superstructures. Analogically to supravesicular structures at a smaller length scale, we refer to them as suprapolymersome structures. Electron tomograms are shown to be invaluable in the structural assessment of such complex self-assemblies.

  5. System design optimization for stand-alone photovoltaic systems sizing by using superstructure model

    International Nuclear Information System (INIS)

    Azau, M A M; Jaafar, S; Samsudin, K

    2013-01-01

    Although the photovoltaic (PV) systems have been increasingly installed as an alternative and renewable green power generation, the initial set up cost, maintenance cost and equipment mismatch are some of the key issues that slows down the installation in small household. This paper presents the design optimization of stand-alone photovoltaic systems using superstructure model where all possible types of technology of the equipment are captured and life cycle cost analysis is formulated as a mixed integer programming (MIP). A model for investment planning of power generation and long-term decision model are developed in order to help the system engineer to build a cost effective system.

  6. Characterization of hydrogel printer for direct cell-laden scaffolds

    Science.gov (United States)

    Whulanza, Yudan; Arsyan, Rendria; Saragih, Agung Shamsuddin

    2018-02-01

    The additive manufacturing technology has been massively developed since the last decade. The technology was previously known as rapid prototyping techniques that aimed to produce a prototyping product in fast and economical way. Currently, this technique is also applied to fabricate microstructure utilized in tissue engineering technology. Here, we introduce a 3D printer which using hydrogel gelatin to realize cell laden scaffold with dimension around 50-100 µm. However, in order to fabricate such a precise dimension, an optimum working parameters are required to control the physical properties of gelatin. At the end of our study, we formulated the best parameters to perform the product as we desired.

  7. Simulation and scaling analysis of a spherical particle-laden blast wave

    Science.gov (United States)

    Ling, Y.; Balachandar, S.

    2018-05-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  8. Simulation and scaling analysis of a spherical particle-laden blast wave

    Science.gov (United States)

    Ling, Y.; Balachandar, S.

    2018-02-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  9. Failure behavior of concrete pile and super-structure dynamic response as a result of soil liquefaction during earthquake

    Science.gov (United States)

    Kaneda, Shogo; Hayashi, Kazuhiro; Hachimori, Wataru; Tamura, Shuji; Saito, Taiki

    2017-10-01

    In past earthquake disasters, numerous building structure piles were damaged by soil liquefaction occurring during the earthquake. Damage to these piles, because they are underground, is difficult to find. The authors aim to develop a monitoring method of pile damage based on superstructure dynamic response. This paper investigated the relationship between the damage of large cross section cementitious piles and the dynamic response of the super structure using a centrifuge test apparatus. A dynamic specimen used simple cross section pile models consisting of aluminum rod and mortar, a saturated soil (Toyoura sand) of a relative density of 40% and a super structure model of a natural period of 0.63sec. In the shaking table test under a 50G field (length scale of 1/50), excitation was a total of 3 motions scaled from the Rinkai wave at different amplitudes. The maximum acceleration of each of the excitations was 602gal, 336gal and 299gal. The centrifuge test demonstrated the liquefaction of saturated soil and the failure behavior of piles. In the test result, the damage of piles affected the predominant period of acceleration response spectrum on the footing of the superstructure.

  10. Comparative analysis of cogeneration power plants optimization based on stochastic method using superstructure and process simulator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leonardo Rodrigues de [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil)], E-mail: leoaraujo@ifes.edu.br; Donatelli, Joao Luiz Marcon [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)], E-mail: joaoluiz@npd.ufes.br; Silva, Edmar Alino da Cruz [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Azevedo, Joao Luiz F. [Instituto de Aeronautica e Espaco (CTA/IAE/ALA), Sao Jose dos Campos, SP (Brazil)

    2010-07-01

    Thermal systems are essential in facilities such as thermoelectric plants, cogeneration plants, refrigeration systems and air conditioning, among others, in which much of the energy consumed by humanity is processed. In a world with finite natural sources of fuels and growing energy demand, issues related with thermal system design, such as cost estimative, design complexity, environmental protection and optimization are becoming increasingly important. Therefore the need to understand the mechanisms that degrade energy, improve energy sources use, reduce environmental impacts and also reduce project, operation and maintenance costs. In recent years, a consistent development of procedures and techniques for computational design of thermal systems has occurred. In this context, the fundamental objective of this study is a performance comparative analysis of structural and parametric optimization of a cogeneration system using stochastic methods: genetic algorithm and simulated annealing. This research work uses a superstructure, modelled in a process simulator, IPSEpro of SimTech, in which the appropriate design case studied options are included. Accordingly, the cogeneration system optimal configuration is determined as a consequence of the optimization process, restricted within the configuration options included in the superstructure. The optimization routines are written in MsExcel Visual Basic, in order to work perfectly coupled to the simulator process. At the end of the optimization process, the system optimal configuration, given the characteristics of each specific problem, should be defined. (author)

  11. Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2012-03-01

    Full Text Available On 24 August 2006, a debris flow took place in the Moscardo Torrent, a basin of the Eastern Italian Alps instrumented for debris-flow monitoring. The debris flow was recorded by two seismic networks located in the lower part of the basin and on the alluvial fan, respectively. The event was also recorded by a pair of ultrasonic sensors installed on the fan, close to the lower seismic network. The comparison between the different recordings outlines particular features of the August 2006 debris flow, different from that of events recorded in previous years. A typical debris-flow wave was observed at the upper seismic network, with a main front abruptly appearing in the torrent, followed by a gradual decrease of flow height. On the contrary, on the alluvial fan the wave displayed an irregular pattern, with low flow depth and the main peak occurring in the central part of the surge both in the seismic recording and in the hydrographs. Recorded data and field evidences indicate that the surge observed on the alluvial fan was not a debris flow, and probably consisted in a water surge laden with fine to medium-sized sediment. The change in shape and characteristics of the wave can be ascribed to the attenuation of the surge caused by the torrent control works implemented in the lower basin during the last years.

  12. Observation of Vacancies, Faults, and Superstructures in Ln5Mo2O12 (Ln = La, Y, and Lu) Compounds with Direct Mo-Mo Bonding.

    Science.gov (United States)

    Colabello, Diane M; Sobalvarro, Elizabeth M; Sheckelton, John P; Neuefeind, Joerg C; McQueen, Tyrel M; Khalifah, Peter G

    2017-11-06

    Among oxide compounds with direct metal-metal bonding, the Y 5 Mo 2 O 12 (A 5 B 2 O 12 ) structural family of compounds has a particularly intriguing low-dimensional structure due to the presence of bioctahedral B 2 O 10 dimers arranged in one-dimensional edge-sharing chains along the direction of the metal-metal bonds. Furthermore, these compounds can have a local magnetic moment due to the noninteger oxidation state (+4.5) of the transition metal, in contrast to the conspicuous lack of a local moment that is commonly observed when oxide compounds with direct metal-metal bonding have integer oxidation states resulting from the lifting of orbital degeneracy typically induced by the metal-metal bonding. Although a monoclinic C2/m structure has been previously proposed for Ln 5 Mo 2 O 12 (Ln = La-Lu and Y) members of this family based on prior single crystal diffraction data, it is found that this structural model misses many important structural features. On the basis of synchrotron powder diffraction data, it is shown that the C2/m monoclinic unit cell represents a superstructure relative to a previously unrecognized orthorhombic Immm subcell and that the superstructure derives from the ordering of interchangeable Mo 2 O 10 and LaO 6 building blocks. The superstructure for this reason is typically highly faulted, as evidenced by the increased breadth of superstructure diffraction peaks associated with a coherence length of 1-2 nm in the c* direction. Finally, it is shown that oxygen vacancies can occur when Ln = La, producing an oxygen deficient stoichiometry of La 5 Mo 2 O 11.55 and an approximately 10-fold reduction in the number of unpaired electrons due to the reduction of the average Mo valence from +4.5 to +4.05, a result confirmed by magnetic susceptibility measurements. This represents the first observation of oxygen vacancies in this family of compounds and provides an important means of continuously tuning the magnetic interactions within the one

  13. Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses.

    Science.gov (United States)

    Maulvi, Furqan A; Desai, Ankita R; Choksi, Harsh H; Patil, Rahul J; Ranch, Ketan M; Vyas, Bhavin A; Shah, Dinesh O

    2017-05-30

    The effect of surfactant chain lengths [sodium caprylate (C 8 ), Tween 20 (C 12 ), Tween 80 (C 18 )] and the molecular weight of block copolymers [Pluronic F68 and Pluronic F 127] were studied to determine the stability of the microemulsion and its effect on release kinetics from cyclosporine-loaded microemulsion-laden hydrogel contact lenses in this work. Globule size and dilution tests (transmittance) suggested that the stability of the microemulsion increases with increase in the carbon chain lengths of surfactants and the molecular weight of pluronics. The optical transmittance of direct drug-laden contact lenses [DL-100] was low due to the precipitation of hydrophobic drugs in the lenses, while in microemulsion-laden lenses, the transmittance was improved when stability of the microemulsion was achieved. The results of in vitro release kinetics revealed that drug release was sustained to a greater extent as the stability of microemulsion was improved as well. This was evident in batch PF127-T80, which showed sustained release for 15days in comparison to batch DL-100, which showed release up to 7days. An in vivo drug release study in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC) with PF-127-T80 lenses (stable microemulsion) in comparison to PF-68-SC lenses (unstable microemulsion) and DL-100 lenses. This study revealed the correlation between the stability of microemulsion and the release kinetics of drugs from contact lenses. Thus, it was inferred that the stable microemulsion batches sustained the release of hydrophobic drugs, such as cyclosporine from contact lenses for an extended period of time without altering critical lens properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ag on Ge(111): 2D x-ray structure analysis of the #sq root#3 x #sq root#3 superstructure

    DEFF Research Database (Denmark)

    Dornisch, D.; Moritz, W.; Schulz, H.

    1992-01-01

    We have studied the Ag/Ge(111) square-root 3 x square-root 3 superstructure by grazing-incidence X-ray diffraction. In our structural analysis we find striking similarities to the geometry of Au on Si(111). The Ag atoms form trimer clusters with an Ag-Ag distance of 2.94 +/- 0.04 angstrom...

  15. Growth and Transfer of Monolithic Horizontal ZnO Nanowire Superstructures onto Flexible Substrates

    KAUST Repository

    Xu, Sheng

    2010-04-28

    A method of fabricating horizontally aligned ZnO nanowire (NW) arrays with full control over the width and length is demonstrated. A cross-sectional view of the NWs by transmission electron microscopy shows a "mushroom-like" structure. Novel monolithic multisegment superstructures are fabricated by making use of the lateral overgrowth. Ultralong horizontal ZnO NWs of an aspect ratio on the order often thousand are also demonstrated. These horizontal NWs are lifted off and transferred onto a flexible polymer substrate, which may have many great applications in horizontal ZnO NW-based nanosensor arrays, light-emitting diodes, optical gratings, integrated circuit interconnects, and high-output-power alternating-current nanogenerators. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA.

  16. A novel high-temperature commensurate superstructure in a natural bariopyrochlore: A structural study by means of a multiphase crystal structure refinement

    Czech Academy of Sciences Publication Activity Database

    Bindi, L.; Petříček, Václav; Withers, R. L.; Zoppi, M.; Bonazzi, P.

    2006-01-01

    Roč. 179, - (2006), s. 716-725 ISSN 0022-4596 R&D Projects: GA ČR(CZ) GA202/03/0430 Institutional research plan: CEZ:AV0Z10100521 Keywords : pyrochlore * superstructure * X-ray data * multiphase structure refinement * TEM study Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.107, year: 2006

  17. A PTV method based on ultrasound imaging and feature tracking in a low-concentration sediment-laden flow

    Science.gov (United States)

    Ma, Zhimin; Hu, Wenbin; Zhao, Xiaohong; Tao, Weiliang

    2018-02-01

    This study aims to provide a particle tracking velocimetry (PTV) method based on ultrasound imaging and feature-tracking in a low-concentration sediment-laden flow. A phased array probe is used to generate a 2D ultrasound image at different times. Then, the feature points are extracted to be tracked instead of the centroids of the particle image. In order to better identify the corresponding feature point, each feature is described by an oriented angle and its location. Then, a statistical interpolation procedure is used to yield the displacement vector on the desired grid point. Finally a correction procedure is adopted because the ultrasound image is sequentially acquired line by line through the field of view. A simple test experiment was carried out to evaluate the performance. The ultrasound PTV system was applied to a sediment-laden flow with a low concentration of 1‰, and the speed was up to 10 cm s-1. In comparison to optical particle image velocimetry (PIV), ultrasound imaging does not have a limitation in optical access. The feature-tracking method does not have a binarisation and segmentation procedure, which can result in overlapping particles or a serious loss of particle data. The feature-tracking algorithm improves the peak locking effect and measurement accuracy. Thus, the ultrasound PTV algorithm is a feasible alternative and is significantly more robust against gradients than the correlation-based PIV algorithms in a low-concentration sediment-laden fluid.

  18. Influence of lubrication forces in direct numerical simulations of particle-laden flows

    Science.gov (United States)

    Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans

    2016-11-01

    Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

  19. Efficient visible light photocatalytic NO{sub x} removal with cationic Ag clusters-grafted (BiO){sub 2}CO{sub 3} hierarchical superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xin [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 40067 (China); Zhang, Wendong [Department of Scientific Research Management, Chongqing Normal University, Chongqing 401331 (China); Deng, Hua [State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Ni, Zilin [Department of Scientific Research Management, Chongqing Normal University, Chongqing 401331 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 40067 (China); Zhang, Yuxin, E-mail: zhangyuxin@cqu.edu.cn [College of Materials Science and Engineering, National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044 (China)

    2017-01-15

    Graphical abstract: The cationic Ag clusters-grafted (BiO){sub 2}CO{sub 3} hierarchical superstructures exhibits highly enhanced visible light photocatalytic air purification through an interfacial charge transfer process induced by Ag clusters. - Highlights: • Microstructural optimization and surface cluster-grafting were firstly combined. • Cationic Ag clusters were grafted on the surface of (BiO){sub 2}CO{sub 3} superstructures. • The Ag clusters-grafted BHS displayed enhanced visible light photocatalysis. • Direct interfacial charge transfer (IFCT) from BHS to Ag clusters was proposed. • The charge transfer process and the dominant reactive species were revealed. - Abstract: A facile method was developed to graft cationic Ag clusters on (BiO){sub 2}CO{sub 3} hierarchical superstructures (BHS) surface to improve their visible light activity. Significantly, the resultant Ag clusters-grafted BHS displayed a highly enhanced visible light photocatalytic performance for NOx removal due to the direct interfacial charge transfer (IFCT) from BHS to Ag clusters. The chemical and coordination state of the cationic Ag clusters was determined with the extended X-ray absorption fine structure (EXAFS) and a theoretical structure model was proposed for this unique Ag clusters. The charge transfer process and the dominant reactive species (·OH) were revealed on the basis of electron spin resonance (ESR) trapping. A new photocatalysis mechanism of Ag clusters-grafted BHS under visible light involving IFCT process was uncovered. In addition, the cationic Ag clusters-grafted BHS also demonstrated high photochemical and structural stability under repeated photocatalysis runs. The perspective of enhancing photocatalysis through combination of microstructural optimization and IFCT could provide a new avenue for the developing efficient visible light photocatalysts.

  20. IHT: Tools for Computing Insolation Absorption by Particle Laden Flows

    Energy Technology Data Exchange (ETDEWEB)

    Grout, R. W.

    2013-10-01

    This report describes IHT, a toolkit for computing radiative heat exchange between particles. Well suited for insolation absorption computations, it is also has potential applications in combustion (sooting flames), biomass gasification processes and similar processes. The algorithm is based on the 'Photon Monte Carlo' approach and implemented in a library that can be interfaced with a variety of computational fluid dynamics codes to analyze radiative heat transfer in particle-laden flows. The emphasis in this report is on the data structures and organization of IHT for developers seeking to use the IHT toolkit to add Photon Monte Carlo capabilities to their own codes.

  1. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs

    OpenAIRE

    M?ller, Thomas; Amoroso, Matteo; H?gg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; K?lby, Lars; Gatenholm, Paul

    2017-01-01

    Background: The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Methods: Thirty-six nude mice (Balb-C, female) received a 5- ? 5- ? 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/...

  2. Particle Interactions in DNA-laden Flows

    International Nuclear Information System (INIS)

    Bybee, M D; Miller, G H; Trebotich, D

    2005-01-01

    Microfluidic devices are becoming state-of-the-art in many significant applications including pathogen detection, continuous monitoring, and drug delivery. Numerical algorithms which can simulate flows of complex fluids within these devices are needed for their development and optimization. A method is being developed at LLNL by Trebotich et. al. [30] for simulations of DNA-laden flows in complex microscale geometries such as packed bed reactors and pillar chips. In this method an incompressible Newtonian fluid is discretized with Cartesian grid embedded boundary methods, and the DNA is represented by a bead-rod polymer model. The fluid and polymer are coupled through a body force. In its current state, polymer-surface interactions are treated as elastic collisions between beads and surface, and polymer-polymer interactions are neglected. Implementation of polymer-polymer interactions is the main objective of this work. It is achieved by two methods: (1) a rigid constraint whereby rods elastically bounce off one another, and (2) a smooth potential acting between rods. In addition, a smooth potential is also implemented for the polymer-surface interactions. Background information will also be presented as well as related work by other researchers

  3. Particle Interactions in DNA-laden Flows

    Energy Technology Data Exchange (ETDEWEB)

    Bybee, M D; Miller, G H; Trebotich, D

    2005-12-20

    Microfluidic devices are becoming state-of-the-art in many significant applications including pathogen detection, continuous monitoring, and drug delivery. Numerical algorithms which can simulate flows of complex fluids within these devices are needed for their development and optimization. A method is being developed at LLNL by Trebotich et. al. [30] for simulations of DNA-laden flows in complex microscale geometries such as packed bed reactors and pillar chips. In this method an incompressible Newtonian fluid is discretized with Cartesian grid embedded boundary methods, and the DNA is represented by a bead-rod polymer model. The fluid and polymer are coupled through a body force. In its current state, polymer-surface interactions are treated as elastic collisions between beads and surface, and polymer-polymer interactions are neglected. Implementation of polymer-polymer interactions is the main objective of this work. It is achieved by two methods: (1) a rigid constraint whereby rods elastically bounce off one another, and (2) a smooth potential acting between rods. In addition, a smooth potential is also implemented for the polymer-surface interactions. Background information will also be presented as well as related work by other researchers.

  4. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating.

    Science.gov (United States)

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G; Mullins, John J; Davies, Jamie A; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells).

  5. Bilateral Congenital Absence of the Stapes Superstructure in Two Siblings

    Directory of Open Access Journals (Sweden)

    Jose Ignacio Undabeitia

    2014-01-01

    Full Text Available Middle ear ossicle malformations are an uncommon event. Among them, the congenital absence of the stapes is a very rare condition that is seldom described in the literature. We report the cases of two women, aged 19 and 22 , who presented with a long history of conductive deafness. An exploratory tympanotomy was performed and the absence of the stapes superstructure and an abnormal position of the facial nerve could be observed. A bone anchored hearing aid (BAHA was implanted in both patients with good results. It is believed that stapes agenesis is related to an abnormal development of the facial nerve, which by the 5th to 6th week of gestation would interpose between the otic capsule and the stapes blastema, preventing these structures from contacting. A long history of nonprogressive hearing loss from birth or early childhood is the key to reach a diagnosis. Several treatment options have been described. The authors opted for a hearing aid due to the high risk of facial nerve lesion, with good functional results.

  6. Bio-reduction of free and laden perchlorate by the pure and mixed perchlorate reducing bacteria: Considering the pH and coexisting nitrate.

    Science.gov (United States)

    Shang, Yanan; Wang, Ziyang; Xu, Xing; Gao, Baoyu; Ren, Zhongfei

    2018-08-01

    Pure bacteria cell (Azospira sp. KJ) and mixed perchlorate reducing bacteria (MPRB) were employed for decomposing the free perchlorate in water as well as the laden perchlorate on surface of quaternary ammonium wheat residuals (QAWR). Results indicated that perchlorate was decomposed by the Azospira sp. KJ prior to nitrate while MPRB was just the reverse. Bio-reduction of laden perchlorate by Azospira sp. KJ was optimal at pH 8.0. In contrast, bio-reduction of laden perchlorate by MPRB was optimal at pH 7.0. Generally, the rate of perchlorate reduction was controlled by the enzyme activity of PRB. In addition, perchlorate recovery (26.0 mg/g) onto bio-regenerated QAWR by MPRB was observed with a small decrease as compared with that (31.1 mg/g) by Azospira sp. KJ at first 48 h. Basically, this study is expected to offer some different ideas on bio-regeneration of perchlorate-saturated adsorbents using biological process, which may provide the economically alternative to conventional methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Presenting a Multi-level Superstructure Optimization Approach for Mechatronic System Design

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Bech, Michael Møller

    2010-01-01

    Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control) and descr......Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control......) and describe the interface between the technologies, whereas the lack of well-established, systematic engineering methods to form the basic set-off in analysis and design of complete mechatronic systems has been obvious. The focus of the current paper is therefore to present an integrated design approach...... for mechatronic system design, utilizing a multi-level superstructure optimization based approach. Finally two design examples are presented and the possibilities and limitations of the approach are outlined....

  8. Synthesis of noble metal nanoparticles and their superstructures; Darstellung von Edelmetallnanopartikeln und deren Ueberstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Bigall, Nadja-Carola

    2009-08-18

    A modified synthesis procedure for citrate-stabilized gold nanoparticles in aqueous solution is transferred under application of equal concentrations to the systems silver, platinum, and palladium. The nanoparticles are analyzed by means of absorption spectroscopy and electron microscopy. Ordered superstructures of the noble-metal nanoparticles can be synthesized by infiltration of templates of block-copolymer films with aqueous nanoparticle solution. In dependence on the pre-treatment of the polymer films either two-dimensional periodical arrangements with a periodicity of less than 30 nm or fingerprint-like arrangements with a groove distance in the same order of magnitude. By removal of the polymer one- respectively two-dimensional arrangements of platinum nanowires respectively nanoparticles on a silicon waver arise.

  9. Superstructure of self-aligned hexagonal GaN nanorods formed on nitrided Si(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen; Tuteja, Mohit; Kesaria, Manoj; Waghmare, U. V.; Shivaprasad, S. M. [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064 (India)

    2012-09-24

    We present here the spontaneous formation of catalyst-free, self-aligned crystalline (wurtzite) nanorods on Si(111) surfaces modified by surface nitridation. Nanorods grown by molecular beam epitaxy on bare Si(111) and non-stoichiometric silicon nitride interface are found to be single crystalline but disoriented. Those grown on single crystalline Si{sub 3}N{sub 4} intermediate layer are highly dense c-oriented hexagonal shaped nanorods. The morphology and the self-assembly of the nanorods shows an ordered epitaxial hexagonal superstructure, suggesting that they are nucleated at screw dislocations at the interface and grow spirally in the c-direction. The aligned nanorod assembly shows high-quality structural and optical emission properties.

  10. Experimental and theoretical study of the operation of longitudinal sidewalls in reinforced concrete superstructures

    Science.gov (United States)

    Bokarev, Sergey; Efimov, Stefan

    2017-11-01

    In the present article, we report results of a laboratory experimental study of reinforced-concrete superstructure fragments with extended longitudinal boxing sidewalls. The study included laboratory tests and numerical experiments performed using a finite element model of fragments generated in specialized simulation software. The distribution of horizontal pressures over the height of longitudinal boxing sidewalls, the dependence of the bending moment in the root section of the sidewalls on the ballast-bed thickness under sleepers, and some other characteristics were examined. The results of the experimental and theoretical study have shown a good convergence of obtained data to each other and to the data obtained by an improved engineering calculation procedure proposed by the present authors.

  11. Diamondlike carbon coating as a galvanic corrosion barrier between dental implant abutments and nickel-chromium superstructures.

    Science.gov (United States)

    Ozkomur, Ahmet; Erbil, Mehmet; Akova, Tolga

    2013-01-01

    The objectives of this study were to evaluate the galvanic corrosion behavior between titanium and nickel-chromium (Ni-Cr) alloy, to investigate the effect of diamondlike carbon (DLC) coating over titanium on galvanic corrosion behavior between titanium and Ni-Cr alloy, and to evaluate the effect of DLC coating over titanium abutments on the fit and integrity of prosthetic assemblies by scanning electron microcopy (SEM). Five Ni-Cr and 10 titanium disks with a diameter of 5 mm and thickness of 3 mm were prepared. DLC coating was applied to five titanium disks. Electrode samples were prepared, and open circuit potential measurements, galvanic current measurements over platinum electrodes, and potentiodynamic polarization tests were carried out. For the SEM evaluation, 20 Ni-Cr alloy and 10 gold alloy superstructures were cast and prepared over 30 abutments. DLC coating was applied to 10 of the abutments. Following the fixation of prosthetic assemblies, the samples were embedded in acrylic resin and cross sectioned longitudinally. Internal fit evaluations were carried out through examination of the SEM images. Titanium showed more noble and electrochemically stable properties than Ni-Cr alloy. DLC coating over the cathode electrode served as an insulating film layer over the surface and prevented galvanic coupling. Results of the SEM evaluations indicated that the DLC-coated and titanium abutments showed no statistically significant difference in fit. Hence, no adverse effects on the adaptation of prosthetic components were found with the application of DLC coating over abutment surfaces. DLC coating might serve as a galvanic corrosion barrier between titanium abutments and Ni-Cr superstructures.

  12. Prevention of Cutaneous Tissue Contracture During Removal of Craniofacial Implant Superstructures for CT and MRI Studies

    Directory of Open Access Journals (Sweden)

    Maureen Sullivan

    2010-04-01

    Full Text Available Objectives: Head and neck cancer patients who have lost facial parts following surgical intervention frequently require craniofacial implant retained facial prostheses for restoration. Many craniofacial implant patients require computed tomography and magnetic resonance imaging scans as part of their long-term follow-up care. Consequently removal of implant superstructures and peri-abutment tissue management is required for those studies. The purpose of the present paper was to describe a method for eliminating cranial imaging artifacts in patients with craniofacial implants.Material and Methods: Three patients wearing extraoral implant retained facial prostheses needing either computed tomography or magnetic resonance imaging studies were discussed. Peri-implant soft tissues contracture after removal of percutaneous craniofacial implant abutments during computed tomography and magnetic resonance imaging studies was prevented using a method proposed by authors. The procedure involves temporary removal of the supra-implant components prior to imaging and filling of the tissue openings with polyvinyl siloxane dental impression material.Results: Immediately after filling of the tissue openings with polyvinyl siloxane dental impression material patients were sent for the imaging studies, and were asked to return for removal of the silicone plugs and reconnection of all superstructure hardware after imaging procedures were complete. The silicone plugs were easily removed with a dental explorer. The percutaneous abutments were immediately replaced and screwed into the implants which were at the bone level.Conclusions: Presented herein method eliminates the source of artifacts and prevents contracture of percutaneous tissues upon removal of the implant abutments during imaging.

  13. Superstructure formation in PrNi{sub 2}Al{sub 3} and ErPd{sub 2}Al{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Eustermann, Fabian; Hoffmann, Rolf-Dieter [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Oldenburg Univ. (Germany). Inst. fuer Chemie

    2017-09-01

    The intermetallic phase ErPd{sub 2}Al{sub 3} was obtained by arc-melting of the elements and subsequent annealing for crystal growth. The sample was studied by X-ray diffraction on powders and single crystals. The structure of ErPd{sub 2}Al{sub 3} was refined from X-ray diffraction data and revealed a superstructure of PrNi{sub 2}Al{sub 3} - a CaCu{sub 5} derivative (P6/m, a=1414.3(1), c=418.87(3) pm wR=0.0820, 1060 F{sup 2} values, 48 variables). The same superstructure was subsequently found for PrNi{sub 2}Al{sub 3} (P6/m, a=1407.87(4), c=406.19(2) pm, wR=0.0499, 904 F{sup 2} values, 47 variables). In the crystal structure, the aluminium and transition metal atoms form a polyanionic network according to [T{sub 2}Al{sub 3}]{sup δ-}, while rare earth atoms fill cavities within the networks. They are coordinated by six transition metal and twelve aluminum atoms. In contrast to the PrNi{sub 2}Al{sub 3} type structure reported so far, two crystallographic independent rare-earth sites are found of which one (1b) is shifted by 1/2 z, causing a distortion in the structure along with a recoloring of the T and Al atoms in the network.

  14. Bioprinting Using Mechanically Robust Core-Shell Cell-Laden Hydrogel Strands.

    Science.gov (United States)

    Mistry, Pritesh; Aied, Ahmed; Alexander, Morgan; Shakesheff, Kevin; Bennett, Andrew; Yang, Jing

    2017-06-01

    The strand material in extrusion-based bioprinting determines the microenvironments of the embedded cells and the initial mechanical properties of the constructs. One unmet challenge is the combination of optimal biological and mechanical properties in bioprinted constructs. Here, a novel bioprinting method that utilizes core-shell cell-laden strands with a mechanically robust shell and an extracellular matrix-like core has been developed. Cells encapsulated in the strands demonstrate high cell viability and tissue-like functions during cultivation. This process of bioprinting using core-shell strands with optimal biochemical and biomechanical properties represents a new strategy for fabricating functional human tissues and organs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Splash Dynamics of Falling Surfactant-Laden Droplets

    Science.gov (United States)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  16. Synthesis and superstructure of La sub(2/3) (Mg sub(1/2)W sub(1/2))O/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Torii, Y [Government Industrial Research Inst., Nagoya (Japan)

    1979-10-01

    A new perovskite La sub(2/3)(Mg sub(1/2)W sub(1/2))O/sub 3/ having an orthorhombic multiple-cell was synthesized. The lattice constants were a = 7.8157(5) A, b = 7.8344(6) A and c = 2 x 7.9067(6) A. The superstructure was found to be due to a NaCl-type ordering of B ions as well as an ordering of A-site vacancies.

  17. Systematic network synthesis and design: Problem formulation, superstructure generation, data management and solution

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Gargalo, Carina L.; Chairakwongsa, Siwanat

    2015-01-01

    when large problems are considered. In an earlier work, we proposed a computer-aided framework for synthesis and design of process networks. In this contribution, we expand the framework by including methods and tools developed to structure, automate and simplify the mathematical formulation......The developments obtained in recent years in the field of mathematical programming considerably reduced the computational time and resources needed to solve large and complex Mixed Integer Non Linear Programming (MINLP) problems. Nevertheless, the application of these methods in industrial practice...... is still limited by the complexity associated with the mathematical formulation of some problems. In particular, the tasks of design space definition and representation as superstructure, as well as the data collection, validation and handling may become too complex and cumbersome to execute, especially...

  18. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering

    International Nuclear Information System (INIS)

    Hwang, Chang Mo; Sant, Shilpa; Masaeli, Mahdokht; Kachouie, Nezamoddin N; Zamanian, Behnam; Khademhosseini, Ali; Lee, Sang-Hoon

    2010-01-01

    For tissue engineering applications, scaffolds should be porous to enable rapid nutrient and oxygen transfer while providing a three-dimensional (3D) microenvironment for the encapsulated cells. This dual characteristic can be achieved by fabrication of porous hydrogels that contain encapsulated cells. In this work, we developed a simple method that allows cell encapsulation and pore generation inside alginate hydrogels simultaneously. Gelatin beads of 150-300 μm diameter were used as a sacrificial porogen for generating pores within cell-laden hydrogels. Gelation of gelatin at low temperature (4 0 C) was used to form beads without chemical crosslinking and their subsequent dissolution after cell encapsulation led to generation of pores within cell-laden hydrogels. The pore size and porosity of the scaffolds were controlled by the gelatin bead size and their volume ratio, respectively. Fabricated hydrogels were characterized for their internal microarchitecture, mechanical properties and permeability. Hydrogels exhibited a high degree of porosity with increasing gelatin bead content in contrast to nonporous alginate hydrogel. Furthermore, permeability increased by two to three orders while compressive modulus decreased with increasing porosity of the scaffolds. Application of these scaffolds for tissue engineering was tested by encapsulation of hepatocarcinoma cell line (HepG2). All the scaffolds showed similar cell viability; however, cell proliferation was enhanced under porous conditions. Furthermore, porous alginate hydrogels resulted in formation of larger spheroids and higher albumin secretion compared to nonporous conditions. These data suggest that porous alginate hydrogels may have provided a better environment for cell proliferation and albumin production. This may be due to the enhanced mass transfer of nutrients, oxygen and waste removal, which is potentially beneficial for tissue engineering and regenerative medicine applications.

  19. The monoclinic superstructure of the M{sub 2}Pt{sub 6}Al{sub 15} series (M=Ca, Sc, Y, La, Lu)

    Energy Technology Data Exchange (ETDEWEB)

    Radzieowski, Mathis; Stegemann, Frank; Hoffmann, Rolf-Dieter [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Oldenburg Univ. (Germany). Inst. fuer Chemie

    2017-07-01

    The five ternary intermetallic compounds M{sub 2}Pt{sub 6}Al{sub 15} (M=Ca, Sc, Y, La, Lu) were prepared from the elements by arc-melting. The crystal structure was determined via single crystal X-ray diffraction. The title compounds crystallize in a superstructure of the RE{sub 0.67}Pt{sub 2}Al{sub 5} type structure (P6{sub 3}/mmc) in the monoclinic crystal system with space group P12{sub 1}/m1 (Sc{sub 2}Pt{sub 6}Al{sub 15}: a=734.19(2), b=1628.96(10), c=734.19(2) pm, β=119.999(3) ; wR=0.0356, 3034 F{sup 2} values, 68 variables). The superstructure can be derived by the superspace formalism using (3+2)D or (3+1)D interpretations of the diffraction data. The structural relation to the subcell structure is discussed on the basis of a group-subgroup scheme. In the crystal structure strongly bonded [Pt{sub 2}Al{sub 4}]{sup δ-} slabs are alternatingly stacked with ordered layers containing M atoms and Al{sub 3} triangles.

  20. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs.

    Science.gov (United States)

    Möller, Thomas; Amoroso, Matteo; Hägg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; Kölby, Lars; Gatenholm, Paul

    2017-02-01

    The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Thirty-six nude mice (Balb-C, female) received a 5- × 5- × 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/alginate construct in a subcutaneous pocket. Four groups of printed constructs were used: (1) human (male) nasal chondrocytes (hNCs), (2) human (female) bone marrow-derived mesenchymal stem cells (hBMSCs), (3) coculture of hNCs and hBMSCs in a 20/80 ratio, and (4) Cell-free scaffolds (blank). After 14, 30, and 60 days, the scaffolds were harvested for histological, immunohistochemical, and mechanical analysis. The constructs had good mechanical properties and keep their structural integrity after 60 days of implantation. For both the hNC constructs and the cocultured constructs, a gradual increase of glycosaminoglycan production and hNC proliferation was observed. However, the cocultured group showed a more pronounced cell proliferation and enhanced deposition of human collagen II demonstrated by immunohistochemical analysis. In vivo chondrogenesis in a 3D bioprinted human cell-laden hydrogel construct has been demonstrated. The trophic role of the hBMSCs in stimulating hNC proliferation and matrix deposition in the coculture group suggests the potential of 3D bioprinting of human cartilage for future application in reconstructive surgery.

  1. BCG vaccine powder-laden and dissolvable microneedle arrays for lesion-free vaccination.

    Science.gov (United States)

    Chen, Fan; Yan, Qinying; Yu, Yang; Wu, Mei X

    2017-06-10

    Live attenuated Bacille Calmette-Guerin (BCG) bacillus is the only licensed vaccine for tuberculosis prevention worldwide to date. It must be delivered intradermally to be effective, which causes severe skin inflammation and sometimes, permanent scars. To minimize the side effects, we developed a novel microneedle array (MNA) that could deliver live attenuated freeze-dried BCG powder into the epidermis in a painless, lesion-free, and self-applicable fashion. The MNA was fabricated with biocompatible and dissolvable hyaluronic acid with a deep cave formed in the basal portion of each microneedle, into which BCG powder could be packaged directly. Viability of BCG vaccine packaged in the caves and the mechanical strength of the powder-laden MNA did not alter significantly before and after more than two months of storage at room temperature. Following insertion of the MNA into the skin, individual microneedle shafts melted away by interstitial fluid from the epidermis and upper dermis, exposing the powder to epidermal tissues. The powder sucked interstitial fluid, dissolved slowly, and diffused into the epidermis in a day against the interstitial fluid influx. Vaccination with BCG-MNA caused no overt skin irritation, in marked contrast to intradermal vaccination that provoked severe inflammation and bruise. While causing little skin irritation, vaccination efficacy of BCG-MNAs was comparable to that of intradermal immunization whether it was evaluated by humoral or cellular immunity. This powder-laden and dissolvable MNA represents a novel technology to sufficiently deliver live attenuated vaccine powders into the skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hierarchical assembly of inorganic nanostructure building blocks to octahedral superstructures-a true template-free self-assembly

    International Nuclear Information System (INIS)

    Kuchibhatla, Satyanarayana V N T; Karakoti, Ajay S; Seal, Sudipta

    2007-01-01

    A room temperature, template-free, wet chemical synthesis of ceria nanoparticles and their long term ageing characteristics are reported. High resolution transmission electron microscopy and UV-visible spectroscopy techniques are used to observe the variation in size, structure and oxidation state, respectively as a function of time. The morphology variation and the hierarchical assembly (octahedral superstructure) of nanostructures are imputed to the inherent structural aspects of cerium oxide. It is hypothesized that the 3-5 nm individual building blocks will undergo an intra-agglomerate re-orientation to attain the low energy configuration. This communication also emphasizes the need for long term ageing studies of nanomaterials in various solvents for multiple functionalities

  3. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  4. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  5. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  6. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  7. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  8. Cell-laden hydrogel/titanium microhybrids: Site-specific cell delivery to metallic implants for improved integration.

    Science.gov (United States)

    Koenig, Geraldine; Ozcelik, Hayriye; Haesler, Lisa; Cihova, Martina; Ciftci, Sait; Dupret-Bories, Agnes; Debry, Christian; Stelzle, Martin; Lavalle, Philippe; Vrana, Nihal Engin

    2016-03-01

    Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards

  9. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy.

    Science.gov (United States)

    Liu, Bin; Qu, Fangshu; Chen, Wei; Liang, Heng; Wang, Tianyu; Cheng, Xiaoxiang; Yu, Huarong; Li, Guibai; Van der Bruggen, Bart

    2017-11-15

    In this study, the application of enhanced coagulation with persulfate/Fe(II), permanganate and ozone for Microcystis-laden water treatment was investigated. Two oxidant dosage strategies were compared in terms of the organic removal performance: a simultaneous dosing strategy (SiDS) and a successive dosing strategy (SuDS). To optimize the oxidant species, oxidant doses and oxidant dosage strategy, the zeta potential, floc size and dimension fraction, potassium release and organic removal efficiency during the coagulation of algae-laden water were systematically investigated and comprehensively discussed. Ozonation causes most severe cell lysis and reduces organic removal efficiency because it releases intracellular organics. Moreover, ozonation can cause the release of odor compounds such as 2-methylisoborneol (2-MIB) and geosmin (GSM). With increasing doses, the performance of pollutant removal by coagulation enhanced by persulfate/Fe(II) or permanganate did not noticeably improve, which suggests that a low dosage of persulfate/Fe(II) and permanganate is the optimal strategy to enhance coagulation of Microcystis-laden water. The SiDS performs better than the SuDS because more Microcystis cell lysis occurs and less DOC is removed when oxidants are added before the coagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Start-up performance and granular sludge features of an improved external circulating anaerobic reactor for algae-laden water treatment.

    Science.gov (United States)

    Yu, Yaqin; Lu, Xiwu

    2017-09-01

    The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD) and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular sludge of the reactor was complicated, and dominated by coccus and filamentous bacteria. Methanosphaera , Methanolinea , Thermogymnomonas , Methanoregula , Methanomethylovorans , and Methanosaeta were the major microorganisms in the granular sludge. The activities of protease and coenzyme F 420 were high in the granular sludge. The intermittent stirring device and the reverse-flow system were further found to overcome the disadvantage of the floating and crusting of cyanobacteria inside the reactor. Meanwhile, the effect of mass transfer inside the reactor can be accelerated to help give the reactor a rapid start.

  11. Unsupervised Performance Evaluation Strategy for Bridge Superstructure Based on Fuzzy Clustering and Field Data

    Directory of Open Access Journals (Sweden)

    Yubo Jiao

    2013-01-01

    Full Text Available Performance evaluation of a bridge is critical for determining the optimal maintenance strategy. An unsupervised bridge superstructure state assessment method is proposed in this paper based on fuzzy clustering and bridge field measured data. Firstly, the evaluation index system of bridge is constructed. Secondly, a certain number of bridge health monitoring data are selected as clustering samples to obtain the fuzzy similarity matrix and fuzzy equivalent matrix. Finally, different thresholds are selected to form dynamic clustering maps and determine the best classification based on statistic analysis. The clustering result is regarded as a sample base, and the bridge state can be evaluated by calculating the fuzzy nearness between the unknown bridge state data and the sample base. Nanping Bridge in Jilin Province is selected as the engineering project to verify the effectiveness of the proposed method.

  12. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix

    International Nuclear Information System (INIS)

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Zhang, Xiaohui; Xu, Feng; Ling, Kai

    2015-01-01

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue. (paper)

  13. Superstructure Ta2O5 mesocrystals derived from (NH4)2Ta2O3F6 mesocrystals with efficient photocatalytic activity.

    Science.gov (United States)

    Yu, Xin; Li, Wei; Huang, Jian; Li, Zhonghua; Liu, Jiawen; Hu, PingAn

    2018-02-06

    Superstructured mesocrystalline Ta 2 O 5 nanosheets were successfully prepared from mesocrystalline (NH 4 ) 2 Ta 2 O 3 F 6 nanorods by the annealing method for the first time. The as-prepared mesocrystalline Ta 2 O 5 nanosheets in this work showed remarkable visible light absorption, mainly due to the formation of oxygen vacancy defects in the mesocrystalline Ta 2 O 5 nanosheets, which was also confirmed by XPS spectra, Raman spectra and EPR spectra. Besides, the mesocrystalline Ta 2 O 5 nanosheets showed a highly enhanced photocatalytic activity of 11 268.24 μmol g -1 h -1 , about 3.95 times that of commercial Ta 2 O 5 . Moreover, the specific surface area of the mesocrystalline Ta 2 O 5 -800 nanosheets was 16.34 m 2 g -1 , about 5.32 times that of the commercial Ta 2 O 5 (3.072 m 2 g -1 ). The valence band XPS spectra indicated a strong oxidizing ability of the mesocrystalline Ta 2 O 5 nanosheets in comparison to that of commercial Ta 2 O 5 . The formation of superstructured Ta 2 O 5 mesocrystals generated long lifetime carriers and effective conduction pathways, which greatly enhanced the photocatalytic activity for hydrogen production.

  14. Solution Construction of Multigeometry Nanoparticles and Multicompartment Superstructures from Block Copolymer Mixtures

    Science.gov (United States)

    Zhu, Jiahua; Zhang, Shiyi; Wooley, Karen; Pochan, Darrin

    2013-03-01

    Novel soft objects with both compositional and geometric complexity at nanoscale have been constructed through solution supramolecular assembly from block copolymer mixtures due to their non-ergodic character. The mixture is composed of two block copolymers with distinctive hydrophobic blocks but the same poly(acrylic acid) hydrophilic block. First, multigeometry nanoparticles, due to segregation of unlike block copolymer molecules into multiple subdomains trapped within the same micelle-like structures, have been assembled in tetrahydrofuran/water solution. Through carefully designed molecular architecture, mixing ratio and pathway kinetics, both size and shape of subdomains can be controlled to produce a novel class of multigeometry nanoparticles, including sphere-sphere, sphere-cylinder, cylinder-cylinder, cylinder-disk, and sphere-disk hybrid nanoparticles. Second, hierarchical multicompartment superstructures including particle chains, rings and other nano to micro cluster formations, have been built up from pre-formed multigeometry nanoparticles by taking advantage of their surface anisotropy and the controlled particle-particle association. The interparticle association can be achieved via either covalent or non-covalent bindings due to different post-polymerization chemical modifications with hydroxyethyl acrylate or crown ether functionalities, respectively.

  15. Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters

    Energy Technology Data Exchange (ETDEWEB)

    Bidaux, Yves, E-mail: yves.bidaux@alpeslasers.ch [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland); Bismuto, Alfredo, E-mail: alfredo.bismuto@alpeslasers.ch; Tardy, Camille; Terazzi, Romain; Gresch, Tobias; Blaser, Stéphane; Muller, Antoine [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Faist, Jerome [Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland)

    2015-11-30

    In this work, we demonstrate broad electrical tuning of quantum cascade lasers at 9.25 μm, 8.5 μm, and 4.4 μm in continuous wave operation using Vernier-effect distributed Bragg reflectors based on superstructure gratings. Integrated micro-heaters allow to switch from one Vernier channel to the other, while predictable and mode-hop free tuning can be obtained in each channel modulating the laser current with a side mode suppression ratio as high as 30 dB. The resulting device behaves effectively as a switchable multicolour tunable source. Tuning up to 6.5% of the central wavelength is observed. To prove the importance of the developed devices for high resolution molecular spectroscopy, a N{sub 2}O absorption spectrum has been measured.

  16. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.

    Science.gov (United States)

    Du, Mingchun; Chen, Bing; Meng, Qingyuan; Liu, Sumei; Zheng, Xiongfei; Zhang, Cheng; Wang, Heran; Li, Hongyi; Wang, Nuo; Dai, Jianwu

    2015-12-18

    Three-dimensional (3D) bioprinting combines biomaterials, cells and functional components into complex living tissues. Herein, we assembled function-control modules into cell-laden scaffolds using 3D bioprinting. A customized 3D printer was able to tune the microstructure of printed bone mesenchymal stem cell (BMSC)-laden methacrylamide gelatin scaffolds at the micrometer scale. For example, the pore size was adjusted to 282 ± 32 μm and 363 ± 60 μm. To match the requirements of the printing nozzle, collagen microfibers with a length of 22 ± 13 μm were prepared with a high-speed crusher. Collagen microfibers bound bone morphogenetic protein 2 (BMP2) with a collagen binding domain (CBD) as differentiation-control module, from which BMP2 was able to be controllably released. The differentiation behaviors of BMSCs in the printed scaffolds were compared in three microenvironments: samples without CBD-BMP2-collagen microfibers in the growth medium, samples without microfibers in the osteogenic medium and samples with microfibers in the growth medium. The results indicated that BMSCs showed high cell viability (>90%) during printing; CBD-BMP2-collagen microfibers induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. Our studies suggest that these function-control modules are attractive biomaterials and have potential applications in 3D bioprinting.

  17. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    Science.gov (United States)

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue

  18. Preliminary results of the immobilization of highly-salt-ladened concentrate in cement-based grout: a joint DOE/CEA research effort

    International Nuclear Information System (INIS)

    Bouniol, P.E.; Peyre, C.H.; Mattus, A.J.; Pitt, W.W.

    1988-10-01

    The ability of two types of cement-based matrices to immobilize highly-salt-ladened concentrate containing primarily nitrate and phosphate is examined when considering both fresh and hardened material properties. The effects of the incorporation ratio and the temperature of the feed concentrate are evaluated

  19. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction

    Science.gov (United States)

    Miao, Yue-E.; Yan, Jiajie; Ouyang, Yue; Lu, Hengyi; Lai, Feili; Wu, Yue; Liu, Tianxi

    2018-06-01

    The bio-inspired hierarchical "grape cluster" superstructure provides an effective integration of one-dimensional carbon nanofibers (CNF) with isolated carbonaceous nanoparticles into three-dimensional (3D) conductive frameworks for efficient electron and mass transfer. Herein, a 3D N-doped porous carbon electrocatalyst consisting of carbon nanofibers with grape-like N-doped hollow carbon particles (CNF@NC) has been prepared through a simple electrospinning strategy combined with in-situ growth and carbonization processes. Such a bio-inspired hierarchically organized conductive network largely facilitates both the mass diffusion and electron transfer during the oxygen reduction reactions (ORR). Therefore, the metal-free CNF@NC catalyst demonstrates superior catalytic activity with an absolute four-electron transfer mechanism, strong methanol tolerance and good long-term stability towards ORR in alkaline media.

  20. Tunable superstructure fiber Bragg grating with chirp-distribution modulation based on the effect of external stress.

    Science.gov (United States)

    Huang, Yize; Li, Yi; Zhu, Huiqun; Tong, Guoxiang; Fang, Baoying; Li, Liu; Shen, Yujian; Zheng, Qiuxin; Liang, Qian; Yan, Meng; Wang, Feng; Qin, Yuan; Ding, Jie; Wang, Xiaohua

    2012-09-15

    We report an external stress modulation method for producing a superstructure fiber Bragg grating (FBG) with approximate cascaded resonant cavities composed of different index chirp distributions. The 15 mm uncoated apodized uniform-period FBG is pressed by the vertical stress from the upper 11 pieces of the pattern plate controlled by a piezoelectric ceramic actuator. The piece length is 1 mm, and the interval of the adjacent pieces is 0.4 mm. The reflectivity of the modulated FBG gradually shows six obvious multichannel 75%-85% reflection peaks with the increase of the vertical stress of each pattern-plate piece from 0 to 30 N. The channel spacing is steady at about 10 GHz for a C-band wavelength division multiplexing system.

  1. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill

    International Nuclear Information System (INIS)

    Rees, Rainer; Robinson, Brett H.; Rog, Christopher J.; Papritz, Andreas; Schulin, Rainer

    2013-01-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. - Highlights: ► We studied four hybrid poplar clones grown on a B-laden paper mill waste landfill. ► Poplar growth, trace element accumulation and root traits were investigated. ► Survival and growth were comparable to commercial plantations. ► Root growth was nearly unaffected by the contaminants. ► Adaption

  2. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Rainer, E-mail: rainer.rees@env.ethz.ch [Institute of Terrestrial Ecosystems, ETH Zürich, Universitätsstrasse 16, 8092 Zürich (Switzerland); Robinson, Brett H., E-mail: Brett.Robinson@lincoln.ac.nz [Soil and Physical Sciences, Burns 222, P. O. Box 84, Lincoln University, Lincoln 7647, Christchurch (New Zealand); Rog, Christopher J., E-mail: cjrog@sand-creek.com [Sand Creek Consultants, Inc., P.O. Box 1512, 16 Randall Ave., Rhinelander, WI 54501 (United States); Papritz, Andreas, E-mail: andreas.papritz@env.ethz.ch [Institute of Terrestrial Ecosystems, ETH Zürich, Universitätsstrasse 16, 8092 Zürich (Switzerland); Schulin, Rainer, E-mail: rainer.schulin@env.ethz.ch [Institute of Terrestrial Ecosystems, ETH Zürich, Universitätsstrasse 16, 8092 Zürich (Switzerland)

    2013-03-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. - Highlights: ► We studied four hybrid poplar clones grown on a B-laden paper mill waste landfill. ► Poplar growth, trace element accumulation and root traits were investigated. ► Survival and growth were comparable to commercial plantations. ► Root growth was nearly unaffected by the contaminants. ► Adaption

  3. Synthesis, morphology and microstructure of pomegranate-like hematite (α-Fe2O3) superstructure with high coercivity

    International Nuclear Information System (INIS)

    Tadic, Marin; Citakovic, Nada; Panjan, Matjaz; Stanojevic, Boban; Markovic, Dragana; Jovanovic, Đorđe; Spasojevic, Vojislav

    2012-01-01

    Highlights: ► We found superior magnetic properties of the hematite (α-Fe 2 O 3 ). ► TEM and HRTEM images show a pomegranate-like superstructure. ► Magnetic measurements display high coercivity H C = 4350 Oe at the room temperature. - Abstract: We found novel and superior magnetic properties of the hematite (α-Fe 2 O 3 ) that originate from an internal microstructure of particles and strong inter-particle interactions between nanocrystal sub-units. The hematite particles were synthesized by thermal decomposition of iron (III) nitrate without any template or surfactant. The purity, size, crystallinity, morphology, microstructure and magnetic features of the as-prepared particles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and SQUID magnetometry. An XRD study reveals a pure phase of α-Fe 2 O 3 whereas TEM shows α-Fe 2 O 3 spheres with a diameter of about 150 nm. RS also shows high quality and purity of the sample. Moreover, TEM and HRTEM images show a pomegranate-like superstructure and evidence that the spherical particles are composed of individual well-crystallized nanoparticle sub-units (self-assembled nanoparticles) with a size of about 20 nm. Magnetic measurements display hysteretic behavior at the room temperature with remanent magnetization M r = 0.731 emu/g, saturation magnetization M S = 6.83 emu/g and coercivity H C = 4350 Oe, as well as the Morin transition at T M = 261 K. These results and comparison with those in the literature reveal that the sample has extremely high coercivity. The magnetic properties of the sample are discussed in relation to morphology, internal microstructure, surface effects and exchange and dipole–dipole interactions.

  4. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    Science.gov (United States)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures

  5. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage.

    Science.gov (United States)

    Baker, Brendon M; Shah, Roshan P; Huang, Alice H; Mauck, Robert L

    2011-05-01

    Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications.

  6. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process.

    Science.gov (United States)

    Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing

    2014-05-01

    Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.

  7. Establishing contact between cell-laden hydrogels and metallic implants with a biomimetic adhesive for cell therapy supported implants.

    Science.gov (United States)

    Barthes, Julien; Mutschler, Angela; Dollinger, Camille; Gaudinat, Guillaume; Lavalle, Philippe; Le Houerou, Vincent; Brian McGuinness, Garrett; Engin Vrana, Nihal

    2017-12-15

    For in-dwelling implants, controlling the biological interface is a crucial parameter to promote tissue integration and prevent implant failure. For this purpose, one possibility is to facilitate the establishment of the interface with cell-laden hydrogels fixed to the implant. However, for proper functioning, the stability of the hydrogel on the implant should be ensured. Modification of implant surfaces with an adhesive represents a promising strategy to promote the adhesion of a cell-laden hydrogel on an implant. Herein, we developed a peptidic adhesive based on mussel foot protein (L-DOPA-L-lysine) 2 -L-DOPA that can be applied directly on the surface of an implant. At physiological pH, unoxidized (L-DOPA-L-lysine) 2 -L-DOPA was supposed to strongly adhere to metallic surfaces but it only formed a very thin coating (less than 1 nm). Once oxidized at physiological pH, (L-DOPA-L-lysine) 2 -L-DOPA forms an adhesive coating about 20 nm thick. In oxidized conditions, L-lysine can adhere to metallic substrates via electrostatic interaction. Oxidized L-DOPA allows the formation of a coating through self-polymerization and can react with amines so that this adhesive can be used to fix extra-cellular matrix based materials on implant surfaces through the reaction of quinones with amino groups. Hence, a stable interface between a soft gelatin hydrogel and metallic surfaces was achieved and the strength of adhesion was investigated. We have shown that the adhesive is non-cytotoxic to encapsulated cells and enabled the adhesion of gelatin soft hydrogels for 21 days on metallic substrates in liquid conditions. The adhesion properties of this anchoring peptide was quantified by a 180° peeling test with a more than 60% increase in peel strength in the presence of the adhesive. We demonstrated that by using a biomimetic adhesive, for the application of cell-laden hydrogels to metallic implant surfaces, the hydrogel/implant interface can be ensured without relying on the

  8. Towards controlling dioxins emissions from power boilers fuelled with salt-laden wood waste

    International Nuclear Information System (INIS)

    Luthe, C.; Karidio, I.; Uloth, V.

    1997-01-01

    An evaluation of the dioxins emissions from a power boiler fuelled with salt-laden wood waste has provided insights on potential control technologies. Whereas a reduction in stack particulate levels does not preclude a corresponding reduction in dioxins emissions, good combustion conditions, in combination with an efficient secondary collection device for particulate removal, were found to offer effective control (stack emissions of 0.064 to 0.086 ng TEQ/m 3 ). Regarding minimization of dioxins formation at source, a preliminary assessment of the possible beneficial effect of an attenuated chlorine:sulphur ratio was encouraging. A more accurate assessment requires additional trials, preferably longer in duration, to eliminate any possible memory effects. (author)

  9. A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings

    International Nuclear Information System (INIS)

    Ai, L; Chen, T C; Su, W K; Mau, J C; Liu, W F

    2008-01-01

    A fiber sensor based on a polyaniline (PANI) film that is coated on the surface of an etched superstructure fiber grating to detect volatile solvent vapors is experimentally demonstrated. This sensing mechanism is based on the interaction of the testing gas with the polyaniline coating film, which changes the film index, resulting in a shift in the Bragg wavelength. The sensitivity of this sensor to ammonia (NH 3 ) gas is about 0.073 pm ppm −1 , which depends on the optical characteristics of the fiber grating, the diameter of the fiber cladding and the constituents of the sensing film. Methanol concentrations can also be measured using this sensing scheme. The sensitivity of this sensor must be improved to provide a simple, reliable, repeatable and non-destructive method for sensing various chemical gases. (technical design note)

  10. Direct Numerical Simulations of Particle-Laden Turbulent Channel Flow

    Science.gov (United States)

    Jebakumar, Anand Samuel; Premnath, Kannan; Abraham, John

    2017-11-01

    In a recent experimental study, Lau and Nathan (2014) reported that the distribution of particles in a turbulent pipe flow is strongly influenced by the Stokes number (St). At St lower than 1, particles migrate toward the wall and at St greater than 10 they tend to migrate toward the axis. It was suggested that this preferential migration of particles is due to two forces, the Saffman lift force and the turbophoretic force. Saffman lift force represents a force acting on the particle as a result of a velocity gradient across the particle when it leads or lags the fluid flow. Turbophoretic force is induced by turbulence which tends to move the particle in the direction of decreasing turbulent kinetic energy. In this study, the Lattice Boltzmann Method (LBM) is employed to simulate a particle-laden turbulent channel flow through Direct Numerical Simulations (DNS). We find that the preferential migration is a function of particle size in addition to the St. We explain the effect of the particle size and St on the Saffman lift force and turbophoresis and present how this affects particle concentration at different conditions.

  11. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    -fluid interactions in these high-speed flows special high performance techniques are required. The present work is an investigation into the applicability of magnified digital in-line holography with ultra-high-speed recording for the study of three-dimensional supersonic particle-laden flows. An optical setup...... × 10mm calibration grid and 120 μm particles on a glass plate. In the case with the calibration grid it is found that accurate determination of the depthwise position is possible. However, when applying the same technique to the particle target, significant problems are encountered. © 2012...

  12. Application of a generic superstructure-based formulation to the design of wind-pumped-storage hybrid systems on remote islands

    International Nuclear Information System (INIS)

    Chen, Cheng-Liang; Chen, Hui-Chu; Lee, Jui-Yuan

    2016-01-01

    Highlights: • A rigorous model for hybrid power system (HPS) design to support a remote island. • Use pumped hydro storage to store tentative surplus electricity. • Formulate the HPS design problem as a mixed-integer linear program (MILP). - Abstract: This paper aims to present a mathematical model for the design of a hybrid power system (HPS) to support a remote island with 100 thousand citizens. The goal is to reduce diesel fuel consumption by adequate expansion of wind power supply. Pumped hydroelectric storage (PHS) is used in the HPS to buffer the impact of intermittent behavior of wind energy. A superstructure is proposed for HPS design, considering all possible capital decisions (e.g. the number of wind turbines) and hourly-basis operational variables (such as the amount of surplus electricity in storage and its discharge). The HPS design problem can then be formulated as a mixed-integer linear program (MILP) based on the proposed superstructure. For a given total share of wind power, the optimal mix of diesel-based and wind power supplies as well as the required capacity of PHS are determined using a four-step optimization approach, involving minimizing (i) the consumption of diesel fuel, (ii) the number of wind turbines, (iii) the size of the upper water reservoir, and (iv) the charge/discharge rates of the PHS system. In this sequential optimization, the objective value obtained in a previous step is added as an additional constraint to the next step. The proposed HPS design model is applied to a real case study of the remote K Island on the other side of Taiwan Strait using hourly-basis, year-round historical data. Inclusion of other renewable energy sources, such as photovoltaic cells and biomass-fired power plants, as well as economic perspectives will be considered in future work.

  13. Yb{sub 6}Ir{sub 5}Ga{sub 7} - a MgZn{sub 2} superstructure

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, 48149, Muenster (Germany)

    2017-02-15

    The gallide Yb{sub 6}Ir{sub 5}Ga{sub 7} was synthesized by high-frequency melting of the elements in a sealed niobium ampoule. The structure was refined from single-crystal X-ray diffractometer data: Nb{sub 6.4}Ir{sub 4}Al{sub 7.6} type, P6{sub 3}/mcm, a = 930.4(1), c = 843.0(1) pm, wR{sub 2} = 0.0597, 379 F{sup 2} values and 22 variables. Yb{sub 6}Ir{sub 5}Ga{sub 7} adopts a superstructure of the MgZn{sub 2} Laves phase by a complete ordering of the iridium and gallium atoms on the zinc substructure, i.e. the network consists of ordered and condensed Ir{sub 3}Ga and IrGa{sub 3} tetrahedra with Ir-Ga distances ranging from 260 to 265 pm. The crystal chemical details and the underlying group-subgroup scheme are discussed. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.

    Science.gov (United States)

    Wu, Zhengjie; Su, Xin; Xu, Yuanyuan; Kong, Bin; Sun, Wei; Mi, Shengli

    2016-04-19

    Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering.

  15. Superstructure of the superconductor BI2Sr2CaCu2O8 by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Hewat, E.A.

    1988-01-01

    The superstructure of the high Tc superconducting oxide BI 2S r 2C aCu 2 0 8 has been studied by high resolution electron microscopy. Waves of distortion along the b-axis give an incommensurate superlattice slightly larger or smaller than 5√2a p (a p = perovskite unit cell). The building blocks along the b-axis are 4, 5 and 6 times √2a p /2. The incommensurate superlattice is composed of approximately periodic combinations of these building blocks. The symmetry of three major projections are P gm (or possibly P gg ), C mm and C mm for the ideal superlattice with b=5√ 2a p . These projections correspond to the space groups Pcnn and Pmnn respectively

  16. A simple dynamic subgrid-scale model for LES of particle-laden turbulence

    Science.gov (United States)

    Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz

    2017-04-01

    In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.

  17. Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells.

    Science.gov (United States)

    Mesallati, Tariq; Buckley, Conor T; Kelly, Daniel J

    2017-05-01

    During postnatal joint development, progenitor cells that reside in the superficial region of articular cartilage first drive the rapid growth of the tissue and later help direct the formation of mature hyaline cartilage. These developmental processes may provide directions for the optimal structuring of co-cultured chondrocytes (CCs) and multipotent stromal/stem cells (MSCs) required for engineering cartilaginous tissues. The objective of this study was to engineer cartilage grafts by recapitulating aspects of joint development where a population of superficial progenitor cells drives the development of the tissue. To this end, MSCs were either self-assembled on top of CC-laden agarose gels (structured co-culture) or were mixed with CCs before being embedded in an agarose hydrogel (mixed co-culture). Porcine infrapatellar fat pad-derived stem cells (FPSCs) and bone marrow-derived MSCs (BMSCs) were used as sources of progenitor cells. The DNA, sGAG and collagen content of a mixed co-culture of FPSCs and CCs was found to be lower than the combined content of two control hydrogels seeded with CCs and FPSCs only. In contrast, a mixed co-culture of BMSCs and CCs led to increased proliferation and sGAG and collagen accumulation. Of note was the finding that a structured co-culture, at the appropriate cell density, led to greater sGAG accumulation than a mixed co-culture for both MSC sources. In conclusion, assembling MSCs onto CC-laden hydrogels dramatically enhances the development of the engineered tissue, with the superficial layer of progenitor cells driving CC proliferation and cartilage ECM production, mimicking certain aspects of developing cartilage. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. The Ogaden Basin, Ethiopia: an underexplored sedimentary basin

    Energy Technology Data Exchange (ETDEWEB)

    Teitz, H.H.

    1991-01-01

    A brief article examines the Ogaden Basin in Ethiopia in terms of basin origin, basin fill and the hydrocarbon exploration history and results. The natural gas find in pre-Jurassic sandstones, which appears to contain substantial reserves, justifies continuing investigations in this largely underexplored basin. (UK).

  19. Hydro-morphodynamic modelling of a volcano-induced sediment-laden outburst flood at Sólheimajökull, Iceland

    Science.gov (United States)

    Guan, M.; Wright, N.; Sleigh, P. A.; Carrivick, J.; Staines, K.

    2013-12-01

    Outburst floods are one of the most catastrophic natural hazards for populations and infrastructure. Such high-magnitude sudden onset floods generally comprise of an advancing intense kinematic water wave that can induce considerable sediment transport. The exploration and investigation of sediment-laden outburst floods cannot be limited solely to water flow but must also include the flood-induced sediment transport. Understanding the complex flow-bed interaction process in large (field) scale outburst floods is still limited, not least due to a lack of well-constrained field data, but also because consensus on appropriate modelling schemes has yet to be decided. In recent years, attention has focussed on the numerical models capable of describing the process of erosion, transport and deposition in such flows and they are now at a point at which they provide useful quantitative data. Although the "exact" measure of bed change is still unattainable the numerical models enhance and improve insights into large outburst flood events. In this study, a volcano-induced jökulhlaup or glacial outburst flood (GLOF) at Sólheimajökull, Iceland is reproduced by novel 2D hydro-morphodynamic model that considers both bedload and suspended load based on shallow water theory. The simulation of sediment-laden outburst flood is shown to perform well, with further insights into the flow-bed interaction behaviour obtained from the modelling output. These results are beneficial to flood risk management and hazard prevention and mitigation. In summary, the modelling outputs show that (1) the quantity of bed erosion and deposition are sensitive to the sediment gain size, yet, the influences are not so significant when considering flow discharge; (2) finer resolution of topography increases the computational time significantly yet the results are not affected correspondingly; (3) the bed changes simulated by the present model achieves reasonably good agreement with those by the

  20. Airway cellularity, lipid laden macrophages and microbiology of gastric juice and airways in children with reflux oesophagitis

    Directory of Open Access Journals (Sweden)

    Lewindon PJ

    2005-07-01

    Full Text Available Abstract Background Gastroesophageal reflux disease (GORD can cause respiratory disease in children from recurrent aspiration of gastric contents. GORD can be defined in several ways and one of the most common method is presence of reflux oesophagitis. In children with GORD and respiratory disease, airway neutrophilia has been described. However, there are no prospective studies that have examined airway cellularity in children with GORD but without respiratory disease. The aims of the study were to compare (1 BAL cellularity and lipid laden macrophage index (LLMI and, (2 microbiology of BAL and gastric juices of children with GORD (G+ to those without (G-. Methods In 150 children aged Results BAL neutrophil% in G- group (n = 63 was marginally but significantly higher than that in the G+ group (n = 77, (median of 7.5 and 5 respectively, p = 0.002. Lipid laden macrophage index (LLMI, BAL percentages of lymphocyte, eosinophil and macrophage were similar between groups. Viral studies were negative in all, bacterial cultures positive in 20.7% of BALs and in 5.3% of gastric aspirates. BAL cultures did not reflect gastric aspirate cultures in all but one child. Conclusion In children without respiratory disease, GORD defined by presence of reflux oesophagitis, is not associated with BAL cellular profile or LLMI abnormality. Abnormal microbiology of the airways, when present, is not related to reflux oesophagitis and does not reflect that of gastric juices.

  1. The line shape of the Ortho-II superstructure reflection in YBa2Cu3O6.5

    DEFF Research Database (Denmark)

    Schleger, P.; Hadfield, R.; Casalta, H.

    1994-01-01

    Neutron and synchrotron x-ray measurements of the Ortho-II superstructure reflections on a high quality single crystal of YBa2Cu3O6.5 revealed that the intrinsic line shape is a Lorentzian to the power 5/2. It is argued that such a line shape implies late-stage domain coarsening of a quenched...... system ordering in three dimensions (d=3) with a two component order parameter (n=2)....

  2. Brief communication: The curious case of the large wood-laden flow event in the Pocuro stream (Chile

    Directory of Open Access Journals (Sweden)

    D. Ravazzolo

    2017-11-01

    Full Text Available Large wood transported during extreme flood events can represent a relevant additional source of hazards that should be taken into account in mountain environments. However, direct observations and monitoring of large-wood transport during floods are difficult and scarce. Here we present a video of a flood characterised by multiple phases of large-wood transport, including an initial phase of wood-laden flow rarely described in the literature. Estimations of flow velocity and transported wood volume provide a good opportunity to develop models of large-wood-congested transport.

  3. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    -fluid interactions in these high-speed flows special high performance techniques are required. The present work is an investigation into the applicability of magnified digital in-line holography with ultra-high-speed recording for the study of three-dimensional supersonic particle-laden flows. An optical setup...... × 10mm calibration grid and 120 μm particles on a glass plate. In the case with the calibration grid it is found that accurate determination of the depthwise position is possible. However, when applying the same technique to the particle target, significant problems are encountered....

  4. Stiffness-Independent Highly Efficient On-Chip Extraction of Cell-Laden Hydrogel Microcapsules from Oil Emulsion into Aqueous Solution by Dielectrophoresis.

    Science.gov (United States)

    Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory; He, Xiaoming

    2015-10-28

    A dielectrophoresis (DEP)-based method achieves highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension forces with no trapped oil, while the encapsulated cells are free from electrical damage due to the Faraday cage effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  6. Nanoparticles laden in situ gelling system for ocular drug targeting

    Directory of Open Access Journals (Sweden)

    Divya Kumar

    2013-01-01

    Full Text Available Designing an ophthalmic drug delivery system is one of the most difficult challenges for the researchers. The anatomy and physiology of eye create barriers like blinking which leads to the poor retention time and penetration of drug moiety. Some conventional ocular drug delivery systems show shortcomings such as enhanced pre-corneal elimination, high variability in efficiency, and blurred vision. To overcome these problems, several novel drug delivery systems such as liposomes, nanoparticles, hydrogels, and in situ gels have been developed. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form viscoelastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion-induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. Thus, a combination of two drug delivery systems, i.e., nanoparticles and in situ gel, has been developed which is known as nanoparticle laden in situ gel. This review describes every aspects of this novel formulation, which present the readers an exhaustive detail and might contribute to research and development.

  7. The effect of wall geometry in particle-laden turbulent flow

    Science.gov (United States)

    Abdehkakha, Hoora; Iaccarino, Gianluca

    2016-11-01

    Particle-laden turbulent flow plays a significant role in various industrial applications, as turbulence alters the exchange of momentum and energy between particles and fluid flow. In wall-bounded flows, inhomogeneity in turbulent properties is the primary cause of turbophoresis that leads the particles toward the walls. Conversely, shear-induced lift force on the particles can become important if large scale vortical structures are present. The objective of this study is to understand the effects of geometry on fluid flows and consequently on particles transport and concentration. Direct numerical simulations combined with point particle Lagrangian tracking are performed for several geometries such as a pipe, channel, square duct, and squircle (rounded-corners duct). In non-circular ducts, anisotropic and inhomogeneous Reynolds stresses are the most influential phenomena that produce the secondary flows. It has been shown that these motions can have a significant impact on transporting momentum, vorticity, and energy from the core of the duct to the corners. The main focus of the present study is to explore the effects of near the wall structures and secondary flows on turbophoresis, lift, and particle concentration.

  8. Topotactic Epitaxy of SrTiO3 Mesocrystal Superstructures with Anisotropic Construction for Efficient Overall Water Splitting.

    Science.gov (United States)

    Zhang, Peng; Ochi, Tomoya; Fujitsuka, Mamoru; Kobori, Yasuhiro; Majima, Tetsuro; Tachikawa, Takashi

    2017-05-02

    The higher-order structures of semiconductor-based photocatalysts play crucial roles in their physicochemical properties for efficient light-to-energy conversion. A novel perovskite SrTiO 3 mesocrystal superstructure with well-defined orientation of assembled cubic nanocrystals was synthesized by topotactic epitaxy from TiO 2 mesocrystals through a facile hydrothermal treatment. The SrTiO 3 mesocrystal exhibits three times the efficiency for the hydrogen evolution of conventional disordered systems in alkaline aqueous solution. It also exhibits a high quantum yield of 6.7 % at 360 nm in overall water splitting and even good durability up to 1 day. Temporal and spatial spectroscopic observations revealed that the synergy of the efficient electron flow along the internal nanocube network and efficient collection at the larger external cubes produces remarkably long-lived charges for enhanced photocatalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Topotactic epitaxy of SrTiO3 mesocrystal superstructures with anisotropic construction for efficient overall water splitting

    International Nuclear Information System (INIS)

    Zhang, Peng; Fujitsuka, Mamoru; Majima, Tetsuro; Ochi, Tomoya; Kobori, Yasuhiro; Tachikawa, Takashi

    2017-01-01

    The higher-order structures of semiconductor-based photocatalysts play crucial roles in their physicochemical properties for efficient light-to-energy conversion. A novel perovskite SrTiO 3 mesocrystal superstructure with well-defined orientation of assembled cubic nanocrystals was synthesized by topotactic epitaxy from TiO 2 mesocrystals through a facile hydrothermal treatment. The SrTiO 3 mesocrystal exhibits three times the efficiency for the hydrogen evolution of conventional disordered systems in alkaline aqueous solution. It also exhibits a high quantum yield of 6.7 % at 360 nm in overall water splitting and even good durability up to 1 day. Temporal and spatial spectroscopic observations revealed that the synergy of the efficient electron flow along the internal nanocube network and efficient collection at the larger external cubes produces remarkably long-lived charges for enhanced photocatalysis. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Floods of November-December 1950 in the Central Valley basin, California

    Science.gov (United States)

    Paulsen, C.G.

    1953-01-01

    The flood of November-December 1950 in the Central Valley basin was the greatest in most parts of the basin since the turn of the century and probably was exceeded in the lower San Joaquin River basin only by the historic flood of 1862. In respect to monetary loss, the 1950 flood was the most disastrous in the history of the basin. Loss of life was remarkably small when one considers the extensive damage and destruction to homes and other property, which is estimated at 33 million dollars. Outstanding features of the flood were its unprecedented occurrence so early in the winter flood season, its magnitude in respect to both peak and volume in most major tributaries, and the occurrence of a succession of near-peak flows with a period of three weeks. The flood was caused by a series of storms during the period November 16 to December 8, which brought exceptionally warm, moisture-laden air inland against the Sierra Nevada range and caused intense rainfall, instead of snowfall, at unusually high altitudes. Basin-wide totals of rainfall during the period ranged from 30 inches over the Yuba and American River basins to 13 inches over the upper Sacramento and Feather River basins. Based on continuous records of discharge on major tributaries for periods ranging from 22 to 55 years and averaging about 43 years, the 1950 flood peaks were the greatest of record on the American, Cosumnes, Mokelumne, Stanislaus, Tuolumne, Merced, Chowchilla, Fresno, lower San Joaquin, Kings, Kaweah, Tule, and Kern Rivers. Second highest peak of record occurred during the flood of March 1928 on the Yuba, American and Mokelumne Rivers; the flood of Marcn 1940 on Cosumnes River; the flood of January 1911 on the Stanislaus and Tuolumne Rivers; the flood of December 1937 on the Merced, Kings, and Kaweah Rivers; the flood of March 1938 on the Chowchilla, Fresno, and lower San Joaquin Rivers; and the flood of March 1943 on the Tule and Kern Rivers. Peak discharges for 1950 did not exceed previous

  11. Positronium hydride in hydrogen-laden thermochemically reduced MgO single crystals

    Science.gov (United States)

    Pareja, R.; de La Cruz, R. M.; Pedrosa, M. A.; González, R.; Chen, Y.

    1990-04-01

    Thermochemical reduction of hydrogen-laden MgO single crystals at T~2400 K results in a large concentration of both hydride (H-) ions and anion vacancies (>1024 m-3). Positron-lifetime experiments of these crystals provide evidence for bound positronium hydride states also referred to as [e+-H-] or PsH states. The presence of the anion vacancies was found to inhibit the formation of these states. After thermally annealing out these vacancies, such that H- concentration remains intact, two long-lived components appear in the lifetime spectrum. Furthermore, these two components correlate with the presence of the H-ions. These results suggest the existence of bound [e+-H-] states when positrons are trapped by the H- ions, and the subsequent formation of positronium (Ps) states by the dissociation of the [e+-H-] states. From the values of the intermediate lifetime component, a value of (570+/-50) ps is obtained for the lifetime of the PsH state located in an anion vacancy in MgO. The longest lifetime component ~(1-3) ns is attributed to pick-off annihilation of ortho-Ps states.

  12. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering

    Science.gov (United States)

    Zhu, Wei; Cui, Haitao; Boualam, Benchaa; Masood, Fahed; Flynn, Erin; Rao, Raj D.; Zhang, Zhi-Yong; Zhang, Lijie Grace

    2018-05-01

    Cartilage tissue is prone to degradation and has little capacity for self-healing due to its avascularity. Tissue engineering, which provides artificial scaffolds to repair injured tissues, is a novel and promising strategy for cartilage repair. 3D bioprinting offers even greater potential for repairing degenerative tissue by simultaneously integrating living cells, biomaterials, and biological cues to provide a customized scaffold. With regard to cell selection, mesenchymal stem cells (MSCs) hold great capacity for differentiating into a variety of cell types, including chondrocytes, and could therefore be utilized as a cartilage cell source in 3D bioprinting. In the present study, we utilize a tabletop stereolithography-based 3D bioprinter for a novel cell-laden cartilage tissue construct fabrication. Printable resin is composed of 10% gelatin methacrylate (GelMA) base, various concentrations of polyethylene glycol diacrylate (PEGDA), biocompatible photoinitiator, and transforming growth factor beta 1 (TGF-β1) embedded nanospheres fabricated via a core-shell electrospraying technique. We find that the addition of PEGDA into GelMA hydrogel greatly improves the printing resolution. Compressive testing shows that modulus of the bioprinted scaffolds proportionally increases with the concentrations of PEGDA, while swelling ratio decreases with the increase of PEGDA concentration. Confocal microscopy images illustrate that the cells and nanospheres are evenly distributed throughout the entire bioprinted construct. Cells grown on 5%/10% (PEGDA/GelMA) hydrogel present the highest cell viability and proliferation rate. The TGF-β1 embedded in nanospheres can keep a sustained release up to 21 d and improve chondrogenic differentiation of encapsulated MSCs. The cell-laden bioprinted cartilage constructs with TGF-β1-containing nanospheres is a promising strategy for cartilage regeneration.

  13. Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT

    Directory of Open Access Journals (Sweden)

    Franziska Greifzu

    2016-01-01

    Full Text Available In the present study two benchmark problems for turbulent dispersed particle-laden flow are investigated with computational fluid dynamics (CFD. How the CFD programs OpenFOAM and ANSYS FLUENT model these flows is tested and compared. The numerical results obtained with Lagrangian–Eulerian (LE point-particle (PP models for Reynolds-averaged Navier–Stokes (RANS simulations of the fluid flow in steady state and transient modes are compared with the experimental data available in the literature. The effect of the dispersion model on the particle motion is investigated in particular, as well as the order of coupling between the continuous carrier phase and the dispersed phase. First, a backward-facing step (BFS case is validated. As a second case, the confined bluff body (CBB is used. The simulated fluid flows correspond well with the experimental data for both test cases. The results for the dispersed solid phase reveal a good accordance between the simulation results and the experiments. It seems that particle dispersion is slightly under-predicted when ANSYS FLUENT is used, whereas the applied solver in OpenFOAM overestimates the dispersion somewhat. Only minor differences between the coupling schemes are detected due to the low volume fractions and mass loadings that are investigated. In the BFS test case the importance of the spatial dimension of the numerical model is demonstrated. Even if it is reasonable to assume a two-dimensional fluid flow structure, it is crucial to simulate the turbulent particle-laden flow with a three-dimensional model since the turbulent dispersion of the particles is three-dimensional.

  14. Microengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering.

    Science.gov (United States)

    Mellati, Amir; Fan, Chia-Ming; Tamayol, Ali; Annabi, Nasim; Dai, Sheng; Bi, Jingxiu; Jin, Bo; Xian, Cory; Khademhosseini, Ali; Zhang, Hu

    2017-01-01

    Mimicking the zonal organization of native articular cartilage, which is essential for proper tissue functions, has remained a challenge. In this study, a thermoresponsive copolymer of chitosan-g-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) was synthesized as a carrier of mesenchymal stem cells (MSCs) to provide a support for their proliferation and differentiation. Microengineered three-dimensional (3D) cell-laden CS-g-PNIPAAm hydrogels with different microstripe widths were fabricated to control cellular alignment and elongation in order to mimic the superficial zone of natural cartilage. Biochemical assays showed six- and sevenfold increment in secretion of glycosaminoglycans (GAGs) and total collagen from MSCs encapsulated within the synthesized hydrogel after 28 days incubation in chondrogenic medium. Chondrogenic differentiation was also verified qualitatively by histological and immunohistochemical assessments. It was found that 75 ± 6% of cells encapsulated within 50 μm wide microstripes were aligned with an aspect ratio of 2.07 ± 0.16 at day 5, which was more organized than those observed in unpatterned constructs (12 ± 7% alignment and a shape index of 1.20 ± 0.07). The microengineered constructs mimicked the cell shape and organization in the superficial zone of cartilage whiles the unpatterned one resembled the middle zone. Our results suggest that microfabrication of 3D cell-laden thermosensitive hydrogels is a promising platform for creating biomimetic structures leading to more successful multi-zonal cartilage tissue engineering. Biotechnol. Bioeng. 2017;114: 217-231. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Synthesis, morphology and microstructure of pomegranate-like hematite ({alpha}-Fe{sub 2}O{sub 3}) superstructure with high coercivity

    Energy Technology Data Exchange (ETDEWEB)

    Tadic, Marin, E-mail: marint@vinca.rs [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Citakovic, Nada [Military Academy, Generala Pavla Jurisica Sturma 33, University of Belgrade, 11000 Belgrade (Serbia); Panjan, Matjaz [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Stanojevic, Boban [Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, University of Belgrade (Serbia); Markovic, Dragana [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Jovanovic, Dorde [Center for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Spasojevic, Vojislav [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer We found superior magnetic properties of the hematite ({alpha}-Fe{sub 2}O{sub 3}). Black-Right-Pointing-Pointer TEM and HRTEM images show a pomegranate-like superstructure. Black-Right-Pointing-Pointer Magnetic measurements display high coercivity H{sub C} = 4350 Oe at the room temperature. - Abstract: We found novel and superior magnetic properties of the hematite ({alpha}-Fe{sub 2}O{sub 3}) that originate from an internal microstructure of particles and strong inter-particle interactions between nanocrystal sub-units. The hematite particles were synthesized by thermal decomposition of iron (III) nitrate without any template or surfactant. The purity, size, crystallinity, morphology, microstructure and magnetic features of the as-prepared particles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and SQUID magnetometry. An XRD study reveals a pure phase of {alpha}-Fe{sub 2}O{sub 3} whereas TEM shows {alpha}-Fe{sub 2}O{sub 3} spheres with a diameter of about 150 nm. RS also shows high quality and purity of the sample. Moreover, TEM and HRTEM images show a pomegranate-like superstructure and evidence that the spherical particles are composed of individual well-crystallized nanoparticle sub-units (self-assembled nanoparticles) with a size of about 20 nm. Magnetic measurements display hysteretic behavior at the room temperature with remanent magnetization M{sub r} = 0.731 emu/g, saturation magnetization M{sub S} = 6.83 emu/g and coercivity H{sub C} = 4350 Oe, as well as the Morin transition at T{sub M} = 261 K. These results and comparison with those in the literature reveal that the sample has extremely high coercivity. The magnetic properties of the sample are discussed in relation to morphology, internal microstructure, surface

  16. Thermodynamic analysis and kinetic modelling of dioxin formation and emissions from power boilers firing salt-laden hog fuel.

    Science.gov (United States)

    Duo, Wenli; Leclerc, Denys

    2007-04-01

    Both organic chlorine (e.g. PVC) and inorganic chlorides (e.g. NaCl) can be significant chlorine sources for dioxin and furan (PCDD/F) formation in combustion processes. This paper presents a thermodynamic analysis of high temperature salt chemistry. Its influence on PCDD/F formation in power boilers burning salt-laden wood waste is examined through the relationships between Cl2, HCl, NaCl(g) and NaCl(c). These analyses show that while HCl is a product of combustion of PVC-laden municipal solid waste, NaCl can be converted to HCl in hog fuel boilers by reactions with SO2 or alumino-silicate materials. Cl2 is a strong chlorinating agent for PCDD/F formation. HCl can be oxidized to Cl2 by O2, and Cl2 can be reduced back to HCl by SO2. The presence of sulphur at low concentrations thus enhances PCDD/F formation by increasing HCl concentrations. At high concentrations, sulphur inhibits de novo formation of PCDD/Fs through Cl2 reduction by excess SO2. The effect of NH3, CO and NOx on PCDD/F formation is also discussed. A semi-empirical kinetic model is proposed. This model considers both precursor and de novo formation mechanisms. A simplified version is used as a stack emission model. The kinetic model indicates that stack dioxin emissions will increase linearly with decreasing electrostatic precipitator (ESP) efficiency and exponentially with increasing ESP temperature.

  17. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    Science.gov (United States)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  18. Base, Superstructure and the Irish Property Crash—Towards a Crisis Theory of Communications

    Directory of Open Access Journals (Sweden)

    Henry Silke

    2015-09-01

    Full Text Available Since the onset of the “great recession” there have been key debates around various aspects of crisis theory, most notably around the areas of the rate of profit (Brenner 2009; Kliman 2012, under-consumption/overproduction (Clarke 1990a, 442–467 and fiancialisation (Duménil and Lévy 2004. This paper maintains that communications and the media are key though non-deterministic elements of the contemporary market system, and proposes a move towards a crisis theory of communications. This research reflects the Marxist concept of base and superstructure, beyond a perceived notion of economic determinism, but rather as a dialectical relationship between various superstructures, in this case the state and the media, and the economic base including the various aspects of class power inherent within. The mass media, advertising, and ICT play an increasingly important role in both market systems and capitalist crises. This role directly impinges on the dissemination of information to market actors as well as the reflexive and dialectical nature of the processes by which actors respond to market information. Further, the media serve as an ideological apparatus, resource or arena, which acts to naturalise the market through what this research describes as a market orientated framing mechanism (Preston and Silke 2011b. Peter Thompson (2003; 2013, 208–227 contends that communication is an integral and reflexive part of the contemporary market system. As he puts it, there is a complex relationship between the producers and distributors of economic information, and those who use that information to make decisions about investment and trade. Many studies point to the convergence of flows of information such as those on 24-hour news channels, business channels and Internet blogs and sites with market activity itself. For Wayne Hope, (2010, 649–669 information broadcast on such media by bankers, stockbrokers and traders themselves tends to be self

  19. Ga induced superstructures as templates for lattice matched hetroepitaxial growth of GaN on Si(111) substrate

    International Nuclear Information System (INIS)

    Kumar, Praveen; Kuyyalil, Jithesh; Shivaprasad, S. M.

    2010-01-01

    High quality GaN is grown by plasma assisted molecular beam epitaxy on Ga induced superstructural phases of Si(111)7x7. Three stable surface phases induced by Ga adsorption, viz., (1x1), (6.3x6.3), and (√3x√3)R30 deg., are employed as templates to grow epitaxial (0001) GaN thin films. GaN grown on Si(√3x√3)R30 deg. -Ga is found to be highly crystalline with intense (0002) x-ray diffraction and photoluminescence peaks with low full width at half maximum, low surface roughness, and stoichiometric surface composition. The high quality of these GaN films formed at a low temperature of 400 deg. C is explained by the integral (x2) lattice matching between the unit cell of GaN and the (√3x√3) phase. The experiments demonstrate a plausible approach of adsorbate induced surface modifications as templates for III-V hetroepitaxy on Si surfaces.

  20. K-Basin sludge treatment facility pump test report

    International Nuclear Information System (INIS)

    SQUIER, D.M.

    1999-01-01

    Tests of a disc pump and a dual diaphragm pump are stymied by pumping a metal laden fluid. Auxiliary systems added to a diaphragm pump might enable the transfer of such fluids, but the additional system complexity is not desirable for remotely operated and maintained systems

  1. Topotactic epitaxy of SrTiO{sub 3} mesocrystal superstructures with anisotropic construction for efficient overall water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng; Fujitsuka, Mamoru; Majima, Tetsuro [The Institute of Scientific and Industrial Research (SANKEN), Osaka University (Japan); Ochi, Tomoya [Department of Chemistry, Graduate School of Science, Kobe University (Japan); Kobori, Yasuhiro [Department of Chemistry, Graduate School of Science, Kobe University (Japan); Molecular Photoscience Research Center, Kobe University (Japan); Tachikawa, Takashi [Department of Chemistry, Graduate School of Science, Kobe University (Japan); Molecular Photoscience Research Center, Kobe University (Japan); PRESTO, Science and Technology Agency (JST), Saitama (Japan)

    2017-05-02

    The higher-order structures of semiconductor-based photocatalysts play crucial roles in their physicochemical properties for efficient light-to-energy conversion. A novel perovskite SrTiO{sub 3} mesocrystal superstructure with well-defined orientation of assembled cubic nanocrystals was synthesized by topotactic epitaxy from TiO{sub 2} mesocrystals through a facile hydrothermal treatment. The SrTiO{sub 3} mesocrystal exhibits three times the efficiency for the hydrogen evolution of conventional disordered systems in alkaline aqueous solution. It also exhibits a high quantum yield of 6.7 % at 360 nm in overall water splitting and even good durability up to 1 day. Temporal and spatial spectroscopic observations revealed that the synergy of the efficient electron flow along the internal nanocube network and efficient collection at the larger external cubes produces remarkably long-lived charges for enhanced photocatalysis. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill.

    Science.gov (United States)

    Rees, Rainer; Robinson, Brett H; Rog, Christopher J; Papritz, Andreas; Schulin, Rainer

    2013-03-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Metabolism of 25-hydroxyvitamin D in copper-laden rat: A model of Wilson's disease

    International Nuclear Information System (INIS)

    Carpenter, T.O.; Pendrak, M.L.; Anast, C.S.

    1988-01-01

    Wilson's disease results in excess tissue accumulation of copper and is often complicated by skeletal and mineral abnormalities. The authors investigated vitamin D metabolism in rats fed a copper-laden diet rendering hepatic copper content comparable with that found in Wilson's disease. Injection of 25-hydroxyvitamin D 3 [25(OH)D 3 ] resulted in reduced 1,25--dihydroxyvitamin D [1,25(OH) 2 D] levels in copper-intoxicated rats. In vitro 25(OH)D-1α-hydroxylase activity was impaired in renal mitochondria from copper-intoxicated animals. Activity was also inhibited in mitochondrial from controls when copper was added to incubation media. Impaired conversion of 25(OH)D to 1,25(OH) 2 D occurs in copper intoxication and suggests that altered vitamin D metabolism is a potential factor in the development of bone and mineral abnormalities in Wilson's disease

  4. Positronium hydride in hydrogen-laden thermochemically reduced MgO single crystals

    International Nuclear Information System (INIS)

    Pareja, R.; la Cruz, R.M. de; Pedrosa, M.A.; Gonzalez, R.; Chen, Y.

    1990-01-01

    Thermochemical reduction of hydrogen-laden MgO single crystals at T∼2400 K results in a large concentration of both hydride (H - ) ions and anion vacancies (>10 24 m -3 ). Positron-lifetime experiments of these crystals provide evidence for bound positronium hydride states also referred to as [e + -H - ] or PsH states. The presence of the anion vacancies was found to inhibit the formation of these states. After thermally annealing out these vacancies, such that H - concentration remains intact, two long-lived components appear in the lifetime spectrum. Furthermore, these two components correlate with the presence of the H - ions. These results suggest the existence of bound [e + -H - ] states when positrons are trapped by the H - ions, and the subsequent formation of positronium (Ps) states by the dissociation of the [e + -H - ] states. From the values of the intermediate lifetime component, a value of (570±50) ps is obtained for the lifetime of the PsH state located in an anion vacancy in MgO. The longest lifetime component ∼(1--3) ns is attributed to pick-off annihilation of ortho-Ps states

  5. The effect of increase in humidity on the size and activity distributions of radon progeny laden aerosols from hydrocarbon combustion

    International Nuclear Information System (INIS)

    Khan, Atika; Phillips, C.R.

    1988-01-01

    The effects of a humidity increase on the distributions of aerosol size and activity for hydrocarbon combustion aerosols laden with radon progeny were determined. Pre-humidification aerosol conditions were 20 0 C and 35% RH. Post-humidification aerosol conditions were 37 0 C and 100% RH, intended to simulate conditions in the human respiratory tract. Using kerosene combustion aerosols, a growth factor of 1.3 ± 0.2 (standard deviation) was found for both the aerosol median diameter and the activity median diameter. (author)

  6. The Central European Permian Basins; Rheological and structural controls on basin history and on inter-basin connectivity

    NARCIS (Netherlands)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2014-01-01

    We analyse the relative importance of the major crustal-scale fault zones and crustal architecture in controlling basin formation, deformation and the structural connections between basins. The North and South Permian Basins of Central Europe are usually defined by the extend of Rotliegend

  7. Comparative Research on River Basin Management in the Sagami River Basin (Japan and the Muda River Basin (Malaysia

    Directory of Open Access Journals (Sweden)

    Lay Mei Sim

    2018-05-01

    Full Text Available In the world, river basins often interwoven into two or more states or prefectures and because of that, disputes over water are common. Nevertheless, not all shared river basins are associated with water conflicts. Rivers in Japan and Malaysia play a significant role in regional economic development. They also play a significant role as water sources for industrial, domestic, agricultural, aquaculture, hydroelectric power generation, and the environment. The research aim is to determine the similarities and differences between the Sagami and Muda River Basins in order to have a better understanding of the governance needed for effectively implementing the lessons drawn from the Sagami River Basin for improving the management of the Muda River Basin in Malaysia. This research adopts qualitative and quantitative approaches. Semi-structured interviews were held with the key stakeholders from both basins and show that Japan has endeavored to present policy efforts to accommodate the innovative approaches in the management of their water resources, including the establishment of a river basin council. In Malaysia, there is little or no stakeholder involvement in the Muda River Basin, and the water resource management is not holistic and is not integrated as it should be. Besides that, there is little or no Integrated Resources Water Management, a pre-requisite for sustainable water resources. The results from this comparative study concluded that full support and participation from public stakeholders (meaning the non-government and non-private sector stakeholders is vital for achieving sustainable water use in the Muda River Basin. Integrated Water Resources Management (IWRM approaches such as the introduction of payments for ecosystems services and the development of river basin organization in the Muda River Basin should take place in the spirit of political willingness.

  8. The effect of heat treatments applied to superstructure porcelain on the mechanical properties and microstructure of lithium disilicate glass ceramics.

    Science.gov (United States)

    Özdemir, Hatice; Özdoğan, Alper

    2018-01-30

    The aim of this study was to investigate that heat treatments with different numbers applied to superstructure porcelain whether effects microstructure and mechanical properties of lithium disilicate ceramic (LDC). Eighty disc-shaped specimens were fabricated from IPS e.max Press. Specimens were fired at heating values of porcelain in different numbers and divided four groups (n=5). Initial Vickers hardness were measured and X-ray diffraction (XRD) analysis was performed. Different surface treatment were applied and then Vickers hardness, surface roughness and environmental scanning electron microscopy (ESEM) analysis were performed. Data were analyzed with Varyans analysis and Tukey HSD test (α=0.05). Initial hardness among groups was no significant different (p>0.05), but hardness and surface roughness after surface treatments were significant different (pmicrostructure of LDC. Increasing firing numbers and surface treatments effect the microstructure of LDC.

  9. SrNi{sub 7.90(8)}In{sub 5.10(8)}. A new superstructure in the NaZn{sub 13} family

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Rolf-Dieter; Poettgen, Rainer [Inst. fuer Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Univ. Muenster (Germany); Muts, Ihor [Inst. fuer Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Univ. Muenster (Germany); Inorganic Chemistry Dept., Ivan Franko National Univ., Lviv (Ukraine); Zaremba, Vasyl [Inorganic Chemistry Dept., Ivan Franko National Univ., Lviv (Ukraine)

    2009-07-01

    SrNi{sub 7.90(8)}In{sub 5.10(8)} was synthesized by induction melting of the elements in a sealed tantalum tube in a water-cooled silica sample chamber. The structure was refined on the basis of single crystal X-ray diffractometer data: Cccm, a = 1615.2(4), b = 1822.3(4), c = 1238.5(4) pm, wR2 = 0.1481, 4144F{sup 2} values and 150 variables. The striking structural motifs of the SrNi{sub 7.90}In{sub 5.10} structure are one-dimensional [Ni{sub 7} ] cluster units (242-286 pm Ni-Ni) which are surrounded by indium atoms. The structural relationship to the other NaZn{sub 13} superstructures is discussed on the basis of a group-subgroup scheme. (orig.)

  10. Finding Emotional-Laden Resources on the World Wide Web

    Directory of Open Access Journals (Sweden)

    Diane Rasmussen Neal

    2011-03-01

    Full Text Available Some content in multimedia resources can depict or evoke certain emotions in users. The aim of Emotional Information Retrieval (EmIR and of our research is to identify knowledge about emotional-laden documents and to use these findings in a new kind of World Wide Web information service that allows users to search and browse by emotion. Our prototype, called Media EMOtion SEarch (MEMOSE, is largely based on the results of research regarding emotive music pieces, images and videos. In order to index both evoked and depicted emotions in these three media types and to make them searchable, we work with a controlled vocabulary, slide controls to adjust the emotions’ intensities, and broad folksonomies to identify and separate the correct resource-specific emotions. This separation of so-called power tags is based on a tag distribution which follows either an inverse power law (only one emotion was recognized or an inverse-logistical shape (two or three emotions were recognized. Both distributions are well known in information science. MEMOSE consists of a tool for tagging basic emotions with the help of slide controls, a processing device to separate power tags, a retrieval component consisting of a search interface (for any topic in combination with one or more emotions and a results screen. The latter shows two separately ranked lists of items for each media type (depicted and felt emotions, displaying thumbnails of resources, ranked by the mean values of intensity. In the evaluation of the MEMOSE prototype, study participants described our EmIR system as an enjoyable Web 2.0 service.

  11. Self-spinning nanoparticle laden microdroplets for sensing and energy harvesting

    Science.gov (United States)

    Bhattacharjee, Mitradip; Pasumarthi, Viswanath; Chaudhuri, Joydip; Singh, Amit Kumar; Nemade, Harshal; Bandyopadhyay, Dipankar

    2016-03-01

    Exposure of a volatile organic vapour could set in powerful rotational motion a microdroplet composed of an aqueous salt solution loaded with metal nanoparticles. The solutal Marangoni motion on the surface originating from the sharp difference in the surface tension of water and organic vapour stimulated the strong vortices inside the droplet. The vapour sources of methanol, ethanol, diethyl ether, toluene, and chloroform stimulated motions of different magnitudes could easily be correlated to the surface tension gradient on the drop surface. Interestingly, when the nanoparticle laden droplet of aqueous salt solution was connected to an external electric circuit through a pair of electrodes, an ~85-95% reduction in the electrical resistance was observed across the spinning droplet. The extent of reduction in the resistance was found to have a correlation with the difference in the surface tension of the vapour source and the water droplet, which could be employed to distinguish the vapour sources. Remarkably, the power density of the same prototype was estimated to be around 7 μW cm-2, which indicated the potential of the phenomenon in converting surface energy into electrical in a non-destructive manner and under ambient conditions. Theoretical analysis uncovered that the difference in the ζ-potential near the electrodes was the major reason for the voltage generation. The prototype could also detect the repeated exposure and withdrawal of vapour sources, which helped in the development of a proof-of-concept detector to sense alcohol issuing out of the human breathing system.Exposure of a volatile organic vapour could set in powerful rotational motion a microdroplet composed of an aqueous salt solution loaded with metal nanoparticles. The solutal Marangoni motion on the surface originating from the sharp difference in the surface tension of water and organic vapour stimulated the strong vortices inside the droplet. The vapour sources of methanol, ethanol

  12. Stochastic Modeling of Direct Radiation Transmission in Particle-Laden Turbulent Flows

    Science.gov (United States)

    Banko, Andrew; Villafane, Laura; Kim, Ji Hoon; Esmaily Moghadam, Mahdi; Eaton, John K.

    2017-11-01

    Direct radiation transmission in turbulent flows laden with heavy particles plays a fundamental role in systems such as clouds, spray combustors, and particle-solar-receivers. Owing to their inertia, the particles preferentially concentrate and the resulting voids and clusters lead to deviations in mean transmission from the classical Beer-Lambert law for exponential extinction. Additionally, the transmission fluctuations can exceed those of Poissonian media by an order of magnitude, which implies a gross misprediction in transmission statistics if the correlations in particle positions are neglected. On the other hand, tracking millions of particles in a turbulence simulation can be prohibitively expensive. This work presents stochastic processes as computationally cheap reduced order models for the instantaneous particle number density field and radiation transmission therein. Results from the stochastic processes are compared to Monte Carlo Ray Tracing (MCRT) simulations using the particle positions obtained from the point-particle DNS of isotropic turbulence at a Taylor Reynolds number of 150. Accurate transmission statistics are predicted with respect to MCRT by matching the mean, variance, and correlation length of DNS number density fields. Funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1 and the National Science Foundation under Grant No. DGE-114747.

  13. Transportability Class of Americium in K Basin Sludge under Ambient and Hydrothermal Processing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.

    2006-08-01

    of the K Basin sludge characterization data is derived spent nuclear fuel corroded within the K Basins at 10-15?C. The STP process will place water-laden sludges from the K Basin in process vessels at {approx}150-180 C. Therefore, published studies with other irradiated (uranium oxide) fuel were examined. From these studies, the affinity of plutonium and americium for uranium in irradiated UO2 also was demonstrated at hydrothermal conditions (150 C anoxic liquid water) approaching those proposed for the STP process and even for hydrothermal conditions outside of the STP operating envelope (e.g., 150 C oxic and 100 C oxic and anoxic liquid water). In summary, by demonstrating that the chemical and physical behavior of 241Am in the sludge matrix is similar to that of the predominant species (uranium and for the plutonium from which it originates), a technical basis is provided for using the slow uptake transportability factor for 241Am that is currently used for plutonium and uranium oxides. The change from moderate to slow uptake for 241Am could reduce the overall analyzed dose consequences for the STP by more than 30%.

  14. Drainage basins features and hydrological behaviour river Minateda basin

    International Nuclear Information System (INIS)

    Alonso-Sarria, F.

    1991-01-01

    Nine basin variables (shape, size and topology) have been analyzed in four small basins with non-permanent run off (SE of Spain). These geomorphological variables have been selected for their high correlation with the Instantaneous unit hydrograph parameters. It is shown that the variables can change from one small basin to another within a very short area; because of it, generalizations about the behaviour of the run off are not possible. In conclusion, it is stated that the variations in geomorphological aspects between different basins, caused mainly by geological constraints, are a very important factor to be controlled in a study of geoecological change derived from climatic change

  15. Outer Continental Shelf Environmental Assessment Program. Final reports of principal investigators. Volume 74

    International Nuclear Information System (INIS)

    1991-10-01

    The volume contains: synthesis of seismicity studies for western Alaska; bottom and near-bottom sediment dynamics in Norton Sound; integration of circulation data in the Beaufort Sea; numerical modeling of storm surges in the Beaufort and Chukchi Seas; numerical modeling of storm surges in Norton Sound; Yukon delta oceanography and meteorology; and superstructure icing and wave hindcast statistics in the Navarin and St. George Basin areas

  16. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  17. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix.

    Science.gov (United States)

    Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-11-01

    Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen

  18. Erosion of a grooved surface caused by impact of particle-laden flow

    Science.gov (United States)

    Jung, Sohyun; Yang, Eunjin; Kim, Ho-Young

    2016-11-01

    Solid erosion can be a life-limiting process for mechanical elements in erosive environments, thus it is of practical importance in many industries such as construction, mining, and coal conversion. Erosion caused by particle-laden flow occurs through diverse mechanisms, such as cutting, plastic deformation, brittle fracture, fatigue and melting, depending on particle velocity, total particle mass and impingement angle. Among a variety of attempts to lessen erosion, here we investigate the effectiveness of millimeter-sized grooves on the surface. By experimentally measuring the erosion rates of smooth and triangular-grooved surfaces under various impingement angles, we find that erosion can be significantly reduced within a finite range of impingement angles. We show that such erosion resistance is attributed to the swirls of air within grooves and the differences in erosive strength of normal and slanted impact. In particular, erosion is mitigated when we increase the effective area under normal impact causing plastic deformation and fracture while decreasing the area under slanted impact that cuts the surface to a large degree. Our quantitative model for the erosion rate of grooved surfaces considering the foregoing effects agrees with the measurement results.

  19. Contrasting basin architecture and rifting style of the Vøring Basin, offshore mid-Norway and the Faroe-Shetland Basin, offshore United Kingdom

    Science.gov (United States)

    Schöpfer, Kateřina; Hinsch, Ralph

    2017-04-01

    The Vøring and the Faroe-Shetland basins are offshore deep sedimentary basins which are situated on the outer continental margin of the northeast Atlantic Ocean. Both basins are underlain by thinned continental crust whose structure is still debated. In particular the nature of the lower continental crust and the origin of high velocity bodies located at the base of the lower crust are a subject of discussion in recent literature. Regional interpretation of 2D and 3D seismic reflection data, combined with well data, suggest that both basins share several common features: (i) Pre-Cretaceous faults that are distributed across the entire basin width. (ii) Geometries of pre-Jurassic strata reflecting at least two extensional phases. (iii) Three common rift phases, Late Jurassic, Campanian-Maastrichtian and Palaeocene. (iv) Large pre-Cretaceous fault blocks that are buried by several kilometres of Cretaceous and Cenozoic strata. (iii). (v) Latest Cretaceous/Palaeocene inversion. (vi) Occurrence of partial mantle serpentinization during Early Cretaceous times, as proposed by other studies, seems improbable. The detailed analysis of the data, however, revealed significant differences between the two basins: (i) The Faroe-Shetland Basin was a fault-controlled basin during the Late Jurassic but also the Late Cretaceous extensional phase. In contrast, the Vøring Basin is dominated by the late Jurassic rifting and subsequent thermal subsidence. It exhibits only minor Late Cretaceous faults that are localised above intra-basinal and marginal highs. In addition, the Cretaceous strata in the Vøring Basin are folded. (ii) In the Vøring Basin, the locus of Late Cretaceous rifting shifted westwards, affecting mainly the western basin margin, whereas in the Faroe-Shetland Basin Late Cretaceous rifting was localised in the same area as the Late Jurassic phase, hence masking the original Jurassic geometries. (iii) Devono-Carboniferous and Aptian/Albian to Cenomanian rift phases

  20. Zr 2Ir 6B with an eightfold superstructure of the cubic perovskite-like boride ZrIr 3B 0.5: Synthesis, crystal structure and bonding analysis

    Science.gov (United States)

    Hermus, Martin; Fokwa, Boniface P. T.

    2010-04-01

    Single phase powder samples and single crystals of Zr 2Ir 6B were successfully synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. Superstructure reflections were observed both on powder and on single crystal diffraction data, leading to an eightfold superstructure of ZrIr 3B x phase. The new phase, which has a metallic luster, crystallizes in space group Fm3¯m (no. 225) with the lattice parameters a=7.9903(4) Å, V=510.14(4) Å 3. Its crystal structure was refined on the basis of powder as well as single crystal data. The single crystal refinement converged to R1=0.0239 and w R2=0.0624 for all 88 unique reflections and 6 parameters. Zr 2Ir 6B is isotypic to Ti 2Rh 6B and its structure can be described as a defect double perovskite, A2BB' O6, where the A site is occupied by zirconium, the B site by boron, the O site by iridium but the B' site is vacant, leading to the formation of empty and boron-filled octahedral Ir 6 clusters. According to the result of tight-binding electronic structure calculations, Ir-B and Ir-Zr interactions are mainly responsible for the structural stability of the phase. According to COHP bonding analysis, the strongest bonding occurs for the Ir-B contacts, and the Ir-Ir bonding within the empty clusters is two times stronger than that in the BIr 6 octahedra.

  1. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.

    Science.gov (United States)

    Tabriz, Atabak Ghanizadeh; Hermida, Miguel A; Leslie, Nicholas R; Shu, Wenmiao

    2015-12-21

    Different bioprinting techniques have been used to produce cell-laden alginate hydrogel structures, however these approaches have been limited to 2D or simple three-dimension (3D) structures. In this study, a new extrusion based bioprinting technique was developed to produce more complex alginate hydrogel structures. This was achieved by dividing the alginate hydrogel cross-linking process into three stages: primary calcium ion cross-linking for printability of the gel, secondary calcium cross-linking for rigidity of the alginate hydrogel immediately after printing and tertiary barium ion cross-linking for long-term stability of the alginate hydrogel in culture medium. Simple 3D structures including tubes were first printed to ensure the feasibility of the bioprinting technique and then complex 3D structures such as branched vascular structures were successfully printed. The static stiffness of the alginate hydrogel after printing was 20.18 ± 1.62 KPa which was rigid enough to sustain the integrity of the complex 3D alginate hydrogel structure during the printing. The addition of 60 mM barium chloride was found to significantly extend the stability of the cross-linked alginate hydrogel from 3 d to beyond 11 d without compromising the cellular viability. The results based on cell bioprinting suggested that viability of U87-MG cells was 93 ± 0.9% immediately after bioprinting and cell viability maintained above 88% ± 4.3% in the alginate hydrogel over the period of 11 d.

  2. Life, death and revival of debris-flow fans on Earth and Mars : fan dynamics and climatic inferences

    NARCIS (Netherlands)

    de Haas, T.|info:eu-repo/dai/nl/374023190

    2016-01-01

    Alluvial fans are ubiquitous landforms in high-relief regions on Earth and Mars. They have a semi-conical shape and are located at the transition between highlands and adjacent basins. Alluvial fans can form by a range of processes including debris flows, which are water-laden masses of soil and

  3. Proposal for the award of an industrial services contract for civil engineering superstructure and internal construction building work

    CERN Document Server

    2001-01-01

    This document concerns the award of an Industrial Services contract for civil engineering superstructure and internal construction building work. Following a market survey carried out among 112 firms in fifteen Member States, a call for tenders (IT-2546/ST/Rev.) was sent on 12 April 2001 to eleven consortia, four consisting of four firms, three consisting of three firms and four consisting of two firms, in seven Member States. By the closing date, CERN had received tenders from eight consortia in six Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium SPIE CITRA SUD-EST(FR)-ANTIRUST TECHNOLOGY (GR), the lowest bidder, for an initial period of three years from 1 January 2002 for an amount not exceeding 15 375 000 Swiss francs, not subject to revision. The contract will include options for two one-year extensions beyond the initial three-year period. The consortium has indicated the following distribution by country of the contract value covered by this ...

  4. All-in-one bioprobe devised with hierarchical-ordered magnetic NiCo2O4 superstructure for ultrasensitive dual-readout immunosensor for logic diagnosis of tumor marker.

    Science.gov (United States)

    Dai, Hong; Gong, Lingshan; Zhang, Shupei; Xu, Guifang; Li, Yilin; Hong, Zhensheng; Lin, Yanyu

    2016-03-15

    A new enzyme-free all-in-one bioprobe, consisted of hematin decorated magnetic NiCo2O4 superstructure (ATS-MNS-Hb), was designed for ultrasensitive photoelectrochemical and electrochemical dual-readout immunosensing of carcinoembryonic antigen (CEA) on carbon nanohorns (CNH) support. Herein, the MNS, possessed hierarchical-ordered structure, good porosity and magnetism, acted as nanocarrier to absorb abundant Hb molecular after functionalization, providing a convenient collection means by magnetic control as well as enhanced dual-readout sensing performances. CNH superstructures were employed as support to immobilize abounding captured antibodies, and then as-designed dual mode bioprobe, covalent binding with secondary antibody of CEA, was introduced for ultrasensitive detection of CEA by sandwich immunosensing. Photoelectrochemical response originated from plentiful hematin molecular, a excellent photosensitizer with good visible light harvesting efficiency, absorbed by functionalized porous MNS. The resultant concentration dependant linear calibration range was from 10 fg/mL to 1 ng/mL with ultralow detection limit of 10 fg/mL. For electrochemical process, catalase-like property of MNS was validated, moreover, MNS-Hb hybrid exhibited much higher mimic enzyme catalytic activity and evidently amplified electrocatalytic signal, performing a wide dynamic linear range from 1 ng/mL to 40 ng/mL with low detection limit of 1 ng/mL. Additionally, due to the improved accuracy of dual signals detection, the exact diagnoses of serum samples were gotten by operating resulting dual signals with AND logic system. This work demonstrated the promising application of MNS in developing ultrasensitive, cost-effective and environment friendly dual-readout immunosensor and accurate diagnoses strategy for tumor markers. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Influence of complex interfacial rheology on the thermocapillary migration of a surfactant-laden droplet in Poiseuille flow

    Science.gov (United States)

    Das, Sayan; Chakraborty, Suman

    2018-02-01

    The effect of surface viscosity on the motion of a surfactant-laden droplet in the presence of a non-isothermal Poiseuille flow is studied, both analytically and numerically. The presence of bulk-insoluble surfactants along the droplet surface results in interfacial shear and dilatational viscosities. This, in turn, is responsible for the generation of surface-excess viscous stresses that obey the Boussinesq-Scriven constitutive law for constant values of surface shear and dilatational viscosities. The present study is primarily focused on finding out how this confluence can be used to modulate droplet dynamics in the presence of Marangoni stress induced by nonuniform distribution of surfactants and temperature along the droplet surface, by exploiting an intricate interplay of the respective forcing parameters influencing the interfacial stresses. Under the assumption of negligible fluid inertia and thermal convection, the steady-state migration velocity of a non-deformable spherical droplet, placed at the centerline of an imposed unbounded Poiseuille flow, is obtained for the limiting case when the surfactant transport along the interface is dominated by surface diffusion. Our analysis proves that the droplet migration velocity is unaffected by the shear viscosity whereas the dilatational viscosity has a significant effect on the same. The surface viscous effects always retard the migration of a surfactant-laden droplet when the temperature in the far-field increases in the direction of the imposed flow although the droplet always migrates towards the hotter region. On the contrary, if a large temperature gradient is applied in a direction opposite to that of the imposed flow, the direction of droplet migration gets reversed. However, for a sufficiently high value of dilatational surface viscosity, the direction of droplet migration reverses. For the limiting case in which the surfactant transport along the droplet surface is dominated by surface convection, on

  6. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    Science.gov (United States)

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic

  7. 3-D basin modelling of the Paris Basin: diagenetic and hydrogeologic implications

    International Nuclear Information System (INIS)

    Violette, S.; Goncalves, J.; Jost, A.; Marsily, G. de

    2004-01-01

    A 3-D basin model of the Paris basin is presented in order to simulate through geological times fluid, heat and solute fluxes. This study emphasizes: i) the contribution of basin models to the quantitative hydrodynamic understanding of behaviour of the basin over geological times; ii) the additional use of Atmospheric General Circulation model (AGCM) to provide palaeo-climatic boundaries for a coupled flow and mass transfer modelling, constrained by geochemical and isotopic tracers and; iii) the integration of different types of data (qualitative and quantitative) to better constrain the simulations. Firstly, in a genetic way, basin model is used to reproduce geological, physical and chemical processes occurring in the course of the 248 My evolution of the Paris basin that ought to explain the present-day hydraulic properties at the regional scale. As basin codes try to reproduce some of these phenomena, they should be able to give a plausible idea of the regional-scale permeability distribution of the multi-layered system, of the pre-industrial hydrodynamic conditions within the aquifers and of the diagenesis timing and type of hydrodynamic processes involved. Secondly, climate records archived in the Paris basin groundwater suggest that climate and morphological features have an impact on the hydrogeological processes, particularly during the last 5 My. An Atmospheric General Circulation model is used with a refined spatial resolution centred on the Paris basin to reproduce the climate for the present, the Last Glacial Maximum (21 ky) and the middle Pliocene (3 My). These climates will be prescribed, through forcing functions to the hydrological code with the main objective of understanding the way aquifers and aquitards react under different climate conditions, the period and the duration of these effects. Finally, the Paris basin has been studied for a number of years by different scientific communities, thus a large amount of data has been collected. By

  8. Regional gray matter correlates of memory for emotion-laden words in middle-aged and older adults: A voxel-based morphometry study.

    Science.gov (United States)

    Saarela, Carina; Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O; Karrasch, Mira

    2017-01-01

    Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions.

  9. Self-spinning nanoparticle laden microdroplets for sensing and energy harvesting.

    Science.gov (United States)

    Bhattacharjee, Mitradip; Pasumarthi, Viswanath; Chaudhuri, Joydip; Singh, Amit Kumar; Nemade, Harshal; Bandyopadhyay, Dipankar

    2016-03-21

    Exposure of a volatile organic vapour could set in powerful rotational motion a microdroplet composed of an aqueous salt solution loaded with metal nanoparticles. The solutal Marangoni motion on the surface originating from the sharp difference in the surface tension of water and organic vapour stimulated the strong vortices inside the droplet. The vapour sources of methanol, ethanol, diethyl ether, toluene, and chloroform stimulated motions of different magnitudes could easily be correlated to the surface tension gradient on the drop surface. Interestingly, when the nanoparticle laden droplet of aqueous salt solution was connected to an external electric circuit through a pair of electrodes, an ∼85-95% reduction in the electrical resistance was observed across the spinning droplet. The extent of reduction in the resistance was found to have a correlation with the difference in the surface tension of the vapour source and the water droplet, which could be employed to distinguish the vapour sources. Remarkably, the power density of the same prototype was estimated to be around 7 μW cm(-2), which indicated the potential of the phenomenon in converting surface energy into electrical in a non-destructive manner and under ambient conditions. Theoretical analysis uncovered that the difference in the ζ-potential near the electrodes was the major reason for the voltage generation. The prototype could also detect the repeated exposure and withdrawal of vapour sources, which helped in the development of a proof-of-concept detector to sense alcohol issuing out of the human breathing system.

  10. Fishes of the Taquari-Antas river basin (Patos Lagoon basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    FG. Becker

    Full Text Available The aquatic habitats of the Taquari-Antas river basin (in the Patos Lagoon basin, southern Brazil are under marked environmental transformation because of river damming for hydropower production. In order to provide an information baseline on the fish fauna of the Taquari-Antas basin, we provide a comprehensive survey of fish species based on primary and secondary data. We found 5,299 valid records of fish species in the basin, representing 119 species and 519 sampling sites. There are 13 non-native species, six of which are native to other Neotropical river basins. About 24% of the total native species are still lacking a taxonomic description at the species level. Three native long-distance migratory species were recorded (Leporinus obtusidens, Prochilodus lineatus, Salminus brasiliensis, as well as two potential mid-distance migrators (Parapimelodus nigribarbis and Pimelodus pintado. Although there is only one officially endangered species in the basin (S. brasiliensis, restricted range species (21.7% of total species should be considered in conservation efforts.

  11. K-Basins design guidelines

    International Nuclear Information System (INIS)

    Roe, N.R.; Mills, W.C.

    1995-06-01

    The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines

  12. Intra- and inter-basin mercury comparisons: Importance of basin scale and time-weighted methylmercury estimates

    International Nuclear Information System (INIS)

    Bradley, Paul M.; Journey, Celeste A.; Brigham, Mark E.; Burns, Douglas A.; Button, Daniel T.; Riva-Murray, Karen

    2013-01-01

    To assess inter-comparability of fluvial mercury (Hg) observations at substantially different scales, Hg concentrations, yields, and bivariate-relations were evaluated at nested-basin locations in the Edisto River, South Carolina and Hudson River, New York. Differences between scales were observed for filtered methylmercury (FMeHg) in the Edisto (attributed to wetland coverage differences) but not in the Hudson. Total mercury (THg) concentrations and bivariate-relationships did not vary substantially with scale in either basin. Combining results of this and a previously published multi-basin study, fish Hg correlated strongly with sampled water FMeHg concentration (ρ = 0.78; p = 0.003) and annual FMeHg basin yield (ρ = 0.66; p = 0.026). Improved correlation (ρ = 0.88; p < 0.0001) was achieved with time-weighted mean annual FMeHg concentrations estimated from basin-specific LOADEST models and daily streamflow. Results suggest reasonable scalability and inter-comparability for different basin sizes if wetland area or related MeHg-source-area metrics are considered. - Highlights: ► National scale mercury assessments integrate small scale study results. ► Basin scale differences and representativeness of fluvial mercury samples are concerns. ► Wetland area, not basin size, predicts inter-basin methylmercury variability. ► Time-weighted methylmercury estimates improve the prediction of mercury in basin fish. - Fluvial methylmercury concentration correlates with wetland area not basin scale and time-weighted estimates better predict basin top predator mercury than discrete sample estimates.

  13. Shear Bond Strength of Composite and Ceromer Superstructures to Direct Laser Sintered and Ni-Cr-Based Infrastructures Treated with KTP, Nd:YAG, and Er:YAG Lasers: An Experimental Study.

    Science.gov (United States)

    Gorler, Oguzhan; Hubbezoglu, Ihsan; Ulgey, Melih; Zan, Recai; Guner, Kubra

    2018-04-01

    The aim of this study was to examine the shear bond strength (SBS) of ceromer and nanohybrid composite to direct laser sintered (DLS) Cr-Co and Ni-Cr-based metal infrastructures treated with erbium-doped yttrium aluminum garnet (Er:YAG), neodymium-doped yttrium aluminum garnet (Nd:YAG), and potassium titanyl phosphate (KTP) laser modalities in in vitro settings. Experimental specimens had four sets (n = 32) including two DLS infrastructures with ceromer and nanohybrid composite superstructures and two Ni-Cr-based infrastructures with ceromer and nanohybrid composite superstructures. Of each infrastructure set, the specimens randomized into four treatment modalities (n = 8): no treatment (controls) and Er:YAG, Nd:YAG, and KTP lasers. The infrastructures were prepared in the final dimensions of 7 × 3 mm. Ceromer and nanohybrid composite was applied to the infrastructures after their surface treatments according to randomization. The SBS of specimens was measured to test the efficacy of surface treatments. Representative scanning electron microscopy (SEM) images after laser treatments were obtained. Overall, in current experimental settings, Nd:YAG, KTP, and Er:YAG lasers, in order of efficacy, are effective to improve the bonding of ceromer and nanohybrid composite to the DLS and Ni-Cr-based infrastructures (p laser is more effective in the DLS/ceromer infrastructures (p laser, as second more effective preparation, is more effective in the DLS/ceromer infrastructures (p laser modalities, in order of success, Nd:YAG, KTP, and Er:YAG, are effective to increase bonding of these structures.

  14. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    Science.gov (United States)

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2017-07-01

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic

  15. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    International Nuclear Information System (INIS)

    Shim, Jin-Hyung; Lee, Jung-Seob; Cho, Dong-Woo; Kim, Jong Young

    2012-01-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed. (paper)

  16. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    Science.gov (United States)

    Shim, Jin-Hyung; Lee, Jung-Seob; Kim, Jong Young; Cho, Dong-Woo

    2012-08-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed.

  17. Anomalous jump of stress upon the variation of the rate of deformation of single crystals of the Ni3Ge alloys with L12 superstructure under the conditions of cubic slip

    International Nuclear Information System (INIS)

    Starenchenko, V.A.; Solov'eva, Yu.V.; Gettinger, M.V.; Kovalevskaya, T.A.

    2005-01-01

    Experimental results are given on variations of plastic strain rate for Ni 3 Ge alloy with L1 2 superstructure possessing anomalous temperature dependence of mechanical properties. For the first time an anomalous strain rate dependence of mechanical properties of the alloy is revealed under conditions of cubic slip. The mechanism is proposed to explain the observed form of stress jump. Using the mechanism proposed normal and anomalous constituents of stress jump are separated. Temperature dependences of stress jump, normal and anomalous constituents of stress jump are analyzed [ru

  18. Rocks Whose Compositions are Determined by Flow Differentiation of Olivine- and Sulfide Droplet-Laden Magma: the Jinchuan Story

    Science.gov (United States)

    Li, C.; Ripley, E. M.; de Waal, S. A.; Xu, Z.

    2002-12-01

    The Jinchuan intrusion in western China is an elongated, deeply-dipping dyke-like body of dominantly olivine-rich ultramafic rocks of high magnesium basaltic magma. It hosts the second largest Ni-Cu sulfide deposit in the world. More than 500 million tones of sulfide ore grading 1.2 percent Ni and 0.7 percent Cu occur mostly as next-textured and disseminated sulfide (pyrrhotite, pentlendite and chalcopyrite) with cumulus olivine in about half of the rocks of the intrusion. Based on different petrological zonations, the Jinchuan intrusion is further divided into three segments: eastern, central and western segments. The central segment is characterized by concentric enrichments of cumulus olivine and sulfide, whereas the eastern and western segments are characterized by the increase of both cumulus olivine and sulfide toward the footwall. The forsterite contents of fresh olivine from different segments are similar and vary between 82 and 86 mole percent. The small range of olivine compositional variation corresponds to less than 6 percent of fractional crystallization. Mass balance calculations based on sulfide solubility in basaltic magma indicate that the volume of the parental magma of the sulfide is many times larger than that which is currently represented in the intrusion. Large amounts of cumulus olivine (more than 40 weight percent) in the marginal samples and high concentrations of sulfide in the intrusion are consistent with an interpretation that the Jinchuan intrusion was formed by olivine- and sulfide droplet-laden magma ascending through a subvertical conduit to a higher level. Differentiation processes of the olivine- and sulfide droplet-laden magma varied in different parts of the conduit. Sub-vertical flow differentiation controlled the central segment of the conduit, resulting in further enrichment of olivine crystals and sulfide droplets in the conduit center. In contrast, sub-lateral flow and gravitational differentiation dominated in the eastern

  19. A framework model for water-sharing among co-basin states of a river basin

    Science.gov (United States)

    Garg, N. K.; Azad, Shambhu

    2018-05-01

    A new framework model is presented in this study for sharing of water in a river basin using certain governing variables, in an effort to enhance the objectivity for a reasonable and equitable allocation of water among co-basin states. The governing variables were normalised to reduce the governing variables of different co-basin states of a river basin on same scale. In the absence of objective methods for evaluating the weights to be assigned to co-basin states for water allocation, a framework was conceptualised and formulated to determine the normalised weighting factors of different co-basin states as a function of the governing variables. The water allocation to any co-basin state had been assumed to be proportional to its struggle for equity, which in turn was assumed to be a function of the normalised discontent, satisfaction, and weighting factors of each co-basin state. System dynamics was used effectively to represent and solve the proposed model formulation. The proposed model was successfully applied to the Vamsadhara river basin located in the South-Eastern part of India, and a sensitivity analysis of the proposed model parameters was carried out to prove its robustness in terms of the proposed model convergence and validity over the broad spectrum values of the proposed model parameters. The solution converged quickly to a final allocation of 1444 million cubic metre (MCM) in the case of the Odisha co-basin state, and to 1067 MCM for the Andhra Pradesh co-basin state. The sensitivity analysis showed that the proposed model's allocation varied from 1584 MCM to 1336 MCM for Odisha state and from 927 to 1175 MCM for Andhra, depending upon the importance weights given to the governing variables for the calculation of the weighting factors. Thus, the proposed model was found to be very flexible to explore various policy options to arrive at a decision in a water sharing problem. It can therefore be effectively applied to any trans-boundary problem where

  20. Regional gray matter correlates of memory for emotion-laden words in middle-aged and older adults: A voxel-based morphometry study

    Science.gov (United States)

    Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O.; Karrasch, Mira

    2017-01-01

    Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions. PMID:28771634

  1. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  2. Michael Jackson, Bin Laden and I: functions of positive and negative, public and private flashbulb memories.

    Science.gov (United States)

    Demiray, Burcu; Freund, Alexandra M

    2015-01-01

    This study examined the perceived psychosocial functions of flashbulb memories: It compared positive and negative public flashbulb memories (positive: Bin Laden's death, negative: Michael Jackson's death) with private ones (positive: pregnancy, negative: death of a loved one). A sample of n = 389 young and n = 176 middle-aged adults answered canonical category questions used to identify flashbulb memories and rated the personal significance, the psychological temporal distance, and the functions of each memory (i.e., self-continuity, social-boding, directive functions). Hierarchical regressions showed that, in general, private memories were rated more functional than public memories. Positive and negative private memories were comparable in self-continuity and directionality, but the positive private memory more strongly served social functions. In line with the positivity bias in autobiographical memory, positive flashbulb memories felt psychologically closer than negative ones. Finally, middle-aged adults rated their memories as less functional regarding self-continuity and social-bonding than young adults. Results are discussed regarding the tripartite model of autobiographical memory functions.

  3. Superposition of tectonic structures leading elongated intramontane basin: the Alhabia basin (Internal Zones, Betic Cordillera)

    Science.gov (United States)

    Martínez-Martos, Manuel; Galindo-Zaldivar, Jesús; Martínez-Moreno, Francisco José; Calvo-Rayo, Raquel; Sanz de Galdeano, Carlos

    2017-10-01

    The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E-W, and the NW-SE oriented Gádor-Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N-S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E-W dextral faults. In this setting, NE-SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene-Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins' deep structure and its relation with the tectonic structures interactions.

  4. Putting emotions in routes: the influence of emotionally laden landmarks on spatial memory.

    Science.gov (United States)

    Ruotolo, F; Claessen, M H G; van der Ham, I J M

    2018-04-16

    The aim of this study was to assess how people memorize spatial information of emotionally laden landmarks along a route and if the emotional value of the landmarks affects the way metric and configurational properties of the route itself are represented. Three groups of participants were asked to watch a movie of a virtual walk along a route. The route could contain positive, negative, or neutral landmarks. Afterwards, participants were asked to: (a) recognize the landmarks; (b) imagine to walk distances between landmarks; (c) indicate the position of the landmarks along the route; (d) judge the length of the route; (e) draw the route. Results showed that participants who watched the route with positive landmarks were more accurate in locating the landmarks along the route and drawing the route. On the other hand, participants in the negative condition judged the route as longer than participants in the other two conditions and were less accurate in mentally reproducing distances between landmarks. The data will be interpreted in the light of the "feelings-as-information theory" by Schwarz (2010) and the most recent evidence about the effect of emotions on spatial memory. In brief, the evidence collected in this study supports the idea that spatial cognition emerges from the interaction between an organism and contextual characteristics.

  5. Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost

    Science.gov (United States)

    Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.

    2017-11-01

    A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.

  6. A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows

    Science.gov (United States)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-09-01

    A Cartesian grid-based sharp interface method is presented for viscous simulations of shocked particle-laden flows. The moving solid-fluid interfaces are represented using level sets. A moving least-squares reconstruction is developed to apply the no-slip boundary condition at solid-fluid interfaces and to supply viscous stresses to the fluid. The algorithms developed in this paper are benchmarked against similarity solutions for the boundary layer over a fixed flat plate and against numerical solutions for moving interface problems such as shock-induced lift-off of a cylinder in a channel. The framework is extended to 3D and applied to calculate low Reynolds number steady supersonic flow over a sphere. Viscous simulation of the interaction of a particle cloud with an incident planar shock is demonstrated; the average drag on the particles and the vorticity field in the cloud are compared to the inviscid case to elucidate the effects of viscosity on momentum transfer between the particle and fluid phases. The methods developed will be useful for obtaining accurate momentum and heat transfer closure models for macro-scale shocked particulate flow applications such as blast waves and dust explosions.

  7. SimBasin: serious gaming for integrated decision-making in the Magdalena-Cauca basin

    Science.gov (United States)

    Craven, Joanne; Angarita, Hector; Corzo, Gerald

    2016-04-01

    The Magdalena-Cauca macrobasin covers 24% of the land area of Colombia, and provides more than half of the country's economic potential. The basin is also home a large proportion of Colombia's biodiversity. These conflicting demands have led to problems in the basin, including a dramatic fall in fish populations, additional flooding (such as the severe nationwide floods caused by the La Niña phenomenon in 2011), and habitat loss. It is generally believed that the solution to these conflicts is to manage the basin in a more integrated way, and bridge the gaps between decision-makers in different sectors and scientists. To this end, inter-ministerial agreements are being formulated and a decision support system is being developed by The Nature Conservancy Colombia. To engage stakeholders in this process SimBasin, a "serious game", has been developed. It is intended to act as a catalyst for bringing stakeholders together, an illustration of the uncertainties, relationships and feedbacks in the basin, and an accessible introduction to modelling and decision support for non-experts. During the game, groups of participants are led through a 30 year future development of the basin, during which they take decisions about the development of the basin and see the impacts on four different sectors: agriculture, hydropower, flood risk, and environment. These impacts are displayed through seven indicators, which players should try to maintain above critical thresholds. To communicate the effects of uncertainty and climate variability, players see the actual value of the indicator and also a band of possible values, so they can see if their decisions have actually reduced risk or if they just "got lucky". The game works as a layer on top of a WEAP water resources model of the basin, adapted from a basin-wide model already created, so the fictional game basin is conceptually similar to the Magdalena-Cauca basin. The game is freely available online, and new applications are being

  8. Automatic segmentation of tumor-laden lung volumes from the LIDC database

    Science.gov (United States)

    O'Dell, Walter G.

    2012-03-01

    The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.

  9. A Penalty Method to Model Particle Interactions in DNA-laden Flows

    International Nuclear Information System (INIS)

    Trebotich, D; Miller, G H; Bybee, M D

    2006-01-01

    We present a hybrid fluid-particle algorithm to simulate flow and transport of DNA-laden fluids in microdevices. Relevant length scales in microfluidic systems range from characteristic channel sizes of millimeters to micron scale geometric variation (e.g., post arrays) to 10 nanometers for the length of a single rod in a bead-rod polymer representation of a biological material such as DNA. The method is based on a previous fluid-particle algorithm in which long molecules are represented as a chain of connected rods, but in which the physically unrealistic behavior of rod crossing occurred. We have extended this algorithm to include screened Coulombic forces between particles by implementing a Debye-Hueckel potential acting between rods. In the method an unsteady incompressible Newtonian fluid is discretized with a second-order finite difference method in the interior of the Cartesian grid domain; an embedded boundary volume-of-fluid formulation is used near boundaries. The bead-rod polymer model is fully coupled to the solvent through body forces representing hydrodynamic drag and stochastic thermal fluctuations. While intrapolymer interactions are modeled by a soft potential, polymer-structure interactions are treated as perfectly elastic collisions. We demonstrate this method on flow and transport of a polymer through a post array microchannel in 2D where the polymer incorporates more realistic physical parameters of DNA, and compare to previous simulations where rods are allowed to cross. We also show that the method is capable of simulating 3D flow in a packed bed micro-column

  10. A Penalty Method to Model Particle Interactions in DNA-laden Flows

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D; Miller, G H; Bybee, M D

    2006-10-06

    We present a hybrid fluid-particle algorithm to simulate flow and transport of DNA-laden fluids in microdevices. Relevant length scales in microfluidic systems range from characteristic channel sizes of millimeters to micron scale geometric variation (e.g., post arrays) to 10 nanometers for the length of a single rod in a bead-rod polymer representation of a biological material such as DNA. The method is based on a previous fluid-particle algorithm in which long molecules are represented as a chain of connected rods, but in which the physically unrealistic behavior of rod crossing occurred. We have extended this algorithm to include screened Coulombic forces between particles by implementing a Debye-Hueckel potential acting between rods. In the method an unsteady incompressible Newtonian fluid is discretized with a second-order finite difference method in the interior of the Cartesian grid domain; an embedded boundary volume-of-fluid formulation is used near boundaries. The bead-rod polymer model is fully coupled to the solvent through body forces representing hydrodynamic drag and stochastic thermal fluctuations. While intrapolymer interactions are modeled by a soft potential, polymer-structure interactions are treated as perfectly elastic collisions. We demonstrate this method on flow and transport of a polymer through a post array microchannel in 2D where the polymer incorporates more realistic physical parameters of DNA, and compare to previous simulations where rods are allowed to cross. We also show that the method is capable of simulating 3D flow in a packed bed micro-column.

  11. Relating petroleum system and play development to basin evolution: West African South Atlantic basins

    NARCIS (Netherlands)

    Beglinger, S.E.; Doust, H.; Cloetingh, S.A.P.L.

    2012-01-01

    Sedimentary basins can be classified according to their structural genesis and evolutionary history and the latter can be linked to petroleumsystem and playdevelopment. We propose an approach in which we use the established concepts in a new way: breaking basins down into their natural basin cycle

  12. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  13. Melo carboniferous basin

    International Nuclear Information System (INIS)

    Flossdarf, A.

    1988-01-01

    This report is about of the Melo carboniferous basin which limits are: in the South the large and high Tupambae hill, in the west the Paraiso hill and the river mountains, in the North Yaguaron river basin to Candidata in Rio Grande del Sur in Brazil.

  14. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  15. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    Science.gov (United States)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns

  16. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  17. Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline–camphorsulfonate nanocomposite coating

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Dehghanian, Changiz; Kosari, Ali

    2015-01-01

    Highlights: • Epoxy/polyaniline–camphorsulfonate nanocomposite coating well protects steel rebar. • Coating performance is evaluated by impedance measurements up to 1 year. • Ultimate bond strength between the coated rebars and concrete is measured. • Self-compacting concrete shows better anticorrosive property compared to normal one. - Abstract: In this study, an epoxy/polyaniline–camphorsulfonate nanocomposite (epoxy/PANI–CSA) is employed to protect reinforcing steels in chloride-laden concrete environment. The synthesized nanocomposite was characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. Bare, epoxy-coated and epoxy/PANI–CSA nanocomposite-coated steel rebars were embedded in normal and self-compacting concretes. To evaluate their corrosion behaviors, open circuit potential and impedance measurements were performed for the duration of 1 year. Ultimate bond strength of concrete with the reinforcement bars were measured in corroded and uncorroded conditions. It was found that epoxy/PANI–CSA coating provides good corrosion resistance and durable bond strength with concrete for steel rebars

  18. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China

    Science.gov (United States)

    Liu, Jianming; Ye, Jie; Ying, Hanlong; Liu, Jiajun; Zheng, Minghua; Gu, Xuexiang

    2002-06-01

    The Youjiang basin is a Devonian-Triassic rift basin on the southern margin of the Yangtze Craton in South China. Strong syndepositional faulting defined the basin-and-range style paleo-topography that further developed into isolated carbonate platforms surrounded by siliciclastic filled depressions. Finally, thick Triassic siliciclastic deposits covered the platforms completely. In the Youjiang basin, numerous sediment-hosted, micro-disseminated gold (SMG) deposits occur mainly in Permian-Triassic chert and siliciclastic rocks. SMG ores are often auriferous sedimentary rocks with relatively low sulfide contents and moderate to weak alteration. Similar to Carlin-type gold ores in North America, SMG ores in the Youjiang basin are characterized by low-temperature mineral assemblages of pyrite, arsenopyrite, realgar, stibnite, cinnabar, marcasite, chalcedony and carbonate. Most of the SMG deposits are remarkably distributed around the carbonate platforms. Accordingly, there are platform-proximal and platform-distal SMG deposits. Platform-proximal SMG deposits often occur in the facies transition zone between the underlying platform carbonate rocks and the overlying siliciclastic rocks with an unconformity (often a paleo-karst surface) in between. In the ores and hostrocks there are abundant synsedimentary-syndiagenetic fabrics such as lamination, convolute bedding, slump texture, soft-sediment deformation etc. indicating submarine hydrothermal deposition and syndepositional faulting. Numerous fluid-escape and liquefaction fabrics imply strong fluid migration during sediment basin evolution. Such large-scale geological and fabric evidence implies that SMG ores were formed during basin evolution, probably in connection with basinal fluids. It is well known that basinal fluids (especially sediment-sourced fluids) will migrate generally (1) upwards, (2) towards basin margins or basin topographic highs, (3) and from thicker towards thinner deposits during basin evolution

  19. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.

    Science.gov (United States)

    Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An

    2018-02-01

    Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.

  20. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development

    DEFF Research Database (Denmark)

    Brozena, J.M.; Childers, V.A.; Lawver, L.A.

    2003-01-01

    In 1998 and 1999, new aerogeophysical surveys of the Arctic Ocean's Eurasia Basin produced the first collocated gravity and magnetic measurements over the western half of the basin. These data increase the density and extend the coverage of the U.S. Navy acromagnetic data from the 1970s. The new...... data reveal prominent bends in the isochrons that provide solid geometrical constraints for plate reconstructions. Tentative identification of anomaly 25 in the Eurasia Basin links early basin opening to spreading in the Labrador Sea before the locus of spreading in the North Atlantic shifted...... to the Norwegian-Greenland Sea. With the opening of the Labrador Sea, Greenland began similar to200 km of northward movement relative to North America and eventually collided with Svalbard, Ellesmere Island, and the nascent Eurasia ocean basin. Both gravity and magnetic data sets reconstructed to times prior...

  1. Great Basin Experimental Range: Annotated bibliography

    Science.gov (United States)

    E. Durant McArthur; Bryce A. Richardson; Stanley G. Kitchen

    2013-01-01

    This annotated bibliography documents the research that has been conducted on the Great Basin Experimental Range (GBER, also known as the Utah Experiment Station, Great Basin Station, the Great Basin Branch Experiment Station, Great Basin Experimental Center, and other similar name variants) over the 102 years of its existence. Entries were drawn from the original...

  2. Frequency and sources of basin floor turbidites in alfonso basin, Gulf of California, Mexico: Products of slope failures

    Science.gov (United States)

    Gonzalez-Yajimovich, Oscar E.; Gorsline, Donn S.; Douglas, Robert G.

    2007-07-01

    Alfonso Basin is a small margin basin formed by extensional tectonics in the actively rifting, seismically active Gulf of California. The basin is centered at 24°40' N and 110° 38' W, and is a closed depression (maximum depth 420 m) with an effective sill depth of about 320 m (deepest sill), a width of 20 km and length of 25 km. Basin floor area below a depth of 350 m is about 260 km 2. The climate is arid to semiarid but was wetter during the early (ca. 10,000-7000 Calendar years Before Present [BP]) and middle Holocene (ca. 7000-4000 Cal. Years BP). Basin-wide turbidity currents reach the floor of Alfonso Basin at centennial to millennial intervals. The peninsular drainages tributary to the basin are small and have maximum flood discharges of the order of 10 4m 3. The basin-floor turbidites thicker than 1 cm have volumes of the order of 10 6m 3 to 10 8m 3 and require a much larger source. The largest turbidite seen in our cores is ca. 1 m thick in the central basin floor and was deposited 4900 Calendar Years Before Present (BP). Two smaller major events occurred about 1500 and 2800 Cal. Years BP. Seismicity over the past century of record shows a clustering of larger epicenters along faults forming the eastern Gulf side of Alfonso Basin. In that period there have been four earthquakes with magnitudes above 7.0 but all are distant from the basin. Frequency of such earthquakes in the basin vicinity is probably millennial. It is concluded that the basin-wide turbidites thicker than 1 cm must be generated by slope failures on the eastern side of the basin at roughly millennial intervals. The thin flood turbidites have a peninsular source at centennial frequencies.

  3. Constraining Basin Depth and Fault Displacement in the Malombe Basin Using Potential Field Methods

    Science.gov (United States)

    Beresh, S. C. M.; Elifritz, E. A.; Méndez, K.; Johnson, S.; Mynatt, W. G.; Mayle, M.; Atekwana, E. A.; Laó-Dávila, D. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.

    2017-12-01

    The Malombe Basin is part of the Malawi Rift which forms the southern part of the Western Branch of the East African Rift System. At its southern end, the Malawi Rift bifurcates into the Bilila-Mtakataka and Chirobwe-Ntcheu fault systems and the Lake Malombe Rift Basin around the Shire Horst, a competent block under the Nankumba Peninsula. The Malombe Basin is approximately 70km from north to south and 35km at its widest point from east to west, bounded by reversing-polarity border faults. We aim to constrain the depth of the basin to better understand displacement of each border fault. Our work utilizes two east-west gravity profiles across the basin coupled with Source Parameter Imaging (SPI) derived from a high-resolution aeromagnetic survey. The first gravity profile was done across the northern portion of the basin and the second across the southern portion. Gravity and magnetic data will be used to constrain basement depths and the thickness of the sedimentary cover. Additionally, Shuttle Radar Topography Mission (SRTM) data is used to understand the topographic expression of the fault scarps. Estimates for minimum displacement of the border faults on either side of the basin were made by adding the elevation of the scarps to the deepest SPI basement estimates at the basin borders. Our preliminary results using SPI and SRTM data show a minimum displacement of approximately 1.3km for the western border fault; the minimum displacement for the eastern border fault is 740m. However, SPI merely shows the depth to the first significantly magnetic layer in the subsurface, which may or may not be the actual basement layer. Gravimetric readings are based on subsurface density and thus circumvent issues arising from magnetic layers located above the basement; therefore expected results for our work will be to constrain more accurate basin depth by integrating the gravity profiles. Through more accurate basement depth estimates we also gain more accurate displacement

  4. Infrastructure Improvements for Snowmelt Runoff Forecasting and Assessments of Climate Change Impacts on Water Supplies in the Rio Grande Basin

    Science.gov (United States)

    Rango, A.; Steele, C. M.; Demouche, L.

    2009-12-01

    In the Southwest US, the southern Rocky Mountains provide a significant orographic barrier to prevailing moisture-laden Westerly winds, which results in snow accumulation and melt, both vitally important to the region’s water resources. The inherent variability of meteorological conditions in the Southwest, during both snowpack buildup and depletion, requires improved spatially-distributed data. The population of ground-based networks (SNOTEL, SCAN, and weather stations) is sparse and does not satisfactorily represent the variability of snow accumulation and melt. Remote sensing can be used to supplement data from ground networks, but the most frequently available remotely sensed product with the highest temporal and spatial resolution, namely snow cover, only provides areal data and not snow volume. Fortunately, the Snowmelt Runoff Model(SRM), which was developed in mountainous regions of the world, including the Rio Grande basin, accepts snow covered area as one of its major input variables along with temperature and precipitation. With the growing awareness of atmospheric warming and the southerly location of Southwest watersheds, it has become apparent that the effects of climate change will be especially important for Southwestern water users. The NSF-funded EPSCoR project “Climate Change Impacts on New Mexico’s Mountain Sources of Water” (started in 2009) has focused on improving hydrometeorological measurements, developing basin-wide and sub-basin snow cover mapping methods, generating snowmelt runoff simulations, forecasts, and long-term climate change assessments, and informing the public of the results through outreach and educational activities. Five new SNOTEL and four new SCAN sites are being installed in 2009-2010 and 12 existing basic SNOTEL sites are being upgraded. In addition, 30 automated precipitation gages are being added to New Mexico measurement networks. The first phase of snow mapping and modeling has focused on four sub basins

  5. Three-dimensional modeling of pull-apart basins: implications for the tectonics of the Dead Sea Basin

    Science.gov (United States)

    Katzman, Rafael; ten Brink, Uri S.; Lin, Jian

    1995-01-01

    We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.

  6. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels.

    Science.gov (United States)

    Yu, Yin; Zhang, Yahui; Martin, James A; Ozbolat, Ibrahim T

    2013-09-01

    Organ printing is a novel concept recently introduced in developing artificial three-dimensional organs to bridge the gap between transplantation needs and organ shortage. One of the major challenges is inclusion of blood-vessellike channels between layers to support cell viability, postprinting functionality in terms of nutrient transport, and waste removal. In this research, we developed a novel and effective method to print tubular channels encapsulating cells in alginate to mimic the natural vascular system. An experimental investigation into the influence on cartilage progenitor cell (CPCs) survival, and the function of printing parameters during and after the printing process were presented. CPC functionality was evaluated by checking tissue-specific genetic marker expression and extracellular matrix production. Our results demonstrated the capability of direct fabrication of cell-laden tubular channels by our newly designed coaxial nozzle assembly and revealed that the bioprinting process could induce quantifiable cell death due to changes in dispensing pressure, coaxial nozzle geometry, and biomaterial concentration. Cells were able to recover during incubation, as well as to undergo differentiation with high-level cartilage-associated gene expression. These findings may not only help optimize our system but also can be applied to biomanufacturing of 3D functional cellular tissue engineering constructs for various organ systems.

  7. Experimental investigation of turbulence modulation in particle-laden coaxial jets by Phase Doppler Anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Mergheni, M.A. [CORIA UMR 6614 CNRS, Universite et INSA de ROUEN, Avenue de l' Universite, BP 12, 76801 Saint Etienne du Rouvray, Cedex (France)]|[LESTE Ecole Nationale d' Ingenieurs de Monastir, 5019 Monastir (Tunisia); Sautet, J.C.; Godard, G. [CORIA UMR 6614 CNRS, Universite et INSA de ROUEN, Avenue de l' Universite, BP 12, 76801 Saint Etienne du Rouvray, Cedex (France); Ben Ticha, H.; Ben Nasrallah, S. [LESTE Ecole Nationale d' Ingenieurs de Monastir, 5019 Monastir (Tunisia)

    2009-03-15

    The effect of solid particles on the flow characteristics of axisymmetric turbulent coaxial jets for two flow conditions was studied. Simultaneous measurements of size and velocity distributions of continuous and dispersed phases in a two-phase flow are presented using a Phase Doppler Anemometry (PDA) technique. Spherical glass particles with a particle diameter range from 102 to 212 {mu}m were used in this two-phase flow, the experimental results indicate a significant influence of the solid particles and the Re on the flow characteristics. The data show that the gas phase has lower mean velocity in the near-injector region and a higher mean velocity at the developed region. Near the injector at low Reynolds number (Re = 2839) the presence of the particles dampens the gas-phase turbulence, while at higher Reynolds number (Re = 11 893) the gas-phase turbulence and the velocity fluctuation of particle-laden jets are increased. The particle velocity at higher Reynolds number (Re = 11 893) and is lower at lower Reynolds number (Re = 2839). The slip velocity between particles and gas phase existed over the flow domain was examined. More importantly, the present experiment results suggest that, consideration of the gas characteristic length scales is insufficient to predict gas-phase turbulence modulation in gas-particle flows. (author)

  8. The importance of DNA superstructure units for the understanding of the radiation action mechanism

    International Nuclear Information System (INIS)

    Regel, K.

    1985-04-01

    A molecular radiation action model is presented. It relates the physical parameters of the radiation interaction in tissue and of the DNA structure in mammalian cells to their dose survival curves. Using this model it is possible to explain many of the radiation effects in cells, including such ones which were not clearly understood as yet. Both the kind of the basic parameters and the 'efficiency' of the model suggest that it describes real properties of mammalian cells. However, in finding out the radiation action mechanism we had to fill up two gaps in our knowledge concerning the radiation action in organisms. The first gap is characterized by the question: Are there any DNA structures (sites) in mammalian cells on the basis of which a radiation action model can be established which is valid in all the cell cycle stages. This question is answered by comparisons of the magnitude of DNA parameters measured in suitable experiments with those calculated from a hypothetical model of DNA organization in mammalian cells. The second gap in knowledge is filled up by testing the hypothesis that certain patterns of double-strand breaks (DSBs) in the membrane attached superstructure units (MASSUs) of a cell cause its inactivation. The dependence of the dose survival curves on the cell cycle can be explained in the following way: Dose survival curves of G1, G2 and mitotic cells are changed because of the cyclically altering volume of the MASSU compartments. Its change during the S stage is mainly determined by the growing fraction of replicated MASSUs. The high radiation resistance of late S cells probably results from the ability of mammalian cells to establish one intact sister genome from both sister genomes containing heavily damaged MASSUs joint in the attachment points. This ability is explained by the interference of DSB repair, sister chromatid exchange and DNA degradation. (author)

  9. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    Science.gov (United States)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  10. Quantification and Postglacial evolution of an inner alpine sedimentary basin (Gradenmoos Basin, Hohe Tauern)

    International Nuclear Information System (INIS)

    Götz, J.

    2012-01-01

    The overall objective of this thesis is the quantification of sediment storage and the reconstruction of postglacial landscape evolution within the glacially overdeepened Gradenmoos Basin (subcatchment size: 4.1 km 2 ; basin floor elevation: 1920 m) in the central Gradenbach catchment (Schober Range, Hohe Tauern, Austrian Alps). Following the approach of denudation-accumulation-systems, most reliable results are obtained (1) if sediment output of a system can be neglected for an established period of time, (2) if sediment storage can be assessed with a high level of accuracy, (3) if the onset of sedimentation and amounts of initially stored sediments are known, and (4) if sediment contributing areas can be clearly delimited. Due to spatial scale and topographic characteristics, all mentioned aspects are fulfilled to a high degree within the studied basin. Applied methods include surface, subsurface and temporal investigations. Digital elevation data is derived from terrestrial laserscanning and geomorphologic mapping. The quantification of sediment storage is based on core drillings, geophysical methods (DC resistivity, refraction seismic, and ground penetrating radar), as well as GIS and 3D modelling. Radiocarbon dating and palynological analyses are additionally used to reconstruct the postglacial infilling progress of the basin. The study reveals that a continuous postglacial stratigraphic record is archived in the basin. As proposed by Lieb (1987) timing of basin deglaciation could be verified to late-Egesen times by means of radiocarbon ages (oldest sample just above basal till: 10.4 ka cal. BP) and first palynologic results. Lateglacial oscillations seem to have effectively scoured the basin, leaving only a shallow layer of basal till. The analysis of postglacial sedimentation in the basin is further improved by the existence of a former lake in the basin lasting for up to 7500 years until approx. 3.7 ka cal. BP. Both, the stratigraphic (fine, partly

  11. Stratigraphy of the Caloris Basin, Mercury: Implications for Volcanic History and Basin Impact Melt

    Science.gov (United States)

    Ernst, Carolyn M.; Denevi, Brett W.; Barnouin, Olivier S.; Klimczak, Christian; Chabot, Nancy L.; Head, James W.; Murchie, Scott L.; Neumann, Gregory A.; Prockter, Louis M.; Robinson, Mark S.; hide

    2015-01-01

    Caloris basin, Mercury's youngest large impact basin, is filled by volcanic plains that are spectrally distinct from surrounding material. Post-plains impact craters of a variety of sizes populate the basin interior, and the spectra of the material they have excavated enable the thickness of the volcanic fill to be estimated and reveal the nature of the subsurface. The thickness of the interior volcanic plains is consistently at least 2.5 km, reaching 3.5 km in places, with thinner fill toward the edge of the basin. No systematic variations in fill thickness are observed with long-wavelength topography or azimuth. The lack of correlation between plains thickness and variations in elevation at large horizontal scales within the basin indicates that plains emplacement must have predated most, if not all, of the changes in long-wavelength topography that affected the basin. There are no embayed or unambiguously buried (ghost) craters with diameters greater than 10 km in the Caloris interior plains. The absence of such ghost craters indicates that one or more of the following scenarios must hold: the plains are sufficiently thick to have buried all evidence of craters that formed between the Caloris impact event and the emplacement of the plains; the plains were emplaced soon after basin formation; or the complex tectonic deformation of the basin interior has disguised wrinkle-ridge rings localized by buried craters. That low-reflectance material (LRM) was exposed by every impact that penetrated through the surface volcanic plains provides a means to explore near-surface stratigraphy. If all occurrences of LRM are derived from a single layer, the subsurface LRM deposit is at least 7.5-8.5 km thick and its top likely once made up the Caloris basin floor. The Caloris-forming impact would have generated a layer of impact melt 3-15 km thick; such a layer could account for the entire thickness of LRM. This material would have been derived from a combination of lower crust

  12. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    Science.gov (United States)

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  13. Engineering zonal cartilaginous tissue by modulating oxygen levels and mechanical cues through the depth of infrapatellar fat pad stem cell laden hydrogels.

    Science.gov (United States)

    Luo, Lu; O'Reilly, Adam R; Thorpe, Stephen D; Buckley, Conor T; Kelly, Daniel J

    2017-09-01

    Engineering tissues with a structure and spatial composition mimicking those of native articular cartilage (AC) remains a challenge. This study examined if infrapatellar fat pad-derived stem cells (FPSCs) can be used to engineer cartilage grafts with a bulk composition and a spatial distribution of matrix similar to the native tissue. In an attempt to mimic the oxygen gradients and mechanical environment within AC, FPSC-laden hydrogels (either 2 mm or 4 mm in height) were confined to half of their thickness and/or subjected to dynamic compression (DC). Confining FPSC-laden hydrogels was predicted to accentuate the gradient in oxygen tension through the depth of the constructs (higher in the top and lower in the bottom), leading to enhanced glycosaminoglycan (GAG) and collagen synthesis in 2 mm high tissues. When subjected to DC alone, both GAG and collagen accumulation increased within 2 mm high unconfined constructs. Furthermore, the dynamic modulus of constructs increased from 0.96 MPa to 1.45 MPa following the application of DC. There was no synergistic benefit of coupling confinement and DC on overall levels of matrix accumulation; however in all constructs, irrespective of their height, the combination of these boundary conditions led to the development of engineered tissues that spatially best resembled native AC. The superficial region of these constructs mimicked that of native tissue, staining weakly for GAG, strongly for type II collagen, and in 4 mm high tissues more intensely for proteoglycan 4 (lubricin). This study demonstrated that FPSCs respond to joint-like environmental conditions by producing cartilage tissues mimicking native AC. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Pretreatment of algae-laden and manganese-containing waters by oxidation-assisted coagulation: Effects of oxidation on algal cell viability and manganese precipitation.

    Science.gov (United States)

    Lin, Jr-Lin; Hua, Lap-Cuong; Wu, Yuting; Huang, Chihpin

    2016-02-01

    Preoxidation is manipulated to improve performance of algae and soluble manganese (Mn) removal by coagulation-sedimentation for water treatment plants (WTPs) when large amount of soluble Mn presents in algae-laden waters. This study aimed to investigate the effects of preoxidation on the performance of coagulation-sedimentation for the simultaneous removal of algae and soluble Mn, including ionic and complexed Mn. NaOCl, ClO2, and KMnO4 were used to pretreat such algae-laden and Mn containing waters. The variation of algal cell viability, residual cell counts, and concentrations of Mn species prior to and after coagulation-sedimentation step were investigated. Results show that NaOCl dosing was effective in reducing the viability of algae, but precipitated little Mn. ClO2 dosing had a strongest ability to lower algae viability and oxidize ionic and complexed soluble Mn, where KMnO4 dosing oxidized ionic and complexed Mn instead of reducing the viability of cells. Preoxidation by NaOCl only improved the algae removal by sedimentation, whereas most of soluble Mn still remained. On the other hand, ClO2 preoxidation substantially improved the performance of coagulation-sedimentation for simultaneous removal of algae and soluble Mn. Furthermore, KMnO4 preoxidation did improve the removal of algae by sedimentation, but left significant residual Mn in the supernatant. Images from FlowCAM showed changes in aspect ratio (AR) and transparency of algae-Mn flocs during oxidation-assisted coagulation, and indicates that an effective oxidation can improve the removal of most compact algae-Mn flocs by sedimentation. It suggests that an effective preoxidation for reducing algal cell viability and the concentration of soluble Mn is a crucial step for upgrading the performance of coagulation-sedimentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Sedimentary architecture of a Plio-Pleistocene proto-back-arc basin: Wanganui Basin, New Zealand

    Science.gov (United States)

    Proust, Jean-Noël; Lamarche, Geoffroy; Nodder, Scott; Kamp, Peter J. J.

    2005-11-01

    The sedimentary architecture of active margin basins, including back-arc basins, is known only from a few end-members that barely illustrate the natural diversity of such basins. Documenting more of these basins types is the key to refining our understanding of the tectonic evolution of continental margins. This paper documents the sedimentary architecture of an incipient back-arc basin 200 km behind the active Hikurangi subduction margin, North Island, New Zealand. The Wanganui Basin (WB) is a rapidly subsiding, Plio-Pleistocene sedimentary basin located at the southern termination of the extensional back-arc basin of the active Central Volcanic Region (TVZ). The WB is asymmetric with a steep, thrust-faulted, outer (arc-ward) margin and a gentle inner (craton-ward) margin. It contains a 4-km-thick succession of Plio-Pleistocene sediments, mostly lying offshore, composed of shelf platform sediments. It lacks the late molasse-like deposits derived from erosion of a subaerial volcanic arc and basement observed in classical back-arc basins. Detailed seismic stratigraphic interpretations from an extensive offshore seismic reflection data grid show that the sediment fill comprises two basin-scale mega-sequences: (1) a Pliocene (3.8 to 1.35 Ma), sub-parallel, regressive "pre-growth" sequence that overtops the uplifted craton-ward margin above the reverse Taranaki Fault, and (2) a Pleistocene (1.35 Ma to present), divergent, transgressive, "syn-growth" sequence that onlaps: (i) the craton-ward high to the west, and (ii) uplifted basement blocks associated with the high-angle reverse faults of the arc-ward margin to the east. Along strike, the sediments offlap first progressively southward (mega-sequence 1) and then southeastward (mega-sequence 2), with sediment transport funnelled between the craton- and arc-ward highs, towards the Hikurangi Trough through the Cook Strait. The change in offlap direction corresponds to the onset of arc-ward thrust faulting and the rise of

  16. Misrepresenting the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Clemens Messerschmid

    2015-06-01

    Full Text Available This article advances a critique of the UN Economic and Social Commission for West Asia’s (ESCWA’s representation of the Jordan River Basin, as contained in its recently published Inventory of Shared Water Resources in Western Asia. We argue that ESCWA’s representation of the Jordan Basin is marked by serious technical errors and a systematic bias in favour of one riparian, Israel, and against the Jordan River’s four Arab riparians. We demonstrate this in relation to ESCWA’s account of the political geography of the Jordan River Basin, which foregrounds Israel and its perspectives and narratives; in relation to hydrology, where Israel’s contribution to the basin is overstated, whilst that of Arab riparians is understated; and in relation to development and abstraction, where Israel’s transformation and use of the basin are underplayed, while Arab impacts are exaggerated. Taken together, this bundle of misrepresentations conveys the impression that it is Israel which is the main contributor to the Jordan River Basin, Arab riparians its chief exploiters. This impression is, we argue, not just false but also surprising, given that the Inventory is in the name of an organisation of Arab states. The evidence discussed here provides a striking illustration of how hegemonic hydro-political narratives are reproduced, including by actors other than basin hegemons themselves.

  17. Manipulation and control of instabilities for surfactant-laden liquid film flowing down an inclined plane using a deformable solid layer

    Science.gov (United States)

    Tomar, Dharmendra S.; Sharma, Gaurav

    2018-01-01

    We analyzed the linear stability of surfactant-laden liquid film with a free surface flowing down an inclined plane under the action of gravity when the inclined plane is coated with a deformable solid layer. For a flow past a rigid incline and in the presence of inertia, the gas-liquid (GL) interface is prone to the free surface instability and the presence of surfactant is known to stabilize the free surface mode when the Marangoni number increases above a critical value. The rigid surface configuration also admits a surfactant induced Marangoni mode which remains stable for film flows with a free surface. This Marangoni mode was observed to become unstable for a surfactant covered film flow past a flexible inclined plane in a creeping flow limit when the wall is made sufficiently deformable. In view of these observations, we investigate the following two aspects. First, what is the effect of inertia on Marangoni mode instability induced by wall deformability? Second, and more importantly, whether it is possible to use a deformable solid coating to obtain stable flow for the surfactant covered film for cases when the Marangoni number is below the critical value required for stabilization of free surface instability. In order to explore the first question, we continued the growth rates for the Marangoni mode from the creeping flow limit to finite Reynolds numbers (Re) and observed that while the increase in Reynolds number has a small stabilizing effect on growth rates, the Marangoni mode still remains unstable for finite Reynolds numbers as long as the wall is sufficiently deformable. The Marangoni mode remains the dominant mode for zero and small Reynolds numbers until the GL mode also becomes unstable with the increase in Re. Thus, for a given set of parameters and beyond a critical Re, there is an exchange of dominant mode of instability from the Marangoni to free surface GL mode. With respect to the second important aspect, our results clearly demonstrate

  18. Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China

    Directory of Open Access Journals (Sweden)

    Fanus Asefaw Aregay

    2016-09-01

    Full Text Available Integrated river basin management (IRBM programs have been launched in most parts of China to ease escalating environmental degradation. Meanwhile, little is known about the benefits from and the support for these programs. This paper presents a case study of the preference heterogeneity for IRBM in the Shiyang River Basin, China, as measured by the Willingness to Pay (WTP, for a set of major restoration attributes. A discrete choice analysis of relevant restoration attributes was conducted. The results based on a sample of 1012 households in the whole basin show that, on average, there is significant support for integrated ecological restoration as indicated by significant WTP for all ecological attributes. However, residential location induced preference heterogeneities are prevalent. Generally, compared to upper-basin residents, middle sub-basin residents have lower mean WTP while lower sub-basin residents express higher mean WTP. The disparity in utility is partially explained by the difference in ecological and socio-economic status of the residents. In conclusion, estimating welfare benefit of IRBM projects based on sample responses from a specific sub-section of the basin only may either understate or overstate the welfare estimate.

  19. Area environmental characterization report of the Dalhart and Palo Duro basins in the Texas Panhandle. Volume I. Dalhart Basin

    International Nuclear Information System (INIS)

    1982-09-01

    This area report describes the environmental characteristics of the Dalhart and Palo Duro basins of the Texas Panhandle portion of the Permian basin. Both basins are rather sparsely populated, and the overall population is decreasing. The economic base is centered on agribusiness and manufacturing. Most of the potentially conflicting land uses in both basins (i.e., parks, historic sites) occupy small land areas, with the exception of a national grassland in the Dalhart and military air training routes in both basins. Ground transportation in the Dalhart basin is adequate, and it is well developed in the Palo Duro basin. In both basins irrigation constitutes the principal water use, and groundwater is the principal source. However, the dominant aquifer, the Ogallala, is being depleted. Both basins consist primarily of grasslands, rangelands, and agricultural areas. No critical terrestrial or aquatic habitats have been identified in the basins, though several endangered, threatened, or rare terrestrial species occur in or near the basins. Aquatic resources in both basins are limited because of the intermittent availability of water and the high salt content of some water bodies. Playa lakes are common, though usually seasonal or rain dependent. The climate of the area is semiarid, with low humidity, relatively high wind speeds, and highly variable prcipitation. Restrictive dispersion conditions are infrequent. National ambient secondary air quality standards for particulates are being exceeded in the area, largely because of fugitive dust, although there are some particulate point sources

  20. Basin Analysis and Petroleum System Characterisation of Western Bredasdorp Basin, Southern Offshore of South Africa: Insights from a 3d Crust-Scale Basin Model - (Phase 1)

    Science.gov (United States)

    Sonibare, W. A.; Scheck-Wenderoth, M.; Sippel, J.; Mikeš, D.

    2012-04-01

    In recent years, construction of 3D geological models and their subsequent upscaling for reservoir simulation has become an important tool within the oil industry for managing hydrocarbon reservoirs and increasing recovery rate. Incorporating petroleum system elements (i.e. source, reservoir and trap) into these models is a relatively new concept that seems very promising to play/prospect risk assessment and reservoir characterisation alike. However, yet to be fully integrated into this multi-disciplinary modelling approach are the qualitative and quantitative impacts of crust-scale basin dynamics on the observed basin-fill architecture and geometries. The focus of this study i.e. Western Bredasdorp Basin constitutes the extreme western section of the larger Bredasdorp sub-basin, which is the westernmost depocentre of the four southern Africa offshore sub-basins (others being Pletmos, Gamtoos and Algoa). These basins, which appear to be initiated by volcanically influenced continental rifting and break-up related to passive margin evolution (during the Mid-Late Jurassic to latest Valanginian), remain previously unstudied for crust-scale basin margin evolution, and particularly in terms of relating deep crustal processes to depo-system reconstruction and petroleum system evolution. Seismic interpretation of 42 2D seismic-reflection profiles forms the basis for maps of 6 stratigraphic horizons which record the syn-rift to post-rift (i.e. early drift and late drift to present-day seafloor) successions. In addition to this established seismic markers, high quality seismic profiles have shown evidence for a pre-rift sequence (i.e. older than Late Jurassic >130 Ma). The first goal of this study is the construction of a 3D gravity-constrained, crust-scale basin model from integration of seismics, well data and cores. This basin model is constructed using GMS (in-house GFZ Geo-Modelling Software) while testing its consistency with the gravity field is performed using IGMAS

  1. Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning

    International Nuclear Information System (INIS)

    Occhetta, P; Piraino, F; Redaelli, A; Rasponi, M; Sadr, N; Moretti, M

    2013-01-01

    Native tissues are characterized by spatially organized three-dimensional (3D) microscaled units which functionally define cells–cells and cells–extracellular matrix interactions. The ability to engineer biomimetic constructs mimicking these 3D microarchitectures is subject to the control over cell distribution and organization. In the present study we introduce a novel protocol to generate 3D cell laden hydrogel micropatterns with defined size and shape. The method, named photo-mold patterning (PMP), combines hydrogel micromolding within polydimethylsiloxane (PDMS) stamps and photopolymerization through a recently introduced biocompatible ultraviolet (UVA) activated photoinitiator (VA-086). Exploiting PDMS micromolds as geometrical constraints for two methacrylated prepolymers (polyethylene glycol diacrylate and gelatin methacrylate), micrometrically resolved structures were obtained within a 3 min exposure to a low cost and commercially available UVA LED. The PMP was validated both on a continuous cell line (human umbilical vein endothelial cells expressing green fluorescent protein, HUVEC GFP) and on primary human bone marrow stromal cells (BMSCs). HUVEC GFP and BMSCs were exposed to 1.5% w/v VA-086 and UVA light (1 W, 385 nm, distance from sample = 5 cm). Photocrosslinking conditions applied during the PMP did not negatively affect cells viability or specific metabolic activity. Quantitative analyses demonstrated the potentiality of PMP to uniformly embed viable cells within 3D microgels, creating biocompatible and favorable environments for cell proliferation and spreading during a seven days' culture. PMP can thus be considered as a promising and cost effective tool for designing spatially accurate in vitro models and, in perspective, functional constructs. (paper)

  2. The evolution and performance of river basin management in the Murray-Darling Basin

    Directory of Open Access Journals (Sweden)

    Andrew Ross

    2016-09-01

    Full Text Available We explore bioregional management in the Murray-Darling Basin (MDB in Australia through the institutional design characteristics of the MDB River Basin Organization (RBO, the actors and organizations who supported and resisted the establishment of the RBO, and the effectiveness of the RBO. During the last 25 years, there has been a major structural reform in the MDB RBO, which has changed from an interstate coordinating body to an Australian government agency. Responsibility for basin management has been centralized under the leadership of the Australian government, and a comprehensive integrated Basin plan has been adopted. The driving forces for this centralization include national policy to restore river basins to sustainable levels of extraction, state government difficulties in reversing overallocation of water entitlements, the millennium drought and its effects, political expediency on the part of the Australian government and state governments, and a major injection of Australian government funding. The increasing hierarchy and centralization of the MDB RBO does not follow a general trend toward multilevel participative governance of RBOs, but decentralization should not be overstated because of the special circumstances at the time of the centralization and the continuing existence of some decentralized elements, such as catchment water plans, land use planning, and water quality. Further swings in the centralization-decentralization pendulum could occur. The MDB reform has succeeded in rebalancing Basin water allocations, including an allocation for the environment and reduced diversion limits. There are some longer term risks to the implementation of reform, including lack of cooperation by state governments, vertical coordination difficulties, and perceived reductions in the accountability and legitimacy of reform at the local level. If implementation of the Basin plan is diverted or delayed, a new institution, the Commonwealth

  3. Sustaining Exploration in Mature Basins

    International Nuclear Information System (INIS)

    Bayo, A.

    2002-01-01

    Exploration is a business like any other business driven by opportunity, resources and expectation of profit. Therefore, exploration will thrive anywhere the opportunities are significant, the resources are available and the outlook for profit (or value creation) is good. To sustain exploration activities anywhere, irrespective of the environment, there must be good understanding of the drivers of these key investment criteria. This paper will examine these investment criteria as they relate to exploration business and address the peculiarity of exploration in mature basin. Mature basins are unique environment that lends themselves a mix of fears, paradigms and realities, particularly with respect to the perception of value. To sustain exploration activities in a mature basin, we need to understand these perceptions relative to the true drivers of profitability. Exploration in the mature basins can be as profitable as exploration in emerging basins if the dynamics of value definition-strategic and fiscal values are understood by operators, regulators and co ventures alike. Some suggestions are made in this presentation on what needs to be done in addressing these dynamic investment parameters and sustaining exploration activities in mature basins

  4. L-Reactor 186-basin cleaning alternatives

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Operation of L Reactor will necessitate annual cleaning of the L Area 186 basins. Alternatives are presented for sediment discharge due to 186-basin cleaning activities as a basis for choosing the optimal cleaning method. Current cleaning activities (i.e. removal of accumulated sediments) for the P, C and K-Area 186 basins result in suspended solids concentrations in the effluent waters above the NPDES limits, requiring an exemption from the NPDES permit for these short-term releases. The objective of mitigating the 186-basin cleaning activities is to decrease the suspended solids concentrations to within permit limits while continuing satisfactory operation of the basins

  5. Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results

    Science.gov (United States)

    Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi

    2018-02-01

    The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.

  6. Can Harry Potter still put a spell on us in a second language? An fMRI study on reading emotion-laden literature in late bilinguals.

    Science.gov (United States)

    Hsu, Chun-Ting; Jacobs, Arthur M; Conrad, Markus

    2015-02-01

    In this fMRI study we contrasted emotional responses to literary reading in late bilinguals' first or second language. German participants with adequate English proficiency in their second language (L2) English read short text passages from Harry Potter books characterized by a "negative" or "positive" versus "neutral" emotional valence manipulation. Previous studies have suggested that given sufficient L2 proficiency, neural substrates involved in L1 versus L2 do not differ (Fabbro, 2001). On the other hand, the question of attenuated emotionality of L2 language processing is still an open debate (see Conrad, Recio, & Jacobs, 2011). Our results revealed a set of neural structures involved in the processing of emotion-laden literature, including emotion-related amygdala and a set of lateral prefrontal, anterior temporal, and temporo-parietal regions associated with discourse comprehension, high-level semantic integration, and Theory-of-Mind processing. Yet, consistent with post-scan emotion ratings of text passages, factorial fMRI analyses revealed stronger hemodynamic responses to "happy" than to "neutral" in bilateral amygdala and the left precentral cortex that were restricted to L1 reading. Furthermore, multivariate pattern analyses (MVPA) demonstrated better classifiability of differential patterns of brain activity elicited by passages of different emotional content in L1 than in L2 for the whole brain level. Overall, our results suggest that reading emotion-laden texts in our native language provides a stronger and more differentiated emotional experience than reading in a second language. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Neoproterozoic rift basins and their control on the development of hydrocarbon source rocks in the Tarim Basin, NW China

    Science.gov (United States)

    Zhu, Guang-You; Ren, Rong; Chen, Fei-Ran; Li, Ting-Ting; Chen, Yong-Quan

    2017-12-01

    The Proterozoic is demonstrated to be an important period for global petroleum systems. Few exploration breakthroughs, however, have been obtained on the system in the Tarim Basin, NW China. Outcrop, drilling, and seismic data are integrated in this paper to focus on the Neoproterozoic rift basins and related hydrocarbon source rocks in the Tarim Basin. The basin consists of Cryogenian to Ediacaran rifts showing a distribution of N-S differentiation. Compared to the Cryogenian basins, those of the Ediacaran are characterized by deposits in small thickness and wide distribution. Thus, the rifts have a typical dual structure, namely the Cryogenian rifting and Ediacaran depression phases that reveal distinct structural and sedimentary characteristics. The Cryogenian rifting basins are dominated by a series of grabens or half grabens, which have a wedge-shaped rapid filling structure. The basins evolved into Ediacaran depression when the rifting and magmatic activities diminished, and extensive overlapping sedimentation occurred. The distributions of the source rocks are controlled by the Neoproterozoic rifts as follows. The present outcrops lie mostly at the margins of the Cryogenian rifting basins where the rapid deposition dominates and the argillaceous rocks have low total organic carbon (TOC) contents; however, the source rocks with high TOC contents should develop in the center of the basins. The Ediacaran source rocks formed in deep water environment of the stable depressions evolving from the previous rifting basins, and are thus more widespread in the Tarim Basin. The confirmation of the Cryogenian to Ediacaran source rocks would open up a new field for the deep hydrocarbon exploration in the Tarim Basin.

  8. Investigating the construction of open-quotes pyramidclose quotes super-structures to dispose of radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Miller, D.J.

    1994-01-01

    The technical challenges involved in disposing of radioactive and hazardous waste using systems that rely on open-quotes natural barriersclose quotes have been underestimated. Technology has advanced dramatically in the areas of materials, science, and engineering. As a result, traditional approaches to waste disposal must be rethought, focusing instead on ways to apply new technology breakthroughs to waste disposal problems. This paper will discuss problems currently faced by waste disposal systems that rely on natural barriers for containment, propose a general design and approach for constructing pyramid super-structures to dispose of (and store) waste, and present the benefits of such a system. The originality of this paper is that it proposes the construction of fully retrievable waste disposal systems that capitalize on the unique geometric properties of a pyramid and rely on engineered barriers and preventive measurements for containment, rather than natural barriers. In addition, this paper offers a new perspective on waste disposal issues confronting many countries. The desired effect is that by challenging conventional thought, new ideas could be developed to help solve existing problems. This paper is of specific interest to: (1) Policy makers, decisionmakers, and managers because the paper discusses the root causes of problems facing waste disposal and possible solutions. (2) Regulators because the paper discusses reasons for relying more on engineered barriers and preventive measurements to achieve confidence and reliability in containment. (3) Design engineers the paper offers new concepts for engineered barriers. 21 refs., 2 figs., 2 tabs

  9. Spent LWR fuel storage costs: reracking, AR basins, and AFR basins

    International Nuclear Information System (INIS)

    1980-01-01

    Whenever possible, fuel storage requirements will be met by reracking existing reactor basins and/or transfer of fuel to available space in other reactor basins. These alternatives represent not only the lowest cost storage options but also the most timely. They are recognized to face environmental and regulatory obstacles. However, such obstacles should be less severe than those that would be encountered with AR or AFR basin storage. When storage requirements cannot be met by the first two options, the least costly alternative for most utilities will be use of a Federal AFR. Storage costs of $100,000 to $150,000 MTU at a AFR are less costly than charges of up to $320,000/MTU that could be incurred by the use of AR basins. AFR storage costs do not include transportation from the reactor to the AFR. This cost would be paid by the utility separately. Only when a utility requires annual storage capacity for 100 MTU of spent fuel can self-storage begin to compete with AFR costs. The large reactor complexes discharging these fuel quantities are not currently those that require relief from fuel storage problems

  10. Geologic Basin Boundaries (Basins_GHGRP) GIS Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a coverage shapefile of geologic basin boundaries which are used by EPA's Greenhouse Gas Reporting Program. For onshore production, the "facility" includes...

  11. Hydroclimatology of the Missouri River basin

    Science.gov (United States)

    Wise, Erika K.; Woodhouse, Connie A.; McCabe, Gregory; Pederson, Gregory T.; St. Jacques, Jeannine-Marie

    2018-01-01

    Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.

  12. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  13. Particle Laden Turbulence in a Radiation Environment Using a Portable High Preformace Solver Based on the Legion Runtime System

    Science.gov (United States)

    Torres, Hilario; Iaccarino, Gianluca

    2017-11-01

    Soleil-X is a multi-physics solver being developed at Stanford University as a part of the Predictive Science Academic Alliance Program II. Our goal is to conduct high fidelity simulations of particle laden turbulent flows in a radiation environment for solar energy receiver applications as well as to demonstrate our readiness to effectively utilize next generation Exascale machines. The novel aspect of Soleil-X is that it is built upon the Legion runtime system to enable easy portability to different parallel distributed heterogeneous architectures while also being written entirely in high-level/high-productivity languages (Ebb and Regent). An overview of the Soleil-X software architecture will be given. Results from coupled fluid flow, Lagrangian point particle tracking, and thermal radiation simulations will be presented. Performance diagnostic tools and metrics corresponding the the same cases will also be discussed. US Department of Energy, National Nuclear Security Administration.

  14. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip

    International Nuclear Information System (INIS)

    Snyder, J E; Hamid, Q; Wang, C; Chang, R; Sun, W; Emami, K; Wu, H

    2011-01-01

    The objective of this paper is to introduce a novel cell printing and microfluidic system to serve as a portable ground model for the study of drug conversion and radiation protection of living liver tissue analogs. The system is applied to study behavior in ground models of space stress, particularly radiation. A microfluidic environment is engineered by two cell types to prepare an improved higher fidelity in vitro micro-liver tissue analog. Cell-laden Matrigel printing and microfluidic chips were used to test radiation shielding to liver cells by the pro-drug amifostine. In this work, the sealed microfluidic chip regulates three variables of interest: radiation exposure, anti-radiation drug treatment and single- or dual-tissue culture environments. This application is intended to obtain a scientific understanding of the response of the multi-cellular biological system for long-term manned space exploration, disease models and biosensors.

  15. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, J E; Hamid, Q; Wang, C; Chang, R; Sun, W [Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104 (United States); Emami, K; Wu, H, E-mail: sunwei@drexel.edu, E-mail: weisun@tsinghua.edu.cn [Radiation Biophysics Lab, NASA Johnson Space Center, Houston, TX 77586 (United States)

    2011-09-15

    The objective of this paper is to introduce a novel cell printing and microfluidic system to serve as a portable ground model for the study of drug conversion and radiation protection of living liver tissue analogs. The system is applied to study behavior in ground models of space stress, particularly radiation. A microfluidic environment is engineered by two cell types to prepare an improved higher fidelity in vitro micro-liver tissue analog. Cell-laden Matrigel printing and microfluidic chips were used to test radiation shielding to liver cells by the pro-drug amifostine. In this work, the sealed microfluidic chip regulates three variables of interest: radiation exposure, anti-radiation drug treatment and single- or dual-tissue culture environments. This application is intended to obtain a scientific understanding of the response of the multi-cellular biological system for long-term manned space exploration, disease models and biosensors.

  16. STRATIGRAPHIC EVOLUTION, PALEOENVIRONMENTS AND HYDROCARBON POTENTIALS OF THE BENUE/DAHOMEY BASINS, NIGERIAN AND POTIGUAR/CEARA BASINS, NE BRAZIL

    International Nuclear Information System (INIS)

    Akande, S.O; Adekeye, O.A.; Oj, O.J; Erdtmann, B.D.; Koutsokous, E.I.

    2004-01-01

    The stratigraphy, facies relationship and paleoenvironment of selected West African and the Brazillian rift basins permit the recognition of at least two major petroleum systems apart from the prolific Niger Delta petroleum system. The Lower Cretaceous fluivio-lacustrine petroleum system and Upper Cretaceous to Lower Tertiary, marine dominated petroleum system. Our combined studies of the stratigraphic, structural framework, paleoenvironment and time-space relationships of the petroleum systems in the Benue/Dahomey and the Potiguar/Ceara basins indicated that rifting and subsequent drifting during the opening of the South Atlantic controlled subsidence, sediment deposition and facies associations in individual basins. Whereas in the Potiguar/Ceara basins, the best developed source rocks are within the Neomacin-Aptian fluvio- lacustrine sequence of the Pendencia and Alagamar Formations which generated reserved hydrocarbon in the Acu Formation, empirical evidence for this petroleum system in the contiguous Benue/Dahomey basins are only based on the geochemical characteristics of the lower parts of the Bima Formation and the Abeokuta Group. In contrast, the Upper Cretaceous-Lower Tertiary marine petroleum system, which is constrained by poor development of reservoirs in the Potiguar/Ceara basin is productive in the Benue/Dahomey basins where source rocks, reservoir and sealing facies occur at this interval. Considering the recent hydrocarbon discoveries of the East Niger basin, the Doba (southern Chad), the Muglad basin (southern Sudan) sourced from the fluvio-lacustrine rift sequences, we suggest that this petroleum system needs more detailed exploration and has some potentials in the Benue/Dahomey frontier basins

  17. Area environmental characterization report of the Dalhart and Palo Duro basins in the Texas Panhandle. Volume II. Palo Duro basin

    International Nuclear Information System (INIS)

    1982-09-01

    This area report describes the environmental characteristics of the Dalhart and Palo Duro basins of the Texas Panhandle portion of the Permian basin. Both basins are rather sparsely populated, and the overall population is decreasing. The economic base is centered on agribusiness and manufacturing. Most of the potentially conflicting land uses in both basins (i.e., parks, historic sites) occupy small land areas, with the exception of a national grassland in the Dalhart and military air training routes in both basins. Ground transportation in the Dalhart basin is adequate, and it is well developed in the Palo Duro basin. In both basins irrigation constitutes the principal water use, and groundwater is the principal source. However, the dominant aquifer, the Ogallala, is being depleted. Both basins consist primarily of grasslands, rangelands, and agricultural areas. No critical terrestrial or aquatic habitats have been identified in the basins, though several endangered, threatened, or rare terrestrial species occur in or near the basins. Aquatic resources in both basins are limited because of the intermittent availability of water and the high salt content of some water bodies. Playa lakes are common, though usually seasonal or rain dependent. The climate of the area is semiarid, with low humidity, relatively high wind speeds, and high variable precipitation. Restrictive dispersion conditions are infrequent. National ambient secondary air quality standards for particulates are being exceeded in the area, largely because of fugitive dust, although there are some particulate point sources

  18. The Minorca Basin: a buffer zone between the Valencia and Liguro-Provençal Basins (NW Mediterranean Sea)

    Science.gov (United States)

    Pellen, Romain; Aslanian, Daniel; Rabineau, Marina; Leroux, Estelle; Gorini, Christian; Silenziario, Carmine; Blanpied, Christian; Rubino, Jean-Loup

    2017-04-01

    The present-day compartmented Mediterranean physiography is inherited from the last 250 Ma kinematic plate evolution (Eurasian, Africa, Iberic and Nubia plates) which implied the formation of orogenic chains, polyphased basins, and morphological - geodynamic thresholds. The interactions between these entities are strongly debated in the North-Western Mediterranean area. Several Neogene reconstructions have been proposed for the Valencia basin depending of the basin segmentation where each model imply a different subsidence, sedimentary, and palaeo-environmental evolution. Our study propose a new kinematic model for the Valencia Basin (VB) that encompasses the sedimentary infill, vertical movement and basin segmentation. Detailed analyses of seismic profiles and boreholes in the VB reveal a differentiated basin, the Minorca Basin (MB), lying between the old Mesozoic Valencia Basin sensu strico (VBss) and the young Oligocene Liguro-Provencal Basin (LPB) (Pellen et al., 2016). The relationship between these basins is shown through the correlation of four Miocene-to-present-day megasequences. The Central and North Balearic Fracture Zones (CFZ and NBFZ) that border the MB represent two morphological and geodynamical thresholds that created an accommodation in steps between the three domains. Little to no horizontal Neogene movements have been found for the Ibiza and Majorca Islands and imply a vertical "sag" subsidence. In contrast, the counterclockwise movement of the Corso-Sardinian blocks induced a counterclockwise movement of the Minorca block towards the SE along the CFZ and NBFZ, during the exhumation of lower continental crust in the LPB. The South-Eastward Minorca block translation stops when the first atypical oceanic crust occurs. The influence of the Neogene Betic compressional phase is thus limited to the VBss on the basis of a different MB origin. This new understanding places the AlKaPeCa blocks northeastward of the present-day Alboran Area. Both NW-SE and

  19. US Highway 395 Widen Median and Shoulder and Install Rumble Strips Project Environmental Assessment, Edwards Air Force Base, California

    Science.gov (United States)

    2015-12-16

    Topography of the area varies from rugged rocky mountaintops, surrounded by gravel-laden alluvial fans and aprons, to sand and clay deposits in flat valley...disposal practices resulted in releases or disposal of organic solvents that have affected groundwater. A sanitary landfill is also located in this...Great Basin scrub, Sonoran Desert scrub and desert dunes with sandy flats, dunes and sandy areas around clay slicks with Sarcobatus (greasewood

  20. Hydrologic Sub-basins of Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hydrologic Sub-basins of Greenland data set contains Geographic Information System (GIS) polygon shapefiles that include 293 hydrologic sub-basins of the...

  1. Petroleum geology of the Palo Duro Basin, Texas Panhandle

    International Nuclear Information System (INIS)

    Rose, P.R.

    1986-03-01

    The Palo Duro Basin, Permian Basin, Texas is an asymmetric, relatively shallow, intracratonic basin in the southern Texas Panhandle filled mostly by Mississippian, Pennsylvanian, and Permian sedimentary rocks. Although deeper and prolific prolific petroleum-producing basins adjoin it on the north (Anadarko Basin), south (Midland Basin), and east (Hardeman Basin), the Palo Duro Basin has produced remarkably small amounts of oil and gas to date. This is all the more noteworthy because the sedimentary sequence and rock types of the basin are similar to those of the adjacent basins. Analyses of the stratigraphic succession and structural configuration of the Palo Duro Basin suggest that adequate reservoir rocks, top-seals, and geologic structures are present. Most of the structures formed early enough to have trapped hydrocarbons if they were migrating in the rock column. Although additional work is under way to properly address the question of the petroleum source rocks, generation, and migration, the general absence of production in the basin may relate to an overall deficiency in hydrocarbon generation within the basin. Geologic information in this report will form part of the basis for further analysis and conclusions on hydrocarbon potential in the Palo Duro Basin

  2. Modeling of experimental treatment of acetaldehyde-laden air and phenol-containing water using corona discharge technique.

    Science.gov (United States)

    Faungnawakij, Kajornsak; Sano, Noriaki; Charinpanitkul, Tawatchai; Tanthapanichakoon, Wiwut

    2006-03-01

    Acetaldehyde-laden air and phenol-contaminated water were experimentally treated using corona discharge reactions and gas absorption in a single water-film column. Mathematical modeling of the combined treatment was developed in this work. Efficient removal of the gaseous acetaldehyde was achieved while the corona discharge reactions produced short-lived species such as O and O- as well as ozone. Direct contact of the radicals and ions with water was known to produce aqueous OH radical, which contributes to the decomposition of organic contaminants: phenol, absorbed acetaldehyde, and intermediate byproducts in the water. The influence of initial phenol concentration ranging from 15 to 50 mg L(-1) and that of influent acetaldehyde ranging from 0 to 200 ppm were experimentally investigated and used to build the math model. The maximum energetic efficiency of TOC, phenol, and acetaldehyde were obtained at 25.6 x 10(-9) mol carbon J(-1), 25.0 x 10(-9) mol phenol J(-1), and 2.0 x 10(-9) mol acetaldehyde J(-1), respectively. The predictions for the decomposition of acetaldehyde, phenol, and their intermediates were found to be in good agreement with the experimental results.

  3. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid

    International Nuclear Information System (INIS)

    Duarte Campos, Daniela F; Blaeser, Andreas; Weber, Michael; Fischer, Horst; Jäkel, Jörg; Neuss, Sabine; Jahnen-Dechent, Wilhelm

    2013-01-01

    Over the last decade, bioprinting technologies have begun providing important tissue engineering strategies for regenerative medicine and organ transplantation. The major drawback of past approaches has been poor or inadequate material-printing device and substrate combinations, as well as the relatively small size of the printed construct. Here, we hypothesise that cell-laden hydrogels can be printed when submerged in perfluorotributylamine (C 12 F 27 N), a hydrophobic high-density fluid, and that these cells placed within three-dimensional constructs remain viable allowing for cell proliferation and production of extracellular matrix. Human mesenchymal stem cells and MG-63 cells were encapsulated into agarose hydrogels, and subsequently printed in high aspect ratio in three dimensional structures that were supported in high density fluorocarbon. Three-dimensional structures with various shapes and sizes were manufactured and remained stable for more than six months. Live/dead and DAPI stainings showed viable cells 24 h after the printing process, as well as after 21 days in culture. Histological and immunohistochemical analyses after 14 and 21 days revealed viable cells with marked matrix production and signs of proliferation. The compressive strength values of the printed gels consequently increased during the two weeks in culture, revealing encouraging results for future applications in regenerative medicine. (paper)

  4. Evolution of the Rembrandt impact basin on Mercury.

    Science.gov (United States)

    Watters, Thomas R; Head, James W; Solomon, Sean C; Robinson, Mark S; Chapman, Clark R; Denevi, Brett W; Fassett, Caleb I; Murchie, Scott L; Strom, Robert G

    2009-05-01

    MESSENGER's second Mercury flyby revealed a ~715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays a unique wheel-and-spoke-like pattern of basin-radial and basin-concentric wrinkle ridges and graben. Stratigraphic relations indicate a multistaged infilling and deformational history involving successive or overlapping phases of contractional and extensional deformation. The youngest deformation of the basin involved the formation of a approximately 1000-kilometer-long lobate scarp, a product of the global cooling and contraction of Mercury.

  5. Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina

    Science.gov (United States)

    Bilmes, A.; D'Elia, L.; Franzese, J. R.; Veiga, G. D.; Hernández, M.

    2013-08-01

    The intraplate fault-block mountains and intermontane deposits of the Gastre Basin, which are recorded more than 550 km east of the Andean trench in central Patagonia, Argentina, are analyzed. The Gastre Basin is one of the largest Patagonian intermontane basins, limited by uplifted blocks strongly oblique to the Andean chain. It was originated by reverse faulting and inversion of pre-existing normal faults associated with a Mesozoic rift basin and defined by older crustal heterogeneities. The deformational event occurred during the middle Miocene, related to a short contractional episode (16.1-14.86 Ma), probably in response to an eastward migration of the Andean fold and thrust belt. During Pliocene to Quaternary times, neither younger fault-block uplifts nor reconfigurations of the basin occurred. Similarities between the study area and other parts of the Patagonian foreland - such as the presence of Miocene reverse or inversion tectonics, as well as the accommodation of the Miocene sedimentary successions - suggest that the Gastre Basin is part of a major late early to middle Miocene broken foreland system (i.e. the Patagonian broken foreland) that exhumed discrete fault-block mountains and generated contemporary basins along more than 950 km parallel to the Andean trench (i.e. between 40°00' and 48°00' south latitude). Based on recent studies on the southern Andean Margin, this continental-scale contractional episode may be the result of a flat-slab subduction segment. Nevertheless, such a hypothesis is very difficult to support when analyzing such a large flat subduction segment along the entire Patagonian trench. This suggests the need to consider alternative flat-slab trigger mechanisms or other factors in the generation of broken foreland systems.

  6. 5. Basin assessment and watershed analysis

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer

    1994-01-01

    Abstract - Basin assessment is an important component of the President's Forest Plan, yet it has received little attention. Basin assessments are intended both to guide watershed analyses by specifying types of issues and interactions that need to be understood, and, eventually, to integrate the results of watershed analyses occurring within a river basin....

  7. A Basin Approach to a Hydrological Service Delivery System in the Amur River Basin

    Directory of Open Access Journals (Sweden)

    Sergei Borsch

    2018-03-01

    Full Text Available This paper presents the basin approach to the design, development, and operation of a hydrological forecasting and early warning system in a large transboundary river basin of high flood potential, where accurate, reliable, and timely available daily water-level and reservoir-inflow forecasts are essential for water-related economic and social activities (the Amur River basin case study. Key aspects of basin-scale system planning and implementation are considered, from choosing efficient forecast models and techniques, to developing and operating data-management procedures, to disseminating operational forecasts using web-GIS. The latter, making the relevant forecast data available in real time (via Internet, visual, and well interpretable, serves as a good tool for raising awareness of possible floods in a large region with transport and industrial hubs located alongside the Amur River (Khabarovsk, Komsomolsk-on-Amur.

  8. Analysis of efficiency of pollution reduction measures in rural basin using MIKE Basin model. Case study: Olšava River Basin

    Directory of Open Access Journals (Sweden)

    Kaiglová Jana

    2014-03-01

    Full Text Available This paper presents the results of testing the applicability of the MIKE Basin model for simulating the efficiency of scenarios for reducing water pollution. The model has been tested on the Olšava River Basin (520 km2 which is a typical rural region with a heterogeneous mix of pollution sources with variable topography and land use. The study proved that the model can be calibrated successfully using even the limited amount of data typically available in rural basins. The scenarios of pollution reduction were based on implementation and intensification of municipal wastewater treatment and conversion of arable land on fields under the risk of soil erosion to permanent grassland. The application of simulation results of these scenarios with proposed measures proved decreasing concentrations in downstream monitoring stations. Due to the practical applicability of proposed measures, these could lead to fulfilment of the water pollution limits required by the Czech and EU legislation. However, there are factors of uncertainty that are discussed that may delay or limit the effect of adopted measures in small rural basins.

  9. California Basin Studies (CaBS)

    International Nuclear Information System (INIS)

    Gorsline, D.S.

    1991-01-01

    The California Continental Borderland's present configuration dates from about 4 to 5 X 10 6 years Before Present (B.P.) and is the most recent of several configurations of the southern California margin that have evolved after the North America Plate over-rode the East Pacific Rise about 30 X 10 6 years ago. The present morphology is a series of two to three northwest-southeast trending rows of depressions separated by banks and insular ridges. Two inner basins, Santa Monica and San Pedro, have been the site for the Department of Energy-funded California Basin Study (CaBS) Santa Monica and San Pedro Basins contain post-Miocene sediment thicknesses of about 2.5 and 1.5 km respectively. During the Holocene (past 10,000 years) about 10-12 m have accumulated. The sediment entered the basin by one or a combination of processes including particle infall (mainly as bioaggregates) from surface waters, from nepheloid plumes (surface, mid-depths and near-bottom), from turbidity currents, mass movements, and to a very minor degree direct precipitation. In Santa Monica Basin, during the last century, particle infall and nepheloid plume transport have been the most common processes. The former dominates in the central basin floor in water depths from 900 to 945 m. where a characteristic silt-clay with a typical mean diameter of about 0.006 mm, phi standard deviation

  10. Basalt stratigraphy - Pasco Basin

    International Nuclear Information System (INIS)

    Waters, A.C.; Myers, C.W.; Brown, D.J.; Ledgerwood, R.K.

    1979-10-01

    The geologic history of the Pasco Basin is sketched. Study of the stratigraphy of the area involved a number of techniques including major-element chemistry, paleomagnetic investigations, borehole logging, and other geophysical survey methods. Grande Ronde basalt accumulation in the Pasco Basin is described. An illustrative log response is shown. 1 figure

  11. Bottom water circulation in Cascadia Basin

    Science.gov (United States)

    Hautala, Susan L.; Paul Johnson, H.; Hammond, Douglas E.

    2009-10-01

    A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below ˜2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.

  12. Lithospheric-scale centrifuge models of pull-apart basins

    Science.gov (United States)

    Corti, Giacomo; Dooley, Tim P.

    2015-11-01

    We present here the results of the first lithospheric-scale centrifuge models of pull-apart basins. The experiments simulate relative displacement of two lithospheric blocks along two offset master faults, with the presence of a weak zone in the offset area localising deformation during strike-slip displacement. Reproducing the entire lithosphere-asthenosphere system provides boundary conditions that are more realistic than the horizontal detachment in traditional 1 g experiments and thus provide a better approximation of the dynamic evolution of natural pull-apart basins. Model results show that local extension in the pull-apart basins is accommodated through development of oblique-slip faulting at the basin margins and cross-basin faults obliquely cutting the rift depression. As observed in previous modelling studies, our centrifuge experiments suggest that the angle of offset between the master fault segments is one of the most important parameters controlling the architecture of pull-apart basins: the basins are lozenge shaped in the case of underlapping master faults, lazy-Z shaped in case of neutral offset and rhomboidal shaped for overlapping master faults. Model cross sections show significant along-strike variations in basin morphology, with transition from narrow V- and U-shaped grabens to a more symmetric, boxlike geometry passing from the basin terminations to the basin centre; a flip in the dominance of the sidewall faults from one end of the basin to the other is observed in all models. These geometries are also typical of 1 g models and characterise several pull-apart basins worldwide. Our models show that the complex faulting in the upper brittle layer corresponds at depth to strong thinning of the ductile layer in the weak zone; a rise of the base of the lithosphere occurs beneath the basin, and maximum lithospheric thinning roughly corresponds to the areas of maximum surface subsidence (i.e., the basin depocentre).

  13. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    Science.gov (United States)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  14. On the significance of ELF basins

    Indian Academy of Sciences (India)

    Unknown

    to complement to chemical intuition (see, e.g., refs. 2, 3). In a mathematically more rigorous way, such regions, ELF basins,4 were defined following the spirit of Bader's Atoms in Molecules (AIM). All points in space which lead to the a given maximum of ELF, by following the gradient of ELF, belong to the same basin. Basins ...

  15. Transient electromagnetic study of basin fill sediments in the Upper San Pedro Basin, Mexico

    Science.gov (United States)

    Bultman, M.W.; Gray, F.

    2011-01-01

    The Upper San Pedro River Basin in Mexico and the United States is an important riparian corridor that is coming under increasing pressure from growing populations and the associated increase in groundwater withdrawal. Several studies have produced three-dimensional maps of the basin fill sediments in the US portion of the basin but little work has been done in the Mexican portion of the basin. Here, the results of a ground-based transient electromagnetic (TEM) survey in the Upper San Pedro Basin, Mexico are presented. These basin fill sediments are characterized by a 10-40 m deep unsaturated surficial zone which is composed primarily of sands and gravels. In the central portion of the basin this unsaturated zone is usually underlain by a shallow clay layer 20-50 m thick. Beneath this may be more clay, as is usually the case near the San Pedro River, or interbedded sand, silt, and clay to a depth of 200-250 m. As you move away from the river, the upper clay layer disappears and the amount of sand in the sediments increases. At 1-2 km away from the river, sands can occupy up to 50% of the upper 200-250 m of the sediment fill. Below this, clays are always present except where bedrock highs are observed. This lower clay layer begins at a depth of about 200 m in the central portion of the basin (250 m or more at distances greater than 1-2 km from the river) and extends to the bottom of most profiles to depths of 400 m. While the depth of the top of this lower clay layer is probably accurate, its thickness observed in the models may be overestimated due to the relatively low magnetic moment of the TEM system used in this study. The inversion routine used for interpretation is based on a one-dimensional geologic model. This is a layer based model that is isotropic in both the x and y directions. Several survey soundings did not meet this requirement which invalidates the inversion process and the resulting interpretation at these locations. The results from these

  16. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2016-06-01

    Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.

  17. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary

  18. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  19. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. New TNX Seepage Basin: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1986-12-01

    The New TNX Seepage Basin has been in operation at the Savannah River Plant (SRP) since 1980 and is located in the southeastern section of the TNX facility. The basin receives waste from pilot scale tests conducted at TNX in support of the Defense Waste Processing Facility (DWPF) and the plant Separations area. The basin is scheduled for closure after the TNX Effluent Treatment Plant (ETP) begins operation. The basin will be closed pursuant to all applicable state and federal regulations. A statistical analysis of monitoring data indicates elevated levels of sodium and zinc in the groundwater at this site. Closure options considered for the New TNX Seepage Basin include waste removal and closure, no waste removal and closure, and no action. The two predominant pathways for human exposure to chemical contaminants are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options for the New TNX Seepage Basin. Cost estimates for each closure option at the basin have also been prepared. An evaluation of the environmental impacts from the New TNX Seepage Basin indicate that the relative risks to human health and ecosystems for the postulated closure options are low. The transport of six chemical and one radionuclide constituents through the environmental pathways from the basin were modeled. The maximum chemical carcinogenic risk and the noncarcinogenic risk for the groundwater pathways were from exposure to trichloromethane and nitrate

  1. Supplementary information on K-Basin sludges

    International Nuclear Information System (INIS)

    MAKENAS, B.J.

    1999-01-01

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period

  2. Strike-slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives

    NARCIS (Netherlands)

    Salcher, B. C.; Meurers, B.; Smit, J.; Decker, K.; HöLzel, M.; Wagreich, M.

    2012-01-01

    The Vienna Basin at the transition between the Alpine and Carpathian belt hosts a number of large Pleistocene sub-basins forming along an active continental scale strike-slip fault (Vienna Basin strike-slip fault). We utilize first-order derivatives from industrial Bouguer gravity data to unravel

  3. Characteristic mega-basin water storage behavior using GRACE.

    Science.gov (United States)

    Reager, J T; Famiglietti, James S

    2013-06-01

    [1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km 2 ), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world's largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤  E f  ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation.

  4. Cost-effective bioregeneration of nitrate-laden ion exchange brine through deliberate bicarbonate incorporation.

    Science.gov (United States)

    Li, Qi; Huang, Bin; Chen, Xin; Shi, Yi

    2015-05-15

    Bioregeneration of nitrate-laden ion exchange brine is desired to minimize its environmental impacts, but faces common challenges, i.e., enriching sufficient salt-tolerant denitrifying bacteria and stabilizing brine salinity and alkalinity for stable brine biotreatment and economically removing undesired organics derived in biotreatment. Incorporation of 0.25 M bicarbonate in 0.5 M chloride brine little affected resin regeneration but created a benign alkaline condition to favor bio-based brine regeneration. The first-quarter sulfate-mainly enriched spent brine (SB) was acidified with carbon source acetic acid for using CaCl2 at an efficiency >80% to remove sulfate. Residual Ca(2+) was limited below 2 mM by re-mixing the first-quarter and remained SB to favor denitrification. Under [Formula: see text] system buffered pH condition (8.3-8.8), nitrate was removed at 0.90 gN/L/d by hematite-enriched well-settled activated sludge (SVI 8.5 ml/g) and the biogenic alkalinity was retained as bicarbonate. The biogenic alkalinity met the need of alkalinity in removing residual Ca(2+) after sulfate removal and in CaCl2-induced CaCO3 flocculation to remove 63% of soluble organic carbon (SOC) in biotreated brine. Carbon-limited denitrification was also operated after activated sludge acclimation with sulfide to cut SOC formation during denitrification. Overall, this bicarbonate-incorporation approach, stabilizing the brine salinity and alkalinity for stable denitrification and economical removal of undesired SOC, suits long-term cost-effective brine bioregeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. In situ characterization of Hanford K Basins fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.

    1998-01-06

    Irradiated N Reactor uranium metal fuel is stored underwater in the Hanford K East and K West Basins. In K East Basin, fuel is stored in open canisters and defected fuel is free to react with the basin water. In K West Basin, the fuel is stored in sealed canisters filled with water containing a corrosion inhibitor (potassium nitrite). To gain a better understanding of the physical condition of the fuel in these basins, visual surveys using high resolution underwater cameras were conducted. The inspections included detailed lift and look examinations of a number of fuel assemblies from selected canisters in each basin. These examinations formed the bases for selecting specific fuel elements for laboratory testing and analyses as prescribed in the characterization plan for Hanford K Basin Spent Nuclear Fuel.

  6. 105-KE basin pilot run relocation

    International Nuclear Information System (INIS)

    Crystal, J.B.

    1994-01-01

    The purpose of this document is to present the bases for selecting the exact in-facility location for installation of process equipment to support pilot testing activities in the 105-KE Basin at the United States Department of Energy Hanford Site, in southeastern Washington State. The 105-KE Basin was constructed during the early 1950s, as an integralcomponent of the 105-K East reactor building. Similar basins were provided in all Hanford weapons production reactor buildings to receive fuel elements discharged from the reactors and stage them for rail transport to 200 Area fuel reprocessing plants. The 105-KE reactor began operation in 1955. It was shut down in 1971. However, the 105-KE Basin was reactivated several years later to store spent fuel from the N-Reactor basin and permit its continued operation during outages at the Plutonium Uranium Extraction (PUREX) plant in the 200E Area

  7. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  8. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    Science.gov (United States)

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  9. A proposal for an administrative set up of river basin management in the Sittaung River Basin

    OpenAIRE

    Tun, Zaw Lwin; Ni, Bo; Tun, Sein; Nesheim, Ingrid

    2016-01-01

    The purpose of this report is to present a proposal for how an administrative approach based on River Basin Management can be implemented in Myanmar. The Sittaung River Basin has been used as an example area to investigate how the basin can be administered according to the IWRM principles of cooperation between the different sectors and the administrative units, including stakeholder involvement. Ministry of Natural Resource and Environmental Conservation, Myanmar Norwegian Ministry of For...

  10. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  11. Evolution of sedimentary architecture in retro-foreland basin: Aquitaine basin example from Paleocene to lower Eocene.

    Science.gov (United States)

    Ortega, Carole; Lasseur, Eric; Guillocheau, François; Serrano, Olivier; Malet, David

    2017-04-01

    The Aquitaine basin located in south western Europe, is a Pyrenean retro-foreland basin. Two main phases of compression are recorded in this retro-foreland basin during the Pyrenean orogeny. A first upper Cretaceous phase corresponding to the early stage of the orogeny, and a second one usually related to a Pyrenean paroxysmal phase during the middle Eocene. During Paleocene to lower Eocene deformations are less pronounced, interpreted as a tectonically quiet period. The aim of the study is to better constrain the sedimentary system of the Aquitaine basin during this period of Paleocene-lower Eocene, in order to discuss the evolution of the sedimentary architecture in response of the Pyrenean compression. This work is based on a compilation of a large set of subsurface data (wells logs, seismic lines and cores logs) represented by isopachs and facies map. Three main cycles were identified during this structural quiet period: (1) The Danian cycle, is recorded by the aggradation of carbonate reef-rimmed platform. This platform is characterized by proximal facies (oncoid carbonate and mudstone with thalassinoides) to the north, which leads to distal deposit facies southern (pelagic carbonate with globigerina and slump facies) and present a significant thickness variation linked to the platform-slope-basin morphology. (2) The upper Selandian-Thanetian cycle follows a non-depositional/erosional surface associated with a Selandian hiatus. The base of this cycle marked the transition between the last reef rimmed platform and a carbonate ramp. The transgressive cycle is characterized by proximal lagoon facies to the north that leads southward to distal hemipelagic facies interfingered by turbiditic Lowstand System Tracks (LST). The location of these LST is strongly controlled by inherited Danian topography. The regressive cycle ends with a major regression associated with an erosional surface. This surface is linked with a network of canyons in the north, an important

  12. Petroleum systems in rift basins – a collective approach in South-east Asian basins.

    NARCIS (Netherlands)

    Doust, H.; Sumner, D.

    2007-01-01

    This paper synthesizes some of the main conclusions reached in a recent regional review of the Tertiary basins of Southeast Asia, carried out by Shell. Four distinctive types of petroleum systems, correlating with the four main stages of basin evolution (early to late syn-rift and early to late

  13. The Donets Basin (Ukraine/Russia): coalification and thermal history.

    NARCIS (Netherlands)

    Sachsenhofer, R.F.; Privalov, V.A.; Zhykalyak, M.V.; Bueker, C.; Panova, E.A.; Rainer, T.; Shymanovskyy, V.A.; Stephenson, R.A.

    2002-01-01

    The Donets Basin (Donbas) is one of the major late Paleozoic coal basins in the world. The Donbas Foldbelt is an inverted part of the Donets Basin characterized by WNW-ESE-trending folds and faults. The age of basin inversion is under discussion. Large parts of the Donets Basin host anthracite and

  14. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  15. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  16. K Basin Hazard Analysis

    International Nuclear Information System (INIS)

    PECH, S.H.

    2000-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  17. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics

    Science.gov (United States)

    Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario

    2018-03-01

    The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results

  18. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes

    Science.gov (United States)

    Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M.; Batista, Claudia Maria de Castro; Mattson, Mark P.; de Mello Coelho, Valeria

    2016-01-01

    We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN+ LLC. Some cortical NeuN+ neurons, GFAP+ glia limitans astrocytes, Iba-1+ microglia and S100β+ ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes. PMID:27029648

  19. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes.

    Science.gov (United States)

    Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M; Batista, Claudia Maria de Castro; Mattson, Mark P; Mello Coelho, Valeria de

    2016-03-31

    We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN(+) LLC. Some cortical NeuN(+) neurons, GFAP(+) glia limitans astrocytes, Iba-1(+) microglia and S100β(+) ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes.

  20. Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, P.; Collett, T.S.; Boswell, R.; Cochran, J.R.; Lall, M.; Mazumdar, A.; Ramana, M.V.; Ramprasad, T.; Riedel, M.; Sain, K.; Sathe, A.V.; Vishwanath, K.; Yadav, U.S.

    history of the Mahanadi Basin is similar to that of the Krishna-Godavari Basin. The Late Jurassic rift structures along the eastern margin of India cut across older NW-SE-trending Permian-Triassic Gondwana grabens including the Mahanadi and Pranhita...-Godavari grabens (Sastri et al., 1981). The Mahanadi graben appears to have a continuation in Antarctica as the Lambert graben (Federov et al., 1982). These structures served to delineate the fluvial drainage system throughout the evolution of the margin...

  1. Managing the potential risks of using bacteria-laden water in mineral processing to protect freshwater.

    Science.gov (United States)

    Liu, Wenying; Moran, Chris J; Vink, Sue

    2013-06-18

    The minerals industry is being driven to access multiple water sources and increase water reuse to minimize freshwater withdrawal. Bacteria-laden water, such as treated effluent, has been increasingly used as an alternative to freshwater for mineral processing, in particular flotation, where conditions are favorable for bacterial growth. However, the risk posed by bacteria to flotation efficiency is poorly understood. This could be a barrier to the ongoing use of this water source. This study tested the potential of a previously published risk-based approach as a management tool to both assist mine sites in quantifying the risk from bacteria, and finding system-wide cost-effective solutions for risk mitigation. The result shows that the solution of adjusting the flotation chemical regime could only partly control the risk. The second solution of using tailings as an absorbent was shown to be effective in the laboratory in reducing bacterial concentration and thus removing the threat to flotation recovery. The best solution is likely to combine internal and external approaches, that is, inside and outside processing plants. Findings in this study contribute possible methods applicable to managing the risk from water-borne bacteria to plant operations that choose to use bacteria-containing water, when attempting to minimize freshwater use, and avoiding the undesirable consequences of increasing its use.

  2. Implementing Integrated River Basin Management in China

    NARCIS (Netherlands)

    Boekhorst, D.G.J. te; Smits, A.J.M.; Yu, X.; Lifeng, L.; Lei, G.; Zhang, C.

    2010-01-01

    This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are

  3. The Mackenzie Basin impacts study

    International Nuclear Information System (INIS)

    Cohen, S.J.

    1993-01-01

    In 1989, a commitment was made to begin development of a framework for an integrated regional impact assessment of global warming scenarios in the Mackenzie Basin, the most populated region of Canada's north. The project, called Mackenzie Basin Impact Study (MBIS), is led by a multidisciplinary working group from government and non-governmental organizations with interests in the Basin. Objectives of MBIS include defining the direction and magnitude of regional-scale impacts of global warming scenarios on the physical, biological, and human systems of the Basin. MBIS will also identify regional sensitivities to climate, inter-system linkages, uncertainties, policy implications, and research needs. MBIS research activities as of March 1992 are outlined and policy concerns related to global warming are listed. Two new methodologies are being developed by MBIS to address particular economic and policy concerns: a socio-economic resource accounting framework and an integrated land assessment framework. Throughout MBIS, opportunities will be presented for western science and traditional native knowledge to be integrated

  4. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Basin Conservation Advisory Group, Yakima River Basin Water Enhancement Project, established by the... Water Conservation Program. DATES: The meeting will be held on Tuesday, August 21, 2012, from 1 p.m. to... the implementation of the Water Conservation Program, including the applicable water conservation...

  5. Groundwater quality in the Northern Coast Ranges Basins, California

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    The Northern Coast Ranges (NOCO) study unit is 633 square miles and consists of 35 groundwater basins and subbasins (California Department of Water Resources, 2003; Mathany and Belitz, 2015). These basins and subbasins were grouped into two study areas based primarily on locality. The groundwater basins and subbasins located inland, not adjacent to the Pacific Ocean, were aggregated into the Interior Basins (NOCO-IN) study area. The groundwater basins and subbasins adjacent to the Pacific Ocean were aggregated into the Coastal Basins (NOCO-CO) study area (Mathany and others, 2011).

  6. K-Basin isolation barrier seal

    International Nuclear Information System (INIS)

    Ruff, E.S.

    1994-10-01

    This report documents various aspects of the design, analysis, procurement, and fabrication of the hydraulic seal on the isolation barriers to be installed in the 100-K Area spent nuclear fuel basin. The isolation barrier is used to keep water in the basin in the event of an earthquake

  7. Gondwana basins and their coal resources in Bangladesh

    International Nuclear Information System (INIS)

    Nehaluddin, M.; Sultan-ul-Islam, M.

    1994-01-01

    Fault bounded five Gondwana basins have been discovered in the north western Bangladesh. Among these basins show considerable amount of coal deposits. The Gondwana rocks are highly formed during the Permo-carboniferous diastrophism and later on acquired dynamic characters. In almost all basins, the Permian rocks overlie the Precambrian basement and underlie either the Tertiary or the Cretaceous sediments, structural, stratigraphic, and depositional history of these basins is more or less similar. The sedimentary sequences are composed of light to dark gray, fine to very coarse grained, sub angular to sub rounded felspathic sandstone, dark grey carbonaceous shale and sandstone, variegated conglomerate and thick coal seams (single seam max. 42.38m). The rocks are often alternated and bear the characteristics of cyclic sedimentation. The depositional environments varied from restricted drainage to open fluvial dominated low to moderate sinuous drainage system. The coal bearing basins were flanked by vegetated and swampy over bank. Age of these coals is suggested to be the late permian. Proved and probable reserves of coal in Jamalganj-Paharpur basin are 670 and 1,460 million metric tons, in Barapukuria basin 303 and 3899 million metric tons; in Barapukuria basin 303 and 389 million metric tons; and in Khalaspir basin 143 and 685 million metric tons respectively. The coal is high volatile, low sulphur, bituminous type. It can be used for different forms of thermal conversion. (author)

  8. Estimating Stream Discharge of Aboine River Basin of Southeast ...

    African Journals Online (AJOL)

    ADOWIE PERE

    of inter-basin parameters showed that the Aboine drainage basin is basically a flat surface. This ... on the fluvial system and also for predicting the basin output variables. Surface .... outflows of rainwater from the basin as has been done by ...

  9. Geomorphological characterization of endorheic basins in northern Chile

    Science.gov (United States)

    Dorsaz, J.; Gironas, J. A.; Escauriaza, C. R.; Rinaldo, A.

    2011-12-01

    Quantitative geomorphology regroups a large number of interesting tools to characterize natural basins across scales. The application of these tools to several river basins allows the description and comparison of geomorphological properties at different spatial scales as oppose to more traditional descriptors that are typically applied at a single scale, meaning the catchment scale. Most of the recent research using these quantitative geomorphological tools has focused on open catchments and no specific attention has been given to endorheic basins, and the possibility of having particular features that distinguish them from exorheic catchments. The main objective of our study is to characterize endorheic basins and investigate whether these special geomorphological features can be identified. Because scaling invariance is a widely observed and relatively well quantified property of open basins, it provides a suitable tool to characterize differences between the geomorphology of closed and open basins. Our investigation focuses on three closed basins located in northern Chile which describe well the diversity in the geomorphology and geology of this arid region. Results show that endhoreic basins exhibit different slope-area and flow paths sinuosity regimes compared to those observed in open basins. These differences are in agreement with the particular self-similar behavior across spatial scales of the Euclidean length of subcatchments, as well as the Hack's law and Horton's ratios. These regimes imply different physical processes inside the channel network regardless of the basin area, and they seem to be related to the endorheic character of these basins. The analysis of the probability density functions of contributing areas and lengths to the lower region shows that the hypothesis of self-similarity can also be applied to closed basins. Theoretical expressions for these distributions were derived and validated by the data. Future research will focus on (1

  10. Direct numerical simulation of particle-laden turbulent channel flows with two- and four-way coupling effects: budgets of Reynolds stress and streamwise enstrophy

    International Nuclear Information System (INIS)

    Dritselis, Chris D

    2016-01-01

    The budgets of the Reynolds stress and streamwise enstrophy are evaluated through direct numerical simulations for the turbulent particle-laden flow in a vertical channel with momentum exchange between the two phases. The influence of the dispersed particles on the budgets is examined through a comparison of the particle-free and the particle-laden cases at the same Reynolds number of Re b = 5600 based on the bulk fluid velocity and the distance between the channel walls. Results are obtained for particle ensembles with four response times in simulations with and without streamwise gravity and inter-particle collisions at average mass (volume) fractions of 0.2 (2.7 × 10 −5 ) and 0.5 (6.8 × 10 −5 ). The particle feedback force on the flow of the carrier phase is modeled by a point-force approximation (PSIC-method). It is shown that all the terms in the budgets of the Reynolds stress components are decreased in the presence of particles. The level of reduction depends on the particle response time and it is higher under the effects of gravity and inter-particle collisions. A considerable reduction in all the terms of the streamwise enstrophy budget is also observed. In particular, all production mechanisms, and mainly vortex stretching, are inhibited in the particulate flows and thus the production of streamwise vorticity is significantly damped. A further insight into the direct particle effects on the fluid turbulence is provided by analyzing in detail the fluid–fluid, fluid–particle and particle–particle correlations, and the spectra of the fluid–particle energy exchange rate. The present results indicate that the turbulence production, dissipation and pressure–strain term are generally large quantities, but their summation is relatively small and comparable to the fluid–particle direct energy exchange rate. Consequently, the particle contribution can potentially increase or decrease the fluctuating fluid velocities and eventually control the

  11. Vertical movement in mare basins: relation to mare emplacement, basin tectonics, and lunar thermal history

    International Nuclear Information System (INIS)

    Solomon, S.C.

    1979-01-01

    The spatial and temporal relationships of linear rilles and mare ridges in the Serenitatis basin region of the moon are explained by a combination of lithospheric flexure in response to basin loading by basalt fill and a time-dependent global stress due to the thermal evolution of the lunar interior. The pertinent tectonic observations are the radial distance of basin concentric rilles or graben from the mare center; the location and orientation of mare ridges, interpreted as compressive features; and the restriction of graben formation to times older than 3.6 +- 0.2 b.y. ago, while ridge formation continued after emplacement of the youngest mare basalt unit (approx.3 b.y. ago). The locations of the graben are consistent with the geometry of the mare basalt load expected from the dimensions of multiring basins for values of the thickness of the elastic lithosphere beneath Serenitatis in the range 25--50 km at 3.6--3.8 b.y. ago. The locations and orientations of mare ridges are consistent with the load inferred from surface mapping and subsurface radar reflections for values of the elastic lithosphere thickness near 100 km at 3.0--3.4 b.y. ago. The thickening of the lithosphere beneath a major basin during the evolution of mare volcanism is thus clearly evident in the tectonics. The cessation of rille formation and the prolonged period of ridge formation are attributed to a change in the global horizontal thermal stress from extension to compression as the moon shifted from net expansion to overall cooling and contraction. Severe limits as placed on the range of possible lunar thermal histories. The zone of horizontal extensional stresses peripheral to mare loads favors the edge of mare basins as the preferred sites for mare basalt magma eruption in the later stages of mare fill, although subsidence may lead to accumulation of such young lavas in basin centers

  12. Satellite altimetry over large hydrological basins

    Science.gov (United States)

    Calmant, Stephane

    2015-04-01

    The use of satellite altimetry for hydrological applications, either it is basin management or hydrological modeling really started with the 21st century. Before, during two decades, the efforts were concentrated on the data processing until a precision of a few decimeters could be achieved. Today, several web sites distribute hundreds of series spread over hundeds of rivers runing in the major basins of the world. Among these, the Amazon basin has been the most widely studied. Satellite altimetry is now routinely used in this transboundary basin to predict discharges ranging over 4 orders of magnitude. In a few years, satellite altimetry should evolve dramatically. This year, we should see the launchs of Jason-3 and that of Sentinel-3A operating in SAR mode. With SAR, the accuracy and resolution of a growing number of measurements should be improved. In 2020, SWOT will provide a full coverage that will join in a unique framework all the previous and forthcoming missions. These technical and thematical evolutions will be illustrated by examples taken in the Amazon and Congo basin.

  13. Two characteristics of planar intertwined basins of attraction

    International Nuclear Information System (INIS)

    Ding Changming

    2012-01-01

    Highlights: ► A new mathematical definition of intertwined basins of attraction is proposed. ► Basins are intertwined iff a limit set of stable manifold contains at least two points. ► Basins are intertwined iff the closure of stable manifold is not arc-connected. ► The intertwining property is preserved by topologically equivalent dynamical systems. - Abstract: In this paper, we investigate the intertwined basins of attraction for planar dynamical systems. We prove that the intertwining property is preserved by topologically equivalent systems. Two necessary and sufficient conditions for a planar system having intertwined basins are given.

  14. Climatic controls on arid continental basin margin systems

    Science.gov (United States)

    Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni

    2016-04-01

    Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed

  15. Marketing San Juan Basin gas

    International Nuclear Information System (INIS)

    Posner, D.M.

    1988-01-01

    Marketing natural gas produced in the San Juan Basin of New Mexico and Colorado principally involves four gas pipeline companies with significant facilities in the basin. The system capacity, transportation rates, regulatory status, and market access of each of these companies is evaluated. Because of excess gas supplies available to these pipeline companies, producers can expect improved take levels and prices by selling gas directly to end users and utilities as opposed to selling gas to the pipelines for system supply. The complexities of transporting gas today suggest that the services of an independent gas marketing company may be beneficial to smaller producers with gas supplies in the San Juan Basin

  16. Western Canada Sedimentary Basin competitiveness

    International Nuclear Information System (INIS)

    Millar, R.H.G.

    1996-01-01

    Recent dramatic expansion of the natural gas industry in the Western Canada Sedimentary Basin provided ample proof of the potential of this area for further development of natural gas supply. However, the inherent competitive advantages provided by the Western Canada Sedimentary Basin were said to have been offset by low netback prices resulting in poor producer economics when competitiveness is measured by availability of opportunities to find and develop gas supply at costs low enough to ensure attractive returns. Technology was identified as one of the key elements in improving basin competitiveness, but the greatest potential lies in reduced transportation costs and increased access to North American market centres. 8 figs

  17. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    Science.gov (United States)

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  18. K Basins Hazard Analysis

    International Nuclear Information System (INIS)

    WEBB, R.H.

    1999-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062/Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  19. K West basin isolation barrier leak rate test

    International Nuclear Information System (INIS)

    Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

    1994-01-01

    This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals

  20. Self-assembly of multiferroic core-shell particulate nanocomposites through DNA-DNA hybridization and magnetic field directed assembly of superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasulu, Gollapudi; Srinivasan, Gopalan, E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Lochbiler, Thomas A.; Panda, Manashi; Chavez, Ferman A., E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu [Department of Chemistry, Oakland University, Rochester, MI 48309-4401 (United States)

    2016-04-15

    Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagnetic nanoparticles, 600 nm BaTiO{sub 3} (BTO) and 200 nm NiFe{sub 2}O{sub 4} (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shell architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.

  1. The Apollo peak-ring impact basin: Insights into the structure and evolution of the South Pole-Aitken basin

    Science.gov (United States)

    Potter, Ross W. K.; Head, James W.; Guo, Dijun; Liu, Jianzhong; Xiao, Long

    2018-05-01

    The 492 km-diameter Apollo impact basin post-dates, and is located at the inner edge of, the ∼2240 km-diameter South Pole-Aitken (SPA) basin, providing an opportunity to assess the SPA substructure and lateral heterogeneity. Gravity Recovery and Interior Laboratory gravity data suggest an average crustal thickness on the floor of SPA of ∼20 km and within the Apollo basin of ∼5 km, yet remote sensing data reveal no conclusive evidence for the presence of exposed mantle material. We use the iSALE shock physics code to model the formation of the Apollo basin and find that the observational data are best fit by the impact of a 40 km diameter body traveling at 15 km/s into 20-40 km thick crustal material. These results strongly suggest that the Apollo impact occurred on ejecta deposits and collapsed crustal material of the SPA basin and could help place constraints on the location, size and geometry of the SPA transient cavity. The peak ring in the interior of Apollo basin is plausibly interpreted to be composed of inwardly collapsed lower crustal material that experienced peak shock pressures in excess of 35 GPa, consistent with remote sensing observations that suggest shocked plagioclase. Proposed robotic and/or human missions to SPA and Apollo would present an excellent opportunity to test the predictions of this work and address many scientific questions about SPA basin evolution and structure.

  2. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees

    Science.gov (United States)

    Hart, Nicole R.; Stockli, Daniel F.; Lavier, Luc L.; Hayman, Nicholas W.

    2017-06-01

    Onshore and offshore geological and geophysical observations and numerical modeling have greatly improved the conceptual understanding of magma-poor rifted margins. However, critical questions remain concerning the thermal evolution of the prerift to synrift phases of thinning ending with the formation of hyperextended crust and mantle exhumation. In the western Pyrenees, the Mauléon Basin preserves the structural and stratigraphic record of Cretaceous extension, exhumation, and sedimentation of the proximal-to-distal margin development. Pyrenean shortening uplifted basement and overlying sedimentary basins without pervasive shortening or reheating, making the Mauléon Basin an ideal locality to study the temporal and thermal evolution of magma-poor hyperextended rift systems through coupling bedrock and detrital zircon (U-Th)/He thermochronometric data from transects characterizing different structural rifting domains. These new data indicate that the basin was heated during early rifting to >180°C with geothermal gradients of 80-100°C/km. The proximal margin recorded rift-related exhumation/cooling at circa 98 Ma, whereas the distal margin remained >180°C until the onset of Paleocene Pyrenean shortening. Lithospheric-scale numerical modeling shows that high geothermal gradients, >80°C/km, and synrift sediments >180°C, can be reached early in rift evolution via heat advection by lithospheric depth-dependent thinning and blanketing caused by the lower thermal conductivity of synrift sediments. Mauléon Basin thermochronometric data and numerical modeling illustrate that reheating of basement and synrift strata might play an important role and should be considered in the future development of conceptual and numerical models for hyperextended magma-poor continental rifted margins.

  3. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    Science.gov (United States)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P. T.

    2013-07-01

    The new ternary metal-rich boride, Nb2OsB2, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U3Si2-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B2 dumbbells with B-B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB-LMTO-ASA), the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic Os-B, Nb-B and Nb-Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride.

  4. Submarine landslides in Arctic sedimentation: Canada Basin

    Science.gov (United States)

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  5. Relationships between basin architecture, basin closure, and occurrence of sulphide-bearing schists

    DEFF Research Database (Denmark)

    Kalliomäki, Henrik; Torvela, Taija; Moreau, Julien

    2014-01-01

    We present field observations from the Palaeoproterozoic volcano-sedimentary Tampere palaeobasin, where the primary structures have been exceptionally well preserved. We use the observations to construct a new tectonic model for the southeastern margin of the Tampere basin during its inversion...... and subsequent closure. The observed volcano-sedimentary and structural features suggest a change in the local structural style from thick-skinned inversion to thin-skinned thrusting, in order to accommodate the crustal shortening during basin closure. Furthermore, it is suggested that there is a genetic...

  6. Detailed bathymetric surveys in the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.; KameshRaju, K.A.; Ramprasad, T.; George, P.; Jaisankar, S.

    Over 420,000 line kilometers of echo-sounding data was collected in the Central Indian Basin. This data was digitized, merged with navigation data and a detailed bathymetric map of the Basin was prepared. The Basin can be broadly classified...

  7. The Dependency of Probabilistic Tsunami Hazard Assessment on Magnitude Limits of Seismic Sources in the South China Sea and Adjoining Basins

    Science.gov (United States)

    Li, Hongwei; Yuan, Ye; Xu, Zhiguo; Wang, Zongchen; Wang, Juncheng; Wang, Peitao; Gao, Yi; Hou, Jingming; Shan, Di

    2017-06-01

    The South China Sea (SCS) and its adjacent small basins including Sulu Sea and Celebes Sea are commonly identified as tsunami-prone region by its historical records on seismicity and tsunamis. However, quantification of tsunami hazard in the SCS region remained an intractable issue due to highly complex tectonic setting and multiple seismic sources within and surrounding this area. Probabilistic Tsunami Hazard Assessment (PTHA) is performed in the present study to evaluate tsunami hazard in the SCS region based on a brief review on seismological and tsunami records. 5 regional and local potential tsunami sources are tentatively identified, and earthquake catalogs are generated using Monte Carlo simulation following the Tapered Gutenberg-Richter relationship for each zone. Considering a lack of consensus on magnitude upper bound on each seismic source, as well as its critical role in PTHA, the major concern of the present study is to define the upper and lower limits of tsunami hazard in the SCS region comprehensively by adopting different corner magnitudes that could be derived by multiple principles and approaches, including TGR regression of historical catalog, fault-length scaling, tectonic and seismic moment balance, and repetition of historical largest event. The results show that tsunami hazard in the SCS and adjoining basins is subject to large variations when adopting different corner magnitudes, with the upper bounds 2-6 times of the lower. The probabilistic tsunami hazard maps for specified return periods reveal much higher threat from Cotabato Trench and Sulawesi Trench in the Celebes Sea, whereas tsunami hazard received by the coasts of the SCS and Sulu Sea is relatively moderate, yet non-negligible. By combining empirical method with numerical study of historical tsunami events, the present PTHA results are tentatively validated. The correspondence lends confidence to our study. Considering the proximity of major sources to population-laden cities

  8. Affect-Laden Imagery and Risk Taking: The Mediating Role of Stress and Risk Perception

    Science.gov (United States)

    2015-01-01

    This paper investigates how affect-laden imagery that evokes emotional stress influences risk perception and risk taking in real-life scenarios. In a series of three studies, we instructed participants to imagine the consequences of risky scenarios and then rate the intensity of the experienced stress, perceived risk and their willingness to engage in risky behavior. Study 1 showed that people spontaneously imagine negative rather than positive risk consequences, which are directly related to their lower willingness to take risk. Moreover, this relationship was mediated by feelings of stress and risk perception. Study 2 replicated and extended these findings by showing that imagining negative risk consequences evokes psychophysiological stress responses observed in elevated blood pressure. Finally, in Study 3, we once again demonstrated that a higher intensity of mental images of negative risk consequences, as measured by enhanced brain activity in the parieto-occipital lobes, leads to a lower propensity to take risk. Furthermore, individual differences in creating vivid and intense negative images of risk consequences moderated the strength of the relationship between risk perception and risk taking. Participants who created more vivid and intense images of negative risk consequences paid less attention to the assessments of riskiness in rating their likelihood to take risk. To summarize, we showed that feelings of emotional stress and perceived riskiness mediate the relationship between mental imagery and risk taking, whereas individual differences in abilities to create vivid mental images may influence the degree to which more cognitive risk assessments are used in the risk-taking process. PMID:25816238

  9. Socioemotional processing of morally-laden behavior and their consequences on others in forensic psychopaths.

    Science.gov (United States)

    Decety, Jean; Chen, Chenyi; Harenski, Carla L; Kiehl, Kent A

    2015-06-01

    A large body of evidence supports the view that psychopathy is associated with anomalous emotional processing, reduced guilt and empathy, which are important risk factors for criminal behaviors. However, the precise nature and specificity of this atypical emotional processing is not well understood, including its relation to moral judgment. To further our understanding of the pattern of neural response to perceiving and evaluating morally-laden behavior, this study included 155 criminal male offenders with various level of psychopathy, as assessed with the Psychopathy Check List-Revised. Participants were scanned while viewing short clips depicting interactions between two individuals resulting in either interpersonal harm or interpersonal assistance. After viewing each clip, they were asked to identify the emotions of the protagonists. Inmates with high levels of psychopathy were more accurate than controls in successfully identifying the emotion of the recipient of both helpful and harmful actions. Significant hemodynamic differences were detected in the posterior superior temporal sulcus, amygdala, insula, ventral striatum, and prefrontal cortex when individuals with high psychopathy viewed negative versus positive scenarios moral scenarios and when they evaluated the emotional responses of the protagonists. These findings suggest that socioemotional processing abnormalities in psychopathy may be somewhat more complicated than merely a general or specific emotional deficit. Rather, situation-specific evaluations of the mental states of others, in conjunction with sensitivity to the nature of the other (victim vs. perpetrator), modulate attention to emotion-related cues. Such atypical processing likely impacts moral decision-making and behavior in psychopaths. © 2015 Wiley Periodicals, Inc.

  10. Evapotranspiration seasonality across the Amazon Basin

    Science.gov (United States)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  11. An underground view of the Albuquerque Basin

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, J.W.; Haase, C.S.; Lozinsky, R.P. [New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States)

    1995-12-31

    Development of valid hydrogeologic models of New Mexico`s ``critical groundwater basins`` has been a long-term objective of the New Mexico Bureau of Mines and Mineral Resources (NMBMMR), a division of New Mexico Tech. The best possible information on basin hydrogeology is needed not only for incorporation in numerical models of groundwater-flow systems, which are necessary for proper management of limited water resources, but also for addressing public concerns relating to a wide range of important environmental issues. In the latter case, a hydrogeologist must be prepared to provide appropriate explanations of why groundwater systems behave physically and chemically as they do in both natural and man-disturbed situations. The paper describes the regional geologic setting, the geologic setting of the Albuquerque Basin, basin- and valley-fill stratigraphy, and the hydrogeologic model of the Albuquerque Basin. 77 refs., 6 figs., 1 tab.

  12. K Basins fuel encapsulation and storage hazard categorization

    International Nuclear Information System (INIS)

    Porten, D.R.

    1994-12-01

    This document establishes the initial hazard categorization for K-Basin fuel encapsulation and storage in the 100 K Area of the Hanford site. The Hazard Categorization for K-Basins addresses the potential for release of radioactive and non-radioactive hazardous material located in the K-Basins and their supporting facilities. The Hazard Categorization covers the hazards associated with normal K-Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. The criteria categorizes a facility based on total curies per radionuclide located in the facility. Tables 5-3 and 5-4 display the results in section 5.0. In accordance with DOE-STD-1027 and the analysis provided in section 5.0, the K East Basin fuel encapsulation and storage activity and the K West Basin storage are classified as a open-quotes Category 2close quotes Facility

  13. Performance analysis of double basin solar still with evacuated tubes

    International Nuclear Information System (INIS)

    Hitesh N Panchal; Shah, P. K.

    2013-01-01

    Solar still is a very simple device, which is used for solar distillation process. In this research work, double basin solar still is made from locally available materials. Double basin solar still is made in such a way that, outer basin is exposed to sun and lower side of inner basin is directly connected with evacuated tubes to increase distillate output and reducing heat losses of a solar still. The overall size of the lower basin is about 1006 mm x 325 mm x 380 mm, the outer basin is about 1006 mm x 536 mm x 100 mm Black granite gravel is used to increase distillate output by reducing quantity of brackish or saline water in the both basins. Several experiments have conducted to determine the performance of a solar still in climate conditions of Mehsana (latitude of 23 degree 59' and longitude of 72 degree 38'), Gujarat, like a double basin solar still alone, double basin solar still with different size black granite gravel, double basin solar still with evacuated tubes and double basin solar still with evacuated tubes and different size black granite gravel. Experimental results show that, connecting evacuated tubes with the lower side of the inner basin increases daily distillate output of 56% and is increased by 60%, 63% and 67% with average 10 mm, 20 mm and 30 mm size black granite gravel. Economic analysis of present double basin solar still is 195 days. (authors)

  14. Geochemistry of the Late Paleozoic cherts in the Youjiang Basin: Implications for the basin evolution

    Directory of Open Access Journals (Sweden)

    Huang Hu

    2013-10-01

    Full Text Available We analyzed the major and rare earth element compositions of siliceous deposits from the Upper Devonian Liujiang Formation, Lower Carboniferous Luzhai Formation, Lower–Middle Permian Sidazhai Formation and Tapi Formation, which are widely distributed as bedded cherts in the interplatform basinal successions of the Youjiang Basin. The Liujiang Formation and Luzhai Formation cherts generally have high Al/(Al+Fe+Mn values (0.38–0.94 and are non-hydrothermal cherts. These cherts are generally characterized by moderately negative Ce anomalies and high Y/Ho values relatived to PAAS, indicating that the Youjiang Basin might have evolved into an open rift basin during the Late Devonian–Early Carboniferous. The Sidazhai Formation cherts from Ziyun generally have high Al/(Al+Fe+Mn values (0.60–0.78, suggesting negligible contribution from a hydrothermal component. The Sidazhai Formation cherts from Hechi and the Tapi Formation cherts from Malipo generally have low Al/(Al+Fe+Mn values (0.09–0.41, indicating an intense hydrothermal input. Relatived to the Sidazhai Formation cherts, the Tapi Formation cherts have higher Ce/Ce* values (0.68±0.19 and lower Y/Ho values (41.83±13.27, which may be affected by the terrigenous input from the Vietnam Block. The Sidazhai Formation cherts from Ziyun and Hechi exhibit negative Ce anomalies (0.43±0.12, 0.33±0.17, respectively with high Y/Ho values (57.44±16.20, 46.02±4.27, respectively, resembling the geochemical characteristics of open-ocean basin cherts. These cherts were deposited on a passive continental margin adjacent to the Babu branch ocean, which may have contributed to upwelling. Detailed spatial studies on geochemical characteristics of the Late Paleozoic cherts can unravel the evolution of the Youjiang Basin.

  15. Quantification of water resources uncertainties in the Luvuvhu sub-basin of the Limpopo river basin

    Science.gov (United States)

    Oosthuizen, N.; Hughes, D.; Kapangaziwiri, E.; Mwenge Kahinda, J.; Mvandaba, V.

    2018-06-01

    In the absence of historical observed data, models are generally used to describe the different hydrological processes and generate data and information that will inform management and policy decision making. Ideally, any hydrological model should be based on a sound conceptual understanding of the processes in the basin and be backed by quantitative information for the parameterization of the model. However, these data are often inadequate in many sub-basins, necessitating the incorporation of the uncertainty related to the estimation process. This paper reports on the impact of the uncertainty related to the parameterization of the Pitman monthly model and water use data on the estimates of the water resources of the Luvuvhu, a sub-basin of the Limpopo river basin. The study reviews existing information sources associated with the quantification of water balance components and gives an update of water resources of the sub-basin. The flows generated by the model at the outlet of the basin were between 44.03 Mm3 and 45.48 Mm3 per month when incorporating +20% uncertainty to the main physical runoff generating parameters. The total predictive uncertainty of the model increased when water use data such as small farm and large reservoirs and irrigation were included. The dam capacity data was considered at an average of 62% uncertainty mainly as a result of the large differences between the available information in the national water resources database and that digitised from satellite imagery. Water used by irrigated crops was estimated with an average of about 50% uncertainty. The mean simulated monthly flows were between 38.57 Mm3 and 54.83 Mm3 after the water use uncertainty was added. However, it is expected that the uncertainty could be reduced by using higher resolution remote sensing imagery.

  16. M-area basin closure-Savannah River Site

    International Nuclear Information System (INIS)

    McMullin, S.R.; Horvath, J.G.

    1991-01-01

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway

  17. Reconnaissance coal study in the Susitna basin, 2014

    Science.gov (United States)

    David L. LePain,; Stanley, Richard G.; Harun, Nina T.; Helmold, Kenneth T.; Tsigonis, Rebekah

    2015-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) conducted fieldwork during the summer of 2014 in the Susitna basin as part of an ongoing evaluation of the hydrocarbon potential of frontier basins, particularly those near the Railbelt region (for example, Decker and others, 2013; Gillis and others, 2013). Topical studies associated with this recent work include sedimentary facies analysis (LePain and others, 2015) and structural geology investigations (Gillis and others, 2015). The Susitna basin contains coal-bearing Paleogene and Neogene strata correlative with formations that host oil and gas in Cook Inlet basin to its south. Isotopic signatures of natural gas reservoired in the Miocene/Pliocene Sterling and Miocene Beluga Formations suggest a biogenic origin for Cook Inlet gas (Claypool and others, 1980). To assess the biogenic gas potential of the Susitna basin, it is important to obtain information from its coal-bearing units.Characteristics of coal, such as maturity/rank and cleat development are key parameters influencing viability of a biogenic gas system (Laubach and others, 1998). In an early study of the Susitna basin (Beluga–Yentna region), Barnes (1966) identified, analyzed, and recognized potentially valuable subbituminous coal resources at Fairview Mountain, Canyon Creek, and Johnson Creek. Merritt (1990), in a sedimentological study to evaluate surface coal mining potential of the Tertiary rocks of the Susitna basin (Susitna lowland), concluded that the basin contained several billion tons of mineable reserves. This preliminary report offers a brief summary of new information on coals in the Susitna Basin acquired during associated stratigraphic studies (see LePain and others, 2015). 

  18. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-11-01

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact... Cooperating Agencies. No changes to the Proposed Action or Purpose of and Need for Action have been made... alternatives will be analyzed in the Thunder Basin National Grassland Prairie Dog Amendment EIS. The EIS will...

  19. State of stress in exhumed basins and implications for fluid flow: insights from the Illizi Basin, Algeria

    KAUST Repository

    English, Joseph M.

    2017-05-31

    The petroleum prospectivity of an exhumed basin is largely dependent on the ability of pre-existing traps to retain oil and gas volumes during and after the exhumation event. Although faults may act as lateral seals in petroleum traps, they may start to become hydraulically conductive again and enable fluid flow and hydrocarbon leakage during fault reactivation. We constrain the present day in situ stresses of the exhumed Illizi Basin in Algeria and demonstrate that the primary north–south and NW–SE (vertical strike-slip) fault systems in the study area are close to critical stress (i.e. an incipient state of shear failure). By contrast, the overpressured and unexhumed Berkine Basin and Hassi Messaoud areas to the north do not appear to be characterized by critical stress conditions. We present conceptual models of stress evolution and demonstrate that a sedimentary basin with benign in situ stresses at maximum burial may change to being characterized by critical stress conditions on existing fault systems during exhumation. These models are supportive of the idea that the breaching of a closed, overpressured system during exhumation of the Illizi Basin may have been a driving mechanism for the regional updip flow of high-salinity formation water within the Ordovician reservoirs during Eocene–Miocene time. This work also has implications for petroleum exploration in exhumed basins. Fault-bounded traps with faults oriented at a high angle to the maximum principal horizontal stress direction in strike-slip or normal faulting stress regimes are more likely to have retained hydrocarbons in exhumed basins than fault-bounded traps with faults that are more optimally oriented for shear failure and therefore have a greater propensity to become critically stressed during exhumation.

  20. Water equivalent of snow survey of the Red River Basin and Heart/Cannonball River Basin, March 1978

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1979-10-01

    The water equivalent of accumulated snow was estimated in the Red River and Heart/Cannonball River basins and surrounding areas in North Dakota during the period 8 to 17 March 1978. A total of 570 km were flown, covering a 274 km section of the Red River Basin watershed. These lines had been surveyed in March 1974. Twelve flight lines were flown over the North Dakota side of the Red River from a point 23 km south of the Canadian border southward to the city of Fargo, North Dakota. The eight flight lines flown over the Minnesota side of the Red River extended from 23 km south of the Canadian border southward to Breckenridge, Minnesota. Using six flight lines, a total of 120 km were flown in the Heart/Cannonball River Basin, an area southwest of the city of Bismark, North Dakota. This was the first such flight in the Heart/Cannonball River Basin area. Computed weighted average water equivalents on each flight line in the Red River Basin ranged from 4.8 cm to 12.7 cm of water, averaging 7.6 cm for all lines. In the Heart/Cannonball River Basin, the weighted water equivalent ranged from 8.9 cm to 19.1 cm of water, averaging 12.7 cm for all lines. The method used employs the measurement of the natural gamma rays both before and after snow covers the ground

  1. Value of the principles of ''isolation of basins and their boundaries'' and ''isolation of basins and elevations'' in prospecting for oil and gas in the oil and gas basin of China

    Energy Technology Data Exchange (ETDEWEB)

    Chzhan, V.; Li, Yu.; Se, M.

    1982-01-01

    A feature of the Chinese oil and gas basins is their fracturing into a large number (to several dozen in one oil and gas basin) isolated basins which are controlled by fault disorders. In these basins in which thick masses of Mesozoic and mainly Cenozoic sedimentary rocks are developed, the main volumes of source rocks are concentrated. Migration of hydrocarbons usually occurs to short distances not exceeding tens of kilometers. From the experience of prospecting and exploration back in the 1950's it was established that thick masses in the central zones of the basins are favorable for processes of hydrocarbon generation, while accumulation occurs in the elevated peripheral parts of the basins and in the regions of the central elevations. The zones of articulation of the central elevations and the edges of the basins are very promising for prospecting for local structures. Examples of large fields which are subordinate to these laws are the largest oil fields in China, Lyakhoe, Dagan and Shenli which are located along the edges of the Bokhayvan basin in the North Chinese oil and gas basin and the Datsin field which is confined to the central elevation of the Sunlyao basin.

  2. Ecohydrological Controls on Intra-Basin Alpine Subarctic Water Balances

    Science.gov (United States)

    Carey, S. K.; Ziegler, C. M.

    2007-12-01

    In the mountainous Canadian subarctic, elevation gradients control the disposition of vegetation, permafrost, and characteristics of the soil profile. How intra-basin ecosystems combine to control catchment-scale water and biogeochimcal cycling is uncertain. To this end, a multi-year ecohydrological investigation was undertaken in Granger Basin (GB), a 7.6 km2 sub-basin of the Wolf Creek Research Basin, Yukon Territory, Canada. GB was divided into four sub-basins based on the dominant vegetation and permafrost status, and the timing and magnitude of hydrological processes were compared using hydrometric and hydrochemical methods. Vegetation plays an important role in end-of-winter snow accumulation as snow redistribution by wind is controlled by roughness length. In sub-basins of GB with tall shrubs, snow accumulation is enhanced compared with areas of short shrubs and tundra vegetation. The timing of melt was staggered with elevation, although melt-rates were similar among the sub-basins. Runoff was enhanced at the expense of infiltration in tall shrub areas due to high snow water equivalent and antecedent soil moisture. In the high-elevation tundra sub-basin, thin soils with cold ground temperatures resulted in increased surface runoff. For the freshet period, the lower and upper sub-basins accounted for 81 % of runoff while accounting for 58 % of the total basin area. Two-component isotopic hydrograph separation revealed that during melt, pre-event water dominated in all sub-basins, yet those with greater permafrost disposition and taller shrubs had increased event-water. Dissolved organic carbon (DOC) spiked prior to peak freshet in each sub-basin except for the highest with thin soils, and was associated with flushing of surficial organic soils. For the post-melt period, all sub-basins have similar runoff contributions. Solute and stable isotope data indicate that in sub-basins dominated by permafrost, supra-permafrost runoff pathways predominate as flow

  3. Distribution, Statistics, and Resurfacing of Large Impact Basins on Mercury

    Science.gov (United States)

    Fassett, Caleb I.; Head, James W.; Baker, David M. H.; Chapman, Clark R.; Murchie, Scott L.; Neumann, Gregory A.; Oberst, Juergen; Prockter, Louise M.; Smith, David E.; Solomon, Sean C.; hide

    2012-01-01

    The distribution and geological history of large impact basins (diameter D greater than or equal to 300 km) on Mercury is important to understanding the planet's stratigraphy and surface evolution. It is also informative to compare the density of impact basins on Mercury with that of the Moon to understand similarities and differences in their impact crater and basin populations [1, 2]. A variety of impact basins were proposed on the basis of geological mapping with Mariner 10 data [e.g. 3]. This basin population can now be re-assessed and extended to the full planet, using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Note that small-to- medium-sized peak-ring basins on Mercury are being examined separately [4, 5]; only the three largest peak-ring basins on Mercury overlap with the size range we consider here. In this study, we (1) re-examine the large basins suggested on the basis of Mariner 10 data, (2) suggest additional basins from MESSENGER's global coverage of Mercury, (3) assess the size-frequency distribution of mercurian basins on the basis of these global observations and compare it to the Moon, and (4) analyze the implications of these observations for the modification history of basins on Mercury.

  4. Implementing Integrated River Basin Management in China

    Directory of Open Access Journals (Sweden)

    Dorri G. J. te Boekhorst

    2010-06-01

    Full Text Available This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are matched with the advice of the China Council for International Cooperation on Environment and Development task force on integrated river basin management to the national government of China. This article demonstrates that the World Wildlife Fund for Nature uses various strategies of different types to support a transition process towards integrated river basin management. Successful deployment of these strategies for change in environmental policy requires special skills, actions, and attitudes on the part of the policy entrepreneur, especially in China, where the government has a dominant role regarding water management and the position of policy entrepeneurs is delicate.

  5. Are calanco landforms similar to river basins?

    Science.gov (United States)

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Classification of Prairie basins by their hysteretic connected functions

    Science.gov (United States)

    Shook, K.; Pomeroy, J. W.

    2017-12-01

    Diagnosing climate change impacts in the post-glacial landscapes of the North American Prairies through hydrological modelling is made difficult by drainage basin physiography. The region is cold, dry and flat with poorly developed stream networks, and so the basin area that is hydrologically connected to the stream outlet varies with basin depressional storage. The connected area controls the contributing area for runoff reaching the stream outlet. As depressional storage fills, ponds spill from one to another; the chain of spilling ponds allows water to flow over the landscape and increases the connected area of the basin. As depressional storage decreases, the connected fraction drops dramatically. Detailed, fine-scale models and remote sensing have shown that the relationship between connected area and the depressional storage is hysteretic in Prairie basins and that the nature of hysteresis varies with basin physiography. This hysteresis needs to be represented in hydrological models to calculate contributing area, and therefore streamflow hydrographs. Parameterisations of the hysteresis are needed for large-scale models used for climate change diagnosis. However, use of parameterisations of hysteresis requires guidance on how to represent them for a particular basin. This study shows that it is possible to relate the shape of hysteretic functions as determined by detailed models to the overall physiography of the basin, such as the fraction of the basin below the outlet, and remote sensing estimates of depressional storage, using the size distribution and location of maximum ponded water areas. By classifying basin physiography, the hysteresis of connected area - storage relationships can be estimated for basins that do not have high-resolution topographic data, and without computationally-expensive high-resolution modelling.

  7. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    Science.gov (United States)

    Grantz, A.; Hart, P.E.

    2011-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed on the northern part of the Amerasia Basin between about 127 and 89-75 Ma. Canada Basin is filled with Early Jurassic to Holocene detritus from the Mackenzie River system, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. Except for the absence of a salt- and shale-bearing mobile substrate Canada Basin is analogous to the Mississippi Delta and the western Gulf of Mexico. Canada Basin contains about 7 to >14 km of sediment beneath the Mackenzie Prodelta on the southeast, 6 to 7 km of sediment beneath the abyssal plain on the west, and roughly 5 or 6 million cubic km of sediment. About three fourths of the basin fill generates low amplitude seismic reflections, interpreted to represent hemiplegic deposits, and a fourth of the fill generates interbedded lenses to extensive layers of moderate to high amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits. Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin may contain intervals of hydrocarbon source rocks and the apparent age of the basin suggests that it contains three of the six stratigraphic intervals that together provided >90?? of the World's discovered reserves of oil and gas.. Worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas window. At least five types of structural or stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin. These consist of 1) a belt of late Eocene to Miocene shale-cored detachment folds containing with at least two anticlines that are capped by beds with bright spots, 2) numerous moderate to high amplitude reflection packets

  8. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.

    Science.gov (United States)

    Luo, Zuyuan; Deng, Yi; Zhang, Ranran; Wang, Mengke; Bai, Yanjie; Zhao, Qiang; Lyu, Yalin; Wei, Jie; Wei, Shicheng

    2015-07-01

    Combination of mesoporous silica materials and bioactive factors is a promising niche-mimetic solution as a hybrid bone substitution for bone tissue engineering. In this work, we have synthesized biocompatible silica-based nanoparticles with abundant mesoporous structure, and incorporated bone-forming peptide (BFP) derived from bone morphogenetic protein-7 (BMP-7) into the mesoporous silica nanoparticles (MSNs) to obtain a slow-release system for osteogenic factor delivery. The chemical characterization demonstrates that the small osteogenic peptide is encapsulated in the mesoporous successfully, and the nitrogen adsorption-desorption isotherms suggest that the peptide encapsulation has no influence on mesoporous structure of MSNs. In the cell experiment, the peptide-laden MSNs (p-MSNs) show higher MG-63 cell proliferation, spreading and alkaline phosphatase (ALP) activity than the bare MSNs, indicating good in vitro cytocompatibility. Simultaneously, the osteogenesis-related proteins expression and calcium mineral deposition disclose enhanced osteo-differentiation of human mesenchymal stem cells (hMSCs) under the stimulation of the p-MSNs, confirming that BFP released from MSNs could significantly promote the osteogenic differentiation of hMSCs, especially at 500μg/mL of p-MSNs concentration. The peptide-modified MSNs with better bioactivity and osteogenic differentiation make it a potential candidate as bioactive material for bone repairing, bone regeneration, and bio-implant coating applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Petroleum geology framework, southeast Bowser Basin, British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Haggart, J.W. [Geological Survey of Canada, Vancouver, BC (Canada); Mahoney, J.B. [Wisconsin Univ., Eau Claire, WS (United States). Dept. of Geology

    2003-07-01

    There are significant coal resources in the northern regions of the Bowser basin in north-central British Columbia. However, the resource potential of the southern part of the basin has not been assessed, therefore the hydrocarbon potential is not known. Geological maps indicate several Mesozoic clastic and volcanic units across the southern part of the basin. Two stratigraphic intervals of the southern Bowser basin are considered to be potential source rocks within the Jurassic-Cretaceous strata. The fine-grained clastic rocks of the Bowser Lake Group contain significant amounts of carbonaceous material or organic matter. Well developed cleavage indicates that the rocks may be thermally over mature. This paper described potential reservoir rocks within the basin, along with their thermal maturation and conceptual play. 4 figs.

  10. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    Science.gov (United States)

    Grantz, Arthur; Hart, Patrick E.

    2012-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a >700,000 sq. km. remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed across the northern part of the Amerasia Basin between about 127 and 89-83.5 Ma. Canada Basin was filled by Early Jurassic to Holocene detritus from the Beaufort-Mackenzie Deltaic System, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. The basin contains roughly 5 or 6 million cubic km of sediment. Three fourths or more of this volume generates low amplitude seismic reflections, interpreted to represent hemipelagic deposits, which contain lenses to extensive interbeds of moderate amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits.Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin is correlative with stratigraphic sequences in these areas that contain intervals of hydrocarbon source rocks. In addition, worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas windows. Structural, stratigraphic and combined structural and stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin, and at least one of these contains bright spots. However, deep water (to almost 4000 m), remoteness from harbors and markets, and thick accumulations of seasonal to permanent sea ice (until its possible removal by global warming later this century) will require the discovery of very large deposits for commercial success in most parts of Canada Basin. ?? 2011 Elsevier Ltd.

  11. Hydrogeology of the West Siberian Basin

    International Nuclear Information System (INIS)

    Foley, M.G.; Bradley, D.J.; Cole, C.R.

    1996-01-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in extensive radioactive contaminant releases to the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. We have assumed that ground-water flow in the West Siberian Basin is topographically driven, with recharge to the basin occurring in the highlands on the west, east, and south, and internal discharge localized in numerous river valleys and lakes that ultimately discharge north to the ocean. We are modeling the regional hydrogeology as three-dimensional, steady-state, saturated flow that is recharged from above. We acquired topographic, geologic, hydrostratigraphic, hydrogeologic, and water-balance data for the West Siberian Basin and constructed a regional water table. We correlated and combined 70 different rock types derived from published descriptions of West Siberian Basin rocks into 17 rock types appropriate for assignment of hydrogeologic properties on the basis of spatial heterogeneity and constituent (i.e., sand, silt, and clay) diversity. Examination of resulting three-dimensional assemblages of rock types showed that they were consistent with published and inferred paleogeography and depositional processes. Calibrating the basin's moisture balance (i.e., recharge and discharge) to the derived water table determined plausible input parameter values for unknowns such as hydraulic conductivities. The general directions of calculated ground-water flow suggest that major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks, and that ground-water divides that penetrate the entire thickness of the model are evident between major rivers

  12. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the

  13. Proterozoic intracontinental basin: The Vindhyan example

    Indian Academy of Sciences (India)

    basins display marked similarities in their lithology, depositional setting and stratigraphic architecture. (Naqvi and Rogers 1987). This note sum- marises the stratigraphy, stratal architecture, sed- imentology and geochronology of the Vindhyan. Supergroup occurring in the Son valley region. (figure 1). 2. The Vindhyan basin.

  14. sedimentology, depositional environments and basin evolution

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The Inter-Trappean coal and oil shale-bearing sedimentation in the Delbi-Moye Basin ... accompanied by passive subsidence. ... margins, whereas the concentration of fine-grained clastic sediments and ..... concentrated at the marginal areas of the basin. .... faults favoured the accumulation of alluvial fan.

  15. The tritium balance of the Ems river basin

    International Nuclear Information System (INIS)

    Krause, W.J.

    1989-01-01

    For the Ems river basin, as a fine example of a Central European lowland basin, an inventory of the tritium distribution is presented for the hydrologic years 1951 to 1983. On the basis of a balance model, the tritium contents in surface waters and groundwater of the Ems river basin are calculated, using known and extrapolated tritium input data and comparing them with the corresponding values measured since 1974. A survey of tritium flows occurring in this basin is presented, taking meteorologic and hydrologic facts into account. (orig.)

  16. Rifting Thick Lithosphere - Canning Basin, Western Australia

    Science.gov (United States)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture. The discrepancy between estimates of lithospheric thickness derived from subsidence data for the western Canning Basin and those derived from shear wave tomography suggests that the latter technique currently is limited in its ability to resolve lithospheric thickness variations at horizontal half-wavelength scales of <300 km.

  17. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    Science.gov (United States)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1

  18. Hydrologic Sub-basins of Greenland, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hydrologic Sub-basins of Greenland data set contains Geographic Information System (GIS) polygon shapefiles that include 293 hydrologic sub-basins of the...

  19. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins

    Science.gov (United States)

    Li, Xin; Cheng, Guodong; Ge, Yingchun; Li, Hongyi; Han, Feng; Hu, Xiaoli; Tian, Wei; Tian, Yong; Pan, Xiaoduo; Nian, Yanyun; Zhang, Yanlin; Ran, Youhua; Zheng, Yi; Gao, Bing; Yang, Dawen; Zheng, Chunmiao; Wang, Xusheng; Liu, Shaomin; Cai, Ximing

    2018-01-01

    Endorheic basins around the world are suffering from water and ecosystem crisis. To pursue sustainable development, quantifying the hydrological cycle is fundamentally important. However, knowledge gaps exist in how climate change and human activities influence the hydrological cycle in endorheic basins. We used an integrated ecohydrological model, in combination with systematic observations, to analyze the hydrological cycle in the Heihe River Basin, a typical endorheic basin in arid region of China. The water budget was closed for different landscapes, river channel sections, and irrigation districts of the basin from 2001 to 2012. The results showed that climate warming, which has led to greater precipitation, snowmelt, glacier melt, and runoff, is a favorable factor in alleviating water scarcity. Human activities, including ecological water diversion, cropland expansion, and groundwater overexploitation, have both positive and negative effects. The natural oasis ecosystem has been restored considerably, but the overuse of water in midstream and the use of environmental flow for agriculture in downstream have exacerbated the water stress, resulting in unfavorable changes in surface-ground water interactions and raising concerns regarding how to fairly allocate water resources. Our results suggest that the water resource management in the region should be adjusted to adapt to a changing hydrological cycle, cropland area must be reduced, and the abstraction of groundwater must be controlled. To foster long-term benefits, water conflicts should be handled from a broad socioeconomic perspective. The findings can provide useful information on endorheic basins to policy makers and stakeholders around the world.

  20. Recharge and Groundwater Flow Within an Intracratonic Basin, Midwestern United States.

    Science.gov (United States)

    Panno, Samuel V; Askari, Zohreh; Kelly, Walton R; Parris, Thomas M; Hackley, Keith C

    2018-01-01

    The conservative nature of chloride (Cl - ) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin-wide scale. The creation of Cl - isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin-wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross-formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl - within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects. © 2017, National Ground Water Association.

  1. Geology and salt deposits of the Michigan Basin

    International Nuclear Information System (INIS)

    Johnson, K.S.; Gonzales, S.

    1976-07-01

    The Silurian-age Salina salt, one of the greatest deposits of bedded rock salt in the world, underlies most of the Michigan basin and parts of the Appalachian basin in Ohio. Pennsylvania, New York, and West Virginia. Interest in this salt deposit has increased in recent years because there may be one or more areas where it could be used safely as a repository for the underground storage of high-level radioactive wastes. The general geology of the Michigan basin is summarized and the major salt deposits are described in the hope that these data will be useful in determining whether there are any areas in the basin that are sufficiently promising to warrant further detailed study. Distribution of the important salt deposits in the basin is limited to the Southern Peninsula of Michigan

  2. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  3. Geochemical Modeling Of F Area Seepage Basin Composition And Variability

    International Nuclear Information System (INIS)

    Millings, M.; Denham, M.; Looney, B.

    2012-01-01

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin

  4. Quaternary base-level drops and trigger mechanisms in a closed basin: Geomorphic and sedimentological studies of the Gastre Basin, Argentina

    Science.gov (United States)

    Bilmes, Andrés; Veiga, Gonzalo D.; Ariztegui, Daniel; Castelltort, Sébastien; D'Elia, Leandro; Franzese, Juan R.

    2017-04-01

    Evaluating the role of tectonics and climate as possible triggering mechanisms of landscape reconfigurations is essential for paleoenvironmental and paleoclimatic reconstructions. In this study an exceptional receptive closed Quaternary system of Patagonia (the Gastre Basin) is described, and examined in order to analyze factors triggering base-level drops. Based on a geomorphological approach, which includes new tectonic geomorphology investigations combined with sedimentological and stratigraphic analysis, three large-scale geomorphological systems were identified, described and linked to two major lake-level highstands preserved in the basin. The results indicate magnitudes of base-level drops that are several orders of magnitude greater than present-day water-level fluctuations, suggesting a triggering mechanism not observed in recent times. Direct observations indicating the occurrence of Quaternary faults were not recorded in the region. In addition, morphometric analyses that included mountain front sinuosity, valley width-height ratio, and fan apex position dismiss tectonic fault activity in the Gastre Basin during the middle Pleistocene-Holocene. Therefore, we suggest here that upper Pleistocene climate changes may have been the main triggering mechanism of base-level falls in the Gastre Basin as it is observed in other closed basins of central Patagonia (i.e., Carri Laufquen Basin).

  5. sedimentology, depositional environments and basin evolution

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The Inter-Trappean coal and oil shale-bearing sedimentation in the Delbi-Moye Basin took place in tectonically controlled grabens and half-grabens formed by extensional fault systems and accompanied by passive subsidence. The sedimentation history of the basin is related to the tectonic events that affected ...

  6. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  7. Corrosion of aluminum alloys in a reactor disassembly basin

    International Nuclear Information System (INIS)

    Howell, J.P.; Zapp, P.E.; Nelson, D.Z.

    1992-01-01

    This document discusses storage of aluminum clad fuel and target tubes of the Mark 22 assembly takes place in the concrete-lined, light-water-filled, disassembly basins located within each reactor area at the Savannah River Site (SRS). A corrosion test program has been conducted in the K-Reactor disassembly basin to assess the storage performance of the assemblies and other aluminum clad components in the current basin environment. Aluminum clad alloys cut from the ends of actual fuel and target tubes were originally placed in the disassembly water basin in December 1991. After time intervals varying from 45--182 days, the components were removed from the basin, photographed, and evaluated metallographically for corrosion performance. Results indicated that pitting of the 8001 aluminum fuel clad alloy exceeded the 30-mil (0.076 cm) cladding thickness within the 45-day exposure period. Pitting of the 1100 aluminum target clad alloy exceeded the 30-mil (0.076 cm) clad thickness in 107--182 days exposure. The existing basin water chemistry is within limits established during early site operations. Impurities such as Cl - , NO 3 - and SO 4 - are controlled to the parts per million level and basin water conductivity is currently 170--190 μmho/cm. The test program has demonstrated that the basin water is aggressive to the aluminum components at these levels. Other storage basins at SRS and around the US have successfully stored aluminum components for greater than ten years without pitting corrosion. These basins have impurity levels controlled to the parts per billion level (1000X lower) and conductivity less than 1.0 μmho/cm

  8. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  9. Analysis of Ignition Testing on K-West Basin Fuel

    Energy Technology Data Exchange (ETDEWEB)

    J. Abrefah; F.H. Huang; W.M. Gerry; W.J. Gray; S.C. Marschman; T.A. Thornton

    1999-08-10

    Approximately 2100 metric tons of spent nuclear fuel (SNF) discharged from the N-Reactor have been stored underwater at the K-Basins in the 100 Area of the Hanford Site. The spent fuel has been stored in the K-East Basin since 1975 and in the K-West Basin since 1981. Some of the SNF elements in these basins have corroded because of various breaches in the Zircaloy cladding that occurred during fuel discharge operations and/or subsequent handling and storage in the basins. Consequently, radioactive material in the fuel has been released into the basin water, and water has leaked from the K-East Basin into the soil below. To protect the Columbia River, which is only 380 m from the basins, the SNF is scheduled to be removed and transported for interim dry storage in the 200 East Area, in the central portion of the Site. However, before being shipped, the corroded fuel elements will be loaded into Multi-Canister OverPacks and conditioned. The conditioning process will be selected based on the Integrated Process Strategy (IPS) (WHC 1995), which was prepared on the basis of the dry storage concept developed by the Independent Technical Assessment (ITA) team (ITA 1994).

  10. Analysis of Ignition Testing on K-West Basin Fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Huang, F.H.; Gerry, W.M.; Gray, W.J.; Marschman, S.C.; Thornton, T.A.

    1999-01-01

    Approximately 2100 metric tons of spent nuclear fuel (SNF) discharged from the N-Reactor have been stored underwater at the K-Basins in the 100 Area of the Hanford Site. The spent fuel has been stored in the K-East Basin since 1975 and in the K-West Basin since 1981. Some of the SNF elements in these basins have corroded because of various breaches in the Zircaloy cladding that occurred during fuel discharge operations and/or subsequent handling and storage in the basins. Consequently, radioactive material in the fuel has been released into the basin water, and water has leaked from the K-East Basin into the soil below. To protect the Columbia River, which is only 380 m from the basins, the SNF is scheduled to be removed and transported for interim dry storage in the 200 East Area, in the central portion of the Site. However, before being shipped, the corroded fuel elements will be loaded into Multi-Canister OverPacks and conditioned. The conditioning process will be selected based on the Integrated Process Strategy (IPS) (WHC 1995), which was prepared on the basis of the dry storage concept developed by the Independent Technical Assessment (ITA) team (ITA 1994)

  11. Oil and gas in the Ogaden Basin, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Du Toit, S.R.; Kurdy, S. [Alconsult International, Calgary, AB (Canada); Asfaw, S.H.; Gessesse, A.A. [Petroleum Operations Dept., Ministry of Mines and Energy, Addis Ababa (Ethiopia)

    1997-09-01

    To date, many of the 47 exploration and development wells drilled in the Ogaden Basin in Ethiopia have exhibited natural oil seeps and oil and gas shows. The Calub gas field and the Hilala oil field occurs in the central part of the 350,000 sq. km. basin. The various units within the basin consist of continental sediments, a regional organic-rich interval close to the Permo-Triassic boundary, organic-rich marine sediments and carbonates. The Ogaden Basin is dissected by several faults that are related to the Ethiopian Rift and may form a component of traps in the Calub-Hilala area.

  12. Watershed Planning Basins

    Data.gov (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  13. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2012-11-01

    The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3). The "landscape ET" (depletion directly from rainfall) was 344 km3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3), of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha-1 and 7.8 t ha-1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.

  14. Nutrient transport and transformation beneath an infiltration basin

    Science.gov (United States)

    Sumner, D.M.; Rolston, D.E.; Bradner, L.A.

    1998-01-01

    Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10

  15. Northern part, Ten Mile and Taunton River basins

    Science.gov (United States)

    Williams, John R.; Willey, Richard E.

    1967-01-01

    The northern part of the Ten Mile and Taunton River basins is an area of about 195 square miles within Norfolk, Plymouth, and Bristol Counties in southeastern Massachusetts. The northern boundary of the area (plate 1) is the drainage divide separating these basins from that of the Charles, Neponset, and Weymouth River basins. The western boundary is, for the most part, the divide separating the basins from the Blackstone River basin. The eastern boundary is at the edge of the Brockton-Pembroke area (Petersen, 1962; Petersen and Shaw, 1961). The southern boundary in Seekonk is the northern limit of the East Providence quadrangle, for which a ground-water map was prepared by Allen and Gorman (1959); eastward, the southern boundaries of the city of Attleboro and the towns of Norton, Easton, and West Bridgewater form the southern boundary of the area.

  16. Colorado River basin sensitivity to disturbance impacts

    Science.gov (United States)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  17. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  18. Radioactive air emissions notice of construction for the 105N Basin Stabilization

    International Nuclear Information System (INIS)

    Coenenberg, E.T.

    1994-01-01

    The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations

  19. Corrosion in ICPP fuel storage basins

    International Nuclear Information System (INIS)

    Dirk, W.J.

    1993-09-01

    The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970's, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate

  20. Basin-Scale Opportunity Assessment Initiative Background Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Saulsbury, Bo [ORNL; Geerlofs, Simon H. [Pacific Northwest National Laboratory (PNNL); Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2010-10-01

    As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended

  1. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  2. Hydrogeology and water quality of the Chakari Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Flanagan, Sarah M.; Chalmers, Ann T.

    2014-01-01

    The hydrogeology and water quality of the Chakari Basin, a 391-square-kilometer (km2) watershed near Kabul, Afghanistan, was assessed by the U.S. Geological Survey and the Afghanistan Geological Survey to provide an understanding of the water resources in an area of Afghanistan with considerable copper and other mineral resources. Water quality, chemical, and isotopic samples were collected at eight wells, four springs, one kareze, and the Chakari River in a basin-fill aquifer in the Chakari Basin by the Afghanistan Geological Survey. Results of water-quality analyses indicate that some water samples in the basin had concentrations of chemical constituents that exceeded World Health Organization guidelines for nitrate, sodium, and dissolved solids and some of the samples also had elevated concentrations of trace elements, such as copper, selenium, strontium, uranium, and zinc. Chemical and isotopic analyses, including for tritium, chlorofluorocarbons, and carbon-14, indicate that most wells contain water with a mixture of ages from young (years to decades) to old (several thousand years). Three wells contained groundwater that had modeled ages ranging from 7,200 to 7,900 years old. Recharge from precipitation directly on the basin-fill aquifer, which covers an area of about 150 km2, is likely to be very low (7 × 10-5 meters per day) or near zero. Most recharge to this aquifer is likely from rain and snowmelt on upland areas and seepage losses and infiltration of water from streams crossing the basin-fill aquifer. It is likely that the older water in the basin-fill aquifer is groundwater that has travelled along long and (or) slow flow paths through the fractured bedrock mountains surrounding the basin. The saturated basin-fill sediments in most areas of the basin are probably about 20 meters thick and may be about 30 to 60 meters thick in most areas near the center of the Chakari Basin. The combination of low recharge and little storage indicates that groundwater

  3. Colorado Basin Structure and Rifting, Argentine passive margin

    Science.gov (United States)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  4. The water footprint of agricultural products in European river basins

    International Nuclear Information System (INIS)

    Vanham, D; Bidoglio, G

    2014-01-01

    This work quantifies the agricultural water footprint (WF) of production (WF prod, agr ) and consumption (WF cons, agr ) and the resulting net virtual water import (netVW i, agr ) of 365 European river basins for a reference period (REF, 1996–2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WF cons, agr, tot exceeds the WF prod, agr, tot (resulting in positive netVW i, agr, tot values), are found along the London–Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WF prod, agr, tot exceeds the WF cons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WF cons, agr, tot of most river basins decreases (max −32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max −46%) in WF cons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed. (letters)

  5. Vietnamese sedimentary basins: geological evolution and petroleum potential

    Energy Technology Data Exchange (ETDEWEB)

    Fyhn, M.B.W.; Petersen, Henrik I.; Mathiesen, A.; Nielsen, Lars H.; Pedersen, Stig A.S.; Lindstroem, S.; Bojesen-Koefoed, J.A.; Abatzis, I.; Boldreel, L.O.

    2010-07-15

    The Geological Survey of Denmark and Greenland has worked in Vietnam since 1995 to assess the geology and petroleum potential of the Vietnamese basins. Since 2002 the work has been carried out in cooperation with the Department of Geography and Geology, University of Copenhagen, as part of the ENRECA project (Enhancement of Research Capacity in Developing Countries). The ENRECA project has already completed two phases and a third and final phase has recently started. The initial phase focused on the Phu Khanh and the Song Hong Basins located in the South China Sea offshore north and central Vietnam and the smaller onshore Song Ba Trough. During the second ENRECA phase, completed in 2009, attention shifted towards the Malay - Tho Chu and Phu Quoc basins located in the Gulf of Thailand, SSW of Vietnam. The Phu Quoc Basin continues onshore to the north to form part of the mountainous area between Vietnam and Cambodia. In the recently started third phase of the project, the focus remains on the Phu Quoc Basin in addition to a revisit to the Song Hong Basin on the north Vietnamese margin and onshore beneath the Song Hong (Red River) delta. (LN)

  6. Criticality evaluations of scrambled fuel in water basin storage

    International Nuclear Information System (INIS)

    Fast, E.

    1989-01-01

    Fuel stored underwater in the Idaho Chemical Processing Plant basins has been subjected to the usual criticality safety evaluations to assure safe storage configurations. Certain accident or emergency conditions, caused by corrosion or a seismic event, could change the fuel configuration and environment to invalidate previous calculations. Consideration is given here to such contingencies for fuel stored in three storage basins. One basin has fuel stored in racks, on a generally flat floor. In the other two basins, the fuel is stored on yokes and in baskets suspended from a monorail system. The floor is ribbed with 30.48-cm-thick and 80-cm-high concrete barriers across the basin width and spaced 30.48 cm apart. The suspended fuel is typically down to 15 cm above the floor of the channel between the concrete barriers. These basins each have 29 channels of 18 positions maximum per channel for a total of 522 possible positions, which are presently 77 and 49% occupied. The three basins are hydraulically interconnected. Several scenarios indicate possible changes in the fuel configuration. An earthquake could rupture a basin wall or floor, allowing the water to drain from all basins. All levels of water would fall to the completely drained condition. Suspended fuel could drop and fall over within the channel. Corrosion might weaken the support systems or cause leaks in sealed fuel canisters. Calculations were made with the KENO-IV criticality program and the library of mostly Hansen-Roach 16-energy-group neutron cross sections

  7. Faunal migration into the Late Permian Zechstein Basin

    DEFF Research Database (Denmark)

    Sørensen, Anne Mehlin; Håkansson, Eckart; Stemmerik, Lars

    2007-01-01

    Late Permian bryozoans from the Wegener Halvø, Ravnefjeld and Schuchert Formations in East Greenland have been investigated. 14 genera are recognised.      Integration of the new bryozoan data from the Upper Permian of East Greenland with data on the distribution of Permian bryozoans along...... the northern margin of Pangea is used to test hypotheses concerning Late Palaeozoic evolution of the North Atlantic region. During the Permian, the Atlantic rift system formed a seaway between Norway and Greenland from the boreal Barents Shelf to the warm and arid Zechstein Basin. This seaway is considered...... to be the only marine connection to the Zechstein Basin and therefore the only possible migration route for bryozoans to enter the basin. The distribution of Permian bryozoans is largely in keeping with such a connection from the cool Barents Shelf past the East Greenland Basin to the warm Zechstein Basin...

  8. Magmatism and petroleum exploration in the Brazilian Paleozoic basins

    Energy Technology Data Exchange (ETDEWEB)

    Thomaz Filho, Antonio; Antonioli, Luzia [Universidade do Estado do Rio de Janeiro, Faculdade de Geologia, Rua Sao Francisco Xavier, no 524/2030, CEP 20550-900, Rio de Janeiro, RJ (Brazil); Mizusaki, Ana Maria Pimentel [Universidade Federal do Rio Grande do Sul, Instituto de Geociencias, Avenida Bento Goncalves, no 9500, Campus do Vale, CEP 91509-900, Porto Alegre, RS (Brazil)

    2008-02-15

    Petroleum exploration in the Paleozoic sedimentary basins of Brazil has proven very challenging for explorationists. Except for the Solimoes Basin, in which transcurrent tectonism formed prospective structural highs, Brazilian Paleozoic basins lack intense structural deformation, and hence the detection and prospecting of place is often difficult. Magmatic intrusive and associated rocks in all these basins have traditionally been considered heat sources and hydrocarbon traps. The role of tholeiitic basic dikes in the generation, migration and accumulation of petroleum in the Anhembi oil occurrence (Sao Paulo State) is discussed herein. It follows that similar geological settings in other Paleozoic basins can be regarded as promising sites for oil accumulation that warrant investigation via modern geological and geophysical methods. (author)

  9. A NEW METHOD FOR ENVIRONMENTAL FLOW ASSESSMENT BASED ON BASIN GEOLOGY. APPLICATION TO EBRO BASIN.

    Science.gov (United States)

    2018-02-01

    The determination of environmental flows is one of the commonest practical actions implemented on European rivers to promote their good ecological status. In Mediterranean rivers, groundwater inflows are a decisive factor in streamflow maintenance. This work examines the relationship between the lithological composition of the Ebro basin (Spain) and dry season flows in order to establish a model that can assist in the calculation of environmental flow rates.Due to the lack of information on the hydrogeological characteristics of the studied basin, the variable representing groundwater inflows has been estimated in a very simple way. The explanatory variable used in the proposed model is easy to calculate and is sufficiently powerful to take into account all the required characteristics.The model has a high coefficient of determination, indicating that it is accurate for the intended purpose. The advantage of this method compared to other methods is that it requires very little data and provides a simple estimate of environmental flow. It is also independent of the basin area and the river section order.The results of this research also contribute to knowledge of the variables that influence low flow periods and low flow rates on rivers in the Ebro basin.

  10. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    Science.gov (United States)

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  11. The evolution of a Late Cretaceous-Cenozoic intraplate basin (Duaringa Basin), eastern Australia: evidence for the negative inversion of a pre-existing fold-thrust belt

    Science.gov (United States)

    Babaahmadi, Abbas; Sliwa, Renate; Esterle, Joan; Rosenbaum, Gideon

    2017-12-01

    The Duaringa Basin in eastern Australia is a Late Cretaceous?-early Cenozoic sedimentary basin that developed simultaneously with the opening of the Tasman and Coral Seas. The basin occurs on the top of an earlier (Permian-Triassic) fold-thrust belt, but the negative inversion of this fold-thrust belt, and its contribution to the development of the Duaringa Basin, are not well understood. Here, we present geophysical datasets, including recently surveyed 2D seismic reflection lines, aeromagnetic and Bouguer gravity data. These data provide new insights into the structural style in the Duaringa Basin, showing that the NNW-striking, NE-dipping, deep-seated Duaringa Fault is the main boundary fault that controlled sedimentation in the Duaringa Basin. The major activity of the Duaringa Fault is observed in the southern part of the basin, where it has undergone the highest amount of displacement, resulting in the deepest and oldest depocentre. The results reveal that the Duaringa Basin developed in response to the partial negative inversion of the pre-existing Permian-Triassic fold-thrust belt, which has similar orientation to the extensional faults. The Duaringa Fault is the negative inverted part of a single Triassic thrust, known as the Banana Thrust. Furthermore, small syn-depositional normal faults at the base of the basin likely developed due to the reactivation of pre-existing foliations, accommodation faults, and joints associated with Permian-Triassic folds. In contrast to equivalent offshore basins, the Duaringa Basin lacks a complex structural style and thick syn-rift sediments, possibly because of the weakening of extensional stresses away from the developing Tasman Sea.

  12. The "normal" elongation of river basins

    Science.gov (United States)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  13. Hydrologic studies within the Pasco Basin

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1982-09-01

    As part of the Basalt Waste Isolation Project (BWIP), hydrologic studies are being performed to provide an evaluation of groundwater systems within the Columbia River Basalt Group. These studies are focused on the Hanford Site, which is located within the Pasco Basin in south-central Washington. Hydrologic studies within the Pasco Basin involve the areal and vertical characterization of hydraulic head, hydrologic properties, and hydrochemical content for the various basalt groundwater systems. Currently, in excess of 150 test intervals have been tested for hydraulic properties, while in excess of 80 horizons have been analyzed for hydrochemical characteristics at about 30 borehole sites within the Pasco Basin. Data obtained from these studies provide input for numerical modeling of groundwater flow and solute transport. Results from numerical modeling are used for evaluating potential waste migration as a function of space and time. In the Pasco Basin, geologic structures influence groundwater flow patterns within basalt aquifer systems. Potentiometric data and hydrochemical evidence collected from recent studies indicate that geologic structures act as areal hydrologic barriers and in some instances, regions of enhanced vertical conductivity. 8 figures

  14. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon

  15. Configuration Management Plan for K Basins

    International Nuclear Information System (INIS)

    Weir, W.R.; Laney, T.

    1995-01-01

    This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, open-quotes Guide for Operational Configuration Management Programclose quotes

  16. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.

    2015-10-01

    Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.

  17. Structural Framework and Architecture of the Paleoproterozoic Bryah and Padbury Basins from Integrated Potential Field and Geological Datasets: Towards an Understanding of the Basin Evolution

    Science.gov (United States)

    Nigro R A Ramos, L.; Aitken, A.; Occhipinti, S.; Lindsay, M.

    2017-12-01

    The Bryah and Padbury Basins were developed along the northern margin of the Yilgarn Craton, in the southern portion of the Capricorn Orogen, which represents a Proterozoic tectonic zone that bounds the Yilgarn and Pilbara Cratons in Western Australia. These basins have been previously interpreted as developing in a rift, back-arc, and retro-arc foreland basins. Recent studies suggest that the Bryah Basin was deposited in a rift setting, while the overlying Padbury Basin evolved in a pro-foreland basin during the collision of the Yilgarn Craton and the Pilboyne block (formed by the Pilbara Craton and the Glenburgh Terrane), occurring in the Glenburgh Orogeny (2005-1960 Ma). This study focuses on characterizing the architecture and structural framework of the Bryah and Padbury Basins through analysis of geophysical and geological datasets, in order to better understand the different stages of the basins evolution. Gravity and magnetic data were used to define the main tectonic units and lithological boundaries, and to delineate major discontinuities in the upper and lower crust, as well as anomalies through a combination of map view interpretation and forward modelling. Geological mapping and drill core observations were linked with the geophysical interpretations. Fourteen magnetic domains are distinguished within the basins, while four main domains based on the Bouguer Anomaly are recognized. The highest gravity amplitude is related with an anomaly trending EW/NE-SW, which is coincident with the voluminous mafic rocks of the Bryah Basin, and may indicate the presence of an approximately 5km thick package of higher density mafic rocks. Magnetic depth estimations also indicate deep magnetic sources up to approximately 4,45km. These results can help to elucidate processes that occurred during the precursor rift of the early stages of the Bryah Basin, add information in relation to the basement control on sedimentation, allow the characterization of the varying

  18. Riddled Basins of Attraction for Synchronized Type-I Intermittency

    DEFF Research Database (Denmark)

    Mancher, Martin; Nordahn, Morten; Mosekilde, Erik

    1998-01-01

    Chaotic mortion resticted to an invariant subspace of total phase space may be associated with basins of attraction that are riddled with holes belonging to the basin of another limiting state. We study the emergence of such basins of two coupled one-dimensional maps, each exhibiting type...

  19. 100KE/KW fuel storage basin surface volumetric factors

    International Nuclear Information System (INIS)

    Conn, K.R.

    1996-01-01

    This Supporting Document presents calculations of surface Volumetric factors for the 100KE and 100KW Fuel Storage Basins. These factors relate water level changes to basin loss or additions of water, or the equivalent water displacement volumes of objects added to or removed from the basin

  20. Integrated Worker Radiation Dose Assessment for the K Basins

    International Nuclear Information System (INIS)

    NELSON, J.V.

    1999-01-01

    This report documents an assessment of the radiation dose workers at the K Basins are expected to receive in the process of removing spent nuclear fuel from the storage basins. The K Basins (K East and K West) are located in the Hanford 100K Area

  1. Palaeocene-early Eocene inversion of the Phuquoc-Kampot Som Basin

    DEFF Research Database (Denmark)

    Fyhn, Michael B. W.; Pedersen, Stig A.S.; Boldreel, Lars Ole

    2010-01-01

    /Pb analysis is used to unravel the basin history. This reveals a hitherto unknown earliest Palaeogene basin inversion associated with the Luconian suturing to SE Asia and the shutdown of palaeo-Pacific subduction underneath SE Asia. The Phuquoc–Kampot Som Basin and the Khorat Basin in Thailand constitute...... the erosional remnants of a larger basin that covered large parts of SE Asia in Late Mesozoic time, and subsequently became segregated during earliest Palaeogene inversion and erosion. Inversion was focused along the several hundred kilometres long Kampot and Khmer–Chanthaburi fold belts that confine...

  2. Temporal and basin-specific population trends of quagga mussels on soft sediment of a multi-basin reservoir

    Science.gov (United States)

    Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.

    2015-01-01

    Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.

  3. Morphometric analysis of the Marmara Sea river basins, Turkey

    Science.gov (United States)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems

  4. Constraining drivers of basin exhumation in the Molasse Basin by combining low-temperature thermochronology, thermal history and kinematic modeling

    Science.gov (United States)

    Luijendijk, Elco; von Hagke, Christoph; Hindle, David

    2017-04-01

    Due to a wealth of geological and thermochronology data the northern foreland basin of the European Alps is an ideal natural laboratory for understanding the dynamics of foreland basins and their interaction with surface and geodynamic processes. The northern foreland basin of the Alps has been exhumed since the Miocene. The timing, rate and cause of this phase of exhumation are still enigmatic. We compile all available thermochronology and organic maturity data and use a new thermal history model, PyBasin, to quantify the rate and timing of exhumation that can explain these data. In addition we quantify the amount of tectonic exhumation using a new kinematic model for the part of the basin that is passively moved above the detachment of the Jura Mountains. Our results show that the vitrinite reflectance, apatite fission track data and cooling rates show no clear difference between the thrusted and folded part of the foreland basin and the undeformed part of the foreland basin. The undeformed plateau Molasse shows a high rate of cooling during the Neogene of 40 to 100 °C, which is equal to >1.0 km of exhumation. Calculated rates of exhumation suggest that drainage reorganization can only explain a small part of the observed exhumation and cooling. Similarly, tectonic transport over a detachment ramp cannot explain the magnitude, timing and wavelength of the observed cooling signal. We conclude that the observed cooling rates suggest large wavelength exhumation that is probably caused by lithospheric-scale processes. In contrast to previous studies we find that the timing of exhumation is poorly constrained. Uncertainty analysis shows that models with timing starting as early as 12 Ma or as late as 2 Ma can all explain the observed data.

  5. Use of hydrological modelling and isotope techniques in Guvenc basin

    International Nuclear Information System (INIS)

    Altinbilek, D.

    1991-07-01

    The study covers the work performed under Project No. 335-RC-TUR-5145 entitled ''Use of Hydrologic Modelling and Isotope Techniques in Guvenc Basin'' and is an initial part of a program for estimating runoff from Central Anatolia Watersheds. The study presented herein consists of mainly three parts: 1) the acquisition of a library of rainfall excess, direct runoff and isotope data for Guvenc basin; 2) the modification of SCS model to be applied to Guvenc basin first and then to other basins of Central Anatolia for predicting the surface runoff from gaged and ungaged watersheds; and 3) the use of environmental isotope technique in order to define the basin components of streamflow of Guvenc basin. 31 refs, figs and tabs

  6. Impact of land-use and climatic changes on hydrology of the Himalayan Basin: A case study of the Kosi Basin

    Science.gov (United States)

    Sharma, Keshav Prasad

    1997-10-01

    Land-use and climatic changes are of major concern in the Himalayan region because of their potential impacts on a predominantly agriculture-based economy and a regional hydrology dominated by strong seasonality. Such concerns are not limited to any particular basin but exist throughout the region including the downstream plain areas. As a representative basin of the Himalayas, we studied the Kosi basin (54,000 km2) located in the mountainous area of the central Himalayan region. We analyzed climatic and hydrologic information to assess the impacts of existing and potential future land-use and climatic changes over the basin. The assessment of anthropogenic inputs showed that the population grew at a compound growth rate of about one percent per annum over the basin during the last four decades. The comparison of land-use data based on the surveys made in the 1960s, and the surveys of 1978-79 did not reveal noticeable trends in land-use change. Analysis of meteorological and hydrological trends using parametric and nonparametric statistics for monthly data from 1947 to 1993 showed some increasing tendency for temperature and precipitation. Statistical tests of hydrological trends indicated an overall decrease of discharge along mainstem Kosi River and its major tributaries. The decreasing trends of streamflow were more significant during low-flow months. Statistical analysis of homogeneity showed that the climatological as well as the hydrological trends were more localized in nature lacking distinct basinwide significance. Statistical analysis of annual sediment time series, available for a single station on the Kosi River did not reveal a significant trend. We used water balance, statistical correlation, and distributed deterministic modeling approaches to analyze the hydrological sensitivity of the basin to possible land-use and climatic changes. The results indicated a stronger influence of basin characteristics compared to climatic characteristics on flow

  7. The effect of non-uniform mass loading on the linear, temporal development of particle-laden shear layers

    Energy Technology Data Exchange (ETDEWEB)

    Senatore, Giacomo [Department of Aerospace Engineering, Universita di Pisa, Pisa 56122 (Italy); Davis, Sean; Jacobs, Gustaaf, E-mail: gjacobs@mail.sdsu.edu [Department of Aerospace Engineering and Engineering Mechanics, San Diego State University, San Diego, 92182 California (United States)

    2015-03-15

    The effect of non-uniformity in bulk particle mass loading on the linear development of a particle-laden shear layer is analyzed by means of a stochastic Eulerian-Eulerian model. From the set of governing equations of the two-fluid model, a modified Rayleigh equation is derived that governs the linear growth of a spatially periodic disturbance. Eigenvalues for this Rayleigh equation are determined numerically using proper conditions at the co-flowing gas and particle interface locations. For the first time, it is shown that non-uniform loading of small-inertia particles (Stokes number (St) <0.2) may destabilize the inviscid mixing layer development as compared to the pure-gas flow. The destabilization is triggered by an energy transfer rate that globally flows from the particle phase to the gas phase. For intermediate St (1 < St < 10), a maximum stabilizing effect is computed, while at larger St, two unstable modes may coexist. The growth rate computations from linear stability analysis are verified numerically through simulations based on an Eulerian-Lagrangian (EL) model based on the inviscid Euler equations and a point particle model. The growth rates found in numerical experiments using the EL method are in very good agreement with growth rates from the linear stability analysis and validate the destabilizing effect induced by the presence of particles with low St.

  8. Performance evaluation of two protective treatments on salt-laden limestones and marble after natural and artificial weathering.

    Science.gov (United States)

    Salvadori, Barbara; Pinna, Daniela; Porcinai, Simone

    2014-02-01

    Salt crystallization is a major damage factor in stone weathering, and the application of inappropriate protective products may amplify its effects. This research focuses on the evaluation of two protective products' performance (organic polydimethylsiloxane and inorganic ammonium oxalate (NH4)2(COO)2·H2O) in the case of a salt load from behind. Experimental laboratory simulations based on salt crystallization cycles and natural weathering in an urban area were carried out. The effects were monitored over time, applying different methods: weight loss evaluation, colorimetric and water absorption by capillarity measurements, stereomicroscope observations, FTIR and SEM-EDS analyses. The results showed minor impact exerted on the short term on stones, particularly those treated with the water repellent, by atmospheric agents compared to salt crystallization. Lithotypes with low salt load (Gioia marble) underwent minor changes than the heavily salt-laden limestones (Lecce and Ançã stones), which were dramatically damaged when treated with polysiloxane. The results suggest that the ammonium oxalate treatment should be preferred to polysiloxane in the presence of soluble salts, even after desalination procedures which might not completely remove them. In addition, the neo-formed calcium oxalate seemed to effectively protect the stone, improving its resistance against salt crystallization without occluding the pores and limiting the superficial erosion caused by atmospheric agents.

  9. Microbial activities in hydrocarbon-laden wastewaters: Impact on diesel fuel stability and the biocorrosion of carbon steel.

    Science.gov (United States)

    Liang, Renxing; Duncan, Kathleen E; Le Borgne, Sylvie; Davidova, Irene; Yakimov, Michail M; Suflita, Joseph M

    2017-08-20

    Anaerobic hydrocarbon biodegradation not only diminishes fuel quality, but also exacerbates the biocorrosion of the metallic infrastructure. While successional events in marine microbial ecosystems impacted by petroleum are well documented, far less is known about the response of communities chronically exposed to hydrocarbons. Shipboard oily wastewater was used to assess the biotransformation of different diesel fuels and their propensity to impact carbon steel corrosion. When amended with sulfate and an F76 military diesel fuel, the sulfate removal rate in the assay mixtures was elevated (26.8μM/d) relative to incubations receiving a hydroprocessed biofuel (16.1μM/d) or a fuel-unamended control (17.8μM/d). Microbial community analysis revealed the predominance of Anaerolineae and Deltaproteobacteria in F76-amended incubations, in contrast to the Beta- and Gammaproteobacteria in the original wastewater. The dominant Smithella-like sequences suggested the potential for syntrophic hydrocarbon metabolism. The general corrosion rate was relatively low (0.83 - 1.29±0.12mpy) and independent of the particular fuel, but pitting corrosion was more pronounced in F76-amended incubations. Desulfovibrionaceae constituted 50-77% of the sessile organisms on carbon steel coupons. Thus, chronically exposed microflora in oily wastewater were differentially acclimated to the syntrophic metabolism of traditional hydrocarbons but tended to resist isoalkane-laden biofuels. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Hack's law applied to young volcanic basin: the Tahiti case

    Science.gov (United States)

    Ye, F.; Sichoix, L.; Barriot, J.; Serafini, J.

    2010-12-01

    We study the channel morphology over the Tahiti island from the Hack’s law perspective. The Hack’s law is an empirical power relationship between basin drainage area and the length of its main channel. It had also been shown that drainage area becomes more elongate with increasing basin size. For typical continental basins, the exponent value lies between 0.47 for basins larger than 260,000 km2 and 0.7 for those spanning less than 20,720 km2 (Muller, 1973). In Tahiti, we extracted 27 principal basins ranging from 7 km2 to 90 km2 from a Digital Terrain Model of the island with a 5 m-resolution. We demonstrate that the Hack’s law still apply for such small basins (correlation coefficient R2=0.7) with an exponent value being approximately 0.5. It appears that the exponent value is influenced by the local geomorphic condition, and does not follow the previous study results (the exponent value decreases with increasing drainage area.) Our exponent value matches the result found w.r.t. debris-flow basins of China for drainage areas less than 100 km2 (Li et al., 2008). Otherwise, the young volcanic basins of Tahiti do not become longer and narrower with increasing basin size (R2=0.1). Besides, there is no correlation between the basin area and the basin convexity (R2=0). This means that there is no statistical change in basin shape with basin size. We present also the drainage area-slope relationship with respect to sediment or transport-limited processes. Key words: Hack’s law, channel morphology, DTM

  11. Water and Benefit Sharing in Transboundary River Basins

    Science.gov (United States)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  12. The MIL-88A-Derived Fe3O4-Carbon Hierarchical Nanocomposites for Electrochemical Sensing

    Science.gov (United States)

    Wang, Li; Zhang, Yayun; Li, Xia; Xie, Yingzhen; He, Juan; Yu, Jie; Song, Yonghai

    2015-01-01

    Metal or metal oxides/carbon nanocomposites with hierarchical superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, novel hierarchical Fe3O4/carbon superstructures have been fabricated based on metal-organic frameworks (MOFs)-derived method. Three kinds of Fe-MOFs (MIL-88A) with different morphologies were prepared beforehand as templates, and then pyrolyzed to fabricate the corresponding novel hierarchical Fe3O4/carbon superstructures. The systematic studies on the thermal decomposition process of the three kinds of MIL-88A and the effect of template morphology on the products were carried out in detail. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and thermal analysis were employed to investigate the hierarchical Fe3O4/carbon superstructures. Based on these resulted hierarchical Fe3O4/carbon superstructures, a novel and sensitive nonenzymatic N-acetyl cysteine sensor was developed. The porous and hierarchical superstructures and large surface area of the as-formed Fe3O4/carbon superstructures eventually contributed to the good electrocatalytic activity of the prepared sensor towards the oxidation of N-acetyl cysteine. The proposed preparation method of the hierarchical Fe3O4/carbon superstructures is simple, efficient, cheap and easy to mass production. It might open up a new way for hierarchical superstructures preparation. PMID:26387535

  13. Geochemical element mobility during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin (Saskatchewan, Canada)

    International Nuclear Information System (INIS)

    Kister, Philippe

    2003-01-01

    In order to understand the mechanisms of migration and deposition of ore elements, it is essential to determine the timing, source, and destination of the geochemical element mass transfers and/or transportation on a scale encompassing the great sedimentary basins. The purpose of this study is to trace and to date the element migrations that occurred during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin, which hosts the world's largest and richest uranium deposits. As this geological environment was proved to be efficient to preserve high grade ore deposits for over more than one billion years, it provides an opportunity to study some natural analogues of deep geological nuclear waste storage. Five research topics were studied: 3D modelling of the distribution of normative minerals and trace elements on a basin-wide scale; U-Pb and Rb-Sr systematics; average chemical age estimation; thermodynamic modelling of the major mineralogical assemblages; U-Pb geochronology of uranium oxides. Some elements have remained immobile (Zr) since their initial sedimentary deposition, or were transferred from one phase to another (Al, Th). Other elements have been transported during fluid flow events that occurred: (1) on a basin wide scale during diagenesis (REE, Y, Sr, Fe), (2) at the unconformity and in the vicinity of the fault zones that represent preferential fluid flow pathways between the basement and the sandstone cover (U, Ni, As, B, Mg, K, Fe, Sr, REE), (3) during the late fault reactivation events associated with the basin uplift (U, Pb, Ni, S, Sr, REE). The successive tectonic events related to the geodynamical context that lead to the formation of these high-grade U concentrations (1460 Ma, 1335 Ma and 1275 Ma in the McArthur River deposit), did not however systematically occur in the whole basin (1275 Ma only at Shea Creek). The exceptionally high grade and tonnages of some deposits seem to be related to a larger number of U

  14. Evolution of Xihulitu basin and its control to uranium ore-formation

    International Nuclear Information System (INIS)

    Guo Qingyin; Li Ziying; Dong Wenming

    2003-01-01

    There is a close relationship between basin filling succession and evolution of the basin. Characteristics of basin evolution can be studied by analyzing the basin filling succession. Two major periods are recognized according to the filling succession and subsequent alteration of the Xihulitu Basin. Evolutionary characteristics of each stage of the basin formation and alteration have been discussed in details. The types and special distribution of uranium metallization are controlled by the scale, connection degree and distribution of sandstone units and impermeable mudstone beds. The environment of uranium ore-formation became favorable as the faults modified the hydrodynamic condition. The basin had been uplifted for a long time after it was filled. Intergranular pores are not destroyed due to the weak mechanical compaction, which is beneficial to groundwater penetrating. Montmorillonitization and zeolitization in some sandstone units are strong because of the high content of volcanic fragments. The major uranium metallization is the phreatic oxidation type. The northern zone of the second sub-basin in the central section of the basin is regarded as the first perspective target for subsequent exploration. (authors)

  15. The Interior Columbia Basin Ecosystem Management Project: scientific assessment.

    Science.gov (United States)

    1999-01-01

    This CD-ROM contains digital versions (PDF) of the major scientific documents prepared for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). "A Framework for Ecosystem Management in the Interior Columbia Basin and Portions of the Klamath and Great Basins" describes a general planning model for ecosystem management. The "Highlighted...

  16. Hot, deep origin of petroleum: deep basin evidence and application

    Science.gov (United States)

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  17. A multi-period superstructure optimisation model for the optimal planning of China's power sector considering carbon dioxide mitigation

    International Nuclear Information System (INIS)

    Zhang Dongjie; Ma Linwei; Liu Pei; Zhang Lili; Li Zheng

    2012-01-01

    Power sector is the largest CO 2 emitter in China. To mitigate CO 2 emissions for the power sector is a tough task, which requires implementation of targeted carbon mitigation policies. There might be multiple forms for carbon mitigation policies and it is still unclear which one is the best for China. Applying a superstructure optimisation model for optimal planning of China's power sector built by the authors previously, which was based on real-life plants composition data of China's power sector in 2009, and could incorporate all possible actions of the power sector, including plants construction, decommission, and application of carbon capture and sequestration (CCS) on coal-fuelled plants, the implementation effects of three carbon mitigation policies were studied quantitatively, achieving a conclusion that the so-called “Surplus-Punishment and Deficit-Award” carbon tax policy is the best from the viewpoint of increasing CO 2 reduction effect and also reducing the accumulated total cost. Based on this conclusion, the corresponding relationships between CO 2 reduction objectives (including the accumulated total emissions reduction by the objective year and the annual emissions reduction in the objective year) were presented in detail. This work provides both directional and quantitative suggestions for China to make carbon mitigation policies in the future. - Highlights: ► We study the best form of carbon mitigation policy for China's power sector. ► We gain quantitative relationship between CO 2 reduction goal and carbon tax policy. ► The “Surplus-Punishment and Deficit-Award” carbon tax policy is the best. ► Nuclear and renewable power and CCS can help greatly reduce CO 2 emissions of the power sector. ► Longer objective period is preferred from the viewpoint of policy making.

  18. Attractors and basins of dynamical systems

    Directory of Open Access Journals (Sweden)

    Attila Dénes

    2011-03-01

    Full Text Available There are several programs for studying dynamical systems, but none of them is very useful for investigating basins and attractors of higher dimensional systems. Our goal in this paper is to show a new algorithm for finding even chaotic attractors and their basins for these systems. We present an implementation and examples for the use of this program.

  19. Direct numerical simulation of droplet-laden isotropic turbulence

    Science.gov (United States)

    Dodd, Michael S.

    Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow

  20. Laboratory Evaluation of Underwater Grouting of CPP-603 Basins

    International Nuclear Information System (INIS)

    Johnson, V.J.; Pao, J.H.; Demmer, R.L.; Tripp, J.L.

    2002-01-01

    A project is underway to deactivate a Fuel Storage Basin. The project specifies the requirements and identifies the tasks that will be performed for deactivation of the CPP- 603 building at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The Fuel Receiving and Storage Building (CPP- 603) was originally used to receive and store spent nuclear fuel from various facilities. The area to undergo deactivation includes the three spent nuclear fuel storage basins and a transfer canal (1.5 million gallons of water storage). Deactivation operations at the task site include management of the hot storage boxes and generic fuel objects, removal of the fuel storage racks, basin sludge, water evaporation and basin grouting, and interior equipment, tanks, and associated components. This includes a study to develop a grout formulation and placement process for this deactivation project. Water will be allowed to passively evaporate to r educe the spread of contamination from the walls of the basin. The basins will be filled with grout, underwater, as the water evaporates to maintain the basin water at a safe level. The objective of the deactivation project is to eliminate potential exposure to hazardous and radioactive materials and eliminate potential safety hazards associated with the CPP-603 building

  1. Seismic stratigraphy and regional unconformity analysis of Chukchi Sea Basins

    Science.gov (United States)

    Agasheva, Mariia; Karpov, Yury; Stoupakova, Antonina; Suslova, Anna

    2017-04-01

    Russian Chukchi Sea Shelf one of petroleum potential province and still one of the most uninvestigated area. North and Sough Chukchi Trough that separated by Wrangel-Hearld Arch have different origin. The main challenge is stratigraphic sequences determination that filled North and South Chukchi basins. The joint tectonic evolution of the territory as Canada basin opening and Brooks Range-Wrangel Herald orogenic events enable to expect the analogous stratigraphy sequences in Russian Part. Analysis of 2D seismic data of Russian and American Chukchi Sea represent the major seismic reflectance that traced throughout the basins. Referring to this data North Chukchi basin includes four seismic stratigraphic sequences - Franklian (pre-Mississippian), Ellesmirian (Upper Devonian-Jurassic), Beaufortian (Jurassic-Lower Cretaceous) and Brookian (Lower Cretaceous-Cenozoic), as it is in North Slope Alaska [1]. South Chukchi basin has different tectonic nature, representing only Franclian basement and Brookian sequences. Sedimentary cover of North Chukchi basins starts with Ellesmirian sequence it is marked by bright reflector that separates from chaotic folded Franklian sequence. Lower Ellesmirian sequence fills of grabens that formed during upper Devonian rifting. Devonian extension event was initiated as a result of Post-Caledonian orogenic collapse, terminating with the opening of Arctic oceans. Beaufortian sequence is distinguished in Colville basin and Hanna Trough by seismically defined clinoforms. Paleozoic and Mesozoic strata are eroded by regional Lower Cretaceous Unconformity (LCU) linked with Canada basin opening. LCU is defined at seismic by angular unconformity, tracing at most arctic basins. Lower Cretaceous erosion and uplift event are of Hauterivian to Aptian age in Brooks Range and the Loppa High uplift refer to the early Barremian. The Lower Cretaceous clinoform complex downlaps to LCU horizon and filling North Chukchi basin (as in Colville basin Alska

  2. Paleohydrogeology of the San Joaquin basin, California

    Science.gov (United States)

    Wilson, A.M.; Garven, G.; Boles, J.R.

    1999-01-01

    Mass transport can have a significant effect on chemical diagenetic processes in sedimentary basins. This paper presents results from the first part of a study that was designed to explore the role of an evolving hydrodynamic system in driving mass transport and chemical diagenesis, using the San Joaquin basin of California as a field area. We use coupled hydrogeologic models to establish the paleohydrogeology, thermal history, and behavior of nonreactive solutes in the basin. These models rely on extensive geological information and account for variable-density fluid flow, heat transport, solute transport, tectonic uplift, sediment compaction, and clay dehydration. In our numerical simulations, tectonic uplift and ocean regression led to large-scale changes in fluid flow and composition by strengthening topography-driven fluid flow and allowing deep influx of fresh ground water in the San Joaquin basin. Sediment compaction due to rapid deposition created moderate overpressures, leading to upward flow from depth. The unusual distribution of salinity in the basin reflects influx of fresh ground water to depths of as much as 2 km and dilution of saline fluids by dehydration reactions at depths greater than ???2.5 km. Simulations projecting the future salinity of the basin show marine salinities persisting for more than 10 m.y. after ocean regression. Results also show a change from topography-to compaction-driven flow in the Stevens Sandstone at ca. 5 Ma that coincides with an observed change in the diagenetic sequence. Results of this investigation provide a framework for future hydrologic research exploring the link between fluid flow and diagenesis.

  3. Retrodeforming the Sivas Basin (Turkey): Structural style of the central Anatolian basins and their integration in the geodynamic framework of Eastern Anatolia

    Science.gov (United States)

    Legeay, Etienne; Ringenbach, Jean-Claude; Callot, Jean-Paul; Mohn, Geoffroy; Kavak, Kaan

    2017-04-01

    Anatolia is the result of the amalgamation of Gondwandian microcontinents against Eurasia active margin. These were originally separated by several Neotethyan oceanic domains consumed by north-dipping subductions. Prior to the continental collision, regional convergence resulted in an obduction event, from north to south in Campanian time, which led to the emplacement of ophiolite nappes and ophiolitic mélanges onto the Tauride passive margin. Several sedimentary basins subsequently developed above the former sutures zones recorded the long-lasting geological evolution of the Anatolian domain from Late Cretaceous to Present The Sivas Basin is all together the richest, the most studied and also most complex of the group of Tertiary basins. The Sivas Basin formed above the northern leading edge of the Tauride platform, the Kırşehir micro-continent, the edge of the Pontide arc and the related sutures. Its complex structure is that of a fold-and-thrust belt with syn-orogenic salt tectonics. After the obduction, the Sivas basin recorded a relative quiet tectonic phase from Maastrichtian to Paleocene with basinal pelagic sedimentation and carbonate platform emplacement on its southern edge. Then shortening resumed in the Early Eocene with the development of north-verging thrusts. It is recorded by a coarse clastic input, with conglomeratic deltas fans grading up to basinal turbidites until the Late Eocene. Then the basin is progressively isolated and becomes an isolated foreland in which a thick evaporite formation deposited. Oligocene to Miocene continental clastics deposition was then mainly controlled by halokinesis: minibasin, salt ridges and salt sheets development. A first canopy is attributed to the second pulse of contraction from Late-Oligocene to Middle Miocene. This second stage end with the formation of back-thrust within the Sivas Basin and southward as a passive roof above a pre-salt triangle zone. This study relies both on extensive fieldwork (4 Ph

  4. Surface-water resources of Polecat Creek basin, Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  5. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions

    Science.gov (United States)

    Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing

    2014-03-01

    Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.

  6. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  7. Regionalization of the Upper Tana Basin of Kenya Using Stream ...

    African Journals Online (AJOL)

    Regionalization of the Upper Tana Basin of Kenya Using Stream Flow Records. ... river gauge stations in the basin using the empirical orthogonal function analysis ... the study basin to be grouped into four homogenous hydrological zones that ...

  8. Did the Bering Sea Form as a Cenozoic Backarc Basin?

    Science.gov (United States)

    Stern, R. J.; Barth, G. A.; Scheirer, D. S.; Scholl, D. W.

    2012-12-01

    Understanding the origins of Bering Sea marginal basins (Aleutian, Bowers, and Komandorsky basins; AB, BB, KB) is key for reconstructing N. Pacific tectonic and magmatic evolution. New acquisitions and recompilations of MCS, OBS, and potential field data (Barth et al. poster. this session) for USGS Extended Continental Shelf project and selection of Aleutians as GeoPrisms Subduction Cycles and Deformation focus site stimulate reconsideration of BB, KB, and especially AB origins. AB has long been regarded as N. Pacific crust trapped when the Aleutian subduction began ~45-50 Ma. BB and KB probably formed together as Miocene backarc basins. Presence of Oligo-Miocene arc volcanics on Bowers and Shirshov ridges suggests that these are remnant arcs, orphaned by AB and KB opening. Seven lines of evidence suggest that AB formed as a Paleogene backarc basin: 1) AB heatflow suggests an age of about 44 Ma (Langseth et al 1980 JGR). 2) Formation of NNW-trending rift basins on Bering shelf (Navarin, Pribilof, and St. George basins) in Paleogene time indicate extension at this time. 3) The early Paleogene "red unconformity" of the Beringian margin could indicate uplift, erosion, and subsidence associated with AB opening. 4) ~N-S magnetic anomalies in AB contrasts with E-W Kula anomalies on N. Pacific, indicating that the two tracts of oceanic crust formed at different spreading ridges. 5) Thicker sediment in AB (2-4 km) vs. BB and KB (oceanic crust.ectonic scenario for formation of Aleutian Arc and Bering Sea basins. Green = present land; yellow = shelf; AB = Aleutian Basin; KB = Komandorsky Basin; BB = Bowers Basin; SR = Shirshov Ridge, BR = Bowers Ridge; Red = active volcanism and spreading ; Blue = extinct volcanism and spreading

  9. Chapter 48: Geology and petroleum potential of the Eurasia Basin

    Science.gov (United States)

    Moore, Thomas E.; Pitman, Janet K.

    2011-01-01

    The Eurasia Basin petroleum province comprises the younger, eastern half of the Arctic Ocean, including the Cenozoic Eurasia Basin and the outboard part of the continental margin of northern Europe. For the USGS petroleum assessment (CARA), it was divided into four assessment units (AUs): the Lena Prodelta AU, consisting of the deep-marine part of the Lena Delta; the Nansen Basin Margin AU, comprising the passive margin sequence of the Eurasian plate; and the Amundsen Basin and Nansen Basin AUs which encompass the abyssal plains north and south of the Gakkel Ridge spreading centre, respectively. The primary petroleum system thought to be present is sourced in c. 50–44 Ma (Early to Middle Eocene) condensed pelagic deposits that could be widespread in the province. Mean estimates of undiscovered, technically recoverable petroleum resources include <1 billion barrels of oil (BBO) and about 1.4 trillion cubic feet (TCF) of nonassociated gas in Lena Prodelta AU, and <0.4 BBO and 3.4 TCF nonassociated gas in the Nansen Basin Margin AU. The Nansen Basin and Amundsen Basin AUs were not quantitatively assessed because they have less than 10% probability of containing at least one accumulation of 50 MMBOE (million barrels of oil equivalent).

  10. Cretaceous sedimentology of the Barmer Basin, Rajasthan, India

    OpenAIRE

    Beaumont, Hazel

    2017-01-01

    The Barmer Basin, western India, is a well-known and prospected petroleum system. However, the Lower Cretaceous Ghaggar-Hakra Formation has not been recognised as basin fill and not documented prior to this study. The formation outcrops in rotational fault blocks at the Sarnoo Hills and surrounding areas, on the eastern Barmer Basin margin. The thesis here describes and analyses the nature and evolution of the formation at both outcrop and within the subsurface, producing facies and depositio...

  11. Modeling Fluid Flow in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Faille I.

    2014-07-01

    Full Text Available This paper presents a basin simulator designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time geometry obtained by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a structured mesh based on vertical pillars nor a multi-block structure associated to the fault network. The mesh follows the sediments during the evolution of the basin. It deforms continuously with respect to time to account for sedimentation, erosion, compaction and kinematic displacements. The simulation domain is structured in layers, in order to handle properly the corresponding heterogeneities and to follow the sedimentation processes (thickening of the layers. In each layer, the mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid, prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the layered structure of the basin. Faults are handled as internal boundaries across which the mesh is non-matching. Different models are proposed for fault behavior such as impervious fault, flow across fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation, which ensures conservation of physical quantities (mass of fluid, heat at a discrete level and which accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the capabilities of this new simulator.

  12. Open Drainage and Detention Basin Combined System Optimization

    Directory of Open Access Journals (Sweden)

    M. E. Banihabib

    2017-01-01

    Full Text Available Introduction: Since flooding causes death and economic damages, then it is important and is one of the most complex and destructive natural disaster that endangers human lives and properties compared to any other natural disasters. This natural disaster almost hit most of countries and each country depending on its policy deals with it differently. Uneven intensity and temporal distribution of rainfall in various parts of Iran (which has arid and semiarid climate causes flash floods and leads to too much economic damages. Detention basins can be used as one of the measures of flood control and it detains, delays and postpones the flood flow. It controls floods and affects the flood directly and rapidly by temporarily storing of water. If the land topography allows the possibility of making detention basin with an appropriate volume and quarries are near to the projects for construction of detention dam, it can be used, because of its faster effect comparing to the other watershed management measures. The open drains can be used alone or in combination with detention basin instead of detention basin solitarily. Since in the combined system of open and detention basin the dam height is increasing in contrast with increasing the open drainage capacity, optimization of the system is essential. Hence, the investigation of the sensitivity of optimized combined system (open drainage and detention basin to the effective factors is also useful in appropriately design of the combined system. Materials and Methods: This research aims to develop optimization model for a combined system of open drainage and detention basins in a mountainous area and analyze the sensitivity of optimized dimensions to the hydrological factors. To select the dam sites for detention basins, watershed map with scale of 1: 25000 is used. In AutoCAD environment, the location of the dam sites are assessed to find the proper site which contains enough storage volume of the detention

  13. Fishes of the White River basin, Indiana

    Science.gov (United States)

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  14. Water reform in the Murray-Darling Basin

    Science.gov (United States)

    Connell, Daniel; Grafton, R. Quentin

    2011-12-01

    In Australia's Murray-Darling Basin the Australian and state governments are attempting to introduce a system of water management that will halt ongoing decline in environmental conditions and resource security and provide a robust foundation for managing climate change. This parallels similar efforts being undertaken in regions such as southern Africa, the southern United States, and Spain. Central to the project is the Australian government's Water Act 2007, which requires the preparation of a comprehensive basin plan expected to be finalized in 2011. This paper places recent and expected developments occurring as part of this process in their historical context and examines factors that could affect implementation. Significant challenges to the success of the basin plan include human resource constraints, legislative tensions within the Australian federal system, difficulties in coordinating the network of water-related agencies in the six jurisdictions with responsibilities in the Murray-Darling Basin, and social, economic, and environmental limitations that restrict policy implementation.

  15. Burial and thermal history of the Paradox Basin, Utah and Colorado, and petroleum potential of the Middle Pennsylvanian Paradox Basin

    Science.gov (United States)

    Nuccio, Vito F.; Condon, Steven M.

    1996-01-01

    The Ismay?Desert Creek interval and Cane Creek cycle of the Alkali Gulch interval of the Middle Pennsylvanian Paradox Formation in the Paradox Basin of Utah and Colorado contain excellent organic-rich source rocks having total organic carbon contents ranging from 0.5 to 11.0 percent. The source rocks in both intervals contain types I, II, and III organic matter and are potential source rocks for both oil and gas. Organic matter in the Ismay?Desert Creek interval and Cane Creek cycle of the Alkali Gulch interval (hereinafter referred to in this report as the ?Cane Creek cycle?) probably is more terrestrial in origin in the eastern part of the basin and is interpreted to have contributed to some of the gas produced there. Thermal maturity increases from southwest to northeast for both the Ismay?Desert Creek interval and Cane Creek cycle, following structural and burial trends throughout the basin. In the northernmost part of the basin, the combination of a relatively thick Tertiary sedimentary sequence and high basinal heat flow has produced very high thermal maturities. Although general thermal maturity trends are similar for both the Ismay?Desert Creek interval and Cane Creek cycle, actual maturity levels are higher for the Cane Creek due to the additional thickness (as much as several thousand feet) of Middle Pennsylvanian section. Throughout most of the basin, the Ismay?Desert Creek interval is mature and in the petroleum-generation window (0.10 to 0.50 production index (PI)), and both oil and gas are produced; in the south-central to southwestern part of the basin, however, the interval is marginally mature (0.10 PI) in the central part of the basin and is overmature (past the petroleum-generation window (>0.50 PI)) throughout most of the eastern part of the basin. The Cane Creek cycle generally produces oil and associated gas throughout the western and central parts of the basin and thermogenic gas in the eastern part of the basin. Burial and thermal

  16. Tectonics vs. Climate efficiency in triggering detrital input in sedimentary basins: the Po Plain-Venetian-Adriatic Foreland Basin (Northern Italy)

    Science.gov (United States)

    Amadori, Chiara; Di Giulio, Andrea; Toscani, Giovanni; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Fantoni, Roberto

    2017-04-01

    The relative efficiency of tectonics respect to climate in triggering erosion of mountain belts is a classical but still open debate in geosciences. The fact that data both from tectonically active and inactive mountain regions in different latitudes, record a worldwide increase of sediment input to sedimentary basins during the last million years concomitantly with the cooling of global climate and its evolution toward the modern high amplitude oscillating conditions pushed some authors to conclude that Pliocene-Pleistocene climate has been more efficient than tectonics in triggering mountain erosion. Po Plain-Venetian-Adriatic Foreland System, made by the relatively independent Po Plain-Northern Adriatic Basin and Venetian-Friulian Basin, provides an ideal case of study to test this hypothesis and possibly quantify the difference between the efficiency of the two. In fact it is a relatively closed basin (i.e. without significant sediment escape) with a fairly continuous sedimentation (i.e. with a quite continuous sedimentary record) completely surrounded by collisional belts (Alps, Northern Apennines and Dinarides) that experienced only very weak tectonic activity since Calabrian time, i.e. when climate cooling and cyclicity increased the most. We present a quantitative reconstruction of the sediment flow delivered from the surrounding mountain belts to the different part of the basin during Pliocene-Pleistocene time. This flow was obtained through the 3D reconstruction of the Venetian-Friulian and Po Plain Northern Adriatic Basins architecture, performed by means of the seismic-based interpretation and time-to-depth conversion of six chronologically constrained surfaces (seismic and well log data from courtesy of ENI); moreover, a 3D decompaction of the sediment volume bounded by each couple of surfaces has been included in the workflow, in order to avoid compaction-related bias. The obtained results show in both Basins a rapid four-folds increase of the

  17. Identification of basin characteristics influencing spatial variation of river flows

    NARCIS (Netherlands)

    Mazvimavi, D.; Burgers, S.L.G.E.; Stein, A.

    2006-01-01

    The selection of basin characteristics that explain spatial variation of river flows is important for hydrological regionalization as this enables estimation of flow statistics of ungauged basins. A direct gradient analysis method, redundancy analysis, is used to identify basin characteristics,

  18. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  19. HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K AREA

    International Nuclear Information System (INIS)

    CHRONISTER, G.B.

    2005-01-01

    This paper discusses selecting and implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water. sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal

  20. Drowning unconformity of lacustrine rift basins: A case study from the Dongying Sag in Bohai Bay Basin, China

    Science.gov (United States)

    Chen, R.; Fan, J.

    2015-12-01

    The concept of drowning unconformity of lacustrine rift basins was proposed in this paper. This paper utilized 3D seismic data, well-log and the principles methods associated with structural geology, sedimentology and geochemistry, to analyze the drowning unconformity and discuss the origins of drowning unconformity in Dongying Sag in Bohai Bay Basin.Researching on it is not only important for a better understanding of tectonic evolution, palaeogeography and sedimentation of hydrocarbon source rocks, but also a vital guiding significance for the exploration of beach-bar sandstone reservoirs and shale oil.1. The concept of drowning unconformity of lacustrine rift basins is defined. With the consequences of rapid tectonic subsidence in basin, the sharp rise of lake-level and the increased rate of accommodation(A) in basin exceeded the rate of sediment supply(S),namely A>>S, the basin suddenly transformed into deep-water settings from shallow-water settings with sudden change of sediment transport and sediment dispersal patterns. 2.The sequence surface between Sha4 and Sha3 Member of Shahejie Formation is the drowning unconformity(43.5Ma). There are the sedimentary association of the reefs in shallow lacustrine, beach-bar sandstones and glutenite fan bodies under the surface. By contrast, there are the sedimentary association of deep-lake oil shales and shales over the surface. The drowning unconformity in Dongying Sag is a tectonic revolution surface which is changed from extensional tectonics to transtensional tectonics and it is also the surface of discontinuity from shallow lacustrine to deep lacustrine. The responses to sudden changes appeared in the parameters of geophysics, geochemistry and paleontology. 3. With the penetration of India into Asia plate in NNE trending,the subduction zones of Pacific Plate retreated. It caused the rapid downwelling of asthenospheric mantle, followed by the extensive drowning unconformity.