WorldWideScience

Sample records for basin monitoring annual

  1. The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Contor, Craig R.; Harris, Robin; King, Marty [Confederated Tribes of the Umatilla Indian Reservation

    2009-06-10

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L.96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). The UBNPMEP is coordinated with two Oregon Department of Fish and Wildlife (ODFW) research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. This project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 1990-005-00, Umatilla Hatchery M & E) and smolt outmigration (project No. 1989-024-01, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan, the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (CTUIR and ODFW 2006). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPCC 2004). The Umatilla Basin M&E plan developed along with efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha), coho

  2. Umatilla Basin Natural Production Monitoring and Evaluation; 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Jesse D.M.; Contor, Craig C.; Hoverson, Eric (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2005-10-01

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). UBNPMEP is coordinated with two ODFW research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. Our project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 19000500, Umatilla Hatchery M & E) and smolt outmigration (project No. 198902401, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects comprehensively monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. Table 1 outlines relationships with other BPA supported projects. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan (ODFW and CTUIR 2004), the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (Schwartz & Cameron Under Revision). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPPC 2004). The need for monitoring the natural production of salmonids in the Umatilla River

  3. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2001-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  4. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2001-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  5. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2002-09-21

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  6. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  7. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  8. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  9. Deleware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2000-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  10. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2005-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  11. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2002-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  12. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2004-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  13. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    2003-01-01

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  14. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.

    Science.gov (United States)

    He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan

    2009-01-01

    Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

  15. Umatilla Basin natural production monitoring and evaluation. Annual progress report, 1994--1995

    International Nuclear Information System (INIS)

    Contor, C.R.; Hoverson, E.; Kissner, P.; Volkman, J.

    1996-04-01

    This report summarizes the activities of the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME) from September 30, 1994 to September 29, 1995. This program was funded by Bonneville Power Administration and was managed under the Fisheries Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation. An estimated 36.7 km (22.6 miles) of stream habitat were inventoried on the Umatilla River, Moonshine, Mission, Cottonwood and Coonskin Creeks. A total of 384 of 3,652 (10.5%) habitat units were electrofished. The number of juvenile fish captured follows: 2,953 natural summer steelhead (including resident rainbow trout; Oncorhynchus mykiss), one hatchery steelhead, 341 natural chinook salmon (O. tshawytscha), 163 natural coho salmon (O. kisutch), five bull trout (Salvelinus confluentus), 185 mountain whitefish (Prosopium williamsoni), and six northern squawfish (Ptychoicheilus oregonensis). The expanded population estimate for the areas surveyed was 73,716 salmonids with a mean density of 0.38 fish/m 2 . Relative salmonid abundance, seasonal distribution and habitat utilization were monitored at index sites throughout the basin. During index site monitoring, the following species were collected in addition to those listed above: american shad (Alosa sapidissima), smallmouth bass (Micropterus dolomieu), carp (Cyprinus carpio) and chiselmouth (Acrocheilus alutaceus). Thirty-nine sites were electrofished during the spring and summer seasons, while 36 sites were sampled in the fall season. A study of the migration movements and homing requirements of adult salmonids in the Umatilla River was conducted during the 1994-95 return years. Radio telemetry was used to evaluate the movements of adult salmonids past diversion dams in the lower Umatilla River and to determine migrational movements of salmonids following upstream transport

  16. John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring; Fish Research Project Oregon, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W.; Claire, Glenda M.; Seals, Jason

    2002-01-01

    The four objectives of this report are: (1) Estimate annual spawner escapement and number of spring chinook salmon redds in the John Day River basin; (2) Determine sex ratio, age composition, length-at-age of spawners, and proportion of natural spawners that are hatchery origin strays; (3) Determine adequacy of historic index surveys for indexing spawner abundance and for detecting changes in spawner distribution through time; and (4) Estimate smolt-to-adult survival for spring chinook salmon emigrating from the John Day River basin.

  17. Germination phenology of some Great Basin native annual forb species

    Science.gov (United States)

    Tara A. Forbis

    2010-01-01

    Great Basin native plant communities are being replaced by the annual invasive cheatgrass Bromus tectorum. Cheatgrass exhibits a germination syndrome that is characteristic of facultative winter annuals. Although perennials dominate these communities, native annuals are present at many sites. Germination timing is often an important predictor of competitive...

  18. Umatilla Hatchery monitoring and evaluation : annual report, 1999; ANNUAL

    International Nuclear Information System (INIS)

    2001-01-01

    The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematic application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the success of achieving

  19. Results from the Big Spring basin water quality monitoring and demonstration projects, Iowa, USA

    Science.gov (United States)

    Rowden, R.D.; Liu, H.; Libra, R.D.

    2001-01-01

    Agricultural practices, hydrology, and water quality of the 267-km2 Big Spring groundwater drainage basin in Clayton County, Iowa, have been monitored since 1981. Land use is agricultural; nitrate-nitrogen (-N) and herbicides are the resulting contaminants in groundwater and surface water. Ordovician Galena Group carbonate rocks comprise the main aquifer in the basin. Recharge to this karstic aquifer is by infiltration, augmented by sinkhole-captured runoff. Groundwater is discharged at Big Spring, where quantity and quality of the discharge are monitored. Monitoring has shown a threefold increase in groundwater nitrate-N concentrations from the 1960s to the early 1980s. The nitrate-N discharged from the basin typically is equivalent to over one-third of the nitrogen fertilizer applied, with larger losses during wetter years. Atrazine is present in groundwater all year; however, contaminant concentrations in the groundwater respond directly to recharge events, and unique chemical signatures of infiltration versus runoff recharge are detectable in the discharge from Big Spring. Education and demonstration efforts have reduced nitrogen fertilizer application rates by one-third since 1981. Relating declines in nitrate and pesticide concentrations to inputs of nitrogen fertilizer and pesticides at Big Spring is problematic. Annual recharge has varied five-fold during monitoring, overshadowing any water-quality improvements resulting from incrementally decreased inputs. ?? Springer-Verlag 2001.

  20. Hydrological changes impacts on annual runoff distribution in seasonally dry basins

    Science.gov (United States)

    Viola, F.; Caracciolo, D.; Feng, X.

    2017-12-01

    Runoff is expected to be modified in the next future by climate change as well as by land use change. Given its importance for water supply and ecosystem functioning, it is therefore imperative to develop adaptation strategies and new policies for regional water resources management and planning. To do so, the identification and attribution of natural flow regime shifts as a result of climate and land use changes are of crucial importance. In this context, the Budyko's curve has begun to be widely adopted to separate the contributions of climate and land use changes to the variation of runoff over long-term periods by using the multi-year averages of hydrological variables. In this study, a framework based on Fu's equation is proposed and applied to separate the impacts of climate and land use changes on the future annual runoff distribution in seasonally dry basins, such as those in Mediterranean climates. In particular, this framework improves a recently developed method to obtain annual runoff probability density function (pdf) in seasonally dry basins from annual rainfall and potential evapotranspiration statistics, and from knowledge of the Fu's equation parameter ω. The effect of climate change has been taken into account through the variation of the first order statistics of annual rainfall and potential evapotranspiration, consistent with general circulation models' outputs, while the Fu's equation parameter ω has been changed to represent land use change. The effects of the two factors of change (i.e., climate and land use) on the annual runoff pdf have been first independently and then jointly analyzed, by reconstructing the annual runoff pdfs for the current period and, based on likely scenarios, within the next 100 years. The results show that, for large basins, climate change is the dominant driver of the decline in annual runoff, while land use change is a secondary but important factor.

  1. Umatilla Basin Natural Production Monitoring and Evaluation; 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Contor, Craig R.; Kissner, Paul; Volkman, Jed [Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR (United States). Dept. of Natural Resources

    1997-08-01

    This report summarizes the activities of the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME) from September 30, 1995 to September 29, 1996. This program was funded by Bonneville Power Administration and was managed under the Fisheries Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation. The goal was to evaluate the implementation of the Umatilla River Basin fisheries restoration plan with respect to natural production, adult passage, and tribal harvest. An estimated 56.1 river miles (RM) of habitat was inventoried on the lower Umatilla River (RM 0--56.1) from June 4, to August 1, 1996. The majority of the lower River was found to be too polluted and physically altered to provide suitable rearing or migration habitat for salmonids during the summer. High water temperatures, irrigation withdrawals, altered channels, and urban and agricultural pollution all contributed to degrade the lower Umatilla River. Small springs provided cooler waters and created small areas that were suitable for salmonid rearing. The river below the mouth of Mckay Creek (RM 27.2 to 50.6) was also cooler and more suitable to salmonid rearing when water was released from Mckay Dam. Two hundred sixty-three of 1,832 (14.4%) habitat units were electrofished from June 19 to August 29, 1996. The number of natural juvenile salmonids captured between RM 1.5--52.4 follow: (1) 141 juvenile steelhead (including resident rainbow trout; Oncoryhnchus mykiss), (2) 13 mountain whitefish (Prosopium williamsoni, including adults), (3) four chinook salmon (O. tshawytscha), and (4) two coho salmon (O. kisutch). The expanded population estimate for the areas surveyed was 2,445 salmonids. Mean density was 0.147 salmonids/100 square meter. Mean density of fast water habitat types was 4.5 times higher than slow water types (0.358 and 0.079 s/100 m{sup 2}).

  2. Umatilla Basin natural production monitoring and evaluation. Annual report 1995-1996

    International Nuclear Information System (INIS)

    Contor, C.R.; Hoverson, E.; Kissner, P.; Volkman, J.

    1997-08-01

    This report summarizes the activities of the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME) from September 30, 1995 to September 29, 1996. This program was funded by Bonneville Power Administration and was managed under the Fisheries Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation. The goal was to evaluate the implementation of the Umatilla River Basin fisheries restoration plan with respect to natural production, adult passage, and tribal harvest. An estimated 56.1 river miles (RM) of habitat was inventoried on the lower Umatilla River (RM 0--56.1) from June 4, to August 1, 1996. The majority of the lower River was found to be too polluted and physically altered to provide suitable rearing or migration habitat for salmonids during the summer. High water temperatures, irrigation withdrawals, altered channels, and urban and agricultural pollution all contributed to degrade the lower Umatilla River. Small springs provided cooler waters and created small areas that were suitable for salmonid rearing. The river below the mouth of Mckay Creek (RM 27.2 to 50.6) was also cooler and more suitable to salmonid rearing when water was released from Mckay Dam. Two hundred sixty-three of 1,832 (14.4%) habitat units were electrofished from June 19 to August 29, 1996. The number of natural juvenile salmonids captured between RM 1.5--52.4 follow: (1) 141 juvenile steelhead (including resident rainbow trout; Oncoryhnchus mykiss), (2) 13 mountain whitefish (Prosopium williamsoni, including adults), (3) four chinook salmon (O. tshawytscha), and (4) two coho salmon (O. kisutch). The expanded population estimate for the areas surveyed was 2,445 salmonids. Mean density was 0.147 salmonids/100 square meter. Mean density of fast water habitat types was 4.5 times higher than slow water types (0.358 and 0.079 s/100 m 2 )

  3. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; James, Brenda B.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al

  4. Drought monitoring in the Seybouse basin (Algeria over the last decades

    Directory of Open Access Journals (Sweden)

    Khezazna Amina

    2017-06-01

    Full Text Available Algeria is amongst the African countries most affected by climate change impacts especially by drought which caused considerable economic losses in the past decades. In this paper, drought monitoring for the period between 1970 and 2011 was conducted in the Seybouse watershed by analysing annual rainfall data in terms of variability and trends along with the calculation of the standardized precipitation index (SPI. The results indicated important inter-annual rainfall fluctuation and a significant increasing trend. The estimated drought indices indicated that the Seybouse watershed experienced in the past a long dry period with a moderate severity followed by a long wet period at the majority of the study area. Moreover, the interpolation of the standardized precipitation indices (SPI on the entire Seybouse basin in GIS allowed visualizing and evaluating the spatial-temporal evolution of drought in the region which should help the decision-makers in the management of water resources, agriculture and other activities that may be affected by drought.

  5. River monitoring from satellite radar altimetry in the Zambezi River basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-07-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  6. Yakima River species interactions studies annual report, 2000; ANNUAL

    International Nuclear Information System (INIS)

    Pearsons, Todd N.

    2001-01-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the ninth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in the Yakima River basin. Data have been collected prior to supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and develop methods to monitor interactions and supplementation success. Major topics of this report are associated with the chronology of ecological interactions that occur throughout a supplementation program, implementing NTT monitoring prescriptions for detecting potential impacts of hatchery supplementation, hatchery fish interactions, and monitoring fish predation indices. This report is organized into four chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 2000 and December 31, 2000 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns. Summaries of each of the chapters included in this report are described

  7. Studying Basin Water Balance Variations at Inter- and Intra-annual Time Scales Based On the Budyko Hypothesis and GRACE Gravimetry Satellite Observations

    Science.gov (United States)

    Shen, H.

    2017-12-01

    Increasing intensity in global warming and anthropogenic activities has triggered significant changes over regional climates and landscapes, which, in turn, drive the basin water cycle and hydrological balance into a complex and unstable state. Budyko hypothesis is a powerful tool to characterize basin water balance and hydrological variations at long-term average scale. However, due to the absence of basin water storage change, applications of Budyko theory to the inter-annual and intra-annual time scales has been prohibited. The launch of GRACE gavimetry satellites provides a great opportunity to quantify terrestrial water storage change, which can be further introduced into the Budyko hypothesis to reveal the inter- and intra-annual response of basin water components under impacts of climate variability and/or human activities. This research targeted Hai River Basin (in China) and Murray-Darling Basin (in Australia), which have been identified with a continuous groundwater depletion trend as well as impacts by extreme climates in the past decade. This can help us to explore how annual or seasonal precipitation were redistributed to evapotranspiration and runoff via changing basin water storage. Moreover, the impacts of vegetation on annual basin water balance will be re-examined. Our results are expected to provide deep insights about the water cycle and hydrological behaviors for the targeted basins, as well as a proof for a consideration of basin water storage change into the Budyko model at inter- or intra-annual time steps.

  8. Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) - Year 5 : Annual Report for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Marmorek, David R.; Porter, Marc; Pickard, Darcy; Wieckowski, Katherine

    2008-11-19

    The Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) is a coordinated effort to improve the quality, consistency, and focus of fish population and habitat data to answer key monitoring and evaluation questions relevant to major decisions in the Columbia River Basin. CSMEP was initiated by the Columbia Basin Fish and Wildlife Authority (CBFWA) in October 2003. The project is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's Fish and Wildlife Program (NPCC). CSMEP is a major effort of the federal state and Tribal fish and wildlife managers to develop regionally integrated monitoring and evaluation (M&E) across the Columbia River Basin. CSMEP has focused its work on five monitoring domains: status and trends monitoring of populations and action effectiveness monitoring of habitat, harvest, hatcheries, and the hydrosystem. CSMEP's specific goals are to: (1) interact with federal, state and tribal programmatic and technical entities responsible for M&E of fish and wildlife, to ensure that work plans developed and executed under this project are well integrated with ongoing work by these entities; (2) document, integrate, and make available existing monitoring data on listed salmon, steelhead, bull trout and other fish species of concern; (3) critically assess strengths and weaknesses of these data for answering key monitoring questions; and (4) collaboratively design, implement and evaluate improved M&E methods with other programmatic entities in the Pacific Northwest. During FY2008 CSMEP biologists continued their reviews of the strengths and weaknesses (S&W) of existing subbasin inventory data for addressing monitoring questions about population status and trends at different spatial and temporal scales. Work was focused on Lower Columbia Chinook and steelhead, Snake River fall Chinook, Upper Columbia Spring Chinook and steelhead, and Middle Columbia River Chinook and steelhead. These

  9. Calendar year 1996 annual groundwater monitoring report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with these waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry

  10. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-09-01

    During second quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Plant. This report gives the results of the analyses of groundwater from the H-Area Seepage Basin

  11. Annual budget of Gd and related Rare Earth Elements in a river basin heavily disturbed by anthropogenic activities.

    Science.gov (United States)

    Hissler, Christophe; Stille, Peter; Guignard, Cédric; François Iffly, Jean; Pfister, Laurent

    2014-05-01

    The real environmental impact of micropollutants in river systems can be difficult to assess, essentially due to uncertainties in the estimation of the relative significance of both anthropogenic and natural sources. The natural geochemical background is characterized by important variations at global, regional or local scales. Moreover, elements currently considered to be undisturbed by human activities and used as tracers of continental crust derived material have become more and more involved in industrial or agricultural processes. The global production of lanthanides (REE), used in industry, medicine and agriculture, for instance, has increased exponentially from a few tons in 1950 to projected 185 kt in 2015. Consequently, these new anthropogenic contributions impact the natural cycle of the REE. Gd and related REE are now worldwide recognized as emergent micropollutants in river systems. Nevertheless, there is still a gap concerning their temporal dynamics in rivers and especially the quantification of both the anthropogenic and natural contributions in surface water. The acquisition of such quantitative information is of primordial interest because elements from both origins may present different bioavailability and toxicity levels. Working at the river basin scale allows for quantifying micropollutant fluxes. For this reason, we monitored water quality and discharge of the Alzette River (Luxembourg, Europe) over two complete hydrological cycles (2010-2013). The substantial contamination, is principally due to the steel industry in the basin, which has been active from 1875 until now, and to the related increase of urban areas. The particulate and dissolved fractions of river water were monitored using a multitracer approach (standard parameters for water quality including REE concentrations, Pb, Sr, Nd radiogenic isotopes) with two sampling setups (bi-weekly and flood event based sampling). This extensive sampling design allowed quantifying the annual

  12. Annual Report of the Integrated Status and Effectiveness Monitoring Program: Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Terraqua, Inc. (Wauconda, WA)

    2009-07-20

    This document was created as an annual report detailing the accomplishments of the Integrated Status and Effectiveness Monitoring Program (ISEMP) in the Upper Columbia Basin in fiscal year 2008. The report consists of sub-chapters that reflect the various components of the program. Chapter 1 presents a report on programmatic coordination and accomplishments, and Chapters 2 through 4 provide a review of how ISEMP has progressed during the 2008 fiscal year in each of the pilot project subbasins: the John Day (Chapter 2), Wenatchee/Entiat (Chapter 3) and Salmon River (Chapter 4). Chapter 5 presents a report on the data management accomplishments in 2008.

  13. Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA); James, Brenda B. (Cascade Aquatics, Ellensburg, WA)

    2005-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003; Pearsons et al. 2004). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers

  14. Smolt Monitoring Program, Volume II, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fish Passage Center

    1987-02-01

    Smolt Monitoring Program Annual Report, 1986, Volume I, describes the results of travel time monitoring and other migrational characteristics of yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri). This volume presents the data from Fish Passage Center freeze brands used in the analysis of travel time for Lewiston, Lower Granite, Lower Monumental, Rock Island, McNary, and John Day dams. Summary of data collection procedures and explanation of data listings are presented in conjunction with the mark recapture data. Data for marked fish not presented in this report will be provided upon request. Daily catch statistics (by species), flow, and sample parameters for the smolt monitoring sites, Clearwater, Lewiston, Lower Granite, Lower Monumental, Rock Island, McNary, John Day, and Bonneville also will be provided upon request.

  15. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, antimony, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Site. This report presents and discusses the groundwater monitoring results in the H-Area for first quarter 1992

  16. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L.; James, Brenda B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation

  17. Umatilla Hatchery Monitoring and Evaluation, 1998-1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stonecypher, R. Wess; Groberg, Jr., Warren J.; Farman, Brett M. (Oregon Department of Fish and Wildlife, Portland, OR)

    2001-07-01

    The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematic application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the

  18. Modelling non-stationary annual maximum flood heights in the lower Limpopo River basin of Mozambique

    Directory of Open Access Journals (Sweden)

    Daniel Maposa

    2016-05-01

    Full Text Available In this article we fit a time-dependent generalised extreme value (GEV distribution to annual maximum flood heights at three sites: Chokwe, Sicacate and Combomune in the lower Limpopo River basin of Mozambique. A GEV distribution is fitted to six annual maximum time series models at each site, namely: annual daily maximum (AM1, annual 2-day maximum (AM2, annual 5-day maximum (AM5, annual 7-day maximum (AM7, annual 10-day maximum (AM10 and annual 30-day maximum (AM30. Non-stationary time-dependent GEV models with a linear trend in location and scale parameters are considered in this study. The results show lack of sufficient evidence to indicate a linear trend in the location parameter at all three sites. On the other hand, the findings in this study reveal strong evidence of the existence of a linear trend in the scale parameter at Combomune and Sicacate, whilst the scale parameter had no significant linear trend at Chokwe. Further investigation in this study also reveals that the location parameter at Sicacate can be modelled by a nonlinear quadratic trend; however, the complexity of the overall model is not worthwhile in fit over a time-homogeneous model. This study shows the importance of extending the time-homogeneous GEV model to incorporate climate change factors such as trend in the lower Limpopo River basin, particularly in this era of global warming and a changing climate. Keywords: nonstationary extremes; annual maxima; lower Limpopo River; generalised extreme value

  19. Arima modelling of annual rainfalls in the Bregalnica River basin

    OpenAIRE

    Jovanovski, Vlatko; Delipetrov, Todor

    2007-01-01

    Changes in the hydrological characteristics have an impact on the environment. The reasons for the impact in the Bregalnica river basin are heavy rains and long droughts. Monitoring the undenstanding of hydrological impacts may provide useful assessment ingand forecast in several fields. This paper analysis hydrological processes, and offeres data processing of the monitor with ARIMA Modelling in STATISTICA packet like good techniques for estimation forecast of the hydrological caracterist...

  20. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    Science.gov (United States)

    Zhao, T. H.; Yin, Z.; Song, Y. Z.

    2012-11-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  1. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    International Nuclear Information System (INIS)

    Zhao, T h; Yin, Z; Song, Y Z

    2012-01-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  2. 1997 Lower Granite dam smolt monitoring program : annual report.; ANNUAL

    International Nuclear Information System (INIS)

    Morrill, Charles; Ross, Doug; Verhey, Peter; Witalis, Shirley

    1997-01-01

    The 1997 fish collection season at Lower Granite was characterized by high spring flows, extensive spill, cool spring and early summer water temperatures and comparatively low numbers of fish, particularly yearling chinook. The Fish Passage Center's Smolt Monitoring Program is designed to provide a consistent, real-time database of fish passage and document the migrational characteristics of the many stocks of salmon and steelhead in the Columbia Basin

  3. Quantification of Linkages between Large-Scale Climate Patterns and Annual Precipitation for the Colorado River Basin

    Science.gov (United States)

    Kalra, A.; Ahmad, S.

    2010-12-01

    Precipitation is regarded as one of the key variables driving various hydrologic processes and the future precipitation information can be useful to better understand the long-term climate dynamics. In this paper, a simple, robust, and parsimonious precipitation forecast model, Support Vector Machine (SVM) is proposed which uses large-scale climate information and predict annual precipitation 1-year in advance. SVM’s are a novel class of neural networks (NNs) which are based on the statistical learning theory. The SVM’s has three main advantages over the traditional NNs: 1) better generalization ability, 2) the architecture and weights of SVM’s are guaranteed to be unique and globally optimum, and 3) SVM’s are trained more rapidly than the corresponding NN. With these advantages, an application of SVM incorporating large-scale climate information is developed and applied to seventeen climate divisions encompassing the Colorado River Basin in the western United States. Annual oceanic-atmospheric indices, comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Nino-Southern Oscillations (ENSO) for a period of 1900-2007 are used to generate annual precipitation estimates with 1-year lead time. The results from the present study indicate that long-term precipitation predictions for the Upper Colorado River Basin can be successfully obtained using a combination of NAO and ENSO indices whereas coupling PDO and AMO results in improved precipitation predictions for the Lower Colorado River Basin. Precipitation predictions from the SVM model are found to be better when compared with the predictions obtained from feed-forward back propagation Artificial Neural Network and Multivariate Linear Regression models. The overall results of this study revealed that the annual precipitation of the Colorado River Basin was significantly influenced by oceanic-atmospheric oscillations and the proposed SVM

  4. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Reporting and statistical evaluation of the subsequent year (sixth) data

    International Nuclear Information System (INIS)

    McMahon, L.W.; Mercier, T.M.

    1992-02-01

    This annual report has historically been prepared to meet the annual reporting requirements of the Tennessee Department of and Environment and Conservation (TDEC), Hazardous Waste Management Regulation 1200-1-11-.05 (6)(e), for detection monitoring data collected on Resource Conservation and Recovery Act (RCRA) wells in place around facilities which are accorded interim status. The regulatory authority for these units at the Y-12 Plant is currently in transition. A Federal Facility Agreement (FFA) with an effective date of January 1, 1992, has been negotiated with the Department of Energy (DOE) for the Oak Ridge Reservation. This agreement provides a framework for remediation of the Oak Ridge Reservation so that both RCRA and CERCLA requirements are integrated into the remediation process and provides for State, EPA, and DOE to proceed with CERCLA as the lead regulatory requirement and RCRA as an applicable or relevant and appropriate requirement. This report is presented for the RCRA certified wells for two interim status units at the Y-12 Plant. These units are Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin. Kerr Hollow is currently undergoing clean closure under RCRA. The Chestnut Ridge Sediment Disposal Basin (CRSDB) was closed in 1989 under a TDEC approved RCRA closure plan. The relevance of a RCRA Post-Closure Permit to either of these units is a matter of contention between DOE and TDEC since the FFA does not contemplate post-closure permits

  5. Annual environmental monitoring report, January-December 1984

    International Nuclear Information System (INIS)

    1985-03-01

    Non-radioactive monitoring program involved: repair of a leaking waste paint and solvent tank, installation of a pretreatment facility for liquid effluents from a plating shop; and construction discharge. Radioactivity was monitored for air with comparisons to the average annual population dose from neutron radiation and tritium in the waste water effluents

  6. R-Area Reactor 1993 annual groundwater monitoring report

    International Nuclear Information System (INIS)

    1994-09-01

    Groundwater was sampled and analyzed during 1993 from wells monitoring the following locations in R Area: Well cluster P20 east of R Area (one well each in the water table and the McBean formation), the R-Area Acid/Caustic Basin (the four water-table wells of the RAC series), the R-Area Ash Basin/Coal Pile (one well of the RCP series in the Congaree formation and one in the water table), the R-Area Disassembly Basin (the three water-table wells of the RDB series), the R-Area Burning/Rubble Pits (the four water-table wells of the RRP series), and the R-Area Seepage Basins (numerous water-table wells in the RSA, RSB, RSC, RSD, RSE, and RSF series). Lead was the only constituent detected above its 50μg/L standard in any but the seepage basin wells; it exceeded that level in one B well and in 23 of the seepage basin wells. Cadmium exceeded its drinking water standard (DWS) in 30 of the seepage basin wells, as did mercury in 10. Nitrate-nitrite was above DWS once each in two seepage basin wells. Tritium was above DWS in six seepage basin wells, as was gross alpha activity in 22. Nonvolatile beta exceeded its screening standard in 29 wells. Extensive radionuclide analyses were requested during 1993 for the RCP series and most of the seepage basin wells. Strontium-90 in eight wells was the only specific radionuclide other than tritium detected above DWS; it appeared about one-half of the nonvolatile beta activity in those wells

  7. Annual environmental monitoring report, January--December 1977

    International Nuclear Information System (INIS)

    1978-05-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmantal sources. During 1977, the maximum neutron dose near the site boundary was 8.2 mrem. This represents about 8.2% of the annual dose from natural sources at this elevation, and 1.6% of the technical standard of 500 mrem per person annually

  8. Umatilla Basin Natural Production Monitoring and Evaluation; 1998-2002 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Contor, Craig R. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2004-07-01

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (WWNPME) was funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) under the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME). Chapter One provides an overview of the entire report and shows how the objectives of each statement of work from 1999, 2000, 2001, and 2002 contract years are organized and reported. This chapter also provides background information relevant to the aquatic resources of the Umatilla River Basin. (Figure 1-1, Tables 1-1 and 1-2). Data and reports from this and previous efforts are available on the CTUIR website http://www.umatilla.nsn.us. This project was one of several subprojects of the Umatilla River Basin Fisheries Restoration Master Plan (CTUIR 1984, ODFW 1986) orchestrated to rehabilitate salmon and steelhead runs in the Umatilla River Basin. Subprojects in additions to this project include: Watershed Enhancement and Rehabilitation; Hatchery Construction and Operation; Hatchery Monitoring and Evaluation; Satellite Facility Construction and Operations for Juvenile Acclimation and Adult Holding and Spawning; Fish Passage Construction and Operation; Juvenile and Adult Passage Facility Evaluations; Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, and Flow Augmentation to Increase Stream Flows below Irrigation Diversions.

  9. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  10. Monitoring the impact of simulated deep-sea mining in Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.; Jaisankar, S.

    Monitoring the Impact of Simulated Deep-sea Mining in Central Indian Basin R. SHARMA, B. NAGENDER NATH, AND S. JAI SANKAR National Institute of Oceanography, Dona Paula, Goa, India Monitoring of deep-sea disturbances, natural or man-made, has gained... has shown a partial recovery of the benthic ecosystem, with indications of restoration and recolonization. Keywords deep-sea mining, environmental impact, Central Indian Basin Deep-sea mineral deposits such as the polymetallic nodules and crusts...

  11. Yakima River Species Interactions Studies, Annual Report 1998

    International Nuclear Information System (INIS)

    Pearsons, Todd N.; Ham, Kenneth D.; McMichael, Geoffrey A.

    1999-01-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the seventh of a series of progress reports that address species interactions research and pre-supplementation monitoring of fishes in the Yakima River basin. Data have been collected prior to supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and develop methods to monitor interactions and supplementation success. Major topics of this report are associated with monitoring potential impacts to support adaptive management of NTT and baseline monitoring of fish predation indices on spring chinook salmon smolts. This report is organized into three chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 1998 and December 31, 1998 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns

  12. Annual report on radioactive discharges and monitoring of the environment 1992. V. 1

    International Nuclear Information System (INIS)

    1993-01-01

    This Annual Report supplements the Company's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1990 this report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  13. Annual report on radioactive discharges and monitoring of the environment 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Company's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1990 this report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  14. Annual report on radioactive discharges and monitoring of the environment 1990. V. 2

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Company's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1990 this report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  15. Annual environmental monitoring report, January--December 1976

    International Nuclear Information System (INIS)

    1977-05-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1976 the maximum neutron dose near the site boundary was 3.4 mrem. This represents about 3.4% of the annual dose from natural sources at this elevation and 0.68% of the technical standard of 500 mrem per person annually. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations. Airborne radioactivity released from SLAC also continues to make only a negligible environmental impact and result in a site boundary annual dose of less than 0.01 mrem, which represents less than 0.01% of the annual dose from the natural radiation environment and about 0.002% of the technical standard

  16. Annual environmental monitoring report, January--December 1975

    International Nuclear Information System (INIS)

    1976-04-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1975 the maximum neutron dose near the site boundary was 15.8 mrem. This represents about 16 percent of the annual dose from natural sources at this elevation and 3.2 percent of the technical standard of 500 mrem per person annually. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations. Airborne radioactivity released from SLAC also continues to make only a negligible environmental impact and results in a site boundary annual dose of less than 2.4 mrem, which represents less than 2.4 percent of the annual dose from the natural radiation environment and about 0.5 percent of the technical standard

  17. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, Annual Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    White, Tara

    2007-02-01

    This report summarizes activities conducted by the Oregon Department of Fish and Wildlife's Juvenile Outmigration and Survival M&E project in the Umatilla River subbasin between 2004-2006. Information is used to make informed decisions on hatchery effectiveness, natural production success, passage improvement and flow enhancement strategies. Data collected includes annual estimates of smolt abundance, migration timing, and survival, life history characteristics and productivity status and trends for spring and fall Chinook salmon, coho salmon and summer steelhead. Productivity data provided is the key subbasin scale measure of the effectiveness of salmon and steelhead restoration actions in the Umatilla River. Information is also used for regional planning and recovery efforts of Mid-Columbia River (MCR) ESA-listed summer steelhead. Monitoring is conducted via smolt trapping and PIT-tag interrogation at Three Mile Falls Dam. The Umatilla Juvenile Outmigration and Survival Project was established in 1994 to evaluate the success of management actions and fisheries restoration efforts in the Umatilla River Basin. Project objectives for the 2004-2006 period were to: (1) operate the PIT tag detection system at Three Mile Falls Dam (TMFD), (2) enhance provisional PIT-tag interrogation equipment at the east bank adult fish ladder, (3) monitor the migration timing, abundance and survival of naturally-produced juvenile salmonids and trends in natural production, (4) determine migration parameters and survival of hatchery-produced fish representing various rearing, acclimation and release strategies, (5) evaluate the relative survival between transported and non-transported fish, (6) monitor juvenile life history characteristics and evaluate trends over time, (7) investigate the effects of river, canal, fishway operations and environmental conditions on smolt migration and survival, (8) document the temporal distribution and diversity of resident fish species, and (9

  18. Annual report on radioactive discharges and monitoring of the environment 1991. V. 1

    International Nuclear Information System (INIS)

    1992-01-01

    This Annual Report supplements and updates British Nuclear Fuel plc's Health and Safety and the Environment Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical groups doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment since 1977. This year the report is again sub-divided into two complementary volumes. Volume I includes, for each of the Company's sites, annual data on radioactive discharges into the environment and the associated environmental monitoring programmes. Critical groups doses for each site are presented in summary tables at the beginning of each chapter. (author)

  19. Monitoring of downstream salmon and steelhead trout at federal hydroelectric facilities, annual report 2001.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife.

    2002-01-01

    The seaward migration of juvenile salmonids was monitored by the Pacific States Marine Fisheries Commission (PSMFC) at John Day Dam, located at river mile 216, and at Bonneville Dam, located at river mile 145 on the Columbia River (Figure 1). The PSMFC Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program is carried out under the auspices of the Northwest Power Planning Council's Fish and Wildlife Program and is funded by the Bonneville Power Administration

  20. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    Science.gov (United States)

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  1. Annual report on radioactive discharges and monitoring of the environment 1992. V. 1

    International Nuclear Information System (INIS)

    1993-01-01

    This Annual Report supplements and updates the Company's Environment Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment since 1977. This year the report is again sub-divided into two complementary volumes. Volume I consists of site papers, one for each of the Company's sites and includes annual data on radioactive discharges into the environment and the associated environmental monitoring programmes. Critical group doses for each site are presented in summary tables at the beginning of each Site paper. Volume II reproduces the Certificates of Authorisation regulating the Company's discharges and the statutory environmental monitoring programmes which relate to them. (Author)

  2. K-Area Acid/Caustic Basin groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1992-09-01

    During second quarter 1992, samples from the seven older KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, and other constituents. New wells FAC 8 and 9 received the first of four quarters of comprehensive analyses and GC/MS VOA (gas chromatograph/ mass spectrometer volatile organic analyses). Monitoring results that exceeded the US Environmental Protection Agency's Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standards during the quarter are discussed in this report

  3. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  4. Monitoring Forest Carbon Stocks and Fluxes in the Congo Basin

    OpenAIRE

    2010-01-01

    The Central African Forests Commission (COMIFAC) and its partners (OFAC, USAID, EC-JRC, OSFAC, WWF, WRI, WCS, GOFC-GOLD, START, UN-FAO) organized an international conference on "Monitoring of Carbon stocks and fluxes in the Congo Basin" in Brazzaville, Republic of Congo, 2-4 February 2010. The conference brought together leading international specialists to discuss approaches for quantifying stocks and flows of carbon in tropical forests of the Congo Basin. The conference provided a unique op...

  5. Hood River and Pelton Ladder monitoring and evaluation project and Hood River fish habitat project : annual progress report 1999-2000.; ANNUAL

    International Nuclear Information System (INIS)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-01-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat[contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000

  6. Northern Rivers Basins human health monitoring program : report

    International Nuclear Information System (INIS)

    Gabos, S.

    1999-04-01

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs

  7. Northern Rivers Basins human health monitoring program : report

    Energy Technology Data Exchange (ETDEWEB)

    Gabos, S. [Alberta Health, Edmonton, AB (Canada). Health Surveillance

    1999-04-01

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs.

  8. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  9. Annual report on radioactive discharges and monitoring of the environment 1992. V. 2

    International Nuclear Information System (INIS)

    1993-01-01

    This Annual Report supplements British Nuclear Fuel plc's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environmental and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1991 this report has been sub-divided into two complementary parts. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  10. Annual report on radioactive discharges and monitoring of the environment 1991. V. 2

    International Nuclear Information System (INIS)

    1992-01-01

    This Annual Report supplements British Nuclear Fuel plc's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environmental and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1991 this report has been sub-divided into two complementary parts. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  11. Columbia Basin Fish and Wildlife Authority Project Abstracts; May 25-27, Portland, Oregon, 1997 Annual Review.

    Energy Technology Data Exchange (ETDEWEB)

    Allee, Brian J. (Columbia Basin Fish and Wildlife Authority, Portland, OR)

    1997-06-26

    Abstracts are presented from the 1997 Columbia Basin Fish and Wildlife Program Review of Projects. The purpose was to provide information and education on the approximate 127 million dollars in Northwest electric ratepayer fish and wildlife mitigation projects funded annually.

  12. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    Science.gov (United States)

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  13. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.

    Science.gov (United States)

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.

  14. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office: watershed restoration projects: annual report, 1998.; ANNUAL

    International Nuclear Information System (INIS)

    1999-01-01

    The John Day River is the second longest free-flowing river in the contiguous US and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1998, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional ten (10) watershed

  15. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office: watershed restoration projects: annual report, 1999.; ANNUAL

    International Nuclear Information System (INIS)

    2001-01-01

    The John Day River is the second longest free-flowing river in the contiguous United States and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1999, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional eleven (11

  16. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  17. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  18. P-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-06-01

    During first quarter 1995, groundwater from the six PAC monitoring wells at the P-Area Acid/Caustic Basin was analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, adionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During first quarter 1995, no constituents exceeded the final PDWS. Aluminum exceeded its SRS Flag 2 criterion in all six PAC wells. Iron and manganese exceeded Flag 2 criteria in three wells, while turbidity was elevated in one well. Groundwater flow direction and rate in the water table beneath the P-Area Acid/Caustic Basin were similar to past quarters

  19. Annual Report of Groundwater Monitoring at Everest, Kansas, in 2012

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-07-01

    In March 2009, the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water (Argonne 2009). Under this plan, approved by the KDHE (2009), monitoring wells are sampled by using the low-flow procedure, and surface water samples are collected at five locations along the intermittent creek. Vegetation sampling is conducted as a secondary indicator of plume migration. Results of annual sampling in 2009-2011 for volatile organic compounds (VOCs) and water level measurements (Argonne 2010a, 2011a,b) were consistent with previous observations (Argonne 2003, 2006a,d, 2008). No carbon tetrachloride was detected in surface water of the intermittent creek or in tree branch samples collected at locations along the creek banks. This report presents the results of the fourth annual sampling event, conducted in 2012.

  20. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R. [Oregon Department of Fish and Wildlife

    2009-04-10

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start of this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals

  1. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  2. Annual distributions and variations of dust weather occurrence over the Tarim Basin, China

    Science.gov (United States)

    Zhao, Yong; Zhou, Yang; Wang, Minzhong; Huo, Wen; Huang, Anning; Yang, Xinhua; Yang, Fan

    2018-04-01

    The annual distribution and variations in dust weather occurrence (DWO) have been analyzed using monthly DWO data from 26 stations over the Tarim Basin during the period of 1961 to 2010. The results show that the DWO presents a significant decreasing trend for different parts of the Tarim Basin in recent decades. The monthly DWO has two peaks in the east and west. In the first half of the year, the peak is in April, but in the second half of the year, the peak is in September. According to the concentration period and concentration degree (CD) of DWO, we can find that the maximum DWO occurs in April in the eastern, western, and northern parts of the basin, but it occurs in May in the southern part. The dust weather season is shorter for the northern and eastern parts of the basin than those of the remaining parts. On average, the dust weather season initiates in April in the northeast and in May for the rest of the region. As an indicator for the length of dust weather season, the CD is significantly related to DWO, with a correlation coefficient of -0.51, revealing an interesting feature of regional climate change with declining DWO and declining dust weather season over the Tarim Basin. The correlation analysis exhibits that all the Arctic Oscillation, Antarctic Oscillation, and North Atlantic Oscillation have a negative relation with the DWO but a positive relation with the length of dust weather season.

  3. Annual environmental monitoring report, January--December 1978

    International Nuclear Information System (INIS)

    1979-04-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1978, the maximum neutron dose near the site boundary was 6.6 mrem. This represents about 6.6% of the annual dose from natural sources at this elevation, and 1.3% of the technical standard of 500 mrem per person annually. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since 1966. Because of major new construction, well water samples were not collected and analyzed during 1978. Construction activities have also temporarily placed our sampling stations for the sanitary and storm sewers out of service. They will be re-established as soon as construction activities permit. Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site boundary annual dose of less than 0.01 mrem; this represents less than 0.01% of the annual dose from the natural radiation environment, and about 0.002% of the technical standard

  4. Annual environmental monitoring report, January-December 1982

    International Nuclear Information System (INIS)

    1983-03-01

    Environmental monitoring results continue to demonstrate that environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1982, the maximum measured neutron dose near the site boundary was not distinguishable from the cosmic ray neutron background. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since operation began in 1966. Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site boundary annual dose of less than 0.3 mrem; this represents less than 0.3% of the annual dose from the natural radiation environment, and about 0.06% of the technical standard

  5. 296-B-5 Stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1995-02-01

    The B Plant Administration Manual requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with Stack 296-B-5 at B Plant. The sampling and monitoring system associated with stack 296-B-5 is functional and performing satisfactorily. This document is an annual assessment report of the systems associated with the 296-B-5 stack

  6. Multisource Data-Based Integrated Agricultural Drought Monitoring in the Huai River Basin, China

    Science.gov (United States)

    Sun, Peng; Zhang, Qiang; Wen, Qingzhi; Singh, Vijay P.; Shi, Peijun

    2017-10-01

    Drought monitoring is critical for early warning of drought hazard. This study attempted to develop an integrated remote sensing drought monitoring index (IRSDI), based on meteorological data for 2003-2013 from 40 meteorological stations and soil moisture data from 16 observatory stations, as well as Moderate Resolution Imaging Spectroradiometer data using a linear trend detection method, and standardized precipitation evapotranspiration index. The objective was to investigate drought conditions across the Huai River basin in both space and time. Results indicate that (1) the proposed IRSDI monitors and describes drought conditions across the Huai River basin reasonably well in both space and time; (2) frequency of drought and severe drought are observed during April-May and July-September. The northeastern and eastern parts of Huai River basin are dominated by frequent droughts and intensified drought events. These regions are dominated by dry croplands, grasslands, and highly dense population and are hence more sensitive to drought hazards; (3) intensified droughts are detected during almost all months except January, August, October, and December. Besides, significant intensification of droughts is discerned mainly in eastern and western Huai River basin. The duration and regions dominated by intensified drought events would be a challenge for water resources management in view of agricultural and other activities in these regions in a changing climate.

  7. Monitoring of downstream salmon and steelhead at federal hydroelectric facilities - 1996. Annual report

    International Nuclear Information System (INIS)

    Martinson, R.D.; Graves, R.J.; Mills, R.B.; Kamps, J.W.

    1997-08-01

    The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia River in 1996 The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. The purpose of the SMP is to monitor the migration of the juvenile salmonid stocks in the Columbia basin and make flow and spill recommendations designed to facilitate fish passage. Data are also used for travel time, migration timing, and relative run size analysis. The purpose of the NMFS portion of the program is to provide the FPC with species and project specific real time data from John Day and Bonneville Dams. Monitoring data collected included: river conditions; total numbers of fish; numbers of fry, adult salmon, and incidental catch; daily and seasonal passage patterns; and fish condition. 10 refs., 16 figs., 5 tabs

  8. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  9. Facility effluent monitoring plan for K area spent fuel storage basin

    International Nuclear Information System (INIS)

    Hunacek, G.S.

    1996-01-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400. 1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in WHC-EP-0438-1, A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the second revision to the original annual report. Long-range integrity of the effluent monitoring system shall be ensured with updates of this report whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  10. Augmented fish health monitoring

    International Nuclear Information System (INIS)

    Michak, P.; Rogers, R.; Amos, K.

    1991-05-01

    The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Historically, all agencies involved with fish health in the Columbia Basin were conducting various levels of fish health monitoring, pathogen screening and collection. The goals of this project were; to identify, develop and implement a standardized level of fish health methodologies, develop a common data collection and reporting format in the area of artificial production, evaluate and monitor water quality, improve communications between agencies and provide annual evaluation of fish health information for production of healthier smolts. This completion report will contain a project evaluation, review of the goals of the project, evaluation of the specific fish health analyses, an overview of highlights of the project and concluding remarks. 8 refs., 1 fig., 4 tabs

  11. F-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994

    International Nuclear Information System (INIS)

    1994-09-01

    During second quarter 1994, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P and monitoring well FAC 6 were dry and could not be sampled. Analytical results that exceeded final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard of 50 NTU during the quarter were as follows: gross alpha exceeded the final PDWS and aluminum, iron, manganese, and total organic halogens exceeded the SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS standard in well FAC 3. Groundwater flow direction and rate in the water table beneath the F-Area Acid/Caustic Basin were similar to past quarters

  12. Design of a water quality monitoring network for the Limpopo River Basin in Mozambique

    Science.gov (United States)

    Chilundo, M.; Kelderman, P.; O´keeffe, J. H.

    The measurement of chemical, physical and biological parameters is important for the characterization of streams health. Thus, cost-effective and targeted water quality (WQ) monitoring programmes are required for proper assessment, restoration and protection of such systems. This research proposes a WQ monitoring network for the Limpopo River Basin (LRB) in Mozambique located in Southern Africa, a region prone to severe droughts. In this Basin both anthropogenic and natural driven processes, exacerbated by the increased water demand by the four riparian countries (Botswana, South Africa, Zimbabwe and Mozambique) are responsible for the degradation of surface waters, impairing their downstream use, either for aquatic ecosystem, drinking, industrial or irrigation. Hence, physico-chemical, biological and microbiological characteristics at 23 sites within the basin were studied in November 2006 and January 2007. The physico-chemical and microbiological samples were analyzed according to American Public Health Association (APHA) standard methods, while the biological monitoring working party method (BMWP) was used for biological assessment. The assessment of the final WQ condition at sampled points was done taking into account appropriate indexes, the Mozambican standards for receiving waters and the WHO guidelines for drinking WQ. The assessed data indicated that sites located at proximities to the border with upstream countries were contaminated with heavy metals. The Elephants subcatchment was found with a relatively better WQ, whereas the Changane subcatchment together with the effluent point discharges in the basin were found polluted as indicated by the low dissolved oxygen and high total dissolved solids, electric conductivity, total hardness, sodium adsorption ratio and low benthic macroinvertebrates taxa. Significant differences ( p < 0.05) were found for some parameters when the concentrations recorded in November and January were tested, therefore, indicating

  13. Radon continuous monitoring in Altamira Cave (northern Spain) to assess user's annual effective dose

    International Nuclear Information System (INIS)

    Lario, J.; Sanchez-Moral, S.; Canaveras, J.C.; Cuezva, S.; Soler, V.

    2005-01-01

    In this work, we present the values of radon concentration, measured by continuous monitoring during a complete annual cycle in the Polychromes Hall of Altamira Cave in order to undertake more precise calculations of annual effective dose for guides and visitors in tourist caves. The 222 Rn levels monitored inside the cave ranges from 186 Bq m -3 to 7120 Bq m -3 , with an annual average of 3562 Bq m -3 . In order to more accurately estimate effective dose we use three scenarios with different equilibrium factors (F=0.5, 0.7 and 1.0) together with different dose conversion factors proposed in the literature. Neither effective dose exceeds international recommendations. Moreover, with an automatic radon monitoring system the time remaining to reach the maximum annual dose recommended could be automatically updated

  14. Monitoring mass changes in the Volta River basin using GRACE satellite gravity and TRMM precipitation

    Directory of Open Access Journals (Sweden)

    Vagner G. Ferreira

    Full Text Available GRACE satellite gravity data was used to estimate mass changes within the Volta River basin in West African for the period of January, 2005 to December, 2010. We also used the precipitation data from the Tropical Rainfall Measurement Mission (TRMM to determine relative contributions source to the seasonal hydrological balance within the Volta River basin. We found out that the seasonal mass change tends to be detected by GRACE for periods from 1 month in the south to 4 months in the north of the basin after the rainfall events. The results suggested a significant gain in water storage in the basin at reference epoch 2007.5 and a dominant annual cycle for the period under consideration for both in the mass changes and rainfall time series. However, there was a low correlation between mass changes and rainfall implying that there must be other processes which cause mass changes without rainfall in the upstream of the Volta River basin.

  15. Sandia National Laboratories California Environmental Monitoring Program Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2007-03-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  16. Four Mile Creek semi-annual sampling report, January 1993 sampling event

    International Nuclear Information System (INIS)

    1993-05-01

    From 1955 to 1988 low-level radioactive wastewater generated by chemical separation processes within the General Separations Area (GSA) was discharged to seepage basins in the F and H Areas of the Savannah River Site (SRS). These basins were designed to permit the infiltration of the process wastewaters. As wastewater percolated downward through the basins, chemical and radioactive constituents were retained or sequestered in the subsoils. An extensive study aimed at characterizing the groundwater seeping into Four Mile Creek and its associated seepline was conducted in 1988 and 1989 (Haselow et al. 1990). Results of this study suggested that contaminants leaching from the F and H Area seepage basins were impacting the Four Mile Creek wetland system. The seepage basins were closed in 1988 and capped and sealed in 1990. This effectively eliminated the source of the contaminants and the hydraulic head driving the migration of contaminants from the basins. It has been hypothesized that, after the elimination of the source and head, annual rainfall amounts would be sufficient to dilute and flush out contaminants remaining in the subsoils and groundwaters beneath the basins. Westinghouse Savannah River Company has designed a semi-annual sampling and analytical program for the Four Mile Creek (FMC) seepline and stream water to test the hypothesis. This report summarizes field monitoring activities from January 25, 1993 to February 4, 1993

  17. Environmental monitoring at the Savannah River Plant. Annual report, 1983

    International Nuclear Information System (INIS)

    Ashley, C.; Padezanin, P.C.; Zeigler, C.C.

    1984-06-01

    This annual report presents data for 1983 radioactivity and radioisotope concentrations in the air, water, plants, and animals of the Savannah River Plant. Additional monitoring was performed for chemical contaminants such as mercury and chlorocarbons. All concentrations were within applicable federal and state limits or not detectable with state-of-the-art monitoring equipment

  18. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993

  19. Annual report on radioactive discharges and monitoring of the environment 1990. V. 2

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Health and Safety Annual Report of British Nuclear Fuels plc by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. This report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. The sites involved are: Sellafield where the main activities are irradiated nuclear fuel reprocessing and the Calder Hall nuclear station; the Drigg radioactive waste storage and disposal site; the Chapelcross nuclear power station; Springfields Works which manufactures nuclear fuels; Capenhurst Works where uranium isotopic enrichment plants are operated. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  20. Annual report on radioactive discharges and monitoring of the environment 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Health and Safety Annual Report of British Nuclear Fuels plc by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. This report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. The sites involved are: Sellafield where the main activities are irradiated nuclear fuel reprocessing and the Calder Hall nuclear station; the Drigg radioactive waste storage and disposal site; the Chapelcross nuclear power station; Springfields Works which manufactures nuclear fuels; Capenhurst Works where uranium isotopic enrichment plants are operated. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  1. Annual report of groundwater monitoring at Everest, Kansas, in 2010.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2011-03-21

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) began its environmental investigations at Everest, Kansas, in 2000. The work at Everest is implemented on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The results of the environmental investigations have been reported in detail (Argonne 2001, 2003, 2006a,b). The lateral extent of the carbon tetrachloride in groundwater over the years of investigation has been interpreted as shown in Figure 1.1 (2001-2002 data), Figure 1.2 (2006 data), Figure 1.3 (2008 data), and Figure 1.4 (2009 data). The pattern of groundwater flow and inferred contaminant migration has consistently been to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property (e.g., Figure 1.5 [2008 data] and Figure 1.6 [2009 data]). Both the monitoring data for carbon tetrachloride and the low groundwater flow rates estimated for the Everest aquifer unit (Argonne 2003, 2006a,b, 2008) indicate slow contaminant migration. On the basis of the accumulated findings, in March 2009 the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water. This current monitoring plan (Appendix A in the report of monitoring in 2009 [Argonne 2010]) was approved by the KDHE (2009a). Under this plan, the monitoring wells are sampled by the low-flow procedure, and sample preservation, shipping, and analysis activities are consistent with previous work at Everest. The annual sampling will continue until identified conditions at the site indicate a technical justification for a change. The first annual sampling event under the new monitoring plan took place in April 2009. The results of analyses for volatile organic compounds (VOCs) and water level measurements were consistent with previous observations (Figures 1.1-1.4). No carbon tetrachloride was detected in surface

  2. Geographic, geologic, and hydrologic summaries of intermontane basins of the northern Rocky Mountains, Montana

    Science.gov (United States)

    Kendy, Eloise; Tresch, R.E.

    1996-01-01

    This report combines a literature review with new information to provide summaries of the geography, geology, and hydrology of each of 32 intermontane basins in western Montana. The summary of each intermontane basin includes concise descriptions of topography, areal extent, altitude, climate, 1990 population, land and water use, geology, surface water, aquifer hydraulic characteristics, ground-water flow, and ground-water quality. If present, geothermal features are described. Average annual and monthly temperature and precipitation are reported from one National Weather Service station in each basin. Streamflow data, including the drainage area, period of record, and average, minimum, and maximum historical streamflow, are reported for all active and discontinued USGS streamflow-gaging stations in each basin. Monitoring-well data, including the well depth, aquifer, period of record, and minimum and maximum historical water levels, are reported for all long-term USGS monitoring wells in each basin. Brief descriptions of geologic, geophysical, and potentiometric- surface maps available for each basin also are included. The summary for each basin also includes a bibliography of hydrogeologic literature. When used alone or in conjunction with regional RASA reports, this report provides a practical starting point for site-specific hydrogeologic investigations.

  3. Monitoring of downstream salmon and steelhead at federal hydroelectric facilities -- 1995. Annual report 1995

    International Nuclear Information System (INIS)

    Martinson, R.D.; Graves, R.J.; Langeslay, M.J.; Killins, S.D.

    1996-12-01

    The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia river in 1995. The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program focuses on protecting, mitigating, and enhancing fish populations affected by the development and operation of hydroelectric power plants on the Columbia River. The purpose of the SMP is to monitor the migration of the juvenile salmonid stocks in the Columbia basin and make flow and spill recommendations designed to facilitate fish passage. Data are also used for travel time, migration timing, and relative run size analysis. The purpose of the NMFS portion of the program is to provide FPC with species and project specific real time data from John Day and Bonneville Dams

  4. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  5. Stationarity of annual flood peaks during 1951-2010 in the Pearl River basin, China

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Xiao, Mingzhong; Xu, Chong-Yu

    2014-11-01

    The assumption of stationarity of annual peak flood (APF) records at 28 hydrological stations across the Pearl River basin, China, is tested. Abrupt changes in mean and variance are tested using the Pettitt technique and the Loess method. Trends of APFs are analyzed using the Mann-Kendall method and the Spearman technique. And then the stationarity of the APF series is further investigated by GAMLSS models and long-term persistence. Results indicate that: (1) abrupt changes in mean and variance have similar influences on the changing properties of APFs, such as stationarity. Abrupt changes in mean and variance are only field significant in the East River basin; (2) the change points have a considerable impact on the detection of trends, and these may be attributed to the fact that a abrupt increase or decrease in mean values will affect the trend variations. Besides, for the APF series being free of change points and trend, the GAMLSS models also corroborate stationarity of the APF series; (3) the nonstationarity in the Pearl River basin is mainly due to the existence of the change point. However, the APF series with change points in mean and/or variance are also characterized by long-term persistence, and thus it is infeasible to assert that the abrupt behaviors and/or trends of the APF series are the result of human activities or long-term persistence, especially in the East River basin. Results of this study will provide information for management of water resources and design of hydraulic facilities in the Pearl River basin in a changing environment.

  6. Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment

    Science.gov (United States)

    A Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment was published in 2010, and a Strawman Proposal was developed in 2012 by the Coalition for Urban/Rural Environmental Stewardship, California Water Resources Board, EPA.

  7. Annual report on radioactive discharges from Winfrith and monitoring the environment 1987

    International Nuclear Information System (INIS)

    1988-04-01

    The 1987 Annual Report on radioactive discharges from Winfrith Atomic Energy Establishment and monitoring of the environment is given. The report covers waste discharges to the sea and the earth atmosphere and the associated environmental monitoring. (UK)

  8. Calendar Year 2016 Annual Groundwater Monitoring Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timmie Okchumpulla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Two types of groundwater surveillance monitoring are conducted at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) on a site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operations sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report summarizes data collected during groundwater monitoring events conducted at GMP locations and at the following SNL/NM sites through December 31, 2016: Burn Site Groundwater Area of Concern (AOC); Chemical Waste Landfill; Mixed Waste Landfill; Technical Area-V Groundwater AOC; and the Tijeras Arroyo Groundwater AOC. Environmental monitoring and surveillance programs are required by the New Mexico Environment Department (NMED) and DOE Order 436.1, Departmental Sustainability, and DOE Order 231.1B, Environment, Safety, and Health Reporting.

  9. Soil moisture monitoring in Candelaro basin, Southern Italy

    Science.gov (United States)

    Campana, C.; Gigante, V.; Iacobellis, V.

    2012-04-01

    The signature of the hydrologic regime can be investigated, in principle, by recognizing the main mechanisms of runoff generation that take place in the basin and affect the seasonal behavior or the rainfall-driven events. In this framework, besides the implementation of hydrological models, a crucial role should be played by direct observation of key state variables such as soil moisture at different depths and different distances from the river network. In fact, understanding hydrological systems is often limited by the frequency and spatial distribution of observations. Experimental catchments, which are field laboratories with long-term measurements of hydrological variables, are not only sources of data but also sources of knowledge. Wireless distributed sensing platforms are a key technology to address the need for overcoming field limitations such as conflicts between soil use and cable connections. A stand-alone wireless network system has been installed for continuous monitoring of soil water contents at multiple depths along a transect located in Celone basin (sub-basin of Candelaro basin in Puglia, Southern Italy). The transect consists of five verticals, each one having three soil water content sensors at multiple depths: 0,05 m, 0,6 m and 1,2 m below the ground level. The total length of the transect is 307 m and the average distance between the verticals is 77 m. The main elements of the instrumental system installed are: fifteen Decagon 10HS Soil Moisture Sensors, five Decagon Em50R Wireless Radio Data Loggers, one Rain gauge, one Decagon Data Station and one Campbell CR1000 Data Logger. Main advantages of the system as described and presented in this work are that installation of the wireless network system is fast and easy to use, data retrieval and monitoring information over large spatial scales can be obtained in (near) real-time mode and finally other type of sensors can be connected to the system, also offering wide potentials for future

  10. Effects of Cougar Predation and Nutrition on Mule Deer Population Declines in the IM Province of the Columbia Basin, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Wielgus, Robert; Shipley, Lisa; Myers, Woodrow

    2003-09-01

    Construction of the Grand Coulee and Chief Joseph dams has resulted in inundation and loss of 29,125 total habitat units for mule deer and irrigation agriculture in many parts the Intermountain Province (IM) of the Columbia Basin. Mule deer in the Shrub-Steppe are ranked high priority target species for mitigation and management and are declining in most portions of the sub basins of the IM. Reasons for the decline are unknown but believed to be related to habitat changes resulting from dams and irrigation agriculture. White-tailed deer are believed to be increasing throughout the basin because of habitat changes brought about by the dams and irrigation agriculture. Recent research (1997-2000) in the NE IM and adjacent Canadian portions of the Columbia Basin (conducted by this author and funded by the Columbia Basin Fish & Wildlife Compensation Program B.C.), suggest that the increasing white-tailed deer populations (because of dams and irrigation agriculture) are resulting in increased predation by cougars on mule deer (apparent competition or alternate prey hypothesis). The apparent competition hypothesis predicts that as alternate prey (white-tailed deer) densities increase, so do densities of predators, resulting in increased incidental predation on sympatric native prey (mule deer). Apparent competition can result in population declines and even extirpation of native prey in some cases. Such a phenomenon may account for declines of mule deer in the IM and throughout arid and semi-arid West where irrigation agriculture is practiced. We will test the apparent competition hypothesis by conducting a controlled, replicated 'press' experiment in at least 2 treatment and 2 control areas of the IM sub basins by reducing densities of white-tailed deer and observing any changes in cougar predation on mule deer. Deer densities will be monitored by WADFW personnel using annual aerial surveys and/or other trend indices. Predation rates and population growth rates

  11. Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2008 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Wayne H.; Schricker, Jaym' e; Ruzychi, James R. (Oregon Department of Fish and Wildlife)

    2009-02-13

    The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluate project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and summer

  12. Spatial Distribution of Annual and Monthly Rainfall Erosivity in the Jaguarí River Basin

    Directory of Open Access Journals (Sweden)

    Lucas Machado Pontes

    2017-11-01

    Full Text Available ABSTRACT The Jaguarí River Basin forms the main water supply sources for the São Paulo Metropolitan Region and other cities in the state. Since the kinetic energy of rainfall is the driving force of water erosion, the main cause of land and water degradation, we tested the hypothesis of correlation between the erosive potential of rainfall (erosivity and geographical coordinates and altitude for the purpose of predicting the spatial and temporal distribution of the rainfall erosivity index (EI30 in the basin. An equation was used to estimate the (EI30 in accordance with the average monthly and total annual rainfall at rainfall stations with data available for the study area. In the regression kriging technique, the deterministic part was modeled using multiple linear regression between the dependent variable (EI30 and environmental predictor variables: latitude, longitude, and altitude. From the result of equations and the maps generated, a direct correlation between erosivity and altitude could be observed. Erosivity has a markedly seasonal behavior in accordance with the rainy season from October to March. This season concentrates 86 % of the estimated EI30 values, with monthly maximum values of up to 2,342 MJ mm ha-1 h-1 month-1 between December and January, and minimum of 34 MJ mm ha-1 h-1 month-1 in August. The highest values were found in the Mantiqueira Range region (annual average of up to 12,000 MJ mm ha-1 h-1, a region that should be prioritized in soil and water conservation efforts. From this validation, good precision and accuracy of the model was observed for the long period of the annual average, which is the main factor used in soil loss prediction models.

  13. Monitoring of downstream salmon and steelhead at Federal hydroelectric facilities. Annual report 1993

    International Nuclear Information System (INIS)

    Wood, L.A.; Martinson, R.D.; Graves, R.J.; Carroll, D.R.; Killins, S.D.

    1994-04-01

    The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia River in 1993 (river mile 145 and 216, respectively, Figure 1). The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program is carried out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration. The purpose of the SMP is to index Columbia Basin juvenile salmonid stocks and develop and implement flow and spill requests intended to facilitate fish passage. Data is also used for travel time, migration timing and relative run size magnitude analysis. The purpose of the NMFS portion of the program is to provide FPC with species specific data; numbers, condition, length, brand recaptures and flow data from John Day, and Bonneville Dams on a daily basis

  14. Yakima/Klickitat Fisheries Project; Klickitat Only Monitoring and Evaluation, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, Melvin; Evenson, Rolf

    2003-12-01

    The monitoring and evaluation activities described in this report were determined by consensus of the scientists from the Yakama Nation (YN). Klickitat Subbasin Monitoring and Evaluation (M&E) activities have been subjected to scientific and technical review by members of YKFP's Science/Technical Advisory Committee (STAC) as part of the YKFP's overall M&E proposal. Yakama Nation YKFP project biologists have transformed the conceptual design into the tasks described. This report summarizes progress and results for the following major categories of YN-managed tasks under this contract: (1) Monitoring and Evaluation - Accurately characterize baseline available habitat and salmonid populations pre-habitat restoration and pre-supplementation. (2) EDT Modeling - Identify and evaluate habitat and artificial production enhancement options. (3) Genetics - Characterize the genetic profile of wild steelhead in the Klickitat Basin. (4) Ecological Interactions - Determine the presence of pathogens in wild and naturally produced salmonids in the Klickitat Basin and develop supplementation strategies using this information.

  15. Annual environmental monitoring report, January-December 1983

    International Nuclear Information System (INIS)

    1984-03-01

    Environmental monitoring results continue to demonstrate that environmental radiological impact due to SLAC operation is not easily distinguishable from natural environmental sources. During 1983, the maximum approximated neutron dose near the site boundary was 5 mrem. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since operation began in 1966. We have never found any evidence of radioactivity in ground water in excess of natural background radioactivity from uranium and thorium decay chains and potassium-40. Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site-boundary annual dose of less than 0.3 mrem; this represents less than 0.3% of the annual dose from the natural radiation environment, and about 0.06% of the technical standard. 8 references, 5 figures, 4 tables

  16. Annual dissolved nitrite plus nitrate and total phosphorous loads for the Susquehanna, St. Lawrence, Mississippi-Atchafalaya, and Columbia River basins, 1968-2004

    Science.gov (United States)

    Aulenbach, Brent T.

    2006-01-01

    Annual stream-water loads were calculated near the outlet of four of the larger river basins (Susquehanna, St. Lawrence, Mississippi-Atchafalaya, and Columbia) in the United States for dissolved nitrite plus nitrate (NO2 + NO3) and total phosphorus using LOADEST load estimation software. Loads were estimated for the period 1968-2004; although loads estimated for individual river basins and chemical constituent combinations typically were for shorter time periods due to limitations in data availability. Stream discharge and water-quality data for load estimates were obtained from the U.S. Geological Survey (USGS) with additional stream discharge data for the Mississippi-Atchafalaya River Basin from the U.S. Army Corps of Engineers. The loads were estimated to support national assessments of changes in stream nutrient loads that are periodically conducted by Federal agencies (for example, U.S. Environmental Protection Agency) and other water- and land-resource organizations. Data, methods, and results of load estimates are summarized herein; including World Wide Web links to electronic ASCII text files containing the raw data. The load estimates are compared to dissolved NO2 + NO3 loads for three of the large river basins from 1971 to 1998 that the USGS provided during 2001 to The H. John Heinz III Center for Science, Economics and the Environment (The Heinz Center) for a report The Heinz Center published during 2002. Differences in the load estimates are the result of using the most up-to-date monitoring data since the 2001 analysis, differences in how concentrations less than the reporting limit were handled by the load estimation models, and some errors and exclusions in the 2001 analysis datasets (which resulted in some inaccurate load estimates).

  17. Environmental monitoring at the Savannah River Plant. Annual report, 1984

    International Nuclear Information System (INIS)

    Zeigler, C.C.; Lawrimore, I.B.; O'Rear, W.E.

    1985-06-01

    Ensuring the radiation safety of the public in the vicinity of the Savannah River Plant was a foremost consideration in the design of the plant and has continued to be a primary objective during 31 years of SRP operations. An extensive surveillance program has been continuously maintained since 1951 (before SRP startup) to determine the concentrations of radionuclides in the environment of the plant. The results of this comprehensive monitoring program are reported annually in two publications. The first, ''Savannah River Plant Environmental Report for 1984'' [DPSPU85-30-1], contains radiation dose data, routine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs that are in progress, summaries of sitewide environmental research and management programs, and a summary of National Environmental Policy Act (NEPA) activities. This report is the second and contains primarily radiation dose data and radiological and nonradiological monitoring data both onsite and offsite. It is placed in Department of Energy (DOE) reading rooms and is available to the public upon request. A listing of corresponding reports that have been issued since before plant startup is presented in Appendix A. The scope of the environmental monitoring program at SRP has increased significantly during the years since plant startup. The change is reflected in annual reports. Prior to the mid-1970's the reports contained primarily radiological monitoring data. Beginning in the mid-1970's the reports started including more and more nonradiological monitoring data as those programs increased. The nonradiological monitoring program now approaches the size and extensiveness of the radiological monitoring program

  18. Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué

    Directory of Open Access Journals (Sweden)

    Sakaros Bogning

    2018-02-01

    Full Text Available Radar altimetry is now commonly used for the monitoring of water levels in large river basins. In this study, an altimetry-based network of virtual stations was defined in the quasi ungauged Ogooué river basin, located in Gabon, Central Africa, using data from seven altimetry missions (Jason-2 and 3, ERS-2, ENVISAT, Cryosat-2, SARAL, Sentinel-3A from 1995 to 2017. The performance of the five latter altimetry missions to retrieve water stages and discharges was assessed through comparisons against gauge station records. All missions exhibited a good agreement with gauge records, but the most recent missions showed an increase of data availability (only 6 virtual stations (VS with ERS-2 compared to 16 VS for ENVISAT and SARAL and accuracy (RMSE lower than 1.05, 0.48 and 0.33 and R² higher than 0.55, 0.83 and 0.91 for ERS-2, ENVISAT and SARAL respectively. The concept of VS is extended to the case of drifting orbits using the data from Cryosat-2 in several close locations. Good agreement was also found with the gauge station in Lambaréné (RMSE = 0.25 m and R2 = 0.96. Very good results were obtained using only one year and a half of Sentinel-3 data (RMSE < 0.41 m and R2 > 0.89. The combination of data from all the radar altimetry missions near Lamabréné resulted in a long-term (May 1995 to August 2017 and significantly improved water-level time series (R² = 0.96 and RMSE = 0.38 m. The increase in data sampling in the river basin leads to a better water level peak to peak characterization and hence to a more accurate annual discharge over the common observation period with only a 1.4 m3·s−1 difference (i.e., 0.03% between the altimetry-based and the in situ mean annual discharge.

  19. Temporal and basin-specific population trends of quagga mussels on soft sediment of a multi-basin reservoir

    Science.gov (United States)

    Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.

    2015-01-01

    Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.

  20. Different scale land subsidence and ground fissure monitoring with multiple InSAR techniques over Fenwei basin, China

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2015-11-01

    Full Text Available Fenwei basin, China, composed by several sub-basins, has been suffering severe geo-hazards in last 60 years, including large scale land subsidence and small scale ground fissure, which caused serious infrastructure damages and property losses. In this paper, we apply different InSAR techniques with different SAR data to monitor these hazards. Firstly, combined small baseline subset (SBAS InSAR method and persistent scatterers (PS InSAR method is used to multi-track Envisat ASAR data to retrieve the large scale land subsidence covering entire Fenwei basin, from which different land subsidence magnitudes are analyzed of different sub-basins. Secondly, PS-InSAR method is used to monitor the small scale ground fissure deformation in Yuncheng basin, where different spatial deformation gradient can be clearly discovered. Lastly, different track SAR data are contributed to retrieve two-dimensional deformation in both land subsidence and ground fissure region, Xi'an, China, which can be benefitial to explain the occurrence of ground fissure and the correlation between land subsidence and ground fissure.

  1. Umatilla Hatchery Monitoring and Evaluation, 1992-1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Hayes, Michael C.; Groberg, Jr., Warren J. (Oregon Department of Fish and Wildlife)

    1994-06-01

    The Umatilla Hatchery is the foundation for rehabilitating chinook salmon and enhancing summer steelhead in the Umatilla River and expected to contribute significantly to the Northwest Power Planning Council`s goal of doubling salmonid production in the Columbia Basin. This report covers the second year of comprehensive monitoring and evaluation of the Umatilla Hatchery. As both the hatchery and the evaluation study are in the early stages of implementation, much of the information contained in this report is preliminary.

  2. Annual Report of Monitoring at Everest, Kansas, in 2015

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    In March 2009, the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water (Argonne 2009). Under this plan, approved by the KDHE (2009), monitoring wells are sampled by using the low-flow procedure (Puls and Barcelona 1996; Yeskis and Zavala 2002), and surface water samples are collected at five locations along the intermittent creek. Vegetation sampling is conducted as a secondary indicator of plume migration. As of 2015, the frequency of surface water sampling has been decreased to once yearly, per the approval of the KDHE (2015).

  3. Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China.

    Science.gov (United States)

    Yanhui Wang; Pengtao Yu; Karl-Heinz Feger; Xiaohua Wei; Ge Sun; et al

    2011-01-01

    Large-scale forestation has been undertaken over decades principally to control the serious soil erosion in the Loess Plateau of China. A quantitative assessment of the hydrological effects of forestation, especially on basin water yield, is critical for the sustainable forestry development within this dry region. In this study, we constructed the multi-annual water...

  4. H-Area Acid/Caustic Basin Groundwater Monitoring Report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in wells HAC 1, 2, 3, and 4 during fourth quarter 1992. Tritium activities in upgradient well HAC 4 were similar to tritium levels in wells HAC 1, 2, and 3. Iron was elevated in well HAC 1, 2, and 3. Specific conductance and manganese were elevated in one downgradient well each. No well samples exceeded the SRS turbidity standard. During 1992, tritium was the only constituent that exceeded the final PDWS. It did so consistently in all four wells during all four quarters, with little variability in activity

  5. Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty

    Science.gov (United States)

    Annual total suspended solid (TSS) loads in the Mae Sa Catchment in northern Thailand, determined with an automated, turbidity-based monitoring approach, were approximately 62,000, 33,000, and 14,000 Mg during the three years of observation. These loads were equivalent to basin y...

  6. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  7. Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Johnson, June; Putnam, Scott

    2008-12-01

    Populations of anadromous salmonids in the Snake River basin declined precipitously following the construction of hydroelectric dams in the Snake and Columbia rivers. Raymond (1988) documented a decrease in survival of emigrating steelhead trout Oncorhynchus mykiss and Chinook salmon O. tshawytscha from the Snake River following the construction of dams on the lower Snake River during the late 1960s and early 1970s. Although Raymond documented some improvements in survival through the early 1980s, anadromous populations remained depressed and declined even further during the 1990s (Petrosky et al. 2001; Good et al. 2005). The effect was disastrous for all anadromous salmonid species in the Snake River basin. Coho salmon O. kisutch were extirpated from the Snake River by 1986. Sockeye salmon O. nerka almost disappeared from the system and were declared under extreme risk of extinction by authority of the Endangered Species Act (ESA) in 1991. Chinook salmon were classified as threatened with extinction in 1992. Steelhead trout were also classified as threatened in 1997. Federal management agencies in the basin are required to mitigate for hydroelectric impacts and provide for recovery of all ESA-listed populations. In addition, the Idaho Department of Fish and Game (IDFG) has the long-term goal of preserving naturally reproducing salmon and steelhead populations and recovering them to levels that will provide a sustainable harvest (IDFG 2007). Management to achieve these goals requires an understanding of how salmonid populations function (McElhany et al. 2000) as well as regular status assessments. Key demographic parameters, such as population density, age composition, recruits per spawner, and survival rates must be estimated annually to make such assessments. These data will guide efforts to meet mitigation and recovery goals. The Idaho Natural Production Monitoring and Evaluation Project (INPMEP) was developed to provide this information to managers. The Snake

  8. Integrated monitoring and assessment of soil restoration treatments in the Lake Tahoe Basin.

    Science.gov (United States)

    Grismer, M E; Schnurrenberger, C; Arst, R; Hogan, M P

    2009-03-01

    Revegetation and soil restoration efforts, often associated with erosion control measures on disturbed soils, are rarely monitored or otherwise evaluated in terms of improved hydrologic, much less, ecologic function and longer term sustainability. As in many watersheds, sediment is a key parameter of concern in the Tahoe Basin, particularly fine sediments less than about ten microns. Numerous erosion control measures deployed in the Basin during the past several decades have under-performed, or simply failed after a few years and new soil restoration methods of erosion control are under investigation. We outline a comprehensive, integrated field-based evaluation and assessment of the hydrologic function associated with these soil restoration methods with the hypothesis that restoration of sustainable function will result in longer term erosion control benefits than that currently achieved with more commonly used surface treatment methods (e.g. straw/mulch covers and hydroseeding). The monitoring includes cover-point and ocular assessments of plant cover, species type and diversity; soil sampling for nutrient status; rainfall simulation measurement of infiltration and runoff rates; cone penetrometer measurements of soil compaction and thickness of mulch layer depths. Through multi-year hydrologic and vegetation monitoring at ten sites and 120 plots, we illustrate the results obtained from the integrated monitoring program and describe how it might guide future restoration efforts and monitoring assessments.

  9. Annual report on radioactive discharges and monitoring of the environment 1988

    International Nuclear Information System (INIS)

    1989-01-01

    This report supplements BNFL's Health and Safety Annual Report and lists 1988 discharges and environmental monitoring for the following sites: Sellafield, Chapelcross, Drigg Storage and Disposal Site, Springfields Works, Capenhurst Works. (UK)

  10. Integrated Hydro-geomorphological Monitoring System of the Upper Bussento river basin (Cilento and Vallo Diano Geopark, S-Italy)

    Science.gov (United States)

    Guida, D.; Cuomo, A.; Longobardi, A.; Villani, P.; Guida, M.; Guadagnuolo, D.; Cestari, A.; Siervo, V.; Benevento, G.; Sorvino, S.; Doto, R.; Verrone, M.; De Vita, A.; Aloia, A.; Positano, P.

    2012-04-01

    The Mediterranean river ecosystem functionings are supported by river-aquifer interactions. The assessment of their ecological services requires interdisciplinary scientific approaches, integrate monitoring systems and inter-institutional planning and management. This poster illustrates the Hydro-geomorphological Monitoring System build-up in the Upper Bussento river basin by the University of Salerno, in agreement with the local Basin Autorities and in extension to the other river basins located in the Cilento and Vallo Diano National Park (southern Italy), recently accepted in the European Geopark Network. The Monitoring System is based on a hierarchical Hydro-geomorphological Model (HGM), improved in a multiscale, nested and object-oriented Hydro-geomorphological Informative System (HGIS, Figure 1). Hydro-objects are topologically linked and functionally bounded by Hydro-elements at various levels of homogeneity (Table 1). Spatial Hydro-geomorpho-system, HG-complex and HG-unit support respectively areal Hydro-objects, as basin, sector and catchment and linear Hydro-objects, as river, segment, reach and section. Runoff initiation points, springs, disappearing points, junctions, gaining and water losing points complete the Hydro-systems. An automatic procedure use the Pfafstetter coding to hierarchically divide a terrain into arbitrarily small hydro-geomorphological units (basin, interfluve, headwater and no-contribution areas, each with a unique label with hierarchical topological properties. To obtain a hierarchy of hydro-geomorphological units, the method is then applied recursively on each basin and interbasin, and labels of the subdivided regions are appended to the existing label of the original region. The monitoring stations are ranked consequently in main, secondary, temporary and random and located progressively at the points or sections representative for the hydro-geomorphological responses by validation control and modeling calibration. The datasets

  11. Monitoring of radiation exposure. Annual report 2000

    International Nuclear Information System (INIS)

    Rantanen, E.

    2001-03-01

    At the end of 2000, there were 1,779 valid safety licenses in Finland for the use of radiation. In addition, there were 2,038 responsible parties for dental x-ray diagnostics. The registry Radiation and Nuclear Safety Authority (STUK) listed 13,754 radiation sources and 270 radionuclide laboratories. In the year 2000 360 inspections were made concerning the safety licences and 53 concerning dental x-ray diagnostics. The import of radioactive substances amounted to 175,836 GBq and export to 74,420 GBq. Short-lived radionuclides produced in Finland amounted to 55,527 GBq. In the year 2000 there were 10,846 workers monitored for radiation exposure at 1,171 work sites. Of these employees, 27% received an annual dose exceeding the recording level. The annual effective dose limit was not exceeded. The total dose recorded in the dose registry(sum of the individual dosemeter readings) was 6.5 Sv in 2000

  12. Annual environmental monitoring report, January-December 1979

    International Nuclear Information System (INIS)

    1980-05-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1979, the maximum measured neutron dose near the site boundary was not distinguishable from the cosmic ray neutron background. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since 1966. Because of major new construction, well water samples were not collected and analyzed during 1979. Construction activities have also temporarily placed our sampling stations for the sanitary and storm sewers out of service. They will be reestablished as soon as construction activities permit (mid 1980). Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site boundary annual dose of less than 0.3 mrem; this represents less than 0.3% of the annual dose from the natural radiation environment, and about 0.06% of the technical standard

  13. Sandia National Laboratories, California Environmental Monitoring Program annual report for 2011.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2011-03-01

    The annual program report provides detailed information about all aspects of the SNL/California Environmental Monitoring Program. It functions as supporting documentation to the SNL/California Environmental Management System Program Manual. The 2010 program report describes the activities undertaken during the previous year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/California.

  14. Results of the marine biota monitoring during drilling activity on Campos Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Petta, Claudia Brigagao de; Bastos, Fabio; Danielski, Monica; Ferreira, Mariana; Gama, Mariana; Coelho, Ana Paula Athanazio; Maia, Decio [Aecom do Brasil Ltda, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The Environmental Monitoring Project (PMA) aims to report environmental changes arising from drilling activity, in relation to the marine fauna. This project can also help in the monitoring of accidental spills. Since the professionals spend six hours of the day monitoring the ocean around the rigs, they can locate and identify oil stains, notify the responsible onboard, and also help in the monitoring of the oil stain. Such Project has been developed onboard a drilling unit working in Campos Basin. The results presented here were collected during the drilling activity in Bijupira and Salema fields, by Shell Brasil Petroleo Ltda, from July 13th to October 8th, 2011.

  15. Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia

    Science.gov (United States)

    Curry, Charles L.; Zwiers, Francis W.

    2018-04-01

    The Fraser River Basin (FRB) of British Columbia is one of the largest and most important watersheds in western North America, and home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in May-July. Nevertheless, while annual peak daily streamflow (APF) during the spring freshet in the FRB is historically well correlated with basin-averaged, 1 April snow water equivalent (SWE), there are numerous occurrences of anomalously large APF in below- or near-normal SWE years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APFs hinders robust projections of their magnitude and frequency. We employ the Variable Infiltration Capacity (VIC) process-based hydrological model driven by gridded observations to investigate the key controlling factors of anomalous APF events in the FRB and four of its subbasins that contribute nearly 70 % of the annual flow at Fraser-Hope. The relative influence of a set of predictors characterizing the interannual variability of rainfall, snowfall, snowpack (characterized by the annual maximum value, SWEmax), soil moisture and temperature on simulated APF at Hope (the main outlet of the FRB) and at the subbasin outlets is examined within a regression framework. The influence of large-scale climate modes of variability (the Pacific Decadal Oscillation (PDO) and the El Niño-Southern Oscillation - ENSO) on APF magnitude is also assessed, and placed in context with these more localized controls. The results indicate that next to SWEmax (univariate Spearman correlation with APF of ρ ^ = 0.64; 0.70 (observations; VIC simulation)), the snowmelt rate (ρ ^ = 0.43 in VIC), the ENSO and PDO indices (ρ ^ = -0.40; -0.41) and (

  16. 1995 annual water monitoring report, LEHR environmental restoration, University of California at Davis

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.L.; Smith, R.M.; Sauer, D.R. [and others

    1996-03-01

    This 1995 Annual Water Monitoring Report presents analytical data collected between January and December 1995 at the Laboratory for Energy-Related Health Research (LEHR) located at the University of California (UC), Davis. This report has been prepared by Pacific Northwest National Laboratory in compliance with the Water Monitoring Plan for the LEHR site, which contains the sample collection, analysis, and quality assurance/quality control procedures and reporting requirements. Water monitoring during 1995 was conducted in conjunction with the Remedial Investigation/Feasibility Study currently being implemented at the LEHR site as part of a US Department of Energy (DOE)-sponsored environmental restoration program. Based on a review of historical groundwater monitoring data compiled since the fall of 1990, the list of analytes included in the program was reduced and the schedule for analyzing the remaining analytes was revised. The revision was implemented for the first time in the summer monitoring period. Analytes eliminated from the program were those that were (1) important for establishing baseline groundwater chemistry (alkalinity, anions, Eh, total organic carbon, and chemical oxygen demand); (2) important for establishing sources of contamination; (3) not detected in water samples or not from the LEHR site; and (4) duplicates of another measurement. Reductions in the analytical schedule were based on the monitoring history for each well; the resultant constituents of concern list was developed for individual wells. Depending on its importance in a well, each analyte was analyzed quarterly, semi-annually, or annually. Pollutants of major concern include organic compounds, metals, and radionuclides.

  17. 1995 annual water monitoring report, LEHR environmental restoration, University of California at Davis

    International Nuclear Information System (INIS)

    Stewart, D.L.; Smith, R.M.; Sauer, D.R.

    1996-03-01

    This 1995 Annual Water Monitoring Report presents analytical data collected between January and December 1995 at the Laboratory for Energy-Related Health Research (LEHR) located at the University of California (UC), Davis. This report has been prepared by Pacific Northwest National Laboratory in compliance with the Water Monitoring Plan for the LEHR site, which contains the sample collection, analysis, and quality assurance/quality control procedures and reporting requirements. Water monitoring during 1995 was conducted in conjunction with the Remedial Investigation/Feasibility Study currently being implemented at the LEHR site as part of a US Department of Energy (DOE)-sponsored environmental restoration program. Based on a review of historical groundwater monitoring data compiled since the fall of 1990, the list of analytes included in the program was reduced and the schedule for analyzing the remaining analytes was revised. The revision was implemented for the first time in the summer monitoring period. Analytes eliminated from the program were those that were (1) important for establishing baseline groundwater chemistry (alkalinity, anions, Eh, total organic carbon, and chemical oxygen demand); (2) important for establishing sources of contamination; (3) not detected in water samples or not from the LEHR site; and (4) duplicates of another measurement. Reductions in the analytical schedule were based on the monitoring history for each well; the resultant constituents of concern list was developed for individual wells. Depending on its importance in a well, each analyte was analyzed quarterly, semi-annually, or annually. Pollutants of major concern include organic compounds, metals, and radionuclides

  18. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  19. Decline of the Black Tern (Chlidonias niger) population in the Klamath Basin, Oregon, 2001-2010

    Science.gov (United States)

    Jaime L. Stephens; Sarah M. Rockwell; C. John Ralph; John D Alexander

    2015-01-01

    We monitored the Black Tern (Childonias niger) population at Agency and Upper Klamath Lakes, in the Klamath Basin, Oregon, from 2001–2010. We estimated that the population of adult Black Terns declined at these 2 joined waterbodies by 8.4% annually. In contrast, our analysis of Breeding Bird Survey data for the Bird...

  20. Active sites environmental monitoring program FY 1997 annual report

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1998-03-01

    This report summarizes the activities conducted by the Active Sites Environmental Monitoring Program (ASEMP) from October 1996 through September 1997. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North. This report continues a series of annual and semiannual reports that present the results of ASEMP monitoring activities. This report details monitoring results for fiscal year (FY) 1997 from SWSA 6, including the Interim Waste Management Facility (IWMF) and the Hillcut Disposal Test Facility (HDTF), and (2) TRU-waste storage areas in SWSA 5 N. This report presents a summary of the methodology used to gather data for each major area along with the FY 1997 results. Figures referenced in the text are found in Appendix A and data tables are presented in Appendix B

  1. Amphibian monitoring in the Atchafalaya Basin

    Science.gov (United States)

    Waddle, Hardin

    2011-01-01

    Amphibians are a diverse group of animals that includes frogs, toads, and salamanders. They are adapted to living in a variety of habitats, but most require water for at least one life stage. Amphibians have recently become a worldwide conservation concern because of declines and extinctions even in remote protected areas previously thought to be safe from the pressures of habitat loss and degradation. Amphibians are an important part of ecosystem dynamics because they can be quite abundant and serve both as a predator of smaller organisms and as prey to a suite of vertebrate predators. Their permeable skin and aquatic life history also make them useful as indicators of ecosystem health. Since 2002, the U.S. Geological Survey has been studying the frog and toad species inhabiting the Atchafalaya Basin to monitor for population declines and to better understand how the species are potentially affected by disease, environmental contaminants, and climate change.

  2. Reproduction of Baltic cod, Gadus morhua (Actinopterygii: Gadiformes: Gadidae), in the Gotland Basin: Causes of annual variability

    DEFF Research Database (Denmark)

    Plikshs, Maris; Hinrichsen, Hans-Harald; Elferts, D.

    2015-01-01

    observations during 1969–1995 on four stations in each of two transects. The oceanographic monitoring and demersal trawl research survey data from 1974–2012 have been used in analyses. Results. The sufficient reproduction conditions in the southern Gotland Basin persisted only until 1981. In later decades...... reproduction volume concept can be used as an ecological indicator for egg survival probability in the Gotland Basin. However, it is too premature to re-define the concept of the suitable reproduction volume because it is applicable only to the Gotland spawning ground...

  3. Intra- and inter-basin mercury comparisons: Importance of basin scale and time-weighted methylmercury estimates

    International Nuclear Information System (INIS)

    Bradley, Paul M.; Journey, Celeste A.; Brigham, Mark E.; Burns, Douglas A.; Button, Daniel T.; Riva-Murray, Karen

    2013-01-01

    To assess inter-comparability of fluvial mercury (Hg) observations at substantially different scales, Hg concentrations, yields, and bivariate-relations were evaluated at nested-basin locations in the Edisto River, South Carolina and Hudson River, New York. Differences between scales were observed for filtered methylmercury (FMeHg) in the Edisto (attributed to wetland coverage differences) but not in the Hudson. Total mercury (THg) concentrations and bivariate-relationships did not vary substantially with scale in either basin. Combining results of this and a previously published multi-basin study, fish Hg correlated strongly with sampled water FMeHg concentration (ρ = 0.78; p = 0.003) and annual FMeHg basin yield (ρ = 0.66; p = 0.026). Improved correlation (ρ = 0.88; p < 0.0001) was achieved with time-weighted mean annual FMeHg concentrations estimated from basin-specific LOADEST models and daily streamflow. Results suggest reasonable scalability and inter-comparability for different basin sizes if wetland area or related MeHg-source-area metrics are considered. - Highlights: ► National scale mercury assessments integrate small scale study results. ► Basin scale differences and representativeness of fluvial mercury samples are concerns. ► Wetland area, not basin size, predicts inter-basin methylmercury variability. ► Time-weighted methylmercury estimates improve the prediction of mercury in basin fish. - Fluvial methylmercury concentration correlates with wetland area not basin scale and time-weighted estimates better predict basin top predator mercury than discrete sample estimates.

  4. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old

  5. Evaluation of water resources monitoring networks: study applied to surface waters in the Macaé River Basin

    Directory of Open Access Journals (Sweden)

    Carolina Cloris Lopes Benassuly

    2012-04-01

    Full Text Available Knowledge of hydrological phenomena is required in water resources monitoring, in order to structure the water management, focusing on ensuring its multiple uses while allowing that resource´s control and conservation. The effectiveness of monitoring depends on adequate information systems design and proper operation conditions. Data acquisition, treatment and analysis are vital for establishing management strategies, thus monitoring systems and networks shall be conceived according to their main objectives, and be optimized in terms of location of data stations. The generated data shall also model hydrological behavior of the studied basin, so that data interpolation can be applied to the whole basin. The present work aimed to join concepts and methods that guide the structuring of hydrologic monitoring networks of surface waters. For evaluating historical series characteristics as well as work stations redundancy, the entropy method was used. The Macaé River Basin’s importance is related to the public and industrial uses of water in the region that is responsible for more than 80% of Brazilian oil and gas production, what justifies the relevance of the research made. This study concluded that despite of its relatively short extension, the Macaé River Basin should have higher monitoring network density, in order to provide more reliable management data. It also depicted the high relevancy of stations located in its upper course.

  6. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook and Juvenile-to-Adult PIT-tag Retention; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis M. (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-11-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first in an anticipated series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2001 and March 31, 2002. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons.

  7. H-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994

    International Nuclear Information System (INIS)

    1994-09-01

    During second quarter 1994, samples collected from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses (exclusive of boron and lithium) and turbidity measurements. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in all four HAC wells during second quarter 1994. Carbon tetrachloride exceeded the final PDWS in well HAC 4. Aluminum exceeded its Flag 2 criterion in wells HAC 2, 3, and 4. Iron was elevated in wells HAC 1, 2, and 3. Manganese exceeded its Flag 2 criterion in well HAC 3. Specific conductance and total organic halogens were elevated in well HAC 2. No well samples exceeded the SRS turbidity standard. Groundwater flow direction in the water stable beneath the H-Area Acid/Caustic Basin was to the west during second quarter 1994. During previous quarters, the groundwater flow direction has been consistently to the northwest or the north-northwest. This apparent change in flow direction may be attributed to the lack of water elevations for wells HTF 16 and 17 and the anomalous water elevations for well HAC 2 during second quarter

  8. Annual report on the environmental radiation monitoring around Tokai Reprocessing Plant. FY 2001. Document on present state of affairs

    International Nuclear Information System (INIS)

    Shinohara, Kunihiko; Takeishi, Minoru; Miyagawa, Naoto

    2002-06-01

    Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed since 1975, based on ''Safety Regulations for the Tokai Reprocessing Plant, Chapter IV - Environmental Monitoring''. This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant during April 2001 to March 2002. Appendices present comprehensive information, such as monitoring program, monitoring results, meteorological data and annual discharges from the plant. (author)

  9. Weldon Spring, Missouri: Annual environmental monitoring report, calendar year 1987

    International Nuclear Information System (INIS)

    1987-01-01

    Radiological monitoring at the WSS during 1987 measured uranium, Radium-226, and Thorium-230 concentrations in surface water, groundwater, and sediment; radon gas concentrations in air; all long-lived natural series isotopes in air particulates; and external gamma radiation exposure rates. Potential radiation doses to the public were calculated based on assumed exposure periods and the above measurements. Radon concentrations, external gamma exposure rates, and radionuclide concentrations in groundwater and surface water at the site were generally equivalent to previous years' levels. The maximum calculated annual radiation dose to a hypothetically exposed individual at the WSRP and WSCP area was 1 mrem, or 1 percent of the DOE radiation protection standard of 100 mrem. The maximum calculated annual radiation dose to a hypothetically exposed individual at the WSQ was 14 mrem, or about 14 percent of the standard. Thus the WSS currently complies with DOE Off-site Dose Standards. Chemical contamination monitoring at the WSS during 1987 measured nitroaromatics, total organic carbon and the inorganic anions chloride, nitrate, fluoride and sulfate in surface water, groundwater and sediment. 22 refs., 26 figs., 21 tabs

  10. Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India

    Science.gov (United States)

    Sharma, Priyank J.; Loliyana, V. D.; S. R., Resmi; Timbadiya, P. V.; Patel, P. L.

    2017-12-01

    The flood risk across the globe is intensified due to global warming and subsequent increase in extreme temperature and precipitation. The long-term trends in extreme rainfall (1944-2013) and temperature (1969-2012) indices have been investigated at annual, seasonal, and monthly time scales using nonparametric Mann-Kendall (MK), modified Mann-Kendall (MMK), and Sen's slope estimator tests. The extreme rainfall and temperature indices, recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), have been analyzed at finer spatial scales for trend detection. The results of trend analyses indicate decreasing trend in annual total rainfall, significant decreasing trend in rainy days, and increasing trend in rainfall intensity over the basin. The seasonal rainfall has been found to decrease for all the seasons except postmonsoon, which could affect the rain-fed agriculture in the basin. The 1- and 5-day annual maximum rainfalls exhibit mixed trends, wherein part of the basin experiences increasing trend, while other parts experience a decreasing trend. The increase in dry spells and concurrent decrease in wet spells are also observed over the basin. The extreme temperature indices revealed increasing trends in hottest and coldest days, while decreasing trends in coldest night are found over most parts of the basin. Further, the diurnal temperature range is also found to increase due to warming tendency in maximum temperature (T max) at a faster rate compared to the minimum temperature (T min). The increase in frequency and magnitude of extreme rainfall in the basin has been attributed to the increasing trend in maximum and minimum temperatures, reducing forest cover, rapid pace of urbanization, increase in human population, and thereby increase in the aerosol content in the atmosphere. The findings of the present study would significantly help in sustainable water resource planning, better decision-making for policy framework, and setting up

  11. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  12. Annual report on radioactive discharges and monitoring of the environment 1993. V. 2: Certificates of authorisation and environmental monitoring programmes

    International Nuclear Information System (INIS)

    1994-01-01

    British Nuclear Fuels plc's Certificates of Authorisation, under which it operates, are reproduced in the second volume of the 1993 Annual Report on Radioactive Discharges and Monitoring of the Environment. The report also includes environmental monitoring programmes relating to discharge authorisation for each of the Sellafield, Drigg, Chapelcross, Springfields and Capenhurst sites. (UK)

  13. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  14. Air quality monitoring programme. Annual summary for 2003

    International Nuclear Information System (INIS)

    Kemp, K.; Palmgren, F.

    2004-06-01

    The Danish Air Quality Monitoring Programme (LMP IV) has been revised in accordance with the Framework Directive and the first three daughter directives of SO 2 , NO x /NO 2 , PM IO , lead, benzene, CO and ozone. Only a PM 10 monitor at an urban background location in Odense is missing. The data sets for year 2003 are almost complete for all stations. The monitoring programme consists of 10 stations plus 2 extra stations under the Municipality of Copenhagen. The limit value of the annual average of NO 2 was in 2003 exceeded at three street stations. At one station (Copenhagen/1103) the limit value + the margin of tolerance (56 μg/m 3 in 2003) was, exceeded. The trend seems to have been constant after several years of decrease. The ozone level was in 2003 - more or less - the same at all rural and urban background stations and no clear trend is observed. The information threshold on 180 μg/m 3 was not exceeded. The target values were not exceeded, but the long-term objectives of max 8 hours on 120 μg/m 3 were exceeded at all urban background and rural stations. The long term objective for AOT40 at 6000 μg/m 3 *hours were exceeded in a few Gases. The limit value of PM 10 on 50 μg/m 3 , not to be exceeded more than 35 times per year and to comply with in 2005, was in 2003 exceeded at 2 out of 4 street stations. At all stations both proposal limits values to be met in 2010 (annual average value on 20 μg/m 3 and 50 μg/m 3 not to be exceeded more than 7 times per year) were exceeded at all stations (including the rural station Keldsnor). PM 10 is 60-70% of TSP. The trend of TSP has been clear decreasing the last 15 years, except at HCAB. The SO 2 and lead levels are still decreasing and far below the limit values. The limit values for benzene and CO are not exceeded and the levels are Glose to the levels in year 2002. Actual data, quarterly reports, annual summaries and summaries over many year are available at the homepage of NERI on 'luft.dmu.dk'. (au)

  15. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance

    2003-08-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream

  16. Monitoring and Evaluation; Statistical Support for Life-cycle Studies, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John

    2003-12-01

    This report summarizes the statistical analysis and consulting activities performed under Contract No. 00004134, Project No. 199105100 funded by Bonneville Power Administration during 2003. These efforts are focused on providing real-time predictions of outmigration timing, assessment of life-history performance measures, evaluation of status and trends in recovery, and guidance on the design and analysis of Columbia Basin fish and wildlife studies monitoring and evaluation studies. The overall objective of the project is to provide BPA and the rest of the fisheries community with statistical guidance on design, analysis, and interpretation of monitoring data, which will lead to improved monitoring and evaluation of salmonid mitigation programs in the Columbia/Snake River Basin. This overall goal is being accomplished by making fisheries data readily available for public scrutiny, providing statistical guidance on the design and analyses of studies by hands-on support and written documents, and providing real-time analyses of tagging results during the smolt outmigration for review by decision makers. For a decade, this project has been providing in-season projections of smolt outmigration timing to assist in spill management. As many as 50 different fish stocks at 8 different hydroprojects are tracked and real-time to predict the 'percent of run to date' and 'date to specific percentile'. The project also conducts added-value analyses of historical tagging data to understand relationships between fish responses, environmental factors, and anthropogenic effects. The statistical analysis of historical tagging data crosses agency lines in order to assimilate information on salmon population dynamics irrespective of origin. The lessons learned from past studies are used to improve the design and analyses of future monitoring and evaluation efforts. Through these efforts, the project attempts to provide the fisheries community with reliable analyses

  17. Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013

    Science.gov (United States)

    Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua

    2018-05-01

    In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for

  18. Effects of Cougar Predation and Nutrition on Mule Deer Population Declines in the Intermountain Province of the Columbia Basin, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wielgus, Robert B.; Shipley, Lisa

    2002-07-01

    Construction of the Grand Coulee and Chief Joseph dams has resulted in inundation and loss of 29,125 total habitat units for mule deer and irrigation agriculture in many parts the Intermountain Province (IM) of the Columbia Basin. Mule deer in the Shrub-Steppe are ranked high priority target species for mitigation and management and are declining in most portions of the subbasins of the IM. Reasons for the decline are unknown but believed to be related to habitat changes resulting from dams and irrigation agriculture. White-tailed deer are not ranked as target species and are believed to be increasing throughout the basin because of habitat changes brought about by the dams and irrigation agriculture. Recent research (1997-2000) in the NE IM and adjacent Canadian portions of the Columbia Basin (conducted by this author and funded by the Columbia Basin Fish & Wildlife Compensation Program B.C.), suggest that the increasing white-tailed deer populations (because of dams and irrigation agriculture) are resulting in increased predation by cougars on mule deer (apparent competition or alternate prey hypothesis). The apparent competition hypothesis predicts that as alternate prey (white-tailed deer) densities increase, so do densities of predators, resulting in increased incidental predation on sympatric native prey (mule deer). Apparent competition can result in population declines and even extirpation of native prey in some cases. Such a phenomenon may account for declines of mule deer in the IM and throughout arid and semi-arid West where irrigation agriculture is practiced. We will test the apparent competition hypothesis by conducting a controlled, replicated ''press'' experiment in at least 2 treatment and 2 control areas of the IM subbasins by reducing densities of white-tailed deer and observing any changes in cougar predation on mule deer. Deer densities will be monitored by WADFW personnel using annual aerial surveys and/or other trend

  19. Environmental radiation monitoring data for Point Lepreau Generating Station, 1988. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J K

    1989-01-01

    Annual report presenting a compilation of the 1988 environmental radiation monitoring program data from samples collected around the Point Lepreau Nuclear Generating Station (PLNGS) and at reference stations remote from PLNGS. About 1,700 analyses were made on 1,200 samples to monitor environmental radiation, including air filters, airborne water vapour, sea water, well water, milk, beach sediments, clams, fish, lobster, dulse, crabs, scallops and lichen. Background radiation is measured by thermoluminescence dosimetry.

  20. Environmental radiation monitoring data for Point Lepreau Generating Station, 1987. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J K

    1988-01-01

    Annual report presenting a compilation of the 1987 environmental radiation monitoring program data from samples collected around the Point Lepreau Nuclear Generating Station (PLNGS) and at reference stations remote from PLNGS. About 1,800 analyses were made on 1,300 samples to monitor environmental radiation, including air filters, airborne water vapour, sea water, well water, milk, beach sediments, clams, fish, lobster, dulse, crabs, scallops and periwinkles. Background radiation is measured by thermoluminescence dosimetry.

  1. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA)

    2003-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second in a series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2002 and March 31, 2003. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack

  2. F-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993

    International Nuclear Information System (INIS)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the F-Area Seepage Basins (FASB) was monitored in compliance with Module 3, Section C, of South Carolina Hazardous Waste Permit SC1-890-008-989, effective November 2, 1992. The monitoring well network is composed of 87 FSB wells screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning in the first quarter of 1993, the standard for comparison became the SCDHEC Groundwater Protection Standard (GWPS) specified in the approved F-Area Seepage Basins Part B permit. Currently and historically, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the second half of 1993, notably aluminum, iodine-129, and zinc. The elevated constituents are found primarily in Aquifer Zone 2B 2 and Aquifer Zone 2B 1 wells. However, several Aquifer Unit 2A wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Water-level maps indicate that the groundwater flow rates and directions at the FASB have remained relatively constant since the basins ceased to be active in 1988

  3. Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins

    Science.gov (United States)

    Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa

    2017-01-01

    In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.

  4. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Svendby, T.M.; Myhre, C.L.; Stebel, K.; Edvardsen, K; Orsolini, Y.; Dahlback, A.

    2012-07-01

    This is an annual report describing the activities and main results of the monitoring programme: Monitoring of the atmospheric ozone layer and natural ultraviolet radiation for 2011. 2011 was a year with generally low ozone values above Norway. A clear decrease in the ozone layer above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway seems now to have stabilized.(Author)

  5. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2003-06-30

    The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day, who contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2002, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies

  6. Improving a Radioisotope Monitoring Network for the Hydrodynamic Characterization of a Karstic Basin

    Energy Technology Data Exchange (ETDEWEB)

    Peralta Vital, J. L.; Gil Castillo, R.; Fleitas Esteveza, G. [Center of Radiation Protection and Hygiene (CPHR) (Cuba); Moleiro Leon, L. [Environmental Commercial Division (GAMMA) (Cuba); Dapena, C. [Institute of Isotope Geochronology and Geology (INGEIS) (Argentina); Olivera Acosta, J. [Institute of Geodesy and Astronomy (IGA) (Cuba)

    2013-07-15

    The paper shows the application of geomathematical tools for the design of a radioisotope monitoring network in order to characterize groundwater dynamics in a karstic basin, a very difficult task to acccomplish due to the complex physical, geographical, geologic and hydrogeological characteristics of karstic basins. The sampling frequency of the network has been optimized according to the analysis of the spectrum of variances. In order to evaluate this optimization, the geomathematical model is compared to the results of the mathematical model AQUIMPE. This model solves the flow equation of groundwater using the finite element method. The results validate the design in order to assess aquifer recharge, residence time of groundwater, vulnerability to pollution and groundwater-surface water interaction in this complex water resource. (author)

  7. Umatilla Hatchery Monitoring and Evaluation, 1999-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Chess, Dale W.; Cameron, William A.; Stonecypher, Jr., R. Wes (Oregon Department of Fish and Wildlife, Salem, OR)

    2003-12-01

    Umatilla River at Three Mile Dam and South Fork Walla Walla adult facilities for salmon; steelhead adults were monitored at Minthorn adult facility. A new addition to this year's report is the effort to bring together an overview of fish health monitoring results including historical and year to date pathogen information. This information is in table form (Appendix Tables A-28, A-29 and A-30). A summary of juvenile disease outbreaks at Umatilla Hatchery is also included (Appendix Table A-31). REPORT C: Fish Health Monitoring and Evaluation, 2001 Fiscal Year--Results from the 2001 annual report cover the 10th year of Fish Health Monitoring in the Umatilla Hatchery program. Efforts were again made to provide up to date fish health and juvenile disease outbreak loss summary tables from the beginning of the Umatilla Hatchery program (Appendix Tables A-27, A-28, A-29 and A-30). Outmigrant Fish Health Monitoring results were included in this report since this was part of the fish health work statement for this report period. The discussion section for the 2001 and 2002 annual reports are combined in the 2002 report due to time constraints and consolidation efforts to complete this report by the end of May 2003.

  8. Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia

    Directory of Open Access Journals (Sweden)

    C. L. Curry

    2018-04-01

    Full Text Available The Fraser River Basin (FRB of British Columbia is one of the largest and most important watersheds in western North America, and home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in May–July. Nevertheless, while annual peak daily streamflow (APF during the spring freshet in the FRB is historically well correlated with basin-averaged, 1 April snow water equivalent (SWE, there are numerous occurrences of anomalously large APF in below- or near-normal SWE years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APFs hinders robust projections of their magnitude and frequency. We employ the Variable Infiltration Capacity (VIC process-based hydrological model driven by gridded observations to investigate the key controlling factors of anomalous APF events in the FRB and four of its subbasins that contribute nearly 70 % of the annual flow at Fraser-Hope. The relative influence of a set of predictors characterizing the interannual variability of rainfall, snowfall, snowpack (characterized by the annual maximum value, SWEmax, soil moisture and temperature on simulated APF at Hope (the main outlet of the FRB and at the subbasin outlets is examined within a regression framework. The influence of large-scale climate modes of variability (the Pacific Decadal Oscillation (PDO and the El Niño–Southern Oscillation – ENSO on APF magnitude is also assessed, and placed in context with these more localized controls. The results indicate that next to SWEmax (univariate Spearman correlation with APF of ρ ^   =  0.64; 0.70 (observations; VIC simulation, the snowmelt rate (ρ ^   =  0.43 in VIC, the

  9. Using spatial information technologies as monitoring devices in international watershed conservation along the Senegal River Basin of West Africa.

    Science.gov (United States)

    Merem, Edmund C; Twumasi, Yaw A

    2008-12-01

    In this paper, we present the applications of spatial technologies-Geographic Information Systems (GIS) and remote sensing-in the international monitoring of river basins particularly analyzing the ecological, hydrological, and socio-economic issues along the Senegal River. The literature on multinational water crisis has for decades focused on mediation aspects of trans-boundary watershed management resulting in limited emphasis placed on the application of advances in geo-spatial information technologies in multinational watershed conservation in the arid areas of the West African sub-region within the Senegal River Basin for decision-making and monitoring. While the basin offers life support in a complex ecosystem that stretches across different nations in a mostly desert region characterized by water scarcity and subsistence economies, there exists recurrent environmental stress induced by both socio-economic and physical factors. Part of the problems consists of flooding, drought and limited access to sufficient quantities of water. These remain particularly sensitive issues that are crucial for the health of a rapidly growing population and the economy. The problems are further compounded due to the threats of climate change and the resultant degradation of almost the region's entire natural resources base. While the pace at which the institutional framework for managing the waters offers opportunities for hydro electricity and irrigated agriculture through the proliferation of dams, it has raised other serious concerns in the region. Even where data exists for confronting these issues, some of them are incompatible and dispersed among different agencies. This not only widens the geo-spatial data gaps, but it hinders the ability to monitor water problems along the basin. This study will fill that gap in research through mix scale methods built on descriptive statistics, GIS and remote sensing techniques by generating spatially referenced data to supplement

  10. The Walla Walla Basin Natural Production Monitoring and Evaluation Project : Progress Report, 1999-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Contor, Craig R.; Sexton, Amy D.

    2003-06-02

    The Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME) was funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) under the Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME). Chapter One provides an overview of the entire report and how the objectives of each statement of work from 1999, 2000, 2001, and 2002 contract years are organized and reported. Chapter One also provides background information relevant to the aquatic resources of the Walla Walla River Basin. Objectives are outlined below for the statements of work for the 1999, 2000, 2001 and 2002 contract years. The same objectives were sometimes given different numbers in different years. Because this document is a synthesis of four years of reporting, we gave objectives letter designations and listed the objective number associated with the statement of work for each year. Some objectives were in all four work statements, while other objectives were in only one or two work statements. Each objective is discussed in a chapter. The chapter that reports activities and findings of each objective are listed with the objective below. Because data is often interrelated, aspects of some findings may be reported or discussed in more than one chapter. Specifics related to tasks, approaches, methods, results and discussion are addressed in the individual chapters.

  11. Analysis of trends in selected streamflow statistics for the Concho River Basin, Texas, 1916-2009

    Science.gov (United States)

    Barbie, Dana L.; Wehmeyer, Loren L.; May, Jayne E.

    2012-01-01

    The Concho River Basin is part of the upper Colorado River Basin in west-central Texas. Monotonic trends in streamflow statistics during various time intervals from 1916-2009 were analyzed to determine whether substantial changes in selected streamflow statistics have occurred within the Concho River Basin. Two types of U.S. Geological Survey streamflow data comprise the foundational data for this report: (1) daily mean discharge (daily discharge) and (2) annual instantaneous peak discharge. Trend directions are reported for the following streamflow statistics: (1) annual mean daily discharge, (2) annual 1-day minimum discharge, (3) annual 7-day minimum discharge, (4) annual maximum daily discharge, and (5) annual instantaneous peak discharge.

  12. Environmental radiation monitoring data for Point Lepreau Generating Station, 1990. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J K

    1991-01-01

    Annual report presenting a compilation of the 1990 environmental radiation monitoring program data from samples collected around the Point Lepreau Nuclear Generating Station (PLNGS) and at reference stations remote from PLNGS. About 1,500 analyses were made on 1,100 samples to monitor environmental radiation, including air particulates, airborne water vapour, carbon dioxide in air, sea water, well water, milk, beach sediments, clams, fish, lobster, dulse, crabs, scallops, periwinkles, sea plants and lichen. Background radiation is measured by thermoluminescence dosimetry. Radon is not assessed.

  13. Lake Roosevelt Fisheries Monitoring Program; 1988-1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peone, Tim L.; Scholz, Allan T.; Griffith, James R.

    1990-10-01

    In the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program (NPPC 1987), the Council directed the Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries as partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam [Section 903 (g)(l)(C)]. The hatcheries will produce kokanee salmon for outplanting into Lake Roosevelt as well as rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen program. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) a year-round, reservoir-wide, creel survey to determine angler use, catch rates and composition, and growth and condition of fish; (2) assessment of kokanee, rainbow, and walleye (Stizostedion vitreum) feeding habits and densities of their preferred prey, and; (3) a mark and recapture study designed to assess the effectiveness of different locations where hatchery-raised kokanee and net pen reared rainbow trout are released. The above measures were adopted by the Council based on a management plan, developed by the Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and National Park Service, that examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program. The projected duration of the monitoring program is through 1995. This report contains the results of the monitoring program from August 1988 to December 1989.

  14. The impact of Amazonian deforestation on Amazon basin rainfall

    Science.gov (United States)

    Spracklen, D. V.; Garcia-Carreras, L.

    2015-11-01

    We completed a meta-analysis of regional and global climate model simulations (n = 96) of the impact of Amazonian deforestation on Amazon basin rainfall. Across all simulations, mean (±1σ) change in annual mean Amazon basin rainfall was -12 ± 11%. Variability in simulated rainfall was not explained by differences in model resolution or surface parameters. Across all simulations we find a negative linear relationship between rainfall and deforestation extent, although individual studies often simulate a nonlinear response. Using the linear relationship, we estimate that deforestation in 2010 has reduced annual mean rainfall across the Amazon basin by 1.8 ± 0.3%, less than the interannual variability in observed rainfall. This may explain why a reduction in Amazon rainfall has not consistently been observed. We estimate that business-as-usual deforestation (based on deforestation rates prior to 2004) would lead to an 8.1 ± 1.4% reduction in annual mean Amazon basin rainfall by 2050, greater than natural variability.

  15. Sandia National Laboratories California Environmental Monitoring Program Annual Report for Calendar Year 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2006-02-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2005 Update program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  16. Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan for fiscal year 1992

    International Nuclear Information System (INIS)

    1991-09-01

    The Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan (AIWP) for Fiscal Year (FY) 1992 presents Bonneville Power Administration's (BPA) plans for implementing the Columbia River Basin Fish and Wildlife Program (Program) in FY 1992. The AIWP focuses on individual Action Items found in the 1987 Program for which BPA has determined that it has authority and responsibility to implement. Each of the entries in the AIWP includes objectives, background, progress to date in achieving the objectives, and a summary of plans for implementation in FY 1992. Most Action Items are implemented through one or more BPA-funded projects. Each Action Item entry is followed by a list of completed, ongoing, and planned projects, along with objectives, results, schedules, and milestones for each project. In October 1988, BPA and the Columbia Basin Fish and Wildlife Authority (CBFWA) initiated a collaborative and cooperative Implementation Planning Process (IPP). The IPP provided opportunities in FY 1991 for the fish and wildlife agencies. Tribes, and other interested parties to be involved in planning FY 1992 Program implementation. This planing process contributed to the development of this year's AIWP. The joint BPA/CBFWA IPP is expected to continue in FY 1992. The FY 1992 AIWP emphasizes continuation of 143 ongoing, or projected ongoing Program projects, tasks, or task orders, most of which involve protection, mitigation, or enhancement of anadromous fishery resources. The FY 1992 AIWP also contains 10 new Program projects or tasks that are planned to start in FY 1992

  17. Modeling Carbon and Water Budgets in the Lushi Basin with Biome-BGC

    Institute of Scientific and Technical Information of China (English)

    Dong Wenjuan; Qi Ye; Li Huimin; Zhou Dajie; Shi Duanhua; Sun Liying

    2005-01-01

    In this article, annual evapotranspiration (ET) and net primary productivity (NPP) of four types of vegetation were estimated for the Lushi basin,a subbasin of the Yellow River in China. These four vegetation types include: deciduous broadleaf forest,evergreen needle leaf forest, dwarf shrub and grass.Biome-BGC--a biogeochemical process model was used to calculate annual ET and NPP for each vegetation type in the study area from 1954 to 2000.Daily microclimate data of 47 years monitored by Lushi meteorological station was extrapolated to cover the basin using MT-CLIM, a mountain microclimate simulator. The output files of MTCLIM were used to feed Biome-BGC. We used average ecophysiological values of each type of vegetation supplied by Numerical Terradynamic Simulation Group (NTSG) in the University of Montana as input ecophysiological constants file.The estimates of daily NPP in early July and annual ET on these four biome groups were compared respectively with field measurements and other studies.Daily gross primary production (GPP) of evergreen needle leaf forest measurements were very dose to the output of Biome-BGC, but measurements of broadleaf forest and dwarf shrub were much smaller than the simulation result. Simulated annual ET and NPP had a significant correlation with precipitation,indicating precipitation is the major environmental factor affecting ET and NPP in the study area.Precipitation also is the key climatic factor for the interannual ET and NPP variations.

  18. Climate change impacts analysis on hydrological processes in the Weyib River basin in Ethiopia

    Science.gov (United States)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-12-01

    The study aims to examine the variation of hydrological processes (in terms of mean annual, seasonal, and monthly) under changing climate within the Weyib River basin in Ethiopia at both basin and sub-basin level using ArcSWAT hydrologic model. The climate change impacts on temperature and precipitation characteristics within the basin have been studied using GFDL-ESM2M, CanESM2, and GFDL-ESM2G models for RCP8.5, RCP4.5, and RCP2.6 scenarios from coupled model inter-comparison project 5 (CMIP5) which have been downscaled by SDSM. The results revealed that the mean annual temperature and precipitation reveal a statistically significant (at 5% significant level) increasing trend in the nine ESM-RCP scenarios for all the future time slices. The mean annual actual evapotranspiration, baseflow, soil water content, percolation, and water availability in the stream exhibit a rise for all the ESMs-RCP scenarios in the entire basin and in all the sub-basins. However, surface runoff and potential evapotranspiration show a decreasing trend. The mean annual water availability increases between 9.18 and 27.97% (RCP8.5), 3.98 and 19.61% (RCP4.5), and 11.82 and 17.06% (RCP2.6) in the entire basin. The sub-basin level analysis reveals that the annual, seasonal, and monthly variations of hydrological processes in all the sub-basins are similar regarding direction but different in magnitude as compared to that of the entire basin analysis. In addition, it is observed that there is a larger monthly and seasonal variation in hydrological processes as compared to the variation in annual scale. The net water availability tends to decline in the dry season; this might cause water shortage in the lowland region and greater increases in an intermediate and rainy seasons; this might cause flooding to some flood prone region of the basin. Since the variation of water availability among the sub-basins in upcoming period is high, there is a scope of meeting agriculture water demand through

  19. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  20. Removal of Heavy Metals and PAH in Retention Basins

    DEFF Research Database (Denmark)

    Larsen, Torben; Neerup-Jensen, Ole

    2004-01-01

    Solid seperation in retention basins is strongly non-linear and depends significantly on the flow rate and the settling characteristics of the particles. Accordingly the calculation of the annual loads of pollutants from storm overflows including basins is rather complex and time consuming...... in order to calculate annual loads of pollutants from urban catchments. The study cover Cd, Cu, Ni, Pb, Zn and PAH....

  1. Long-term monitoring of river basins: strengths and weaknesses, opportunities and threats

    Science.gov (United States)

    Howden, N. J. K.; Burt, T. P.

    2016-12-01

    In a world where equilibrium is more and more uncommon, monitoring is an essential way to discover whether undesirable change is taking place. Monitoring requires a deliberate plan of action: the regular collection and processing of information. Long-term data reveal important patterns, allowing trends, cycles, and rare events to be identified. This is particularly important for complex systems where signals may be subtle and slow to emerge. Moreover, very long data sets are essential to test hypotheses undreamt of at the time the monitoring was started. This overview includes long time series from UK river basins showing how hydrology and water quality have changed over time - and continue to change. An important conclusion is the long time frame of system recovery, well beyond the normal lifetime of individual governments or research grants. At a time of increasing hydroclimatic variability, long time series remain crucially important; in particular, continuity of observations is vital at key benchmark sites.

  2. Hood River Production Program Monitoring and Evaluation (M&E) - Confederated Tribes of Warm Springs : Annual Report For Fiscal Year, October 2007 – September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberger, Ryan [Confederated Tribes of Warm Springs Reservation

    2009-07-27

    This progress report describes work performed by the Confederated Tribes of Warm Springs (CTWSRO) portion of the Hood River Production Program Monitoring and Evaluation Project (HRPP) during the 2008 fiscal year. A total of 64,736 hatchery winter steelhead, 12,108 hatchery summer steelhead, and 68,426 hatchery spring Chinook salmon smolts were acclimated and released in the Hood River basin during the spring. The HRPP exceeded program goals for a release of and 50,000 winter steelhead but fell short of the steelhead release goals of 30,000 summer steelhead and 75,000 spring Chinook in 2008. Passive Integrated Transponders (PIT) tags were implanted in 6,652 hatchery winter steelhead, and 1,196 hatchery summer steelhead, to compare migratory attributes and survival rates of hatchery fish released into the Hood River. Water temperatures were recorded at six locations within the Hood River subbasin to monitor for compliance with Oregon Department of Environmental Quality water quality standards. A preseason spring Chinook salmon adult run forecast was generated, which predicted an abundant return adequate to meet escapement goal and brood stock needs. As a result the tribal and sport fisheries were opened. A tribal creel was conducted from May 22 to July 18 during which an estimated 172 spring Chinook were harvested. One hundred sixteen Spring Chinook salmon redds were observed and 72 carcasses were inspected on 19.4 miles of spawning grounds throughout the Hood River Basin during 2008. Annual salvage operations were completed in two irrigation canals resulting in the liberation of 1,641 fish back to the Hood River.

  3. Using Spatial Information Technologies as Monitoring Devices in International Watershed Conservation along the Senegal River Basin of West Africa

    Directory of Open Access Journals (Sweden)

    Yaw A. Twumasi

    2008-12-01

    Full Text Available In this paper, we present the applications of spatial technologies—Geographic Information Systems (GIS and remote sensing—in the international monitoring of river basins particularly analyzing the ecological, hydrological, and socio-economic issues along the Senegal River. The literature on multinational water crisis has for decades focused on mediation aspects of trans-boundary watershed management resulting in limited emphasis placed on the application of advances in geo-spatial information technologies in multinational watershed conservation in the arid areas of the West African sub-region within the Senegal River Basin for decision-making and monitoring. While the basin offers life support in a complex ecosystem that stretches across different nations in a mostly desert region characterized by water scarcity and subsistence economies, there exists recurrent environmental stress induced by both socio-economic and physical factors. Part of the problems consists of flooding, drought and limited access to sufficient quantities of water. These remain particularly sensitive issues that are crucial for the health of a rapidly growing population and the economy. The problems are further compounded due to the threats of climate change and the resultant degradation of almost the region’s entire natural resources base. While the pace at which the institutional framework for managing the waters offers opportunities for hydro electricity and irrigated agriculture through the proliferation of dams, it has raised other serious concerns in the region. Even where data exists for confronting these issues, some of them are incompatible and dispersed among different agencies. This not only widens the geo-spatial data gaps, but it hinders the ability to monitor water problems along the basin. This study will fill that gap in research through mix scale methods built on descriptive statistics, GIS and remote sensing

  4. Annual environmental monitoring report, 1974

    International Nuclear Information System (INIS)

    Stephens, L.D.; Cantelow, H.

    1975-04-01

    The Lawrence Berkeley Laboratory, a large multi-disciplinary research institute, is located in the hills above the University of California and the City of Berkeley. Nuclear Physics and Nuclear Chemistry research are the main contributors to the environmental radiation. In order to pursue this research effort, large particle accelerators have been built and are operated almost continuously. Other research may also involve the use of radioisotopes. These research activities result in a small but finite population dose to the general population which works or resides in the area surrounding the Laboratory. The annual maximum permissible dose equivalent (MPD) for members of the general population is recommended to be 500 mrem, however, Laboratory policy is to keep the population exposure as low as practicable at all times. In order to assure that this is done, several environmental monitoring stations are maintained which continuously telemeter radiation information to a central location. This information is presented here along with studies of the population distribution, in order to provide a total man-rem estimate. Using the data in this report the population dose due to laboratory operation ranges from 0.4 percent to 5.7 percent of the MPD. (U.S.)

  5. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  6. Nontarget approach for environmental monitoring by GC × GC-HRTOFMS in the Tokyo Bay basin.

    Science.gov (United States)

    Zushi, Yasuyuki; Hashimoto, Shunji; Tanabe, Kiyoshi

    2016-08-01

    In this study, we developed an approach for sequential nontarget and target screening for the rapid and efficient analysis of multiple samples as an environmental monitoring using a comprehensive two-dimensional gas chromatograph coupled to a high resolution time-of-flight mass spectrometer (GC × GC-HRTOFMS). A key feature of the approach was the construction of an accurate mass spectral database learned from the sample via nontarget screening. To enhance the detection power in the nontarget screening, a global spectral deconvolution procedure based on non-negative matrix factorization was applied. The approach was applied to the monitoring of rivers in the Tokyo Bay basin. The majority of the compounds detected by the nontarget screening were alkyl chain-based compounds (55%). In the quantitative target screening based on the output from the nontarget screening, particularly high levels of organophosphorus flame retardants (median concentrations of 31, 116 and 141 ng l(-1) for TDCPP, TCIPP and TBEP, respectively) were observed among the target compounds. Flame retardants used for household furniture and building materials were detected in river basins where buildings and arterial traffic were dominated. The developed GC × GC-HRTOFMS approach was efficient and effective for environmental monitoring and provided valuable new information on various aspects of monitoring in the context of environmental management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 296-B-10 stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1995-01-01

    B Plant Administration Manual, requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with stack 296-B-10 at B Plant. The ventilation system of WESF (Waste Encapsulation and Storage Facility) is designed to provide airflow patterns so that air movement throughout the building is from areas of lesser radioactivity to areas of greater radioactivity. All potentially contaminated areas are maintained at a negative pressure with respect to the atmosphere so that air flows into the building at all times. The exhaust discharging through the 296-B-10 stack is continuously monitored and sampled using a sampling and monitoring probe assembly located approximately 17.4 meters (57 feet) above the base of the stack. The probe assembly consists of 5 nozzles for the sampling probe and 2 nozzles to monitor the flow. The sampling and monitoring system associated with Stack 296-B-10 is functional and performing satisfactorily

  8. L-Reactor 186-basin cleaning alternatives

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Operation of L Reactor will necessitate annual cleaning of the L Area 186 basins. Alternatives are presented for sediment discharge due to 186-basin cleaning activities as a basis for choosing the optimal cleaning method. Current cleaning activities (i.e. removal of accumulated sediments) for the P, C and K-Area 186 basins result in suspended solids concentrations in the effluent waters above the NPDES limits, requiring an exemption from the NPDES permit for these short-term releases. The objective of mitigating the 186-basin cleaning activities is to decrease the suspended solids concentrations to within permit limits while continuing satisfactory operation of the basins

  9. DETERMINATION OF WATER RESOURCES IN RIVERS IN THE BULGARIAN BASINS OF THE LOWER DANUBE

    Directory of Open Access Journals (Sweden)

    Plamen Iliev Ninov

    2017-04-01

    Full Text Available Object of the study is surface water bodies from category “rivers” according to Water Framework Directive 2000/60/ЕС. Surface water assessment is important for number of activities such as: water management in the country, making reports to international agencies, determining the change of the resources in the light of upcoming climate changes. The determination of water resources is based on information of hydrometric stations from the monitoring network system in the National Institute of Meteorology and Hydrology — Bulgarian Academy of Sciences (NIMH-BAS in which real ongoing and available water flows that are subject of management are registered. In the study a technology for surface water bodies in the Bulgarian basins of the lower Danube is applied which has been developed in the frame of cooperative project together with the Ministry of Environment and Water. This is absolutely true for the Bulgarian section of the Danube River basin which is expressed in big number and variety of hydrological homogeneous sections. The river flow is characterized with annual and inter-annual variability determined by climatic factors and anthropogenic influences. The main obtained results of the present hydrologic studies are the usage of transferred information from gauged to ungauged watersheds and the estimation of the surface water bodies’ resources using original regression relationships based on multiannual hydrological information from the NIMH-BAS monitoring network. The relationships delineate the hydrological homogeneous areas with similar conditions of flow formation. The estimated resources have significant usefulness for all State institutions managing the water in the Danube basin and have already been introduced in the operative and management practice.

  10. Grande Ronde Basin Fish Habitat Enhancement Project : 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.

    1999-05-01

    The primary goal of ''The Grande Ronde Basin Fish Habitat Improvement Project'' is to access, create, improve, protect, and restore reparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin.

  11. Walla Walla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P.; Duke, Bill; Loffink, Ken

    2008-12-30

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. Migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage and trapping facility design, operation, and criteria. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. Beginning in March of 2007, two work elements from the Walla Walla Fish Passage Operations Project were transferred to other projects. The work element Enumeration of Adult Migration at Nursery Bridge Dam is now conducted under the Walla Walla Basin Natural Production Monitoring and Evaluation Project and the work element Provide Transportation Assistance is conducted under the Umatilla Satellite Facilities Operation and Maintenance Project. Details of these activities can be found in those project's respective annual reports.

  12. The annual report on the environmental monitoring around the Ningyo-toge. 2005. Okayama

    International Nuclear Information System (INIS)

    Tago, Itaru; Ono, Takayuki; Kawasaki, Satoru

    2007-03-01

    The Ningyo-toge Environmental Engineering Center of the Japan Atomic Energy Agency performs the environmental monitoring around the Ningyo-toge and the waste rock sites according to the agreements with local governments, Okayama and Tottori prefectures. Environmental monitoring of plutonium has been also performed around the Ningyo-toge regarding the practical application study on the reprocessed uranium conversion, which was carried out from 1994 to 1999 at the Ningyo-toge. The prefectural committees on the environmental monitoring evaluate the monitoring data annually. This report summarized the results of the environmental monitoring mentioned above in the fiscal year 2005. The results show that the levels of the radiation and the radioactive concentrations in the environmental samples were within natural variations, and that the waste rock sites have been well maintained. The committees concluded the environmental impacts from the sites were negligible. (author)

  13. Monitoring Changes in Croplands Due to Water Stress in the Krishna River Basin Using Temporal Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Venkata Ramana Murthy Reddi

    2017-10-01

    Full Text Available Remote sensing-based assessments of large river basins such as the Krishna, which supplies water to many states in India, are useful for operationally monitoring agriculture, especially basins that are affected by abiotic stress. Moderate-Resolution Imaging Spectroradiometer (MODIS time series products can be used to understand cropland changes at the basin level due to abiotic stresses, especially water scarcity. Spectral matching techniques were used to identify land use/land cover (LULC areas for two crop years: 2013–2014, which was a normal year, and 2015–2016, which was a water stress year. Water stress-affected crop areas were categorized into three classes—severe, moderate and mild—based on the normalized difference vegetation index (NDVI and intensity of damage assessed through field sampling. Furthermore, ground survey data were used to assess the accuracy of MODIS-derived classification individual products. Water inflows into and outflows from the Krishna river basin during the study period were used as direct indicators of water scarcity/availability in the Krishna Basin. Furthermore, ground survey data were used to assess the accuracy of MODIS-derived LULC classification of individual year products. Rainfall data from the tropical rainfall monitoring mission (TRMM was used to support the water stress analysis. The nine LULC classes derived using the MODIS temporal imagery provided overall accuracies of 82% for the cropping year 2013–2014 and 85% for the year 2015–2016. Kappa values are 0.78 for 2013–2014 and 0.82 for 2015–2016. MODIS-derived cropland areas were compared with national statistics for the cropping year 2013–2014 with a R2 value of 0.87. Results show that both rainfed and irrigated areas in 2015–2016 saw significant changes that will have significant impacts on food security. It has been also observed that the farmers in the basin tend to use lower inputs and labour per ha during drought years. Among

  14. Annual Report for 2008 - 2009 Detection Monitoring at the Environmental Management Waste Management Facility, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Walker J.R.

    2010-03-01

    This annual Environmental Monitoring Report (EMR) presents results of environmental monitoring performed during fiscal year (FY) 2009 (October 1, 2008 - September 30, 2009) at the Environmental Management Waste Management Facility (EMWMF). The EMWMF is an operating state-of-the-art hazardous waste landfill located in Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee (Appendix A, Fig. A.1). Opened in 2002 and operated by a DOE prime contractor, Bechtel Jacobs Company LLC (BJC), the EMWMF was built specifically to accommodate disposal of acceptable solid wastes generated from Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial actions for former waste sites and buildings that have been impacted by past DOE operations on the ORR and at DOE sites off the ORR within the state of Tennessee. Environmental monitoring at the EMWMF is performed to detect and monitor the impact of facility operations on groundwater, surface water, stormwater, and air quality and to determine compliance with applicable or relevant and appropriate requirements (ARARs) specified in governing CERCLA decision documents. Annually, the EMR presents an evaluation of the groundwater, surface water, stormwater, and air monitoring data with respect to the applicable EMWMF performance standards. The purpose of the evaluation is to: (1) identify monitoring results that indicate evidence of a contaminant release from the EMWMF to groundwater, surface water, stormwater, or air, and (2) recommend appropriate changes to the associated sampling and analysis requirements, including sampling locations, methods, and frequencies; field measurements; or laboratory analytes that may be warranted in response to the monitoring data. Sect. 2 of this annual EMR provides background information relevant to environmental monitoring at the landfill, including

  15. Annual report 1990/91 for the Hamburg air monitoring network

    International Nuclear Information System (INIS)

    Goemer, D.; Hache, W.; Matzen, D.; Reich, T.

    1992-01-01

    In addition to measured results form the stationary air monitoring network from 1990 (detailed report) and 1991 (brief version), the annual report 1990/91 presents results form special measuring programs of the dynmao car area and from measurements made on the street dating from 1990/91. After a detailed presentation of the meteorological frame conditions in 1990, distinguishing by a relatively good air exchange, a detailed discussion of the air load during this period and a brief survey about the air quality in 1991 follows. (orig.) [de

  16. 1. Biologic monitoring at Barsebaeck nuclear power plant 1985-1997. 2. Biological monitoring at Swedish nuclear power plants in 1998. Annual report 1998

    International Nuclear Information System (INIS)

    Andersson, Jan; Mo, K.; Thoernqvist, S.

    1999-06-01

    This report gives an account for two studies on the ecological effects of effluents to the aquatic environment from the Swedish nuclear power plants: 1. The results of biological monitoring at the Barsebaeck nuclear power plant during the period 1985-1997 are summarised. Comparisons are made with a previous report from 1969-1983. The fish community was studied by fyke net test fishing in the cooling water effluent area along a gradient out to unaffected sites. The loss of young eels in the cooling water intake was estimated annually. Damage on female grey mullet oocyte development was analysed on samples of cooling water exposed fish. 2. The biological monitoring at the Swedish nuclear power plants during 1998 was with minor exceptions performed according to the established programmes. The monitoring at Forsmark is running in the enclosed Biotest basin at the cooling water outlet and in the surrounding archipelago. Reference data are collected at Finbo, NW Aaland, and in the nearby Graesoe archipelago. In 1998 as in previous years the benthic macro fauna abundance within the Biotest basin showed strong variations. In the beginning of the year abundance and biomass were low, in the autumn though, higher than average. Oskarshamn: The monitoring is performed in the small effluent bay, Hamnefjaerden bay, in the waters surrounding the cooling water plume and in a reference area, Kvaedoe-fjaerden, 100 km north of the power plant. Perch and roach catches have been high in the Hamnefjaerden bay since the late 1980's. In 1998 catches of perch were on a higher level than in 1997, both in spring and in summer. The changes for roach were small. A moderate decrease in eel catches took place in 1997 and 1998, indicating a reduced effect of stockings in the late 1980's. Ringhals: The monitoring is performed in the area close to the cooling water outlet, which is located at an open coast, and in a reference area. An attraction of yellow eel to the effluent area has been

  17. Elements of an environmental decision support system for seasonal wetland salt management in a river basin subjected to water quality regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    2009-06-01

    Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality management has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.

  18. Second annual report of the Environmental Restoration Monitoring and Assessment Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Clapp, R.B.; Watts, J.A.

    1993-09-01

    This report summarizes the salient features of the annual efforts of environmental monitoring and field investigations conducted to support the Environmental Restoration (ER) Program at the Oak Ridge National Laboratory (ORNL). This report focuses on the watershed scale, striving to provide an ORNL site-wide perspective on types, distribution, and transport of contamination. Results are used to enhance the conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This report summarizes the efforts of the Waste Area Grouping (WAG) 2 and Site Investigations (SI) program. WAG 2 is the lower portion of the White Oak Creek (WOC) system which drains the major contaminated sites at ORNL and discharges to the Clinch River where public access is allowed. The remedial investigation for WAG 2 includes a long-term multimedia environmental monitoring effort that takes advantage of WAG 2's role as an integrator and conduit of contaminants from the ORNL site. This report also includes information from other site-specific remedial investigations and feasibility studies (RI/FS) for contaminated sites at ORNL and data from other ongoing monitoring programs conducted by other organizations [e.g., the National Pollutant Discharge Elimination System (NPDES) compliance monitoring conducted by the Environmental Surveillance and Protection Section]. This information is included to provide an integrated basis to support ER decision making. This report summarizes information gathered through early 1993. Annual data, such as annual discharges of contaminants, are reported for calendar year 1992

  19. Soil erosion assessment of a Himalayan river basin using TRMM data

    Science.gov (United States)

    Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.

    2015-04-01

    In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.

  20. Annual report of 1995 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    The Kerr Hollow Quarry (KHQ) and the Chestnut Ridge Sediment Disposal Basin (CRSDB) are inactive waste management sites located at the Oak Ridge Y-12 Plant. The KHQ and CRSDB are regulated as treatment, storage, or disposal (TSD) facilities under the Resource Conservation and Recovery Act (RCRA). The facilities were granted interim status in calendar year (CY) 1986 under Tennessee Department of Environment and Conservation (TDEC) Hazardous Waste Management Rule 1200-1-11-.05. Historical environmental monitoring data and baseline characterization under interim status indicated that releases of contaminants to groundwater had not occurred; thus, the detection monitoring was implemented at the sites until either clean closure was completed or post-closure permits were issued. The CRSDB was closed in Cy 1989 under a TDEC-approved RCRA closure plan. A revised RCRA PCPA for the CRSDB was submitted by DOE personnel to TDEC staff in September 1994. A final post-closure permit was issued by the TDEC on September 18, 1995. Closure activities at KHQ under RCRA were completed in October 1993. The Record of Decision will also incorporate requirements of the RCRA post-closure permit once it is issued by the TDEC

  1. Hydrogeological monitoring in Riberao da onca basin located in out croup area of Guarani Aquifer

    International Nuclear Information System (INIS)

    Wendland, E.; Andrade Gomes Barreto, C.; Gomes, L. . E mail:ew@sc.usp.br

    2004-01-01

    Objective of this project is the estimation of the direct recharge rate of the Guarani Aquifer System, based on a water balance study in the Ribeirao da Onca basin, located in the outcrop area of the Botucatu Formation, in Brotas-SP (Brazil). It is intended to monitor the groundwater level behavior and the superficial outflow from the basin, as function of the registered precipitation and evapotranspiration, during two hydrological cycles. The results to be obtained are of general interest in the context of the Project for Environmental Protection and Integrated Sustainable Management of the Guarani Aquifer System, since understanding the process and rate of direct recharge are essential information for any initiative for management of the aquifer. In this work, the main activities proposed are presented [es

  2. Radioactivity monitoring within the environment of the Loire basin. A partnership between the IRSN and the Dampierre-en-Burly and Saint-Laurent CLIs at the service of citizen vigilance

    International Nuclear Information System (INIS)

    2008-01-01

    The first part of this report presents the Loire basin and its environment, discusses the physical-chemical quality control of its waters and the main usages of the Loire waters. It also presents the nuclear installations present in the Loire basin (electricity production nuclear power stations and other installations), the actors involved in radioactivity measurement in the Loire basin environment (IRSN, EDF, AREVA, associations for the monitoring of water quality, public services), and the national network for radioactivity measurement in the environment. The second part describes and reports the radioactivity monitoring of the environment in the Loire basin, i.e. in the atmosphere, in rain waters and in continental waters, and in the food chain. Addressing this monitoring activity, a last part discusses the evolution of measurements, the importance of the plurality of actors involved in sampling and measurement (in order to guarantee the monitoring system transparency), the variety of sources, the assessment of health impact

  3. Drought analysis in the Tons River Basin, India during 1969-2008

    Science.gov (United States)

    Meshram, Sarita Gajbhiye; Gautam, Randhir; Kahya, Ercan

    2018-05-01

    The primary focus of this study is the analysis of droughts in the Tons River Basin during the period 1969-2008. Precipitation data observed at four gauging stations are used to identify drought over the study area. The event of drought is derived from the standardized precipitation index (SPI) on a 3-month scale. Our results indicated that severe drought occurred in the Allahabad, Rewa, and Satna stations in the years 1973 and 1979. The droughts in this region had occurred mainly due to erratic behavior in monsoons, especially due to long breaks between monsoons. During the drought years, the deficiency of the annual rainfall in the analysis of annual rainfall departure had varied from -26% in 1976 to -60% in 1973 at Allahabad station in the basin. The maximum deficiency of annual and seasonal rainfall recorded in the basin is 60%. The maximum seasonal rainfall departure observed in the basin is in the order of -60% at Allahabad station in 1973, while maximum annual rainfall departure had been recorded as -60% during 1979 at the Satna station. Extreme dry events ( z score <-2) were detected during July, August, and September. Moreover, severe dry events were observed in August, September, and October. The drought conditions in the Tons River Basin are dominantly driven by total rainfall throughout the period between June and November.

  4. Spatial-temporal particularities of the ecological status of surface water bodies and pollution sources from Siret river basin

    Directory of Open Access Journals (Sweden)

    Dan DĂSCĂLIȚA

    2011-06-01

    Full Text Available The ecological status of surface water bodies from Siret River Basin is monitored systematically and spatial in accordance with the requirements of European Directives in the water area. Analysis temporary and spatial of qualitative and quantitative status of surface waters (rivers, lakes is achieved according to the specificities of each body of water resulting from physical and geographical conditions, climatic and hydromorphological regimes of river basin and from human activities.In order to know of those features, there are needed specific monitoring systems of water bodies. The parametersunderlying the assessment of ecological status of rivers and lakes are monitored systematically and temporary: daily, monthly, quarterly, annually, according to these characteristics. In this context, the daily variations in environmental condition, expresses the current status of surface waters. Monthly changes are correlated with climate change and characterize the seasonal variations. On annual basis are identified the mean, minimum and maximum for each parameter and the trends (increase, decrease, regularity, periodicity, changes, etc.. Based on this information, extensive to multiannual level, itcan achieve medium and long term forecasts and it might be issued the concepts and strategies for maintaining a balance and sustainable development of water resources.In this paper we have presented some issues related to the synthesis of spatial-temporal ecological status of water bodies managed by Administration of Siret Water Basin(ABAS. Results of studies on the ecological status of water bodies have been presented for the year 2009. Also, in this paper it was presented an evolution of the quantities ofpollutants from wastewater discharged in surface receptors and their purification by water users from of activity of ABAS area in 1999-2009 periods.

  5. Malheur River Basin cooperative bull trout/redband trout research project, annual report FY 1999; ANNUAL

    International Nuclear Information System (INIS)

    Schwabe, Lawrence; Tiley, Mark

    2000-01-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99

  6. Source Apportionment of Annual Water Pollution Loads in River Basins by Remote-Sensed Land Cover Classification

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-08-01

    Full Text Available In this study, in order to determine the efficiency of estimating annual water pollution loads from remote-sensed land cover classification and ground-observed hydrological data, an empirical model was investigated. Remote sensing data imagery from National Oceanic and Atmospheric Administration (NOAA Advanced Very High Resolution Radiometer were applied to an 11 year (1994–2004 water quality dataset for 30 different rivers in Japan. Six water quality indicators—total nitrogen (TN, total phosphorus (TP, biochemical oxygen demand (BOD, chemical oxygen demand (COD, and dissolved oxygen (DO—were examined by using the observed river water quality data and generated land cover map. The TN, TP, BOD, COD, and DO loads were estimated for the 30 river basins using the empirical model. Calibration (1994–1999 and validation (2000–2004 results showed that the proposed simulation technique was useful for predicting water pollution loads in the river basins. We found that vegetation land cover had a larger impact on TP export into all rivers. Urban areas had a very small impact on DO export into rivers, but a relatively large impact on BOD and TN export. The results indicate that the application of land cover data generated from the remote-sensed imagery could give a useful interpretation about the river water quality.

  7. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China

    Institute of Scientific and Technical Information of China (English)

    Jie Xue; JiaQiang Lei; DongWei Gui; JianPing Zhao; DongLei Mao; Jie Zhou

    2016-01-01

    The runoff in alpine river basins where the runoff is formed in nearby mountainous areas is mainly affected by temperature and precipitation. Based on observed annual mean temperature, annual precipitation, and runoff time-series datasets during 1958–2012 within the Kaidu River Basin, the synchronism of runoff response to climate change was analyzed and iden-tified by applying several classic methods, including standardization methods, Kendall's W test, the sequential version of the Mann-Kendall test, wavelet power spectrum analysis, and the rescaled range (R/S) approach. The concordance of the nonlinear trend variations of the annual mean temperature, annual precipitation, and runoff was tested significantly at the 0.05 level by Kendall's W method. The sequential version of the Mann-Kendall test revealed that abrupt changes in annual runoff were synchronous with those of annual mean temperature. The periodic characteristics of annual runoff were mainly consistent with annual precipitation, having synchronous 3-year significant periods and the same 6-year, 10-year, and 38-year quasi-periodicities. While the periodic characteristics of annual runoff in the Kaidu River Basin tracked well with those of annual precipitation, the abrupt changes in annual runoff were synchronous with the annual mean temperature, which directly drives glacier- and snow-melt processes. R/S analysis indicated that the annual mean temperature, annual precipitation, and runoff will continue to increase and remain synchronously persistent in the future. This work can im-prove the understanding of runoff response to regional climate change to provide a viable reference in the management of water resources in the Kaidu River Basin, a regional sustainable socio-economic development.

  8. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  9. Monitoring groundwater storage changes in the highly dynamic Bengal Basin: validation of GRACE measurements

    Science.gov (United States)

    Shamsudduha, M.; Taylor, R. G.; Longuevergne, L.

    2011-12-01

    Monitoring of spatio-temporal changes in terrestrial water storage (ΔTWS) provides valuable information regarding the basin-scale dynamics of hydrological systems. Recent satellite measurements of the ΔTWS under the Gravity Recovery and Climate Experiment (GRACE) enable the derivation of groundwater storage changes (ΔGWS) where in situ data are limited. In the well monitored and highly-dynamic Bengal Basin of Bangladesh, we test the ability of GRACE measurements to trace the seasonality and trend in groundwater storage associated with intensive groundwater abstraction for dry-season irrigation and wet-season (monsoonal) recharge. Two different GRACE products (CSR and GRGS) and data processing methods (gridded and spherical harmonics) are also compared. Results show that GRACE derived estimates of recent (2003 to 2007) ΔGWS correlate well (r=0.77 to 0.93, p-value CSR for these estimates. ΔGWS accounts for 44% of the total variation in ΔTWS in the Bengal Basin. Changes in surface water storage (ΔSWS) estimated from a network of 298 river gauging stations and soil moisture storage (ΔSMS) derived from Land Surface Models explain 22% and 33% of ΔTWS respectively. Groundwater depletion estimated from borehole hydrographs (-0.52±0.30 km3/yr) is within the range of satellite-derived estimates (-0.44 to -2.04 km3/yr) that result from uncertainty associated with ΔSMS (CLM, NOAH, VIC) and GRACE data processing techniques. Recent (2003 to 2007) estimates of groundwater depletion are substantially greater than the long-term (1985 to 2007) mean (-0.21±0.03 km3/yr) and are explained primarily by substantial increases in groundwater abstraction for the dry-season irrigation and drinking water supplies over the last two decades.

  10. Comparability among four invertebrate sampling methods and two multimetric indexes, Fountain Creek Basin, Colorado, 2010–2012

    Science.gov (United States)

    Bruce, James F.; Roberts, James J.; Zuellig, Robert E.

    2018-05-24

    The U.S. Geological Survey (USGS), in cooperation with Colorado Springs City Engineering and Colorado Springs Utilities, analyzed previously collected invertebrate data to determine the comparability among four sampling methods and two versions (2010 and 2017) of the Colorado Benthic Macroinvertebrate Multimetric Index (MMI). For this study, annual macroinvertebrate samples were collected concurrently (in space and time) at 15 USGS surface-water gaging stations in the Fountain Creek Basin from 2010 to 2012 using four sampling methods. The USGS monitoring project in the basin uses two of the methods and the Colorado Department of Public Health and Environment recommends the other two. These methods belong to two distinct sample types, one that targets single habitats and one that targets multiple habitats. The study results indicate that there are significant differences in MMI values obtained from the single-habitat and multihabitat sample types but methods from each program within each sample type produced comparable values. This study also determined that MMI values calculated by different versions of the Colorado Benthic Macroinvertebrate MMI are indistinguishable. This indicates that the Colorado Department of Public Health and Environment methods are comparable with the USGS monitoring project methods for single-habitat and multihabitat sample types. This report discusses the direct application of the study results to inform the revision of the existing USGS monitoring project in the Fountain Creek Basin.

  11. Dry/Wet Conditions Monitoring Based on TRMM Rainfall Data and Its Reliability Validation over Poyang Lake Basin, China

    Directory of Open Access Journals (Sweden)

    Xianghu Li

    2013-11-01

    Full Text Available Local dry/wet conditions are of great concern in regional water resource and floods/droughts disaster risk management. Satellite-based precipitation products have greatly improved their accuracy and applicability and are expected to offer an alternative to ground rain gauges data. This paper investigated the capability of Tropical Rainfall Measuring Mission (TRMM rainfall data for monitoring the temporal and spatial variation of dry/wet conditions in Poyang Lake basin during 1998–2010, and validated its reliability with rain gauges data from 14 national meteorological stations in the basin. The results show that: (1 the daily TRMM rainfall data does not describe the occurrence and contribution rates of precipitation accurately, but monthly TRMM data have a good linear relationship with rain gauges rainfall data; (2 both the Z index and Standardized Precipitation Index (SPI based on monthly TRMM rainfall data oscillate around zero and show a consistent interannual variability as compared with rain gauges data; (3 the spatial pattern of moisture status, either in dry months or wet months, based on both the Z index and SPI using TRMM data, agree with the observed rainfall. In conclusion, the monthly TRMM rainfall data can be used for monitoring the variation and spatial distribution of dry/wet conditions in Poyang Lake basin.

  12. DROUGHT ANALYSIS IN OZANA DRAINAGE BASIN

    Directory of Open Access Journals (Sweden)

    Marina IOSUB

    2016-03-01

    Full Text Available Ozana drainage basin is located at the contact between large landscape units (the Carpathian mountains, the Subcarpathian area, and the plateau region. This placement determines the existence of a complex climate in the region. Despite being small in size, and its extension on an W-E direction, differences can be observed, especially of the way extreme phenomena take place. In the case of droughts, it had different intensities in the mountains, compared to the plateau region. In order to emphasize the different distribution on the territory, several climatic indexes have been calculated, regarding dryness (De Martonne Index, Hellman criterion. The analysis of these indexes at the same monitoring stations (Pluton, Leghin and Dumbrava emphasizes the growth of the drought periods in the plateau region and the fact that they shorten in the mountain area. In the mountainous area, where the land is very well forested, the values of the De Martonne index can reach 45.4, and in the plateau regions, where the forest associations are sparse, the values dropped to 30.6. According to the Hellman criterion, several differences can be emphasized, at basin level. In the mountainous region, there is only one month that, at a multi-annual level, has stood up among the rest, as being excessively droughty, while in the median /central region of the basin, three months have been identified, that have such potential, as well as five months, at Dumbrava.

  13. 1993 Annual Report: San Francisco estuary regional monitoring program for trace substances

    Science.gov (United States)

    Thompson, B.; Lacy, Jessica; Hardin, Dane; Grovhaug, Tom; Taberski, K.; Jassby, Alan D.; Cloern, James E.; Caffrey, J.; Cole, B.; Schoellhamer, David H.

    1993-01-01

    This first annual report of the San Francisco Estuary Regional Monitoring Program contains the results of monitoring measurements made in 1993. Measurements of conventional water quality parameters and trace contaminant concentrations were made at 16 stations throughout the Estuary three times during the year: the wet period (March), during declining Delta outflow (May), and during the dry period (September). Water toxicity tests were conducted at 8 of those stations. Measurements of sediment quality and contaminant concentrations were made at the same 16 stations during the wet and dry sampling periods. Sediment toxicity was measured at 8 of those stations. Transplanted, bagged bivalve bioaccumulation and condition was measured at 11 stations during the wet and dry sampling periods.

  14. Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India).

    Science.gov (United States)

    Mavukkandy, Musthafa Odayooth; Karmakar, Subhankar; Harikumar, P S

    2014-09-01

    The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. The effectiveness of existing river water quality monitoring

  15. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  16. Umatilla River subbasin fish habitat improvement project. Annual report 1993

    International Nuclear Information System (INIS)

    Bailey, T.D.; Laws, T.S.

    1994-05-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife's Umatilla Basin Habitat Improvement Project. Major activities undertaken during this report period included: (1) procurement of one access easement with a private landowner, (2) design, layout, and implementation of 3.36 miles of instream structure maintenance, (3) inspection and routine maintenance of 15.1 miles of fence, (4) revegetation along 3.36 miles of stream, (5) collection and summarization of physical and biological monitoring data, (6) extensive interagency coordination, and (7) environmental education activities with local high school students

  17. Annual harvests of Corbicula populations prevent clogging of nuclear reactor heat exchangers

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1983-01-01

    An annual program for removal of millions of Corbicula from upstream cooling water basins has prevented reclogging of nuclear reactor heat exchanger distributor plates at the Savannah River Plant during the past seven years. There are nine 32-megaliter basins in the three operating reactor areas where some settling of particulates occurs before cooling water is passed through screens in route to heat exchangers. Annual cleanings keep silt/clam substrate levels low and clam sizes small. Data are presented on the size/age distribution for clams recolonizing basins between cleanings

  18. Spatiotemporal analysis of hydro-meteorological drought in the Johor River Basin, Malaysia

    Science.gov (United States)

    Tan, Mou Leong; Chua, Vivien P.; Li, Cheng; Brindha, K.

    2018-02-01

    Assessment of historical hydro-meteorological drought is important to develop a robust drought monitoring and prediction system. This study aims to assess the historical hydro-meteorological drought of the Johor River Basin (JRB) from 1975 to 2010, an important basin for the population of southern Peninsular Malaysia and Singapore. The Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) were selected to represent the meteorological and hydrological droughts, respectively. Four absolute homogeneity tests were used to assess the rainfall data from 20 stations, and two stations were flagged by these tests. Results indicate the SPI duration to be comparatively low (3 months), and drier conditions occur over the upper JRB. The annual SSI had a strong decreasing trend at 95% significance level, showing that human activities such as reservoir construction and agriculture (oil palm) have a major influence on streamflow in the middle and lower basin. In addition, moderate response rate of SSI to SPI was found, indicating that hydrological drought could also have occurred in normal climate condition. Generally, the El Niño-Southern Oscillation and Madden Julian Oscillation have greater impacts on drought events in the basin. Findings of this study could be beneficial for future drought projection and water resources management.

  19. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  20. Monitoring micropollutants in the Swist river basin.

    Science.gov (United States)

    Christoffels, Ekkehard; Brunsch, Andrea; Wunderlich-Pfeiffer, Jens; Mertens, Franz Michael

    2016-11-01

    Micropollutant pathways were studied for the Swist river basin (Western Germany). The aim was to verify the effectiveness of a monitoring approach to detect micropollutants entering the river. In a separate sewer system, water was frequently found to be contaminated with micropollutants. Improper connections of sewage canals to the stormwater network seemed to be the cause of pollution. Wastewater treatment plants (WWTPs) exerted the largest influence on micropollutants for the receiving river. During a flu outbreak, antibiotics in the Swist stemming from WWTPs increased remarkably. Elevated levels of pharmaceuticals were measured in discharges from a combined sewer overflow (CSO). The study showed that the pharmaceutical load of a CSO was significantly reduced by advanced treatment with a retention soil filter. Painkillers, an anticonvulsant and beta blockers were the most often detected pharmaceuticals in the sewage of urban areas. Herbicides, flame retardants and industrial compounds were also observed frequently. On cropland, Chloridazon and Terbuthylazine compounds were often found in landscape runoff. Fungicides and insecticides were the most frequent positive findings in runoff from orchards. The paper shows that a coherent approach to collecting valid information regarding micropollutants and to addressing relevant pathways as a basis for appropriate management strategies could be established.

  1. Monitoring species richness and abundance of shorebirds in the western Great Basin

    Science.gov (United States)

    Warnock, Nils; Haig, Susan M.; Oring, Lewis W.

    1998-01-01

    Broad-scale avian surveys have been attempted within North America with mixed results. Arid regions, such as the Great Basin, are often poorly sampled because of the vastness of the region, inaccessibility of sites, and few ornithologists. In addition, extreme variability in wetland habitat conditions present special problems for conducting censuses of species inhabiting these areas. We examined these issues in assessing multi-scale shorebird (order: Charadriiformes) censuses conducted in the western Great Basin from 1992-1997. On ground surveys, we recorded 31 species of shorebirds, but were unable to accurately estimate population size. Conversely, on aerial surveys we were able to estimate regional abundance of some shorebirds, but were unable to determine species diversity. Aerial surveys of three large alkali lakes in Oregon (Goose, Summer, and Abert Lakes) revealed > 300,000 shorebirds in one year of this study, of which 67% were American Avocets (Recurvirostra americana) and 30% phalaropes (Phalaropus spp.). These lakes clearly meet Western Hemisphere Shorebird Reserve Network guidelines for designation as important shorebird sites. Based upon simulations of our monitoring effort and the magnitude and variation of numbers of American Avocets, detection of S-10% negative declines in populations of these birds would take a minimum of 7-23 years of comparable effort. We conclude that a combination of ground and aerial surveys must be conducted at multiple sites and years and over a large region to obtain an accurate picture of the diversity, abundance, and trends of shorebirds in the western Great Basin.

  2. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Ground water surface elevations

    International Nuclear Information System (INIS)

    Shevenell, L.; Switek, J.

    1992-02-01

    The purpose of this document is to provide a summary and interpretation of hydraulic head measurements obtained from wells surrounding the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin sites at the US Department of Energy Y-12 Plant in Oak Ridge, Tennessee. Periodic water level observations are presented using hydrographs and water table contour maps based on data obtained from quarterly sampling during calendar year 1991. Generalized, preliminary interpretation of results are presented. The two sites covered by this report have interim status under the provisions of the Resource Conservation and Recovery Act (RCRA). A subset of the wells at each rate are used for groundwater monitoring purposes under the requirements of RCRA. A discussion of the up-gradient and down-gradient directions for each of the sites is included

  3. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Mean Annual R-factor, 1971-2000

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average annual R-factor, rainfall-runoff erosivity measure, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data are from Christopher Daly of the Spatial Climate Analysis Service, Oregon State University, and George Taylor of the Oregon Climate Service, Oregon State University (2002). The ERF1_2 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  4. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  5. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.

    2015-10-01

    Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.

  6. Annual monitoring report for the Gunnison, Colorado, wetlands mitigation plan

    International Nuclear Information System (INIS)

    1995-10-01

    The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites is near the town of Gunnison, Colorado; surface remediation and the environmental impacts of remedial action are described in the Gunnison environmental assessment (EA) (DOE, 1992). Remedial action resulted in the elimination of 4.3 acres (ac) 1.7 hectares (ha) of wetlands and mitigation of this loss of wetlands is being accomplished through the enhance of 18.4 ac (7.5 ha) of riparian plant communities in six spring feed areas on Bureau of Land Management (BLM) land. The description of the impacted and mitigation wetlands is provided in the Mitigation and Monitoring Plan for Impacted Wetlands at the Gunnison UMTRA Project Site, Gunnison, Colorado (DOE, 1994), which is attached to the US Army corps of Engineers (USACE) Section 404 Permit. As part of the wetlands mitigation plan, the six mitigation wetlands were fenced in the fall of 1993 to exclude livestock grazing. Baseline of grazed conditions of the wetlands vegetation was determined during the summer of 1993 (DOE, 1994). A 5-year monitoring program of these six sites has been implemented to document the response of vegetation and wildlife to the exclusion of livestock. This annual monitoring report provides the results of the first year of the 5-year monitoring period

  7. Evapotranspiration seasonality across the Amazon Basin

    Science.gov (United States)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  8. Water resources inventory of Connecticut Part 2: Shetucket River Basin

    Science.gov (United States)

    Thomas, Mendall P.; Bednar, Gene A.; Thomas, Chester E.; Wilson, William E.

    1967-01-01

    The Shetucket River basin has a relatively abundant supply of water of generally good quality which is derived from precipitation that has fallen on the basin. Annual precipitation has ranged from about 30 inches to 75 inches and has averaged about 45 inches over a 35-year period. Approximately 20 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the basin in the Shetucket River or as underflow through the deposits beneath. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the basins whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced streamflow and lowered groundwater levels. The mean monthly storage of water in the basin on an average is 3.5 inches higher in November than it is in June.

  9. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  10. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin; 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Suzanne M.; Kern, J. Chris; Carmichael, Richard W. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-01-01

    This is the second year report of a multi-year project that monitors the outmigration and survival of hatchery and naturally-produced juvenile salmonids in the lower Umatilla River. This project supplements and complements ongoing or completed fisheries projects in the Umatilla River basin. Knowledge gained on outmigration and survival will assist researchers and managers in adapting hatchery practices, flow enhancement strategies, canal operations, and supplementation and enhancement efforts for natural and restored fish populations. The authors also report on tasks related to evaluating juvenile salmonid passage at Three Mile Falls Dam and West Extension Canal.

  11. Evaluation of juvenile salmonid outmigration and survival in the lower Umatilla River basin. Annual report, 1996

    International Nuclear Information System (INIS)

    Knapp, S.M.; Kern, J.C.; Cameron, W.A.; Snedaker, S.M.; Carmichael, R.W.

    1996-01-01

    This is the second year report of a multi-year project that monitors the outmigration and survival of hatchery and naturally-produced juvenile salmonids in the lower Umatilla River. This project supplements and complements ongoing or completed fisheries projects in the Umatilla River basin. Knowledge gained on outmigration and survival will assist researchers and managers in adapting hatchery practices, flow enhancement strategies, canal operations, and supplementation and enhancement efforts for natural and restored fish populations. The authors also report on tasks related to evaluating juvenile salmonid passage at Three Mile Falls Dam and West Extension Canal

  12. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2014

    Science.gov (United States)

    Thomas, Judith C.

    2015-10-07

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Thirty wells total were installed for this project: 10 in 2012 (DS 923, http://dx.doi.org/10.3133/ds923), and 20 monitoring wells were installed during April and June 2014 which are presented in this report. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system can provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  13. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    International Nuclear Information System (INIS)

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs

  14. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; McNatt, Regan A.; Hockersmith, Eric E. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-04-01

    Prior to 1992, decisions on dam operations and use of stored water relied on recoveries of branded hatchery fish, index counts at traps and dams, and flow patterns at the dams. The advent of PIT-tag technology provided the opportunity to precisely track the smolt migrations of many wild stocks as they pass through the hydroelectric complex and other monitoring sites on their way to the ocean. With the availability of the PIT tag, a more complete approach to these decisions was undertaken starting in 1992 with the addition of PIT-tag detections of several wild spring and summer chinook salmon stocks at Lower Granite Dam. Using data from these detections, we initiated development of a database on wild fish, addressing several goals of the Columbia River Basin Fish and Wildlife Program of the Pacific Northwest Electric Power Planning Council and Conservation Act (NPPC 1980). Section 304(d) of the program states, ''The monitoring program will provide information on the migrational characteristics of the various stocks of salmon and steelhead within the Columbia Basin.'' Further, Section 201(b) urges conservation of genetic diversity, which will be possible only if wild stocks are preserved. Section 5.9A.1 of the 1994 Fish and Wildlife Program states that field monitoring of smolt movement will be used to determine the best timing for water storage releases and Section 5.8A.8 states that continued research is needed on survival of juvenile wild fish before they reach the first dam with special attention to water quantity, quality, and several other factors. The goals of this ongoing study are as follows (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence these patterns. (4) Characterize the migrational behavior and

  15. Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data

    Science.gov (United States)

    Gebert, Warren A.; Walker, John F.; Kennedy, James L.

    2011-01-01

    Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.

  16. Drivers of annual to decadal streamflow variability in the lower Colorado River Basin

    Science.gov (United States)

    Lambeth-Beagles, R. S.; Troch, P. A.

    2010-12-01

    The Colorado River is the main water supply to the southwest region. As demand reaches the limit of supply in the southwest it becomes increasingly important to understand the dynamics of streamflow in the Colorado River and in particular the tributaries to the lower Colorado River. Climate change may pose an additional threat to the already-scarce water supply in the southwest. Due to the narrowing margin for error, water managers are keen on extending their ability to predict streamflow volumes on a mid-range to decadal scale. Before a predictive streamflow model can be developed, an understanding of the physical drivers of annual to decadal streamflow variability in the lower Colorado River Basin is needed. This research addresses this need by applying multiple statistical methods to identify trends, patterns and relationships present in streamflow, precipitation and temperature over the past century in four contributing watersheds to the lower Colorado River. The four watersheds selected were the Paria, Little Colorado, Virgin/Muddy, and Bill Williams. Time series data over a common period from 1906-2007 for streamflow, precipitation and temperature were used for the initial analysis. Through statistical analysis the following questions were addressed: 1) are there observable trends and patterns in these variables during the past century and 2) if there are trends or patterns, how are they related to each other? The Mann-Kendall test was used to identify trends in the three variables. Assumptions regarding autocorrelation and persistence in the data were taken into consideration. Kendall’s tau-b test was used to establish association between any found trends in the data. Initial results suggest there are two primary processes occurring. First, statistical analysis reveals significant upward trends in temperatures and downward trends in streamflow. However, there appears to be no trend in precipitation data. These trends in streamflow and temperature speak to

  17. Monitoring and Modeling the Fate and Transport of Nitrate in the Vadose Zone beneath a Suwannee River Basin Vegetable Farm

    Science.gov (United States)

    Albert, M. A.; Graham, W. D.; Graetz, D.

    2002-05-01

    The Suwannee River basin has received much attention in recent years due to increased nitrogen levels in the groundwater-fed rivers of the basin that could seriously affect the welfare of this ecosystem. Nitrogen levels have increased from 0.1mg/l NO3-N to more than 5 mg/L NO3-N in many springs in the Suwannee Basin over the past 40 years. Nitrate concentrations in the Suwannee River itself have been increasing at the rate of .02 mg/L per year over the past 20 years. Suwannee River nitrate loads increase from 2300 kg/day to 6000 kg/day over a 33 mile stretch of the river between Dowling Park and Branford, Florida. Within this stretch of river, 89% of the nitrate loading appeared to come from the lower two-thirds, where agriculture is the dominant land use. The objective of this research is to monitor and model the impacts of alternative nutrient and water management practices on soil water quality, groundwater quality and crop yield at a commercial vegetable farm in the Suwannee River Basin. Groundwater monitoring wells, suction lysimeters, soil cores and TDR probes are used to monitor water and nitrogen transport at the site. Periodic plant biomass sampling is conducted to determine nitrogen uptake by the plants and to estimate crop yield. Field data show that two-thirds of the nitrogen applied to the spring 2001 potato crop leached to groundwater due to excessive irrigation and poor nitrogen uptake efficiency by the potatoes. The DSSAT35-Potato Crop model and the LEACHM vadose-zone model were calibrated for the spring 2001 potato crop and used to predict nitrogen leaching and crop yield for alternative management practices. Simulation results show that by reducing the duration of irrigation, reducing the fertilizer application rate, and improving the timing of fertilizer applications, nitrogen leaching can be reduced by approximately 50% while maintaining acceptable crop yields. Results of this project will ultimately be used to develop best management practices

  18. The Danish air quality monitoring programme. Annual summary for 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Klenoe Noejgaard, J.; Nordstroem, C.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Jansen, S.; Massling, A.; Solvang Jensen, S.

    2013-10-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring network. The aim is to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to understand the governing processes that determine the level of air pollution in Denmark. In 2012 the air quality was measured in four Danish cities and at two background sites. In addition model calculations were carried out to supplement the measurements. At one street station (H.C. Andersens Boulevard) in Copenhagen NO{sub 2} was found in concentrations above EU limit values while NO{sub 2} levels in Odense, Aarhus and Aalborg were below the limit value. Model calculations indicate exceedances of NO{sub 2} limit values at several streets in Copenhagen. Annual averages of PM{sub 10} and PM{sub 2.5} were below limit values at all stations. The concentrations for most pollutants have been decreasing during the last decades. (Author)

  19. INL Seismic Monitoring Annual Report: January 1, 2011 - December 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Payne; J. M. Hodges; R. G. Berg; D. F. Bruhn

    2012-12-01

    During 2011, the Idaho National Laboratory Seismic Monitoring Program evaluated 21,928 independent triggers that included earthquakes from around the world, the western United States, and local region of the Snake River Plain. Seismologists located 2,063 earthquakes and man-made blasts within and near the 161-km (or 100-mile) radius of the Idaho National Laboratory. Of these events, 16 were small-to-moderate size earthquakes ranging in magnitude (M) from 3.0 to 4.4. Within the 161-km radius, the majority of 941 earthquakes (M < 4.4) occurred in the active regions of the Basin and Range Province with only six microearthquakes occurring in the Snake River Plain. In the northern and southeastern Basin and Range, eight earthquake swarms occurred and included over 325 events. Five of the Snake River Plain earthquakes were located within and near the northern and southern ends of the Great Rift volcanic rift zone. All have anomalously deep focal depths (16 to 38 km) and waveforms indicative of fluid movement at mid- and lower-crustal levels and are a continuation of activity observed at Craters of the Moon National Monument since 2007. Since 1972, the Idaho National Laboratory has recorded 55 small-magnitude microearthquakes (M = 2.2) within the eastern Snake River Plain and 25 deep microearthquakes (M = 2.3) in the vicinity of Craters of the Moon National Monument.

  20. Effect of daily noise exposure monitoring on annual rates of hearing loss in industrial workers.

    Science.gov (United States)

    Rabinowitz, Peter M; Galusha, Deron; Kirsche, Sharon R; Cullen, Mark R; Slade, Martin D; Dixon-Ernst, Christine

    2011-06-01

    Occupational noise-induced hearing loss (NIHL) is prevalent, yet evidence on the effectiveness of preventive interventions is lacking. The effectiveness of a new technology allowing workers to monitor daily at-ear noise exposure was analysed. Workers in the hearing conservation program of an aluminium smelter were recruited because of accelerated rates of hearing loss. The intervention consisted of daily monitoring of at-ear noise exposure and regular feedback on exposures from supervisors. The annual rate of change in high frequency hearing average at 2, 3 and 4 KHz before intervention (2000-2004) and 4 years after intervention (2006-2009) was determined. Annual rates of loss were compared between 78 intervention subjects and 234 controls in other company smelters matched for age, gender and high frequency hearing threshold level in 2005. Individuals monitoring daily noise exposure experienced on average no further worsening of high frequency hearing (average rate of hearing change at 2, 3 and 4 KHz = -0.5 dB/year). Matched controls also showed decelerating hearing loss, the difference in rates between the two groups being significant (p hearing loss showed a similar trend but the difference was not statistically significant (p = 0.06). Monitoring daily occupational noise exposure inside hearing protection with ongoing administrative feedback apparently reduces the risk of occupational NIHL in industrial workers. Longer follow-up of these workers will help determine the significance of the intervention effect. Intervention studies for the prevention of NIHL need to include appropriate control groups.

  1. Natural Production Monitoring and Evaluation; Idaho Department of Fish and Game, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Johnson, June; Bunn, Paul (Idaho Department of Fish and Game, Boise, ID)

    2004-12-01

    This report covers the following 3 parts of the Project: Part 1--Monitoring age composition of wild adult spring and summer Chinook salmon returning to the Snake River basin in 2003 to predict smolt-to-adult return rates Part 2--Development of a stock-recruitment relationship for Snake River spring/summer Chinook salmon to forecast natural smolt production Part 3--Improve the precision of smolt-to-adult survival rate estimates for wild steelhead trout by PIT tagging additional juveniles.

  2. Annual dose distribution of Nuclear Malaysia radiation workers for monitoring period from year 2003 to 2007

    International Nuclear Information System (INIS)

    Hairul Nizam Idris; Azimawati Ahmad; Norain Ab Rahman

    2008-08-01

    Estimation of radiation dose (external exposure) received by Nuklear Malaysia's radiation workers are measured by using personal dosimetry device which are provided by SSDL-Nuklear Malaysia. Dose assessment report for monitoring period from year 2003 - 2007 shows that almost all radiation workers received annual doses less than 20 mSv, only in very small percentage of radiation workers received annual doses between 20.1 to 50 mSv and none of the workers received doses higher than 50 mSv/year. Exposure dose below 20 mSv/year (the new annual dose limit to be used in Malaysia soon) could be fully achieved by improving the compliance with the safety regulations and enhancing the awareness about radiation safety among the workers. (Author)

  3. Impact of Renewed Solar Dimming on Hydrology of River Basins in Peninsular India

    Science.gov (United States)

    Srivastava, R.; Soni, P.; Tripathi, S.

    2017-12-01

    A significant decrease in surface solar radiation (SSR) for the period 1970-2000 has been reported by observational studies over India. This trend has also been observed globally and is termed as solar dimming. A recent study reported a reversal in the SSR trends over India for the period 2001-2010. However, using SSR observations at 12 stations located across India, we found that a much stronger dimming has reappeared during the last decade (2006-2015). To analyse the hydrological impact of this renewed dimming, 28 river basins in peninsular India are studied using a semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT). The area of these basins ranges from 1,260 km2 to 40,000 km2. The model was calibrated for the period 2003-2009 and validated for the period 2010-2014 using the daily discharge data. Experiments were performed, based on observed SSR trends and their uncertainties, to quantify their impacts on the water balance of each basin. The results suggest that a 5-10% decrease in SSR over the 9-year period, 2006-2014, resulted in a decrease of about 8% in annual evapotranspiration (ET). Seasonally, ET decreased during wet seasons (monsoon and post-monsoon) leading to increased ground water recharge, but increased during dry seasons (winter and pre-monsoon) resulting in reduced soil moisture. Changes in ET were also affected by the basin characteristics. Forested basins with clay loam soils were found to have higher ET changes than other basins. Annual discharge from the basins increased due to the decrease in annual ET caused by the decrease in SSR. The results suggest that effects of SSR trends on annual runoff are significant over peninsular Indian and should not to be neglected as they can affect river flow projections and freshwater availability.

  4. Is annual recharge coefficient a valid concept in arid and semi-arid regions?

    Directory of Open Access Journals (Sweden)

    Y. Cheng

    2017-10-01

    Full Text Available Deep soil recharge (DSR (at depth greater than 200 cm is an important part of water circulation in arid and semi-arid regions. Quantitative monitoring of DSR is of great importance to assess water resources and to study water balance in arid and semi-arid regions. This study used a typical bare land on the eastern margin of Mu Us Sandy Land in the Ordos Basin of China as an example to illustrate a new lysimeter method of measuring DSR to examine if the annual recharge coefficient is valid or not in the study site, where the annual recharge efficient is the ratio of annual DSR over annual total precipitation. Positioning monitoring was done on precipitation and DSR measurements underneath mobile sand dunes from 2013 to 2015 in the study area. Results showed that use of an annual recharge coefficient for estimating DSR in bare sand land in arid and semi-arid regions is questionable and could lead to considerable errors. It appeared that DSR in those regions was influenced by precipitation pattern and was closely correlated with spontaneous strong precipitation events (with precipitation greater than 10 mm other than the total precipitation. This study showed that as much as 42 % of precipitation in a single strong precipitation event can be transformed into DSR. During the observation period, the maximum annual DSR could make up 24.33 % of the annual precipitation. This study provided a reliable method of estimating DSR in sandy areas of arid and semi-arid regions, which is valuable for managing groundwater resources and ecological restoration in those regions. It also provided strong evidence that the annual recharge coefficient was invalid for calculating DSR in arid and semi-arid regions. This study shows that DSR is closely related to the strong precipitation events, rather than to the average annual precipitation, as well as the precipitation patterns.

  5. Numerical representation of rainfall field in the Yarmouk River Basin

    Science.gov (United States)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic

  6. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report for 1979

    International Nuclear Information System (INIS)

    1980-01-01

    An extensive surveillance program has been continuously maintained since 1951 (before SRP startup) to determine the concentrations of radionuclides in a 1200-square-mile area in the environs of the plant and the radiation exposure of the population resulting from SRP operations. The results of this monitoring program are reported annually to the public. This document summarizes the 1979 results

  7. Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data

    Science.gov (United States)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2018-01-01

    Less than 0.25 % of the 250 000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, on board the TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance data are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. For the ablation season, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. These results are promising to monitor both annual and summer glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadow correction algorithm, although inter-annual comparisons are not affected by systematic errors.

  8. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah; ANNUAL

    International Nuclear Information System (INIS)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-01-01

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah

  9. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  10. Spatially-smooth regionalization of flow duration curves in non-pristine basins

    Directory of Open Access Journals (Sweden)

    D. Ganora

    2016-05-01

    Full Text Available The flow duration curve (FDC is a fundamental signature of the hydrological cycle to support water management strategies. Despite many studies on this topic, its estimation in ungauged basins is still a relevant issue as the FDC is controlled by different types of processes at different time-space scales, thus resulting quite sensitive to the specific case study. In this work, a regional spatially-smooth procedure to evaluate the annual FDC in ungauged basins is proposed, based on the estimation of the L-moments (mean, L-CV and L-skewness through regression models valid for the whole case study area. In this approach, homogeneous regions are no longer required and the L-moments are allowed to continuously vary along the river network, thus providing a final FDC smoothly evolving for different locations on the river. Regressions are based on a set of topographic, climatic, land use and vegetation descriptors at the basin scale. Moreover, the model ensures that the mean annual runoff is preserved at the river confluences, i.e. the sum of annual flows of the upstream reaches is equal to the predicted annual downstream flow. The proposed model is adapted to incorporate different "sub-models" to account for local information within the regional framework, where man-induced alterations are known, as common in non-pristine catchments. In particular, we propose a module to consider the impact of existing/designed water withdrawals on the L-moments of the FDC. The procedure has been applied to a dataset of daily observation of about 120 gauged basins on the upper Po river basin in North-Western Italy.

  11. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1977

    International Nuclear Information System (INIS)

    Stephens, L.D.

    1978-03-01

    The data obtained from the Environmental Monitoring Program of the Lawrence Berkeley Laboratory for the Calendar year 1977 are described and general trends are discussed. The general trend of decreasing radiation levels at our site boundary due to accelerator operation during past years has leveled off during 1977 and in some areas shows a slight but not statistically significant increase as predicted in last year's summary. There were changes in both ion beams as well as current which have resulted in shifts in maxima at the monitoring stations. The gamma levels are once again reported as zero. There is only one period of detectable gamma radiation due to accelerator operation. The annual dose equivalent are reported from the environmental monitoring stations since they have been established. Radiation levels at the Olympus Gate Station have shown a steady decline since 1959 when estimates were first made. The Olympus Gate Station is in direct view of the Bevatron and most directly influenced by that accelerator. Over the past several years the atmospheric sampling program has, with the exception of occasional known releases, yielded data which are within the range of normal background. The surface water program always yields results within the range of normal background. As no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations

  12. Long term variability of the annual hydrological regime and sensitivity to temperature phase shifts in Saxony/Germany

    Science.gov (United States)

    Renner, M.; Bernhofer, C.

    2011-01-01

    The timing of the seasons strongly effects ecosystems and human activities. Recently, there is increasing evidence of changes in the timing of the seasons, such as earlier spring seasons detected in phenological records, advanced seasonal timing of surface temperature, earlier snow melt or streamflow timing. For water resources management there is a need to quantitatively describe the variability in the timing of hydrological regimes and to understand how climatic changes control the seasonal water budget of river basins on the regional scale. In this study, changes of the annual cycle of hydrological variables are analysed for 27 river basins in Saxony/Germany. Thereby monthly series of basin runoff ratios, the ratio of runoff and basin precipitation are investigated for changes and variability of their annual periodicity over the period 1930-2009. Approximating the annual cycle by the means of harmonic functions gave acceptable results, while only two parameters, phase and amplitude, are required. It has been found that the annual phase of runoff ratio, representing the timing of the hydrological regime, is subject to considerable year-to-year variability, being concurrent with basins in similar hydro-climatic conditions. Two distinct basin classes have been identified, whereby basin elevation has been found to be the delimiting factor. An increasing importance of snow on the basin water balance with elevation is apparent and mainly governs the temporal variability of the annual timing of hydrological regimes. Further there is evidence of coincident changes in trend direction (change points in 1971 and 1988) in snow melt influenced basins. In these basins the timing of the runoff ratio is significantly correlated with the timing of temperature, and effects on runoff by temperature phase changes are even amplified. Interestingly, temperature effects may explain the low frequent variability of the second change point until today. However, the first change point can

  13. Emergency preparedness incident response and radiation monitoring in Finland. Annual report 1999

    International Nuclear Information System (INIS)

    Ristonmaa, S.

    2000-04-01

    The Radiation and Nuclear Safety Authority (STUK) publishes annually a report about STUK's preparedness measures. The report describes notifications received by STUK's on duty system and further measures carried out after receiving a message. In addition, the emergence exercises STUK participated in during the year are described. The radiation situation in Finland is continuously monitored. STUK is the authority who carries out a wide range of environmental measurements, sampling and sensitive laboratory analyses. The measurement results are presented in the form of tables and graphically. (editor)

  14. Emergency preparedness incident response and radiation monitoring in Finland. Annual report 1998

    International Nuclear Information System (INIS)

    Ristonmaa, S.

    1999-03-01

    The Radiation and Nuclear Safety Authority (STUK) publishes annually a report about STUK's preparedness measures. The report describes notifications received by STUK's on duty system and further measures carried out after receiving a message. In addition, the emergence exercises STUK participated in during the year are described. The radiation situation in Finland is continuously monitored. STUK is the authority who carries out a wide range of environmental measurements, sampling and sensitive laboratory analyses. The measurement results are presented in the form of tables and graphically. (editor)

  15. Nutrient and sediment concentrations and loads in the Steele Bayou Basin, northwestern Mississippi, 2010–14

    Science.gov (United States)

    Hicks, Matthew B.; Murphy, Jennifer C.; Stocks, Shane J.

    2017-06-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers-Vicksburg District, monitored streamflow, water quality, and sediment at two stations on the Steele Bayou in northwestern Mississippi from October 2010 through September 2014 to characterize nutrient and sediment concentrations and loads in areas where substantial implementation of conservation efforts have been implemented. The motivation for this effort was to quantify improvements, or lack thereof, in water quality in the Steele Bayou watershed as a result of implementing large- and small-scale best-management practices aimed at reducing nutrient and sediment concentrations and loads. The results of this study document the hydrologic, water-quality, and sedimentation status of these basins following over two decades of ongoing implementation of conservation practices.Results from this study indicate the two Steele Bayou stations have comparable loads and yields of total nitrogen, phosphorus, and suspended sediment when compared to other agricultural basins in the southeastern and central United States. However, nitrate plus nitrite yields from basins in the Mississippi River alluvial plain, including the Steele Bayou Basin, are generally lower than other agricultural basins in the southeastern and central United States.Seasonal variation in nutrient and sediment loads was observed at both stations and for most constituents. About 50 percent of the total annual nutrient and sediment load was observed during the spring (February through May) and between 25 and 50 percent was observed during late fall and winter (October through January). These seasonal patterns probably reflect a combination of seasonal patterns in precipitation, runoff, streamflow, and in the timing of fertilizer application.Median concentrations of total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and suspended sediment were slightly higher at the upstream station, Steele Bayou near Glen Allan

  16. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    Science.gov (United States)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  17. Annual coded wire tag program, Washington: Missing production groups. Annual report for 1998

    International Nuclear Information System (INIS)

    Byrne, J.; Fuss, H.

    1999-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded Wire Tag Program--Missing Production Groups for Columbia River Hatcheries'' project. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries

  18. Annual low-cost monitoring of a coastal site in Greece by an unmanned aerial vehicle

    Science.gov (United States)

    Hoffmeister, Dirk; Bareth, Georg

    2016-04-01

    Coastal areas are under permanent change and are also the result of past processes. These processes are for example sediment transport, accumulation and erosion by normal and extreme waves (storms or tsunamis). As about 23% of the World's population lives within a 100 km distance of coasts, knowledge about coastal processes is important, in particular for possible changes in the nearby future. The past devastating tsunami events demonstrated profoundly the high vulnerability of coastal areas. In order to estimate the different effects, coastal monitoring approaches are of interest. Several different methods exist in order to determine changes in the sedimentary budget and coastline configuration. In order to estimate constant annual changes, we have applied terrestrial laser scanning (TLS) in an annual monitoring approach (2009-2011). In 2014, we changed to an approach based on dense imaging and structure-from-motion, applying an unmanned aerial vehicle (UAV) in order to conduct an annual monitoring of a coastal site in western Greece. Therefore, a GoPro Hero 3+ and a Canon PowerShot S110 mounted on a DJI-Phantom 2 were used. All surveys were conducted in a manually structured image acquisition with a huge overlap. Ground control points (GCP) were measured by tachymetric surveying. This successful approach was repeated again in 2015 with the Canon camera. The measurements of 2014 were controlled by an additional TLS survey, which revealed the high accuracy and more suitable coverage for the UAV-based data. Likewise, the large picture datasets were artificially reduced in order to estimate the most efficient number of images for dense point cloud processing. In addition, also the number of GCPs was decreased for one dataset. Overall, high-resolution digital elevation models with a ground resolution of 10 mm and an equal accuracy were achieved with this low-cost equipment. The data reveals the slight changes on this selected site.

  19. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA

    Directory of Open Access Journals (Sweden)

    Petru OLARIU

    2015-02-01

    Full Text Available The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc. in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ volumes. Only two lakes have capacities over 200 mil m³: Izvoru Muntelui on Bistrita River and Siriu on Buzau River. Based on the monitoring of the alluvial flow at the hydrometric stations, from the Siret River Basin, there have been analysed the sediment yield formation and the solid transit dimensions in order to obtain typical values for the geographical areas of this territory. The silting of these reservoirs was monitored by successive topobatimetric measurements performed by the Bureau of Prognosis, Hydrology and Hydrogeology and a compartment within Hidroelectrica S.A. Piatra Neamt Subsidiary. The quantities of the deposited sediments are very impressive. The annual rates range betwee3 000 – 2 000 000 t/year, depending on the size of the hydrographical basin, the capacity of the reservoirs, the liquid flow and many other factors which may influence the upstream transport of sediments. These rates of sedimentation lead to a high degree of silting in the reservoirs. Many of them are silted over 50% of the initial capacity and the others even more. The effects of the silting have an important impact when analysing the effective exploitation of the reservoirs. 

  20. Monitoring Riverbank Erosion in Mountain Catchments Using Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Laura Longoni

    2016-03-01

    Full Text Available Sediment yield is a key factor in river basins management due to the various and adverse consequences that erosion and sediment transport in rivers may have on the environment. Although various contributions can be found in the literature about sediment yield modeling and bank erosion monitoring, the link between weather conditions, river flow rate and bank erosion remains scarcely known. Thus, a basin scale assessment of sediment yield due to riverbank erosion is an objective hard to be reached. In order to enhance the current knowledge in this field, a monitoring method based on high resolution 3D model reconstruction of riverbanks, surveyed by multi-temporal terrestrial laser scanning, was applied to four banks in Val Tartano, Northern Italy. Six data acquisitions over one year were taken, with the aim to better understand the erosion processes and their triggering factors by means of more frequent observations compared to usual annual campaigns. The objective of the research is to address three key questions concerning bank erosion: “how” erosion happens, “when” during the year and “how much” sediment is eroded. The method proved to be effective and able to measure both eroded and deposited volume in the surveyed area. Finally an attempt to extrapolate basin scale volume for bank erosion is presented.

  1. Summary of annual site Environmental Monitoring Reports, January-December 1983

    International Nuclear Information System (INIS)

    Hawley, K.A.; Washburn, D.K.

    1984-01-01

    This summary presents information obtained from 35 annual Environmental Monitoring Reports submitted to the US Department of Energy (DOE). These reports, covering calendar year 1983, contain data on 44 separate sites where work is conducted for DOE. The purpose of each document is to provide an assessment of the overall potential impact of DOE operations on people and the environment in the vicinity of each site. This summary document provides a general overview of the sites, their operations, and their potential impact on the environment, based on data in those annual reports. During the 1983 calendar year, estimated potential radiation exposures to offsite populations from Department of Energy nuclear facilities were consistently within DOE limits. The maximum reported invidual whole-body dose to a member of the public from any DOE nuclear site was calculated to be 34 mrem for the year. The combined population dose estimates for individuals living within an 80-km (50-mile) radius of these sites in 1983 was about 300 person-rem from DOE nuclear operations. Releases of nonradioactive pollutants in DOE nuclear or nonnuclear site effluents were generally within EPA regulatory and/or state limits. Several facilities had pollution abatement projects planned or under construction to ensure compliance with regulations. 8 figures, 9 tables

  2. Spent LWR fuel storage costs: reracking, AR basins, and AFR basins

    International Nuclear Information System (INIS)

    1980-01-01

    Whenever possible, fuel storage requirements will be met by reracking existing reactor basins and/or transfer of fuel to available space in other reactor basins. These alternatives represent not only the lowest cost storage options but also the most timely. They are recognized to face environmental and regulatory obstacles. However, such obstacles should be less severe than those that would be encountered with AR or AFR basin storage. When storage requirements cannot be met by the first two options, the least costly alternative for most utilities will be use of a Federal AFR. Storage costs of $100,000 to $150,000 MTU at a AFR are less costly than charges of up to $320,000/MTU that could be incurred by the use of AR basins. AFR storage costs do not include transportation from the reactor to the AFR. This cost would be paid by the utility separately. Only when a utility requires annual storage capacity for 100 MTU of spent fuel can self-storage begin to compete with AFR costs. The large reactor complexes discharging these fuel quantities are not currently those that require relief from fuel storage problems

  3. Spatial and temporal characteristics of droughts in Luanhe River basin, China

    Science.gov (United States)

    Wang, Yixuan; Zhang, Ting; Chen, Xu; Li, Jianzhu; Feng, Ping

    2018-02-01

    The spatial and temporal characteristics of drought are investigated for Luanhe River basin, using monthly precipitation data from 26 stations covering the common period of 1958-2011. The spatial pattern of drought was assessed by applying principal component analysis (PCA) to the Standardized Precipitation Index (SPI) computed on 3- and 12-month time scales. In addition, annual SPI and seasonal SPIs (including spring SPI, summer SPI, autumn SPI, and winter SPI) were also defined and considered in this study to characterize seasonal and annual drought conditions, respectively. For all seven SPI cases, three distinctive sub-regions with different temporal evolutions of droughts are well identified, respectively, representing the southeast, middle, and northwest of the Luanhe River basin. The Mann-Kendall (MK) trend test with a trend-free pre-whitening (TFPW) procedure and Sen's method were used to determine the temporal trends in the annual and seasonal SPI time series. The continuous wavelet transform (CWT) was employed for further detecting the periodical features of drought condition in each sub-region. Results of MK and Sen's tests show a general tendency of intensification in summer drought over the entire basin, while a significant mitigating trend in spring drought. On the whole, an aggravating trend of inter-annual drought is discovered across the basin. Based on the CWT, the drought variability in the basin is generally dominated by 16- to 64-month cycles, and the 2- to 6-year cycles appear to be obvious when concerned with annual and seasonal droughts. Furthermore, a cross wavelet analysis was performed to examine the possible links between the drought conditions and large-scale climate patterns. The teleconnections of ENSO, NAO, PDO, and AMO show significant influences on the regional droughts principally concentrated in the 16- to 64-month period, maybe responsible for the physical causes of the cyclical behavior of drought occurrences. PDO and AMO also

  4. Main flood peaks in the medieval Carpathian Basin (1000-1500): Annual and decadal overview

    Science.gov (United States)

    Kiss, Andrea

    2013-04-01

    The analysis of over 140 reported floods is mainly based on contemporary legal evidence (charters), partly on other types of contemporary documentary evidence. Majority of sources contains data on individual flood events (i.e. occurrence, seasonality, magnitude). Concerning main flood peaks, evidence on annual and multi-annual (decadal, multi-decadal) level is also available. Despite data increase in the 13th century, only in the 14th-15th centuries documentation is representative enough to draw further conclusions. Apart from secondary flood peaks (probably in the mid-13th century and the turn of the 13th-14th centuries), three main periods with high flood frequencies are detected: 1330s-1350s, 1390s-1430s, and the late 1480s-1490s (continuing in the early 16th century). The first major flood peak was primarily reported in the eastern Carpathian Basin (the Tisa catchment), and can be characterised by a number of high-intensity flood events (with 1342-1343 in centre). During the second major, prolonged flood peak of 1390s-1430s, and that of the third, late 15th century one the importance of floods occurred on the Danube and in the Danube catchment area has to be as well highlighted. Moreover, in the first half of the 15th century long-term hydrological problems (prolonged high water-level and high flood frequency problems) can be identified. In some cases high flood-frequency periods were accompanied by documented hydromorphological impacts and some impacts on society can be also detected. Results show good agreement with the decadal precipitation reconstruction based on speleothem investigations carried out in North-Hungary.

  5. Quantifying climatic impacts on peatland in the Zoige basin, China

    Science.gov (United States)

    Gao, P.; Li, Z.; Hu, X.

    2017-12-01

    Actual evapotranspiration (ET) of the Zoige basin in the Yellow River source region of China is a critical parameter for understanding water balance of peatland in the Zoige basin and hence the cause of the changing land cover. Using daily meteorological data sets of Zoige, Hongyuan, and Maqu stations from 1967 to 2011, the well-known FAO56 Penman-Monteith (P-M) formula was selected to calculate the reference crop evapotranspiration (ET0) in combination with the crop coefficient method in which the crop coefficient Kc is modified in terms of local climatic conditions. By classifying land cover of the Zoige basin in to swamp, grassland, water surface, and desert, the actual ET cover time for each type was obtained. Since late 1990s, the ET0 increased along with the increased air temperature. Different from previous studies, the ET of the swamp was slightly lower than that of water surface, but was slightly larger than the difference between annual precipitation and runoff in the Zoige basin. The increase of ET in the past 45 years was small in comparison with the change of the annual precipitation. More specifically, the annual precipitation, which was about 560-860 mm, slightly decreased between 1967 and 1997, and increased 2.23% in the 1998-2011 period. These results allowed us to conclude that though the slightly increased ET might be a factor leading to the long-term swamp dewatering, it cannot be the primary cause of the degraded peatland swamp and grassland in the Zoige basin.

  6. Subsidence monitoring within the Athens Basin (Greece) using space radar interferometric techniques

    Science.gov (United States)

    Parcharidis, I.; Lagios, E.; Sakkas, V.; Raucoules, D.; Feurer, D.; Mouelic, S. L.; King, C.; Carnec, C.; Novali, F.; Ferretti, A.; Capes, R.; Cooksley, G.

    2006-05-01

    The application of conventional SAR Interferometry (InSAR) together with the two techniques of sub-centimeteraccuracy, the Stacking and the Permanent Scatterers (PS) Interferometry, were used to study the ground deformation in the broader area of Athens for the period 1992 to 2002. Using the Stacking interfero-metricmethod, 55 ERS-1&2 SAR scenes, between 1992 and 2002, were acquired producing 264 differential interferograms. Among these only 60 were finally selected as fulfilling certain criteria. The co-seismic deforma-tionassociated with the Athens Earthquake (Mw = 5 9, September 7, 1999) was excluded from the analytical procedure in an attempt to present results of only aseismic character. In total ground subsidence results of about12 mm in the southern suburbs of Athens, but higher value of about 40 mm in the northern ones for the period 1992-2002. Based on the PS technique, a precise average annual deformation rate-map was generated for the period 1992-1999, ending just before the Athens earthquake event. Both circular and elongated-shape areas of subsidence are recognizable especially in the northern part of the Athens Basin (3-4 mm/yr), as well as at its southern part (1-3 mm/yr). In addition, a rate of 2-3 mm/yr is also yielded for some part of the Athens city center. Subsidence rates of 1-2 mm/yr are measured at the western part of the basin over an area of old mining activities, and around the newly built Syntagma Metro Station. The correlation of the observed deformation pat-ternswith respect to the spatial distribution of water pumping, older mining activities, metro line tunneling and other local geological parameters is examined and discussed.

  7. First annual report RCRA post-closure monitoring and inspections for the U-3fi waste unit. Final report, July 1995--October 1996

    International Nuclear Information System (INIS)

    Emer, D.F.

    1997-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi RCRA Unit, located in Area 3 of the Nevada Site (NTS), Nye County, Nevada during the July 1995 to October 1996 period. Inspections of the U-3fi RCRA Unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. The objective of the neutron logging is to monitor the soil moisture conditions along the 420 ft ER3-3 borehole and detect changes that may be indicative of moisture movement in the regulated interval. This is the first annual report on the U-3fi closure and includes the first year baseline monitoring data as well as one quarter of compliance monitoring data

  8. Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin

    Science.gov (United States)

    Peng, H.; Jia, Y.; Qiu, Y.

    2011-12-01

    The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin

  9. Computer handling of Savannah River Plant environmental monitoring data

    International Nuclear Information System (INIS)

    Zeigler, C.C.

    1975-12-01

    At the Savannah River Plant, computer programs are used to calculate, store, and retrieve radioactive and nonradioactive environmental monitoring data. Objectives are to provide daily, monthly, and annual summaries of all routine monitoring data; to calculate and tabulate releases according to radioisotopic species or nonradioactive pollutant, source point, and mode of entry to the environment (atmosphere, stream, or earthen seepage basins). The computer programs use a compatible numeric coding system for the data, and printouts are in the form required for internal and external reports. Data input and program maintenance are accomplished with punched cards, paper or magnetic tapes, and when applicable, with computer terminals. Additional aids for data evaluation provided by the programs are statistical counting errors, maximum and minimum values, standard deviations of averages, and other statistical analyses

  10. Installation restoration program: Hydrologic measurements with an estimated hydrologic budget for the Joliet Army Ammunition Plant, Joliet, Illinois. [Contains maps of monitoring well locations, topography and hydrologic basins

    Energy Technology Data Exchange (ETDEWEB)

    Diodato, D.M.; Cho, H.E.; Sundell, R.C.

    1991-07-01

    Hydrologic data were gathered from the 36.8-mi{sup 2} Joliet Army Ammunition Plant (JAAP) located in Joliet, Illinois. Surface water levels were measured continuously, and groundwater levels were measured monthly. The resulting information was entered into a database that could be used as part of numerical flow model validation for the site. Deep sandstone aquifers supply much of the water in the JAAP region. These aquifers are successively overlain by confining shales and a dolomite aquifer of Silurian age. This last unit is unconformably overlain by Pleistocene glacial tills and outwash sand and gravel. Groundwater levels in the shallow glacial system fluctuate widely, with one well completed in an upland fluctuating more than 17 ft during the study period. The response to groundwater recharge in the underlying Silurian dolomite is slower. In the upland recharge areas, increased groundwater levels were observed; in the lowland discharge areas, groundwater levels decreased during the study period. The decreases are postulated to be a lag effect related to a 1988 drought. These observations show that fluid at the JAAP is not steady-state, either on a monthly or an annual basis. Hydrologic budgets were estimated for the two principal surface water basins at the JAAP site. These basins account for 70% of the facility's total land area. Meteorological data collected at a nearby dam show that total measured precipitation was 31.45 in. and total calculated evapotranspiration was 23.09 in. for the study period. The change in surface water storage was assumed to be zero for the annual budget for each basin. The change in groundwater storage was calculated to be 0.12 in. for the Grant Creek basin and 0. 26 in. for the Prairie Creek basin. Runoff was 7.02 in. and 7.51 in. for the Grant Creek and Prairie Creek basins, respectively. The underflow to the deep hydrogeologic system in the Grant Creek basin was calculated to be negligible. 12 refs., 17 figs., 15 tabs.

  11. Protect Anadromous Salmonids in the Mainstem Corridor, Monitoring and Evaluation, Annual Report 200-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Vigg, Steven; Johnson, John

    2002-02-01

    In this annual Monitoring & Evaluation (M&E) report to the Bonneville Power Administration (BPA), we summarize significant activities and performance measures resultant from enhanced protection by Columbia River Inter-Tribal Fisheries Enforcement (CRITFE) in the mainstem corridor (BPA Project 2000-056). This report covers the Fiscal Year (FY) 2000 performance period -- May 15, 2000 to May 14, 2001. Quarterly progress reports have previously been submitted to BPA and are posted on the M&E Web site (www.Eco-Law.net) -- for the time period April-December 2000 (Vigg 2000b,c,d) and for the period January-June 2001 (Vigg 2001a,b). We also present comprehensive data representing the first quarter of year 2000 in this report for a pre-project comparison. In addition, we have analyzed specific annual enforcement statistics to evaluate trends during the baseline period 1996-2000. Additional statistics and more years of comprehensive baseline data are now being summarized, and will be presented in future M&E annual reports--to provide a longer time series for evaluation of trends in input, output and outcome performance standards.

  12. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    2001-01-01

    Fine sediment in spawning substrate has a major effect on salmon survival from egg to smolt. Basin-wide restoration plans have established targets for fine sediment levels in spawning habitat. The project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Fork John Day (NFJDR) and Grande Ronde Rivers, for five years. The project is also investigating the potential relationship between surface fine levels and overwinter sedimentation. It will provide data to assess trends in substrate conditions in monitored reaches and whether trends are consistent with efforts to improve salmon habitat conditions. The data on the magnitude of overwinter sedimentation will also be used to estimate salmon survival from egg to emergence. In Sept. 1998, 1999, and Aug. 2000, sites for monitoring overwinter sedimentation were established in salmon spawning habitat in the upper Grande Ronde River, Catherine Creek (a Grande Ronde tributary), the North Fork John Day River (NFJDR), and Granite Creek (a NFJDR tributary). Surface fine sediment levels were measured in these reaches via the grid method and visually estimated to test the relative accuracy of these two methods. In 1999 and 2000, surface fine sediment was also estimated via pebble counts at selected reaches to allow comparison of results among the methods. Overwintering substrate samples were collected in April 1999 and April-May 2000 to estimate the amount of overwinter sedimentation in clean gravels in spawning habitat. Monitoring methods and locations are described.

  13. INL Seismic Monitoring Annual Report: January 1, 2007 - December 31, 2007

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Payne; N. S. Carpenter; J. M. Hodges; R. G. Berg

    2008-09-01

    During 2007, the INL Seismic Monitoring Program evaluated 2,515 earthquakes from around the world, the western United States, and local region of the eastern Snake River Plain. 671 earthquakes and man-made blasts occurred within the local region outside and within a 161-km (or 100-mile) radius of INL. Of these events, eleven were small to moderate size earthquakes ranging in magnitude from 3.0 to 4.8. 341 earthquakes occurred within the 161-km radius of INL and the majority of these earthquakes were located in active regions of the Basin and Range Province that surrounds the ESRP. Three earthquakes were located within the ESRP at Craters of the Moon National Monument. The earthquakes were of Mc 0.9, 1.4, and 1.8. Since 1972, INL has recorded 36 small-magnitude microearthquakes (M < 2.0) within the ESRP.

  14. Annual coded wire tag program (Washington) missing production groups : annual report 2000; ANNUAL

    International Nuclear Information System (INIS)

    Dammers, Wolf; Mills, Robin D.

    2002-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded-wire Tag Program - Missing Production Groups for Columbia River Hatcheries'' project. The Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW) and the United States Fish and Wildlife Service (USFWS) all operate salmon and steelhead rearing programs in the Columbia River basin. The intent of the funding is to coded-wire tag at least one production group of each species at each Columbia Basin hatchery to provide a holistic assessment of survival and catch distribution over time and to meet various measures of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries. Objective 1 for FY-00 was met with few modifications to the original FY-00 proposal. Under Objective 2, snouts containing coded-wire tags that were recovered during FY-00 were decoded. Under Objective 3, this report summarizes available recovery information through 2000 and includes detailed information for brood years 1989 to 1994 for chinook and 1995 to 1997 for coho

  15. The Amazon Basin in transition

    Science.gov (United States)

    Eric A. Davidson; Alessandro C. de Araujo; Paulo Artaxo; Jennifer K. Balch; I. Foster Brown; Mercedes M.C. Bustamente; Michael T. Coe; Ruth S. DeFriess; Michael Keller; Marcos Longo; J. William Munger; Wilfrid Schroeder; Britaldo Soares-Filho; Carlos M. Souza, Jr.; Steven C. Wofsy

    2012-01-01

    Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional...

  16. Building M7-0505 Treatment Tank (SWMU 039) Annual Performance Monitoring Report

    Science.gov (United States)

    2015-01-01

    This Annual Performance Monitoring Report presents a summary of Interim Measure (IM) activities and an evaluation of data collected during the third year (June 2014 to September 2015) of operation, maintenance, and monitoring (OM&M) conducted at the Building M7-505 (M505) Treatment Tank area, Kennedy Space Center (KSC), Florida ("the Site"). Under KSC's Resource Conservation and Recovery Act Corrective Action Program, the M505 Treatment Tank area was designated Solid Waste Management Unit 039. Arcadis U.S., Inc. (Arcadis) began IM activities on January 10, 2012, after completion of construction of an in situ air sparge (IAS) system to remediate volatile organic compounds (VOCs) in groundwater at concentrations exceeding applicable Florida Department of Environmental Protection (FDEP) Chapter 62-777, Florida Administrative Code, Natural Attenuation Default Concentrations (NADCs). This report presents a summary of the third year of OM&M activities conducted between June 2014 and September 2015.

  17. Annual report on radioactive discharges from Winfrith and monitoring the environment 1989

    International Nuclear Information System (INIS)

    1990-03-01

    The numerical values of the authorised limits are based on past performance, future requirements and the application of BPM. As a 'back-stop', discharges at the limits must not result in doses to the most potentially exposed part of the local population -the critical group - exceeding 0.5 mSv per year. The limit of the International Commission on Radiological Protection (ICRP) for dose to a member of the general public is 1.0 mSv per year. During 1989 some small changes took place in our discharge patterns, our environmental monitoring and in the assessment of critical group doses. These changes are discussed in the introductions to the two parts of this report where the relevant Authorisations are also discussed. This report, the fifth of our annual series, has as its aim the provision, to the general public, of full information on discharges from the SGHWR reactor and other smaller sources at Winfrith and the associated environmental monitoring programmes. Some improvements in presentation have been made. The data, mainly provided graphically in the main text, are still compared with authorised limits or derived levels, but numerical values are now given. The graphs refer to specifically authorised radio-nuclides e.g. tritium, rather than to gross activity. Previous reports were restricted to monitoring at the site boundary and to off-site monitoring. Some data are now given in the report for on-site monitoring. (author)

  18. The U.S. Geological Survey Amphibian Research and Monitoring Initiative-2011 Annual Update

    Science.gov (United States)

    Adams, M.J.; Muths, E.; Grant, E.H.C.; Miller, David A.; Waddle, J.H.; Ball, L.C.

    2012-01-01

    Welcome to the inaugural issue of ARMI's Annual Update. This update provides highlights and significant milestones of this innovative program. ARMI is uniquely qualified to provide research and monitoring results that are scalable from local to national levels, and are useful to resource managers. ARMI has produced nearly 400 peer-reviewed publications, including 18 in 2011. Some of those publications are highlighted in this fact sheet. ARMI also has a new Website (armi.usgs.gov). You can now use it to explore an up-to-date list of ARMI products, to find summaries of research topics, to search for ARMI activities in your area, and to obtain amphibian photographs. ARMI's annual meeting was organized by Walt Sadinski, Upper Midwest Environmental Science Center, and held in St Louis, Missouri. We met with local scientists and managers in herpetology and were given a tour of the herpetology collection at the St. Louis Zoo.

  19. Environmental Setting of the Lower Merced River Basin, California

    Science.gov (United States)

    Gronberg, Jo Ann M.; Kratzer, Charles R.

    2006-01-01

    In 1991, the U.S. Geological Survey began to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology as part of the National Water-Quality Assessment (NAWQA) Program. As part of this program, the San Joaquin-Tulare Basins study unit is assessing parts of the lower Merced River Basin, California. This report provides descriptions of natural and anthropogenic features of this basin as background information to assess the influence of these and other factors on water quality. The lower Merced River Basin, which encompasses the Mustang Creek Subbasin, gently slopes from the northeast to the southwest toward the San Joaquin River. The arid to semiarid climate is characterized by hot summers (highs of mid 90 degrees Fahrenheit) and mild winters (lows of mid 30 degrees Fahrenheit). Annual precipitation is highly variable, with long periods of drought and above normal precipitation. Population is estimated at about 39,230 for 2000. The watershed is predominately agricultural on the valley floor. Approximately 2.2 million pounds active ingredient of pesticides and an estimated 17.6 million pounds active ingredient of nitrogen and phosphorus fertilizer is applied annually to the agricultural land.

  20. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    Science.gov (United States)

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  1. Water resources of the Cook Inlet Basin, Alaska

    Science.gov (United States)

    Freethey, Geoffrey W.; Scully, David R.

    1980-01-01

    Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)

  2. Calendar Year 1997 Annual Groundwater Monitoring Report For The Chestnut Ridge Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). In July 1997, the Tennessee Department of Environment and Conservation (TDEC) approved modifications to several of the permit conditions that address RCRA pow-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (Security Pits), and RCIU4 post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin) and Kerr Hollow Quarry. This report has been prepared in accordance with these modified permit requirements. Also included in this report are the groundwater and surface water monitoring data obtained during CY 1997 for the purposes ofi (1) detection monitoring at nonhazardous solid waste disposal facilities (SWDFS) in accordance with operating permits and applicable regulations, (2) monitoring in accordance with Comprehensive Environmental Response, Compensation, and Recove~ Act Records of Decision (now pefiormed under the Integrated Water Quality Program for the Oak Ridge Reservation), and (3) monitoring needed to comply with U.S. Department of Energy Order 5400.1.

  3. Monitoring of the Spatio-Temporal Dynamics of the Floods in the Guayas Watershed (Ecuadorian Pacific Coast Using Global Monitoring ENVISAT ASAR Images and Rainfall Data

    Directory of Open Access Journals (Sweden)

    Frédéric Frappart

    2017-01-01

    Full Text Available The floods are an annual phenomenon on the Pacific Coast of Ecuador and can become devastating during El Niño years, especially in the Guayas watershed (32,300 km2, the largest drainage basin of the South American western side of the Andes. As limited information on flood extent in this basin is available, this study presents a monitoring of the spatio-temporal dynamics of floods in the Guayas Basin, between 2005 and 2008, using a change detection method applied to ENVISAT ASAR Global Monitoring SAR images acquired at a spatial resolution of 1 km. The method is composed of three steps. First, a supervised classification was performed to identify pixels of open water present in the Guayas Basin. Then, the separability of their radar signature from signatures of other classes was determined during the four dry seasons from 2005 to 2008. In the end, standardized anomalies of backscattering coefficient were computed during the four wet seasons of the study period to detect changes between dry and wet seasons. Different thresholds were tested to identify the flooded areas in the watershed using external information from the Dartmouth Flood Observatory. A value of −2.30 ± 0.05 was found suitable to estimate the number of inundated pixels and limit the number of false detection (below 10%. Using this threshold, monthly maps of inundation were estimated during the wet season (December to May from 2004 to 2008. The most frequently inundated areas were found to be located along the Babahoyo River, a tributary in the east of the basin. Large interannual variability in the flood extent is observed at the flood peak (from 50 to 580 km2, consistent with the rainfall in the Guayas watershed during the study period.

  4. Estimated suspended-sediment loads and yields in the French and Brandywine Creek Basins, Chester County, Pennsylvania, water years 2008-09

    Science.gov (United States)

    Sloto, Ronald A.; Olson, Leif E.

    2011-01-01

    Turbidity and suspended-sediment concentration data were collected by the U.S. Geological Survey (USGS) at four stream stations--French Creek near Phoenixville, West Branch Brandywine Creek near Honey Brook, West Branch Brandywine Creek at Modena, and East Branch Brandywine Creek below Downingtown--in Chester County, Pa. Sedimentation and siltation is the leading cause of stream impairment in Chester County, and these data are critical for quantifying sediment transport. This study was conducted by the USGS in cooperation with the Chester County Water Resources Authority and the Chester County Health Department. Data from optical turbidity sensors deployed at the four stations were recorded at 15- or 30-minute intervals by a data logger and uploaded every 1 to 4 hours to the USGS database. Most of the suspended-sediment samples were collected using automated samplers. The use of optical sensors to continuously monitor turbidity provided an accurate estimate of sediment fluctuations without the collection and analysis costs associated with intensive sampling during storms. Turbidity was used as a surrogate for suspended-sediment concentration (SSC), which is a measure of sedimentation and siltation. Regression models were developed between SSC and turbidity for each of the monitoring stations using SSC data collected from the automated samplers and turbidity data collected at each station. Instantaneous suspended-sediment loads (SSL) were computed from time-series turbidity and discharge data for the 2008 and 2009 water years using the regression equations. The instantaneous computations of SSL were summed to provide daily, storm, and water year annual loads. The annual SSL contributed from each basin was divided by the upstream drainage area to estimate the annual sediment yield. For all four basins, storms provided more than 96 percent of the annual SSL. In each basin, four storms generally provided over half the annual SSL each water year. Stormflows with the

  5. Annual report on radioactive discharges and monitoring of the environment 1980

    International Nuclear Information System (INIS)

    1981-07-01

    A report is given on radioactive discharges through authorised outlets and on environmental monitoring for all of British Nuclear Fuels Limited Works and Sites, i.e. the Windscale and Calder Works and the Drigg Storage and Disposal Site; Chapelcross Works; Springfields Works and the Ulnes Walton Disposal Site; and Capenhurst Works. The report includes information on liquid and airborne radioactive effluents and solid radioactive waste at each of the Company's Works and Sites. Assessments are made of maximum radiological exposures to individual members of the public expressed in terms of limits based on ICRP recommendations and in accordance with advice given by the NRPB. The report showed that at no time during 1980 did discharges and disposals of radioactive wastes through authorised outlets at any of the Works exceed those laid down in any of the Authorisations. Environmental monitoring studies also showed that the radiation exposure in 1980 of the most highly exposed groups of the general population was significantly lower than the Annual Limit recommended by the ICRP. (U.K.)

  6. Geology, Water, and Wind in the Lower Helmand Basin, Southern Afghanistan

    Science.gov (United States)

    Whitney, John W.

    2006-01-01

    This report presents an overview of the geology, hydrology, and climate of the lower Helmand Basin, a large, closed, arid basin in southern Afghanistan. The basin is drained by the Helmand River, the only perennial desert stream between the Indus and Tigris-Euphrates Rivers. The Helmand River is the lifeblood of southern Afghanistan and has supported desert civilizations in the Sistan depression for over 6,000 years. The Helmand Basin is a structurally closed basin that began to form during the middle Tertiary as a consequence of the collision of several Gondwanaland fragments. Aeromagnetic studies indicate the basin is 3-5 kilometers deep over basement rocks. Continued subsidence along basin-bounding faults in Iran and Pakistan throughout the Neogene has formed the Sistan depression in the southwest corner of the basin. Lacustrine, eolian, and fluvial deposits are commonly exposed in the basin and were intruded by latest Miocene-middle Quaternary volcanoes, which indicates that depositional environments in the lower Helmand Basin have not substantially changed for nearly 10 million years. Lakes expanded in the Sistan depression during the Quaternary; however, the size and extent of these pluvial lakes are unknown. Climate conditions in the lower Helmand Basin likely mirrored climate changes in the Rajasthan Desert to the east and in Middle Eastern deserts to the west: greater aridity during global episodes of colder temperatures and increased available moisture during episodes of warmer temperatures. Eolian processes are unusually dominant in shaping the landscape in the basin. A strong wind blows for 120 days each summer, scouring dry lakebeds and creating dune fields from annual flood deposits. Nearly one-third of the basin is mantled with active or stabilized dunes. Blowing winds combined with summer temperatures over 50? Celsius and voluminous insect populations hatched from the deltaic wetlands create an environment referred to as the 'most odious place on

  7. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-07-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2002. The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, they are spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, the Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation.

  8. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included

  9. In-situ soil loss monitoring in a small Mediterranean catchment to assess the siltation risk of a limno-reservoir

    Science.gov (United States)

    Molina-Navarro, E.; Bienes-Allas, R.; Martínez-Pérez, S.; Sastre-Merlín, A.

    2012-04-01

    The existence of large reservoirs under Mediterranean climate causes some negative impacts. The construction of small dams in the riverine zone of these reservoirs is an innovative idea designed to counteract some of those impacts, generating a body of water with a constant level which we have termed "limno-reservoirs". Pareja Limno-reservoir, located in the influence area of the Entrepeñas Reservoir (Guadalajara) is among the first limno-reservoirs built in Spain, and the first having a double function: environmental and recreational. The limno-reservoir basin (85.5 Km2) enjoys a Mediterranean climate, however, cold temperatures prevail in winter and maximum annual variation may be around 50 °C. Average annual precipitation is 600 mm, with high variability too. Most of the basin is dominated by a high limestone plateau, while a more erodible lithology surfaces in the hillsides of the Ompólveda River and its tributaries. These characteristics make the basin representative of central Spain. Despite the unquestionable interest of the initiative, it construction has raised some issues about its environmental viability. One of them is related to its siltation risk, as the area shows signs of high erosion rates that have been contrasted in previous empirical studies. An in-situ soil loss monitoring network has been installed in order to determine the soil loss and deposition rates in the limno-reservoir basin (85.5 km2). It includes 15 sampling plots for inter-rill erosion and 8 for sedimentation, each one containing 16 erosion sticks. Rill erosion was studied monitoring 8 rills with a needle micro-profiler, quantifying the sediment deposition in their terminal zone with sticks. These control points have been located in places where the soil type, land use and slope present are representative of the basin, in order to extrapolate the results to similar areas. In-situ monitoring has been performed for three years, starting in 2009 and carrying out sampling every 3

  10. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Loar, J.M.; Amano, H.; Jimenez, B.D.; Kitchings, J.T.; Meyers-Schoene, L.; Mohrbacher, D.A.; Olsen, C.R.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986

  11. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J. M. [ed.; Adams, S. M.; Blaylock, B. G.; Boston, H. L.; Frank, M. L.; Garten, C. T.; Houston, M. A.; Kimmel, B. L.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.; Stewart, A. J.; Walton, B. T.; Berry, J. B.; Talmage, S. S. [Oak Ridge National Lab., TN (United States); Amano, H. [JAERI, Tokai Res., Establishment, Ibari-Ken (Japan); Jimenez, B. D. [School of Pharmacy, Univ. of Puerto Rico (San Juan); Kitchings, J. T. [ERCE, Denver, CO (United States); Meyers-Schoene, L. [Advanced Sciences, Inc., Fernald, OH (United States); Mohrbacher, D. A. [Univ. of Tennessee, Knoxville, TN (United States); Olsen, C. R. [USDOE Office of Energy Research, Washington, DC (United States). Office of Health and Environmental Research

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  12. Fourth annual report 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The Independent Radiation Monitoring Scheme for Clwyd began its monitoring programme in Clwyd in 1988. This is the fourth report on the results of the radiation monitoring carried out within Clwyd. The historical reasons for the conception of the Radiation Monitoring Scheme are given in the First Annual Report together with the protocol of operation and detailed sampling and monitoring information. The fourth Annual Report identifies any changes in techniques that have occurred in the last twelve months together with the latest monitoring and analytical data. Samples of air, beach materials, coastal sand and silt, seaweed, meat, fish and milk were taken from various locations within the county. No significant charges in radiation levels were found when compared with data from previous years. The values have remained within the range currently being expected throughout the United Kingdom. (author)

  13. Hydrology of the Johnson Creek Basin, Oregon

    Science.gov (United States)

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    and winter precipitation totals were used to anticipate flooding of Holgate Lake. Several factors affect annual mean flow of Johnson Creek. More precipitation falls in the southeastern area of the basin because of the topographic setting. Runoff from much of the northern and western areas of the basin does not flow into Johnson Creek due to permeable deposits, interception by combined sewer systems, and by groundwater flow away from Johnson Creek. Inflow from Crystal Springs Creek accounts for one-half of the increase in streamflow of Johnson Creek between the Sycamore and Milwaukie sites. Low flows of Johnson Creek vary as a result of fluctuations in groundwater discharge to the creek, although past water uses may have decreased flows. The groundwater contributions to streamflow upstream of river mile (RM) 5.5 are small compared to contributions downstream of this point. Comparison of flows to a nearby basin indicates that diversions of surface water may have resulted in a 50 percent decrease in low flows from about 1955 to 1977. Runoff from the drainage basin area upstream of the Johnson Creek at Sycamore site contributes more to peak streamflow and peak volume than the drainage basin area between the Sycamore and Milwaukie sites. The average increase in annual peak streamflow and annual peak volume between the two sites was 11 and 24 percent, respectively. Decreased contribution in the lower area of the drainage basin is a result of infiltration, interception by drywell and combined sewer systems, and temporary overbank storage. Trends in flow typically associated with increasing urban development were absent in Johnson Creek. Annual, low, and high flows showed no trend from 1941 to 2006. Much of the infrastructure that may affect runoff from agricultural, residential, and urban development was in place prior to collection of hydrologic data in the basin. Management of stormwater in the urban areas by routing runoff from impervious surfaces to dry

  14. Gazetteer of hydrologic characteristics of streams in Massachusetts; Blackstone River basin

    Science.gov (United States)

    Wandle, S.W.; Phipps, A.F.

    1984-01-01

    The Blackstone River basin encompasses 335 square miles in south-central Massachusetts, including parts of Bristol, Middlesex, Norfolk, and Worcester Counties. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were recomputed for data-collection sites. Streamflow characteristics, were calculated using a new data base with records through 1980. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. The 7-day, 10-year low-flow values are presented for 31 partial-record sites and the procedures used to determine the hydrologic characteristics of the basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are presented for the six gaged streams in the Blackstone River basin. This gazetteer will aid in the planning and siting of water-resources-related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)

  15. Study on the characteristics of future precipitation in response to external changes over arid and humid basins.

    Science.gov (United States)

    Xue, Lianqing; Zhu, Boli; Yang, Changbing; Wei, Guanghui; Meng, Xianyong; Long, Aihua; Yang, Guang

    2017-11-09

    The simulation abilities of the Coupled Model Inter-comparison Project Phase 5 (CMIP5) models to the arid basin (the Tarim River Basin, TRB) and humid basin (the Yangtze River Basin, YRB) were evaluated, determining the response of precipitation to external changes over typical basins. Our study shows that the future temporal and spatial variation characteristics of precipitation are different in different regions with the CMIP5. The annual and seasonal changes in precipitation were analyzed for the RCP2.6, RCP4.5 and RCP8.5 during 2021~2100 compared to those during 1961~2005. Precipitation shows an increasing trend in the TRB, but which decreases and then increases in the YRB, with a turning point in the middle of twenty-first Century. The ranges in annual precipitation increase with the increase in the scenario emissions in the future. Note that the Tarim River Basin is more vulnerable to the impact of emissions, especially for annual or spring and winter precipitation. Based on the uncertainty of CMIP5 data, the links between future precipitation changes and the elevation and relief amplitude were evaluated. The change of precipitation decreases with elevation, relief amplitude in the TRB, while it increases with elevation but decreases with relief amplitude in the YRB.

  16. The Hydrologic Regime of the La Plata Basin in South America

    Science.gov (United States)

    Berbery, E. H.; Barros, V. R.

    2002-12-01

    The main components of the hydrologic cycle of the La Plata basin in southeastern South America are investigated using a combination of observations, satellite products and National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) global reanalyses. La Plata basin is second only to the Amazon basin in South America, and plays a critical role in the economies of the region. It is a primary factor in energy production, water resources, transportation, agriculture and livestock. Of particular interest was to evaluate the annual cycle of the hydrologic cycle components. The La Plata annual-mean river discharge is about 21,000 m3 s-1, and the amplitude of the mean annual cycle of La Plata River discharge is small: it is slightly larger during late summer, but continues with large volumes even during winter. The reason is that different precipitation regimes over different locations contribute to the total river discharge. One regime is found toward the northern boundary, where precipitation peaks during summer in association with the southernmost extension of the monsoon system. A second one is found over the central part of the basin, where precipitation peaks at different times in the seasonal cycle. Further analysis of the main tributaries of La Plata (Paran , Uruguay and Paraguay) reveals that each has a well defined annual cycle, but with different phases that can be traced primarily to each basin's physiography and precipitation regime. The upper and middle portions of the Paran River are most influenced by the summer monsoon regime, thus the river has a maximum discharge in late summer. The annual cycle of precipitation over the Uruguay River basin has two maxima, one in late autumn and the second one in spring and, consistently, the river discharge is largest in winter and spring. The smooth annual cycle of the Paraguay River discharge, with a maximum in winter, is the result of the Pantanal, a large wetland that

  17. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.

    Science.gov (United States)

    Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel

    2016-04-01

    Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area

  18. Long term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, Central India

    Directory of Open Access Journals (Sweden)

    Arun Kumar Taxak

    2014-08-01

    Full Text Available Gridded rainfall data of 0.5×0.5° resolution (CRU TS 3.21 was analysed to study long term spatial and temporal trends on annual and seasonal scales in Wainganga river basin located in Central India during 1901–2012. After testing the presence of autocorrelation, Mann–Kendall (Modified Mann–Kendall test was applied to non-auto correlated (auto correlated series to detect the trends in rainfall data. Theil and Sen׳s slope estimator test was used for finding the magnitude of change over a time period. For detecting the most probable change year, Pettitt–Mann–Whitney test was applied. The Rainfall series was then divided into two partial duration series for finding changes in trends before and after the change year. Arc GIS was used to explore spatial patterns of the trends over the entire basin. Though most of the grid points shows a decreasing trend in annual rainfall, only seven grids has a significant decreasing trend during 1901–2012. On the basis of seasonal trend analysis, non-significant increasing trend is observed only in post monsoon season while seven grid points show significant decreasing trend in monsoon rainfall and non-significant in pre-monsoon and winter rainfall over the last 112 years. During the study period, overall a 8.45% decrease in annual rainfall is estimated. The most probable year of change was found to be 1948 in annual and monsoonal rainfall. There is an increasing rainfall trend in the basin during the period 1901–1948, which is reversed during the period 1949–2012 resulting in decreasing rainfall trend in the basin. Homogeneous trends in annual and seasonal rainfall over a grid points is exhibited in the basin by van Belle and Hughes׳ homogeneity trend test.

  19. Variation of Annual ET Determined from Water Budgets Across Rural Southeastern Basins Differing in Forest Types

    Science.gov (United States)

    Younger, S. E.; Jackson, C. R.

    2017-12-01

    In the Southeastern United States, evapotranspiration (ET) typically accounts for 60-70% of precipitation. Watershed and plot scale experiments show that evergreen forests have higher ET rates than hardwood forests and pastures. However, some plot experiments indicate that certain hardwood species have higher ET than paired evergreens. The complexity of factors influencing ET in mixed land cover watersheds makes identifying the relative influences difficult. Previous watershed scale studies have relied on regression to understand the influences or low flow analysis to indicate growing season differences among watersheds. Existing studies in the southeast investigating ET rates for watersheds with multiple forest cover types have failed to identify a significant forest type effect, but these studies acknowledge small sample sizes. Trends of decreasing streamflow have been recognized in the region and are generally attributed to five key factors, 1.) influences from multiple droughts, 2.) changes in distribution of precipitation, 3.) reforestation of agricultural land, 4.) increasing consumptive uses, or 5.) a combination of these and other factors. This study attempts to address the influence of forest type on long term average annual streamflow and on stream low flows. Long term annual ET rates were calculated as ET = P-Q for 46 USGS gaged basins with daily data for the 1982 - 2014 water years, >40% forest cover, and no large reservoirs. Land cover data was regressed against ET to describe the relationship between each of the forest types in the National Land Cover Database. Regression analysis indicates evergreen land cover has a positive relationship with ET while deciduous and total forest have a negative relationship with ET. Low flow analysis indicates low flows tend to be lower in watersheds with more evergreen cover, and that low flows increase with increasing deciduous cover, although these relationships are noisy. This work suggests considering forest

  20. COMPARISON OF THREE MODELS TO PREDICT ANNUAL SEDIMENT YIELD IN CARONI RIVER BASIN, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Edilberto Guevara-Pérez

    2007-01-01

    Full Text Available Caroní River Basin is located in the south-eastern part of Venezuela; with an area of 92.000 km2, 40% of which belongs to the main affluent, the Paragua River. Caroní basin is the source of 66% of energy of the country. About 85% of the hydro electrical energy is generated in Guri reservoir located in the lower part of the watershed. To take provisions to avoid the reservoir silting it is very important the study of sediment yield of the basin. In this paper result of three empirical sediment yield models: Langbein- Schumm, Universal Soil Loss Equation-USLE and Poesen, are compared with observed data from five sub basins with records of twenty to thirty years. Men values of sediment yield for low, middle and upper Caroní are of 27, 76, 17 t/km2-year, respectively; and 46 and 78 t/km2-year for low and upper Paragua sub basins are. Standard errors of estimates vary between 13 and 29 for Langbein-Schumm model; between 8 and 32 for USLE procedure; and between 9 and 79, for Poesen model. Sediment yield predictions by Langbein-Schumm model seem to the best in Caroní basin.

  1. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    Science.gov (United States)

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  2. Monitoring the migrations of wild Snake River spring/summer chinook salmon smolts, 1995. Annual report

    International Nuclear Information System (INIS)

    Achord, S.; Eppard, M.B.; Sandford, B.P.; Matthews, G.M.

    1996-09-01

    We PIT tagged wild spring/summer chinook-salmon parr in the Snake River Basin in 1994 and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Darns during spring, summer, and fall 1995. This report details our findings. The goals of this study are to (1) characterize the migration timing of different wild stocks of Snake River spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence migration timing

  3. Detecting Variation Trends of Temperature and Precipitation for the Dadu River Basin, China

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2016-01-01

    Full Text Available This study analyzes the variation trends of temperature and precipitation in the Dadu River Basin of China based on observed records from fourteen meteorological stations. The magnitude of trends was estimated using Sen’s linear method while its statistical significance was evaluated using Mann-Kendall’s test. The results of analysis depict increase change from northwest to southeast of annual temperature and precipitation in space. In temporal scale, the annual temperature showed significant increase trend and the annual precipitation showed increase trend. For extreme indices, the trends for temperature are more consistent in the region compared to precipitation. This paper has practical meanings for an effective management of climate risk and provides a foundation for further study of hydrological situation in this river basin.

  4. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  5. RESULTS OF GROUNDWATER MONITORING FOR THE 183-H SOLAR EVAPORATION BASINS AND 300 AREA PROCESS TRENCHES JANUARY - JUNE 2008

    International Nuclear Information System (INIS)

    Hartman, M.J.

    2008-01-01

    This is one of a series of reports on Resource Conservation and Recovery Act of 1976 (RCRA) monitoring at the 183-H solar evaporation basins and the 300 Area process trenches. It fulfills the requirement of Washington Administrative Code (WAC) 173-303-645(11)(g), 'Release from Regulated Units', to report twice each year on the effectiveness of the corrective action program. This report covers the period from January through June 2008. The current objective of corrective action monitoring the 183-H basins is simply to track trends. Although there is short-term variability in contaminant concentrations, trends over the past 10 years are downward. The current Hanford Facility RCRA Permit (Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste (Permit No. WA 7890008967)) and monitoring plan remain adequate for the objective of tracking trends. The objective of groundwater monitoring at the 300 Area process trenches is to demonstrate the effectiveness of the corrective action program by examining the trend of the constituents of interest to confirm that they are attenuating naturally. The overall concentration of uranium in network wells remained above the 30 (micro)g/L drinking water standard in the three downgradient wells screened at the water table. Fluctuations of uranium concentration are caused by changes in river stage. The concentration of cis-1,2-dichloroethene remained above the 70 (micro)g/L drinking water standard in one well (399-1-16B). Concentrations are relatively steady at this well and are not affected by river stage. Trichloroethene and tetrachloroethene concentrations were below detection limits in all wells during the reporting period

  6. Monitoring and evaluation of smolt migration in the Columbia Basin, Volume II: Evaluation of the 1996 predictions of the run-timing of wild migrant subyearling chinook in the Snake River Basin using Program RealTime.; TOPICAL

    International Nuclear Information System (INIS)

    Skalski, John R.; Townsend, Richard L.; Yasuda, Dean

    1998-01-01

    This project was initiated in 1991 in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of this project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and identify future research and analysis needs; (2)to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to aid management in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; (3)to design better analysis tools for evaluation programs; and (4)to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community

  7. Monitoring and evaluation of smolt migration in the Columbia River Basin; Volume 1; Evaluation of the 1995 predictions of the run-timing of wild migrant subyearling chinook in the Snake River Basin using Program RealTime

    International Nuclear Information System (INIS)

    Skalski, John R.; Townsend, Richard L.; Yasuda, Dean

    1997-01-01

    This project was initiated in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of the project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and to help identify future research and analysis needs; (2)to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to assist in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; and (3)to design better analysis tools for evaluation programs; and (4)to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community

  8. INL Seismic Monitoring Annual Report: January 1, 2012 - December 31, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Payne, S. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bruhn, D. F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hodges, J. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berg, R. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    During 2012, the Idaho National Laboratory Seismic Monitoring Program evaluated 17,329 independent triggers that included earthquakes from around the world, the western United States, and local region of the Snake River Plain. Seismologists located 1,460 earthquakes and man-made blasts within and near the 161-km (or 100-mile) radius of the Idaho National Laboratory. Of these earthquakes, 16 had small-to-moderate size magnitudes (M) from 3.0 to 3.6. Within the 161-km radius, the majority of 695 earthquakes (M < 3.6) occurred in the active regions of the Basin and Range Provinces adjacent to the eastern Snake River Plain. Only 11 microearthquakes occurred within the Snake River Plain, four of which occurred in Craters of the Moon National Monument. The earthquakes had magnitudes from 1.0 to 1.7 and occurred at deep depths (11-24 km). Two events with magnitudes less than 1.0 occurred within the Idaho National Laboratory boundaries and had depths less than 10 km.

  9. Identification of trend in long term precipitation and reference evapotranspiration over Narmada river basin (India)

    Science.gov (United States)

    Pandey, Brij Kishor; Khare, Deepak

    2018-02-01

    Precipitation and reference evapotranspiration are key parameters in hydro-meteorological studies and used for agricultural planning, irrigation system design and management. Precipitation and evaporative demand are expected to be alter under climate change and affect the sustainable development. In this article, spatial variability and temporal trend of precipitation and reference evapotranspiration (ETo) were investigated over Narmada river basin (India), a humid tropical climatic region. In the present study, 12 and 28 observatory stations were selected for precipitation and ETo, respectively of 102-years period (1901-2002). A rigorous analysis for trend detection was carried out using non parametric tests such as Mann-Kendall (MK) and Spearman Rho (SR). Sen's slope estimator was used to analyze the rate of change in long term series. Moreover, all the stations of basin exhibit positive trend for annual ETo, while 8% stations indicate significant negative trend for mean annual precipitation, respectively. Change points of annual precipitation were identified around the year 1962 applying Buishand's and Pettit's test. Annual mean precipitation reduced by 9% in upper part while increased maximum by 5% in lower part of the basin due temporal changes. Although annual mean ETo increase by 4-12% in most of the region. Moreover, results of the study are very helpful in planning and development of agricultural water resources.

  10. Annual report of the Environmental Restoration Monitoring and Assessment Program at Oak Ridge National Laboratory for FY 1992

    International Nuclear Information System (INIS)

    Clapp, R.B.

    1992-09-01

    This report summarizes the salient features of the annual efforts of the investigations and monitoring, conducted to support the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL). The results presented can be used to develop a conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This information forms a basis for prioritizing sites and for selecting, implementing, and evaluating remedial actions. Groundwater, soils, sediments, and surface water monitoring results are described

  11. Annual coded wire tag program (Washington) missing production groups: annual report for 1997; ANNUAL

    International Nuclear Information System (INIS)

    Byrne, J.; Fuss, H.; Ashbrook, C.

    1998-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded Wire Tag Program - Missing Production Groups for Columbia River Hatcheries'' project. The Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW) and the United States Fish and Wildlife Service (USFWS) all operate salmon and steelhead rearing programs in the Columbia River basin. The intent of the funding is to coded-wire tag at least one production group of each species at each Columbia Basin hatchery to provide a holistic assessment of survival and catch distribution over time and to meet various measures of the Northwest Power Planning Councils (NWPPC) Fish and Wildlife Program. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries. Objective 1 for FY-97 was met with few modifications to the original FY-97 proposal. Under Objective 2, snouts containing coded-wire tags that were recovered during FY-97 were decoded. Under Objective 3, survival, contribution and stray rate estimates for the 1991-96 broods of chinook and 1993-96 broods of coho have not been made because recovery data for 1996-97 fisheries and escapement are preliminary. This report summarizes recovery information through 1995

  12. Energy development and water options in the Yellowstone River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  13. Radiation protection and ambient radioactivity monitoring in the area of the Asse mine. Annual report 1997

    International Nuclear Information System (INIS)

    Meyer, H.; Stippler, R.

    1998-01-01

    The number of annual sampling and measurements performed in compliance with the operator's monitoring duties have been the same as last year: 364. All measured radioactivity values were at the level of natural environmental radioactivity. Some samples and measurements reflected the fallout from former atmospheric nuclear weapons tests and the accident at the Chernobyl reactor. Personnel dosimetry was performed according to legal requirements of the Radiation Protection Ordinance, as were measurements for the monitoring of ambient doses, dose rates and radioactivity levels in the air of the mine structures. All measured values were below the maximum permissible personal doses and occupational dose limits. Ambient air measurements in the salt mine as in the preceding years detected low amounts of the nuclides H 3, C 14, Pb 210, and the short-lived daughter products of Rn 222 and Rn 220. The calculated radioactivity concentrations in the vicinity of the mine, derived from averaged annual effluents, to some part were below the average natural concentrations of the nuclides. The effluent-induced radiation dose at the most affected location was far below the limits set by the Radiation Protection Ordinance. (orig./CB) [de

  14. Hydric results in Guarani Aquifer System formation zone through by hydrogeological monitoring in representative basin

    International Nuclear Information System (INIS)

    Wendland, E.; Barreto, C.; Gomes, L.; Dias Paiva, J.

    2007-01-01

    This work describes the direct and deep recharge in the Guarani Aquifer System, based on the evaluation of data acquired at the Ribeirao da Onca watershed, which is located at the outcrop zone of the GAS in Sao Paulo State, Brazil. During one year hydrological data (precipitation, temperature, discharge etc) have been monitored at the watershed. Using water level fluctuation measured in 23 monitoring wells, the direct recharge, the free aquifer storage and the base flow could be evaluated.The direct recharge of the system at the watershed has been estimated to 29% of the total precipitation in the period. Due to the drainage by the Ribeirao da Onca, the deep recharge, which effectively reaches the GAS, is reduced to 3,5% of the annual precipitation

  15. Annual Report: 2011-2012 Storm Season Sampling, Non-Dry Dock Stormwater Monitoring for Puget Sound Naval Shipyard, Bremerton, WA

    Energy Technology Data Exchange (ETDEWEB)

    Brandenberger, Jill M.; Metallo, David; Rupert, Brian; Johnston, Robert K.; Gebhart, Christine

    2013-07-03

    Annual PSNS non-dry dock storm water monitoring results for 2011-2012 storm season. Included are a brief description of the sampling procedures, storm event information, laboratory methods and data collection, a results and discussion section, and the conclusions and recommendations.

  16. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  17. H-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993

    International Nuclear Information System (INIS)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SC1-890-008-989. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning first quarter 1993, the HASB's Groundwater Protection Standard (GWPS), established in Appendix 3D-A of the cited permit, became the standard for comparison. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constitutents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, technetium-99, and zinc) during the second half of 1993. Elevated constituents were found primarily in Aquifer Zone 2B 2 and in the upper portion of Aquifer Zone 2B 1 . However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone 2B 1 and Aquifer Unit 2A. Isoconcentration/isoactivity maps include in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1993. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988

  18. The Danish air quality monitoring programme. Annual summary for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Ellemann, T.; Klenoe Noejgaard, J.; Nordstroem, C.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Solvang Jensen, S.

    2012-10-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring network. The aim is to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to understand the governing processes that determine the level of air pollution in Denmark. In 2011 the air quality was measured in four Danish cities and at two background sites. In addition model calculations were carried out to supplement the measurements. At one street station (H.C. Andersens Boulevard) in Copenhagen NO{sub 2} was found in concentrations above EU limit values while NO{sub 2} levels in Odense, Aarhus and Aalborg were below the limit value. Model calculations indicate exceedances of NO{sub 2} limit values at several streets in Copenhagen. Annual averages of PM{sub 10} and PM{sub 2.5} were below limit values at all stations. However, concentrations levels in Copenhagen exceeded the daily limit value for PM{sub 10}. Winter salting of roads was one of the main reasons for this exceedance. The concentrations for most pollutants have been strongly decreasing during the last decades, however, only a slight decrease has been observed for NO{sub 2} and O{sub 3}. (Author)

  19. Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma

    Science.gov (United States)

    Esralew, Rachel A.; Smith, S. Jerrod

    2010-01-01

    Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage-basin

  20. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  1. Documented changes in annual runoff and attribution since the 1950s within selected rivers in China

    Directory of Open Access Journals (Sweden)

    Lü-Liu Liu

    2017-03-01

    Full Text Available To enable local water resource management and maintenance of ecosystem integrity and to protect and mitigate against flood and drought, it is necessary to determine changes in long-term series of streamflow and to distinguish the roles that climate change and human disturbance play in these changes. A review of previous research on the detection and attribution of observed changes in annual runoff in China shows a decrease in annual runoff since the 1950s in northern China in areas such as the Songhuajiang River water resources zone, the Liaohe River water resources zone, the Haihe River water resources zone, the Yellow River water resources zone, and the Huaihe River water resources Zone. Furthermore, abrupt changes in annual runoff occurred mostly in the 1970s and 1980s in all the above zones, except for some of the sub-basins in the middle Yellow River where abrupt change occurred in the 1990s. Changes in annual runoff are found to be mainly caused by climate change in the western Songhuajiang River basin, the upper mainstream of the Yangtze River, and the western Pearl River basin, which shows that studies on the impact of climate change on future water resources under different climate change scenarios are required to enable planning and management by agencies in these river basins. However, changes in annual runoff were found to be mainly caused by human activities in most of the catchments in northern China (such as the southern Songhuajiang River, Liaohe River, Haihe River, the lower reach and some of the catchments within the middle Yellow River basin and in middle-eastern China, such as the Huaihe River and lower mainstream of the Yangtze River. This suggests that current hydro-climatic data can continue to be used in water-use planning and that policymakers need to focus on water resource management and protection.

  2. Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs.

    Science.gov (United States)

    Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J

    2015-06-01

    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.

  3. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    Science.gov (United States)

    Jean-François, Crétaux; Sylvain, Biancamaria; Adalbert, Arsen; Muriel, Bergé-Nguyen; Mélanie, Becker

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km3 using a combination of MODIS data and satellite altimetry, and only 0.2 km3 with Landsat images representing 2-4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250 × 250 m with 20 cm accuracy.

  4. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    International Nuclear Information System (INIS)

    Jean-François, Crétaux; Adalbert, Arsen; Muriel, Bergé-Nguyen; Sylvain, Biancamaria; Mélanie, Becker

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km 3 using a combination of MODIS data and satellite altimetry, and only 0.2 km 3 with Landsat images representing 2–4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250  ×  250 m with 20 cm accuracy. (letter)

  5. Remotely-Sensed Mapping of Irrigation Area in the Chu-Talas River Basin in Central Asia and Application to Compliance Monitoring of Transboundary Water Sharing

    Science.gov (United States)

    Ragettli, S.; Siegfried, T.; Herberz, T.

    2017-12-01

    In the Central Asian Chu-Talas River Basin, farmers depend on freshwater from international rivers to irrigate their fields during the summer growing season. While the allocation percentages of water sharing between up- and downstream are defined for both rivers, marked interannual supply variability plus inadequate monitoring renders the compliance with these quotas difficult. In such circumstances, data on irrigated area obtained by remote sensing can be used to map the extent of irrigation in terms of its area on at national and subnational scales. Due to its transparency on how the data was obtained (freely available satellite data) and processed, this objective measure could potentially be used as a data product for confidence building and for compliance monitoring. This study assesses the extent and location of irrigated areas over the period 2000 - 2016 in the basins by using state-of-the-art remote sensing technology. Using a random forest classifier, an automated irrigated cropland mapping algorithm was implemented in Google Earth Engine using Landsat 7 data. First, a training set was established through visual interpretation (irrigated and non-irrigated classes for the year 2015) and the classifier then trained. The classier was then applied on a series of seasonal greenest pixels image mosaics from 2000 to 2016. A four-stepped accuracy assessment confirmed that the classifier yielded robust, reliable and reproducible results. Outcomes indicate that irrigated areas in the Kyrgyz side of the Talas Basin approximately doubled by 2016 since 2000 while the irrigated area in the Kazakh part of the basin did not significantly change over the 17 year time period. In the Chu River Basin, total irrigated area tripled since 2000. Comparison with officially reported statistics shows differences and points to reporting issues in both countries. We conclude that remote sensing of irrigated areas in arid and semi-arid regions in combination with cloud computing offers

  6. Hydrological Responses to Changes in the Rainfall Regime are Less Pronounced in Forested Basins: an Analysis of Southern Brazil, 1975-2010

    Science.gov (United States)

    Chagas, V. B. P.; Chaffe, P. L. B.

    2017-12-01

    It is unknown to what extent the hydrological responses to changes in the rainfall regime vary across forested and non-forested landscapes. Southern Brazil is approximately 570000 km² and was naturally covered mostly by tropical and subtropical forests. In the last century, a large proportion of forests were replaced by agricultural activities. The rainfall regime has also changed substantially in the last decades. The annual rainfall, number and magnitude of extreme events, and number of non-rainy days have increased in most of the area. In this study, we investigated the changes in the regime of 142 streamflow gauges and 674 rainfall gauges in Southern Brazil, from 1975 to 2010. The changes in the regime were analyzed for forested basins (i.e., with more than 50% forest coverage) and non-forested basins (i.e., with less than 20% forest coverage). The area of the river basins ranged from 100 to 60000 km². We analyzed a total of six signatures that represent the regime, including annual averages, seasonality, floods, and droughts. The statistical trends of the signatures were calculated using the Mann-Kendall test and the Sen's slope. The results showed that the majority of basins with opposing signal trends for mean annual streamflow and rainfall are non-forested basins (i.e., basins with higher anthropogenic impacts). Forested basins had a lower correlation between trends in the streamflow and rainfall trends for the seasonality and the average duration of drought events. There was a lower variability in the annual maximum 1-day streamflow trends in the forested basins. Additionally, despite a decrease in the 31-day rainfall minima and an increase in the seasonality, in forested basins the 7-day streamflow minima increases were substantially larger than in non-forested basins. In summary, the forested basins were less responsive to the changes in the precipitation 1-day maxima, seasonality, number of dry days, and 31-day minima.

  7. Unocal Parachute Creek Shale Oil Program Environmental Monitoring Program. Annual report, October 1, 1990-December 31, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The report contains summaries of compliance and supplemental environmental and industrial hygiene and health surveillance monitoring conducted during the period; compliance permits, permit changes, and Notices of Violations discussions; statistical significance of Employee General Health information, medical histories, physical exams, pulmonary functions, clinical tests and demographics; independent audit reports; and a description of retorted shale disposal activities

  8. Biodiversity Monitoring Using NGS Approaches on Unusual Substrates (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Tom

    2013-03-01

    Tom Gilbert of the Natural History Museum of Denmark on "Biodiversity monitoring using NGS approaches on unusual substrates" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  9. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin, Annual Report 1998

    International Nuclear Information System (INIS)

    James, Brenda B.; Pearsons, Todd N.; McMichael, Geoffrey A.

    1999-01-01

    Select ecological interactions and spring chinook salmon residual/precocial abundance were monitored in 1998 as part of the Yakima/Klickitat Fisheries Project's supplementation monitoring program. Monitoring these variables is part of an effort to help evaluate the factors that contribute to, or limit supplementation success. The ecological interactions that were monitored were prey consumption, competition for food, and competition for space. The abundance of spring chinook salmon life-history forms that have the potential to be influenced by supplementation and that have important ecological and genetic roles were monitored (residuals and precocials). Residual spring chinook salmon do not migrate to the ocean during the normal emigration period and continue to rear in freshwater. Precocials are those salmon that precocially mature in freshwater. The purpose of sampling during 1998 was to collect baseline data one year prior to the release of hatchery spring chinook salmon which occurred during the spring of 1999. All sampling that the authors report on here was conducted in upper Yakima River during summer and fall 1998. The stomach fullness of juvenile spring chinook salmon during the summer and fall averaged 12%. The food competition index suggested that mountain whitefish (0.59), rainbow trout (0.55), and redside shiner (0.55) were competing for food with spring chinook salmon. The space competition index suggested that rainbow trout (0.31) and redside shiner (0.39) were competing for space with spring chinook salmon but mountain whitefish (0.05) were not. Age-0 spring chinook salmon selected a fairly narrow range of microhabitat parameters in the summer and fall relative to what was available. Mean focal depths and velocities for age 0 spring chinook salmon during the summer were 0.5 m ± 0.2 m and 0.26 m/s ± 0.19 m/s, and during the fall 0.5 m ± 0.2 m and 0.24 m/s ± 0.18 m/s. Among potential competitors, age 1+ rainbow trout exhibited the greatest degree

  10. RESPONSE OF RIPARIAN VEGETATION IN AUSTRALIA"S LARGEST RIVER BASIN TO INTER AND INTRA-ANNUAL CLIMATE VARIABILITY AND FLOODING AS QUANTIFIED WITH LANDSAT AND MODIS

    Directory of Open Access Journals (Sweden)

    M. Broich

    2016-06-01

    Full Text Available Australia is a continent subject to high rainfall variability, which has major influences on runoff and vegetation dynamics. However, the resulting spatial-temporal pattern of flooding and its influence on riparian vegetation has not been quantified in a spatially explicit way. Here we focused on the floodplains of the entire Murray-Darling Basin (MDB, an area that covers over 1M km2, as a case study. The MDB is the country’s primary agricultural area with scarce water resources subject to competing demands and impacted by climate change and more recently by the Millennium Drought (1999–2009. Riparian vegetation in the MDB floodplain suffered extensive decline providing a dramatic degradation of riparian vegetation. We quantified the spatial-temporal impact of rainfall, temperature and flooding patters on vegetation dynamics at the subcontinental to local scales and across inter to intra-annual time scales based on three decades of Landsat (25k images, Bureau of Meteorology data and one decade of MODIS data. Vegetation response varied in space and time and with vegetation types, densities and location relative to areas frequently flooded. Vegetation degradation trends were observed over riparian forests and woodlands in areas where flooding regimes have changed to less frequent and smaller inundation extents. Conversely, herbaceous vegetation phenology followed primarily a ‘boom’ and ‘bust’ cycle, related to inter-annual rainfall variability. Spatial patters of vegetation degradation changed along the N-S rainfall gradient but flooding regimes and vegetation degradation patterns also varied at finer scale, highlighting the importance of a spatially explicit, internally consistent analysis and setting the stage for investigating further cross-scale relationships. Results are of interest for land and water management decisions. The approach developed here can be applied to other areas globally such as the Nile river basin and

  11. Distributed modeling of landsurface water and energy budgets in the inland Heihe river basin of China

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2009-10-01

    Full Text Available A distributed model for simulating the land surface hydrological processes in the Heihe river basin was developed and validated on the basis of considering the physical mechanism of hydrological cycle and the artificial system of water utilization in the basin. Modeling approach of every component process was introduced from 2 aspects, i.e., water cycle and energy cycle. The hydrological processes include evapotranspiration, infiltration, runoff, groundwater flow, interaction between groundwater and river water, overland flow, river flow and artificial cycle processes of water utilization. A simulation of 21 years from 1982 to 2002 was carried out after obtaining various input data and model parameters. The model was validated for both the simulation of monthly discharge process and that of daily discharge process. Water budgets and spatial and temporal variations of hydrological cycle components as well as energy cycle components in the upper and middle reach Heihe basin (36 728 km2 were studied by using the distributed hydrological model. In addition, the model was further used to predict the water budgets under the future land surface change scenarios in the basin. The modeling results show: (1 in the upper reach watershed, the annual average evapotranspiration and runoff account for 63% and 37% of the annual precipitation, respectively, the snow melting runoff accounts for 19% of the total runoff and 41% of the direct runoff, and the groundwater storage has no obvious change; (2 in the middle reach basin, the annual average evapotranspiration is 52 mm more than the local annual precipitation, and the groundwater storage is of an obvious declining trend because of irrigation water consumption; (3 for the scenario of conservation forest construction in the upper reach basin, although the evapotranspiration from interception may increase, the soil evaporation may reduce at the same time, therefore the total evapotranspiration may not

  12. Surface water of Little River basin in southeastern Oklahoma (with a section on quality of water by R. P. Orth)

    Science.gov (United States)

    Westfall, A.O.; Orth, Richard Philip

    1963-01-01

    This report summarizes basic hydrologic data of the surface water resources of Little River basin above the Oklahoma-Arkansas state line near Cerrogordo, Okla., and by analysis and interpretation, presents certain streamflow characteristics at specified points in the basin. Little River basin above the state line includes 2,269 square miles, of which about 250 square miles of the Mountain Fork River is in Arkansas. The climate is humid and the annual precipitation averages about 46 inches. Gross annual lake evaporation averages 49 inches per year. There are three reservoirs totaling 2,831,800 acre-feet of storage, either authorized or under construction in the basin. The average annual discharge at the gaging stations for the period 1930-61 is 674,900 acre-feet for Little River near Wright City; 1,273,000 acre-feet for Little River below Lukfata Creek, near Idabel; and 989,000 acre-feet for Mountain Fork River near Eagletown. The average annual discharge of Little River at the Oklahoma-Arkansas state line near Cerrogordo is 2,401,000 acre-feet. Flow-duration curves have been developed from daily records for the gaging stations. These curves show the percentage of time various rates of discharge have been equaled or exceeded. Procedures for defining the frequency of annual floods at any point in the basin are given. Low-flow frequency curves for the gaging stations defining the recurrence intervals of 7, 14 or 15, 30, 60, and 120 day mean flows have been prepared. Curves showing the relation of instantaneous discharge at specified upstream points to the daily mean discharge at two gaging stations are presented. The storage requirements for suplementing natural flows have been prepared for the gaging-station sites. Chemical analyses show that the surface water in the basin is suitable for domestic and industrial uses.

  13. MCO Monitoring activity description

    International Nuclear Information System (INIS)

    SEXTON, R.A.

    1998-01-01

    Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description

  14. Comprehensive Characterization of Droughts to Assess the Effectiveness of a Basin-Wide Integrated Water Management in the Yakima River Basin

    Science.gov (United States)

    Demissie, Y.; Mortuza, M. R.; Li, H. Y.

    2017-12-01

    Better characterization and understanding of droughts and their potential links to climate and hydrologic factors are essential for water resources planning and management in drought-sensitive but agriculturally productive regions like the Yakima River Basin (YKB) in Washington State. The basin is semi-arid and heavily relies on a fully appropriated irrigation water for fruit and crop productions that worth more than 3 billion annually. The basin experienced three major droughts since 2000 with estimated 670 million losses in farm revenue. In response to these and expected worsening drought conditions in the future, there is an ongoing multi-agency effort to adopt a basin-wide integrated water management to ensure water security during severe droughts. In this study, the effectiveness of the proposed water management plan to reduce the frequency and severity of droughts was assessed using a new drought index developed based on the seasonal variations of precipitation, temperature, snow accumulation, streamflow, and reservoir storages. In order to uncover the underlying causes of the various types of droughts observed during the 1961-2016, explanatory data analysis using deep learning was conducted for the local climate and hydrologic data including total water supply available, as well as global climatic phenomenon (El Niño/Southern Oscillation, Pacific Decadal Oscillation and North Atlantic Oscillation). The preliminary results showed that besides shortage in annual precipitation, various combinations of climate and hydrologic factors are responsible for the different drought conditions in the basin. Particularly, the winter snowpack, which provides about 2/3 of the surface water in the basin along with the carryover storage from the reservoirs play an important role during both single- and multiple-year drought events. Besides providing the much-needed insights about characteristics of droughts and their contributing factors, the outcome of the study is expected

  15. Integrated monitoring of hydrogeomorphic, vegetative, and edaphic conditions in riparian ecosystems of Great Basin National Park, Nevada

    Science.gov (United States)

    Beever, Erik A.; Pyke, D.A.

    2004-01-01

    In semiarid regions such as the Great Basin, riparian areas function as oases of cooler and more stable microclimates, greater relative humidity, greater structural complexity, and a steady flow of water and nutrients relative to upland areas. These qualities make riparian areaʼs attractive not only to resident and migratory wildlife, but also to visitors in recreation areas such as Great Basin National Park in the Snake Range, east-central Nevada. To expand upon the system of ten permanent plots sampled in 1992 (Smith et al. 1994) and 2001 (Beever et al. in press), we established a collection of 31 cross-sectional transects of 50-m width across the mainstems of Strawberry, Lehman, Baker, and Snake creeks. Our aims in this research were threefold: a) map riparian vegetative communities in greater detail than had been done by past efforts; b) provide a monitoring baseline of hydrogeomorphology; structure, composition, and function of upland- and riparianassociated vegetation; and edaphic properties potentially sensitive to management; and c) test whether instream conditions or physiographic variables predicted vegetation patterns across the four target streams.

  16. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  17. 291-B-1 stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1994-01-01

    The B Plant 291-B-1 main stack exhausts gaseous effluents to the atmosphere from the 221-B Building canyon and cells, the No. 1 Vessel Ventilation System (VVS1), the 212-B Cask Station cell ventilation system, and, to a limited capacity, the 224-B Building. VVS1 collects offgases from various process tanks in 221-B Building, while the 224-B system maintains a negative pressure in out-of-service, sealed process tanks. B Plant Administration Manual, WHC-CM-7-5, Section 5.30 requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with Stack 291-B-1 (System Number B977A) at B Plant. The system is functional and performing satisfactorily

  18. [Variation characteristics and influencing factors of actual evapotranspiration under various vegetation types: A case study in the Huaihe River Basin, China.

    Science.gov (United States)

    Wu, Rong Jun; Xing, Xiao Yong

    2016-06-01

    The actual evapotranspiration was modelled utilizing the boreal ecosystem productivity simulator (BEPS) in Huaihe River Basin from 2001 to 2012. In the meantime, the quantitative analyses of the spatial-temporal variations of actual evapotranspiration characteristics and its influencing factors under different vegetation types were conducted. The results showed that annual evapotranspiration gradually decreased from southeast to northwest, tended to increase annually, and the monthly change for the average annual evapotranspiration was double-peak curve. The differences of evapotranspiration among vegetation types showed that the farmland was the largest contributor for the evapotranspiration of Huaihe Basin. The annual actual evapotranspiration of the mixed forest per unit area was the largest, and that of the bare ground per unit area was the smallest. The changed average annual evapotranspiration per unit area for various vegetation types indicated an increased tendency other than the bare ground, with a most significant increase trend for the evergreen broadleaf forest. The thermodynamic factors (such as average temperature) were the dominant factors affecting the actual evapotranspiration in the Huaihe Basin, followed by radiation and moisture factors.

  19. Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty

    Observation of climate and ecohydrological variables in mountain systems is a necessary (if challenging) endeavor for modern society. Water resources are often intimately tied to mountains, and high elevation environments are frequently home to unique landscapes and biota with limited geographical distributions. This is especially true in the temperate and semi-arid mountains of the western United States, and specifically the Great Basin. Stark contrasts in annual water balance and ecological populations are visible across steep elevational gradients in the region; and yet the bulk of our historical knowledge of climate and related processes comes from lowland observations. Interpolative models that strive to estimate conditions in mountains using existing datasets are often found to be inaccurate, making future projections of mountain climate and ecosystem response suspect. This study details the results of high-resolution topographically-diverse ecohydrological monitoring, and describes the character and seasonality of basic climatic variables such as temperature and precipitation as well as their impact on soil moisture and vegetation during the 2012-2015 drought sequence. Relationships of topography (elevation/aspect) to daily and seasonal temperatures are shown. Tests of the PRISM temperature model are performed at the large watershed scale, revealing magnitudes, modes, and potential sources of bias that could dramatically affect derivative scientific conclusions. A new method of precipitation phase partitioning to detect and quantify frozen precipitation on a sub-daily basis is described. Character of precipitation from sub-daily to annual scales is quantified across all major Great Basin vegetation/elevation zones, and the relationship of elevation to precipitation phase, intensity, and amount is explored. Water-stress responses of Great Basin conifers including Pinus flexilis, Pinus longaeva, and Pinus ponderosa are directly observed, showing potential

  20. Annual suspended-sediment loads in the Colorado River near Cisco, Utah, 1930-82

    Science.gov (United States)

    Thompson, K.R.

    1985-01-01

    The Colorado River upstream of gaging station 09180500 near Cisco, Utah, drains about 24,100 square miles in Utah and Colorado. Altitudes in the basin range from 12,480 feet near the headwaters to 4,090 feet at station 09180500. The average annual precipitation for 1894-1982 near the station was 7.94 inches. The average annual precipitation near the headwaters often exceeds 50 inches. Rocks ranging in age from Precambrian to Holocene are exposed in the drainage basin upstream from station 09180500. Shale, limestone, siltstone, mudstone, and sandstone probably are the most easily eroded rocks in the basin, and they contribute large quantities of sediment to the Colorado River. During 1930-82, the U.S. Geological Survey collected records of fluvial sediment at station 09180500. Based on these records, the mean annual suspended-sediment load was 11,390,000 tone, ranging from 2,038,000 tons in water year 1981 to 35,700,000 tons in water year 1938. The minimum daily load of 14 tons was on August 22, 1960, and the maximum daily load of 2,790,000 tons was on October 14, 1941. (USGS)

  1. Preliminary flood-duration frequency estimates using naturalized streamflow records for the Willamette River Basin, Oregon

    Science.gov (United States)

    Lind, Greg D.; Stonewall, Adam J.

    2018-02-13

    In this study, “naturalized” daily streamflow records, created by the U.S. Army Corps of Engineers and the Bureau of Reclamation, were used to compute 1-, 3-, 7-, 10-, 15-, 30-, and 60-day annual maximum streamflow durations, which are running averages of daily streamflow for the number of days in each duration. Once the annual maximum durations were computed, the floodduration frequencies could be estimated. The estimated flood-duration frequencies correspond to the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent probabilities of their occurring or being exceeded each year. For this report, the focus was on the Willamette River Basin in Oregon, which is a subbasin of the Columbia River Basin. This study is part of a larger one encompassing the entire Columbia Basin.

  2. Decline in snowfall in response to temperature in Satluj basin ...

    Indian Academy of Sciences (India)

    The study also consists an analysis of average values of annual snowfall and temperature ... During the study, it was observed that the snowfall exhibited declining trends in the basin. ... National Institute of Hydrology, Roorkee 247 667, India.

  3. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    Science.gov (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  4. The Indigenous Observation Network: Collaborative, Community-Based Monitoring in the Yukon River Basin

    Science.gov (United States)

    Herman-Mercer, N. M.; Mutter, E. A.; Wilson, N. J.; Toohey, R.; Schuster, P. F.

    2017-12-01

    The Indigenous Observation Network (ION) is a collaborative Community-Based Monitoring (CBM) program with both permafrost and water-quality monitoring components operating in the Yukon River Basin (YRB) of Alaska and Canada. ION is jointly facilitated by the Yukon River Inter-Tribal Watershed Council (YRITWC), an indigenous non-profit organization, and the US Geological Survey (USGS), a federal agency. The YRB is the fourth largest drainage basin in North America encompassing 855,000 square kilometers in northwestern Canada and central Alaska and is essential to the ecosystems of the Bering and Chuckchi Seas. Water is also fundamental to the subsistence and culture of the 76 Tribes and First Nations that live in the YRB providing sustenance in the form of drinking water, fish, wildlife, and vegetation. Despite the ecological and cultural significance of the YRB, the remote geography of sub-Arctic and Arctic Alaska and Canada make it difficult to collect scientific data in these locations and led to a lack of baseline data characterizing this system until recently. In response to community concerns about the quality of the YR and a desire by USGS scientists to create a long term water-quality database, the USGS and YRITWC collaborated to create ION in 2005. Surface water samples are collected by trained community technicians from Tribal Environmental Programs or First Nation Lands and Resources staff from over 35 Alaska Native Tribes and First Nations that reside along the YR and/or one of the major tributaries. Samples are analyzed at USGS laboratories in Boulder, CO and results are disseminated to participating YRB communities and the general public. This presentation will focus on the factors that have enabled the longevity and success of this program over the last decade, as well as the strategies ION uses to ensure the credibility of the data collected by community members and best practices that have facilitated the collection of surface water data in remote

  5. Hydrology of the Upper Malad River basin, southeastern Idaho

    Science.gov (United States)

    Pluhowski, Edward J.

    1970-01-01

    The report area comprises 485 square miles in the Basin and Range physiographic province. It includes most of eastern' Oneida County and parts of Franklin, Bannock, and Power Counties of southeastern Idaho. Relief is about 5,000 feet; the floor of the Malad Valley is at an average altitude of about 4,400 feet. Agriculture is, by far, ,the principal economic .activity. In 1960 the population of the upper Malad River basin was about 3,600, of which about 60 percent resided in Malad City, the county seat of Oneida County. The climate is semiarid throughout the Malad Valley and its principal tributary valleys; ,above 6,500 feet the climate is subhumid. Annual precipitation ranges from about 13 inches in the lower Malad Valley to more than 30 inches on the highest peaks of the Bannock and Malad ranges. Owing to ,the normally clear atmospheric conditions, large daily and seasonal temperature fluctuations are common. Topography, distance from the Pacific Ocean, .and the general atmospheric circulation are the principal factors governing the climate of the Malad River basin. The westerlies transport moisture from the P.acific Ocean toward southeastern Idaho. The north-south tren4ing mountains flanking the basin are oriented orthogonally to the moisture flux so that they are very effective in removing precipitable water from the air. A minimum uplift of 6,000 feet is required to transport moisture from the Pacific source region; accordingly, most air masses are desiccated long before they reach the Malad basin. Heaviest precipitation is generally associated with steep pressure gradients in the midtroposphere that are so oriented as to cause a deep landward penetration of moisture from the Pacific Ocean. Annual water yields in the project area range from about 0.8 inch in the, lower Malad Valley to more than 19 inches on the high peaks north and east of Malad City. The mean annual water yield for the entire basin is 4 inches, or about 115,000 acre-feet. Evaporation is

  6. Analysis of efficiency of pollution reduction measures in rural basin using MIKE Basin model. Case study: Olšava River Basin

    Directory of Open Access Journals (Sweden)

    Kaiglová Jana

    2014-03-01

    Full Text Available This paper presents the results of testing the applicability of the MIKE Basin model for simulating the efficiency of scenarios for reducing water pollution. The model has been tested on the Olšava River Basin (520 km2 which is a typical rural region with a heterogeneous mix of pollution sources with variable topography and land use. The study proved that the model can be calibrated successfully using even the limited amount of data typically available in rural basins. The scenarios of pollution reduction were based on implementation and intensification of municipal wastewater treatment and conversion of arable land on fields under the risk of soil erosion to permanent grassland. The application of simulation results of these scenarios with proposed measures proved decreasing concentrations in downstream monitoring stations. Due to the practical applicability of proposed measures, these could lead to fulfilment of the water pollution limits required by the Czech and EU legislation. However, there are factors of uncertainty that are discussed that may delay or limit the effect of adopted measures in small rural basins.

  7. Groundwater balance in the Khor Arbaat basin, Red Sea State, eastern Sudan

    Science.gov (United States)

    Elsheikh, Abdalla E. M.; Zeielabdein, Khalid A. Elsayed; Babikir, Ibrahim A. A.

    2009-12-01

    The Khor Arbaat basin is the main source of potable water supply for the more than 750,000 inhabitants of Port Sudan, eastern Sudan. The variation in hydraulic conductivity and storage capacity is due to the heterogeneity of the sediments, which range from clay and silt to gravely sand and boulders. The water table rises during the summer and winter rainy seasons; it reaches its lowest level in the dry season. The storage capacity of the Khor Arbaat aquifer is estimated to be 21.75 × 106 m3. The annual recharge through the infiltration of flood water is about 1.93 × 106 m3. The groundwater recharge, calculated as underground inflow at the ‘upper gate’, is 1.33 × 105 m3/year. The total annual groundwater recharge is 2.06 × 106 m3. The annual discharge through underground outflow at the ‘lower gate’ (through which groundwater flows onto the coastal plain) is 3.29 × 105 m3/year. Groundwater discharge due to pumping from Khor Arbaat basin is 4.38 × 106 m3/year on average. The total annual groundwater discharge is about 4.7 × 106 m3. A deficit of 2.6 × 106 m3/year is calculated. Although the total annual discharge is twice the estimated annual recharge, additional groundwater flow from the fractured basement probably balances the annual groundwater budget since no decline is observed in the piezometric levels.

  8. BPA genetic monitoring - BPA Genetic Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Initiated in 1989, this study monitors genetic changes associated with hatchery propagation in multiple Snake River sub-basins for Chinook salmon and steelhead. We...

  9. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  10. Annual report for RCRA groundwater monitoring projects at Hanford site facilities for 1994

    International Nuclear Information System (INIS)

    1995-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the U.S. Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1993 and September 1994. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  11. Evapotranspiration estimation using a parameter-parsimonious energy partition model over Amazon basin

    Science.gov (United States)

    Xu, D.; Agee, E.; Wang, J.; Ivanov, V. Y.

    2017-12-01

    The increased frequency and severity of droughts in the Amazon region have emphasized the potential vulnerability of the rainforests to heat and drought-induced stresses, highlighting the need to reduce the uncertainty in estimates of regional evapotranspiration (ET) and quantify resilience of the forest. Ground-based observations for estimating ET are resource intensive, making methods based on remotely sensed observations an attractive alternative. Several methodologies have been developed to estimate ET from satellite data, but challenges remained in model parameterization and satellite limited coverage reducing their utility for monitoring biodiverse regions. In this work, we apply a novel surface energy partition method (Maximum Entropy Production; MEP) based on Bayesian probability theory and nonequilibrium thermodynamics to derive ET time series using satellite data for Amazon basin. For a large, sparsely monitored region such as the Amazon, this approach has the advantage methods of only using single level measurements of net radiation, temperature, and specific humidity data. Furthermore, it is not sensitive to the uncertainty of the input data and model parameters. In this first application of MEP theory for a tropical forest biome, we assess its performance at various spatiotemporal scales against a diverse field data sets. Specifically, the objective of this work is to test this method using eddy flux data for several locations across the Amazonia at sub-daily, monthly, and annual scales and compare the new estimates with those using traditional methods. Analyses of the derived ET time series will contribute to reducing the current knowledge gap surrounding the much debated response of the Amazon Basin region to droughts and offer a template for monitoring the long-term changes in global hydrologic cycle due to anthropogenic and natural causes.

  12. Hanford Spent Nuclear Fuel Project evaluation of multi-canister overpack venting and monitoring options during staging of K basins fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wiborg, J.C.

    1995-12-01

    This engineering study recommends whether multi-canister overpacks containing spent nuclear fuel from the Hanford K Basins should be staged in vented or a sealed, but ventable, condition during staging at the Canister Storage Building prior to hot vacuum conditioning and interim storage. The integrally related issues of MCO monitoring, end point criteria, and assessing the practicality of avoiding venting and Hot Vacuum Conditioning for a portion of the spent fuel are also considered.

  13. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report, 1980

    International Nuclear Information System (INIS)

    1980-01-01

    An extensive surveillance program has been continuously maintained since 1951 to determine the concentrations of radonuclides in a 1200-square-mile area in the environs of the plant and the radiation exposure of the population resulting from SRP operations. The results of this monitoring program are reported annually to the public. This document summarizes the 1980 results. The radiation dose at the plant perimeter and the population dose in the region from SRP operations is very small relative to the dose received from naturally occurring radiation. The annual average dose in 1980 from atmospheric releases of radioactive materials from SRP was 0.7 millirem at the plant perimeter. The maximum dose at the plant perimeter was 1.01 mrem, which is 0.2% of the Department of Energy limit for offsite exposures. The population dose to people living within 80 km of the center of SRP was 99.7 man-rems. During 1980, this same population received a radiation dose of 54,400 man-rems from natural radiation and an additional dose of 47,000 man-rems from medical x-rays. An individual consuming river water downstream from SRP would receive a maximum calculated dose in 1980 of 0.22 mrem which includes dose contributions from consumer products produced using Savannah River water. Air and water are the major dispersal media for radioactive emissions. Samples representing most segments of the environment that may conceivably be affected by these emissions were monitored to ensure a safe environment. Releases of radioactivity from SRP had an inconsequential effect on living plants and animals. With a few exceptions, concentrations outside the plant boundary were too low to distinguish from the natural radioactive background and continuing worldwide fallout from nuclear weapons tests

  14. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  15. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal.

    Science.gov (United States)

    Bajracharya, Ajay Ratna; Bajracharya, Sagar Ratna; Shrestha, Arun Bhakta; Maharjan, Sudan Bikash

    2018-06-01

    The Hindu Kush-Himalayan region is an important global freshwater resource. The hydrological regime of the region is vulnerable to climatic variations, especially precipitation and temperature. In our study, we modelled the impact of climate change on the water balance and hydrological regime of the snow dominated Kaligandaki Basin. The Soil and Water Assessment Tool (SWAT) was used for a future projection of changes in the hydrological regime of the Kaligandaki basin based on Representative Concentration Pathways Scenarios (RCP 4.5 and RCP 8.5) of ensemble downscaled Coupled Model Intercomparison Project's (CMIP5) General Circulation Model (GCM) outputs. It is predicted to be a rise in the average annual temperature of over 4°C, and an increase in the average annual precipitation of over 26% by the end of the 21st century under RCP 8.5 scenario. Modeling results show these will lead to significant changes in the basin's water balance and hydrological regime. In particular, a 50% increase in discharge is expected at the outlet of the basin. Snowmelt contribution will largely be affected by climate change, and it is projected to increase by 90% by 2090.Water availability in the basin is not likely to decrease during the 21st century. The study demonstrates that the important water balance components of snowmelt, evapotranspiration, and water yield at higher elevations in the upper and middle sub-basins of the Kaligandaki Basin will be most affected by the increasing temperatures and precipitation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Transport and Retention of Nitrogen, Phosphorus and Carbon in North America’s Largest River Swamp Basin, the Atchafalaya River Basin

    Directory of Open Access Journals (Sweden)

    Y. Jun Xu

    2013-04-01

    Full Text Available Floodplains and river corridor wetlands may be effectively managed for reducing nutrients and carbon. However, our understanding is limited to the reduction potential of these natural riverine systems. This study utilized the long-term (1978–2004 river discharge and water quality records from an upriver and a downriver location of the Atchafalaya River to quantify the inflow, outflow, and inflow–outflow mass balance of total Kjeldahl nitrogen (TKN = organic nitrogen + ammonia nitrogen, nitrate + nitrite nitrogen (NO3 + NO2, total phosphorous (TP, and total organic carbon (TOC through the largest river swamp basin in North America. The study found that, over the past 27 years, the Atchafalaya River Basin (ARB acted as a significant sink for TKN (annual retention: 24%, TP (41%, and TOC (12%, but a source for NO3 + NO2 nitrogen (6%. On an annual basis, ARB retained 48,500 t TKN, 16,900 t TP, and 167,100 t TOC from the river water. The retention rates were closely and positively related to the river discharge with highs during the winter and spring and lows in the late summer. The higher NO3 + NO2 mass outflow occurred throughout spring and summer, indicating an active role of biological processes on nitrogen as water and air temperatures in the basin rise.

  17. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    Science.gov (United States)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested

  18. Nutrient, suspended sediment, and trace element loads in the Blackstone River Basin in Massachusetts and Rhode Island, 2007 to 2009

    Science.gov (United States)

    Zimmerman, Marc J.; Waldron, Marcus C.; DeSimone, Leslie A.

    2015-01-01

    Nutrients, suspended sediment, and trace element loads in the Blackstone River and selected tributaries were estimated from composite water-quality samples in order to better understand the distribution and sources of these constituents in the river basin. The flow-proportional composite water-quality samples were collected during sequential 2-week periods at six stations along the river’s main stem, at three stations on tributaries, and at four wastewater treatment plants in the Massachusetts segment of the basin from June 2007 to September 2009. Samples were collected at an additional station on the Blackstone River near the mouth in Pawtucket, Rhode Island, from September 2008 to September 2009. The flow-proportional composite samples were used to estimate average daily loads during the sampling periods; annual loads for water years 2008 and 2009 also were estimated for the monitoring station on the Blackstone River near the Massachusetts-Rhode Island border. The effects of hydrologic conditions and net attenuation of nitrogen were investigated for loads in the Massachusetts segment of the basin. Sediment resuspension and contaminant loading dynamics were evaluated in two Blackstone River impoundments, the former Rockdale Pond (a breached impoundment) and Rice City Pond.

  19. Results of complex annual parasitological monitoring in the coastal area of Kola Bay

    Science.gov (United States)

    Kuklin, V. V.; Kuklina, M. M.; Kisova, N. E.; Maslich, M. A.

    2009-12-01

    The results of annual parasitological monitoring in the coastal area near the Abram-mys (Kola Bay, Barents Sea) are presented. The studies were performed in 2006-2007 and included complex examination of the intermediate hosts (mollusks and crustaceans) and definitive hosts (marine fish and birds) of the helminths. The biodiversity of the parasite fauna, seasonal dynamics, and functioning patterns of the parasite systems were investigated. The basic regularities in parasite circulation were assessed in relation to their life cycle strategies and the ecological features of the intermediate and definitive hosts. The factors affecting the success of parasite circulation in the coastal ecosystems were revealed through analysis of parasite biodiversity and abundance dynamics.

  20. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  1. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the period October 2000-July 2001

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 2000--July 2001 monitoring period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in July 2001. There has been no subsidence at any of the markers since monitoring began eight years ago. Precipitation for the period October 2000 through July 2001 was 9.42 centimeters (cm) (3.71 inches [in]) (U.S. National Weather Service, 2001). The prior year annual rainfall (January 2000 through December 2000) was 10.44 cm (4.1 1 in.). The recorded average annual rainfall for this site from 1972 to January 2000 is 14.91 cm (5.87 in.). The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that may be indicative of moisture movement at a point located directly beneath each trench. All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the trenches

  2. Estimates of ground-water pumpage from the Yakima River Basin aquifer system, Washington, 1960-2000

    Science.gov (United States)

    Vaccaro, J.J.; Sumioka, S.S.

    2006-01-01

    Ground-water pumpage in the Yakima River Basin, Washington, was estimated for eight categories of use for 1960-2000 as part of an investigation to assess groundwater availability in the basin. Methods used, pumpage estimates, reliability of the estimates, and a comparison with appropriated quantities are described. The eight categories of pumpage were public water supply, self-supplied domestic (exempt wells), irrigation, frost protection, livestock and dairy operations, industrial and commercial, fish and wildlife propagation, and ground-water claims. Pumpage estimates were based on methods that varied by the category and primarily represent pumpage for groundwater rights. Washington State Department of Ecology’s digital database has 2,874 active ground-water rights in the basin that can withdraw an annual quantity of about 529,231 acre-feet during dry years. Irrigation rights are for irrigation of about 129,570 acres. All but 220 of the rights were associated with well drillers’ logs, allowing for a spatial representation of the pumpage. Five-hundred and sixty of the irrigation rights were estimated to be standby/reserve rights. During this study, another 30 rights were identified that were not in the digital database. These rights can withdraw an annual quantity of about 20,969 acre-feet; about 6,700 acre-feet of these rights are near but outside the basin. In 1960, total annual pumpage in the basin, excluding standby/reserve pumpage, was about 115,776 acre-feet. By 2000, total annual pumpage was estimated to be 395,096 acre-feet, and excluding the standby/reserve rights, the total was 312,284 acre-feet. Irrigation accounts for about 60 percent of the pumpage, followed by public water supply at about 12 percent. The smallest category of pumpage was for livestock use with pumpage estimated to be 6,726 acre-feet. Total annual pumpage in 2000 was about 430 cubic feet per second, which is about 11 percent of the surface-water demand. Maximum pumpage is in July

  3. Soil and water losses in eucalyptus plantation and natural forest and determination of the USLE factors at a pilot sub-basin in Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Bárbara Pereira Christofaro Silva

    Full Text Available ABSTRACT Monitoring water erosion and the factors that control soil and water loss are essential for soil conservation planning. The objective of this study was to evaluate soil and water losses by water erosion under natural rainfall in eucalyptus plantations established in 2001 (EF2, and 2004 (EF1, native forest (NF and bare soil (BS, during the period of 2007 to 2012; and to determine the USLE factors: rain erosivity (R, erodibility (K of a Red Argisol and the cover-management factor (C for EF1, EF2 and NF at a pilot sub-basin, in Eldorado do Sul, RS, Brazil. The R factor was estimated by the EI30 index, using rainfall data from a gauging station located at the sub-basin. The soil and water losses were monitored in erosion plots, providing consistent data for the estimation of the K and C factors. The sub-basin presented an average erosivity of 4,228.52 MJ mm ha-1 h-1 yr-1. The average annual soil losses em EF1 and EF2 (0.81 e 0.12 Mg ha-1 year-1, respectively were below of the limit of tolerance, 12.9 Mg ha-1 year-1. The percentage values of water loss relating to the total rainfall decreased annually, approaching the values observed at the NF. From the 5th year on after the implantation of the eucalyptus systems, soil losses values were similar to the ones from NF. The erodibility of the Red Argisol was of 0.0026 Mg ha h ha-1 MJ-1mm-1 and the C factor presented values of 0.121, 0.016 and 0.015 for EF1, EF2 and NF, respectively.

  4. [Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the Hun-Taizi River Basin, Northeast China].

    Science.gov (United States)

    Feng, Xue; Cai, Yan-Cong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Wu, Jia-Bing; Yuan, Feng-Hui

    2014-10-01

    Based on the meteorological and hydrological data from 1970 to 2006, the advection-aridity (AA) model with calibrated parameters was used to calculate evapotranspiration in the Hun-Taizi River Basin in Northeast China. The original parameter of the AA model was tuned according to the water balance method and then four subbasins were selected to validate. Spatiotemporal variation characteristics of evapotranspiration and related affecting factors were analyzed using the methods of linear trend analysis, moving average, kriging interpolation and sensitivity analysis. The results showed that the empirical parameter value of 0.75 of AA model was suitable for the Hun-Taizi River Basin with an error of 11.4%. In the Hun-Taizi River Basin, the average annual actual evapotranspiration was 347.4 mm, which had a slightly upward trend with a rate of 1.58 mm · (10 a(-1)), but did not change significantly. It also indicated that the annual actual evapotranspiration presented a single-peaked pattern and its peak value occurred in July; the evapotranspiration in summer was higher than in spring and autumn, and it was the smallest in winter. The annual average evapotranspiration showed a decreasing trend from the northwest to the southeast in the Hun-Taizi River Basin from 1970 to 2006 with minor differences. Net radiation was largely responsible for the change of actual evapotranspiration in the Hun-Taizi River Basin.

  5. Water utilization in the Snake River Basin

    Science.gov (United States)

    Hoyt, William Glenn; Stabler, Herman

    1935-01-01

    The purpose of this report is to describe the present utilization of the water in the Snake River Basin with special reference to irrigation and power and to present essential facts concerning possible future utilization. No detailed plan of development is suggested. An attempt has been made, however, to discuss features that should be taken into account in the formulation of a definite plan of development. On account of the size of the area involved, which is practically as large as the New England States and New York combined, and the magnitude of present development and future possibilities, considerable details have of necessity been omitted. The records of stream flow in the basin are contained in the reports on surface water supply published annually by the Geological Survey. These records are of the greatest value in connection with the present and future regulation and utilization of the basin's largest asset water.

  6. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    Science.gov (United States)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  7. Simulating Spatial Variability of Fluvial Sediment Fluxes Within the Magdalena Drainage Basin, Colombia.

    Science.gov (United States)

    Kettner, A. J.; Syvitski, J. P.; Restrepo, J. D.

    2008-12-01

    This study explores the application of an empirical sediment flux model BQART, to simulate long-term sediment fluxes of major tributaries of a river system based on a limited number of input parameters. We validate model results against data of the 1612 km long Magdalena River, Colombia, South America, which is well monitored. The Magdalena River, draining a hinterland area of 257,438 km2, of which the majority lies in the Andes before reaching the Atlantic coast, is known for its high sediment yield, 560 t kg- 2 yr-1; higher than nearby South American rivers like the Amazon or the Orinoco River. Sediment fluxes of 32 tributary basins of the Magdalena River were simulated based on the following controlling factors: geomorphic influences (tributary-basin area and relief) derived from high-resolution Shuttle Radar Topography Mission data, tributary basin-integrated lithology based on GIS analysis of lithology data, 30year temperature data, and observed monthly mean discharge data records (varying in record length of 15 to 60 years). Preliminary results indicate that the simulated sediment flux of all 32 tributaries matches the observational record, given the observational error and the annual variability. These simulations did not take human influences into account yet, which often increases sediment fluxes by accelerating erosion, especially in steep mountainous area similar to the Magdalena. Simulations indicate that, with relatively few input parameters, mostly derived from remotely-sensed data or existing compiled GIS datasets, it is possible to predict: which tributaries in an arbitrary river drainage produce relatively high contributions to sediment yields, and where in the drainage basin you might expect conveyance loss.

  8. Monitoring Food Security Indicators from Remote Sensing and Predicting Cereal Production in Afghanistan

    Science.gov (United States)

    Pervez, M. S.; Budde, M. E.; Rowland, J.

    2015-12-01

    We extract percent of basin snow covered areas above 2500m elevation from Moderate Resolution Imaging Spectroradiometer (MODIS) 500-meter 8-day snow cover composites to monitor accumulation and depletion of snow in the basin. While the accumulation and depletion of snow cover extent provides an indication of the temporal progression of the snow pack, it does not provide insight into available water for irrigation. Therefore, we use snow model results from the National Operational Hydrologic Remote Sensing Center to quantify snow water equivalent and volume of water available within the snowpack for irrigation. In an effort to understand how water availability, along with its inter-annual variability, relates to the food security of the country, we develop a simple, effective, and easy-to-implement model to identify irrigated areas across the country on both annual and mid-season basis. The model is based on applying thresholds to peak growing season vegetation indices—derived from 250-meter MODIS images—in a decision-tree classifier to separate irrigated crops from non-irrigated vegetation. The spatial distribution and areal estimates of irrigated areas from these maps compare well with irrigated areas classified from multiple snap shots of the landscape from Landsat 5 optical and thermal images over selected locations. We observed that the extents of irrigated areas varied depending on the availability of snowmelt and can be between 1.35 million hectares in a year with significant water deficit and 2.4 million hectares in a year with significant water surplus. The changes in the amount of available water generally can contribute up to a 30% change in irrigated areas. We also observed that the strong correlation between inter-annual variability of irrigated areas and the variability in the country's cereal production could be utilized to predict an annual estimate of cereal production, providing early indication of food security scenarios for the country.

  9. Environmental monitoring at the Savannah River Plant. Annual report, 1979

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.; Culp, P.A.; Smith, D.L.

    1982-11-01

    An extensive surveillance program has been maintained since 1951 to determine the concentrations of radionuclides in a 1200 square mile area in the environs of the plant and the radiation exposure of the population resulting from SRP operations. This document summarizes the 1979 results. The radiation dose at the plant perimeter and the population dose in the region from SRP operations are very small relative to the dose recieved from naturally occurring radiation. The annual average dose in 1979 from atmospheric releases of radioactive materials was 0.71 mrem at the perimeter (1% of natural background). The maximum dose at the plant perimeter was 0.97 mrem. Air and water are the major dispersal media for radioactive emissions. Samples representing most segments of the environment were monitored. Releases of radioactivity from SRP had a very small effect on living plants and animals and were too minute to be detectable, and with a few exceptions, concentrations outside the plant boundary were too low to distinguish from the natural radioactive background and continuing worldwide fallout from nuclear weapons tests. 40 figures, 60 tables. (MF)

  10. Facilitation of the Estuary/Ocean Subgroup for Federal Research, Monitoring, and Evaluation, FY09 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.

    2009-10-22

    This document is the annual report for fiscal year 2009 (FY09) for the project called Facilitation of the Estuary/Ocean Subgroup (EOS). The EOS is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers [Corps or USACE], U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS).

  11. Phosphorus and water budgets in an agricultural basin.

    Science.gov (United States)

    Faridmarandi, Sayena; Naja, Ghinwa M

    2014-01-01

    Water and phosphorus (P) budgets of a large agricultural basin located in South Florida (Everglades Agricultural Area, EAA) were computed from 2005 to 2012. The annual surface outflow P loading from the EAA averaged 157.2 mtons originating from Lake Okeechobee (16.4 mtons, 10.4%), farms (131.0 mtons, 83.4%), and surrounding basins (9.8 mtons, 6.2%) after attenuation. Farms, urban areas, and the adjacent C-139 basin contributed 186.1, 15.6, and 3.8 mtons/yr P to the canals, respectively. The average annual soil P retention was estimated at 412.5 mtons. Water and P budgets showed seasonal variations with high correlation between rainfall and P load in drainage and surface outflows. Moreover, results indicated that the canals acted as a P sink storing 64.8 mtons/yr. To assess the P loading impact of farm drainage on the canals and on the outflow, dimensionless impact factors were developed. Sixty-two farms were identified with a high and a medium impact factor I1 level contributing 44.5% of the total drainage P load to the canals, while their collective area represented less than 23% of the EAA area (172 farms). Optimizing the best management practice (BMP) strategies on these farms could minimize the environmental impacts on the downstream sensitive wetlands areas.

  12. Annual evaluation of routine radiological survey/monitoring frequencies for the High Ranking Facilities Deactivating Project at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-12-01

    The Bethel Valley Watershed at the Oak Ridge National Laboratory (ORNL) has several Environmental Management (EM) facilities that are designated for deactivation and subsequent decontamination and decommissioning (D and D). The Surplus Facilities Program at ORNL provides surveillance and maintenance support for these facilities as deactivation objectives are completed to reduce the risks associated with radioactive material inventories, etc. The Bechtel Jacobs Company LLC Radiological Control (RADCON) Program has established requirements for radiological monitoring and surveying radiological conditions in these facilities. These requirements include an annual evaluation of routine radiation survey and monitoring frequencies. Radiological survey/monitoring frequencies were evaluated for two High Ranking Facilities Deactivation Project facilities, the Bulk Shielding Facility and Tower Shielding Facility. Considerable progress has been made toward accomplishing deactivation objectives, thus the routine radiological survey/monitoring frequencies are being reduced for 1999. This report identifies the survey/monitoring frequency adjustments and provides justification that the applicable RADCON Program requirements are also satisfied

  13. 2005 Annual Synthesis Report, Pallid Sturgeon Population Assessment Program and Associated Fish Community Monitoring for the Missouri River

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Eric W.; Hanrahan, Timothy P.; Harnish, Ryan A.; Bellgraph, Brian J.; Duncan, Joanne P.; Allwardt, Craig H.

    2008-08-12

    Pallid sturgeon, Scaphirhynchus albus, have declined throughout the Missouri River since dam construction and inception of the Bank Stabilization and Navigation Project in 1912. Their decline likely is due to the loss and degradation of their natural habitat as a result of changes in the river’s structure and function, as well as the pallid sturgeon’s inability to adapt to these changes. The U. S. Army Corps of Engineers has been working with state and federal agencies to develop and conduct a Pallid Sturgeon Monitoring and Assessment Program (Program), with the goal of recovering pallid sturgeon populations. The Program has organized the monitoring and assessment efforts into distinct geographic segments, with state and federal resource management agencies possessing primary responsibility for one or more segment. To date, the results from annual monitoring have been reported for individual Program segments. However, monitoring results have not been summarized or evaluated for larger spatial scales, encompassing more than one Program segment. This report describes a summary conducted by the Pacific Northwest National Laboratory (PNNL) that synthesizes the 2005 sampling year monitoring results from individual segments.

  14. 2006 Annual Synthesis Report, Pallid Sturgeon Population Assessment Program and Associated Fish Community Monitoring for the Missouri River

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Eric W.; Hanrahan, Timothy P.; Harnish, Ryan A.; Bellgraph, Brian J.; Duncan, Joanne P.; Allwardt, Craig H.

    2008-08-12

    Pallid sturgeon, Scaphirhynchus albus, have declined throughout the Missouri River since dam construction and inception of the Bank Stabilization and Navigation Project in 1912. Their decline likely is due to the loss and degradation of their natural habitat as a result of changes in the river’s structure and function, as well as the pallid sturgeon’s inability to adapt to these changes. The U. S. Army Corps of Engineers has been working with state and federal agencies to develop and conduct a Pallid Sturgeon Monitoring and Assessment Program (Program), with the goal of recovering pallid sturgeon populations. The Program has organized the monitoring and assessment efforts into distinct geographic segments, with state and federal resource management agencies possessing primary responsibility for one or more segment. To date, the results from annual monitoring have been reported for individual Program segments. However, monitoring results have not been summarized or evaluated for larger spatial scales, encompassing more than one Program segment. This report describes a summary conducted by the Pacific Northwest National Laboratory (PNNL) that synthesizes the 2006 sampling year monitoring results from individual segments.

  15. Implications of climate change for water resources in the Great Lakes basin

    International Nuclear Information System (INIS)

    Clamen, M.

    1990-01-01

    Several authors have suggested the following impacts of global warming for the Great Lakes region. The average annual warming is predicted by one model to be ca 4.5 degree C, slightly more in winter and slightly less in summer. Annual precipitation is projected to increase by ca 8% for points in the central and western basin, but to decrease by 3-6% for the eastern basin. Basin snowpack could be reduced by up to 100% and the snow season shortened by 2-4 weeks, resulting in a reduction of more than 50% in available soil moisture. Buoyancy-driven turnovers of the water column on four of the six lakes may not occur at all. Presently the phenomena occurs twice per year on all the lakes. Ice formation would be greatly reduced. Maximum ice cover may decline from 72-0% for Lake Superior, 38-0% for Lake Michigan, 65-0% for Lake Huron, 90-50% for Lake Erie and 33-0% for Lake Ontario. Net basin supplies would be reduced probably in the range 15-25% below the current mean value. Possible responses include integrated studies and research, better and continually updated information, assessment of public policies in the U.S. and Canada, enhanced private planning efforts, and increased global cooperation

  16. Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois

    Science.gov (United States)

    Over, Thomas M.; Saito, Riki J.; Veilleux, Andrea G.; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey L.

    2016-06-28

    This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, regional skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at ungaged

  17. Annual Forest Monitoring as part of Indonesia's National Carbon Accounting System

    Science.gov (United States)

    Kustiyo, K.; Roswintiarti, O.; Tjahjaningsih, A.; Dewanti, R.; Furby, S.; Wallace, J.

    2015-04-01

    Land use and forest change, in particular deforestation, have contributed the largest proportion of Indonesia's estimated greenhouse gas emissions. Indonesia's remaining forests store globally significant carbon stocks, as well as biodiversity values. In 2010, the Government of Indonesia entered into a REDD+ partnership. A spatially detailed monitoring and reporting system for forest change which is national and operating in Indonesia is required for participation in such programs, as well as for national policy reasons including Monitoring, Reporting, and Verification (MRV), carbon accounting, and land-use and policy information. Indonesia's National Carbon Accounting System (INCAS) has been designed to meet national and international policy requirements. The INCAS remote sensing program is producing spatially-detailed annual wall-to-wall monitoring of forest cover changes from time-series Landsat imagery for the whole of Indonesia from 2000 to the present day. Work on the program commenced in 2009, under the Indonesia-Australia Forest Carbon Partnership. A principal objective was to build an operational system in Indonesia through transfer of knowledge and experience, from Australia's National Carbon Accounting System, and adaptation of this experience to Indonesia's requirements and conditions. A semi-automated system of image pre-processing (ortho-rectification, calibration, cloud masking and mosaicing) and forest extent and change mapping (supervised classification of a 'base' year, semi-automated single-year classifications and classification within a multi-temporal probabilistic framework) was developed for Landsat 5 TM and Landsat 7 ETM+. Particular attention is paid to the accuracy of each step in the processing. With the advent of Landsat 8 data and parallel development of processing capability, capacity and international collaborations within the LAPAN Data Centre this processing is being increasingly automated. Research is continuing into improved

  18. Annual trace-metal load estimates and flow-weighted concentrations of cadmium, lead, and zinc in the Spokane River basin, Idaho and Washington, 1999-2004

    Science.gov (United States)

    Donato, Mary M.

    2006-01-01

    Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow

  19. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China

    Science.gov (United States)

    Chen, Zhongsheng; Chen, Yaning; Li, Baofu

    2013-02-01

    Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Kaidu River Basin in the arid region of northwest China were analyzed to investigate changes in annual runoff during the period of 1960-2009. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. Step change point in annual runoff was identified in the basin, which occurred in the year around 1993 dividing the long-term runoff series into a natural period (1960-1993) and a human-induced period (1994-2009). Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In 1994-2009, climate variability was the main factor that increased runoff with contribution of 90.5 %, while the increasing percentage due to human activities only accounted for 9.5 %, showing that runoff in the Kaidu River Basin is more sensitive to climate variability than human activities. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  20. Potential relationships between the river discharge and the precipitation in the Jinsha River basin, China

    Science.gov (United States)

    Wang, Gaoxu; Zeng, Xiaofan; Zhao, Na; He, Qifang; Bai, Yiran; Zhang, Ruoyu

    2018-02-01

    The relationships between the river discharge and the precipitation in the Jinsha River basin are discussed in this study. In addition, the future precipitation trend from 2011-2050 and its potential influence on the river discharge are analysed by applying the CCLM-modelled precipitation. According to the observed river discharge and precipitation, the annual river discharge at the two main hydrological stations displays good correlations with the annual precipitation in the Jinsha River basin. The predicted future precipitation tends to change similarly as the change that occurred during the observation period, whereas the monthly distributions over a year could be more uneven, which is unfavourable for water resources management.

  1. Seventh annual report of RADMIL 1991/92

    International Nuclear Information System (INIS)

    1992-01-01

    RADMIL began its programme of monitoring of radiation and radioactivity in Lancashire in 1985. This is RADMIL's seventh annual report and thirteenth report in a series of reports on the Lancashire environment. Two [1,2] are specific to the consequences of the Chernobyl accident on Lancashire, six annual reports [3,4,5,6,7,8] detail the results of programmed radiation and radioactivity monitoring in Lancashire, two reports are specific to radon in Lancashire homes [9,10]. One reports on external dose-rates in the intertidal areas of the rivers Lune, Ribble and Wyre [11] and one report describes monitoring of the Ribble up to November 1991 [12]. This seventh report follows the established presentation, except that RADMIL's sixth annual report (1990/91) described in one section the monitoring of the Rivers Ribble and Wyre. The corresponding section of the seventh annual report concentrates on the River Ribble only. Both rivers are affected by Sellafield effluents, but only the Ribble is affected to any significant extent by Springfields effluents. RADMIL monitoring of Wyre was increased during 1990/91 and in the light of the conclusions reached, the monitoring has been decreased in 1991/92. However, to gain more information about the River Ribble, that area of monitoring has increased in 1991/92 and is described in a section with the River Ribble only. Because of the increased concern about contamination of the river, the report also includes the period 31/3/92 (year end) to 31/8/92 (the time of report production). In this respect the report is current and presents RADMIL's up-to-date' description of River Ribble contamination. (Author)

  2. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Axel, Gordon A.; Hockersmith, Eric E.

    2002-07-01

    This report details the 2001 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these data in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers.

  3. How well do CMIP5 Climate Models Reproduce the Hydrologic Cycle of the Colorado River Basin?

    Science.gov (United States)

    Gautam, J.; Mascaro, G.

    2017-12-01

    The Colorado River, which is the primary source of water for nearly 40 million people in the arid Southwestern states of the United States, has been experiencing an extended drought since 2000, which has led to a significant reduction in water supply. As the water demands increase, one of the major challenges for water management in the region has been the quantification of uncertainties associated with streamflow predictions in the Colorado River Basin (CRB) under potential changes of future climate. Hence, testing the reliability of model predictions in the CRB is critical in addressing this challenge. In this study, we evaluated the performances of 17 General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase Five (CMIP5) and 4 Regional Climate Models (RCMs) in reproducing the statistical properties of the hydrologic cycle in the CRB. We evaluated the water balance components at four nested sub-basins along with the inter-annual and intra-annual changes of precipitation (P), evaporation (E), runoff (R) and temperature (T) from 1979 to 2005. Most of the models captured the net water balance fairly well in the most-upstream basin but simulated a weak hydrological cycle in the evaporation channel at the downstream locations. The simulated monthly variability of P had different patterns, with correlation coefficients ranging from -0.6 to 0.8 depending on the sub-basin and the models from same parent institution clustering together. Apart from the most-upstream sub-basin where the models were mainly characterized by a negative seasonal bias in SON (of up to -50%), most of them had a positive bias in all seasons (of up to +260%) in the other three sub-basins. The models, however, captured the monthly variability of T well at all sites with small inter-model variabilities and a relatively similar range of bias (-7 °C to +5 °C) across all seasons. Mann-Kendall test was applied to the annual P and T time-series where majority of the models

  4. Hydrological information system based on on-line monitoring--from strategy to implementation in the Brantas River Basin, East Java, Indonesia.

    Science.gov (United States)

    Marini, G W; Wellguni, H

    2003-01-01

    The worsening environmental situation of the Brantas River, East Java, is addressed by a comprehensive basin management strategy which relies on accurate water quantity and quality data retrieved from a newly installed online monitoring network. Integrated into a Hydrological Information System, the continuously measured indicative parameters allow early warning, control and polluter identification. Additionally, long-term analyses have been initiated for improving modelling applications like flood forecasting, water resource management and pollutant propagation. Preliminary results illustrate the efficiency of the installed system.

  5. Radiation protection and environmental monitoring in the area of the Asse shaft plant. Annual report 1987

    International Nuclear Information System (INIS)

    Mueller-Lyda, I.; Meyer, H.

    1988-07-01

    Personnel monitoring has been carried through in compliance with the Radiation Protection Ordinance. Environmental monitoring including measurement of local doses, local dose rates, and airborne radioactivity in the shaft has been made according to the provisions for radiation protection at the place of work. Maximum permissible personal doses or activity levels for occupationally exposed persons have not been exceeded in the reporting period. Exhaust air monitoring detected the nuclides H-3, C-14, Pb-210, and the short-lived daughter products of Rn-222 and Rn-220. The activity concentrations in the environment, determined from the measured annual release values, for some part have been lower than the average of natural concentrations of said nuclides. The radiation exposure due to emissions, measured at the least favourable point in the environment, has been far below the limits set by the Radiation Protection Ordinance. In conclusion: The radiation exposure of the personnel and of the population in the area of the Asse shaft plant due to the storage of radioactive is low, compared to the natural radiation exposure. (orig.) [de

  6. Assessment of gamma radiation levels and natural radioactivity in soils along a subtropical river basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Dekun; Yu, Tao [Third Institute of Oceanography, Xiamen (China). Lab. of Marine Isotopic Technology and Environmental Risk Assessment

    2017-07-01

    The activities of natural radionuclides in the environment can be used to assess radiological effects. Monitoring the radiation level in soils is important for public health. It also has important geochemical implications as most of the sediment eroded from river basins is from soil. Therefore, we carried out a soil sampling campaign along a subtropical river basin in southeastern China (Jiulong River). Surface and depth profile soils were collected, and the natural radionuclide activities were measured. The activities of the natural radionuclides {sup 238}U, {sup 232}Th, and {sup 40}K in the surface soils varied from 31.6 to 132.1 Bq kg-dry{sup -1}, 37.8 to 174.0 Bq kg-dry{sup -1}, and 52.3 to 596.2 Bq kg-dry{sup -1}, with average values of 56.7±30.3 Bq kg-dry{sup -1}, 86.7±41.3 Bq kg-dry{sup -1}, and 352.8±190.6 Bq kg-dry{sup -1}, respectively. The absorbed gamma dose in air and the annual effective dose equivalent (AEDE) in surface soils along the river basin were both higher than the world average. In the depth profiles, excess {sup 210}Pb ({sup 210}Pbex) decreased with depth and significant correlation between {sup 210}Pbex and TOC was observed, suggesting that they are affected by similar processes (leaching and sorption).

  7. Salmonid Gamete Preservation in the Snake River Basin, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    1999-03-01

    Steelhead (Oncorhynchus mykiss) and salmon (Oncorhynchus tshawytscha)populations in the Northwest are decreasing. The Nez Perce Tribe (Tribe) was funded in 1998 by the Bonneville Power Administration to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin.

  8. Probability Modeling of Precipitation Extremes over Two River Basins in Northwest of China

    Directory of Open Access Journals (Sweden)

    Zhanling Li

    2015-01-01

    Full Text Available This paper is focused on the probability modeling with a range of distribution models over two inland river basins in China, together with the estimations of return levels on various return periods. Both annual and seasonal maximum precipitations (MP are investigated based on daily precipitation data at 13 stations from 1960 to 2010 in Heihe River and Shiyang River basins. Results show that GEV, Burr, and Weibull distributions provide the best fit to both annual and seasonal MP. Exponential and Pareto 2 distributions show the worst fit. The estimated return levels for spring MP show decreasing trends from the upper to the middle and then to the lower reaches totally speaking. Summer MP approximates to annual MP both in the quantity and in the spatial distributions. Autumn MP shows a little higher value in the estimated return levels than Spring MP, while keeping consistent with spring MP in the spatial distribution. It is also found that the estimated return levels for annual MP derived from various distributions differ by 22%, 36%, and 53% on average at 20-year, 50-year, and 100-year return periods, respectively.

  9. F-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-09-01

    This progress report from the Savannah River Plant for second quarter 1992 includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  10. F-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-06-01

    This progress report from the Savannah River Plant for first quarter 1992 includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  11. Aerosol events in the broader Mediterranean basin based on 7-year (2000–2007 MODIS C005 data

    Directory of Open Access Journals (Sweden)

    A. Gkikas

    2009-09-01

    Full Text Available Aerosol events (their frequency and intensity in the broader Mediterranean basin were studied using 7-year (2000–2007 aerosol data of optical depth (AOD at 550 nm from the MODerate Resolution Imaging Spectroradiometer (MODIS Terra. The complete spatial coverage of data revealed a significant spatial variability of aerosol events which is also dependent on their intensity. Strong events occur more often in the western and central Mediterranean basin (up to 14 events/year whereas extreme events (AOD up to 5.0 are systematically observed in the eastern Mediterranean basin throughout the year. There is also a significant seasonal variability with strong aerosol events occurring most frequently in the western part of the basin in summer and extreme episodes in the eastern part during spring. The events were also analyzed separately over land and sea revealing differences that are due to the different natural and anthropogenic processes, like dust transport (producing maximum frequencies of extreme episodes in spring over both land and sea or forest fires (producing maximum frequencies in strong episodes in summer over land. The inter-annual variability shows a gradual decrease in the frequency of all aerosol episodes over land and sea areas of the Mediterranean during the period 2000–2007, associated with an increase in their intensity (increased AOD values. The strong spatiotemporal variability of aerosol events indicates the need for monitoring them at the highest spatial and temporal coverage and resolution.

  12. MCNP model for the many KE-Basin radiation sources

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1997-01-01

    This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with

  13. Annual report 2002

    International Nuclear Information System (INIS)

    Toncik, M.

    2003-04-01

    In this Annual report the operating of the Slovak Environmental Agency in 2002 is reported. Structure of the Agency, mission, personnel structure, financing, monitoring of the environment, international cooperation and coordination of research programmes are reviewed

  14. Temporal variability and annual budget of inorganic dissolved matter in Andean Pacific Rivers located along a climate gradient from northern Ecuador to southern Peru

    Science.gov (United States)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Morera, Sergio; Crave, Alain; Rau, Pedro; Vauchel, Philippe; Lagane, Christelle; Sondag, Francis; Lavado, Casimiro Waldo; Pombosa, Rodrigo; Martinez, Jean-Michel

    2018-01-01

    In Ecuador and Peru, geochemical information from Pacific coastal rivers is limited and scarce. Here, we present an unedited database of major element concentrations from five HYBAM observatory stations monitored monthly between 4 and 10 years, and the discrete sampling of 23 Andean rivers distributed along the climate gradient of the Ecuadorian and Peruvian Pacific coasts. Concentration (C) vs. discharge (Q) relationships of the five monitored basins exhibit a clear dilution behavior for evaporites and/or pyrite solutes, while the solute concentrations delivered by other endmembers are less variable. Spatially, the annual specific fluxes for total dissolved solids (TDS), Ca2+, HCO3-, K+, Mg2+, and SiO2 are controlled on the first order by runoff variability, while Cl-, Na+ and SO42- are controlled by the occurrence of evaporites and/or pyrite. The entire Pacific basin in Ecuador and Peru exported 30 Mt TDS·yr-1, according to a specific flux of ∼70 t·km-2·yr-1. This show that, even under low rainfall conditions, this orogenic context is more active, in terms of solute production, than the global average.

  15. Preliminary report on coal pile, coal pile runoff basins, and ash basins at the Savannah River Site: effects on groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-28

    Coal storage piles, their associated coal pile runoff basins and ash basins could potentially have adverse environmental impacts, especially on groundwater. This report presents and summarizes SRS groundwater and soil data that have been compiled. Also, a result of research conducted on the subject topics, discussions from noted experts in the field are cited. Recommendations are made for additional monitor wells to be installed and site assessments to be conducted.

  16. Kelt Reconditioning: A Research Project to Enhance Iteroparity in Columbia Basin Steelhead (Oncorhynchus mykiss), 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, Douglas R.; Branstetter, Ryan; Whiteaker, John (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    2004-11-01

    Iteroparity, the ability to repeat spawn, is a life history strategy that is expressed by some species from the family Salmonidae. Rates of repeat spawning for post-development Columbia River steelhead Oncorhynchus mykiss populations range from 1.6 to 17%. It is expected that currently observed iteroparity rates for wild steelhead in the Basin are severely depressed due to development and operation of the hydropower system and various additional anthropogenic factors. Increasing the expression of historical repeat spawning rates using fish culturing methods could be a viable technique to assist the recovery of depressed steelhead populations, and could help reestablish this naturally occurring life history trait. Reconditioning is the process of culturing post-spawned fish (kelts) in a captive environment until they are able to reinitiate feeding, growth, and redevelop mature gonads. Kelt reconditioning techniques were initially developed for Atlantic salmon Salmo salar and sea-trout S. trutta. The recent Endangered Species Act listing of many Columbia River Basin steelhead populations has prompted interest in developing reconditioning methods for wild steelhead populations within the Basin. To test kelt steelhead reconditioning as a potential recovery tool, wild emigrating steelhead kelts were placed into one of three study groups (direct capture and transport, short-term reconditioning, or long-term reconditioning). Steelhead kelts from the Yakima River were collected at the Chandler Juvenile Monitoring Facility (CJMF, located on the Yakima River at river kilometer 75.6) from 15 March to 21 June 2004. In total, 842 kelts were collected for reconditioning at Prosser Hatchery. Captive specimens represented 30.5% (842 of 2,755) of the entire 2003-2004 Yakima River wild steelhead population, based on fish ladder counts at Prosser Dam. All steelhead kelts were reconditioned in 20-foot circular tanks, and fed freeze-dried krill initially or for the duration of the

  17. Annual report 2005

    International Nuclear Information System (INIS)

    Toncik, M.

    2006-04-01

    In this Annual report the operating of the Slovak Environmental Agency in 2005 is reported. The structure of the Agency, mission, personnel structure, financing, monitoring of the environment, international cooperation and coordination of research programmes are reviewed

  18. Annual report 2004

    International Nuclear Information System (INIS)

    Toncik, M.

    2005-04-01

    In this Annual report the operating of the Slovak Environmental Agency in 2004 is reported. The structure of the Agency, mission, personnel structure, financing, monitoring of the environment, international cooperation and coordination of research programmes are reviewed

  19. Annual report 2003

    International Nuclear Information System (INIS)

    Toncik, M.

    2004-04-01

    In this Annual report the operating of the Slovak Environmental Agency in 2003 is reported. The structure of the Agency, mission, personnel structure, financing, monitoring of the environment, international cooperation and coordination of research programmes are reviewed

  20. Annual report 2006

    International Nuclear Information System (INIS)

    Anon

    2007-04-01

    In this Annual report the operating of the Slovak Environmental Agency in 2006 is reported. The structure of the Agency, mission, personnel structure, financing, monitoring of the environment, international cooperation and coordination of research programmes are reviewed

  1. Estimating water storage changes and sink terms in Volta Basin from satellite missions

    Directory of Open Access Journals (Sweden)

    Vagner G. Ferreira

    2014-01-01

    Full Text Available The insufficiency of distributed in situ hydrological measurements is a major challenge for hydrological studies in many regions of the world. Satellite missions such as the Gravity Recovery and Climate Experiment (GRACE and the Tropical Rainfall Measurement Mission (TRMM can be used to improve our understanding of water resources beyond surface water in poorly gauged basins. In this study we combined GRACE and TRMM to investigate monthly estimates of evaporation plus runoff (sink terms using the water balance equation for the period from January 2005 to December 2010 within the Volta Basin. These estimates have been validated by comparison with time series of sink terms (evaporation plus surface and subsurface runoff from the Global Land Data Assimilation System (GLDAS. The results, for the period under consideration, show strong agreement between both time series, with a root mean square error (RMSE of 20.2 mm/month (0.67 mm/d and a correlation coefficient of 0.85. This illustrates the ability of GRACE to predict hydrological quantities, e.g. evaporation, in the Volta Basin. The water storage change data from GRACE and precipitation data from TRMM all show qualitative agreement, with evidence of basin saturation at approximately 73 mm in the equivalent water column at the annual and semi-annual time scales.

  2. Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought

    International Nuclear Information System (INIS)

    Frappart, Frédéric; Ramillien, Guillaume; Papa, Fabrice; Calmant, Stéphane; Santos da Silva, Joecila; Prigent, Catherine; Seyler, Frédérique

    2012-01-01

    The Amazon river basin has been recently affected by extreme climatic events, such as the exceptional drought of 2005, with significant impacts on human activities and ecosystems. In spite of the importance of monitoring freshwater stored and moving in such large river basins, only scarce measurements of river stages and discharges are available and the signatures of extreme drought conditions on surface freshwater dynamics at the basin scale are still poorly known. Here we use continuous multisatellite observations of inundation extent and water levels between 2003 and 2007 to monitor monthly variations of surface water storage at the basin scale. During the 2005 drought, the amount of water stored in the river and floodplains of the Amazon basin was ∼130 km 3 (∼70%) below its 2003–7 average. This represents almost a half of the anomaly of minimum terrestrial water stored in the basin as estimated using the Gravity Recovery and Climate Experiment (GRACE) data. (letter)

  3. SOME ASPECTS OF HYDROLOGICAL RISK MANIFESTATION IN JIJIA BASIN

    Directory of Open Access Journals (Sweden)

    D. BURUIANĂ

    2012-03-01

    Full Text Available Jijia river basin surface geographically fits in Moldavian Plateau, Plain of Moldavia subunit. Being lowered by 200 to 300 m compared to adjacent subunits, it appears as a depression with altitudes between 270-300 m.Through its position in the extra-Carpathian region, away from the influence of oceanic air masses, but wide open to the action of air masses of eastern, north-eastern and northern continental origin, Jijia basin receives precipitations which vary according to the average altitude differing from the northern to the southern part of the basin (564 mm in north, 529.4 mm in Iasi. A characteristic phenomenon to the climate is represented by the torrential rains in the hot season, under the form of rain showers with great intensity, fact that influences the drainage of basin rivers. Jijia hydrographic basin is characterized by frequent and sharp variations of flow volumes and levels which lead to floods and flooding throughout the basin. The high waters generally occur between March and June, when approximately 70% of the annual stock is transported. The paper analyzes the main causes and consequences of flooding in the studied area, also identifying some structural and non-structural measures of flood protection applied by authorities in Jijia hydrographic basin. As a case study, the flood recorded in Dorohoi in June 28-29, 2010 is presented.

  4. Annual report on global environmental monitoring - 1993

    International Nuclear Information System (INIS)

    1993-01-01

    In recent decades, scientific evidence from long-term monitoring has revealed the creeping destruction of ecosystems upon which human existence depends. Recognition of this destruction is changing the international policies used to manage our planet. Vast quantities of information regarding the status of the global environment is necessary in order to achieve a solid consensus among nations for environmental policies. To detect global change early, systematic monitoring with coverage of the entire surface of the earth should be implemented under close coordination among countries and researchers from different disciplines. The resulting precise and accurate measurements should be integrated in a timely fashion into an internationally coordinated database which will be available to the decision makers. In view of this concept, the Center for Global Environmental Research was established in 1990 and started work on monitoring, data management, modeling and their integration. CGER's field of monitoring covers the stratosphere, troposphere, fresh water, marine and terrestrial ecosystems. Groups of researchers are organized to design and conduct the monitoring. After intensive examination by these researchers, the resulting data are compiled into this report to be used in academic society as well as to serve decision makers. In 1993 two series of monitoring data reached this stage of publishing. This report contains the results of the Ozone Lidar Monitoring Program and the Japan-Korea Marine Biogeochemical Monitoring Program. The Center for Global Environmental Research very much appreciates both the research staff of these programs for their long-term and patient measurements and the advisory members for their valuable recommendations to the staffs. Those researchers who wish to examine and utilize the raw or primary data are strongly encouraged to contact the Monitoring Section of the center

  5. Strategy to design the sea-level monitoring networks for small tsunamigenic oceanic basins: the Western Mediterranean case

    Directory of Open Access Journals (Sweden)

    F. Schindelé

    2008-09-01

    Full Text Available The 26 December 2004 Indian Ocean tsunami triggered a number of international and national initiatives aimed at establishing modern, reliable and robust tsunami warning systems. In addition to the seismic network for initial warning, the main component of the monitoring system is the sea level network. Networks of coastal tide gages and tsunameters are implemented to detect the tsunami after the occurrence of a large earthquake, to confirm or refute the tsunami occurrence. Large oceans tsunami monitoring currently in place in the Pacific and in implementation in the Indian Ocean will be able to detect tsunamis in 1 h. But due to the very short time of waves propagation, in general less than 1 h, a tsunami monitoring system in a smaller basin requires a denser network located close to the seismic zones. A methodology is proposed based on the modeling of tsunami travel time and waveform, and on the estimation of the delay of transmission to design the location and the spacing of the stations. In the case of Western Mediterranean, we demonstrate that a network of around 17 coastal tide gages and 13 tsunameters located at 50 km along the shore is required to detect and measure nearly all tsunamis generated on the Northern coasts of Africa.

  6. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  7. Financing and current capacity for REDD+ readiness and monitoring, measurement, reporting and verification in the Congo Basin.

    Science.gov (United States)

    Maniatis, Danae; Gaugris, Jérôme; Mollicone, Danilo; Scriven, Joel; Corblin, Alexis; Ndikumagenge, Cleto; Aquino, André; Crete, Philippe; Sanz-Sanchez, Maria-José

    2013-01-01

    This paper provides the first critical analysis of the financing and current capacity for REDD+ readiness in the Congo Basin, with a particular focus on the REDD+ component of national forest monitoring and measurement, reporting and verification (M&MRV). We focus on three areas of analysis: (i) general financing for REDD+ readiness especially M&MRV; (ii) capacity and information for REDD+ implementation and M&MRV; (iii) prospects and challenges for REDD+ and M&MRV readiness in terms of financing and capacity. For the first area of analysis, a REDD+ and M&MRV readiness financing database was created based on the information from the REDD+ voluntary database and Internet searches. For the second area of analysis, a qualitative approach to data collection was adopted (semi-structured interviews with key stakeholders, surveys and observations). All 10 countries were visited between 2010 and 2012. We find that: (i) a significant amount of REDD+ financing flows into the Congo Basin (±US$550 million or almost half of the REDD+ financing for the African continent); (ii) across countries, there is an important disequilibrium in terms of REDD+ and M&MRV readiness financing, political engagement, comprehension and capacity, which also appears to be a key barrier to countries receiving equal resources; (iii) most financing appears to go to smaller scale (subnational) REDD+ projects; (iv) four distinct country groups in terms of REDD+ readiness and M&MRV status are identified; and (v) the Congo Basin has a distinct opportunity to have a specific REDD+ financing window for large-scale and more targeted national REDD+ programmes through a specific fund for the region.

  8. Financing and current capacity for REDD+ readiness and monitoring, measurement, reporting and verification in the Congo Basin

    Science.gov (United States)

    Maniatis, Danae; Gaugris, Jérôme; Mollicone, Danilo; Scriven, Joel; Corblin, Alexis; Ndikumagenge, Cleto; Aquino, André; Crete, Philippe; Sanz-Sanchez, Maria-José

    2013-01-01

    This paper provides the first critical analysis of the financing and current capacity for REDD+ readiness in the Congo Basin, with a particular focus on the REDD+ component of national forest monitoring and measurement, reporting and verification (M&MRV). We focus on three areas of analysis: (i) general financing for REDD+ readiness especially M&MRV; (ii) capacity and information for REDD+ implementation and M&MRV; (iii) prospects and challenges for REDD+ and M&MRV readiness in terms of financing and capacity. For the first area of analysis, a REDD+ and M&MRV readiness financing database was created based on the information from the REDD+ voluntary database and Internet searches. For the second area of analysis, a qualitative approach to data collection was adopted (semi-structured interviews with key stakeholders, surveys and observations). All 10 countries were visited between 2010 and 2012. We find that: (i) a significant amount of REDD+ financing flows into the Congo Basin (±US$550 million or almost half of the REDD+ financing for the African continent); (ii) across countries, there is an important disequilibrium in terms of REDD+ and M&MRV readiness financing, political engagement, comprehension and capacity, which also appears to be a key barrier to countries receiving equal resources; (iii) most financing appears to go to smaller scale (subnational) REDD+ projects; (iv) four distinct country groups in terms of REDD+ readiness and M&MRV status are identified; and (v) the Congo Basin has a distinct opportunity to have a specific REDD+ financing window for large-scale and more targeted national REDD+ programmes through a specific fund for the region. PMID:23878337

  9. Nevada Test Site annual site environmental report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Wruble, D T; McDowell, E M [eds.

    1990-11-01

    Prior to 1989 annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the offsite radiological surveillance program conducted by the US Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, were reported separately by that Agency. Beginning with this 1989 annual Site environmental report for the NTS, these two documents are being combined into a single report to provide a more comprehensive annual documentation of the environmental protection program conducted for the nuclear testing program and other nuclear and non-nuclear activities at the Site. The two agencies have coordinated preparation of this combined onsite and offsite report through sharing of information on environmental releases and meteorological, hydrological, and other supporting data used in dose-estimate calculations. 57 refs., 52 figs., 65 tabs.

  10. Integration of surface and groundwater resources for the development of Hamad Basin project

    Science.gov (United States)

    Rofail, Nabil; Asaad, S. I.

    1989-11-01

    Hamad Basin (166,000 km2) is an extensive basin, inhabited by 219,000 souls. It is located in the arid region within the border of four Arab States: Syria, Jordan, Iraq, and Saudi Arabia. Average annual precipitation depth is 78 mm, falling mostly during winter. Integrated studies of the natural resources, (water, soil, range, and animal) were carried out with other complementary studies to formulate a socioeconomic development plan for the promissing areas within the basin. Modern technologies were applied such as remote sensing, isotope analysis, processing, and documenting of basic hydrogeological data within the data bank system using computer facilities. Results revealed that the output of the natural dry plant production amounts to 2.0 × 106 tons. Animal wealth comprise 2 × 106 head mainly of sheep. Average annual surface runoff is 146 × 106 m3, which could be appropriately exploited in water spreading schemes to improve range. Water lost presently through evaporation from vast flat depression (Khabra) could be conserved through deepening the Khabras, and recharging shallow perched aquifer by surface runoff, which could be mined later. Results of regional geology, partial geophysical studies, and hydrogeological, hydrochemical interpretations have concuded the existance of two main aquifer systems, the first lies within the tertiary and quaternary formations, while the second extends to the mesozoic, and paleozoic. Their yield varies quantitively and qualitively, up to 100 × 106 m3 could be safely drawn annually. One compound pilot project was selected within the sector of each of the four Arab States to test the feasibility of the proposed development program for the promissing areas of the basin.

  11. Geochemical conditions and the occurrence of selected trace elements in groundwater basins used for public drinking-water supply, Desert and Basin and Range hydrogeologic provinces, 2006-11: California GAMA Priority Basin Project

    Science.gov (United States)

    Wright, Michael T.; Fram, Miranda S.; Belitz, Kenneth

    2015-01-01

    The geochemical conditions, occurrence of selected trace elements, and processes controlling the occurrence of selected trace elements in groundwater were investigated in groundwater basins of the Desert and Basin and Range (DBR) hydrogeologic provinces in southeastern California as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA PBP is designed to provide an assessment of the quality of untreated (raw) groundwater in the aquifer systems that are used for public drinking-water supply. The GAMA PBP is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.

  12. Sunshine Duration Variability in Haihe River Basin, China, during 1966–2015

    Directory of Open Access Journals (Sweden)

    Jing Ren

    2017-10-01

    Full Text Available Sunshine can have a profound impact on the systematic change in climate elements, such as temperature and wind speed, and in turn affects many aspects of the human society. In recent years, there has been a substantial interest in the variation of sunshine duration due to the dramatic global climate change. Hence, there is a need to better understand the variation of sunshine duration in order to cope with climate change. This study aimed to analyze the variation of sunshine duration in Haihe River basin, China, and its relationship with temperature, wind speed and low-level cloudiness. The annual, seasonal and monthly changes of sunshine duration were analyzed based on the data collected from 33 meteorological stations over the Haihe River basin during 1966–2015. It is evident that the annual, seasonal and monthly sunshine duration shows a decreasing trend over time. In addition, the annual sunshine duration is lower with a higher climate tendency rate in the southern and eastern coastal regions than that in the northwestern regions. It is negatively correlated with temperature (r = −0.50 and low-level cloudiness (r = −0.29, but positively with wind speed (r = 0.61. Wind speed may be one of the important causes of the decrease of sunshine duration in the Haihe River basin during 1966–2015. These changes may have significant implications for the hydrological cycle in the area.

  13. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    Science.gov (United States)

    Villarini, Gabriele; Smith, James A.; Serinaldi, Francesco; Bales, Jerad; Bates, Paul D.; Krajewski, Witold F.

    2009-08-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110km) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1mskm to a maximum of 5.1mskm. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2mskm). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2mskm ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades.

  14. Satellite-derived surface and sub-surface water storage in the Ganges–Brahmaputra River Basin

    Directory of Open Access Journals (Sweden)

    Fabrice Papa

    2015-09-01

    New hydrological insights: Basin-scale monthly SWS variations for the period 2003–2007 show a mean annual amplitude of ∼410 km3, contributing to about 45% of the Gravity Recovery And Climate Experiment (GRACE-derived total water storage variations (TWS. During the drought-like conditions in 2006, we estimate that the SWS deficit over the entire GB basin in July–August–September was about 30% as compared to other years. The SWS variations are then used to decompose the GB GRACE-derived TWS and isolate the variations of SSWS whose mean annual amplitude is estimated to be ∼550 km3. This new dataset of water storage variations represent an unprecedented source of information for hydrological and climate modeling studies of the ISC.

  15. Upland Nesting Prairie Shorebirds: Use of Managed Wetland Basins and Accuracy of Breeding Surveys

    Directory of Open Access Journals (Sweden)

    Cheri L. Gratto-Trevor

    2006-06-01

    Full Text Available Wetlands in southern Alberta are often managed to benefit waterfowl and cattle production. Effects on other species usually are not examined. I determined the effect of managed wetlands on upland-nesting shorebirds in southern Alberta by comparing numbers of breeding willets (Catoptrophorus semipalmatus, marbled godwits (Limosa fedoa, and long-billed curlews (Numenius americanus among areas of managed wetlands, natural wetland basins, and no wetland basins from 1995 to 2000. Surveys were carried out at 21 sites three times each year. Nine to ten of these areas (each 2 km2 were searched for nests annually from 1998-2000. Numbers of willets and marbled godwits and their nests were always highest in areas with managed wetlands, probably because almost all natural wetland basins were dry in this region in most years. Densities of willets seen during pre-incubation surveys averaged 2.3 birds/km2 in areas of managed wetlands, 0.4 in areas of natural wetland basins, and 0.1 in areas with no wetland basins. Nest densities of willets (one search each season averaged 1.5, 0.9, and 0.3 nests/km2 in areas of managed, natural, and no wetland basins, respectively. Similarly, pre-incubation surveys averaged 1.6, 0.6, and 0.2 godwits/km2 in areas of managed, natural, and no wetland basins, and 1.2, 0.3, and 0.1 godwit nests/km2. For long-billed curlews, pre-incubation surveys averaged 0.1, 0.2, and 0.1 birds/km2, and 0, 0.2, and 0 nests/km2. Nest success was similar in areas with and without managed wetlands. Shallow managed wetlands in this region appear beneficial to willets and marbled godwits, but not necessarily to long-billed curlews. Only 8% of marked willets and godwits with nests in the area were seen or heard during surveys, compared with 29% of pre-laying individuals and 42% of birds with broods. This suggests that a low and variable percentage of these birds is counted during breeding bird surveys, likely limiting their ability to adequately monitor

  16. Assessment of impacts of proposed coal-resource and related economic development on water resources, Yampa River basin, Colorado and Wyoming; a summary

    Science.gov (United States)

    Steele, Timothy Doak; Hillier, Donald E.

    1981-01-01

    with ammonia-nitrogen concentrations in the Yampa River downstream from Steamboat Springs were evaluated using a waste-load assimilative-capacity model. Changes in sediment loads carried by streams due to increased coal mining and construction of roads and buildings may be apparent only locally; projected increases in sediment loads relative to historic loads from the basin are estimated to be 2 to 7 percent. Solid-waste residuals generated by coal-conversion processes and disposed of into old mine pits may cause widely dispersed ground-water contamination, based on simulation-modeling results. Projected increases in year-round water use will probably result in the construction of several proposed reservoirs. Current seasonal patterns of streamflow and of dissolvedsolids concentrations in streamflow will be altered appreciably by these reservoirs. Decreases in time-weighted mean-annual dissolved-solids concentrations of as much as 34 percent are anticipated, based upon model simulations of several configurations of proposed reservoirs. Detailed statistical analyses of water-quality conditions in the Yampa River basin were made. Regionalized maximum waterquality concentrations were estimated for possible comparison with future conditions. Using Landsat imagery and aerial photographs, potential remote-sensing applications were evaluated to monitor land-use changes and to assess both snow cover and turbidity levels in streams. The technical information provided by the several studies of the Yampa River basin assessment should be useful to regional planners and resource managers in evaluating the possible impacts of development on the basin's water resources.

  17. Development of monitoring system for studying of radionuclide and chemical contamination level in trans boundary river basins of Caspian and Kara Seas at Russian Federation territory

    International Nuclear Information System (INIS)

    Valyaev, A.N.; Stepanets, O.V.

    2006-01-01

    Full text: Intensive and insufficiently controlled human industrial activities, ignoring regional geological and geochemical processes, resulted in considerable chemical pollution and radioactive contamination of these river's basins, where some large nuclear power plants, uranium and chemical enterprises, oil and gas productions are also located. This epidemiological and environmental situation aggravated further after USSR collapse and the establishment of new independent states due to lack of the appropriate environmental monitoring in those countries and on their near-border areas in particular, that contributed to further aggravation of the political tension and economic destabilization between transboundary countries. The environmental situation here is one of most unfavorable among world water ecosystems. In recent years different pollutants (radionuclides, toxins, organic substances and heavy metals) activate reduction processes in bottom sediments, that lead to changes in sulfur and carbon cycles, the oxygen deficit in water, to eutrophication of water reservoirs and their biological degradation. Today the development of total environmental monitoring systems is clearly necessary for operative current control, ensuring preparedness and prediction of any potential emergencies of global and local scales and their long-term effects. The objectives for presented monitoring systems are to: (1)study sources and mechanisms of chemical pollution and radioactive contamination of water basins of Volga (the largest river in Europe and Russia), Terek and Ural rivers flowed into Caspian Sea, and Ob, Irtysh and Tom ones, flowed into Kara Sea in Arctic Ocean within RF territory; (2) develop the well-ground database (DB) on contamination; (3) the using of the obtained results for the operative current trans boundary control, monitoring and protection of freshwater resources; (4) modeling of pollutant's migration. There is no way to provide solution of environmental

  18. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    Science.gov (United States)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter

  19. Estimated dissolved-solids loads and trends at selected streams in and near the Uinta Basin, Utah, Water Years 1989–2013

    Science.gov (United States)

    Thiros, Susan A.

    2017-03-23

    The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show

  20. Estimation of Streamflow and Fluvial Sediment Loads in the White Volta Basin under Future Climate Change

    Science.gov (United States)

    Lumor, M.; Amisigo, B. A.

    2015-12-01

    The White Volta Basin is one of the major sub-catchments of the Volta Basin of West Africa, covers an estimated 106,000 km2 and is shared between Burkina Faso and Ghana. The basin currently faces many challenges such as flooding, drought, high temporal and spatial variation of rainfall, deforestation, land degradation, climate change and high population growth rate. These challenges put pressure on the quantity and quality of the water resources in the basin. Current infrastructure developments in the basin have already impacted on the hydrological cycle, and future development plans potentially pose a threat to the sustainability of the resources if not appropriately managed. Information on runoff and sediment loads is a very important requirement for sustainable management of the water resources in the basin. This study therefore seeks to assess runoff and sediment loads in the White Volta Basin using the Soil Water Assessment Tool (SWAT) and provide understanding of how climate change impacts on future runoff and sediment loads in the basin.The model was calibrated for the period 1991 to 2003 and validated for the period 2004 to 2013.The model was also validated at one gauging station on the main river and another on a tributary. Analysis of the water balance of the basin shows that 4.90% of the simulated mean annual precipitation is converted to surface runoff while 84.37% evapotranspires. The results also show that the White Volta Basin contributes approximately 5.68x106tonnes/yr of sediment load into the Volta Lake. The calibrated model was used to simulate the water balance for the present time slice (1975-2005) as the basis for comparing with the future (2025-2055) water balance in the WhiteVolta Basin. The results show that annual surface runoff and sediment loads could increase by 56% and 70% respectively. A projected reduction by 0.54% in actual evapotranspiration is however estimated for the selected time period in the basin.

  1. Data quality objectives summary report for the 105-n basin liquid disposition

    International Nuclear Information System (INIS)

    Duncan, G.M.; Miller, M.S.; Carlson, D.K.

    1997-01-01

    During stabilization of the 105-N Basin, basin waters (1 million gallons) will be filtered and transported to the 200 Area Effluent Treatment Facility (ETF) for treatment and disposal. Hazardous chemicals are not considered to be present in the water; filtration is planned to reduce the suspended solids load and radionuclide concentrations. ETF has provided the Environmental Restoration Contractor with a list of constituents that must be analyzed in the 105-N Basin water; however, there are no specific concentration criteria established for these constituents. Analysis is required primarily to establish treatment parameters and to monitor radionuclide activity. A sampling program is required that will: (1) characterize the water quality in the 105-N Basin for the identified parameters, and (2) verifies that water quality does not change due to intrusive activities being performed concurrent with water drawdown. The Data Quality Objectives Process for the 105-N Basin water is being used to establish an approach for characterizing the water and monitoring the parameters of concern for water sent to the ETF

  2. Trends and variability in the hydrological regime of the Mackenzie River Basin

    Science.gov (United States)

    Abdul Aziz, Omar I.; Burn, Donald H.

    2006-03-01

    Trends and variability in the hydrological regime were analyzed for the Mackenzie River Basin in northern Canada. The procedure utilized the Mann-Kendall non-parametric test to detect trends, the Trend Free Pre-Whitening (TFPW) approach for correcting time-series data for autocorrelation and a bootstrap resampling method to account for the cross-correlation structure of the data. A total of 19 hydrological and six meteorological variables were selected for the study. Analysis was conducted on hydrological data from a network of 54 hydrometric stations and meteorological data from a network of 10 stations. The results indicated that several hydrological variables exhibit a greater number of significant trends than are expected to occur by chance. Noteworthy were strong increasing trends over the winter month flows of December to April as well as in the annual minimum flow and weak decreasing trends in the early summer and late fall flows as well as in the annual mean flow. An earlier onset of the spring freshet is noted over the basin. The results are expected to assist water resources managers and policy makers in making better planning decisions in the Mackenzie River Basin.

  3. Widespread Amazon forest tree mortality from a single cross-basin squall line event

    Science.gov (United States)

    Negrón-Juárez, Robinson I.; Chambers, Jeffrey Q.; Guimaraes, Giuliano; Zeng, Hongcheng; Raupp, Carlos F. M.; Marra, Daniel M.; Ribeiro, Gabriel H. P. M.; Saatchi, Sassan S.; Nelson, Bruce W.; Higuchi, Niro

    2010-08-01

    Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent α = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system.

  4. Umatilla River Basin Anadromus Fish Habitat Enhancement Project. 1994 Annual report

    International Nuclear Information System (INIS)

    Shaw, R.T.

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994--95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation

  5. Calandar year 1996 annual groundwater monitoring report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The Bear Creek Regime encompasses a portion of Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid) that contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring in the Bear Creek Regime is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). This report contains the information and monitoring data required under the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Bear Creek Hydrogeologic Regime (post-closure permit), as modified and issued by the Tennessee Department of Environment and Conservation (TDEC) in September 1995 (permit no. TNHW-087). In addition to the signed certification statement and the RCRA facility information summarized below, permit condition II.C.6 requires the annual monitoring report to address groundwater monitoring activities at the three RCRA Hazardous Waste Disposal Units (HWDUs) in the Bear Creek Regime that are in post-closure corrective action status (the S-3 Site, the Oil Landfarm, and the Bear Creek Burial Grounds/Walk-In Pits).

  6. Future changes in precipitation and impacts on extreme streamflow over Amazonian sub-basins

    International Nuclear Information System (INIS)

    Guimberteau, M; Ronchail, J; Lengaigne, M; Sultan, B; Drapeau, G; Espinoza, J C; Polcher, J; Guyot, J-L; Ducharne, A; Ciais, P

    2013-01-01

    Because of climate change, much attention is drawn to the Amazon River basin, whose hydrology has already been strongly affected by extreme events during the past 20 years. Hydrological annual extreme variations (i.e. low/high flows) associated with precipitation (and evapotranspiration) changes are investigated over the Amazon River sub-basins using the land surface model ORCHIDEE and a multimodel approach. Climate change scenarios from up to eight AR4 Global Climate Models based on three emission scenarios were used to build future hydrological projections in the region, for two periods of the 21st century. For the middle of the century under the SRESA1B scenario, no change is found in high flow on the main stem of the Amazon River (Óbidos station), but a systematic discharge decrease is simulated during the recession period, leading to a 10% low-flow decrease. Contrasting discharge variations are pointed out depending on the location in the basin. In the western upper part of the basin, which undergoes an annual persistent increase in precipitation, high flow shows a 7% relative increase for the middle of the 21st century and the signal is enhanced for the end of the century (12%). By contrast, simulated precipitation decreases during the dry seasons over the southern, eastern and northern parts of the basin lead to significant low-flow decrease at several stations, especially in the Xingu River, where it reaches −50%, associated with a 9% reduction in the runoff coefficient. A 18% high-flow decrease is also found in this river. In the north, the low-flow decrease becomes higher toward the east: a 55% significant decrease in the eastern Branco River is associated with a 13% reduction in the runoff coefficient. The estimation of the streamflow elasticity to precipitation indicates that southern sub-basins (except for the mountainous Beni River), that have low runoff coefficients, will become more responsive to precipitation change (with a 5 to near 35

  7. New TNX Seepage Basin: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1986-12-01

    The New TNX Seepage Basin has been in operation at the Savannah River Plant (SRP) since 1980 and is located in the southeastern section of the TNX facility. The basin receives waste from pilot scale tests conducted at TNX in support of the Defense Waste Processing Facility (DWPF) and the plant Separations area. The basin is scheduled for closure after the TNX Effluent Treatment Plant (ETP) begins operation. The basin will be closed pursuant to all applicable state and federal regulations. A statistical analysis of monitoring data indicates elevated levels of sodium and zinc in the groundwater at this site. Closure options considered for the New TNX Seepage Basin include waste removal and closure, no waste removal and closure, and no action. The two predominant pathways for human exposure to chemical contaminants are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options for the New TNX Seepage Basin. Cost estimates for each closure option at the basin have also been prepared. An evaluation of the environmental impacts from the New TNX Seepage Basin indicate that the relative risks to human health and ecosystems for the postulated closure options are low. The transport of six chemical and one radionuclide constituents through the environmental pathways from the basin were modeled. The maximum chemical carcinogenic risk and the noncarcinogenic risk for the groundwater pathways were from exposure to trichloromethane and nitrate

  8. Interlinking feasibility of five river basins of Rajasthan in India

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Vyas

    2016-09-01

    Annual surplus water of about 1437 MCM in the river Chambal is going waste and ultimately reaches to sea after creating flood situations in various places in India including Rajasthan, while on the other hand 1077 MCM water is a requirement in the four other basins in Rajasthan i.e. Banas, Banganga, Gambhir and Parbati at 75% dependability. Interlinking and water transfer from Chambal to these four river basins is the prime solution for which 372 km link channel including 9 km tunnel of design capacity of 300 cumec with 64 m lift is required.

  9. Hanford Site groundwater monitoring: Setting, sources and methods

    International Nuclear Information System (INIS)

    Hartman, M.J.

    2000-01-01

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports

  10. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  11. Surface-water resources of Polecat Creek basin, Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  12. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA); Schroder, Steven L. (Washington Department of Fish and Wildlife, Olympia, WA); Johnston, Mark V. (yakama Nation, Toppenish, WA)

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second

  13. Radioactive contamination of the Dnepr-Sozh river basin in Belarus after the accident at the Chernobyl NPP

    International Nuclear Information System (INIS)

    Zhukova, O.M.; Matveenko, I.I.; Pokumejko, Yu.M.; Shagalova, E.D.

    1998-01-01

    Systematic control over the radioactive contamination of surface waters is carried out at five main rivers of Belarus: Dnepr, Sozh, Pripyat, Iput, Besed. The experimental watershed of Iput river (Dnepr-Sozh basin) have been chosen for revealing the general rules of radioactive contamination of the rivers of Belarus on the basis of generalization of the monitoring data and field investigations. It has been found that transport of radionuclides on suspended solids is one of the main forms of migration of radionuclides in the river (caesium-137 in particular). Thus, the analysis of contamination of the rivers of Belarus has shown that the most intensive runoff of radionuclides from the territories of the watershed occurs in the head of the Dnepr basin, namely by its tributaries, Iput and Sozh. The annual runoff of radionuclides in soluble form by the rivers of Belarus in 1987-1996 has decreased significantly. Transport of radioisotopes with suspended and drawn wash loads significantly affects their migration and its contribution to the total runoff of radionuclides has increased with time. The runoff of radionuclides with transported wash loads varied within 20-80% from the total runoff of radionuclides. Sedimentation of river suspended load carrying radionuclides in the sites with slow river flow creates local movable ecologically dangerous centres of accumulation of radionuclides in bottom sediments particularly in front of the diverting dams. Existence of such centres of radioactive contamination requires their monitoring, assessment of their possible effects, and, if necessary, their decontamination

  14. H-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SC1-890-008-989. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning first quarter 1993, the HASB`s Groundwater Protection Standard (GWPS), established in Appendix 3D-A of the cited permit, became the standard for comparison. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constitutents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, technetium-99, and zinc) during the second half of 1993. Elevated constituents were found primarily in Aquifer Zone 2B{sub 2} and in the upper portion of Aquifer Zone 2B{sub 1}. However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone 2B{sub 1} and Aquifer Unit 2A. Isoconcentration/isoactivity maps include in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1993. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988.

  15. On the sensitivity of annual streamflow to air temperature

    Science.gov (United States)

    Milly, Paul C.D.; Kam, Jonghun; Dunne, Krista A.

    2018-01-01

    Although interannual streamflow variability is primarily a result of precipitation variability, temperature also plays a role. The relative weakness of the temperature effect at the annual time scale hinders understanding, but may belie substantial importance on climatic time scales. Here we develop and evaluate a simple theory relating variations of streamflow and evapotranspiration (E) to those of precipitation (P) and temperature. The theory is based on extensions of the Budyko water‐balance hypothesis, the Priestley‐Taylor theory for potential evapotranspiration ( ), and a linear model of interannual basin storage. The theory implies that the temperature affects streamflow by modifying evapotranspiration through a Clausius‐Clapeyron‐like relation and through the sensitivity of net radiation to temperature. We apply and test (1) a previously introduced “strong” extension of the Budyko hypothesis, which requires that the function linking temporal variations of the evapotranspiration ratio (E/P) and the index of dryness ( /P) at an annual time scale is identical to that linking interbasin variations of the corresponding long‐term means, and (2) a “weak” extension, which requires only that the annual evapotranspiration ratio depends uniquely on the annual index of dryness, and that the form of that dependence need not be known a priori nor be identical across basins. In application of the weak extension, the readily observed sensitivity of streamflow to precipitation contains crucial information about the sensitivity to potential evapotranspiration and, thence, to temperature. Implementation of the strong extension is problematic, whereas the weak extension appears to capture essential controls of the temperature effect efficiently.

  16. Competitive effects of introduced annual weeds on some native and reclamation species in the Powder River Basin, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.B.; Knight, D.H.

    1980-01-01

    Four experiments were conducted to examine the competitive effects of introduced annual weeds on certain native and reclamation species. The first experiment was initiated by discing three sites in the Powder River Basin, Wyoming, at three distances from introduced weed seed sources. Introduced weed colonization was greatest when a seed source was located nearby. Higher weed cover resulted in reductions of percent cover, density, and richness of the native species. The second experiment was conducted in the greenhouse and was designed to determine if there are changes in response of S. kali and the native grasses Agropyron smithii and Bouteloua gracilis to competition and water regime. Both grass species had lower biomass and higher stomatal resistance when growing in mixed culture with S. kali than in pure culture in the dry regime, but there were no significant differences in the wet regime. In general, the difference in plant response between mixed and pure cultures was more pronounced in the dry than in the wet regime. The third study was a greenhouse experiment on germination and competition of S. kali (a C/sub 4/ species) with native species Lepidium densiflorum (C/sub 3/), Chenopodium pratericola (C/sub 3/), A. smithii (C/sub 3/), and B. gracilis (C/sub 4/) under May, June, and July temperature regimes. Salsola kali germinated equally well in all three regimes, but the other C/sub 4/ species had highest germination in the July regime and the C/sub 3/ species in the May and June regimes. The fourth study was designed to examine the effect of weed colonization on the success of mine reclamation. Little effect was observed, but colonization by introduced annuals was very low. (ERB)

  17. Estimation of Annual Average Soil Loss, Based on Rusle Model in Kallar Watershed, Bhavani Basin, Tamil Nadu, India

    Science.gov (United States)

    Rahaman, S. Abdul; Aruchamy, S.; Jegankumar, R.; Ajeez, S. Abdul

    2015-10-01

    Soil erosion is a widespread environmental challenge faced in Kallar watershed nowadays. Erosion is defined as the movement of soil by water and wind, and it occurs in Kallar watershed under a wide range of land uses. Erosion by water can be dramatic during storm events, resulting in wash-outs and gullies. It can also be insidious, occurring as sheet and rill erosion during heavy rains. Most of the soil lost by water erosion is by the processes of sheet and rill erosion. Land degradation and subsequent soil erosion and sedimentation play a significant role in impairing water resources within sub watersheds, watersheds and basins. Using conventional methods to assess soil erosion risk is expensive and time consuming. A comprehensive methodology that integrates Remote sensing and Geographic Information Systems (GIS), coupled with the use of an empirical model (Revised Universal Soil Loss Equation- RUSLE) to assess risk, can identify and assess soil erosion potential and estimate the value of soil loss. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the study area. The final map of annual soil erosion shows a maximum soil loss of 398.58 t/ h-1/ y-1. Based on the result soil erosion was classified in to soil erosion severity map with five classes, very low, low, moderate, high and critical respectively. Further RUSLE factors has been broken into two categories, soil erosion susceptibility (A=RKLS), and soil erosion hazard (A=RKLSCP) have been computed. It is understood that functions of C and P are factors that can be controlled and thus can greatly reduce soil loss through management and conservational measures.

  18. Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin

    Science.gov (United States)

    Abdella, E. J.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Due to the growing pressure in water resource and climate change there is great uncertainty in the availability of water for existing as well as proposed irrigation and hydropower projects in the Upper Blue Nile basin (longitude 34oE and 39oE and latitude 7oN and 12oN). This study quantitatively assessed the impact of climate change on the hydrological regime of the basin which intern affect water availability for different use including hydropower and irrigation. Ensemble of four bias corrected regional climate models (RCM) of CORDEX Africa domain and two scenarios (RCP 4.5 and RCP 8.5) were used to determine climate projections for future (2021-2050) period. The outputs from the climate models used to drive the calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to simulate future runoff. The simulated discharge were used as input to a Water Evaluation and Planning (WEAP) water allocation model to determine the implication in hydropower and irrigation potential of the basin. The WEAP model was setup to simulate three scenarios which includes Current, Medium-term (by 2025) and Long-term (by 2050) Development scenario. The projected mean annual temperature of the basin are warmer than the baseline (1982 - 2005) average in the range of 1 to 1.4oC. Projected mean annual precipitation varies across the basin in the range of - 3% to 7%, much of the expected increase is in the highland region of the basin. The water use simulation indicate that the current annual average irrigation water demand in the basin is 1.29Bm3y-1 with 100% coverage. By 2025 and 2050, with the development of new schemes and changing climate, water demand for irrigation is estimated to increase by 2.5 Bm3y-1 and 3.4 Bm3y-1 with 99 % and 96% coverage respectively. Simulation for domestic water demand coverage for all scenarios shows that there will be 100% coverage for the two major cities in the basin. The hydropower generation simulation indicate that 98% of hydroelectricity

  19. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    Science.gov (United States)

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.

    2009-01-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  20. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2012-11-01

    The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3). The "landscape ET" (depletion directly from rainfall) was 344 km3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3), of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha-1 and 7.8 t ha-1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.

  1. KIGAM Seafloor Observation System (KISOS) for the baseline study in monitoring of gas hydrate test production in the Ulleung Basin, Korea

    Science.gov (United States)

    Lee, Sung-rock; Chun, Jong-hwa

    2013-04-01

    For the baseline study in the monitoring gas hydrate test production in the Ulleung Basin, Korea Institute of Geoscience and Mineral Resources (KIGAM) has developed the KIGAM Seafloor Observation System (KISOS) for seafloor exploration using unmanned remotely operated vehicle connected with a ship by a cable. The KISOS consists of a transponder of an acoustic positioning system (USBL), a bottom finding pinger, still camera, video camera, water sampler, and measuring devices (methane, oxygen, CTD, and turbidity sensors) mounted on the unmanned ROV, and a sediment collecting device collecting sediment on the seafloor. It is very important to monitoring the environmental risks (gas leakage and production water/drilling mud discharge) which may be occurred during the gas hydrate test production drilling. The KISOS will be applied to solely conduct baseline study with the KIGAM seafloor monitoring system (KIMOS) of the Korean gas hydrate program in the future. The large scale of environmental monitoring program includes the environmental impact assessment such as seafloor disturbance and subsidence, detection of methane gas leakage around well and cold seep, methane bubbles and dissolved methane, change of marine environments, chemical factor variation of water column and seabed, diffusion of drilling mud and production water, and biological factors of biodiversity and marine habitats before and after drilling test well and nearby areas. The design of the baseline survey will be determined based on the result of SIMAP simulation in 2013. The baseline survey will be performed to provide the gas leakage and production water/drilling mud discharge before and after gas hydrate test production. The field data of the baseline study will be evaluated by the simulation and verification of SIMAP simulator in 2014. In the presentation, the authors would like introduce the configuration of KISOS and applicability to the seafloor observation for the gas hydrate test production in

  2. Stochastic structure of annual discharges of large European rivers

    Directory of Open Access Journals (Sweden)

    Stojković Milan

    2015-03-01

    Full Text Available Water resource has become a guarantee for sustainable development on both local and global scales. Exploiting water resources involves development of hydrological models for water management planning. In this paper we present a new stochastic model for generation of mean annul flows. The model is based on historical characteristics of time series of annual flows and consists of the trend component, long-term periodic component and stochastic component. The rest of specified components are model errors which are represented as a random time series. The random time series is generated by the single bootstrap model (SBM. Stochastic ensemble of error terms at the single hydrological station is formed using the SBM method. The ultimate stochastic model gives solutions of annual flows and presents a useful tool for integrated river basin planning and water management studies. The model is applied for ten large European rivers with long observed period. Validation of model results suggests that the stochastic flows simulated by the model can be used for hydrological simulations in river basins.

  3. Uncertainty of runoff projections under changing climate in Wami River sub-basin

    Directory of Open Access Journals (Sweden)

    Frank Joseph Wambura

    2015-09-01

    New Hydrological Insights for the Region: The results of projected streamflow shows that the baseline annual climatology flow (ACF is 98 m3/s and for the future, the median ACF is projected to be 81 m3/s. At 100% uncertainty of skilled projections, the ACF from the sub-basin is projected to range between −47% and +36% from the baseline ACF. However, the midstream of the sub-basin shows reliable water availability for foreseen water uses expansion up to the year 2039.

  4. The Géocarbone-Monitoring Project: Main Results and Recommendations for Monitoring Deep Geological CO2 Storage in the Paris Basin Le projet de recherche Géocarbone-Monitoring : principaux résultats et recommandations pour le monitoring des stockages géologiques profonds de CO2 dans le bassin Parisien

    Directory of Open Access Journals (Sweden)

    Fabriol H.

    2010-07-01

    Full Text Available The aim of the Géocarbone-Monitoring research project was the evaluation and testing, as far as possible, of the different monitoring methods that might be applied in the specific context of the Paris Basin. Their main objectives are to: detect and map CO2 in the reservoir rocks; detect and quantify possible leaks between the reservoir and the surface. The partners developed several thoughts and research concerning the various monitoring methods. This enabled drawing up a critical overview of existing methods and proposing leads for further work. At the end of the project, recommendations were made for the stakeholders of CO2 storage, i.e. the government departments regulating storage, decision-makers, and future site operators. In addition, a proposal was made for the general design and implementation of a monitoring programme of an injection test in the Paris Basin, within a depleted reservoir or a deep aquifer. Le projet de recherche Géocarbone-Monitoring avait pour but principal d’évaluer et de tester, le cas échéant, les différentes méthodes de surveillance qui pourraient être appliquées au contexte géologique spécifique du Bassin Parisien. Les objectifs principaux de celles-ci sont de : détecter et cartographier le CO2 dans le réservoir ; détecter les fuites éventuelles entre le réservoir et la surface et être en mesure de les quantifier. Les recherches et les réflexions menées par les partenaires sur les méthodes de surveillance et de monitoring ont permis de dresser une vision critique des méthodologies existantes et de proposer des pistes de progrès. À l’issue du projet, des recommandations ont été rédigées à l’intention des parties prenantes du stockage de CO2 (administration chargée de mettre en oeuvre la réglementation des stockages, décideurs et futurs opérateurs de site et un schéma général pour la conception et la mise en oeuvre d’un programme de monitoring pour un test d’injection dans

  5. HYDROLOGICAL REGIME OF GLACIERS IN THE RIVER BASINS OF THE NORTHERN CAUCASUS AND ALTAI

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2018-01-01

    Full Text Available Rivers with snow-glacier alimentation in six basins of the Northern Caucasus (Cherek, Chegem, Baksan, Malka, Teberda, and upper course of the Terek River and Altai (the Katun’ River were investigated in 1946–2005 for the purpose to analyze long-term streamflow variations. It was noted that in 1976–2005 volume of annual runoff increased relative to the previous 30-year interval in four of six rivers of the Northern Caucasus. During the vegetation period the volume of runoff changed synchronously with the annual one. As for the river Katun’, its volumes and variability of both, the annual runoff and that for the vegetation season, decreased. In the course of investigation of spatial-temporal dynamics of hydrological and glaciological characteristics in the above river basins of the Northern Caucasus and the same of Katun’ River the following problems were considered and solved: a the information and methodological basis for regional calculations of the runoff for the rivers with snow-glacier alimentation had been improved and corrected; b changes of the components of hydrological cycle (precipitation, evaporation, and glacier runoff over the glaciation area had been estimated for the period of 1946–2005; c data on quality of the initial glaciological and hydrological information were integrated; d definitions of the runoff were verified by means of comparison of measured runoff with similar values calculated by equation of the annual water budget as a whole for the basin. It should be noted that the total areas of glaciers and areas of their ablation were significantly reduced, but areas and thicknesses of ice under the moraine cover increased. Despite widespread, sometimes twofold decrease in the relative part of glacier alimentation in the total river streamflow for period of April–September this did make almost no effect on the water supply of the vegetation period in individual basins as well as in the whole the Northern

  6. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  7. Annual site environmental monitoring report for the Waste Isolation Pilot Plant, Calendar year 1985

    International Nuclear Information System (INIS)

    Reith, C.; Prince, K.; Fischer, T.; Rodriguez, A.; Uhland, D.; Winstanley, D.

    1986-04-01

    This is the first Annual Site Environmental Monitoring Report for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP project is operated by the US Department of Energy (DOE) for the purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes generated by the defense activities of the U.S. Government. The report provides a comprehensive description of environmental activities at WIPP during Calendar Year 1985, including: a description of the WIPP project and its mission; a description of the local environment, including demographics; a summary of environmental program information, including an update on the status of environmental permits and compliance activities; a presentation of the findings of the Radiological Baseline Program (RBP), which is a program to characterize radionuclide activities in the environment around the WIPP site; and a summary of findings of the Ecological Monitoring Program (EMP), which examines non-radiological impacts of WIPP construction on the surrounding ecosystem. The WIPP facility is under construction, and will not receive radioactive wastes before October 1988. Therefore, this report describes the status of preoperational (as opposed to operational) environmental activities. 29 refs., 17 figs., 22 tabs

  8. RADMIL - eleventh annual report for 1996/97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    RADMIL is a local authority monitoring organisation which provides an effective and efficient means of investigating Lancashire`s radiological environment countrywide. This eleventh annual report covers the sources of radiation, radiological protection in the UK, environmental monitoring by government agencies and industry and an interpretation of the RADMIL monitoring results. (UK).

  9. RADMIL - eleventh annual report for 1996/97

    International Nuclear Information System (INIS)

    1997-01-01

    RADMIL is a local authority monitoring organisation which provides an effective and efficient means of investigating Lancashire's radiological environment countrywide. This eleventh annual report covers the sources of radiation, radiological protection in the UK, environmental monitoring by government agencies and industry and an interpretation of the RADMIL monitoring results. (UK)

  10. The Spatiotemporal Variations of Runoff in the Yangtze River Basin under Climate Change

    OpenAIRE

    Xiao, Ziwei; Shi, Peng; Jiang, Peng; Hu, Jianwei; Qu, Simin; Chen, Xingyu; Chen, Yingbing; Dai, Yunqiu; Wang, Jianjin

    2018-01-01

    A better understanding of the runoff variations contributes to a better utilization of water resources and water conservancy planning. In this paper, we analyzed the runoff changes in the Yangtze River Basin (YRB) including the spatiotemporal characteristics of intra-annual variation, the trend, the mutation point, and the period of annual runoff using various statistical methods. We also investigated how changes in the precipitation and temperature could impact on runoff. We found that the i...

  11. Feasibility Report and Environmental Statement for Water Resources Development, Cache Creek Basin, California

    Science.gov (United States)

    1979-02-01

    classified as Porno , Lake Miwok, and Patwin. Recent surveys within the Clear Lake-Cache Creek Basin have located 28 archeological sites, some of which...additional 8,400 acre-feet annually to the Lakeport area. Porno Reservoir on Kelsey Creek, being studied by Lake County, also would supplement M&l water...project on Scotts Creek could provide 9,100 acre- feet annually of irrigation water. Also, as previously discussed, Porno Reservoir would furnish

  12. Rainfall trends in the Brazilian Amazon Basin in the past eight decades

    Science.gov (United States)

    Satyamurty, Prakki; de Castro, Aline Anderson; Tota, Julio; da Silva Gularte, Lucia Eliane; Manzi, Antonio Ocimar

    2010-01-01

    Rainfall series at 18 stations along the major rivers of the Brazilian Amazon Basin, having data since 1920s or 1930s, are analyzed to verify if there are appreciable long-term trends. Annual, rainy-season, and dry-season rainfalls are individually analyzed for each station and for the region as a whole. Some stations showed positive trends and some negative trends. The trends in the annual rainfall are significant at only six stations, five of which reporting increasing trends (Barcelos, Belem, Manaus, Rio Branco, and Soure stations) and just one (Itaituba station) reporting decreasing trend. The climatological values of rainfall before and after 1970 show significant differences at six stations (Barcelos, Belem, Benjamin Constant, Iaurete, Itaituba, and Soure). The region as a whole shows an insignificant and weak downward trend; therefore, we cannot affirm that the rainfall in the Brazilian Amazon basin is experiencing a significant change, except at a few individual stations. Subregions with upward and downward trends are interspersed in space from the far eastern Amazon to western Amazon. Most of the seasonal trends follow the annual trends, thus, indicating a certain consistency in the datasets and analysis.

  13. Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile

    Science.gov (United States)

    Uribe, Javier; Muñoz, José F.; Gironás, Jorge; Oyarzún, Ricardo; Aguirre, Evelyn; Aravena, Ramón

    2015-11-01

    Closed basins are catchments whose drainage networks converge to lakes, salt flats or alluvial plains. Salt flats in the closed basins in arid northern Chile are extremely important ecological niches. The Salar del Huasco, one of these salt flats located in the high plateau (Altiplano), is a Ramsar site located in a national park and is composed of a wetland ecosystem rich in biodiversity. The proper management of the groundwater, which is essential for the wetland function, requires accurate estimates of recharge in the Salar del Huasco basin. This study quantifies the spatio-temporal distribution of the recharge, through combined use of isotopic characterization of the different components of the water cycle and a rainfall-runoff model. The use of both methodologies aids the understanding of hydrological behavior of the basin and enabled estimation of a long-term average recharge of 22 mm/yr (i.e., 15 % of the annual rainfall). Recharge has a high spatial variability, controlled by the geological and hydrometeorological characteristics of the basin, and a high interannual variability, with values ranging from 18 to 26 mm/yr. The isotopic approach allowed not only the definition of the conceptual model used in the hydrological model, but also eliminated the possibility of a hydrogeological connection between the aquifer of the Salar del Huasco basin and the aquifer that feeds the springs of the nearby town of Pica. This potential connection has been an issue of great interest to agriculture and tourism activities in the region.

  14. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the Period October 1999-October 2000

    Energy Technology Data Exchange (ETDEWEB)

    D. F. Emer

    2001-03-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 1999-October 2000 period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in August 2000. There has been no subsidence at any of the markers since monitoring began seven years ago. The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that maybe indicative of moisture movement at a point located directly beneath each trench. Precipitation for the period October 1999 through October 2000 was 10.44 centimeters (cm) (4.11 inches [in.]) (U.S. National Weather Service, 2000). The prior year annual rainfall (January 1999 through December 1999) was 10.13cm (3.99 in.). The highest 30-day cumulative rainfall occurred on March 8, 2000, with a total of 6.63 cm (2.61 in.). The heaviest daily precipitation occurred on February 23,2000, with a total of 1.70 cm (0.67 in.) falling in that 24-hour period. The recorded average annual rainfall for this site, from 1972 to January 1999, is 15.06 cm (5.93 in.). All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the

  15. Groundwater quality in the Tahoe and Martis Basins, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tahoe and Martis Basins and surrounding watersheds constitute one of the study units being evaluated.

  16. Operating history and environmental effects of seepage basins in chemical-separations areas of the Savannah River Plant

    International Nuclear Information System (INIS)

    Fenimore, J.W.; Horton, J.H.

    1973-01-01

    This report summarizes the history of operation and monitoring of the earthen seepage basins, presents results of a comprehensive study of radionuclide distribution in groundwater downgradient from the basins, and evaluates past performance and possible future alternatives for these basins

  17. Emergency preparedness incident response and radiation monitoring in Finland. Annual report 1999; Valmiustapahtumat ja saeteilyvalvonta. Vuosiraportti 1999

    Energy Technology Data Exchange (ETDEWEB)

    Ristonmaa, S. [ed.

    2000-04-01

    The Radiation and Nuclear Safety Authority (STUK) publishes annually a report about STUK's preparedness measures. The report describes notifications received by STUK's on duty system and further measures carried out after receiving a message. In addition, the emergence exercises STUK participated in during the year are described. The radiation situation in Finland is continuously monitored. STUK is the authority who carries out a wide range of environmental measurements, sampling and sensitive laboratory analyses. The measurement results are presented in the form of tables and graphically. (editor)

  18. Annual report on radioactive discharges from Winfrith and monitoring the environment 1991

    International Nuclear Information System (INIS)

    1992-05-01

    This annual report, the seventh, aims to provide full information on our discharges and environmental monitoring. The report is mainly graphical, comparing past and current levels with authorised limits, derived limits or the recommended limits of the International Commission on Radiological Protection (ICRP). Discharges from Winfrith are subject to Authorisations issued jointly by the Department of the Environment (DOE) and the Ministry of Agriculture, Fisheries and Food (MAFF). These Authorisations, one for discharges to the sea and one for discharges to the atmosphere, require that Winfrith establish a need to discharge; that we apply Best Practicable Means (BPM) to reduce our discharges; that our discharges are below set Authorised Limits; and that schedules of effluent and environmental monitoring are established. As a 'back stop', discharges at the limits must not result in doses to the most potentially exposed part of the local population - the critical group -exceeding 0.5 mSv per year. The limit recommended by the International Commission on Radiological Protection (ICRP) for dose to a member of the general public is 1.0 mSv per year. In September 1990 Winfrith's Steam Generating Heavy Water Reactor (SGHWR) was shut down therefore the pattern of discharges for 1991 differs from previous years. Discharges are generally reduced resulting in an even lower dose to the critical group, well below 1% of the ICRP limit and much less than 1% of the UK average natural background dose. (author)

  19. Remote sensing of trend and seasonal variability of greenhouse gas emissions from the Los Angeles basin using an FTS on Mount Wilson

    Science.gov (United States)

    Wong, C.; Fu, D.; Pongetti, T. J.; Newman, S.; Yung, Y. L.; Sander, S. P.

    2013-12-01

    Cities, such as Los Angeles, are significant sources of anthropogenic greenhouse gases (GHGs). With the growth of populations in cities worldwide, GHG emissions will increase, and monitoring the temporal trends will provide crucial data for global climate models as well as assessments of the effectiveness of control policies. Currently, continuous GHG observations in the Los Angeles basin are limited to a few in situ measurements, which are shown to be sensitive to local emissions and do not represent the Los Angeles basin well. To quantify GHG emissions from the metropolitan area, which tend to have heterogeneous characteristics, it is important to perform measurements which provide both continuous temporal and spatial coverage of the domain. Here we present observations of the major greenhouse gases, CO2 and CH4, using a spectroscopic remote sensing technique from the California Laboratory for Atmospheric Remote Sensing (CLARS) at Mount Wilson, California (1.7 km elevation). A Fourier Transform Spectrometer (FTS) deployed at the CLARS site points downward at 28 selected land surfaces in the Los Angeles basin to measure the slant column abundances of CO2, CH4, N2O, CO and O2 using reflected sunlight in the near-infrared and shortwave infrared regions. This remote sensing technique provides continuous temporal and spatial measurements in the Los Angeles basin to achieve the goal of quantifying emissions of GHGs and CO. It also serves as a test-bed for future geostationary satellite missions to measure GHGs from space such as JPL's Geostationary Carbon Process Investigation (GCPI). The path-averaged dry-air mixing ratio, XCO2 and XCH4, observed by the CLARS FTS, show significant diurnal variability that arises from emissions in the Los Angeles basin and atmospheric transport processes. High-precision data have been collected since August 2011. Here we analyze the annual and seasonal trend of the ratio XCH4:XCO2 in the Los Angeles basin observed by the CLARS FTS from

  20. Quantitative and qualitative vulnerability of the Makutupora basin aquifer Dodoma, central Tanzania

    International Nuclear Information System (INIS)

    Kongola, L.R.E.

    1999-01-01

    The rapid development of Dodoma town has raised demand for water for domestic, irrigation and industrial use. Uncontrolled human activities pose threat of contamination of the well field and damage to recharge areas of Makutupora basin. Monitoring data collected over the years indicate that the basin is overpumped in dry years and that peripheral boreholes register high nitrate levels from nearby settlements and intensive use of agrochemicals on farms within the basin

  1. Harmonic analyses of stream temperatures in the Upper Colorado River Basin

    Science.gov (United States)

    Steele, T.D.

    1985-01-01

    Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)

  2. A suspended sediment yield predictive equation for river basins in ...

    African Journals Online (AJOL)

    The fit was found to be better than those relating mean annual specific suspended sediment yield to basin area or runoff only. Since many stream gauging stations in the country have no records on fluvial sediment, the empirical equation can be used to obtain preliminary estimates of expected sediment load of streams for ...

  3. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015.

    Science.gov (United States)

    Yang, Peng; Xia, Jun; Zhan, Chesheng; Qiao, Yunfeng; Wang, Yueling

    2017-10-01

    With the threat of water shortages intensifying, the need to identify the terrestrial water storage (TWS) variation in the Tarim River Basin (TRB) becomes very significant for managing its water resource. Due to the lack of large-scale hydrological data, this study employed the Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) to monitor TWS variation in the TRB during the period of 2002-2015, cooperating with two statistical techniques, Principal Component Analysis (PCA) - Empirical Orthogonal Function (EOF) and Multiple Linear Regression (MLR). Results indicated that (1) the Tropical rainfall measuring mission (TRMM) data can be applied well in the TRB; (2) the EOF result showed that both the time series of TRMM precipitation and GRACE-derived TWS in the TRB between 2002 and 2015 were dominated by the annual signals, which were followed by the semiannual signals; (3) the linear trend for the spatially averaged GRACE-derived TWS changes exhibited an decrease of 1.6±1.1mm/a, and the EOF result indicated a significant decrease of 4.1±1.5mm/a in the north of TRB; (4) while the precipitation variations was the major driver for the TWS changes, the GLDAS-derived TWS (i.e., soil moisture) decrease and ground water decrease played the major role in the TWS decrease in the north of TRB for the significant correlation (P<0.05). The changes of TWS might be linked to excessive exploitation of water resources, increased population, and shrinking water supplies, which would impact on the water level of the lakes or reservoir. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.

    2000-01-01

    1 The role of undisturbed tropical land ecosystems in the global carbon budget is not well understood. It has been suggested that inter-annual climate variability can affect the capacity of these ecosystems to store carbon in the short term. In this paper, we use a transient version of the Terrestrial Ecosystem Model (TEM) to estimate annual carbon storage in undisturbed Amazonian ecosystems during the period 1980-94, and to understand the underlying causes of the year-to-year variations in net carbon storage for this region. 2 We estimate that the total carbon storage in the undisturbed ecosystems of the Amazon Basin in 1980 was 127.6 Pg C, with about 94.3 Pg C in vegetation and 33.3 Pg C in the reactive pool of soil organic carbon. About 83% of the total carbon storage occurred in tropical evergreen forests. Based on our model's results, we estimate that, over the past 15 years, the total carbon storage has increased by 3.1 Pg C (+ 2%), with a 1.9-Pg C (+2%) increase in vegetation carbon and a 1.2-Pg C (+4%) increase in reactive soil organic carbon. The modelled results indicate that the largest relative changes in net carbon storage have occurred in tropical deciduous forests, but that the largest absolute changes in net carbon storage have occurred in the moist and wet forests of the Basin. 3 Our results show that the strength of interannual variations in net carbon storage of undisturbed ecosystems in the Amazon Basin varies from a carbon source of 0.2 Pg C/year to a carbon sink of 0.7 Pg C/year. Precipitation, especially the amount received during the drier months, appears to be a major controller of annual net carbon storage in the Amazon Basin. Our analysis indicates further that changes in precipitation combine with changes in temperature to affect net carbon storage through influencing soil moisture and nutrient availability. 4 On average, our results suggest that the undisturbed Amazonian ecosystems accumulated 0.2 Pg C/year as a result of climate

  5. Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Michele (Columbia Basin Fish and Wildlife Authority, Portland, OR)

    2005-07-01

    The runoff volume for 2004 was below average throughout the Columbia Basin. At The Dalles the January-July runoff volume was 77% of average or 83.0 MAF. Grand Coulee, Hungry Horse, and Libby were below their Biological Opinion reservoir target elevations on April 10 at the beginning of the spring salmon migration season. All major storage reservoirs except Libby, Grand Coulee, Hungry Horse, Dworshak, and Brownlee were within a few feet of full by the end of June and early July. Overall, NOAA Biological Opinion seasonal flow targets were not met at any project for either spring or summer migrations of salmon and steelhead. Overall, spill was reduced in 2004. Implementation of Biological Opinion spill for fish passage measures was wrought with contention in 2004, particularly for summer spill which was finally the subject of litigation. The spring migration spill season began with debate among the fishery mangers and tribes and action agencies regarding spill at Bonneville Dam for the Spring Creek Hatchery release. The USFWS agreed to a spill test versus a corner collector operation to determine the best route for survival for these fish. The USFWS agreement includes no spill for early Spring Creek Hatchery releases for the next two years. Spring spill at Snake River transportation sites was eliminated after April 23, and transportation was maximized. The federal operators and regulators proposed to reduce Biological Opinion summer spill measures, while testing the impact of those reductions. This proposal was eventually rejected in challenges in the Federal Ninth Circuit Court. The Corps of Engineers reported that spill at Bonneville Dam in the 2002 to 2004 period was actually lower than reported due to a spill calibration error at the project. Because flows were low and spill levels were easily controlled few fish were observed with any signs of Gas Bubble Trauma. The annual Smolt Monitoring Program was implemented and provided in-season timing and passage

  6. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    Science.gov (United States)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  7. Drought monitoring of Tumen river basin wetlands between 1991 and 2016 using Landsat TM/ETM+

    Science.gov (United States)

    Yu, H.; Zhu, W.; Lee, W. K.; Heo, S.

    2017-12-01

    Wetlands area described as "the kidney of earth" owing to the importance of functions for stabilizing environment, long-term protection of water sources, as well as effectively minimize sediment loss, purify surface water from industrial and agricultural pollutants, and enhancing aquifer recharge. Drought monitoring in wetlands is vital due to the condition of water supply directly affecting the growth of wetland plants and local biodiversity. In this study, Vegetation Temperature Condition Index derived from Normalized Difference Vegetation Index and Land Surface Temperature is used to observe drought status from 1991 to 2016. For doing this, Landsat TM/ETM+ data for six periods are used to analytical processing. On the other hand, soil moisture maps which are acquired from CMA Land Data Assimilation System Version 1.0 for validating reliability of drought monitoring. As a result, the study shows most of area at normal moist level (decreased 25.8%) became slightly drought (increased 29.7%) in Tumen river basin cross-border (China and North Korea) wetland. The correlation between vegetation temperature condition index and soil moisture are 0.69, 0.32 and 0.2 for the layers of 0 5cm, 0 10cm, and 10 20cm, respectively. Although climate change probably contributes to the process of drought by decreasing precipitation and increasing temperature, human activities are shown as main factor that led to the process in this wetland.

  8. 7th annual report 1998. UN ECE convention on long-range transboundary air pollution. International cooperative programme on integrated monitoring of air pollution effects on ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kleemola, S.; Forsius, M. [eds.

    1998-11-01

    The Integrated Monitoring Programme (ICP IM) is part of the Effects Monitoring Strategy under the UN ECE Long-Range Transboundary Air Pollution Convention. The main aim of ICP IM is to provide a framework to observe and understand the complex changes occurring in the external environment. The monitoring and prediction of complex ecosystem effects on undisturbed reference areas require a continuous effort to improve the collection and assessment of data on the international scale. At the 1997 Task Force meeting it was decided that future annual reports from ICP IM would have a more technical character. The report could include some scientific material but also short technical descriptions of recent national activities and publications. Scientific articles should preferably be published in recognised scientific journals. The responsibility for producing annual reports would still lie on the Programme Centre, but more contributions from National Focal Points were welcomed. The content of the present Annual Report reflects the decisions of the Task Force meeting. The report gives a general overview of the ICP IM activities, the present content of the ICP IM database, and presents results from assessment activities carried out by several collaborating institutes and the ICP IM Programme Centre during the programme year 1997/98. The resources of the Programme Centre have been targeted to the revision of the Programme Manual and the EU/LIFE-project `Development of Assessment and Monitoring Techniques at Integrated Monitoring Sites in Europe`, which has limited the possibilities to carry out additional evaluations of ICP IM data. Section 1 is a short status report of the ICP IM activities, content of the IM database, including the contents of the GIS database, and the present geographical coverage of the monitoring network. Section 2 contains a report on multivariate gradient analysis applied to relate chemical and biological observations (prepared by D. de Zwart, RIVM

  9. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    Science.gov (United States)

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  10. Radioecological monitoring of the Black Sea basin following the Chernobyl NPP accident

    International Nuclear Information System (INIS)

    Kulebakina, L.G.; Polikarpov, G.G.

    1991-01-01

    A monitoring programme was drawn up to study the radioecological situation of the Black Sea basin following the Chernobyl NPP accident, with studies being carried out from May 1986 onwards to determine the levels of radioactive contamination in various parts of the Black Sea, the Sea of Azov and the Aegean Sea, including the estuaries of major rivers (Dnieper, Danube, Dniester and Don) and shelf areas of the Black Sea and the Sea of Azov. The work focused on long-lived radionuclides ( 90 Sr and 137 Cs), with the migration dynamics of these radionuclides in the aquatic environment, bed sediments and aquatic biota (including plants, molluscs, crustacea and fish) being studied. We compared the behaviour of radionuclides in the aquatic environment of the Dnieper reservoirs following the Chernobyl accident (our data) with the behaviour of radionuclides in lakes in the Urals following the Kyshtym accident (published data). As in the case of the lakes in the Urals, the Dnieper waters contain substantial concentrations of 90 Sr as a result of the Chernobyl accident, and 90 Sr therefore enters the Black Sea with the Dnieper waters. The paper compares the contribution of the Chernobyl accident to radioactive contamination of the Black Sea with that of global fallout. (author)

  11. Adaptation to changing water resources in the Ganges basin, northern India

    International Nuclear Information System (INIS)

    Moors, Eddy J.; Groot, Annemarie; Biemans, Hester; Terwisscha van Scheltinga, Catharien; Siderius, Christian; Stoffel, Markus; Huggel, Christian; Wiltshire, Andy; Mathison, Camilla; Ridley, Jeff; Jacob, Daniela; Kumar, Pankaj

    2011-01-01

    An ensemble of regional climate model (RCM) runs from the EU HighNoon project are used to project future air temperatures and precipitation on a 25 km grid for the Ganges basin in northern India, with a view to assessing impact of climate change on water resources and determining what multi-sector adaptation measures and policies might be adopted at different spatial scales. The RCM results suggest an increase in mean annual temperature, averaged over the Ganges basin, in the range 1-4 o C over the period from 2000 to 2050, using the SRES A1B forcing scenario. Projections of precipitation indicate that natural variability dominates the climate change signal and there is considerable uncertainty concerning change in regional annual mean precipitation by 2050. The RCMs do suggest an increase in annual mean precipitation in this region to 2050, but lack significant trend. Glaciers in headwater tributary basins of the Ganges appear to be continuing to decline but it is not clear whether meltwater runoff continues to increase. The predicted changes in precipitation and temperature will probably not lead to significant increase in water availability to 2050, but the timing of runoff from snowmelt will likely occur earlier in spring and summer. Water availability is subject to decadal variability, with much uncertainty in the contribution from climate change. Although global social-economic scenarios show trends to urbanization, locally these trends are less evident and in some districts rural population is increasing. Falling groundwater levels in the Ganges plain may prevent expansion of irrigated areas for food supply. Changes in socio-economic development in combination with projected changes in timing of runoff outside the monsoon period will make difficult choices for water managers. Because of the uncertainty in future water availability trends, decreasing vulnerability by augmenting resilience is the preferred way to adapt to climate change. Adaptive policies are

  12. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and

  13. Environmental monitoring of tritium risk along Romanian Danube sector

    International Nuclear Information System (INIS)

    Varlam, C.; Stefanescu, I.; Popescu, I.; Faurescu, I.; Dobrinescu, D.

    2009-01-01

    Danube basin covers the Romanian-Bulgarian sub-basin downstream of Cazane Gorge and the sub-basins of Siret and Prut rivers. Cernavoda Nuclear Power, operating a CANDU type reactor, is located in this region upstream Danube delta. Taking into account the future development of this important Romanian nuclear objective, the knowledge of the present status of tritium level becomes a necessity. Therefore, an extensive monitoring program for this radioisotope has been started along the Romanian sector of the Danube River basin, starting with Cazane Gorge and ending with Danube Delta. The tributaries from this sector: Cerna, Jiu, Olt, Arges rivers are included also in this seasonal monitoring. The average results of the seasonal variation for tritium level during 2006-2007 periods in 12 locations of mentioned areas are presented in the paper. (author)

  14. Simulation of streamflow and water quality in the Red Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    subbasin are agricultural, forested, residential, and urban.The hydrologic component of the model was run at an hourly time step and calibrated using streamflow data from three U.S. Geological Survey (USGS) streamflow-measurement stations for the period of October 1, 1994, through October 29, 1998. Daily precipitation data from one National Oceanic and Atmospheric Administration (NOAA) gage and hourly data from one NOAA gage were used for model input. The difference between observed and simulated stream- flow volume ranged from -0.8 to 2.1 percent for the 4-year period at the three calibration sites. Annual differences between observed and simulated streamflow generally were greater than the overall error for the 4-year period. For example, at a site near Stanton, Del., near the bottom of the basin (drainage area of 50.2 mi2), annual differences between observed and simulated streamflow ranged from -5.8 to 6.0 percent and the overall error for the 4-year period was -0.8 percent. Calibration errors for 36 storm periods at the three calibration sites for total volume, low-flow-recession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the rainfall data.The water-quality component of the model was calibrated using nonpoint-source monitoring data collected in 1998 at one USGS streamflowmeasurement station and other water-quality monitoring data collected at three USGS streamflowmeasurement stations. The period of record for waterquality monitoring was variable at the stations, with an end date of October 1998 but the start date ranging from October 1994 to January 1998. Because of availability, monitoring data for suspended-solids concentrations were used as surrogates for suspendedsediment concentrations, although suspended solids may underestimate suspended sediment and affect apparent accuracy of the suspended

  15. H-Area Seepage Basin (H-HWMF): Fourth quarterly 1989, groundwater quality assessment report

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    During the fourth quarter of 1989 the wells which make up the H-Area Seepage Basins (H-HWMF){sup 1} monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, and total radium.

  16. Soil erosion vulnerability in the verde river basin, southern minas gerais

    Directory of Open Access Journals (Sweden)

    Vinícius Augusto de Oliveira

    2014-06-01

    Full Text Available Soil erosion is one of the most significant environmental degradation processes. Mapping and assessment of soil erosion vulnerability is an important tool for planning and management of the natural resources. The objective of the present study was to apply the Revised Universal Soil Loss Equation (RUSLE using GIS tools to the Verde River Basin (VRB, southern Minas Gerais, in order to assess soil erosion vulnerability. A annual rainfall erosivity map was derived from the geographical model adjusted for Southeastern Brazil, calculating an annual value for each pixel. The maps of soil erodibility (K, topographic factor (LS, and use and management of soils (C were developed from soils and their uses map and the digital elevation model (DEM developed for the basin. In a GIS environment, the layers of the factors were combined to create the soil erosion vulnerability map according to RUSLE. The results showed that, in general, the soils of the VRB present a very high vulnerability to water erosion, with 58.68% of soil losses classified as "High" and "Extremely High" classes. In the headwater region of VRB, the predominant classes were "Very High" and "Extremely High" where there is predominance of Cambisols associated with extensive pastures. Furthermore, the integration of RUSLE/GIS showed an efficient tool for spatial characterization of soil erosion vulnerability in this important basin of the Minas Gerais state.

  17. Assessment of Salmonids and Their Habitat Conditions in the Walla Walla River Basin within Washington, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, Glen; Trump, Jeremy; Gembala, Mike

    2003-09-01

    trutta) had low densities, and limited distribution throughout the basin. A large return of adult spring chinook to the Touchet River drainage in 2001 produced higher densities of juvenile chinook in 2002 than have been seen in recent years, especially in the Wolf Fork. The adult return in 2002 was substantially less than what was seen in 2001. Due to poor water conditions and trouble getting personnel hired, spawning surveys were limited in 2002. Surveyors found only one redd in four Walla Walla River tributaries (Cottonwood Ck., East Little Walla Walla, West Little Walla Walla, and Mill Ck.), and 59 redds in Touchet River tributaries (10 in the North Fork Touchet, 30 in the South Fork Touchet, and 19 in the Wolf Fork). Bull trout spawning surveys in the upper Touchet River tributaries found a total of 125 redds and 150 live fish (92 redds and 75 fish in the Wolf Fork, 2 redds and 1 fish in the Burnt Fork, 0 redds and 1 fish in the South Fork Touchet, 29 redds and 71 fish in the North Fork Touchet, and 2 redds and 2 fish in Lewis Ck.). A preliminary steelhead genetics analysis was completed as part of this project. Results indicate differences between naturally produced steelhead and those produced in the hatchery. There were also apparent genetic differences among the naturally produced fish from different areas of the basin. Detailed results are reported in Bumgarner et al. 2003. Recommendations for assessment activities in 2003 included: (1) continue to monitor the Walla Walla River (focusing from the stateline to McDonald Rd.), the Mill Ck system, and the Little Walla Walla System. (2) reevaluate Whiskey Ck. for abundance and distribution of salmonids, and Lewis Ck. for bull trout density and distribution. (3) select or develop a habitat survey protocol and begin to conduct habitat inventory and assessment surveys. (4) summarize bull trout data for Mill Ck, South Fork Touchet, and Lewis Ck. (5) begin to evaluate temperature and flow data to assess if the habitat

  18. Export of Nitrogen From the Yukon River Basin to the Bering Sea

    Science.gov (United States)

    Dornblaser, M. M.; Striegl, R. G.

    2005-12-01

    The US Geological Survey measured nitrogen export from the 831,400 km2 Yukon River basin during 2001-04 as part of a five year water quality study of the Yukon River and its major tributaries. Concentrations of NO2+NO3, NH4+DON, and particulate N were measured ~6 times annually during open water and once under ice cover at three locations on the Yukon River, and on the Porcupine and Tanana Rivers. Concentration and continuous flow data were used to generate daily and annual loads of N species. NH4 concentration was generally negligible when compared to DON concentration, allowing for comparison of the relative importance of DIN vs. DON export at various watershed scales. NO2 concentration was also small compared to NO3. At Pilot Station, the last site on the Yukon before it flows into the Yukon Delta and the Bering Sea, DIN, DON, and particulate N loads averaged 19.3 × 106 kg/yr, 52.6 × 106 kg/yr, and 39.1 × 106 kg/yr, respectively. Normalized for the watershed area at Pilot Station, corresponding N yields were 1.65, 4.52, and 3.35 mmol/m2/yr. DIN yield for the Yukon at Pilot Station is substantially less than the NO3 flux reported for tropical/temperate rivers such as the Amazon, the Yangtze, and the Mississippi. DIN yield in the upper Yukon River basin is similar to that of the Mackenzie and other arctic rivers, but increases substantially downstream. This is likely due to development around Fairbanks in the Tanana River basin. When compared to other headwater basins in the upper Yukon, the Tanana basin yields about four times more DIN and two times more particulate N, while DON yields are only slightly elevated.

  19. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    OpenAIRE

    Loizeau Sébastien; Rossier Yvan; Gaudet Jean-Paul; Refloch Aurore; Besnard Katia; Angulo-Jaramillo Rafael; Lassabatere Laurent

    2017-01-01

    Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration c...

  20. Satellite-based estimates of surface water dynamics in the Congo River Basin

    Science.gov (United States)

    Becker, M.; Papa, F.; Frappart, F.; Alsdorf, D.; Calmant, S.; da Silva, J. Santos; Prigent, C.; Seyler, F.

    2018-04-01

    In the Congo River Basin (CRB), due to the lack of contemporary in situ observations, there is a limited understanding of the large-scale variability of its present-day hydrologic components and their link with climate. In this context, remote sensing observations provide a unique opportunity to better characterize those dynamics. Analyzing the Global Inundation Extent Multi-Satellite (GIEMS) time series, we first show that surface water extent (SWE) exhibits marked seasonal patterns, well distributed along the major rivers and their tributaries, and with two annual maxima located: i) in the lakes region of the Lwalaba sub-basin and ii) in the "Cuvette Centrale", including Tumba and Mai-Ndombe Lakes. At an interannual time scale, we show that SWE variability is influenced by ENSO and the Indian Ocean dipole events. We then estimate water level maps and surface water storage (SWS) in floodplains, lakes, rivers and wetlands of the CRB, over the period 2003-2007, using a multi-satellite approach, which combines the GIEMS dataset with the water level measurements derived from the ENVISAT altimeter heights. The mean annual variation in SWS in the CRB is 81 ± 24 km3 and contributes to 19 ± 5% of the annual variations of GRACE-derived terrestrial water storage (33 ± 7% in the Middle Congo). It represents also ∼6 ± 2% of the annual water volume that flows from the Congo River into the Atlantic Ocean.

  1. Application of advanced reservoir characterization, simulation and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, S.P.; Asquith, G.B.; Barton, M.D.; Cole, A.G.; Gogas, J.; Malik, M.A.; Clift, S.J.; Guzman, J.I.

    1997-11-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. This project involves reservoir characterization of two Late Permian slope and basin clastic reservoirs in the Delaware Basin, West Texas, followed by a field demonstration in one of the fields. The fields being investigated are Geraldine Ford and Ford West fields in Reeves and Culberson Counties, Texas. Project objectives are divided into two major phases, reservoir characterization and implementation. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of the two fields, the Ford Geraldine unit and Ford West field. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once reservoir characterized was completed, a pilot area of approximately 1 mi{sup 2} at the northern end of the Ford Geraldine unit was chosen for reservoir simulation. This report summarizes the results of the second year of reservoir characterization.

  2. Monitoring the ecology and environment using remote sensing in the Jinta area/Middle Reaches of Heihe River Basin

    Science.gov (United States)

    Lu, Anxin; Wang, Lihong; Chen, Xianzhang

    2003-07-01

    A major monitoring area, a part of the middle reaches of Heihe basin, was selected. The Landsat TM data in summer of 1990 and 2000 were used with interpretation on the computer screen, classification and setting up environmental investigation database (1:100000) combined with DEM, land cover/land use, land type data and etc., according to the environmental classification system. Then towards to the main problems of environment, the spatial statistical analysis and dynamic comparisons were carried out using the database. The dynamic monitoring results of 1999 and 2000 show that the changing percentage with the area of 6 ground objects are as follows: land use and agriculture land use increased by 34.17% and 19.47% respectively, wet land and water-body also increased by 6.29% and 8.03% respectively; unused land increased by 1.73% and the biggest change is natural/semi-natural vegetation area, decreased by 42.78%, the main results above meat with the requirements of precise and practical conditions by the precise exam and spot check. With the combinations of using TM remote sensing data and rich un-remote sensing data, the investigations of ecology and environment and the dynamic monitoring would be carried out efficiently in the arid area. It is a dangerous signal of large area desertification if the area of natural/semi-natural vegetation is reduced continuously and obviously.

  3. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    Science.gov (United States)

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  4. Emergency preparedness incident response and radiation monitoring in Finland. Annual report 1998; Valmiustapahtumat ja valtakunnallinen saeteilyvalvonta. Vuosiraportti 1998

    Energy Technology Data Exchange (ETDEWEB)

    Ristonmaa, S. [ed.

    1999-03-01

    The Radiation and Nuclear Safety Authority (STUK) publishes annually a report about STUK's preparedness measures. The report describes notifications received by STUK's on duty system and further measures carried out after receiving a message. In addition, the emergence exercises STUK participated in during the year are described. The radiation situation in Finland is continuously monitored. STUK is the authority who carries out a wide range of environmental measurements, sampling and sensitive laboratory analyses. The measurement results are presented in the form of tables and graphically. (editor)

  5. Floods in the Niger basin - analysis and attribution

    Science.gov (United States)

    Aich, V.; Koné, B.; Hattermann, F. F.; Müller, E. N.

    2014-08-01

    This study addresses the increasing flood risk in the Niger basin and assesses the damages that arise from flooding. Statistics from three different sources (EM-DAT, Darthmouth Flood Observatory, NatCat Munich RE) on people affected by floods show positive trends for the entire basin beginning in the 1980s. An assessment of four subregions across the Niger basin indicates even exponential trends for the Sahelian and Sudanian regions. These positive trends for flooding damage match up to a time series of annual maximum discharge (AMAX): the strongest trends in AMAX are detected in the Sahelian and Sudanian regions, where the population is also increasing the fastest and vulnerability generally appears to be very high. The joint effect of these three factors can possibly explain the exponential increase in people affected by floods in these subregions. In a second step, the changes in AMAX are attributed to changes in precipitation and land use via a data-based approach within a hypothesis-testing framework. Analysis of rainfall, heavy precipitation and the runoff coefficient shows a coherent picture of a return to wet conditions in the basin, which we identify as the main driver of the increase in AMAX in the Niger basin. The analysis of flashiness (using the Richards-Baker Index) and the focus on the "Sahel Paradox" of the Sahelian region reveal an additional influence of land-use change, but it seems minor compared to the increase in precipitation.

  6. Surface runoff stimation for basins without discharge measured data in Corrientes, Argentina

    Directory of Open Access Journals (Sweden)

    Vanesa Y. Bohn

    2010-06-01

    Full Text Available The oscillation of the water balance influence was evidenced on the superficial fluxes hydrologic regime. However, the correspondence between the precipitation and the volume was determined by the basin physic conditions and the rain properties. For this reason, the correlation analysis between both variables was utilized for its relation type establishment. The aim is to analyze the behaviour of some hydrological variables of the Santa Lucia river basin and to analyze the relation between the water excess and the flow. The Thornthwaite & Mather methodology was used. All the water balance of the Santa Lucía river basin indicated water excess in the soil. In some cases, the 600 mm annual were surpassed. Finally, the correlation between the precipitation values and the volume was found.

  7. Spatio-temporal trends of rainfall across Indian river basins

    Science.gov (United States)

    Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana

    2018-04-01

    Daily gridded high-resolution rainfall data of India Meteorological Department at 0.25° spatial resolution (1901-2015) was analyzed to detect the trend in seasonal, annual, and maximum cumulative rainfall for 1, 2, 3, and 5 days. The present study was carried out for 85 river basins of India during 1901-2015 and pre- and post-urbanization era, i.e., 1901-1970 and 1971-2015, respectively. Mann-Kendall ( α = 0.05) and Theil-Sen's tests were employed for detecting the trend and percentage of change over the period of time, respectively. Daily extreme rainfall events, above 95 and 99 percentile threshold, were also analyzed to detect any trend in their magnitude and number of occurrences. The upward trend was found for the majority of the sub-basins for 1-, 2-, 3-, and 5-day maximum cumulative rainfall during the post-urbanization era. The magnitude of extreme threshold events is also found to be increasing in the majority of the river basins during the post-urbanization era. A 30-year moving window analysis further revealed a widespread upward trend in a number of extreme threshold rainfall events possibly due to urbanization and climatic factors. Overall trends studied against intra-basin trend across Ganga basin reveal the mixed pattern of trends due to inherent spatial heterogeneity of rainfall, therefore, highlighting the importance of scale for such studies.

  8. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China.

    Science.gov (United States)

    Xue, Jie; Gui, Dongwei

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth's hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  9. Analysis of temporal and spatial trends of hydro-climatic variables in the Wei River Basin.

    Science.gov (United States)

    Zhao, Jing; Huang, Qiang; Chang, Jianxia; Liu, Dengfeng; Huang, Shengzhi; Shi, Xiaoyu

    2015-05-01

    The Wei River is the largest tributary of the Yellow River in China. The relationship between runoff and precipitation in the Wei River Basin has been changed due to the changing climate and increasingly intensified human activities. In this paper, we determine abrupt changes in hydro-climatic variables and identify the main driving factors for the changes in the Wei River Basin. The nature of the changes is analysed based on data collected at twenty-one weather stations and five hydrological stations in the period of 1960-2010. The sequential Mann-Kendall test analysis is used to capture temporal trends and abrupt changes in the five sub-catchments of the Wei River Basin. A non-parametric trend test at the basin scale for annual data shows a decreasing trend of precipitation and runoff over the past fifty-one years. The temperature exhibits an increase trend in the entire period. The potential evaporation was calculated based on the Penman-Monteith equation, presenting an increasing trend of evaporation since 1990. The stations with a significant decreasing trend in annual runoff mainly are located in the west of the Wei River primarily interfered by human activities. Regression analysis indicates that human activity was possibly the main cause of the decline of runoff after 1970. Copyright © 2015. Published by Elsevier Inc.

  10. Benthic disturbance and monitoring experiment in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.

    Environmental impact assessment studies for deep-sea manganese nodule mining have been initiated in the Central indian Ocean Basin since 1995. As a part of the first phase for collecting the benthic baseline data, echosounding, subbottom profiling...

  11. Temporal variations of water and sediment fluxes in the Cointzio river basin, central Mexico

    Science.gov (United States)

    Duvert, C.; Gratiot, N.; Navratil, O.; Esteves, M.; Prat, C.; Nord, G.

    2009-04-01

    The STREAMS program (Sediment TRansport and Erosion Across MountainS) was launched in 2006 to study suspended sediment dynamics in mountainous areas. Two watersheds were selected as part of the program: the Bléone river basin in the French Alps, and the Cointzio river basin (636 km2), located in the mountainous region of Michoacán, in central Mexico. The volcanic soils of the Cointzio catchment undergo important erosion processes, especially during flashflood events. Thus, a high-frequency monitoring of sediment transport is highly required. The poster presents the high-frequency database obtained from the 2008 hydrological season at the Santiago Undameo gauged station, located at the basin's outlet. Suspended Sediment Concentration (SSC) was estimated every 10 minutes by calibrating turbidity measurements with bottle sampling acquired on a double-daily basis. Water discharge time-series was approximated with continuous water-level measurements (5 minutes time-step), and a stage-discharge rating curve. Our investigation highlights the influence of sampling frequency on annual water and sediment fluxes estimate. A daily or even a weekly water-level measurement provides an unexpectedly reliable assessment of the seasonal water fluxes, with an under-estimation of about 5 % of the total flux. Concerning sediment fluxes, a high-frequency SSC survey appears to be necessary. Acquiring SSC data even twice a day leads to a significant (over 30 %) under-estimation of the seasonal sediment load. These distinct behaviors can be attributed to the fact that sediment transport almost exclusively occurs during brief night flood events, whereas exfiltration on the watershed always provides a base flow during the daily water-level measurements.

  12. Simulation of streamflow and water quality in the White Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    , residential, and urban.The hydrologic component of the model was run at an hourly time step and primarily calibrated using streamflow data from two U.S. Geological Survey (USGS) streamflow-measurement stations for the period of October 1, 1994, through October 29, 1998. Additional calibration was done using data from two other USGS streamflow-measurement stations with periods of record shorter than the calibration period. Daily precipitation data from two National Oceanic and Atmospheric Administration (NOAA) gages and hourly precipitation and other meteorological data for one NOAA gage were used for model input. The difference between simulated and observed streamflow volume ranged from -0.9 to 1.8 percent for the 4-year period at the two calibration sites with 4-year records. Annual differences between observed and simulated streamflow generally were greater than the overall error. For example, at a site near the bottom of the basin (drainage area of 89.1 mi2), annual differences between observed and simulated streamflow ranged from -5.8 to 14.4 percent and the overall error for the 4-year period was -0.9 percent. Calibration errors for 36 storm periods at the two calibration sites for total volume, low-flowrecession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were within the recommended criteria of 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the hourly rainfall data.The water-quality component of the model was calibrated using data collected by the USGS and state agencies at three USGS streamflow-measurement stations with variable water-quality monitoring periods ending October 1998. Because of availability, monitoring data for suspended-solids concentrations were used as surrogates for suspended-sediment concentrations, although suspended solids may underestimate suspended sediment and affect apparent accuracy of the suspended-sediment simulation. Comparison of

  13. Representing Geospatial Environment Observation Capability Information: A Case Study of Managing Flood Monitoring Sensors in the Jinsha River Basin

    Science.gov (United States)

    Hu, Chuli; Guan, Qingfeng; Li, Jie; Wang, Ke; Chen, Nengcheng

    2016-01-01

    Sensor inquirers cannot understand comprehensive or accurate observation capability information because current observation capability modeling does not consider the union of multiple sensors nor the effect of geospatial environmental features on the observation capability of sensors. These limitations result in a failure to discover credible sensors or plan for their collaboration for environmental monitoring. The Geospatial Environmental Observation Capability (GEOC) is proposed in this study and can be used as an information basis for the reliable discovery and collaborative planning of multiple environmental sensors. A field-based GEOC (GEOCF) information representation model is built. Quintuple GEOCF feature components and two GEOCF operations are formulated based on the geospatial field conceptual framework. The proposed GEOCF markup language is used to formalize the proposed GEOCF. A prototype system called GEOCapabilityManager is developed, and a case study is conducted for flood observation in the lower reaches of the Jinsha River Basin. The applicability of the GEOCF is verified through the reliable discovery of flood monitoring sensors and planning for the collaboration of these sensors. PMID:27999247

  14. Hydrological impacts of precipitation extremes in the Huaihe River Basin, China.

    Science.gov (United States)

    Yang, Mangen; Chen, Xing; Cheng, Chad Shouquan

    2016-01-01

    Precipitation extremes play a key role in flooding risks over the Huaihe River Basin, which is important to understand their hydrological impacts. Based on observed daily precipitation and streamflow data from 1958 to 2009, eight precipitation indices and three streamflow indices were calculated for the study of hydrological impacts of precipitation extremes. The results indicate that the wet condition intensified in the summer wet season and the drought condition was getting worse in the autumn dry season in the later years of the past 50 years. The river basin had experienced higher heavy rainfall-related flooding risks in summer and more severe drought in autumn in the later of the period. The extreme precipitation events or consecutive heavy rain day events led to the substantial increases in streamflow extremes, which are the main causes of frequent floods in the Huaihe River Basin. The large inter-annual variation of precipitation anomalies in the upper and central Huaihe River Basin are the major contributor for the regional frequent floods and droughts.

  15. Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost

    Science.gov (United States)

    Toohey, Ryan C; Herman-Mercer, Nicole M.; Schuster, Paul F.; Mutter, Edda A.; Koch, Joshua C.

    2016-01-01

    The Yukon River Basin, underlain by discontinuous permafrost, has experienced a warming climate over the last century that has altered air temperature, precipitation, and permafrost. We investigated a water chemistry database from 1982 to 2014 for the Yukon River and its major tributary, the Tanana River. Significant increases of Ca, Mg, and Na annual flux were found in both rivers. Additionally, SO4 and P annual flux increased in the Yukon River. No annual trends were observed for dissolved organic carbon (DOC) from 2001 to 2014. In the Yukon River, Mg and SO4 flux increased throughout the year, while some of the most positive trends for Ca, Mg, Na, SO4, and P flux occurred during the fall and winter months. Both rivers exhibited positive monthly DOC flux trends for summer (Yukon River) and winter (Tanana River). These trends suggest increased active layer expansion, weathering, and sulfide oxidation due to permafrost degradation throughout the Yukon River Basin.

  16. Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin

    Science.gov (United States)

    Shamsudduha, M.; Taylor, R. G.; Longuevergne, L.

    2012-02-01

    Satellite monitoring of changes in terrestrial water storage provides invaluable information regarding the basin-scale dynamics of hydrological systems where ground-based records are limited. In the Bengal Basin of Bangladesh, we test the ability of satellite measurements under the Gravity Recovery and Climate Experiment (GRACE) to trace both the seasonality and trend in groundwater storage associated with intensive groundwater abstraction for dry-season irrigation and wet-season (monsoonal) recharge. We show that GRACE (CSR, GRGS) datasets of recent (2003 to 2007) groundwater storage changes (ΔGWS) correlate well (r = 0.77 to 0.93, p value CSR. Changes in surface water storage estimated from a network of 298 river gauging stations and soil-moisture derived from Land Surface Models explain 22% and 33% of ΔTWS, respectively. Groundwater depletion estimated from borehole hydrographs (-0.52 ± 0.30 km3 yr-1) is within the range of satellite-derived estimates (-0.44 to -2.04 km3 yr-1) that result from uncertainty associated with the simulation of soil moisture (CLM, NOAH, VIC) and GRACE signal-processing techniques. Recent (2003 to 2007) estimates of groundwater depletion are substantially greater than long-term (1985 to 2007) mean (-0.21 ± 0.03 km3 yr-1) and are explained primarily by substantial increases in groundwater abstraction for the dry-season irrigation and public water supplies over the last two decades.

  17. Leveraging Trillions of Pixels for Flood Mitigation Decisions Support in the Rio Salado Basin, Argentina

    Science.gov (United States)

    Sullivan, J.; Routh, D.; Tellman, B.; Doyle, C.; Tomlin, J. N.

    2017-12-01

    The Rio Salado River Basin in Argentina is an economically important region that generates 25-30 percent of Argentina's grain and meat production. Between 2000-2011, floods in the basin caused nearly US$4.5 billion in losses and affected 5.5 million people. With the goal of developing cost-efficient flood monitoring and prediction capabilities in the Rio Salado Basin to support decision making, Cloud to Street is developing satellite based analytics to cover information gaps and improve monitoring capacity. This talk will showcase the Flood Risk Dashboard developed by Cloud to Street to support monitoring and decision-making at the level of provincial and national water management agencies in the Rio Salado Watershed. The Dashboard is based on analyzing thousands of MODIS, Landsat, and Sentinel scenes in Google Earth Engine to reconstruct the spatial history of flooding in the basin. The tool, iteratively designed with the end-user, shows a history of floodable areas with specific return times, exposed land uses and population, precipitation hyetographs, and spatial and temporal flood trends in the basin. These trends are used to understand both the impact of past flood mitigation investments (i.e. wetland reconstruction) and identify shifting flood risks. Based on this experience, we will also describe best practices on making remote sensing "flood dashboards" for water agencies.

  18. Radiation protection and ambient radioactivity monitoring in the area of the Asse mine. Annual report 2005

    International Nuclear Information System (INIS)

    Meyer, H.; Wanka, T.

    2006-01-01

    Radiation protection measurements in the Asse mine and its environment were continued. Programmes for monitoring off-air and the environment more or less summarize monitoring measures and measurements so far. 358 measurements were made, i.e. as many as in the year before. All values recorded were in the range of natural background activity. In some cases, also long-term effects of early nuclear weapons tests and of the Chernobyl accident were identified. All staff members were monitored in accordance with the Radiation Protection Ordinance, and local doses, local dose rates and mine air activity were recorded in the framework of occupational radiation protection. None of the measurements exceeded the permissible personal doses and activities for occulpationally exposed persons. In the off-air of the salt mine, low concentrations of H-3, C-14, Pb-10 and Rn-222 including Rn-220 as well as short-lived radon decay products were measured. Concentrations in the environment of the shaft as calculated from the annual measurements were lower in some instances than the average natural concentrations of these nuclides. Radiation exposure from emissions in the most unfavourable site in the vicinity was far below the limiting values set by the Radiation Protection Ordinance. Storage of radioactive waste and research activities in the Asse salt mine resulted in no significantly higher population exposure in the surrounding villages. (orig.)

  19. The Vigil Network: A means of observing landscape change in drainage basins

    Science.gov (United States)

    Osterkamp, W.R.; Emmett, W.W.; Leopold, Luna Bergere

    1991-01-01

    Long-term monitoring of geomorphic, hydrological, and biological characteristics of landscapes provides an effective means of relating observed change to possible causes of the change. Identification of changes in basin characteristics, especially in arid areas where the response to altered climate or land use is generally rapid and readily apparent, might provide the initial direct indications that factors such as global warming and cultural impacts have affected the environment. The Vigil Network provides an opportunity for earth and life scientists to participate in a systematic monitoring effort to detect landscape changes over time, and to relate such changes to possible causes. The Vigil Network is an ever-increasing group of sites and basins used to monitor landscape features with as much as 50 years of documented geomorphic and related observations.

  20. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin

    Science.gov (United States)

    Beighley, R.E.; Eggert, K.G.; Dunne, T.; He, Y.; Gummadi, V.; Verdin, K.L.

    2009-01-01

    Presented here is a model framework based on a land surface topography that can be represented with various degrees of resolution and capable of providing representative channel/floodplain hydraulic characteristics on a daily to hourly scale. The framework integrates two models: (1) a water balance model (WBM) for the vertical fluxes and stores of water in and through the canopy and soil layers based on the conservation of mass and energy, and (2) a routing model for the horizontal routing of surface and subsurface runoff and channel and floodplain waters based on kinematic and diffusion wave methodologies. The WBM is driven by satellite-derived precipitation (TRMM_3B42) and air temperature (MOD08_M3). The model's use of an irregular computational grid is intended to facilitate parallel processing for applications to continental and global scales. Results are presented for the Amazon Basin over the period Jan 2001 through Dec 2005. The model is shown to capture annual runoff totals, annual peaks, seasonal patterns, and daily fluctuations over a range of spatial scales (>1, 000 to Amazon vary by approximately + /− 5 to 10 cm, and the fractional components accounting for these changes are: root zone soil moisture (20%), subsurface water being routed laterally to channels (40%) and channel/floodplain discharge (40%). Annual variability in monthly water storage changes by + /− 2·5 cm is likely due to 0·5 to 1 month variability in the arrival of significant rainfall periods throughout the basin.