WorldWideScience

Sample records for based nuclear science

  1. NUCLEONICA: a nuclear science portal

    International Nuclear Information System (INIS)

    Magill, J.; Galy, J.; Dreher, R.; Hamilton, D.; Tufan, M.; Normand, C.; Schwenk-Ferrero, A.; Wiese, H.W.

    2008-01-01

    NUCLEONICA is a new nuclear science web portal from the European Commission's Joint Research Centre. The portal provides a customizable, integrated environment and collaboration platform for the nuclear sciences using the latest 'Web 2.0' dynamic technology. NUCLEONICA is aimed at professionals, academics and students working with radionuclides in fields as diverse as the life sciences (e.g., biology, medicine, agriculture), the earth sciences (geology, meteorology, environmental science) and the more traditional disciplines such as nuclear power, health physics and radiation protection, nuclear and radio-chemistry, and astrophysics. It is also used as a knowledge management tool to preserve nuclear knowledge built up over many decades by creating modern web-based versions of so-called legacy computer codes. (authors)

  2. Cyclotron based nuclear science. Progress report, April 1, 1985-March 31, 1986

    International Nuclear Information System (INIS)

    Youngblood, D.H.

    1986-08-01

    Progress report for cyclotron based nuclear science cyclotron facility are summarized. Research is described under the headings heavy ion reactions, nuclear theory, atomic studies and activation analysis, superconducting cyclotron and instrumentation. Publications are listed

  3. Nuclear agricultural sciences in China

    International Nuclear Information System (INIS)

    Xu Bujin

    2004-01-01

    Nuclear technique is a powerful scientific tool in agricultural research, an area with fruitful achievements in China. Nuclear technique application in agriculture based on the development of related science and technology is of a high technical area, and also a meaningful aspect of non-electrical power application of nuclear technique. Nuclear Agricultural Sciences is an important component of agricultural science and technology, and has been made a lot of significant achievements, which has made remarkable contribution to the development in economy, society and ecology of China. This article reviews the achievements and present situation of Nuclear Agricultural Sciences in China briefly. For promoting its development, the author strongly suggests that Chinese government bodies should put more attention to the study on the application of nuclear technique in agriculture to make further more contributions to Chinese society and agriculture. (authors)

  4. The NUCLEONICA Nuclear Science Portal

    International Nuclear Information System (INIS)

    Magill, Joseph; Dreher, Raymond

    2009-01-01

    NUCLEONICA (www.nucleonica.net) is a new nuclear science web portal which provides a customisable, integrated environment and collaboration platform using the latest internet 'Web 2.0' technology. NUCLEONICA is aimed at professionals, academics and students working in nuclear power, health physics and radiation protection, nuclear and radio-chemistry, and astrophysics. A unique feature of the portal is the wide range of user friendly web-based nuclear science applications. The portal is also ideal for education and training purposes and as a knowledge management platform to preserve nuclear knowledge built up over many decades.

  5. The European Nuclear Science network touches base at CERN

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    ENSAR (European Nuclear Science and Applications Research) is an EU-supported project, which aims at fostering cooperation within the European low-energy nuclear physics community through the active sharing of expertise and best practices. The project also includes a transnational access programme to allow a large community of users to access the participating facilities, which include CERN’s ISOLDE. In the last week of April, CERN hosted the General Assembly and Programme Coordination Committee meetings, about 18 months after the project’s kick-off.   Participants in the ENSAR project. ENSAR involves 30 partner institutes, which include the seven large nuclear physics facilities in Europe. A large part of the European nuclear physics community is represented in ENSAR, in particular scientists who are performing research related to nuclear structure, nuclear astrophysics and applications of nuclear science. In 2010, the project was awarded 8 million euros from the Europe...

  6. Practice and exploration: build nuclear science and technology information resources management system based on the TRS platform

    International Nuclear Information System (INIS)

    Huang Jing; Meng Xu

    2010-01-01

    Nuclear science and technology information has played a very important role in the development of Chinese nuclear industry. In information explosion and information technology swift development's today, how to use information technology method to management and shared the nuclear information of nuclear research institutes, nuclear power plants and other nuclear-related units, become an important subject of nuclear information work. TRS information resource management platform provide a doable solution to manage and share the nuclear science and technology information. Nuclear Power Institute of China has built a nuclear science and technology information resources management system based on the TRS platform, through some steps just like system design, re-development and resource building. This management system has served for the research, testing, production and operation. (authors)

  7. Applications of Nuclear Science for Stewardship Science

    International Nuclear Information System (INIS)

    Cizewski, Jolie A

    2013-01-01

    Stewardship science is research important to national security interests that include stockpile stewardship science, homeland security, nuclear forensics, and non-proliferation. To help address challenges in stewardship science and workforce development, the Stewardship Science Academic Alliances (SSAA) was inaugurated ten years ago by the National Nuclear Security Administration of the U. S. Department of Energy. The goal was to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper presents an overview of recent research in low-energy nuclear science supported by the Stewardship Science Academic Alliances and the applications of this research to stewardship science.

  8. Nuclear science teaching

    International Nuclear Information System (INIS)

    1968-01-01

    A Panel of Experts on Nuclear Science Teaching met in Bangkok from 15 to 23 July 1968 to review the present status of an need for teaching of topics related to nuclear science at the secondary and early university level including teacher training, and to suggest appropriate ways of introducing these topics into the science curricula. This report contains the contributions of the members of the Panel, together with the general conclusions and recommendations for the development of school and early university curricula and training programs, for the improvement of teaching materials and for the safest possible handing of radioactive materials in school and university laboratories. It is hoped that the report will be of use to all nuclear scientists and science educators concerned with modernizing their science courses by introducing suitable topics and experiments in nuclear science

  9. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1976-01-01

    Advances in Nuclear Science and Technology, Volume 9 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of the possible consequences of a large-scale release of radioactivity from a nuclear reactor in the event of a serious accident. This text then discusses the extension of conventional perturbation techniques to multidimensional systems and to high-order approximations of the Boltzmann equation.

  10. Nuclear science in the 20th century. Nuclear technology applications in material science

    International Nuclear Information System (INIS)

    Pei Junchen; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear technology to material science has led to a new cross subject, nuclear material science (also named nuclear solid physics) which covers material analysis, material modification and new material synthesis. This paper reviews the development of nuclear technical applications in material science and the basic physics involved

  11. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1973-01-01

    Advances in Nuclear Science and Technology, Volume 7 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of irradiation-induced void swelling in austenitic stainless steels. This text then examines the importance of various transport processes for fission product redistribution, which depends on the diffusion data, the vaporization properties, and the solubility in the fuel matrix. Other chapters co

  12. Proceedings of the specialist research meeting on nuclear science information, (5)

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Takeuchi, Takayuki; Mizuma, Mitsuo

    1985-02-01

    The Research Reactor Institute of Kyoto University held two meetings on nuclear science information in the academic year of 1984. The titles of the presented papers are: (1) Information retieval in nuclear safety; (2) Information retrieval in high-pressure gas safety; (3) Construction of nuclear science information data base at the Research Reactor Institute of Kyoto University (II); (4) Nuclear science information data base at the Research Reactor Institute of Kyoto University (KURRIP)*; (5) Nuclear structure and disintegration data base; (6) Evaluated nuclear structure data file and (7) World climate data file. This report contains the full text of these papers. (author)

  13. Visualizing the nuclear science and technology knowledge domain

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Bruno Mattos Souza de Souza; Honaiser, Eduardo H.R. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)]. E-mails: brunomelo@ieee.org; ehonaiser@yahoo.com.br

    2007-07-01

    In this paper, a knowledge domain visualization approach is applied to the nuclear science and technology fields. A so-called concept density map based on the abstracts of the papers presented at the ICONE 14 is constructed. The concept map provides an overview of the nuclear science and technology fields by visualizing the associations between their main concepts. To analyze recent developments the concept map is compared with a concept map based on abstracts of earlier ICONE meetings. The analysis presented in the paper provides insight into the structure of the nuclear science and technology fields and into the most significant developments carried out during the last few years. (author)

  14. Nuclear science in the 20th century. Nuclear agricultural science

    International Nuclear Information System (INIS)

    Liu Jun; Xu Furong; Zheng Chunkai

    2003-01-01

    Nuclear science and technology have been successfully applied to many subjects, nuclear agriculture being one of the most important applications. We present a general review of the applications of nuclear radiation and nuclear tracer techniques in agriculture. The development of nuclear agriculture in China is also reviewed briefly

  15. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  16. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    International Nuclear Information System (INIS)

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R and D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  17. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  18. Spallation-based science and technology and associated nuclear data requirements

    International Nuclear Information System (INIS)

    Bowman, C.D.; Lisowski, P.W.; Arthur, E.D.

    1990-01-01

    Rapid advances in accelerator technology in recent years promise average proton beam currents as high as 250 mA with energies greater than one GeV. Such an accelerator could produce very high intensities of neutrons and other nuclear particles thus opening up new areas of science and technology. An example is the efficient burning of transuranic and fission product waste. With such a spallation-burner it appears that high-level waste might be converted to low-level waste on a time scale comparable to the human lifespan at a reasonable additional cost for electric power generation. The emphasis of this paper is on the design of a high power proton target for neutron production, on the nuclear data needed to operate this target safely and effectively, and on data requirements for transmutation. It is suggested that a pilot facility consisting of a 1.6 GeV accelerator and target operating at 25 ma is the next major step in developing this technology. Bursts of protons near the terawatt level might also be generated using such an accelerator with a proton accumulator ring. Research prospects based on such proton bursts are briefly described. The status of established nuclear data needs and of accelerator-based sources for nuclear data measurements is reviewed. (author)

  19. Spallation-based science and technology and associated nuclear data requirements

    International Nuclear Information System (INIS)

    Bowman, C.D.; Lisowski, P.W.; Arthur, E.D.

    1990-01-01

    Rapid advances in accelerator technology in recent years promise average proton beam currents as high as 250 mA with energies greater than one GeV. Such an accelerator could produce very high intensities of neutrons and other nuclear particles thus opening up new areas of science and technology. An example is the efficient burning of transuranic and fission product waste. With such a spallation-burner it appears that high-level waste might be converted to low-level waste on a time scale comparable to the human lifespan at a reasonable additional cost for electric power generation. The emphasis of this paper is on the design of a high power proton target for neutron production, on the nuclear data needed to operate this target safely and effectively, and on data requirements for transmutation. It is suggested that a pilot facility consisting of a 1.6 GeV accelerator and target operating at 25 ma is the next major step in developing this technology. Bursts of protons near the terawatt level might also be generated using such an accelerator with a proton accumulator ring. Research prospects based on such proton bursts are briefly described. The status of established nuclear data needs and of accelerator-based sources for nuclear data measurements is reviewed. 6 refs., 8 figs., 2 tabs

  20. AFRA Network for Education in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Hashim, O.N.; Wanjala, F.

    2017-01-01

    The Africa Regional Cooperative Agreement for Research Development and Training related to Science and Technology (AFRA) established the AFRA Network for Education in Nuclear Science and Technology (AFRA-NEST) in order to implement AFRA strategy on Human Resource Development (HRD) and Nuclear Knowledge Management (NKM). The strategies for implementing the objectives are: to use ICT for web-based education and training; recognition of Regional Designated Centres (RDCs) for professional nuclear education in nuclear science and technology, and organization of harmonized and accredited programs at tertiary levels and awarding of fellowships/scholarships to young and brilliant students for teaching and research in the various nuclear disciplines

  1. Future of nuclear science

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A report is presented by the Ad Hoc Panel on the Future of Nuclear Science on its assessment of the scientific objectives and unexplored questions of nuclear science and recommendations of the manpower, funding, and facilities required to realize its full potential. Nuclear research and its facilities and budgetary, sociological, and application aspects of this research are considered

  2. Non-proliferation and advances in nuclear science

    International Nuclear Information System (INIS)

    Iyengar, P.K.

    1995-01-01

    So far, the non-proliferation treaty (NPT) has concentrated on safeguard regimes based on technologies relating to the production of uranium and plutonium in nuclear reactors, and on their potential diversion for use in nuclear weapons. As nuclear science advances, however, nuclear technology both peaceful and for weapons will change, and for the NPT to remain relevant, it must reflect these changes. At this juncture, when the NPT is coming up for review in a year's time, it is important for physicists to take a fresh look at recent advances in nuclear science, and inform the policy-makers and the public at large about their potential for impacting nuclear technology in the future. In this article a few such advances are highlighted and their implications for the NPT are considered. (author). 4 refs

  3. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  4. Multimedia encyclopedia of nuclear science

    International Nuclear Information System (INIS)

    Blanc, J.A.; Langlands, T.L.M.; Crooks, J.R.; Milne-Jones, S.R.; D'Urso, C.A.; Stone, C.A.

    1997-01-01

    We are developing a multimedia encyclopedia that provides a framework for students to learn nuclear science. A variety of media formats are used to present concepts, including text, static figures, animations, and video. Two special presentation formats use dynamically produced simulations to expose students to nuclear science relationships. These media types provide greater interactivity and flexibility than simple animations. Students access information through tutorials, a dictionary of nuclear science terms, biographies of notable scientists, and a timeline of nuclear science history.The tutorial organization emphasizes the interrelationships among topics. We present an overview of the encyclopedia. (author)

  5. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  6. INTERNET and information about nuclear sciences. The world wide web virtual library: nuclear sciences

    International Nuclear Information System (INIS)

    Kuruc, J.

    1999-01-01

    In this work author proposes to constitute new virtual library which should centralize the information from nuclear disciplines on the INTERNET, in order to them to give first and foremost the connection on the most important links in set nuclear sciences. The author has entitled this new virtual library The World Wide Web Library: Nuclear Sciences. By constitution of this virtual library next basic principles were chosen: home pages of international organizations important from point of view of nuclear disciplines; home pages of the National Nuclear Commissions and governments; home pages of nuclear scientific societies; web-pages specialized on nuclear problematic, in general; periodical tables of elements and isotopes; web-pages aimed on Chernobyl crash and consequences; web-pages with antinuclear aim. Now continue the links grouped on web-pages according to single nuclear areas: nuclear arsenals; nuclear astrophysics; nuclear aspects of biology (radiobiology); nuclear chemistry; nuclear company; nuclear data centres; nuclear energy; nuclear energy, environmental aspects of (radioecology); nuclear energy info centres; nuclear engineering; nuclear industries; nuclear magnetic resonance; nuclear material monitoring; nuclear medicine and radiology; nuclear physics; nuclear power (plants); nuclear reactors; nuclear risk; nuclear technologies and defence; nuclear testing; nuclear tourism; nuclear wastes; nuclear wastes. In these single groups web-links will be concentrated into following groups: virtual libraries and specialized servers; science; nuclear societies; nuclear departments of the academic institutes; nuclear research institutes and laboratories; centres, info links

  7. Nuclear Science Capacity Building in Kenya: Challenges and Opportunities

    International Nuclear Information System (INIS)

    Mangala, J. M.

    2017-01-01

    Kenya's significant involvement in Nuclear Science and Technology can be traced back to 1965 when the country became a member state of the International Atomic Energy Agency (IAEA). In 1978, Kenya formulated a project for the establishment of the ''Nuclear Science Laboratory'' at the University of Nairobi that soon after, received assistance from International Atomic Energy Agency. The laboratory was expected to be a base for the promotion of nuclear science technologies in the country was started in 1979 and has since developed into a fully-fledged institute of the University of Nairobi. In general, six main areas of nuclear science applications have continued to receive IAEA assistance; during the past ten years ; agriculture and soil management (30%), livestock production , introduction to nuclear power production (21%)- radiation oncology in cancer management and nuclear medicine (16%). Smaller shares went to nuclear safety (9%), nuclear engineering and technology (8%), industry and water resource management (7%) and nuclear physics and chemistry (5%). At present, the Agency is supporting several technical co-operation projects, four of which are in agriculture and two in nuclear physics and chemistry with additional assistance in the areas of manpower development, nuclear medicine, non-destructive testing techniques and radioactive waste management. Thus, through Government initiatives, and with the assistance of IAEA, quite a number of specialist national laboratories for nuclear science application have emerged

  8. Nuclear science and engineering workshop for secondary science teachers

    International Nuclear Information System (INIS)

    Miller, W.H.; Neumeyer, G.M.; Langhorst, S.M.

    1992-01-01

    A 2-week workshop has been held for the past 10 yr at the University of Missouri-Columbia for secondary science teachers to increase their knowledge of nuclear science and its applications. It is sponsored jointly by Union Electric Company (St. Louis, Missouri), the University of Missouri-Columbia, the American Nuclear Society (ANS) student branch at the University of Missouri-Columbia, and the Central/Eastern Section of the ANS. The workshop focuses on two principal educational areas: basic nuclear science and its applications and nuclear energy systems. The philosophy of the workshop is to provide factual information without emphasis on the political issues of the use of nuclear without emphasis on the political issues of the use of nuclear science in the modern society, allowing the participants to form their own perceptions of the risks and benefits of nuclear technology. The paper describes the workshop organization, curriculum, and evaluation

  9. A century of nuclear science. Important contributions of early generation Chinese physicist to nuclear science

    International Nuclear Information System (INIS)

    Zheng Chunkai; Xu Furong

    2003-01-01

    The great discoveries and applications of nuclear science have had tremendous impact on the progress and development of mankind over the last 100 years. In the 1920's to 1940's, many young Chinese who yearned to save the country through science and education went to west Europe and north America to study science, including physics. Studying and working with famous physicists throughout the world, they made many important contributions and discoveries in the development of nuclear science. This paper describes the historical contributions of the older generation of Chinese physicists to nuclear science

  10. Investigation of an online, problem-based introduction to nuclear sciences: A case study

    International Nuclear Information System (INIS)

    Schmidt, M.; Easter, M.; Jiazhen, W.; Jonassen, D.

    2006-01-01

    An online, grant-funded course on nuclear engineering in society was developed at a large Midwestern university with the goal of providing non-majors a meaningful introduction to the many applications of nuclear science in a modern society and to stimulate learner interest in academic studies and/or professional involvement in nuclear science. Using a within-site case study approach, the current study focused on the efficacy of the online learning environment's support of learners' acquisition of knowledge and the impact of the environment on learners' interest in and beliefs about nuclear sciences in society. Findings suggest the environment successfully promoted learning and had a positive impact on learners' interests and beliefs. (authors)

  11. Investigation of an online, problem-based introduction to nuclear sciences: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M.; Easter, M.; Jiazhen, W.; Jonassen, D. [Univ. of Missouri - Columbia, 111 London Hall, Columbia, MO 65211 (United States)

    2006-07-01

    An online, grant-funded course on nuclear engineering in society was developed at a large Midwestern university with the goal of providing non-majors a meaningful introduction to the many applications of nuclear science in a modern society and to stimulate learner interest in academic studies and/or professional involvement in nuclear science. Using a within-site case study approach, the current study focused on the efficacy of the online learning environment's support of learners' acquisition of knowledge and the impact of the environment on learners' interest in and beliefs about nuclear sciences in society. Findings suggest the environment successfully promoted learning and had a positive impact on learners' interests and beliefs. (authors)

  12. Aspects of nuclear science

    International Nuclear Information System (INIS)

    Hageboe, E.; Salbu, B.

    1987-01-01

    The aspects of nuclear science presented in this book result from a symposium that was held in Oslo in October 1985. On this special occasion the rapid development of nuclear science as an interdisciplinary field was illustrated with brief presentations of some selected areas. These areas represent parts of the main interests of the Section for Nuclear Chemistry in the Department of Chemistry at the University of Oslo. This section has for decades been among the leading laboratories for nuclear chemistry in Scandinavia, thanks to its founder and inspiring leader professor Alexis C. Pappas

  13. Probe into geo-information science and information science in nuclear and geography science in China

    International Nuclear Information System (INIS)

    Tang Bin

    2001-01-01

    In the past ten years a new science-Geo-Information Science, a branch of Geoscience, developed very fast, which has been valued and paid much attention to. Based on information science, the author analyzes the flow of material, energy, people and information and their relations, presents the place of Geo-Information Science in Geo-science and its content from Geo-Informatics, Geo-Information technology and the application of itself. Finally, the author discusses the main content and problem existed in Geo-Information Science involved in Nuclear and Geography Science

  14. The Frontiers of Nuclear Science: A Long-Range Plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    In a letter dated July 17, 2006, the Department of Energy’s (DOE) Office of Science for Nuclear Physics and the National Science Foundation’s (NSF) Mathematical and Physical Sciences Directorate charged the Nuclear Science Advisory Committee (NSAC) to “conduct a study of the opportunities and priorities for U.S. nuclear physics research and recommend a long range plan that will provide a framework for coordinated advancement of the nation’s nuclear science research programs over the next decade.” This request set in motion a bottom-up review and forward look by the nuclear science community. With input from this community-wide process, a 59 member working group, which included the present NSAC members, gathered at the beginning of May, 2007, to develop guidance on how to optimize the future research directions for the field based on the projected resources outlined in the charge letter from DOE and NSF. A new long range plan—The Frontiers of Nuclear Science—grew out of this meeting. For the last decade, the top priority for nuclear science has been to utilize the flagship facilities that were built with investments by the nation in the 1980s and 1990s. Research with these facilities has led to many significant new discoveries that have changed our understanding of the world in which we live. But new discoveries demand new facilities, and the successes cannot continue indefinitely without new investment.

  15. Science Communication for the Public Understanding of Nuclear Issues

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkyung [Myungji Univ., Yongin (Korea, Republic of)

    2006-04-15

    Uncertainty, stigma, risk perception, and value judgment represent characteristics of nuclear issues in the public arena. Nuclear issue, in the public arena, is a kind of risk rather than technology that we are willing to use for good purpose. There are uncertainty, stigma, risk perception, and value judgment as characteristics of nuclear. The notion of the public, here is of active, sensitive, and sensible citizens, with power and influence. The public understands nuclear issues less through direct experience or education than through the filter of mass media. Trust has been a key issue on public understanding of nuclear issues. Trust belongs to human. The public understanding process includes perception, interpretation, and evaluation. Therefore, science communication is needed for public understanding. Unfortunately, science communication is rarely performed well, nowadays, There are three important actors-the public, experts, and media. Effective science communication means finding comprehensible ways of presenting opaque and complex nuclear issues. It makes new and strong demands on experts. In order to meet that requirement, experts should fulfill their duty about developing nuclear technology for good purpose, understand the public before expecting the public to understand nuclear issues, accept the unique culture of the media process, take the responsibility for any consequence which nuclear technologies give rise to, communicate with an access route based on sensibility and rationality, have a flexible angle in the science communication process, get creative leadership for the communication process with deliberation and disagreement, make efficient use of various science technologies for science communication. We should try to proceed with patience, because science communication makes for a more credible society.

  16. Science Communication for the Public Understanding of Nuclear Issues

    International Nuclear Information System (INIS)

    Cho, Seongkyung

    2006-01-01

    Uncertainty, stigma, risk perception, and value judgment represent characteristics of nuclear issues in the public arena. Nuclear issue, in the public arena, is a kind of risk rather than technology that we are willing to use for good purpose. There are uncertainty, stigma, risk perception, and value judgment as characteristics of nuclear. The notion of the public, here is of active, sensitive, and sensible citizens, with power and influence. The public understands nuclear issues less through direct experience or education than through the filter of mass media. Trust has been a key issue on public understanding of nuclear issues. Trust belongs to human. The public understanding process includes perception, interpretation, and evaluation. Therefore, science communication is needed for public understanding. Unfortunately, science communication is rarely performed well, nowadays, There are three important actors-the public, experts, and media. Effective science communication means finding comprehensible ways of presenting opaque and complex nuclear issues. It makes new and strong demands on experts. In order to meet that requirement, experts should fulfill their duty about developing nuclear technology for good purpose, understand the public before expecting the public to understand nuclear issues, accept the unique culture of the media process, take the responsibility for any consequence which nuclear technologies give rise to, communicate with an access route based on sensibility and rationality, have a flexible angle in the science communication process, get creative leadership for the communication process with deliberation and disagreement, make efficient use of various science technologies for science communication. We should try to proceed with patience, because science communication makes for a more credible society

  17. Psychology, philosophy and nuclear science

    International Nuclear Information System (INIS)

    Edwards, M.; Byrne, A.

    2011-01-01

    At first glance, one might wonder what psychology has got to do with nuclear science. On closer inspection, it is clear that nuclear science and technology have historically attracted controversy, and still today public and political opposition cloud its future, perhaps even more so with recent tragic events in Japan. A key focus for psychology has been an attempt to explicate public opposition to nuclear power, and this has been largely carried out by examining attitudes and risk perception. But it is easy to demonstrate that this has not been enough. There are also other important psychological issues that warrant greater attention than has been given. In this paper, I will first give an overview of the 'discipline' of psychology, including some inherent philosophical problems, before outlining specific psychological issues of relevance to nuclear science. I will then discuss whether these issues have been adequately addressed to date, before finally suggesting ways in which psychology might better respond to the questions nuclear science and technology raise. (author)

  18. Thinking on the development of nuclear science and technology information in knowledge economy time

    International Nuclear Information System (INIS)

    Zhang Yue

    2010-01-01

    The arrival of knowledge-based economy has brought the opportunities and challenges for the development of nuclear science and technology information. In the knowledge economy environment, knowledge becomes the new driving force for economic development, and people's demand for nuclear science and technology expertise will significantly increase. So the role of nuclear science and technology intelligence services will become even more and more prominent. Meanwhile, with the rapid development of modem information technology, the informatization of human society is towards the development of digital and intelligent. This also will raise new demands for nuclear science and technology information work. Discusses the status of nuclear science and technology information work of own units under the knowledge-based economy condition, and puts forward some thought and suggestions on development of nuclear science and technology information work under the knowledge economy environment. (author)

  19. Nuclear Test-Experimental Science

    International Nuclear Information System (INIS)

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B.

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program

  20. Global Security, Medical Isotopes, and Nuclear Science

    Science.gov (United States)

    Ahle, Larry

    2007-10-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  1. Psychology, philosophy and nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M.; Byrne, A. [Australian National Univ., Canberra (Australia)

    2011-06-15

    At first glance, one might wonder what psychology has got to do with nuclear science. On closer inspection, it is clear that nuclear science and technology have historically attracted controversy, and still today public and political opposition cloud its future, perhaps even more so with recent tragic events in Japan. A key focus for psychology has been an attempt to explicate public opposition to nuclear power, and this has been largely carried out by examining attitudes and risk perception. But it is easy to demonstrate that this has not been enough. There are also other important psychological issues that warrant greater attention than has been given. In this paper, I will first give an overview of the 'discipline' of psychology, including some inherent philosophical problems, before outlining specific psychological issues of relevance to nuclear science. I will then discuss whether these issues have been adequately addressed to date, before finally suggesting ways in which psychology might better respond to the questions nuclear science and technology raise. (author)

  2. ANSTO: Australian Nuclear Science and Technology Organization

    International Nuclear Information System (INIS)

    1989-01-01

    The Australian Nuclear Science and Technology Organization conducts or is engaged in collaborative research and development in the application of nuclear science and associated technology. Through its Australian radio-isotopes unit, it markets radioisotopes, their products and other services for nuclear medicine industry and research. It also operates national nuclear facilities ( HIFAR and Moata research reactors), promote training, provide advice and disseminates information on nuclear science and technology. The booklet briefly outlines these activities. ills

  3. Status of Nuclear Science Education and the Needs for Competency Based Education at the Beginning of Nuclear Power Programme in Turkey

    International Nuclear Information System (INIS)

    Yücel, H.

    2016-01-01

    Full text: In Turkey, in recent years, public opinion is mostly positive towards the establishment of NPPs because electricity demand is ever-increasing with a growing population and developing economy. For peaceful nuclear energy use, Turkey ratified the NPT in 1979 and has had a safeguards agreement, and its Additional Protocol since 2001. However, Turkey has not accumulated the essential nuclear knowledge and experience until now. The present nuclear education and training programmes are not focused on nuclear safety and power technology. There is lack of competencies concerned with measuring and monitoring, instrumentation and control for a safe operation of a reactor, and other specific nuclear equipment and facilities on site. The urgent needs should be determined to commence a competency based education in which the younger generations will instill confidence to nuclear technology. In nuclear training and education programs, it should be given a priority to nuclear safety and security culture. This should be a key requirement for newcomers to nuclear technology. In this presentation, the present status of nuclear science education in Turkey is discussed briefly and the fundamental arguments are dealt to focus on competency based nuclear education. Within international community, Turkey can seek collaborations and can consider the new challenges to tackle with the present difficulties in nuclear education programmes as a newcomer country. (author

  4. Global Security, Medical Isotopes, and Nuclear Science

    International Nuclear Information System (INIS)

    Ahle, Larry

    2007-01-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R and D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities

  5. Nuclear reactions: Science and trans-science

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1992-01-01

    This book is a collection of essays written by Weinberg over the span of his scientific and administrative career. A sound theorist, he was introduced to nuclear physics as part of the Manhattan project, and assumed administrative responsibilities during that project. His career has allowed him to make valuable contributions in a broad range of fields. These essays touch on topics of interest to him, concern to the country, and of profound import for society as it exists today. They are grouped into five sections: science and trans-science; scientific administration; strategic defense and arms control; time, energy and resources; nuclear energy

  6. Western Nuclear Science Alliance

    International Nuclear Information System (INIS)

    Reese, Steve; Miller, George; Frantz, Stephen; Beller, Denis; Morse, Ed; Krahenbuhl, Melinda; Flocchini, Bob; Elliston, Jim

    2010-01-01

    The Western Nuclear Science Alliance (WNSA) was formed at Oregon State University (OSU) under the DOE Innovations in Nuclear Infrastructure and Education (INIE) program in 2002. The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program. WNSA has been very effective in meeting these goals. The infrastructure at several of the WNSA university nuclear reactors has been upgraded significantly, as have classroom and laboratory facilities for Nuclear Engineering, Health Physics, and Radiochemistry students and faculty. Major nuclear-related education programs have been inaugurated, including considerable assistance by WNSA universities to other university nuclear programs. Research has also been enhanced under WNSA, as has outreach to pre-college and college students and faculty. The INIE program under WNSA has been an exceptional boost to the nuclear programs at the eight funded WNSA universities. In subsequent years under INIE these programs have expanded even further in terms of new research facilities, research reactor renovations, expanded educational opportunities, and extended cooperation and collaboration between universities, national laboratories, and nuclear utilities.

  7. Careers and workforce issues in nuclear science and technology

    International Nuclear Information System (INIS)

    Jonah, S.A.; Osaisai, F.E.

    2010-01-01

    In order to realize Nigeria's aspiration to harness nuclear science and technology for socio-economic development of the society, the federal government of Nigeria charged the Nigeria Atomic Energy Commission (NAEC) with the responsibility of promotion and development of peaceful uses of nuclear energy in all its ramifications. In realization of this laudable objective, two University-based nuclear research centres at Ile-Ife (i.e. Centre for Energy Research and Development, CERD, Obafemi Awolowo University, Ile-Ife) and Zaria (i.e. Centre for Energy Research and Training, CERT, Ahmadu Bello University, Zaria) under the supervision of NAEC are already running R and D programmes in nuclear science and technology for over three decades. A third centre, also under the supervision of the Commission in Abuja namely the Nuclear Technology Centre (NTC) located within the Sheda Science and Technology Complex (SHESTCO) was established in 1991 and operates a Gamma Irradiation Faci lity (GIF). Furthermore, NAEC has instituted a number of programmes including a road map aimed at the introduction of nuclear option into the energy mix of the country with projected targets of 1000MWe and 4000MWe by 2017 and 2027 respectively. However, with the number of nuclear scientists, engineers and technicians required to run a 1000MWe power plant put at 1000, there is the need to grow human capital for the industry in Nigeria. In this presentation, exciting opportunities in nuclear science for young graduates are enumerated. The importance of nuclear science and technology education vis-a-vis national economy and security for improved living standard is discussed. Specific workforce issues and sample career choices in medical science, the environment and energy applications are highlighted. Progress made so far by NAEC in the area of human resources development and capacity building is presented.

  8. Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Eggermont, G.

    2001-01-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised

  9. Cyclotron based nuclear science: Progress report, April 1, 1987-March 31, 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This report discusses experiment run on the K500 cyclotron and 88 in cyclotron at Texas AandM University. The main topics of these experiments are: Heavy ion reactions; Nuclear structure and fundamental interactions; Atomic and material science; Nuclear theory; and Superconducting cyclotron and instrumentation

  10. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  11. AFRA Network for Education in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Hashim, N.; Wanjala, F.

    2017-01-01

    AFRA-NEST was Conceived at the AFRA Ministerial Conference held in Aswan in 2007. The main objective of AFRA-NEST is to facilitate operation and networking in higher education, training and related research in Nuclear Science (NS&T) in the African Region through: • Sharing of information and materials of nuclear education and training. The strategies for implementing the objectives are: the use ICT for web-based education and training,; recognition of Regional Designated Centres (RDCs) for professional nuclear education in nuclear science and technology, and organization of harmonized and accredited programs at tertiary levels for teaching and research in the various nuclear disciplines. The main function of the AFRA-NEST is to; foster sustainable human resource development and nuclear knowledge management; host the Cyber Learning Platform for Nuclear Education and Training for the AFRA region and to integrate all available higher education capabilities in Africa

  12. Evaluation of the Retrieval of Nuclear Science Document References Using the Universal Decimal Classification as the Indexing Language for a Computer-Based System

    Science.gov (United States)

    Atherton, Pauline; And Others

    A single issue of Nuclear Science Abstracts, containing about 2,300 abstracts, was indexed by Universal Decimal Classification (UDC) using the Special Subject Edition of UDC for Nuclear Science and Technology. The descriptive cataloging and UDC-indexing records formed a computer-stored data base. A systematic random sample of 500 additional…

  13. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  14. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    International Nuclear Information System (INIS)

    Casey, Leslie A.

    2014-01-01

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  15. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  16. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1989-06-01

    This report contains papers on the following topics: Heavy ion reactors, nuclear structure and fundamental interactions; atomic and materials studies; nuclear theory; and superconducting cyclotron and instrumentation

  17. Intelligent systems and soft computing for nuclear science and industry

    International Nuclear Information System (INIS)

    Ruan, D.; D'hondt, P.; Govaerts, P.; Kerre, E.E.

    1996-01-01

    The second international workshop on Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS) addresses topics related to intelligent systems and soft computing for nuclear science and industry. The proceedings contain 52 papers in different fields such as radiation protection, nuclear safety (human factors and reliability), safeguards, nuclear reactor control, production processes in the fuel cycle, dismantling, waste and disposal, decision making, and nuclear reactor control. A clear link is made between theory and applications of fuzzy logic such as neural networks, expert systems, robotics, man-machine interfaces, and decision-support techniques by using modern and advanced technologies and tools. The papers are grouped in three sections. The first section (Soft computing techniques) deals with basic tools to treat fuzzy logic, neural networks, genetic algorithms, decision-making, and software used for general soft-computing aspects. The second section (Intelligent engineering systems) includes contributions on engineering problems such as knowledge-based engineering, expert systems, process control integration, diagnosis, measurements, and interpretation by soft computing. The third section (Nuclear applications) focusses on the application of soft computing and intelligent systems in nuclear science and industry

  18. Introduction to nuclear science, second edition

    CERN Document Server

    Bryan, Jeff C.

    2013-01-01

    This book was written to provide students who have limited backgrounds in the physical sciences and math with an accessible textbook on nuclear science. Expanding on the foundation of the bestselling first edition, Introduction to Nuclear Science, Second Edition provides a clear and complete introduction to nuclear chemistry and physics, from basic concepts to nuclear power and medical applications. Incorporating suggestions from professors using this book for their courses, the author has created a new text that is approximately 60 percent larger and more comprehensive and flexible than the first.New to This Edition: Thorough review of nuclear forensics, radiology, gamma cameras, and decay through proton or neutron emission More detailed explanations of the necessary mathematics A chapter on dosimetry of radiation fields Expanded discussion of applications, introduced earlier in the text More in-depth coverage of nuclear reactors, including a new chapter examining more reactor types, their safety systems,...

  19. Education in radiation, radioactivity, and nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Faubert, I.; Wohrizek, J.; Donev, J., E-mail: Isaac.faubert@gmail.com [Univ. of Calgary, Alberta (Canada)

    2013-07-01

    Nuclear science and nuclear energy are not widely understood topics. A lack of understanding for a potentially dangerous technology can be the cause for avoidance and even fear. In order to break down the barriers of a misunderstood industry, high energy learning is an initiative to change the perspective of nuclear science and technology. Through explanation of the fundamental concepts surrounding nuclear science, we reconstruct a trust within the communities and cultures across the nation. Being able to change the perspective of uninformed and misinformed people may not only benefit the nuclear industry, but the state of our global environment. (author)

  20. Education in radiation, radioactivity, and nuclear science

    International Nuclear Information System (INIS)

    Faubert, I.; Wohrizek, J.; Donev, J.

    2013-01-01

    Nuclear science and nuclear energy are not widely understood topics. A lack of understanding for a potentially dangerous technology can be the cause for avoidance and even fear. In order to break down the barriers of a misunderstood industry, high energy learning is an initiative to change the perspective of nuclear science and technology. Through explanation of the fundamental concepts surrounding nuclear science, we reconstruct a trust within the communities and cultures across the nation. Being able to change the perspective of uninformed and misinformed people may not only benefit the nuclear industry, but the state of our global environment. (author)

  1. Nuclear science and society: social inclusion through scientific education

    Science.gov (United States)

    Levy, Denise S.

    2017-11-01

    This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers, as well as their parents and teachers, demystifying paradigms and combating misinformation. Making use of a range of interactive activities, the website presents short courses and curiosities, with different themes that comprise the several aspects of the beneficial applications of nuclear science. The intention of the many interactive activities is to encourage research and to enhance learning opportunities through a self-learning universe where the target public is introduced to the basic concepts of nuclear physics, such as nuclides and isotopes, atomic interactions, radioactive decay, biological effects of radiation, nuclear fusion, nuclear fission, nuclear reactors, nuclear medicine, radioactive dating methods and natural occurring radiation, among other ideas and concepts in nuclear physics. Democratization of scientific education can inspire new thoughts, stimulate development and encourage scientific and technological researches.

  2. Explicatory Dictionary for Exact Sciences. Nuclear Energy, EN2. Nuclear Power. Romanian/English/French

    International Nuclear Information System (INIS)

    Dragan, Gleb; Rapeanu, S.N.; Comsa, Olivia

    2002-01-01

    The explicative dictionary for nuclear power, accomplished in the frame of the Commission for Scientific Terminology of the Romanian Academy, represents the second issue in a series running from Nuclear Energy EN 1 through Nuclear Energy EN 10 covering the following fields: EN 1. General terminology; EN 2. Nuclear power; EN 3. Physical protection and nuclear safeguards; EN 4. Nuclear fuel cycle; EN 5. Radioactive wastes; EN 6. Safety of nuclear facilities and materials; EN 7. Radioprotection and dosimetry; EN 8. Nuclear reactors; EN 9. Nuclear sciences and engineering; EN 10. Nuclear law and legislation. The main body of the dictionary's contents was selected by specialists working with the Center of Technology and Engineering for Nuclear Projects - CITON, based on their experience of more than 20 years in introducing and implementing nuclear power in Romania, as well as, on collaboration with nuclear physics and engineering research institutes and physics departments of Romanian universities. The project of a nuclear dictionary in 10 issues aims at supporting the program of nuclear power development in Romania and is at the same time part of nuclear knowledge management policy boosted by IAEA which encourages publication of informative materials highly specialized but also accessible to the public at large. The project aims also to establish the Romanian standardized terminology in the nuclear domain as much in line as possible with the terminologies of the largest communities worldwide most active in nuclear science and technology. Under the guidance of continuos build-up and evolution of nuclear knowledge the present work is intended to be upgraded permanently. The explanation of the terms was based on SR ISO standards, terminology adopted by Organization for Economic and Cooperation Development, OECD/NEA, and IAEA. This series is targeting translators, specialists, students, and the public at large

  3. Nuclear science education in Taiwan, 1956-1992

    International Nuclear Information System (INIS)

    Chung Chien

    1993-01-01

    The nuclear science education has been established in Taiwan at the College of Nuclear Science, National Tsing Hua University since 1956, the only one among 123 universities and colleges in Taiwan where nuclear-related education is offered. The Nuclear/Radiochemistry program, with nine faculty members, offers bachelor's, master's, and doctorate degrees in Nuclear Science. Lectures and lab classes of nuclear chemistry, radiochemistry, and allied branches in health physics, nuclear instruments, nuclear engineering, nuclear medicine, radiation biology, and environmental monitoring are given to the 17 undergraduate students and 33 postgraduate students currently registered. Support from the well-developed local nuclear power industry and government agencies is converged with rapid growth rate toward the Nuclear/Radiochemistry program; the 1992 annual research contracts for the program amounted over one million US dollars. Careerplacement program for graduates is developed to orientate them into the local nuclear power utilities as well as agricultural, medical, industrial, academic, and governmental sects where nuclear chemists and radiochemists at all levels are desperately needed. (author) 8 refs.; 3 figs.; 4 tabs

  4. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1975-01-01

    Advances in Nuclear Science and Technology, Volume 8 discusses the development of nuclear power in several countries throughout the world. This book discusses the world's largest program of land-based electricity production in the United States.Organized into six chapters, this volume begins with an overview of the phenomenon of quasi-exponential behavior by examining two mathematical models of the neutron field. This text then discusses the finite element method, which is a method for obtaining approximate solutions to integral or differential equations. Other chapters consider the status of

  5. A web-based resource for the nuclear science/technology high school curriculum - a summary

    International Nuclear Information System (INIS)

    Ripley, C.

    2009-01-01

    On November 15, 2008, the CNA launched a new Nuclear Science Technology High School Curriculum Website. Located at www.cna.ca the site was developed over a decade, first with funding from AECL and finally by the CNA, as a tool to explain concepts and issues related to energy and in particular nuclear energy targeting the public, teachers and students in grades 9-12. It draws upon the expertise of leading nuclear scientists and science educators. Full lesson plans for the teacher, videos for discussion, animations, games, electronic publications, laboratory exercises and quick question and answer sheets will give the student greater knowledge, skills and attitudes necessary to solve problems and to critically examine issues in making decisions. Eight modules focus on key areas: Canada's Nuclear History, Atomic Theory, What is Radiation?, Biological Effects of Radiation, World Energy Sources, Nuclear Technology at Work, Safety (includes Waste Disposal) in the Nuclear Industry and Careers. (author)

  6. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1972-01-01

    Advances in Nuclear Science and Technology, Volume 6 provides information pertinent to the fundamental aspects of nuclear science and technology. This book covers a variety of topics, including nuclear steam generator, oscillations, fast reactor fuel, gas centrifuge, thermal transport system, and fuel cycle.Organized into six chapters, this volume begins with an overview of the high standards of technical safety for Europe's first nuclear-propelled merchant ship. This text then examines the state of knowledge concerning qualitative results on the behavior of the solutions of the nonlinear poin

  7. Application of accelerator mass spectrometry in nuclear science

    International Nuclear Information System (INIS)

    Wang Xiaobo; Hu Jinjun; Wang Huijuan; Guan Yongjing; Wang Wei

    2013-01-01

    Accelerator mass spectrometry (AMS) is a promising method to provide extreme sensitivity measurements of the production yields of long-lived radioisotopes, which cannot be detected by other methods. AMS technique plays an important role in the research of nuclear physics, as well as the application field of AMS covered nuclear science and technology, life science, earth science, environmental science, archaeology etc. The newest AMS field is that of actinide, particularly U and Pu, isotopic assay with expanding applications in nuclear safeguards and monitoring, and as a modern bomb-fallout tracer for atmospheric transport and surface sediment movement. This paper reviews the applications of AMS in the research of nuclear energy and nuclear security including the research of half life of radionuclides, cross section of nuclear reaction. (authors)

  8. Graphite in Science and Nuclear Technique

    OpenAIRE

    Zhmurikov, E. I.; Bubnenkov, I. A.; Dremov, V. V.; Samarin, S. I.; Pokrovsky, A. S.; Harkov, D. V.

    2013-01-01

    The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original res...

  9. Changing the conversation: how ANS is telling a different story about nuclear science and technology

    International Nuclear Information System (INIS)

    Raap, B.

    2014-01-01

    'Full text': As nuclear scientists and engineers, our focus and expertise is in science and technology that yields benefits for society. Yet, we are also often in the position of explaining what can be very complex and technical issues to individuals who are not technical, and who perhaps are guided by misinformation about nuclear science and technology. Being effective communicators, and having an effective communications program at organizations like ANS,is critical if we are to maintain support for nuclear energy. Nuclear plants have shut down in the United States over the past year largely due to economic circumstances. The low price of natural gas and other factors make it extremely challenging for some nuclear plants to be competitive right now. Although this situation will eventually change, clear communications is critical.Fostering a good understanding of nuclear science and technology is needed now more than ever to help people gain an appreciation for the benefits that nuclear energy offers. Last year, ANS created a strategic communications plan. This communications plan called for improvements in all of our communication and outreach efforts. We have many work groups actively working on those improvements, which will be highlighted during the session. We also publicly launched the Center for Nuclear Science and Technology Information, a special communications initiative of ANS. The Center allows ANS to better leverage resources while building awareness about nuclear science and technology among a variety of audiences. Through the Center, ANS seeks to improve public understanding of nuclear science and technology, inform policy makers and their staff about nuclear fundamentals,engage journalists in telling a truthful story based on science, and inspire young people to explore nuclear science and technology. The Center allows ANS to produce improved public education tools that nuclear professionals and advocates can use when doing outreach. The

  10. Changing the conversation: how ANS is telling a different story about nuclear science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Raap, B. [American Nuclear Society, La Grange Park, IL (United States)

    2014-07-01

    'Full text': As nuclear scientists and engineers, our focus and expertise is in science and technology that yields benefits for society. Yet, we are also often in the position of explaining what can be very complex and technical issues to individuals who are not technical, and who perhaps are guided by misinformation about nuclear science and technology. Being effective communicators, and having an effective communications program at organizations like ANS,is critical if we are to maintain support for nuclear energy. Nuclear plants have shut down in the United States over the past year largely due to economic circumstances. The low price of natural gas and other factors make it extremely challenging for some nuclear plants to be competitive right now. Although this situation will eventually change, clear communications is critical.Fostering a good understanding of nuclear science and technology is needed now more than ever to help people gain an appreciation for the benefits that nuclear energy offers. Last year, ANS created a strategic communications plan. This communications plan called for improvements in all of our communication and outreach efforts. We have many work groups actively working on those improvements, which will be highlighted during the session. We also publicly launched the Center for Nuclear Science and Technology Information, a special communications initiative of ANS. The Center allows ANS to better leverage resources while building awareness about nuclear science and technology among a variety of audiences. Through the Center, ANS seeks to improve public understanding of nuclear science and technology, inform policy makers and their staff about nuclear fundamentals,engage journalists in telling a truthful story based on science, and inspire young people to explore nuclear science and technology. The Center allows ANS to produce improved public education tools that nuclear professionals and advocates can use when doing outreach. The

  11. Nuclear science experiments in high schools

    International Nuclear Information System (INIS)

    Lowenthal, G.C.

    1990-01-01

    This paper comments on the importance of nuclear science experiments and demonstrations to science education in secondary schools. It claims that radiation protection is incompletly realised unless supported by some knowledge about ionizing radiations. The negative influence of the NHMRC Code of Practice on school experiments involving ionizing radiation is also outlined. The authors offer some suggestions for a new edition of the Code with a positive approach to nuclear science experiments in schools. 7 refs., 4 figs

  12. Radioactivity and Nuclear Issues in Science Fiction

    International Nuclear Information System (INIS)

    Franic, Z.

    2008-01-01

    In this work are presented and reviewed science fiction narratives, films and comics that exploit radioactivity and nuclear issues. These topics to some science fiction authors serve as metaphor of evil and holocaust as well as nice instrument for elaborating various manipulations and conspiracy theories. In that context are of special interest science fiction works depicting apocalyptic post-nuclear worlds and societies, such works being closely connected with cyberpunk genre. However, other more technologically optimistic authors nuclear energy and research regarding nuclear technology and radioactivity consider as eligible and inevitable solution for world peace and prosperity Nowadays, public interest and global fears are shifted from radioactivity and nuclear issues to other catastrophic scenarios threatening future of the mankind, these for example being climate changes and global warming, asteroid impact, collapse of information infrastructure, nanotechnology, robotics and artificial intelligence etc. Consequently, these issues are as well increasingly reflected in contemporary science fiction stories.(author)

  13. Nuclear applications in life sciences

    International Nuclear Information System (INIS)

    Uenak, P.

    2009-01-01

    Radioactivity has revolutionized life sciences during the last century, and it is still an indispensable tool. Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics, Nutrition and Environmental Problems Relevant Health are significant application fields of Nuclear Sciences. Nuclear medicine today is a well established branch of medicine. Radionuclides and radiopharmaceuticals play a key role both in diagnostic investigations and therapy-Both cyclotron and reactor produced radionuclides find application, the former more in diagnostic studies and the latter in therapy. New therapy applications such as bor neutron therapy are increasing by time together with the technological improvements in imaging systems such as PET and SPECT. Radionuclides and radiopharmaceuticals play important role in both therapy and imaging. However cyclotron produced radionuclides have been using generally in imaging purposes while reactor produced radionuclides have also therapeutic applications. With the advent of emission tomography, new vistas for probing biochemistry in vivo have been opened. The radio chemist faces an ever-increasing challenge of designing new tracers for diagnostic and therapeutic applications. Rapid, efficient and automated methods of radionuclide and precursor production, labeling of biomolecules, and quality control need to be developed. The purpose of this article is a short interface from Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics Applications of Nuclear Sciences.

  14. Nuclear Science Outreach in the World Year of Physics

    Science.gov (United States)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  15. Science and nuclear technology communication in Cordoba

    International Nuclear Information System (INIS)

    Martin, Hugo R.

    2012-01-01

    This paper describes the communication activities conducted nuclear science and technology in 2012 in the scientific, educational and tourist areas of Cordoba. The first is the Promotion of the realization of scientific research school works to present in science and technology fairs. The public exhibitions fairs consist of projects conducted by students from all levels of the education system. To do this, students have the guidance of Advisory Teachers, researchers and technologists of the local scientific community, which involves training them for a period of approximately six months. During this year the courses were conducted in 37 cities in the interior province, which are the sites of Regional Headquarters, which included the promotion of the realization of school scientific research on the peaceful applications of nuclear technology and / or national nuclear activities. During the meetings, made presentations basing pedagogical and didactic aspects to coordination between teaching of conceptual content and activities practical introduction to nuclear scientific methodology. As a result of this initiative, between the months of June and September was reached more than 3,000 teachers, using the infrastructure of the Ministry of Science and Technology and Internet. As a result, a dozen schools have begun to seek assistance to develop projects related to nuclear power. Other activities under the name of Scientific School Research Incursion through Experiences with Natural Radiation, consisted of the design and realization of simple laboratory experiences in laboratory's schools. The objective was to strengthen the curriculum and promote critical thinking about the risks and benefits of nuclear technologies in relation to exposure to ionizing radiation involving them. As a result it has been observed that these activities contribute to a progressive scientific and technological literacy of students, who build original knowledge for themselves and develop

  16. Ideology in science and technology: the case of civilian nuclear power

    International Nuclear Information System (INIS)

    Harrod, A.N.

    1987-01-01

    This dissertation traces the complicated interrelationships between ideology and interest within the civilian nuclear power controversy. The first chapter introduces the topic. The second chapter provides a social-political-economic overview of the context in which the conflicting ideologies arose. Factors looked at are the ascendancy of the physical sciences, the development of nuclear energy, the disenchantment with science and technology and the consequent rise of an anti-nuclear ideology. Chapter III uses the theories of Alvin Gouldner to understand the structure of ideology. The chapter defines ideology's similarities to and differences from scientific discourse. Chapter IV examines the ideological discourse of a selected sample of scientists who have spoken for and against civilian nuclear power. In parallel to chapter IV, chapter V examines a scientific controversy among the sample of experts. It shows how scientific disagreement can be produced and how ideology is most closely linked to science. Chapter VI examines the social interests of the scientists and experts to discover ways that interests have shaped the ideological and scientific positions for and against civilian nuclear energy. Based on the foregoing, chapter VII concludes that the introduction of science and experts into a controversy cannot be expected to end disagreement over policy because of the link between science and ideology

  17. Russian center of nuclear science and education is the way of nuclear engineering skilled personnel training

    International Nuclear Information System (INIS)

    Murogov, V.M.; Sal'nikov, N.L.

    2006-01-01

    Nuclear power engineering as the key of nuclear technologies is not only the element of the power market but also the basis of the country's social-economic progress. Obninsk as the first science town in Russia is the ideal place for the creation of integrated Science-Research Center of Nuclear Science and Technologies - The Russian Center of Nuclear Science and Education (Center for conservation and development of nuclear knowledge) [ru

  18. Establishment of a South African nuclear science exhibition centre

    Energy Technology Data Exchange (ETDEWEB)

    Lekwe, K.G.; Stander, G.; Faanhof, A. [South African Nuclear Energy Cooperation, P O Box 582, Pretoria (South Africa)

    2008-07-01

    After an initial survey undertaken by the South African Nuclear Energy Corporation (Necsa), one of the findings was that nuclear knowledge is virtually non-existent amongst the general public, including school children, throughout the country. The Department of Education (DoE) is currently in the process of introducing Nuclear as part of the school curriculum, which would require a collective effort between the schools and all the Nuclear Institutions in the country. Necsa as well as other nuclear industries have the responsibility to promote public awareness, appreciation and understanding of science and nuclear science in particular. Necsa is leading the national initiative to establish the nuclear science centre which would amongst others guide a person from the very basics of nuclear science to present and future applications thereof. The nuclear science centre will include information on the SAFARI-1 reactor, the Koeberg power reactor, the Pebble Bed Modular Reactor (PBMR), particle accelerators, food preservation, medical applications, etc. This paper will give the overview of the centre as well as its objectives thereof. (authors)

  19. Establishment of a South African nuclear science exhibition centre

    International Nuclear Information System (INIS)

    Lekwe, K.G.; Stander, G.; Faanhof, A.

    2008-01-01

    After an initial survey undertaken by the South African Nuclear Energy Corporation (Necsa), one of the findings was that nuclear knowledge is virtually non-existent amongst the general public, including school children, throughout the country. The Department of Education (DoE) is currently in the process of introducing Nuclear as part of the school curriculum, which would require a collective effort between the schools and all the Nuclear Institutions in the country. Necsa as well as other nuclear industries have the responsibility to promote public awareness, appreciation and understanding of science and nuclear science in particular. Necsa is leading the national initiative to establish the nuclear science centre which would amongst others guide a person from the very basics of nuclear science to present and future applications thereof. The nuclear science centre will include information on the SAFARI-1 reactor, the Koeberg power reactor, the Pebble Bed Modular Reactor (PBMR), particle accelerators, food preservation, medical applications, etc. This paper will give the overview of the centre as well as its objectives thereof. (authors)

  20. Economic effect of applied nuclear-agricultural science in China

    International Nuclear Information System (INIS)

    Ji Xiaobing; Zhou Zhihong; Zhao Shoufeng

    1998-01-01

    The economic effect of applied nuclear-agricultural science for 40 years in China have been summarized, analyzed and appraised. The economic regularity and features which are followed by research-development-production in the field of applied nuclear agricultural science in China are explored according to the essential characteristics of economics for input-output ratio and the itself-features of nuclear agricultural science. Some propositions for promoting the development and the economic effect of the applied nuclear-agricultural science in China are also given

  1. China nuclear science and technology reports

    International Nuclear Information System (INIS)

    1987-01-01

    114 abstracts of nuclear science and technology reports, which were published in 1986-1987 in China, are collected. The subjects inclucled are: nuclear physics, nuclear medicine, radiochemistry, isotopes and their applications, reactors and nuclear power plants, radioactive protection, nuclear instruments etc... They are arranged in accordance with the INIS subject categories, and a report number index is annexed

  2. Nuclear and chemical data for life sciences

    International Nuclear Information System (INIS)

    Moumita Maiti; Indian Institute of Technology Roorkee, Roorkee, Uttarakhand

    2013-01-01

    Use of reactor produced radionuclides is popular in life sciences. However, cyclotron production of proton rich radionuclides are being more focused in recent times. These radionuclides have already gained attention in various fields, including life sciences, provided they are obtained in pure form. This article is a representative brief of our contributions in generating nuclear data for the production of proton rich radionuclides of terbium, astatine, technetium, ruthenium, cadmium, niobium, zirconium, rhenium, etc., which may have application in clinical, biological, agriculture studies or in basic research. The chemical data required to separate the product isotopes from the corresponding target matrix have been presented along with a few propositions of radiopharmaceuticals. It also emphasizes on the development of simple empirical technique, based on the nuclear reaction model analysis, to generate reliable nuclear data for the estimation of yield and angular distribution of emitted neutrons and light charged particles from light as well as heavy ion induced reactions on thick stopping targets. These data bear utmost important in radiation dosimetry. (author)

  3. China nuclear science and technology report. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1993 (Report Numbers CNIC-00675∼CNIC-00800) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  4. China nuclear science and technology report. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1993 (Report Numbers CNIC-00675{approx}CNIC-00800) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  5. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    Science.gov (United States)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  6. International Nuclear Science and Technology Conference 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Conference Nuclear technology has played an important role in many aspects of our lives, including agriculture, medicine and healthcare, materials, environment, forensics, energy, and frontier advancement. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics and students to share knowledge and experiences about all aspects of nuclear sciences. INST2016 was the second of the INST conference series organized by Thailand Institute of Nuclear Technology. INST has evolved from a national conference series on nuclear science and technology that was held every two years in Bangkok for over a twenty-year period. INST2016 was held from 4 - 6 August 2016 in Bangkok, Thailand, under the central theme “Nuclear for Better Life”. The conference working language was English. The oral and poster research presentations covered seven major topics: • Nuclear physics and engineering (PHY) • Nuclear and radiation safety (SAF) • Medical and nutritional applications (MED) • Environmental applications (ENV) • Radiation processing and industrial applications (IND) • Agriculture and food applications (AGR) • Instrumentation and other related topics (INS) The welcome addresses, committees, program of the conference and the list of presentations can be found in the PDF. (paper)

  7. Status and developmental strategy of nuclear agricultural sciences in researches of eco-environmental sciences in agriculture

    International Nuclear Information System (INIS)

    Hua Luo; Wang Xunqing

    2001-01-01

    The concept, research scopes, research progress and achievement of nuclear agricultural sciences in past several decades in China, as well as the relationship between nuclear agriculture research and eco-environmental sciences were described. The disciplinary frontier, major research fields and priority developmental fields of nuclear agriculture in eco-environmental sciences was displayed. Suggestions were made to improve and strengthen nuclear agriculture research. Those provided basic source materials and consideration for application developmental strategy of nuclear agriculture in eco-environmental sciences

  8. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  9. The application of science communication modes in China's nuclear and radiation safety science popularization

    International Nuclear Information System (INIS)

    Cao Yali; Wang Erqi; Wang Xiaofeng; Zhang Ying

    2014-01-01

    The studies of the application of science communication theory in the nuclear and radiation safety will help to enhance the level of science popularization work in the field of nuclear and radiation safety. This paper firstly describes the definition and the evolvement process of science communication models, then analyzes the current status of the nuclear and radiation safety science popularization, finally discusses on the suitability of science communication mode of its application in the field of nuclear and radiation safety. (authors)

  10. Nuclear science and technology education and training in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Deployment of nuclear technology requires adequate nuclear infrastructure which includes governmental infrastructure, science and technology infrastructure, education and training infrastructure, and industrial infrastructure. Governmental infrastructure in nuclear, i.e. BATAN (the National Nuclear Energy Agency) and BAPETEN (the Nuclear Energy Control Agency), need adequate number of qualified manpower with general and specific knowledge of nuclear. Science and technology infrastructure is mainly contained in the R and D institutes, education and training centers, scientific academies and professional associations, and national industry. The effectiveness of this infrastructure mainly depends on the quality of the manpower, in addition to the funding and available facilities. Development of human resource needed for research, development, and utilization of nuclear technology in the country needs special attention. Since the national industry is still in its infant stage, the strategy for HRD (human resource development) in the nuclear field addresses the needs of the following: BATAN for its research and development, promotion, and training; BAPETEN for its regulatory functions and training; users of nuclear technology in industry, medicine, agriculture, research, and other areas; radiation safety officers in organizations or institutions licensed to use radioactive materials; the education sector, especially lecturers and teachers, in tertiary and secondary education. Nuclear science and technology is a multidisciplinary and a highly specialized subject. It includes areas such as nuclear and reactor physics, thermal hydraulics, chemistry, material science, radiation protection, nuclear safety, health science, and radioactive waste management. Therefore, a broad nuclear education is absolutely essential to master the wide areas of science and technology used in the nuclear domain. The universities and other institutions of higher education are the only

  11. Environmental Aspects of Tritium Around the Vinca Institute of Nuclear Sciences

    International Nuclear Information System (INIS)

    Miljevic, N.; Sipka, V.

    1995-01-01

    An overview of environmental distribution of tritium around the Institute of Nuclear Sciences Vinca during the period 1988-1994 is presented. Temporal and local variations of the specific tritium variations in precipitation (Usek, Zeleno Brdo), river waters (the Danube, the Sava and Mlaka Creek) as well as atmospheric water vapor are given. Estimates based on precipitation measurements have shown that 6.3 TBq of tritium activity should be released annually into the atmosphere from the Vinca Institute of Nuclear Sciences. (author)

  12. Research focus and trends in nuclear science and technology in Ghana: a bibliometric study based on the INIS database

    International Nuclear Information System (INIS)

    Agyeman, E. A.; Bilson, A.

    2015-01-01

    The peaceful application of atomic energy was introduced into Ghana about fifty years ago. This is the first bibliometric study of nuclear science and technology research publications originating from Ghana and listed in the International Nuclear Information System (INIS) Database. The purpose was to use the simple document counting method to determine the geographical distribution, annual growth and the subject areas of the publications as well as communication channels, key journals and authorship trends. The main findings of the study were that, a greater number of the nuclear science and technology records listed in the Database were published in Ghana (598 or 56.57% against 459 or 43.43% published outside Ghana). There has been a steady growth in the number of publications over the years with the most productive year being 2012. The main focus of research has been in the area of applied life sciences, comprising plant cultivation & breeding, pest & disease control, food protection and preservation, human nutrition and animal husbandry; followed by chemistry; environmental sciences; radiation protection; nuclear reactors; physics; energy; and radiology and nuclear medicine. The area with the least number of publications was safeguards and physical protection. The main channel of communicating research results was peer reviewed journals and a greater number of the journal articles were published in Ghana followed by the United Kingdom, Hungary and the Netherlands. The core journals identified in this study were Journal of Applied Science and Technology; Journal of Radioanalytical and Nuclear Chemistry; Journal of the Ghana Science Association; Radiation Protection Dosimetry; Journal of the Kumasi University of Science and Technology; West African Journal of Applied Ecology; Ghana Journal of Science; Applied Radiation and Isotopes; Annals of Nuclear Energy, IOP Conference Series (Earth and Environmental Science) and Radiation Physics and Chemistry. Eighty percent

  13. Science communication from women in nuclear fuel development

    International Nuclear Information System (INIS)

    Roy, S.B.

    2013-01-01

    In India, nuclear fuel is required for operating both nuclear research reactors and power reactors. Indian women are extensively involved in nuclear fuel research and production activities. However, the nature and extent of their involvement differs based only on the job required and not on any gender basis. Excluding a few specific safety and security issues, therefore, science and technology communication really does not change according to the gender of the scientist or technologist. Presently in India, nuclear grade uranium metal is required for fuelling research reactors and nuclear grade uranium oxide is being utilized as fuel for power reactors. Hydrometallurgical operations using specific solvents are being used for achieving 'nuclear grade' in both sectors. For production of uranium oxide, purified uranium compounds need to get calcined and reduced for obtaining uranium dioxide of various qualities

  14. ICT based training on nuclear technology applications in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mdoe, S.L. [Nuclear Technology Applications Directorate, Tanzania Atomic Energy Commission, P.O. Box 743, Arusha (Tanzania)]. E-mail: slcmdoe@yahoo.com; Kimaro, E. [Nuclear Technology Applications Directorate, Tanzania Atomic Energy Commission, P.O. Box 743, Arusha (Tanzania)]. E-mail: taec@habari.co.tz

    2006-07-01

    Peaceful application of nuclear technology has contributed to socio-economic resource development in Tanzania. The Tanzania Atomic Energy Commission has taken some active steps for the incorporation and or adoption of ICT-based training modules in nuclear science and technology and its applications. The overall objective of this programme is to establish a sustainable national capability for using the potential of information communication technologies (ICTs) for training and education in the field of nuclear science and technology. This paper reviews some of the experience which the authors gained in the area of ICT based training in nuclear technology applications, it describes some of the challenges experienced, and some proposals to address the issues involved. (author)

  15. ICT based training on nuclear technology applications in Tanzania

    International Nuclear Information System (INIS)

    Mdoe, S.L.; Kimaro, E.

    2006-01-01

    Peaceful application of nuclear technology has contributed to socio-economic resource development in Tanzania. The Tanzania Atomic Energy Commission has taken some active steps for the incorporation and or adoption of ICT-based training modules in nuclear science and technology and its applications. The overall objective of this programme is to establish a sustainable national capability for using the potential of information communication technologies (ICTs) for training and education in the field of nuclear science and technology. This paper reviews some of the experience which the authors gained in the area of ICT based training in nuclear technology applications, it describes some of the challenges experienced, and some proposals to address the issues involved. (author)

  16. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  17. International cooperation for promotion of nuclear science and engineering research

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Sugiyama, Kazusuke; Nakazawa, Masaharu; Katoh, Toshio; Kimura, Itsuro.

    1993-01-01

    For promotion of nuclear science and engineering research, examinations were made on the possibilities and necessary measures to extend joint research at international level. The present article is a summary of the reports of investigations performed during FY 1986 through 1991 by the Special Committee of the AESJ for Feasibility Study on International Cooperation for Promotion of Nuclear Science and Engineering Research, under contract with Science and Technology Agency of Japan. Background information was collected on the present status of scientific research facilities in US, European and Asian countries on one hand, and on the expectations and prospects of Japanese scientists on the other hand. Based on the analysis of these data, some measures necessary to expand the international cooperation were proposed. It was emphasized that international joint research on a reciprocal basis would be effective in order to strengthen the technological basis of peaceful uses of nuclear energy. Problems to be solved for the new development were also discussed. (author)

  18. Nuclear Science References as a Tool for Data Evaluation

    International Nuclear Information System (INIS)

    Winchell, D.F.

    2005-01-01

    For several decades, the Nuclear Science References database has been maintained as a tool for data evaluators and for the wider pure and applied research community. This contribution will describe the database and recent developments in web-based access

  19. Nuclear Science Division: 1993 Annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations

  20. Nuclear Science Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  1. Young Generation in Nuclear Initiative to Promote Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Kilavi Ndege, P.K.

    2015-01-01

    The Kenyan Young Generation in Nuclear (KYGN) is a recently founded not to profit organization. Its mandate is to educate, inform, promote and transfer knowledge on the peaceful, safe and secure users of nuclear science and technology in Kenya. It brings on board all scientist and students with special interest in nuclear science and related fields. KYGN is an affiliate of International Youth Nuclear Congress (YNC) whose membership with IYNC whose membership is drawn from member state of United Nations. Through our membership with IYNC, KYGN members have been able to participate in different forums. In this paper, we discuss KYGN’s prime roles opportunities as well as the challenges of the organization

  2. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  3. Western Nuclear Science Alliance

    Energy Technology Data Exchange (ETDEWEB)

    Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

    2010-12-07

    The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

  4. Nuclear computational science a century in review

    CERN Document Server

    Azmy, Yousry

    2010-01-01

    Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational

  5. NST and NST integration: nuclear science and technique and nano science and technique

    International Nuclear Information System (INIS)

    Zhao Yuliang; Chai Zhifang; Liu Yuanfang

    2008-01-01

    Nuclear science is considered as a big science and also the frontier in the 20 th century, it developed many big scientific facilities and many technique platforms (e.g., nuclear reactor, synchrotron radiation, accelerator, etc.) Nuclear Science and Technology (NST) provide us with many unique tools such as neutron beams, electron beams, gamma rays, alpha rays, beta rays, energetic particles, etc. These are efficient and essential probes for studying many technique and scientific issues in the fields of new materials, biological sciences, environmental sciences, life sciences, medical science, etc. Nano Science and Technology (NST) is a newly emerging multidisciplinary science and the frontier in the 21 st century, it is expected to dominate the technological revolution in diverse aspects of our life. It involves diverse fields such as nanomaterials, nanobiological sciences, environmental nanotechnology, nanomedicine, etc. nanotechnology was once considered as a futuristic science with applications several decades in the future and beyond. But, the rapid development of nanotechnology has broken this prediction. For example, diverse types of manufactured nanomaterials or nanostructures have been currently utilized in industrial products, semiconductors, electronics, stain-resistant clothing, ski wax, catalysts, other commodity products such as food, sunscreens, cosmetics, automobile parts, etc., to improve their performance of previous functions, or completely create novel functions. They will also be increasingly utilized in medicines for purposes of clinic therapy, diagnosis, and drug delivery. In the talk, we will discuss the possibility of NST-NST integration: how to apply the unique probes of advanced radiochemical and nuclear techniques in nanoscience and nanotechnology. (authors)

  6. Nuclear science summer school for high scholl students

    International Nuclear Information System (INIS)

    Foster, D.E.; Stone, C.A.

    1997-01-01

    We have developed a two-week summer lecture and laboratory course that introduces hihg school students to concepts in nuclear science. The program has operated at the San Jose State University Nuclear Science Facility for two years. Experienced high school science teachers run the summer scholl, assisted by other science teachers. Students consider the program to be effective. Its popularity is shown by numerous requests for reservations and the necessity to offer multiple sections in 1997. (author)

  7. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the μ → eγ decay rate and determination of the Michel parameter in normal μ decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z projectile -- Z target combinations. Studies of the (α,2α) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references

  8. Multiscale science for science-based stockpile stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, L.; Sharp, D.

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project has been to develop and apply the methods of multi scale science to the problems of fluid and material mixing due to instability and turbulence, and of materials characterization. Our specific focus has been on the SBSS (science-based stockpile stewardship) issue of assessing the performance of a weapons with off-design, aged, or remanufactured components in the absence of full-scale testing. Our products are physics models, based on microphysical principles and parameters, and suitable for implementation in the large scale design and assessment codes used in the nuclear weapons program.

  9. Development process and achievements of China nuclear agricultural sciences

    International Nuclear Information System (INIS)

    Wen Xianfang

    2009-01-01

    This paper outlines the creation of our nuclear agricultural sciences and the development process as well as the main results for agricultural applications of nuclear technology. Nuclear agricultural sciences in China began in 1956, after 50 years of development, the collaborative research network, the academic exchange network, and the international exchange network have been formatted. These three networks comprehensively have promoted the formation and development of China nuclear agricultural sciences. Remarkable results have been achieved in the fields of radiation mutation breeding, space mutation breeding, isotope tracer technique application in agriculture, agricultural products storage and preservation of irradiation processing, irradiation sterile insect technique, low-doses of radiation to stimulate output. In addition, the concept of suggestions on the future development of China nuclear agricultural sciences, as well as the priorities of research fields are put forward. (authors)

  10. Nuclear science and engineering in China

    Energy Technology Data Exchange (ETDEWEB)

    von Becker, K

    1979-01-01

    A brief review of the development of nuclear science and technology in China is given. It is stated that the change of leadership in China has brought about a radical revision of the attitude towards the science and technology. In the plan of the development of nuclear science and technology adopted in 1973 a great emphasis is laid on investigations in the field of high energy physics. For instance, it is planned to construct, before 1983, a 30-50 GeV proton accelerator. A brief description is given of main nuclear research institutes in Phangshan, Peking and Shanghai which are shown to Western visitors. It is indicated that at these institutes there are the only two research reactors in China, a 3.5-MW LWR and 10 MW HWR, two cyclotrons and a 90-cm tokamak. These institutes also conduct investigations on solid-state physics, low-temperature physics, high-pressure physics, lasers, radiation biology, radiation chemistry, etc.

  11. China nuclear science and technology report 1995. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1995 (Report Numbers CNIC-00921{approx}CNIC-01020) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  12. China nuclear science and technology report 1995. Abstracts

    International Nuclear Information System (INIS)

    1996-03-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1995 (Report Numbers CNIC-00921∼CNIC-01020) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  13. China nuclear science and technology report abstracts 1996

    International Nuclear Information System (INIS)

    1997-10-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1996 (Report Numbers CNIC-01021∼CNIC-01130) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  14. Abstracts China nuclear science and technology report (1999)

    International Nuclear Information System (INIS)

    2001-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1999 (Report Numbers CNIC-01331 -CNIC-01430) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  15. China nuclear science and technology report. Abstracts 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1994 (Report Numbers CNIC-00801{approx}CNIC-00920) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  16. China nuclear science and technology report abstracts 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1996 (Report Numbers CNIC-01021{approx}CNIC-01130) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  17. Abstracts China nuclear science and technology report (1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1999 (Report Numbers CNIC-01331 -CNIC-01430) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  18. China nuclear science and technology report. Abstracts 1994

    International Nuclear Information System (INIS)

    1995-02-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1994 (Report Numbers CNIC-00801∼CNIC-00920) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  19. The third conference on nuclear science and engineering in Australia, 1999. Conference handbook

    International Nuclear Information System (INIS)

    1999-01-01

    The Australian Nuclear Association has organised this third Conference in a biennial series with the theme: 'A Nuclear Renaissance'. The theme is based on our perception that nuclear science and technology is on the threshold of a major expansion after a period which many thought was the onset of the Dark Ages after the old Australian Atomic Energy Commission was abolished in 1987. Fortunately, nuclear science and technology was not abolished and the AAEC was replaced by the government with ANSTO, which the government has continued to support strongly. The most recent expression of this support has been the approval of nearly $300 millions in investment in a major Replacement Research Reactor to be operational in about 2005, and the establishment of the new regulatory body ARPANSA. The conference aims to review all of the major nuclear issues of importance to Australia as we enter the 21st Century. These include: uranium mining and upgrading; the management of nuclear waste; the plans for the future by the government's major nuclear research laboratory, operated by ANSTO, including plans for constructing a major Replacement Research Reactor at Lucas Heights, the status of safeguards and nuclear regulation in Australia now that the government has set up the Australian Radiation Protection and Nuclear Safety Agency, and the many and varied applications of nuclear science in Australia. The conference also presents the plans for nuclear research by the universities through the Australian Institute of Nuclear Science and Engineering, and features in particular the work at the Australian National University in Canberra

  20. The third conference on nuclear science and engineering in Australia, 1999. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Australian Nuclear Association has organised this third Conference in a biennial series with the theme: 'A Nuclear Renaissance'. The theme is based on our perception that nuclear science and technology is on the threshold of a major expansion after a period which many thought was the onset of the Dark Ages after the old Australian Atomic Energy Commission was abolished in 1987. Fortunately, nuclear science and technology was not abolished and the AAEC was replaced by the government with ANSTO, which the government has continued to support strongly. The most recent expression of this support has been the approval of nearly $300 millions in investment in a major Replacement Research Reactor to be operational in about 2005, and the establishment of the new regulatory body ARPANSA. The conference aims to review all of the major nuclear issues of importance to Australia as we enter the 21st Century. These include: uranium mining and upgrading; the management of nuclear waste; the plans for the future by the government's major nuclear research laboratory, operated by ANSTO, including plans for constructing a major Replacement Research Reactor at Lucas Heights, the status of safeguards and nuclear regulation in Australia now that the government has set up the Australian Radiation Protection and Nuclear Safety Agency, and the many and varied applications of nuclear science in Australia. The conference also presents the plans for nuclear research by the universities through the Australian Institute of Nuclear Science and Engineering, and features in particular the work at the Australian National University in Canberra.

  1. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    International Nuclear Information System (INIS)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-01-01

    Cleaning up the nation's nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing (1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, (2) a rational path to the development of alternative technologies should the primary options fail, (3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, (4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  2. Nuclear Science: a survey of funding, facilities, and manpower

    International Nuclear Information System (INIS)

    1975-01-01

    In 1973 the Committee on Nuclear Science of the National Research Council initiated a re-examination of aspects (funding, manpower, and facilities) of the organization and operation of nuclear science research in order to evaluate any changes in the preceding four years and implications of such changes. The reports of the three ad hoc panels established for this purpose (funding and level of effort, nuclear facilities, manpower and education) are presented. Although they identify current problems in nuclear science, these reports do not provide simple solutions; rather, they attempt to provide updated information for use as background for continuing decisions

  3. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs

  4. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs

  5. The nuclear education and staffing challenge: Rebuilding critical skills in nuclear science and technology

    International Nuclear Information System (INIS)

    Wogman, N.A.; Bond, L.J.; Waltar, A.E.; Leber, R.E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of nuclear legacies, global security, nonproliferation, homeland security and national defense, radiobiology and nuclear energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. Current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs are presented. (author)

  6. Summaries of FY 1980 research in the nuclear sciences

    International Nuclear Information System (INIS)

    1980-06-01

    A compilation and index of the projects funded in fiscal year 1980 by the DOE Division of Nuclear Sciences/Office of Basic Energy Sciences is provided. These summaries constitute the basic document by which the DOE nuclear sciences program can be made known in some technical detail to interested persons

  7. Summaries of FY 1980 research in the nuclear sciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    A compilation and index of the projects funded in fiscal year 1980 by the DOE Division of Nuclear Sciences/Office of Basic Energy Sciences is provided. These summaries constitute the basic document by which the DOE nuclear sciences program can be made known in some technical detail to interested persons. (RWR)

  8. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1962-01-01

    Advances in Nuclear Science and Technology, Volume 1 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book covers a variety of topics, including nuclear power stations, graft polymerization, diffusion in uranium alloys, and conventional power plants.Organized into seven chapters, this volume begins with an overview of the three stages of the operation of a power plant, either nuclear or conventionally fueled. This text then examines the major problems that face the successful development of commercial nuclear power plants. Other chapters consider

  9. Material science as basis for nuclear medicine: Holmium irradiation for radioisotopes production

    Science.gov (United States)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko

    2018-05-01

    Material Science, being an interdisciplinary field, plays important roles in nuclear science. These applications are seen in weaponry, armoured vehicles, accelerator structure and development, semiconductor detectors, nuclear medicine and many more. Present study presents the applications of some metals in nuclear medicine (radioisotope production). The charged-particle-induced nuclear reactions by using cyclotrons or accelerators have become a very vital feature of the modern nuclear medicine. Realising the importance of excitation functions for the efficient production of medical radionuclides, some very high purity holmium metals are generally prepared or purchased for bombardment in nuclear accelerators. In the present work, various methods to obtain pure holmium for radioisotope production have been discussed while also presenting details of our present studies. From the experimental work of the present studies, some very high purity holmium foils have been used in the work for a comprehensive study of residual radionuclides production cross-sections. The study was performed using a stacked-foil activation technique combined with γ-ray spectrometry. The stack was bombarded with 50.4 MeV alpha particle beam from AVF cyclotron of RI Beam Factory, Nishina Centre for Accelerator-Based Science, RIKEN, Japan. The work produced thulium radionuclides useful in nuclear medicine.

  10. Midwest Nuclear Science and Engineering Consortium

    International Nuclear Information System (INIS)

    Volkert, Wynn; Kumar, Arvind; Becker, Bryan; Schwinke, Victor; Gonzalez, Angel; McGregor, Douglas

    2010-01-01

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  11. Midwest Nuclear Science and Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  12. Education in the nuclear sciences at Japanese universities

    International Nuclear Information System (INIS)

    Takashima, Y.

    1990-01-01

    Though there are 430 government and private universities in Japan, only a limited number of them have the department associated with nuclear science education. And the education is one-sided to government universities because mainly of financial problem. Nuclear engineering departments are installed at only 7 big universities. In addition, there are 3 institutes associated with a nuclear reactor. In these facilities, education on reactor physics, radiation measurement, electromagnetics and material sciences are conducted. For education on safety handling of radioactive materials, 10 radioisotope centers and 7 radiochemistry laboratories attached to big government universities act an important role. Almost all of the financial support for the above nuclear education come from the Ministry of Education, Science and Culture. However, some other funds are introduced by the private connection of professors

  13. Nuclear sciences at the service of mankind

    International Nuclear Information System (INIS)

    Qaim, S.M.

    1999-01-01

    Nuclear sciences have contributed appreciably to meeting some of the needs of mankind, such as food and agriculture, environmental protection, energy production, health and medicine, intellectual pursuit, etc. Some pertinent examples are given. The role of nuclear science is well established in some areas, but is not fully realized in others. This article briefly surveys some of the achievements and potentials but also outlines the limitations and problem areas. (author)

  14. European Master of Science in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, Frans; Safieh, Joseph; Giot, Michel; Mavko, Borut; Sehgal, Bal Raj; Schaefer, Anselm; Goethem, Georges van; D'Haeseleer, William

    2005-01-01

    architecture for higher education defining bachelors and masters degrees. The basic goal is to guarantee a high quality nuclear education in Europe by means of stimulating student and instructor exchange, through mutual checks of the quality of the programs offered, by close collaboration with renowned nuclear-research groups at universities and laboratories. The concept for a nuclear master program consists of a solid basket of recommended basic nuclear science and engineering courses, but also contains advanced courses as well as practical training. Some of the advanced courses also serve as part of the curricula for doctoral programs. A second important issue identified is Continued Professional Development. The design of corresponding training courses has to respond to the needs of industry and regulatory bodies, and a specific organisation has to be set up to manage the quality assessment and accreditation of the Continued Professional Development programs. In order to achieve the important objectives and practical goals described above, the ENEN Association, a non-profit association under French law, was formed. This international association can be considered as a step towards the creation of a virtual European Nuclear University symbolising the active collaboration between various national institutions pursuing nuclear education. Based on the concepts and strategy explained above, and with the full cooperation of the participating institutions, it may be stated that the intellectual erosion in the nuclear field can be reversed, and that high quality European education in nuclear sciences and technology can be guaranteed

  15. China nuclear science and technology report: Abstracts, 1992

    International Nuclear Information System (INIS)

    1992-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1992 (Report Numbers CNIC-00555 ∼ CNIC-00674) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  16. Nuclear Science and Technology in Human Progress. Inaugural Lecture

    International Nuclear Information System (INIS)

    Mshelia, M. D.

    1997-01-01

    The paper is a general discourse on the significance and development of nuclear science and technology and the potential peaceful uses to which it may be put. In particular nuclear science and technology and their applications in Nigeria are well discussed

  17. Nuclear science and technology in higher education in the Philippines

    International Nuclear Information System (INIS)

    Bernido, C.C.

    2007-01-01

    Education and training in nuclear science and technology in the Philippines are obtained from higher education institutions, and from courses offered by the Philippine Nuclear Research Institute. The Philippine Nuclear Research Institute (PNRI), an institute under the Department of Science and Technology (DOST), is the sole government agency in charge of matters pertaining to nuclear science and technology, and the regulation of nuclear energy. The PNRI was tasked with fast-tracking nuclear education and information, together with the Department of Education, Culture and Sports (DECS), the Commission on Higher Education (CHED), and some other government agencies which constituted the Subcommittee on Nuclear Power Public Education and Information, by virtue of Executive Order 243 enacted by then President Ramos on May 12, 1995. This Executive Order created the Nuclear Power Steering Committee; the Subcommittee on Nuclear Power Public Education and Information was one of the subcommittees under it. The Nuclear Power Steering Committee was created when the government was again considering the feasibility of the nuclear power option; this Committee had since become inactive because the government has not re-embarked on a nuclear power program. The Philippines had a nuclear power program in the 1970's. The first nuclear power plant was nearing completion when Chernobyl and Three Mile Island happened. Due to the change in political climate and strong anti-nuclear sentiment, the first nuclear power plant had been mothballed. However, there is a possibility for the introduction of nuclear power in the country's projected energy sources by the year 2025. The country has one research reactor, a 3 MW Triga reactor, but at the present time it is not operational and is under extended shutdown. In the event that the Philippines will again implement a nuclear power program, there will be a great need for M.S. and Ph.D. holders in nuclear engineering. There are less than five

  18. China nuclear science and technology report (1991). Abstracts

    International Nuclear Information System (INIS)

    1992-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1991 (Report Numbers CNIC-00455 to CNIC-00554) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  19. Abstracts China nuclear science and technology reports (1988)

    International Nuclear Information System (INIS)

    1989-03-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1988 (Report Numbers CNIC -00115 ∼ CNIC-00254) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  20. Abstracts: China Nuclear Science and Technology Report (1989)

    International Nuclear Information System (INIS)

    1990-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Report published in 1989 (Report Numbers CNIC--00255∼CNIC--00354) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  1. The US nuclear science user facilities - 5276

    International Nuclear Information System (INIS)

    Kennedy, J.R.

    2015-01-01

    The primary mission of the NSUF (Nuclear Science User Facilities) is to provide access, at no cost to the researcher, to world-class, state-of-the art capabilities and expertise to advance nuclear science and technology through high impact research. Through the NSUF, nuclear energy researchers can access specialized and often unique and expensive equipment and facilities, as well as the accompanying expertise, including nuclear test reactors, ion beam accelerators, hot cell post-irradiation examination (PIE) equipment, synchrotron beam lines, and advanced radiologically qualified materials science PIE instrumentation. The NSUF can also support the design and fabrication of an irradiation experiment, the transport of that experiment to and from the reactor, the PIE activities, the analysis and interpretation of the data, and final material disposition. A special feature of the NSUF is its Sample Library of irradiated specimens made available to users that reduces investigation time and costs. Enhancing the Sample Library for future applications of advanced instrumentation and new ideas is a key goal of the NSUF. Similar to the effort on building a Sample Library, the NSUF is creating a searchable database of the infrastructure available to DOE-NE (Department Of Energy - Office of Nuclear Energy) supported researchers

  2. Nuclear Science and Technology Branch Report 1975

    International Nuclear Information System (INIS)

    1975-10-01

    A summary is given of research activities. These include: nuclear techniques of analysis, nuclear techniques in hydrology, industrial applications of radioisotopes, biological and chemical applications of irradiation, radiation detection and measurement, environmental studies and biophysics and radiation biology. Patent applications and staff of the nuclear science and applications secretariat are listed. (R.L.)

  3. A thirty year look at the nuclear science programs at the American Museum of Science and Energy

    International Nuclear Information System (INIS)

    Marsee, M.D.; Williams, A.J.

    1993-01-01

    The American Museum of Science and Energy has been involved in nuclear science education since it opened in 1949. For a period between the mid-1950's and the early 1980's, a series of travelling exhibits and demonstrations provided the nation with programs about basic nuclear science and peaceful applications of atomic energy. The Museum itself continues educating its visitors about nuclear science via audio-visuals, interactive exhibitry and live demonstrations and classes. (author) 1 fig

  4. Teachers discovering nuclear science for the 90's

    International Nuclear Information System (INIS)

    Otto, R.J.

    1990-01-01

    High school and junior high school teachers from across the country have rediscovered nuclear science through summer participation as teacher research associates at the Lawrence Berkeley Laboratory. As a result of their new knowledge and awareness of the broad range of applications of nuclear science with obvious positive benefit to society, these teachers are putting nuclear chemistry and physics back into their curriculum. Through direct research participation teachers become a primary resource for students. The Department of Energy is now supporting over 150 teacher research associates in its TRAC program in all areas of science. The eight week teacher research associate appointments provide an in-depth experience for the teacher, and an opportunity for teachers and scientists to become engaged in new curriculum and materials development

  5. Abstracts of China Nuclear Science and Technology Report (1998)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1998 (Report Numbers CNIC-01231-CNIC-01330) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  6. Abstracts of China Nuclear Science and Technology Report (1998)

    International Nuclear Information System (INIS)

    1999-09-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1998 (Report Numbers CNIC-01231-CNIC-01330) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  7. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  8. Overview of OECD-NEA Nuclear Science and Data Bank Activities

    International Nuclear Information System (INIS)

    Gulliford, Jim

    2012-01-01

    Overview: • NEA Areas of Work, Standing Committees; • Nuclear Science & the Data Bank: – Working Parties & Expert Groups; – integral experiments databases; – linked Data Bank/Nuclear Science products. • Reactor Physics and Criticality Integral Experiments: – ICSBEP& IRPhE evaluations; – Database tools (DICE, IDAT, SFCOMPO-X). • Other Activities related to Fast Reactors: – WPRS SFR Task Force; – Nuclear Data, WPEC sub-group on data adjustment; – Fuel Cycle and Materials. • Looking Ahead: – Uncertainty Analysis for transient modelling; – Russian Accession to the NEA and Data Bank; – Impact of Fukushima on Nuclear Science Programmes of Work

  9. International conference on nuclear analytical methods in the life sciences (NAMLS) (abstracts)

    International Nuclear Information System (INIS)

    1999-01-01

    The International Conference on Nuclear Analytical Methods in the Life Sciences (NAMLS) was hold on October 26-30, 1998 in Beijing, China, which was organized by China Institute of Atomic Energy in Cooperation with IAEA, National Science Foundation of China, China National Nuclear Cooperation, Chinese Academy of Sciences, Institute of High Energy Physics, Shanghai Institute for Nuclear Research, Chinese Nuclear Society, Nuclear Physics Society of China and Nuclear Chemistry Society of China. the contents of this Conference include: 1. QA-QC and CRM studies; 2. Elemental speciation and localization; 3. Health-related environmental studies; 4. Recent development in nuclear and related analytical techniques; 5. Trace elements in health and diseases; 6. Miscellaneous applications of NAT in the life sciences

  10. The application of nuclear science technology to understanding and solving environmental problems

    International Nuclear Information System (INIS)

    Zuk, W.M.

    1997-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has for many years been involved in applying nuclear science-based and related technologies to the understanding of environmental processes and to the development and implementation of practical and effective solutions to site specific problems, for a broad spectrum of industry, government regulatory agencies, and other organisations in Australia, Europe, North and South America and South East Asia. ANSTO's environmental science program arose out of the need for research to predict, measure, evaluate and monitor the environmental impacts associated with : uranium mining and processing in Australia; the operation of the research reactor at Lucas Heights; and the safe treatment and disposal of radioactive and conventional wastes associated with these activities. The expertise developed in these activities, has found application to a much broader range of environmental concerns. This paper will present an overview of ANSTO's application of nuclear science-based techniques to, inter alia: coastal and marine studies; minesite rehabilitation; transport and geochemical modelling of radionuclides, heavy metals and organic chemicals in the geosphere; the application of naturally-occurring radionuclides and radioactive tracers to corrosion and sedimentation studies in the coastal environment; dating sediments, fish corals and archaeological samples; the understanding of the kinetics and the physiological responses of aquatic organisms to radionuclides and metals in the environment: and the use of aquatic organism as archival and 'realtime' monitors of pollutants

  11. Popularization of science and nuclear technology in Cordoba

    International Nuclear Information System (INIS)

    Martin, Hugo R.

    2012-01-01

    Whereas in our country's scientific and technological development are essentially in the hands of the State, conducting scientific outreach massive level, involve a degree of commitment by the state led to that effect. Responding to this premise, in 2012, took place in Cordoba some outdoors communication actions. This paper describes the main characteristics of them, specifying those aspects related to the spread of national nuclear activities within that framework. From a focus on science popularization and under the names of 'Scientific and Technological Cordoba Tourism' and 'Science and Technology in the popular events of Cordoba', dissemination events were held in places accessible to the public: beaches, rivers and pedestrian areas of the main cities of the province. It was organized by the Direction of Disclosure and Science Education, Ministry of Science and Technology of Cordoba, which called for researchers from participating institutions, among whom were those related to national nuclear activities. Simple experiments were presented, video projections, street and dissertations astronomical observations with discussion on various topics. The objective was to capitalize on the potential attractiveness of some physical and chemical phenomena curious, to summon people who were enjoying their free time. Those responsible for the activities were researchers, in several cases with doctoral level and calling for the release, as well as professionals in educational sciences. Some of the activities involved in the group's visit transcendent opportunity celebrations in the interior provincial, or events with massive public support. In the case of atomic energy the approach used was based on natural radioactivity and radiation. From the point of view of the results obtained, it can be said that the popularization of science and technology has begun to present itself as an alternative learning of citizenship, which has been well received

  12. On nuclear power problem in science education in Japan. Supplementary reader, authorization and scientific literacy for citizen

    International Nuclear Information System (INIS)

    Ryu, Jumpei

    2012-01-01

    Distribution of 'supplementary reader on nuclear power: Challenge! Nuclear power world' issued in 2010 and 'supplementary reader on radiation' issued in October 2011 was shelved in June 2012 by the administrative project review with revised policy of nuclear education for nuclear power promotion reflected. Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Accident brought about great effects and change on fundamental conditions of citizen's life as well as national consciousness of future society in Japan. Reconsideration of scientific education should be needed taking account how to recognize 'scientific literacy' and 'scientific communication'. This article discussed nuclear power problem related with supplementary reader and nuclear power education so as to establish science education framework for 'scientific literacy' for citizen. Preparation of nuclear power education at junior high school according to guideline of new course of study was reviewed and then 'scientific literacy' based on British science higher level student textbook for public understanding of science in society was described for reference, which suggested some problem in science education in Japan although social background was different. (T. Tanaka)

  13. Science and technology as strategic way for nuclear activities

    International Nuclear Information System (INIS)

    Paiano, Silvestre

    2000-01-01

    The article brings few instructive examples on the interaction between nuclear energy and other areas of science and technology, Microelectronics, computer technology, and new materials are among the many technologies which are crucial for developing nuclear energy technology. On the other way round, nuclear energy presents also a wide range of new demands and opportunities for several areas of science and technology. The problem is that such a relationship is not well understood by the society, and to a large extent it brings about the very process of legitimating the use of nuclear energy (author)

  14. Nuclear science training in Sri Lanka

    International Nuclear Information System (INIS)

    Hewamanna, R.

    2007-01-01

    There are two major levels of obtaining radiation or nuclear education and training in Sri Lanka : the University and training courses in nuclear related technology and radiation protection offered by the Atomic Energy Authority of the Ministry of Science and Technology . This paper summarizes the status, some of the activities and problems of radiation education in Sri Lanka. (author)

  15. Discussion of nuclear science and technology information base on serving our company scientific research

    International Nuclear Information System (INIS)

    Wang Zhong; Liu Wenbin

    2010-01-01

    In the eleventh five-year, our company scientific research have a long way to go and preparatory work of commercial reprocessing has startup under digital information society. Fundamental change of existing content, model of nuclear science and technology information occurred to fit for new situation and new environment, and in order to service for our company scientific research. In this paper, we discuss the development of new services that fits for our company science and technology information. (authors)

  16. Nuclear Science and Engineering education at the Delft University of Technology

    International Nuclear Information System (INIS)

    Bode, P.

    2009-01-01

    There is a national awareness in the Netherlands for strengthening education in the nuclear sciences, because of the ageing workforce, and to ensure competence as acceptability increases of nuclear power as an option for diversification of the energy supply. This may be reflected by the rapidly increasing number of students at the Delft University of Technology with interest in nuclear science oriented courses, and related bachelor and MSc graduation projects. These considerations formed the basis of the Nuclear Science and Engineering concentration, effectively starting in 2009. The programme can be taken as focus of the Research and Development Specialisation within the Master Programme in Applied Physics or as a Specialisation within the Master's Programme in Chemical Engineering. Both programmes require successful completion of a total of 120 ECTS study points, consisting of two academic years of 60 ECTS (1680 hours of study). Of that total, 100 ECTS are in the field of Nuclear Science and Engineering, depending on students choices within the programme, including a (industrial) internship, to be taken in companies all over the world. In Chemical Engineering, there is a compulsory design project during which a product or process should be developed. Both programmes also require a final graduation project. In both curricula, Nuclear Science and Engineering comprises compulsory and elective courses, which allow students to focus on either health or energy. Examples of courses include Nuclear Science, Nuclear Chemistry, Nuclear Engineering, Reactor Physics, Chemistry of the Nuclear Fuel Cycle, Medical Physics and Radiation Technology and Radiological Health Physics. (Author)

  17. Manpower Requirements and Education in Nuclear Science: An International Perspective Nuclear Science Manpower and Education Panel

    International Nuclear Information System (INIS)

    Zeisler, R.; Clark, S.B.; Parry, S.J.; Choppin, G.R.; Danesi, P.R.; Rossbach, M.; Williamson, C.; and others

    2005-01-01

    The MARC-VI conference served as an excellent setting for a session organized to present and discuss the problems in nuclear science manpower and education. A panel discussion and contributed papers reflected the world-wide situation. Major points of the panel discussion are presented. As a result, a resolution on the current situation of nuclear chemistry and radiochemistry was drafted and endorsed by the conference attendees. (author)

  18. Nuclear test-experimental science annual report, Fiscal year 1990

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Cherniak, J.; Donohue, M.L.; Francke, A.; Hedman, I.; Kirvel, R.D.

    1991-01-01

    Fiscal year 1990 was another year of outstanding accomplishments for the Nuclear Test-Experimental Science (NTES) Program at Lawrence Livermore National Laboratory (LLNL). We continued to make progress to enhance the experimental science in the Weapons Program and to improve the operational efficiency and productivity of the Nuclear Test Program

  19. Science Information Centre and Nuclear Library of 'Jozef Stefan' Institute, Ljubljana, Slovenia

    International Nuclear Information System (INIS)

    Stante, A.; Smuc, S.

    2006-01-01

    The 'Jozef Stefan' Institute Science Information Centre is the central Slovene physics library and one of the largest special libraries in Slovenia. Our collection covers the fields of physics, chemistry, biochemistry, electronics, information science, artificial intelligence, energy management, environmental science, material science, robotics etc. The Nuclear Library at the Reactor Centre Podgorica is a part of the Science Information Centre. It collects and keeps literature from the field of reactor and nuclear energy and provides information to scientists employed at the Reactor Centre and users from the Nuclear Power Plant Krsko as well as other experts dealing with nuclear science and similar fields. The orders subscribed are sent by the Science Information Centre to other libraries included in inter-library lending in Slovenia and abroad. (author)

  20. Nuclear science. Annual report, July 1, 1978-June 30, 1979

    International Nuclear Information System (INIS)

    Gough, R.A.; Nurmia, M.J.; Westfall, G.D.

    1980-03-01

    This Annual Report of the Nuclear Science Division describes the scientific research that has been carried out within the Division during the period between July 1, 1978 and June 30, 1979. The principal objective of the Nuclear Science Division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, both for their intrinsic application in developing understanding of microscopic and macroscopic nuclear science and for their use in the synthesis of new exotic isotopes and new chemical elements. Complementary programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development are also pursued. The Division operates the 88-inch cyclotron as a major research facility which also supports a strong outside user program; experimentalists within the Division also use the Super HILAC and the Bevalac accelerators for their studies. Experimental research was carried out on nuclear structure, nuclear reactions and scattering, and relativistic heavy ions (projectile and target fragmentation, central collisions), with lesser effort devoted to atomic physics, the isotopes project, and other activities. The theoretical study of nuclear collisions involved both nonrelativistic and relativistic reactions. Other work was devoted to the subjects of accelerator operations and development and nuclear instrumentation. Publications lists are also included. 30 items with significant information were abstracted and indexed individually

  1. Reconstruction of nuclear science and engineering harmonized with human society

    International Nuclear Information System (INIS)

    2003-03-01

    At the beginning of the 21th century, the use of nuclear power has assumed very serious dimensions, because there are many problems not only safety technologies but also action of technical expert. The situation and problems of nuclear power are explained. It consists of six chapter as followings; introduction, history and R and D of nuclear power, paradigm change of nuclear science and engineering, energy science, investigation of micro world, how to research and development and education and training of special talent. The improvement plans and five proposals are stated as followings; 1) a scholar and engineer related to nuclear power have to understand ethics and build up closer connection with person in the various fields. 2) Nuclear power generation and nuclear fuel cycle are important in future, so that they have to be accepted by the society by means of opening to the public. Safety science, anti-pollution measurements, treatment and disposal of radioactive waste and development of new reactor and fusion reactor should be carried out. 3) It is necessary that the original researches of quantum beam and isotope have to step up. 4) The education of nuclear science and technology and upbringing special talent has to be reconstructed. New educational system such as 'nuclear engineering course crossing with many universities' is established. 5) Cooperation among industry, academic world and government. (S.Y.)

  2. Medical application of nuclear science: nuclear medicine and production of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Cornet, L.

    1997-01-01

    Nuclear science in attendance on medicine or from Radium to Radiopharmaceuticals. By a brief historical reminder of the evolution of the radioactivity and development of nuclear science, we could see a very early interest and application of the radioactivity in the medical field. Main steps: Detection of natural radioactivity/Discovery of artificial radioactivity/First treatment of leukaemia and thyroid/First nuclear reactor/First radioisotope laboratory in hospital/First scintigraphy/First radiopharmaceutical/First cyclotron and cyclotron products/First immunoscintigraphy/Biotechnology and radioisotope/Evolution of technics [equipment for diagnosis (imaging, scintigraphy) and therapy]/Evolution of production technics and concept of products (generators of Technetium) and machines, reactor, cyclotron/Evolution of importance and interest of nuclear medicine/Creation of international association of nuclear medicine and producers (example ARPR)/Evolution of safety and pharmaceuticals regulation. After the sixties, period extremely rich in invention of products, characterized by a high fertility specially due to a non-restrictive regulation in terms of safety and pharmaceutical consideration, the evolution of technics, the importance of costs (investment, research, healthcare and the evolution of the regulations) have smoothly but continuously transformed the contexts and different actors. Consequences and facts: Rationalization and standardization of the catalogues, total integration of radiopharmaceuticals into the pharmaceutical laws, stop of nuclear research reactors, increase of number of cyclotrons, transformation of size and role of the producers and nuclear centers, risk in supply of some raw materials like Molybdenum, medical nuclear application as a worldwide business

  3. Education in the nuclear sciences in Japanese universities

    International Nuclear Information System (INIS)

    Takashima, Y.

    1993-01-01

    Although there are 430 governmental and private universities in Japan, only a limited number of them have departments associated with nuclear science education. Moreover, mainly because of financial pressures, this association is often limited to government universities. Nuclear engineering departments are incorporated with only seven of larger universities, and there are three institutes with nuclear reactors. In these facilities, education in reactor physics, radiation measurements, electromagnetic and material sciences, are conducted. In terms of radiation safety and radiological health physics, ten radioisotope centers and seven radiochemistry laboratories in universities play an important role. (author) 8 figs.; 5 tabs

  4. Radioactive waste treatment at the Boris Kidric Institute of nuclear sciences

    International Nuclear Information System (INIS)

    Vukovic, Z.

    1989-01-01

    The results of many years work on the problems of treatment and interim storage of radioactive waste at the Boris Kidric Institute of nuclear sciences are presented. The main R/D work based on chemical treatment, solidification and pressing is described (author)

  5. Radioactive waste treatment at the Boris Kidric Institute of nuclear sciences

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, Z [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-07-01

    The results of many years work on the problems of treatment and interim storage of radioactive waste at the Boris Kidric Institute of nuclear sciences are presented. The main R/D work based on chemical treatment, solidification and pressing is described (author)

  6. Research and teaching nuclear sciences at universities in developing countries

    International Nuclear Information System (INIS)

    1981-11-01

    A formulation is given for a set of ground rules to be applied when introducing or improving nuclear science training at the university level in developing countries. Comments are made on the general requirements needed for the teaching of nuclear science at the university and particular suggestions made for the areas of nuclear physics radiochemistry and radiation chemistry and electronics

  7. White Paper on Nuclear Data Needs and Capabilities for Basic Science

    Energy Technology Data Exchange (ETDEWEB)

    Batchelder, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kawano, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kelley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kondev, F. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCutchan, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sonzogni, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thoennessen, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-14

    Reliable nuclear structure and reaction data represent the fundamental building blocks of nuclear physics and astrophysics research, and are also of importance in many applications. There is a continuous demand for high-quality updates of the main nuclear physics databases via the prompt compilation and evaluation of the latest experimental and theoretical results. The nuclear physics research community benefits greatly from comprehensive, systematic and up-to-date reviews of the experimentally determined nuclear properties and observables, as well as from the ability to rapidly access these data in user-friendly forms. Such credible databases also act as a bridge between science, technology, and society by making the results of basic nuclear physics research available to a broad audience of users, and hence expand the societal utilization of nuclear science. Compilation and evaluation of nuclear data has deep roots in the history of nuclear science research, as outlined in Appendix 1. They have an enormous impact on many areas of science and applications, as illustrated in Figure 2 for the Evaluated Nuclear Structure Data File (ENSDF) database. The present workshop concentrated on the needs of the basic nuclear science community for data and capabilities. The main role of this community is to generate and use data in order to understand the basic nuclear forces and interactions that are responsible for the existence and the properties of all nuclides and, as a consequence, to gain knowledge about the origins, evolution and structure of the universe. Thus, the experiments designed to measure a wealth of nuclear properties towards these fundamental scientific goals are typically performed from within this community.

  8. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    Full text: In 2002, the US Department of Energy (US DOE) transferred sponsorship of the INEEL and ANL-W to the DOE Office of Nuclear Energy, Science and Technology and designated the INEEL and ANL-W as the nation's lead laboratories for nuclear reactor and nuclear fuel cycle research and development. This transfer acknowledged the laboratories' history, infrastructure, expertise and commitment to collaborate broadly in order to fulfill its assigned role as the nation's center for nuclear energy research and development. Key to this role is the availability of well-educated and trained nuclear engineers, professionals from other disciplines of engineering, nuclear scientists, and others with advanced degrees in supporting disciplines such as physics, chemistry, and math. In 2005 the INEEL and ANL-W will be combined into the Idaho National Laboratory (INL). One of US DOE's objectives for the INL will be for it to take a strong role in the revitalization of nuclear engineering and nuclear science education in the US. Responding to this objective for the INL and the national need to rejuvenate nuclear engineering and nuclear science research and education, ISU, University of Idaho (UI), Boise State University, the INEEL, and ANL-W are all supporting a new Institute of Nuclear Science and Engineering (INSE), initially proposed by and to be administered by ISU. The Institute will rely on the resources of both universities and the INL to create a US center for reactor and fuel cycle research to development and attract outstanding faculty and students to Idaho and to the INL. The Institute and other university based education development efforts represent only one component of a viable Human Resources Pipeline from university to leading edge laboratory researcher. Another critical component is the successful integration of new graduates into the laboratory research environment, the transfer of knowledge from senior researchers, and the development of these individuals into

  9. Education and training in nuclear science/engineering in Taiwan

    International Nuclear Information System (INIS)

    Chung, C.

    1994-01-01

    The present status of nuclear education and training in Taiwan is reviewed. The nuclear science/engineering program has been established in Taiwan under the College of Nuclear Science at the National Tsing Hua University since 1956; it remains the only program among 123 universities and colleges in Taiwan where education and training in nuclear fields are offered. The program, with 52 faculty members, offers advanced studies leading to BSc, MSc, and PhD degrees. Lectures and lab classes are given to 600 students currently registered in the program. Career placement program geared for the 200 graduate and 400 undergraduate students is to orientate them into the local nuclear power utilities as well as agricultural, medical, industrial, academic and governmental sectors where nuclear scientists and engineers at all levels are needed. 8 refs., 1 fig

  10. Australian Nuclear Science and Technology Organisation strategy review recommendations. Final Report

    International Nuclear Information System (INIS)

    1994-01-01

    In May 1994 the Australian Nuclear Science and Technology Organization (ANSTO)'s Board initiated a comprehensive five month review which purpose was to develop a mission for ANSTO and thus define its role both domestically and internationally. The review took into account the needs of ANSTO stakeholders, analysed ANSTO capabilities as well as available international opportunities. Outcomes of the review included an assessment of the priorities and needs of stakeholders, an understanding of how these needs can be meet, and the resulting resource implications. ANSTO's major mission objectives, as defined in the consultants's report should be: to support the Government's nuclear policies (this objective is paramount), support industrial competitiveness and innovation through technology transfer, as well as to maintain a high quality nuclear science base and to enable academic institutions and other science organizations to perform research by providing access to unique facilities and expertise. The consultants also made recommendations on appropriate management arrangements for ANSTO, an implementation plan, progress milestones and operational targets. Details of the relevance-excellence analysis, commercial customer analysis and justification for recommended activity action imperatives are presented in the appendices. 48 figs

  11. Success stories in nuclear science

    International Nuclear Information System (INIS)

    Fox, M.R.

    1990-01-01

    The low level of public understanding of energy in general, and nuclear energy in particular in the United States is well known, especially by the world's scientific community. A technologically leading nation such as the United States, will not remain so for long, if fear, anxiety, worry, anger, and technological misinformation continue to influence if not drive science and energy policy. Our society, our freedom, and even our national security are at risk when sound science and energy policies are inhibited or prevented. As a scientific organization, the American Nuclear Society believes that it is our responsibility, not merely an obligation, to get involved with the educational processes of our nation. Through the Public Information Committee of ANS a variety of educational activities have been undertaken, with remarkable success. This presentation describes some of these and some of the many lessons learned from these activities and about ourselves

  12. Future challenges in nuclear science education

    International Nuclear Information System (INIS)

    Yates, S.W.

    1993-01-01

    The role of Division of Nuclear Chemistry and Technology of the American Chemical Society in nuclear science education is reviewed, and suggestions for enhanced involvement in additional areas are presented. Possible new areas of emphasis, such as educational programs for pre-college students and non-scientific public, are discussed. Suggestions for revitalizing the position of radiochemistry laboratories in academic institutions are offered. (author) 7 refs

  13. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1970-01-01

    Advances in Nuclear Science and Technology, Volume 5 presents the underlying principles and theory, as well as the practical applications of the advances in the nuclear field. This book reviews the specialized applications to such fields as space propulsion.Organized into six chapters, this volume begins with an overview of the design and objective of the Fast Flux Test Facility to provide fast flux irradiation testing facilities. This text then examines the problem in the design of nuclear reactors, which is the analysis of the spatial and temporal behavior of the neutron and temperature dist

  14. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1966-01-01

    Advances in Nuclear Science and Technology, Volume 3 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book presents the advances in the atomic energy field.Organized into six chapters, this volume begins with an overview of the use of pulsed neutron sources for the determination of the thermalization and diffusion properties of moderating as well as multiplying media. This text then examines the effect of nuclear radiation on electronic circuitry and its components. Other chapters consider radiation effects in various inorganic solids, with empha

  15. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-05-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  16. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  17. Nuclear science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Science and Technology comprehends Nuclear and Condensed Matter Physics, Neutron Activation Analysis, Radiation Metrology, Radioprotection and Radioactive Waste Management. These activities are developed at the Research Reactor Center, the Radiation Metrology Center and the Radioactive Waste Management Laboratory. The Radioprotection activities are developed at all radioactive and nuclear facilities of IPEN-CNEN/SP. The Research Reactor Center at IPEN-CNEN/SP is responsible for the operation and maintenance of the Research Reactor IEA-R1 and has a three-fold mission: promoting basic and applied research in nuclear and neutron related sciences, providing educational opportunities for students in these fields and providing services and applications resulting from the reactor utilization. Specific research programs include nuclear structure study from beta and gamma decay of radioactive nuclei and nuclear reactions, nuclear and neutron metrology, neutron diffraction and neutron multiple-diffraction study for crystalline and magnetic structure determination, perturbed -angular correlation (PAC) using radioactive nuclear probes to study the nuclear hyperfine interactions in solids and instrumental neutron activation analysis, with comparative or ko standardization applied to the fields of health, agriculture, environment, archaeology, reference material production, geology and industry. The research in the areas of applied physics includes neutron radiography, scientific computation and nuclear instrumentation. During the last several years a special effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power. The primary objective was to modernize the IEA-R1 reactor for safe and sustainable operation to produce primary radioisotopes, such as {sup 99}Mo and {sup 131}I, among several others, used in nuclear medicine, by operating

  18. Nuclear science and technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Nuclear Science and Technology comprehends Nuclear and Condensed Matter Physics, Neutron Activation Analysis, Radiation Metrology, Radioprotection and Radioactive Waste Management. These activities are developed at the Research Reactor Center, the Radiation Metrology Center and the Radioactive Waste Management Laboratory. The Radioprotection activities are developed at all radioactive and nuclear facilities of IPEN-CNEN/SP. The Research Reactor Center at IPEN-CNEN/SP is responsible for the operation and maintenance of the Research Reactor IEA-R1 and has a three-fold mission: promoting basic and applied research in nuclear and neutron related sciences, providing educational opportunities for students in these fields and providing services and applications resulting from the reactor utilization. Specific research programs include nuclear structure study from beta and gamma decay of radioactive nuclei and nuclear reactions, nuclear and neutron metrology, neutron diffraction and neutron multiple-diffraction study for crystalline and magnetic structure determination, perturbed -angular correlation (PAC) using radioactive nuclear probes to study the nuclear hyperfine interactions in solids and instrumental neutron activation analysis, with comparative or ko standardization applied to the fields of health, agriculture, environment, archaeology, reference material production, geology and industry. The research in the areas of applied physics includes neutron radiography, scientific computation and nuclear instrumentation. During the last several years a special effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power. The primary objective was to modernize the IEA-R1 reactor for safe and sustainable operation to produce primary radioisotopes, such as 99 Mo and 131 I, among several others, used in nuclear medicine, by operating the reactor

  19. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    International Nuclear Information System (INIS)

    Friedlander, E.M.

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out

  20. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, E.M. (ed.)

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out.

  1. Master degree in different nuclear sciences; Sudan Academy of Sciences

    International Nuclear Information System (INIS)

    Hasan, A.M.A.

    2013-01-01

    Sudan Academy of Sciences has enriched the professional and research fields with a considerable number of qualified staff in medical physics, radiation protection, nuclear sciences and technologies. These programs have great interest due to the increased market demand, introduction of these fields in the university syllabus, and the appreciated funds from the International Atomic Energy Agency and the Arab Atomic Energy Agency via training and expert missions. (author)

  2. The Nuclear Science References (NSR) database and Web Retrieval System

    International Nuclear Information System (INIS)

    Pritychenko, B.; Betak, E.; Kellett, M.A.; Singh, B.; Totans, J.

    2011-01-01

    The Nuclear Science References (NSR) database together with its associated Web interface is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 200,000 articles since the beginning of nuclear science. The weekly updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr).

  3. Proceedings of the sixth conference of nuclear sciences and applications. Vol. 1-4

    International Nuclear Information System (INIS)

    1996-03-01

    The six conference on nuclear sciences and applications was held on 15-20 March, 1996 in Cairo. The specialists discussed nuclear Sciences. The applications of nuclear engineering, chemistry, radioactive waste management, nuclear fuel and nuclear material were discussed at the proceeing.More than 1000 paper

  4. Proceedings of the sixth conference of nuclear sciences and applications. Vol. 1-4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The six conference on nuclear sciences and applications was held on 15-20 March, 1996 in Cairo. The specialists discussed nuclear Sciences. The applications of nuclear engineering, chemistry, radioactive waste management, nuclear fuel and nuclear material were discussed at the proceeing.More than 1000 paper.

  5. Abstracts: China Nuclear Science and Technology Report (1990)

    International Nuclear Information System (INIS)

    1991-05-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1990 (Report Numbers CNIC--00355 to CNIC-00454) are presented. The items are arranged according to INIS subjects categories, which mainly are physics, chemistry, materials, earth sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  6. Nuclear science references coding manual

    International Nuclear Information System (INIS)

    Ramavataram, S.; Dunford, C.L.

    1996-08-01

    This manual is intended as a guide to Nuclear Science References (NSR) compilers. The basic conventions followed at the National Nuclear Data Center (NNDC), which are compatible with the maintenance and updating of and retrieval from the Nuclear Science References (NSR) file, are outlined. In Section H, the structure of the NSR file such as the valid record identifiers, record contents, text fields as well as the major TOPICS for which are prepared are enumerated. Relevant comments regarding a new entry into the NSR file, assignment of , generation of and linkage characteristics are also given in Section II. In Section III, a brief definition of the Keyword abstract is given followed by specific examples; for each TOPIC, the criteria for inclusion of an article as an entry into the NSR file as well as coding procedures are described. Authors preparing Keyword abstracts either to be published in a Journal (e.g., Nucl. Phys. A) or to be sent directly to NNDC (e.g., Phys. Rev. C) should follow the illustrations in Section III. The scope of the literature covered at the NNDC, the categorization into Primary and Secondary sources, etc., is discussed in Section IV. Useful information regarding permitted character sets, recommended abbreviations, etc., is given under Section V as Appendices

  7. Nuclear Test-Experimental Science: Annual report, fiscal year 1988

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B. (eds.)

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

  8. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    Energy Technology Data Exchange (ETDEWEB)

    Cizewski, J.A., E-mail: cizewski@rutgers.edu

    2014-06-15

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  9. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  10. Nuclear photon science with inverse compton photon beam

    International Nuclear Information System (INIS)

    Fujiwara, Mamoru

    2007-01-01

    Recent developments of the synchrotron radiation facilities and intense lasers are now guiding us to a new research frontier with probes of a high energy GeV photon beam and an intense and short pulse MeV γ-ray beam. New directions of the science developments with photo-nuclear reactions are discussed. The inverse Compton γ-ray has two good advantages for searching for a microscopic quantum world; they are 1) good emittance and 2) high linear and circular polarizations. With these advantages, photon beams in the energy range from MeV to GeV are used for studying hadron structure, nuclear structure, astrophysics, materials science, as well as for applying medical science. (author)

  11. Relationship between students' interests in science and attitudes toward nuclear power generation

    International Nuclear Information System (INIS)

    Komiya, Izumi; Torii, Hiroyuki; Fujii, Yasuhiko; Hayashizaki, Noriyosu

    2008-01-01

    In order to study the following two points, we conducted an attitude survey among senior high school students. Study 1 The differences in attitudes between nuclear power generation and other science and technologies. Study 2 The relationship between student's interest in science and attitudes toward nuclear power generation. In the questionnaire, the attitude toward nuclear power generation consisted of four questions: (1) pros and cons, (2) safety, (3) necessity, (4) reliability of scientists and engineers who are involved in nuclear power; and we treat four science and technology issues: (1) genetically modified foods, (2) nuclear power generation, (3) humanoid and pet robots, (4) crone technology. From study 1, on attitude to security toward nuclear power generation, about 80% of respondents answered negatively and on attitude to necessity toward it, about 75% of respondents answered positively. Therefore, we found that the structure of attitude was complicated and that it was specific to nuclear power generation. From study 2, we found students' interests in science that influence the attitude toward nuclear power generation. (author)

  12. Nuclear Science and Technology for Thai Society

    International Nuclear Information System (INIS)

    Thailand Institute of Nuclear Technology, Bangkok

    2009-07-01

    Full text: Full text: The 11th conference on the nuclear science and technology was held on 2-3 July 2009 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for the infestation tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  13. Science opportunities through nuclear power in space

    International Nuclear Information System (INIS)

    Harris, H.M.

    1995-01-01

    With the downsizing or outright elimination of nuclear power capability in space in progress, it is important to understand what this means to science in therms of capability cost. This paper is a survey of the scientific possibilities inherent in the potential availability of between 15 to 30 kW through electrical nuclear power in space. The approach taken has been to interview scientists involved in space-research, especially those whose results are dependent or proportional to power availability and to survey previous work in high-power spacecraft and space-based science instruments. In addition high level studies were done to gather metrics about what kind and quantity of science could be achieved throughout the entire solar system assuming the availability in the power amounts quoted above. It is concluded that: (1) Sustained high power using a 10--30 kW reactor would allow the capture of an unprecedented amount of data on planetary objects through the entire solar system. (2) High power science means high qualtiy data through higher resolution of radars, optics and the sensitivity of many types of instruments. (3) In general, high power in the range of 10--30 kW provides for an order-of-magnitude increase of resolution of synthetic aperture radars over other planetary radars. (4) High power makes possible the use of particle accelerators to probe the atomic structure of planetary surface, particularly in the dim, outer regions of the solar system. (5) High power means active cooling is possible for devices that must operate at low temperature under adverse conditions. (6) High power with electric propulsion provides the mission flexibility to vary observational viewpoints and select targets of opportunity. copyright 1995 American Institute of Physics

  14. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  15. A review on nuclear-agricultural sciences in China

    International Nuclear Information System (INIS)

    Yang Xuexian; Liu Tuoyuan; Ji Xiaobing

    1995-10-01

    The developmental history of nuclear-agricultural sciences (NAS) in China was introduced. The proportion of NAS estimated by the sensitometric is about 1%∼3% to the agricultural sciences, 3% to the nuclear science and technology, and below 0.3% to the foundational life science, respectively. Citation indexes of NAS in China were compared with those of other scientific literatures domestic and abroad with bibliometrics. The main achievements and outcomes of NAS in China were described. In the past 25 years, the contribution of the NAS to the gross agricultural production in China was up to 250 hundred millions yuan RMB, corresponding to the ratio of 1:31 of integrated scientific investments to the output. Comparison was made between the development of NAS in China and that abroad. Present situation and the prospect of the NAS were also discussed. (1 fig.; 5 tabs.)

  16. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  17. Thinking about information work of nuclear science and technology in the age of big data: speaking of the information analysis and research

    International Nuclear Information System (INIS)

    Chen Tieyong

    2014-01-01

    Human society is entering a 'PB' (1024TB) the new era as the unit of structured and unstructured data, In the network era, with the development of mobile communications, electronic commerce, the emergence and development of social network. Now, a large-scale production, sharing and application data era is opening. How to explore the value of data, to conquer big data, to get useful information, is an important task of our science and technology information workers. This paper tries to analyze the development of the nuclear science and technology information work from big data obtain, analysis, application. Our analysis and research work for information will be increasingly based on all data and analysis, Instead of random sampling. The data 'sound' is possible. A lot of results of information analysis and research can be expressed quantitatively. We should attach great importance to data collection, careful analysis of the big data. We involves the professional division of labor, but also to cooperation In nuclear science and technology information analysis and research process. In addition, we should strengthen the nuclear science and technology information resource construction, improve Information supply; strengthen the analysis and research of nuclear science and technology information, improve the information service; strengthen information management of nuclear science and technology, pay attention to the security problems and intellectual property rights in information sharing; strengthen personnel training, continuously improve the nuclear science and technology information work efficiency and performance. In the age of big data, our nuclear science and technology information workers shall be based on the information analysis and study as the core, one hand grasping information collection, another hand grasping information service, forge ahead and innovation, continuous improvement working ability of nuclear science and technology information, improve the

  18. 9th Pacific Basin Nuclear Conference. Nuclear energy, science and technology - Pacific partnership. Proceedings Volume 2

    International Nuclear Information System (INIS)

    1994-04-01

    The theme of the 9th Pacific Basin Nuclear Conference held in Sydney from 1-6 May 1994, embraced the use of atom in energy production and in science and technology. The focus was on selected topics of current and on-going interest to countries around the Pacific Basin. The two-volume proceedings include both invited and contributed papers which have been indexed separately. This document, Volume 2 covers the following topics: education and training in Nuclear Science, public acceptance, nuclear safety and radiation protection, nuclear fuel resources and their utilisation, research reactors, cyclotrons and accelerators. refs., tabs., figs., ills

  19. 10. National Nuclear Science and Technology Congress Proceedings Book, Volume 2

    International Nuclear Information System (INIS)

    2009-01-01

    X. National Nuclear Science and Technologies Congress was held on 6-9 October 2009 in Mugla, Turkey in the course of collaborative organization undertaken by Turkish Atomic Energy Authority, Mugla University and Sitki Kocman Foundation. This second volume of Proceedings Book contains 91 submitted presentations and 51 of them are full texts on applications of basic nuclear sciences, nuclear energy and safety.

  20. Conference handbook. Seventh Conference on Nuclear Science and Engineering in Australia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Nuclear Association (ANA) inaugurated a series of biennial national conferences in 1995 to be held in alternate years to the series of international Pacific Basin Nuclear Conferences, of which the ANA hosted the Ninth in the series in Sydney in May 1994 and the Fifteenth in Sydney in 2006. The main objective of these national conferences is to present information on important aspects of the peaceful uses of nuclear science and engineering in Australia and to place this information in a world context and in a readily understood form. These conferences have the general title of Nuclear Science and Engineering in Australia and have consisted mainly of papers invited from leading experts in areas of topical interest in nuclear science and technology supported by contributed poster papers. This seventh conference in 2007 has the special theme A Nuclear Future and also includes papers by invited speakers and contributed posters

  1. Graphite in Science and Nuclear Technology

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in the science and technology. Structure and electrical properties, technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry, so author concentrates on actual problems of application and testing of graphite materials in modern science and technology. Translated from chapters 1 of monog...

  2. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    International Nuclear Information System (INIS)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-01-01

    Cleaning up the nation's nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research, addressing the full cleanup life-cycle, offers an opportunity to help address these challenges by providing (1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, (2) a rational path to the development of alternative technologies should the primary options fail, (3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and (4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DOE's Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EM's responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EM's mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The

  3. Forty years of the Institute for Nuclear Research (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 22 December 2010)

    International Nuclear Information System (INIS)

    2011-01-01

    On 22 December 2010, the scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), devoted to the 40th anniversary of the Institute for Nuclear Research, RAS, was held at the Institute for Nuclear Research, RAS in Troitsk. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A (Institute for Nuclear Research, RAS, Moscow) ''Introductory word''; (2) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) ''Contribution of the SAGE results to the understanding of solar physics and neutrino physics''; (3) Domogatsky G V (Institute for Nuclear Research, RAS, Moscow) ''Baikal neutrino experiment''; (4) Tkachev I I (Institute for Nuclear Research, RAS, Moscow) ''Observation of the Greisen - Zatsepin - Kuz'min effect at the Telescope Array Observatory''; (5) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow) ''Neutrino T2K experiment: the first results''; (6) Sadykov R A (Institute for Nuclear Research, RAS, Moscow) ''Fields of study of condensed media at the neutron facility at the INR, RAS''; (7) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) ''Production of isotopes at the INR, RAS: reality and prospects''. The papers written on the base of reports 1-5 and 7 are published below. In addition, the paper ''High-power diode-pumped alkali lasers'' by A M Shalagin is published. The paper is based on the report presented at the scientific session of the General Assembly of the Physical Sciences Division, RAS (13 December 2010) devoted to the 50th anniversary of the laser, the main materials of the session having been published in Usp. Fiz. Nauk 181 (8) 867 (2011) [Phys. Usp. 54 837 (2011)]. . Institute for Nuclear Research of the Russian Academy of Sciences turns 40, V A Matveev Physics-Uspekhi, 2011, Volume 54, Number 9, Pages 939-940 . The Russian-American gallium experiment SAGE, V N Gavrin Physics-Uspekhi, 2011, Volume 54

  4. Nuclear Science and Technology in Myanmar

    International Nuclear Information System (INIS)

    Tin-Hlaing

    2001-01-01

    This article is about the Establishment of the Department of Atomic Energy (DAE) and its historical background. The department is organized under the Ministry of Science and Technology. It is the only national nuclear institution in Myanmar

  5. The Proceeding on National Seminar in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Duyeh Setiawan; Rochestri Sofyan; Nurlaila Z; Poppy Intan Tjahaja; Efrizon Umar; Muhayatun; Nanny K Oekar; Sudjatmi K Alfa; Dani Gustaman Syarif; Didi Gayani; Djoko Hadi P; Saeful Hidayat; Ari Darmawan Pasek; Nathanel P Tandian; Toto Hardianto

    2009-11-01

    The proceeding on national seminar in nuclear science and technology by National Atomic energy Agency held in Bandung on June 3, 2009. The topic of the seminar is the increasing the role of nuclear science and technology for the welfare. The proceeding consist of the article from BATAN participant as well as outside. (PPIN)

  6. Graduate School of Nuclear and Allied Sciences, College of Basic and Applied Sciences, University of Ghana - Atomic - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The activities of the School of Nuclear and Allied Sciences (SNAS) for the year 2015 have been reported in this document. The report covers the administrative and academic activities of various departments, namely Department of Medical Physics; Department of Nuclear Agriculture and Radiation Processing; Department of Nuclear Engineering; Department of Nuclear Sciences and Applications; and Department of Nuclear Safety and Security.

  7. Nuclear science and technology in Polish People's Republic

    International Nuclear Information System (INIS)

    Bijak, J.; Valis, L.; Vincel, G.; Goffman, P.; Deptula, C.; Krepsztul, H.; Michalik, E.; Siekierski, S.; Soltan, A.; Pomczak, M.; Chwaszczewski, S.; Szterk, L.; Szulc, P.

    1979-01-01

    History of development of nuclear science and technology in Poland is stated. List is given of main directions of activity of scientific establishments in the field of nuclear science and technology, as well as of directions of international co-operation. Directions are stated of fundamental researches in the field of atomic nuclear physics and elementary particles physics, and lists given of scientific research institutes engaged in these investigations. The results are presented of main works in the field of nuclear reactor physics, as well as list is given of installations being used in these investigations. Program is stated of development of nuclear energetics in Poland. The results are given of investigations in the field of processing of different types of uranium ores with low content of uranium, as well as directions are stated of works in the field of nuclear fuel technology. The results of works are stated on transuranium elements production; fission products separation; production of radionuclides and labelled compounds, in particular, for application in nuclear medicine. Description is given of directions of activity in the field of production of nuclear instrumentation and of application of isotopes and radiation in the people's economy. Main methods are given of application of isotopes and radiations in industry for control and for production of materials with new properties or for influence on the course of technological processes [ru

  8. Australian Nuclear Science and Technology Organisation (ANSTO). Annual Report 1998-1999

    International Nuclear Information System (INIS)

    1999-09-01

    The 1998/1999 Annual Report summarises ANSTO's performance and progress made on several major infrastructure projects and its research and development program. On 3 May 1999, the Government announced its support for a Replacement Research Reactor at Lucas Heights; the site licence has been granted by ARPANSA and the request for tender distributed to four pre qualified vendors. A significant effort during the year under review was directed towards the Replacement Research Reactor Project. Main objectives and achievements are also reported against established performance indicators within the the five core scientific business areas: International strategic relevance of Nuclear Science; Core nuclear facilities operation and development; Applications of Nuclear Science and Technology to the understanding of natural processes; Treatment and management of man-made and naturally occurring radioactive substances; and Competitiveness and ecological sustainability of industry. Also presented are the objectives and activities which supports the core scientific areas by providing best practice corporate support, safety management, information and human resource management for ANSTO staff. The organization has developed its 1999/2000 Operational Plan predominantly on a project-based approach

  9. Australian Nuclear Science and Technology Organisation (ANSTO). Annual Report 1998-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The 1998/1999 Annual Report summarises ANSTO's performance and progress made on several major infrastructure projects and its research and development program. On 3 May 1999, the Government announced its support for a Replacement Research Reactor at Lucas Heights; the site licence has been granted by ARPANSA and the request for tender distributed to four pre qualified vendors. A significant effort during the year under review was directed towards the Replacement Research Reactor Project. Main objectives and achievements are also reported against established performance indicators within the the five core scientific business areas: International strategic relevance of Nuclear Science; Core nuclear facilities operation and development; Applications of Nuclear Science and Technology to the understanding of natural processes; Treatment and management of man-made and naturally occurring radioactive substances; and Competitiveness and ecological sustainability of industry. Also presented are the objectives and activities which supports the core scientific areas by providing best practice corporate support, safety management, information and human resource management for ANSTO staff. The organization has developed its 1999/2000 Operational Plan predominantly on a project-based approach.

  10. Nuclear analysis techniques and environmental sciences

    International Nuclear Information System (INIS)

    1997-10-01

    31 theses are collected in this book. It introduced molecular activation analysis micro-PIXE and micro-probe analysis, x-ray fluorescence analysis and accelerator mass spectrometry. The applications about these nuclear analysis techniques are presented and reviewed for environmental sciences

  11. The fifth conference on nuclear science and engineering in Australia, 2003. Conference handbook

    International Nuclear Information System (INIS)

    2003-01-01

    The theme of the fifth Nuclear Science and Engineering in Australia conference was 'Building on 100 years of Nuclear Science and Technology'. During the six main sessions the following topics were presented: Nuclear research and progress on major nuclear facilities, including the ANSTO Research Replacement Reactor, the Australian synchrotron and irradiation facilities; Uranium and waste management; Radiation Protection and Nuclear safety; Safeguards and Security; Nuclear Power in the Asia/Pacific region and prospects for Australia. The opening address, given by Mr Peter McGauran, Minister for Science was followed by Dr Robin Batterham, Australian Chief Scientist's introductory address. Papers included in the handbook were separately indexed

  12. The fifth conference on nuclear science and engineering in Australia, 2003. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The theme of the fifth Nuclear Science and Engineering in Australia conference was 'Building on 100 years of Nuclear Science and Technology'. During the six main sessions the following topics were presented: Nuclear research and progress on major nuclear facilities, including the ANSTO Research Replacement Reactor, the Australian synchrotron and irradiation facilities; Uranium and waste management; Radiation Protection and Nuclear safety; Safeguards and Security; Nuclear Power in the Asia/Pacific region and prospects for Australia. The opening address, given by Mr Peter McGauran, Minister for Science was followed by Dr Robin Batterham, Australian Chief Scientist's introductory address. Papers included in the handbook were separately indexed.

  13. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    International Nuclear Information System (INIS)

    Bredt, P.R.; Felmy, A.R.; Gauglitz, P.A.; Poloski, A.P.; Vienna, J.D.; Moyer, B.A.; Hobbs, D.; Wilmarth, B.; McIlwain, M.; Subramanian, K.; Krahn, S.; Machara, N.

    2009-01-01

    Cleaning up the nation's nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research addressing the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DoE's Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EM's responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EM's mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The overall

  14. Study on integrated approach of Nuclear Accident Hazard Predicting, Warning, and Optimized Controlling System based on GIS

    International Nuclear Information System (INIS)

    Tang Lijuan; Huang Shunxiang; Wang Xinming

    2012-01-01

    The issue of nuclear safety becomes the attention focus of international society after the nuclear accident happened in Fukushima. Aiming at the requirements of the prevention and controlling of Nuclear Accident establishment of Nuclear Accident Hazard Predicting, Warning and optimized Controlling System (NAPWS) is a imperative project that our country and army are desiderating, which includes multiple fields of subject as nuclear physics, atmospheric science, security science, computer science and geographical information technology, etc. Multiplatform, multi-system and multi-mode are integrated effectively based on GIS, accordingly the Predicting, Warning, and Optimized Controlling technology System of Nuclear Accident Hazard is established. (authors)

  15. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    Science.gov (United States)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  16. Solid State nuclear track detector - [Part] III : applications in science and technology

    International Nuclear Information System (INIS)

    Lal, Nand

    1992-01-01

    The present article describes the applications of solid state nuclear track detection techniques in different branches of science (e.g. life sciences, nuclear physics, cosmic ray and solar physics, earth sciences, teaching laboratories) and technology with selected examples from voluminous literature available on the subject. (author). 28 refs., 6 figs., 3 tabs

  17. Assessment report of research and development activities. Activity: 'Nuclear science and engineering research' (Interim report)

    International Nuclear Information System (INIS)

    2013-11-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consults an assessment committee, 'Evaluation Committee of Research Activities for Nuclear Science and Engineering' (hereinafter referred to as 'Committee') for interim assessment of 'Nuclear Science and Engineering,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by the JAEA. In response to the JAEA's request, the Committee assessed the research program of the Nuclear Science and Engineering Directorate (hereinafter referred to as 'NSED') and Center for Computational Science and e-Systems (hereinafter referred to as 'CCSE') during the period of about four years from September 2008 to September 2012. The Committee evaluated the management and research activities of the NSED and the CCSE based on explanatory documents prepared by the NSED and the CCSE, and oral presentations with questions-and-answers by unit managers etc. A CD-ROM is attached as an appendix. (J.P.N.)

  18. New curriculum at Nuclear Science Department, National University of Malaysia

    International Nuclear Information System (INIS)

    Shahidan bin Radiman; Ismail bin Bahari

    1995-01-01

    A new undergraduate curriculum at the Department of Nuclear Science, Universiti Kebangsaan Malaysia is discussed. It includes the rational and objective of the new curriculum, course content and expectations due to a rapidly changing job market. The major change was a move to implement only on one Nuclear Science module rather than the present three modules of Radiobiology, Radiochemistry and Nuclear Physics. This will optimise not only laboratory use of facilities but also effectiveness of co-supervision. Other related aspects like industrial training and research exposures for the undergraduates are also discussed

  19. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    Science.gov (United States)

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  20. Present status of nuclear science education and training in Sri Lanka

    International Nuclear Information System (INIS)

    Hewamanna, R.

    2007-01-01

    Like others Sri Lankans too have fear of nuclear radiation, probably because of the weak system of proper radiation education. Some National Institutes and few Universities are involved in nuclear science teaching and research. There are two major levels of obtaining radiation or nuclear education and training in Sri Lanka : the University and training courses in nuclear related technology and radiation protection offered by the Atomic Energy Authority of the Ministry of Science and Technology. This paper summarizes the status, some of the activities and problems of radiation education in Sri Lanka. (author)

  1. Science-based stockpile stewardship at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Immele, J.

    1995-01-01

    I would like to start by working from Vic Reis's total quality management diagram in which he began with the strategy and then worked through the customer requirements-what the Department of Defense (DoD) is hoping for from the science-based stockpile stewardship program. Maybe our customer's requirements will help guide some of the issues that we should be working on. ONe quick answer to open-quotes why have we adopted a science-based strategyclose quotes is that nuclear weapons are a 50-year responsibility, not just a 5-year responsibility, and stewardship without testing is a grand challenge. While we can do engineering maintenance and turn over and remake a few things on the short time scale, without nuclear testing, without new weapons development, and without much of the manufacturing base that we had in the past, we need to learn better just how these weapons are actually working

  2. Contribution to the human society from the nuclear science and technology

    International Nuclear Information System (INIS)

    Matsuura, Shojiro

    1999-01-01

    All of us living on this planet feel a hearty gratitude for our being endowed with natural blessings like sunshine, atmosphere, water, green of the mountains and blue of the ocean, etc. From the same point of view nuclear power and radiation are also precious blessings from the nature. To begin with, sunshine originates from the thermonuclear reactions in the sun, and a considerable portion of geothermal energy is assumed to be from natural radioactivity. The effects of natural radiation onto the evolution of life are considered as immeasurably great. The creation of this universe is, in the first place, thought to owe to certain nuclear reactions. The process of the nuclear reaction or radiation itself cannot be perceived by human senses and feeling such as eyesight or hearing. In order to recognize them we must possess powers of understanding, or intelligence, as well as detectors of the specific purpose. However, this may have caused among people the feelings of alienation and fear. Some can be said for cases of bacteria, virus, electricity, and many others. There seems to be good grounds to say that the greatest characteristic of the modern civilization is that it has evolved, so far, the quality of human life adopting what man can recognize by means of intelligence and detectors' combination, in addition to his senses and feelings. Typical examples of this are radioactivity and radiation both of which were discovered in the end of the 19th century and, provoked by this, the nuclear physics achieved an immense progress in consequence. Based on these, the nuclear science and technology have been developed with a giant step and exerted their powerful influence on all over the world in this century. This characteristic is supposed to permeate into the human society of the 21st century more widely and deeply. The nuclear science and technology have become to play a significant role in science research, as an energy source and in industry and medicine. In the

  3. Contribution to the human society from the nuclear science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Shojiro [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1999-09-01

    All of us living on this planet feel a hearty gratitude for our being endowed with natural blessings like sunshine, atmosphere, water, green of the mountains and blue of the ocean, etc. From the same point of view nuclear power and radiation are also precious blessings from the nature. To begin with, sunshine originates from the thermonuclear reactions in the sun, and a considerable portion of geothermal energy is assumed to be from natural radioactivity. The effects of natural radiation onto the evolution of life are considered as immeasurably great. The creation of this universe is, in the first place, thought to owe to certain nuclear reactions. The process of the nuclear reaction or radiation itself cannot be perceived by human senses and feeling such as eyesight or hearing. In order to recognize them we must possess powers of understanding, or intelligence, as well as detectors of the specific purpose. However, this may have caused among people the feelings of alienation and fear. Some can be said for cases of bacteria, virus, electricity, and many others. There seems to be good grounds to say that the greatest characteristic of the modern civilization is that it has evolved, so far, the quality of human life adopting what man can recognize by means of intelligence and detectors' combination, in addition to his senses and feelings. Typical examples of this are radioactivity and radiation both of which were discovered in the end of the 19th century and, provoked by this, the nuclear physics achieved an immense progress in consequence. Based on these, the nuclear science and technology have been developed with a giant step and exerted their powerful influence on all over the world in this century. This characteristic is supposed to permeate into the human society of the 21st century more widely and deeply. The nuclear science and technology have become to play a significant role in science research, as an energy source and in industry and medicine. In the

  4. Australian Nuclear Science and Technology Organisation (ANSTO) Annual Report 1997-1998

    International Nuclear Information System (INIS)

    1998-09-01

    This is the 46th Annual Report of ANSTO or its predecessor, AAEC outlining the quality services being delivered and the development of knowledge in areas where ANSTO's nuclear science and technology and related capabilities are of strategic and technical benefit. ANSTO is reporting against established performance indicators within the the five core scientific business areas: International strategic relevance of Nuclear Science; Core nuclear facilities operation and development; Applications of Nuclear Science and Technology to the understanding of natural processes; Treatment and management of man-made and naturally occurring radioactive substances; and Competitiveness and ecological sustainability of industry. Also presented are the objectives, outcomes and activities which supports the core scientific areas by providing best practice corporate support, safety management, information and human resource management for ANSTO staff

  5. Australian Nuclear Science and Technology Organisation (ANSTO) Annual Report 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the 46th Annual Report of ANSTO or its predecessor, AAEC outlining the quality services being delivered and the development of knowledge in areas where ANSTO`s nuclear science and technology and related capabilities are of strategic and technical benefit. ANSTO is reporting against established performance indicators within the the five core scientific business areas: International strategic relevance of Nuclear Science; Core nuclear facilities operation and development; Applications of Nuclear Science and Technology to the understanding of natural processes; Treatment and management of man-made and naturally occurring radioactive substances; and Competitiveness and ecological sustainability of industry. Also presented are the objectives, outcomes and activities which supports the core scientific areas by providing best practice corporate support, safety management, information and human resource management for ANSTO staff

  6. Fuzzy Logic and Intelligent Technologies in Nuclear Science

    International Nuclear Information System (INIS)

    Da Ruan

    1998-01-01

    FLINS is the acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science. The main task for FLINS is to solve intricate problems pertaining to the nuclear environment by using modern technologies as additional tools and to bridge the gap between novel technologies and the industrial nuclear world. In 1997, major efforts went to the specific prototyping of Fuzzy Logic Control of SCK-CEN's BR1 research Reactor. Progress and achievements are reported

  7. Improving nutrition through nuclear science

    International Nuclear Information System (INIS)

    2003-06-01

    Good nutrition is essential to health and quality of life. As a United Nations agency dedicated to helping Member States achieve their social and economic goals, the International Atomic Energy Agency (IAEA) recognizes the importance of good nutrition and is working to address the problems underlying poor nutrition. In fact, many Agency activities serve basic human needs, by applying nuclear science to increase food production, improve health care, improve management of water resources, and assess sources of environmental pollution. Global progress in reducing malnutrition throughout the human life cycle has been slow and patchy. In its 2000 Report on the World Nutrition Situation, the United Nations Sub Committee on Nutrition estimated that in developing countries 182 million children under five years of age are chronically undernourished and 150 million are underweight. An estimated 30 million infants are born each year with impaired growth due to poor nutrition during pregnancy. Worldwide, renewed international commitments have been made to address this situation, and the IAEA is a vital partner in these efforts. Nuclear science provides valuable tools for monitoring factors that influence nutrition, such as micronutrients, body composition, and breast milk uptake. Through its sub-programme on nutrition, the Agency is helping countries to use isotope applications and other nuclear techniques to their nutritional problems and is supporting leading-edge research on the interaction between nutrition and environmental pollution and infection with the ultimate goal of improving human nutrition

  8. Graduate School of Nuclear and Allied Sciences College of Basic And Applied Sciences, University of Ghana - Atomic, Annual Report-2014

    International Nuclear Information System (INIS)

    2014-01-01

    The School of Nuclear and Allied Sciences 2014 annual report provides an overview of activities undertaken during the year. It also acknowlegdes the contributions of various departments, namely, Department of Medical Physics, Department of Nuclear Agriculture and Radiation Processing, Department of Nuclear Engineering, Department of Nuclear Sciences and Applications, Department of Nuclear Safety and Security and the Office of International Programmes. Also presented are titles of student research projects and publications of staff.

  9. Research trends in nuclear science and technology in India

    International Nuclear Information System (INIS)

    Sagar, Anil; Kademani, B.S.; Bhanumurthy, K.

    2010-01-01

    The present study is aimed at analysing the growth of Indian publications in nuclear science and technology. International Nuclear Information System (INIS) database is used as a tool to analyse the focused areas of this field for the period 2000-2009. Journal Citation Report 2008 (Science Edition) is used for eliciting information related to journal impact factors. The database contained a total of 29763 publications covered by all the channels of communication during the period and the study is limited only to 17309 publications published in journals. The study analyses the broad features of Indian Nuclear Science and Technology focusing on its publication growth characteristics, percentage of publications published in India and other countries, India's position among other countries in the world and position among countries in the Asian region, domain-wise publications and activity, domain-wise collaboration, national and international collaboration with impact factor comparison, institutions active in the field, quality of research output and the journals preferred for publication by the Indian scientists. (author)

  10. Colloquium: Astromaterial science and nuclear pasta

    Science.gov (United States)

    Caplan, M. E.; Horowitz, C. J.

    2017-10-01

    "Astromaterial science" is defined as the study of materials in astronomical objects that are qualitatively denser than materials on Earth. Astromaterials can have unique properties related to their large density, although they may be organized in ways similar to more conventional materials. By analogy to terrestrial materials, this study of astromaterials is divided into hard and soft and one example of each is discussed. The hard astromaterial discussed here is a crystalline lattice, such as the Coulomb crystals in the interior of cold white dwarfs and in the crust of neutron stars, while the soft astromaterial is nuclear pasta found in the inner crusts of neutron stars. In particular, how molecular dynamics simulations have been used to calculate the properties of astromaterials to interpret observations of white dwarfs and neutron stars is discussed. Coulomb crystals are studied to understand how compact stars freeze. Their incredible strength may make crust "mountains" on rotating neutron stars a source for gravitational waves that the Laser Interferometer Gravitational-Wave Observatory (LIGO) may detect. Nuclear pasta is expected near the base of the neutron star crust at densities of 1014 g /cm3 . Competition between nuclear attraction and Coulomb repulsion rearranges neutrons and protons into complex nonspherical shapes such as sheets (lasagna) or tubes (spaghetti). Semiclassical molecular dynamics simulations of nuclear pasta have been used to study these phases and calculate their transport properties such as neutrino opacity, thermal conductivity, and electrical conductivity. Observations of neutron stars may be sensitive to these properties and can be used to interpret observations of supernova neutrinos, magnetic field decay, and crust cooling of accreting neutron stars. This Colloquium concludes by comparing nuclear pasta shapes with some similar shapes seen in biological systems.

  11. Emerging trends in forensic science with special emphasis on nuclear and radiochemistry

    International Nuclear Information System (INIS)

    Krishnamurthy, Rukmani

    2011-01-01

    Forensic science uses the basic principles of all physical and natural science and have evolved many domain of its owns, like Anthropometry, fingerprint, Foot print, ballistics, documentation, Forensic Biology and Serology, Forensic Chemistry, Nuclear forensic science, Forensic Physic, Toxicology, Odontology, Forensic DNA, Cyber Forensic, Forensic Psychology, Forensic engineering etc., which provides a fool prove scientific aid to criminal justice administration. Nuclear forensic science is a fairly young discipline and only a small number of laboratories are active practitioners. However, the number of incidents of illicit trafficking reported and furthermore, the threat of nuclear terrorism calls for preparedness and for effective tools providing hints on the origin of the material and thus on the perpetrator. The determination of characteristic parameters is subject to ongoing research and development work in a number of nuclear measurement laboratories. Parameters like isotopic composition, chemical impurities, age of the material, macroscopic parameters and microstructure provide clues on the origin and on the intended use of the material. Today, nuclear forensics has reached a high degree of maturity and it is highly relevant in the areas of non-proliferation and of nuclear security. Continued development activities and strengthened international cooperation will be of key importance for the perfection of the discipline of nuclear forensics

  12. Sciences with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Kawase, Yoichi

    1992-01-01

    The unstable nuclei which are produced with accelerators and nuclear reactors and are far apart from the stability line have been used mainly in nuclear physics field as the object of the systematic research on atomic nucleus structure. Recently, the projects for developing the advanced research in many fields by accelerating the obtained unstable nuclei have been proposed. The unstable nucleus beam which was accelerated to high energy and controlled precisely keeps the possibility of qualitatively improve further conventional ion beam science, and it is expected as the breakthrough in the interdisciplinary basic research related to atomic energy, therefore, its recent trend in the world is explained, hoping for the new development. The stable isotopes existing naturally distribute along the N-Z straight line, and as they are apart from the natural stability line, they become unstable to beta decay, and their life becomes short exponentially. The significance of unstable nucleus beam science and its recent trend, the production of unstable nucleus beam, the interdisciplinary research using unstable nucleus beam, and the present state and future plan in Research Reactor Institute, Kyoto University are reported. (K.I.)

  13. A comprehensive program of nuclear engineering and science education

    International Nuclear Information System (INIS)

    Bereznai, G.; Lewis, B.

    2014-01-01

    The University of Ontario Institute of Technology offers undergraduate degrees in nuclear engineering, nuclear power, health physics and radiation science, graduate degrees (masters as well as doctorate) in nuclear engineering, and graduate diplomas that encompass a wide range of nuclear engineering and technology topics. Professional development programs tailored to specific utility needs are also offered, and the sharing of course material between the professional development and university education courses has strengthened both approaches to ensuring the high qualification levels required of professionals in the nuclear industry. (author)

  14. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    . Bloch ions / T. A. Chubb. II. Inhibited diffusion driven surface transmutations / T. A. Chubb. III. Bloch nuclides, Iwamura transmutations, and Oriani showers / T. A. Chubb. Bose-Einstein condensate. Theoretical study of nuclear reactions induced by Bose-Einstein condensation in Pd / K.-I. Tsuchiya and H. Okumura. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities / Y. E. Kim ... [et al.]. Mixtures of charged bosons confined in harmonic traps and Bose-Einstein condensation mechanism for low-energy nuclear reactions and transmutation processes in condensed matters / Y. E. Kim and A. L. Zubarev. Alternative interpretation of low-energy nuclear reaction processes with deuterated metals based on the Bose-Einstein condensation mechanism / Y. E. Kim and T. O. Passell. Multi-body fusion. [symbol]He/[symbol]He production ratios by tetrahedral symmetric condensation / A. Takahashi. Phonon coupling. Phonon-exchange models: some new results / P. L. Hagelstein. Neutron clusters. Cold fusion phenomenon and solid state nuclear physics / H. Kozima. Neutrinos, magnetic monopoles. Neutrino-driven nuclear reactions of cold fusion and transmutation / V. Filimonov. Light monopoles theory: an overview of their effects in physics, chemistry, biology, and nuclear science (weak interactions) / G. Lochak. Electrons clusters and magnetic monopoles / M. Rambaut. Others. Effects of atomic electrons on nuclear stability and radioactive decay / D. V. Filippov, L. I. Urutskoev, and A. A. Rukhadze. Search for erzion nuclear catalysis chains from cosmic ray erzions stopping in organic scintillator / Yu. N. Bazhutov and E. V. Pletnikov. Low-energy nuclear reactions resulting as picometer interactions with similarity to K-shell electron capture / H. Hora ... [et al.] -- 5. Other topics. On the possible magnetic mechanism of shortening the runaway of RBMK-1000 reactor

  15. Accelerator Mass Spectrometry at the Nuclear Science Laboratory: Applications to Nuclear Astrophysics

    Science.gov (United States)

    Collon, P.; Bauder, W.; Bowers, M.; Lu, W.; Ostdiek, K.; Robertson, D.

    The Accelerator Mass Spectrometry (AMS) program at the Nuclear Science Laboratory of the University of Notre Dame is focused on measurements related to galactic radioactivity and to nucleosynthesis of main stellar burning as well as the production of so called Short-Lived Radionuclides (SLRs) in the Early Solar System (ESS). The research program is based around the 11MV FN tandem accelerator and the use of the gas-filled magnet technique for isobar separation. Using a technique that evolved from radiocarbon dating, this paper presents a number of research programs that rely on the use of an 11MV tandem accelerator at the center of the AMS program.

  16. Computer-based nuclear radiation detection and instrumentation teaching laboratory system

    International Nuclear Information System (INIS)

    Ellis, W.H.; He, Q.

    1993-01-01

    The integration of computers into the University of Florida's Nuclear Engineering Sciences teaching laboratories is based on the innovative use of MacIntosh 2 microcomputers, IEEE-488 (GPIB) communication and control bus system and protocol, compatible modular nuclear instrumentation (NIM) and test equipment, LabVIEW graphics and applications software, with locally prepared, interactive, menu-driven, HyperCard based multi-exercise laboratory instruction sets and procedures. Results thus far have been highly successful with the majority of the laboratory exercises having been implemented

  17. Research-based approaches to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Donev, J.M.K.C., E-mail: jason.donev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada); Carpenter, Y., E-mail: ycarpenter@gmail.com [Univ.ty of Colorado at Boulder, Boulder, CO (United States)

    2014-07-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  18. Research-based approaches to nuclear education

    International Nuclear Information System (INIS)

    Donev, J.M.K.C.; Carpenter, Y.

    2014-01-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  19. Nuclear science and technology plan (1989-1993)

    International Nuclear Information System (INIS)

    1989-01-01

    The nuclear science and technology plan embodies the objectives strategies and activities of the Philippine Nuclear Research Institute (PNRI). It is an integral component of the national effort to make the Philippines a newly industrialized country (NIC) by the year 2000. The four major plans under the program are as follows: 1) Radiation protection and nuclear safety, 2) Radiation technology and engineering, 3) Radioisotopes and nuclear techniques application and 4) special projects. The cost of the plan is estimated to be two hundred ninety three million pesos (293, 000,000) for 1989-1993 covering personnel services (39.7%), maintenance and operating expenses (42.7%), equipment outlay (4.8%) and infrastructure (12.8%). The details of the different programs are given. (ELC). 7 figs.; 8 tabs

  20. Topics in nuclear and radiochemistry for college curricula and high school science programs

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

  1. Topics in nuclear and radiochemistry for college curricula and high school science programs

    International Nuclear Information System (INIS)

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled ''Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures

  2. International Nuclear Conference: a new era in Nuclear Science and Technology - the challenge of the 21st century: welcoming remarks

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    1997-01-01

    The address discusses the following issues: the role of MNS (Malaysian Nuclear Society) i.e creating a more scientifically-literate and scientifically-inclined society; nuclear science and technology in terms of its applications, penetration of the market place and end-users; further progress on peaceful uses of nuclear science and technology; 25 years anniversary of national nuclear research institute in Malaysia, MINT; the role of the media and MNS to facilitate acceptance of the technology

  3. International Nuclear Conference: a new era in Nuclear Science and Technology - the challenge of the 21st century: welcoming remarks

    Energy Technology Data Exchange (ETDEWEB)

    Alang Md Rashid, Nahrul Khair [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Selangor (Malaysia)

    1997-12-01

    The address discusses the following issues: the role of MNS (Malaysian Nuclear Society) i.e creating a more scientifically-literate and scientifically-inclined society; nuclear science and technology in terms of its applications, penetration of the market place and end-users; further progress on peaceful uses of nuclear science and technology; 25 years anniversary of national nuclear research institute in Malaysia, MINT; the role of the media and MNS to facilitate acceptance of the technology

  4. Second conference on nuclear science and engineering in Australia, 1997. Conference handbook

    International Nuclear Information System (INIS)

    1997-01-01

    The conference handbook contains the text of papers presented orally and as posters. Leading experts in various areas of nuclear science and technology discussed the following topics: uranium resources, radioactive waste management, research reactor safety and applications, radiation and related research, applications of accelerators and related facilities and nuclear regulation in Australia. The posters include two from the winners of the David Culley Award in 1995 and 1996, instituted by the Australian Nuclear Association to encourage work in nuclear science and technology in school and colleges

  5. Second conference on nuclear science and engineering in Australia, 1997. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The conference handbook contains the text of papers presented orally and as posters. Leading experts in various areas of nuclear science and technology discussed the following topics: uranium resources, radioactive waste management, research reactor safety and applications, radiation and related research, applications of accelerators and related facilities and nuclear regulation in Australia. The posters include two from the winners of the David Culley Award in 1995 and 1996, instituted by the Australian Nuclear Association to encourage work in nuclear science and technology in school and colleges.

  6. Second conference on nuclear science and engineering in Australia, 1997. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference handbook contains the text of papers presented orally and as posters. Leading experts in various areas of nuclear science and technology discussed the following topics: uranium resources, radioactive waste management, research reactor safety and applications, radiation and related research, applications of accelerators and related facilities and nuclear regulation in Australia. The posters include two from the winners of the David Culley Award in 1995 and 1996, instituted by the Australian Nuclear Association to encourage work in nuclear science and technology in school and colleges.

  7. 9th Pacific Basin Nuclear Conference. Nuclear energy, science and technology - Pacific partnership. Proceedings Volume 1

    International Nuclear Information System (INIS)

    1994-04-01

    The theme of the 9th Pacific Basin Nuclear conference held in Sydney from 1-6 May 1994, embraced the use of the atom in energy production and in science and technology. The focus was on selected topics of current and ongoing interest to countries around the Pacific Basin. The two-volume proceedings include both invited and contributed papers. They have been indexed separately. This document, Volume 1 covers the following topics: Pacific partnership; perspectives on nuclear energy, science and technology in Pacific Basin countries; nuclear energy and sustainable development; economics of the power reactors; new power reactor projects; power reactor technology; advanced reactors; radioisotope and radiation technology; biomedical applications

  8. Central Scientific and Research Institute of Nuclear Information as the branch centre of information on nuclear science and engineering

    International Nuclear Information System (INIS)

    Arkhangel'skij, I.A.; Sokolov, D.D.; Kalinin, V.F.; Nikiforov, V.S.

    1982-01-01

    The main tasks are considered in the scope of the Central Scientific-Research Institute for Information and Technological and Economic Studies on Nuclear Science and Technology. (TsNIIAtominform). The institute coordinates scientific research and information activity of information agencies of all the USSR organizations engaged in nuclear science and technology, excercises a centralized completion of their libraries, develops and puts into practice the most progressive methods for the information servicing. The institute is a national INIS center of the USSR. Here a system for the automatic information dissemination has been successfully elaborated and employed. Much of the institute activity is given to the estimation and analysis of information and to the determination of tendencies in the nuclear science and technology development. A conclusion is drawn to the effect that TsNIIAtominform, within 15 years of its existence, has formed as a center ensuring functioning of the system of scientific and technical information on nuclear science and technology

  9. The Maryland nuclear science baccalaureate degree program: The university perspective

    International Nuclear Information System (INIS)

    Janke, T.A.

    1989-01-01

    Nuclear utilities' efforts in response to industry-wide pressures to provide operations staff with degree opportunities have encountered formidable barriers. This paper describes, from the university's perspective, the development and operation of the University of Maryland University College (UMUC) special baccalaureate program in nuclear science. This program has successfully overcome these problems to provide degree education on-site, on-line, and on time. Program delivery began in 1984 with one utility and a single site. It is currently delivered at eight sites under contract to six utilities with a total active student count of over 500. The first graduates are expected in 1989. The program is an accredited university program and enjoys licensure approval from the six states within which it operates. In addition to meeting US Nuclear Regulatory Commission proposed guidelines for degreed operators, the program increasingly appears as part of utility management development programs for all plant personnel and a factor in employee retention. The owner utilities, the University of Maryland, and the growing user's group are committed to the academic integrity, technical capability, and responsiveness of the program. The full support of this partnership speaks well for the long-term service of the Bachelor of Science in Nuclear Science program to the nuclear power industry

  10. Educating nuclear engineers by nuclear science and technology master at UPM

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.; Minguez, E.; Perlado, M. [Universidad Politecnica de Madrid (Spain). Dept. de Ingenieria Nuclear; and others

    2014-05-15

    One of the main objectives of the Master on Nuclear Science and Technology implemented in the Universidad Politecnica de Madrid, is the training for the development of methodologies of simulation and advanced analysis necessary in research and in professional work in the nuclear field, for Fission Reactors and Nuclear Fusion, including fuel cycle and safety aspects. The students are able to use the current computational methodologies/codes for nuclear engineering that covers a difficult gap between nuclear reactor theory and simulations. Also they are able to use some facilities, as the Interactive Graphical Simulator of PWR power plant that is an optimal tool to transfer the knowledge of the physical phenomena that are involved in the nuclear power plants, from the nuclear reactor to the whole set of systems and equipment on a nuclear power plant. The new Internet reactor laboratory to be implemented will help to understand the Reactor Physics concepts. The experimental set-ups for neutron research and for coating fabrication offer new opportunities for training and research activities. All of them are relevant tools for motivation of the students, and to complete the theoretical lessons. They also follow the tendency recommended for the European Space for higher Education (Bologna) adapted studies. (orig.)

  11. Educating nuclear engineers by nuclear science and technology master at UPM

    International Nuclear Information System (INIS)

    Ahnert, C.; Minguez, E.; Perlado, M.

    2014-01-01

    One of the main objectives of the Master on Nuclear Science and Technology implemented in the Universidad Politecnica de Madrid, is the training for the development of methodologies of simulation and advanced analysis necessary in research and in professional work in the nuclear field, for Fission Reactors and Nuclear Fusion, including fuel cycle and safety aspects. The students are able to use the current computational methodologies/codes for nuclear engineering that covers a difficult gap between nuclear reactor theory and simulations. Also they are able to use some facilities, as the Interactive Graphical Simulator of PWR power plant that is an optimal tool to transfer the knowledge of the physical phenomena that are involved in the nuclear power plants, from the nuclear reactor to the whole set of systems and equipment on a nuclear power plant. The new Internet reactor laboratory to be implemented will help to understand the Reactor Physics concepts. The experimental set-ups for neutron research and for coating fabrication offer new opportunities for training and research activities. All of them are relevant tools for motivation of the students, and to complete the theoretical lessons. They also follow the tendency recommended for the European Space for higher Education (Bologna) adapted studies. (orig.)

  12. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-01-01

    This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  13. Proceedings of the 7. Nuclear Science and Technology Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The 7. conference on nuclear science and technology was held on 1-2 December 1998 in Bangkok. This conference contain papers on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for disinfestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  14. A brief review of advances in complex networks of nuclear science and technology field

    International Nuclear Information System (INIS)

    Fang Jinqing

    2010-01-01

    A brief review of advances in complex networks of nuclear science and technology field at home and is given and summarized. These complex networks include: nuclear energy weapon network, network centric warfare, beam transport networks, continuum percolation evolving network associated with nuclear reactions, global nuclear power station network, (nuclear) chemistry reaction networks, radiological monitoring and anti-nuclear terror networks, and so on. Some challenge issues and development prospects of network science are pointed out finally. (authors)

  15. Nuclear analytical methods in the life sciences

    NARCIS (Netherlands)

    de Goeij, J.J.M.

    1994-01-01

    A survey is given of various nuclear analytical methods. The type of analytical information obtainable and advantageous features for application in the life sciences are briefly indicated. These features are: physically different basis of the analytical method, isotopic rather than elemental

  16. Application of nuclear-physics methods in space materials science

    Science.gov (United States)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  17. Impact of contributions of Glenn T. Seaborg on nuclear science

    International Nuclear Information System (INIS)

    Hoffman, Darleane C.

    2000-01-01

    Glenn Theodore Seaborg (1912-199) was a world-renowned nuclear chemist, a Nobel Laureate in chemistry in 1951, co-discoverer of plutonium and nine other transuranium elements, Chairman of the U.S. Atomic Energy Commission from 1961-71, scientific advisor to ten U.S. presidents, active in national and international professional societies, an advocate for nuclear power as well as for a comprehensive nuclear test ban treaty, a prolific writer, an avid hiker, environmentalist, and sports enthusiast. He was known and esteemed not only by chemists and other scientists throughout the world, but also by lay people, politicians, statesmen, and students of all ages. This memorial includes a brief glimpse of Glenn Seaborg's early life and education, describes some of his major contributions to nuclear science over his long and fruitful career, and highlights the profound impact of his contributions on nuclear science, both in the U.S. and in the international community

  18. Impact of contributions of Glenn T. Seaborg on nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Darleane C.

    2000-12-26

    Glenn Theodore Seaborg (1912-199) was a world-renowned nuclear chemist, a Nobel Laureate in chemistry in 1951, co-discoverer of plutonium and nine other transuranium elements, Chairman of the U.S. Atomic Energy Commission from 1961-71, scientific advisor to ten U.S. presidents, active in national and international professional societies, an advocate for nuclear power as well as for a comprehensive nuclear test ban treaty, a prolific writer, an avid hiker, environmentalist, and sports enthusiast. He was known and esteemed not only by chemists and other scientists throughout the world, but also by lay people, politicians, statesmen, and students of all ages. This memorial includes a brief glimpse of Glenn Seaborg's early life and education, describes some of his major contributions to nuclear science over his long and fruitful career, and highlights the profound impact of his contributions on nuclear science, both in the U.S. and in the international community.

  19. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  20. Peace and development through the peaceful uses of nuclear science and technology

    International Nuclear Information System (INIS)

    2015-01-01

    Nuclear science and technology can help find solutions to many of the problems people face every day across the globe. When used safely and securely, nuclear science and technology are effective supplements or provide alternatives to conventional approaches, which makes them an important part of the international community’s work for development. In its contribution to global objectives, the IAEA serves the international goals of peace, health and prosperity by assisting countries to adopt nuclear tools for a wide range of peaceful applications. Within the context of global trends and development, IAEA services — some highly visible on the global stage, others delivered more discreetly— underpin collective efforts for the safe, secure and peaceful use of nuclear science and technology. They are supported by the IAEA’s specialized laboratories in Seibersdorf, Austria, and in Monaco, as well as dedicated programmes, networks and collaborations with partners. Through the IAEA’s assistance, nuclear techniques are put to use in various areas, including human health, food and agriculture, the environment, water, energy, nuclear safety and security, and the preservation of artefacts.

  1. Nuclear science public education - ANS at the onramp to the Information Superhighway

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, E.N. [SCE, San Onofre, CA (United States); Swenson, L.; Slone, B. III

    1994-12-31

    The objective of this paper is to alert public communicators to the new opportunity provided by Internet. Beginning in the late 1950s, the U.S. Atomic Energy Commission public information program included a motion picture loan library, an excellent set of booklets, and a set of vans, each based at a college or university. The driver-teacher and van could be booked to make presentations at schools to explain the new nuclear science and to demonstrate the use of scarce and expensive radiation-measuring equipment. This national program was canceled in the mid-1970s because of Congressional pressure for the federal government to stop {open_quotes}promoting nuclear energy.{close_quotes} Remaining were local information centers at nuclear power plants and national programs at the American Nuclear Society (ANS) and the Atomic Industrial Forum (AIF) - fragmented and weak by comparison.

  2. Nuclear science. Annual report, July 1, 1979-June 30, 1980

    International Nuclear Information System (INIS)

    Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G.

    1981-03-01

    This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists

  3. Nuclear science. Annual report, July 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G. (eds.)

    1981-03-01

    This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists. (WHK)

  4. Combating climate change: How nuclear science and technology are making a difference

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2015-01-01

    Climate change is the biggest environmental challenge of our time. As governments around the world prepare to negotiate a legally binding, universal agreement on climate at the United Nations Climate Change Conference in Paris at the end of the year, it is important that the contributions that nuclear science and technology can make to combating climate change are recognized. Nuclear science, including nuclear power, can play a significant role in both climate change mitigation and adaptation.

  5. Peace and development through the peaceful uses of nuclear science and technology

    International Nuclear Information System (INIS)

    2015-01-01

    Nuclear science and technology can help find solutions to many of the problems people face every day across the globe. When used safely and securely, nuclear science and technology are effective supplements or provide alternatives to conventional approaches, which makes them an important part of the international community’s work for development. In its contribution to global objectives, the IAEA serves the international goals of peace, health and prosperity by assisting countries to adopt nuclear tools for a wide range of peaceful applications. Within the context of global trends and development, IAEA services — some highly visible on the global stage, others delivered more discreetly— underpin collective efforts for the safe, secure and peaceful use of nuclear science and technology. They are supported by the IAEA’s specialized laboratories in Seibersdorf, Austria, and in Monaco, as well as dedicated programmes, networks and collaborations with partners. Through the IAEA’s assistance, nuclear techniques are put to use in various areas, including human health, food and agriculture, the environment, water, energy, nuclear safety and security, and the preservation of artefacts. Within the context of global trends and development, IAEA services — some highly visible on the global stage, others delivered more discreetly— underpin collective efforts for the safe, secure and peaceful use of nuclear science and technology. They are supported by the IAEA’s specialized laboratories in Seibersdorf, Austria, and in Monaco, as well as dedicated programmes, networks and collaborations with partners. Through the IAEA’s assistance, nuclear techniques are put to use in various areas, including human health, food and agriculture, the environment, water, energy, nuclear safety and security, and the preservation of artefacts.

  6. Dissemination of opportunities in nuclear science and technology in Mexico

    International Nuclear Information System (INIS)

    Alcocer Gomez, G.S.

    2000-01-01

    Nowadays, activities in the fields of nuclear science are increasing in Mexico. Notwithstanding the existence of just one nuclear power plant in the country, the Laguna Verde Nuclear Power Station, young people (ages from 18 to 25) show a significant interest in areas such as environmental protection, nuclear safety, nuclear regulation, food irradiation, materials science, medical and industrial uses of ionising radiation, but this interest is heterogeneous and poorly grounded. Several schools provide formation of professionals in Physics, Chemistry, and Engineering. On the other hand, there are research institutes dedicated to specialized industrial activities which provide post-graduate courses and specific training in nuclear technology and related fields, and in radiation protection. However, there is a lack of a proper bond between schools and research institutes, and young people. Must of the students without a career orientation simply make their choice considering geographic and economic aspects. This kind of student is the focus of our interest in constructing the required proper bond between young people and nuclear technology. This paper evaluates the concept of a fair-festival event, and examines the possibility of it's use to promote the nuclear field in Mexico. Other current dissemination activities are considered too. (author)

  7. Australian Nuclear Science and Technology Organization. Annual Report 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The report provides an overview of the outcomes achieved and the current activities of ANSTO related to its core business activities. The core business of ANSTO were identified as follows: international strategic relevance of nuclear science; core facilities operation and development; applications of nuclear science and technology to the understanding of natural processes; treatment and management of man-made and naturally occurring radioactive substances; competitiveness and ecological sustainability of industry and organizational development and support. The report also include specific reporting against those performance indicators that were negotiated with the Government as part of the Triennium Funding Agreement and are regarded as appropriate for science agencies or for ANSTO specifically. Contains a glossary and an detailed index. tables., figures.

  8. Australian Nuclear Science and Technology Organization. Annual Report 1995-1996

    International Nuclear Information System (INIS)

    1996-09-01

    The report provides an overview of the outcomes achieved and the current activities of ANSTO related to its core business activities. The core business of ANSTO were identified as follows: international strategic relevance of nuclear science; core facilities operation and development; applications of nuclear science and technology to the understanding of natural processes; treatment and management of man-made and naturally occurring radioactive substances; competitiveness and ecological sustainability of industry and organizational development and support. The report also include specific reporting against those performance indicators that were negotiated with the Government as part of the Triennium Funding Agreement and are regarded as appropriate for science agencies or for ANSTO specifically. Contains a glossary and an detailed index. tables., figures

  9. Basic science of nuclear medicine

    International Nuclear Information System (INIS)

    Parker, R.P.; Taylor, D.M.; Smith, P.H.S.

    1978-01-01

    A book has been written presenting those aspects of physics, chemistry and related sciences which are essential to a clear understanding of the scientific basis of nuclear medicine. Part I covers the basic physics of radiation and radioactivity. Part II deals with radiation dosimetry, the biological effects of radiation and the principles of tracer techniques. The measurement of radioactivity and the principal aspects of modern instrumentation are presented in Part III. Those aspects of chemistry relevant to the preparation and use of radiopharmaceuticals are discussed in Part IV. The final section is concerned with the production of radionuclides and radiopharmaceuticals and with the practical aspects of laboratory practice, facilities and safety. The book serves as a general introductory text for physicians, scientists, radiographers and technicians who are entering nuclear medicine. (U.K.)

  10. JENDL. Nuclear databases for science and technology

    International Nuclear Information System (INIS)

    Shibata, Keiichi

    2013-01-01

    It is exactly 50 years since the Japanese Nuclear Data Committee was founded both in the Atomic Energy Society of Japan and in the former Japan Atomic Energy Research Institute. The committee promoted the development of Japan's own evaluated nuclear data libraries. As a result, we managed to produce a series of Japanese Evaluated Nuclear Data Libraries (JENDLs) to be used in various fields for science and technology. The libraries are categorized into general-purpose and special-purpose ones. The general-purpose libraries have been updated periodically by considering the latest knowledge on experimental and theoretical nuclear physics that was available at the time of the updates. On the other hand, the special-purpose libraries have been issued in order to meet the needs for particular application fields. This paper reviews the research and development for those libraries. (author)

  11. Opportunities in Nuclear Science: A Long-Range Plan for the Next Decade

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-04-01

    The DOE/NSF Nuclear Science Advisory Committee of the Department of Energy and the National Science Foundation is charged with providing advice on a continuing basis regarding the management of the national basic nuclear science research program. In July 2000, the Committee was asked to study the opportunities and priorities for U.S. nuclear physics research, and to develop a long-range plan that will serve as a frame-work for the coordinated advancement of the field for the next decade. The plan contained here is the fifth that has been pre-pared since the Committee was established. Each of the earlier plans has had substantial impact on new directions and initiatives in the field.

  12. Proceedings of the meeting and scientific presentations on basic science research and nuclear technology

    International Nuclear Information System (INIS)

    Prayitno; Slamet Santosa; Darsono; Syarip; Agus Taftazani; Samin; Tri Mardji Atmono; Dwi Biyantoro; Herry Poernomo; Prajitno; Tjipto Sujitno; Gede Sutresna W; Djoko Slamet Pujorahardjo; Budi Setiawan; Bambang Siswanto; Endro Kismolo; Jumari

    2016-08-01

    The Proceedings of the Meeting and Scientific Presentations on Basic Science Research and Nuclear Technology by Center for Accelerator Science and Technology in Yogyakarta with the theme of Universities and research and development institutions synergy in the development of basic science and nuclear technology held on Surakarta 9 August 2016. This seminar is an annual routine activities of Center for Accelerator Science and Technology for exchange research result among University and BATAN researcher for using nuclear technology. The proceeding consist of 3 article from keynotes’ speaker and 37 articles from BATAN participant as well as outside which have been indexed separately. (MPN)

  13. Malaysian perspective on the contribution of nuclear science and technology to national development

    Energy Technology Data Exchange (ETDEWEB)

    Alang Md Rashid, Nahrul Khair [Unit Tenaga Nuklear, Bangi, Selangor (Malaysia)

    1994-04-01

    The development of nuclear science and technology in Malaysia began with the inception of The Nuclear Energy Unit (UTN) in 1972. In 1985, the Atomic Energy Licensing Board was set up as a regulatory body to enforce the Atomic Energy Licensing Act. Ten years after UTN`s establishment, the first of its major facilities, a one Megawatt TRIGA MkII nuclear research reactor (RTP), was commissioned. This is the first step of any type of nuclear reactor for Malaysia. The healthy development of peaceful uses of nuclear science and technology in malaysia has enabled UTN to acquire several other major facilities. These facilities support research and development, in line with UTN`s mission, viz, to enhance national development through the applications of nuclear science and technology. This paper describes selected activities at UTN and some of its successes in linking the results of research and development to real-world applications through services and/or technology transfers.

  14. Malaysian perspective on the contribution of nuclear science and technology to national development

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    1994-01-01

    The development of nuclear science and technology in Malaysia began with the inception of The Nuclear Energy Unit (UTN) in 1972. In 1985, the Atomic Energy Licensing Board was set up as a regulatory body to enforce the Atomic Energy Licensing Act. Ten years after UTN's establishment, the first of its major facilities, a one Megawatt TRIGA MkII nuclear research reactor (RTP), was commissioned. This is the first step of any type of nuclear reactor for Malaysia. The healthy development of peaceful uses of nuclear science and technology in malaysia has enabled UTN to acquire several other major facilities. These facilities support research and development, in line with UTN's mission, viz, to enhance national development through the applications of nuclear science and technology. This paper describes selected activities at UTN and some of its successes in linking the results of research and development to real-world applications through services and/or technology transfers

  15. Nuclear science and a better environment - an oxymoron?

    International Nuclear Information System (INIS)

    Laurence, G.

    1998-01-01

    The Environmental Specialist Committee of AINSE is a relatively recent addition to the areas of special interest but AINSE and ANSTO have supported environmental research for many years in areas such as environmental engineering studies, insect control, sensitive analytical techniques (which are in many cases at the heart of an improved understanding of environmental processes) and environmental radioactivity and the control of radioactive waste. Such techniques make a direct contribution to the remediation of contaminated industrial and mining sites and to monitoring the continued effect of these sites on the environment. Recently the spread of quaternary studies with distinct environmental importance has increased the AINSE involvement in supporting the use of AMS techniques involving cosmogenic radionuclides, not only for studies of current processes but also for historic studies designed to reveal past climates and geomorphology. Nuclear science of this kind contributes to a better understanding of patterns of atmospheric circulation, underground water resources and climate change. Even a simple application of nuclear science, the neutron soil moisture probe, improves the efficiency of water use in agriculture and reduces the environmental impact of irrigation. The environmental impact of development in the third world will have major environmental consequences in the next twenty years. Developments in nuclear science in chemical analysis, the dynamics of environmental processes and in monitoring resources will help in controlling a sustainable and rational use of the environment

  16. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  17. Science and technology as strategic way for nuclear activities; A C e T como fator estrategico para as atividades nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Paiano, Silvestre

    2000-07-01

    The article brings few instructive examples on the interaction between nuclear energy and other areas of science and technology, Microelectronics, computer technology, and new materials are among the many technologies which are crucial for developing nuclear energy technology. On the other way round, nuclear energy presents also a wide range of new demands and opportunities for several areas of science and technology. The problem is that such a relationship is not well understood by the society, and to a large extent it brings about the very process of legitimating the use of nuclear energy (author)

  18. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  19. Considerations on innovation in the development of nuclear agricultural sciences

    International Nuclear Information System (INIS)

    Wang Zhidong; Gao Meixu

    2008-01-01

    The development status and existing problems in the field of nuclear agricultural sciences (NAS) are reviewed. Including the application of nuclear technology in mutation breeding by irradiation, isotopic technique application, food irradiation and sterile insect technique, etc. China has made great achievements in the research and application of nuclear technique in agriculture from 1950s to 1990s. Due to lack of enough financial support to the basic research and reformation of science and research system in China, the development of NAS now meets its tough time. Through analyzing the difference and reasons of NAS development between China and the USA, it is recognized that the innovation in research and scientific system is important for promoting the development speed and research level of NAS. (authors)

  20. Science in conflict over nuclear power

    International Nuclear Information System (INIS)

    Tschiedel, R.

    1977-01-01

    This book intends to establish an orientation theory of science in order to solve the conflict over the peaceful uses of nuclear power in West Germany. The reason for this conflict is that everybody is concerned either about the job situation or about the environmental effects. This concern has failed to mobilize people until now but mobilization is possible. (GL) [de

  1. Annual report of Nuclear Science Research Institute, JFY2006

    International Nuclear Information System (INIS)

    2008-03-01

    Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and seven departments such as Department of Operational Safety Administration, Department of Radiation Protection, Department of Research Reactor and Tandem Accelerator, Department of Hot Laboratories and Facilities, Department of Criticality and Fuel Cycle Research Facilities, Department of Decommissioning and Waste Management, and Engineering Services Department. This annual report of JFY2006 summarizes the activities of NSRI, the R and D activities of the Research and Development Directorates and human resources development at site, and is expected to be referred to and utilized by R and D departments and project promotion sectors at NSRI site for the enhancement of their own research and management activities to attain their goals according to 'Middle-term Plan' successfully and effectively. In chapter 1, outline of JFY2006 activities of NSRI is described. In chapter 2, the following activities made by the departments in NSRI are summarized, i.e., (1) operation and maintenance of research reactors (JRR-3, JRR-4, NSRR), criticality assemblies (STACY, TRACY, FCA, TCA), hot laboratories (BECKY, Reactor Fuel Examination Facility, WASTEF, Research Laboratory 4, Plutonium Research Laboratory 1, Tokai Hot Laboratory, etc), and large-scale facilities (Tandem accelerator, LSTF, THYNC, TPTF, etc), and (2) safety management, radiation protection, management of radioactive wastes, decommissioning of nuclear facilities, engineering services, utilities and maintenance, etc, all of which are indispensable for the stable and safe operation and utilization of the research facilities. The technical developments for the advancement of the related technologies are also summarized. In chapter 3, the R and D and human resources development activities are described including the topics of the research works and projects performed by the Research and Development Directorates at site, such as

  2. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    International Nuclear Information System (INIS)

    Taranenko, L.; Janouch, F.; Owsiacki, L.

    2001-01-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date 'Program Supporting Y2K Readiness at Ukrainian NPPs' initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ('Improved Zirconium-Based Elements for Nuclear Reactors'), information technologies for nuclear industries ('Ukrainian Nuclear Data Bank in Slavutich'), and radiation health science ('Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers').

  3. Molecular forensic science of nuclear materials

    International Nuclear Information System (INIS)

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO 2 (An: U, Pu) to form non-stoichiometric species described as AnO 2+x . Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  4. The Maryland nuclear science baccalaureate degree program: The utility perspective

    International Nuclear Information System (INIS)

    Mueller, J.R.

    1989-01-01

    In the early 1980s, Wisconsin Public Service Corporation (WPSC) made a firm commitment to pursue development and subsequent delivery of an appropriate, academically accredited program leading to a baccalaureate degree in nuclear science for its nuclear operations personnel. Recognizing the formidable tasks to be accomplished, WPSC worked closely with the University of Maryland University College (UMUC) in curriculum definition, specific courseware development for delivery by computer-aided instruction, individual student evaluation, and overall program implementation. Instruction began on our nuclear plant site in the fall of 1984. The university anticipates conferring the first degrees from this program at WPSC in the fall of 1989. There are several notable results that WPSC achieved from this degree program. First and most importantly, an increase in the level of education of our employees. It should be stated that this program has been well received by WPSC operator personnel. These employees, now armed with plant experience, a formal degree in nuclear science, and professional education in management are real candidates for advancement in our nuclear organization

  5. Nuclear science, technology and innovation in Canada - securing the future

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    As a Tier 1 Nuclear Nation, Canada has a rich and proud history of achievement in nuclear Science, Technology and Innovation (ST&I) -- from commercializing the CANDU power system around the world, advancing fuel technology and nuclear safety, to protecting human health through nuclear medicine and cancer therapy technology. Today, the nuclear industry in Canada is actively working to secure its promising, long-term place in the world and is embracing the change necessary to fulfill the enormous potential for good of nuclear technology. For its part, the Canadian Government is taking a bold new public policy approach to nuclear ST&I, by restructuring its large, multi-faceted AECL Nuclear Laboratories. Through the restructuring, AECL, as Canada's premier nuclear science and technology organization, will be better positioned for success via an incentivized 'Government-owned-Contractor-operated', private-sector management model. The aim of this new approach is to enhance and grow high-value nuclear innovation for the marketplace, strengthen the competitiveness of Canada's nuclear sector, and reduce costs to the Government of Canada with time. This approach will play a key role in ensuring a bright future for the Canadian Nuclear Industry domestically and globally as it launches its 25-year Vision and Action Plan, where one of the priority action areas is support for a strong, forward-looking, nuclear ST&I agenda. As the new model for the Nuclear Laboratories is moved forward by the Government, with the support of AECL and industry, Canada's nuclear expertise and knowledge continue to be expanded and deepened through the work of the Laboratories' ten Centres of Excellence, where AECL's fundamental approach is guided by the reality that ST&I is needed in all aspects of the nuclear cycle, including decommissioning, waste management and environmental protection. (author)

  6. Nuclear analyses in biology and medical science. Measuring on nucleii in stead of atoms

    International Nuclear Information System (INIS)

    De Goeij, J.J.M.

    1996-01-01

    A brief overview is given of the use of nuclear analyses in life sciences. Features of nuclear analytical methods (NAMs) are grouped into four categories: physical basis, isotopic analyses rather than elemental analyses, no interference of electronic and molecular structure, and penetrating character of nuclear radiation. Obstacles in applying NAMs in the life sciences are outlined. 1 tab

  7. Presentations of the 1. Eurasia Conference on Nuclear Science and Its Application. Vol.2

    International Nuclear Information System (INIS)

    2001-01-01

    The primary objective of this conference was to enable scientists from the Eurasia region to exchange views in the field of nuclear science and its applications, for establishing collaboration among the respective countries, such carrying out joint projects, organizing conferences, seminars, training programs and related activities. The topics discussed at the conference were: Nuclear energy satatus and perspectives, Applications of nuclear techniques, Fundamental problems of nuclear science. Full texts of presentations published in two volumes

  8. The Nuclear Security Science and Policy Institute at Texas A&M University

    Directory of Open Access Journals (Sweden)

    Claudio A. Gariazzo

    2015-07-01

    Full Text Available The Nuclear Security Science and Policy Institute (NSSPI is a multidisciplinary organization at Texas A&M University and was the first U.S. academic institution focused on technical graduate education, research, and service related to the safeguarding of nuclear materials and the reduction of nuclear threats. NSSPI employs science, engineering, and policy expertise to: (1 conduct research and development to help detect, prevent, and reverse nuclear and radiological proliferation and guard against nuclear terrorism; (2 educate the next generation of nuclear security and nuclear nonproliferation leaders; (3 analyze the interrelationships between policy and technology in the field of nuclear security; and (4 serve as a public resource for knowledge and skills to reduce nuclear threats. Since 2006, over 31 Doctoral and 73 Master degrees were awarded through NSSPI-sponsored research. Forty-one of those degrees are Master of Science in Nuclear Engineering with a specialization in Nuclear Nonproliferation and 16 were Doctorate of Philosophy degrees with a specific focus on nuclear nonproliferation. Over 200 students from both technical and policy backgrounds have taken classes provided by NSSPI at Texas A&M. The model for creating safeguards and security experts, which has in large part been replicated worldwide, was established at Texas A&M by NSSPI faculty and staff. In addition to conventional classroom lectures, NSSPI faculty have provided practical experiences; advised students on valuable research projects that have contributed substantially to the overall nuclear nonproliferation, safeguards and security arenas; and engaged several similar academic and research institutes around the world in activities and research for the benefit of Texas A&M students. NSSPI has had an enormous impact on the nuclear nonproliferation workforce (across the international community in the past 8 years, and this paper is an attempt to summarize the activities

  9. The survey of the nuclear sciences in the curricula of senior high schools

    International Nuclear Information System (INIS)

    Ujeno, Yowri; Okamura, Seizo; Inaoka, Mariko; Nakase, Yoshiaki.

    1994-01-01

    To know senior high school education and recognition of nuclear science, questionnaire survey was made in a total of 619 university, college or occupational school students who graduated from senior high schools before 1993. Female students accounted for 95% (n=589) because females are believed to more strongly affect the next generation than males. Of these students, 92.7% had graduated from the ordinary course of senior high school. Students who majored in physical science accounted for 38.6%. In the physical science curriculum, nuclear science had been selected in 27.8% of the students. Among the students who majored in physical science, 38.1% did not memorize the learning of basic physical science at all, and only 25% memorized the learning. These results suggest that the learning of physical science is extremely insufficient. However, such an unfamiliar phenomenon of physical science seems to be closely related to the examination system to universities and colleges. The reason why few people give a debate upon atomic power generation is that people have no accurate knowledge because of their insufficient school learning of nuclear science. Only 19.1% had taken lessons of atomic power generation in the curriculum of social science. Serious problems of the senior high school educational system are pointed out. (N.K.)

  10. Nuclear Science Division, 1995--1996 annual report

    International Nuclear Information System (INIS)

    Poskanzer, A.M.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document

  11. Nuclear Science Division, 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Poskanzer, A.M. [ed.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

  12. The Role of the Nuclear Science and Technology in Hydrocarbon

    International Nuclear Information System (INIS)

    Eko Budi Lelono; Isnawati

    2007-01-01

    The development of the nuclear science and technology influences the method of hydrocarbon exploration as shown by the use of radioactive isotope to determine the absolute age of the rock. Traditionally, the age determination relies on the occurrence of index fossil, both micro and macro forms, to define the relative age of the rock. The absolute age is basically defined based on the calculation of the decay of the selected radioactive mineral. By referring to its absolute age, the rock (source rock or reservoir) can be precisely put in the certain stratigraphic level. On the other hand, the nuclear technology - so called NMR (Nuclear Magnetic Resonance) - is applied in the well exploration survey to measure the porosity and the permeability of the rock for predicting the existence of hydrocarbon. From the sedimentology view point, the nuclear technology is used in x ray diffraction (XRD) laboratory to identify mineral in the reservoir rock. In addition, it is also applied in scanning electron microscope (sem) laboratory for estimating the porosity of reservoir. These kinds of information are required by the exploration experts to create reservoir management. (author)

  13. Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Huynh Ton Nghiem; Luong Ba Vien; Nguyen Minh Tuan; Nguyen Kien Cuong; Pham Quang Huy; Tran Tri Vien

    2015-01-01

    The project Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education performed by Dalat Nuclear Research Institute and financed by Ministry of Science and Technology aimed at strengthening the training capability of nuclear human resources. The content of this work includes: i) Improvement of experimental equipment; ii) Compilation of training material for experiments with the improved equipment systems on the reactor; iii) Compilation of training material for reactor calculations includes the following areas: neutronics, hydrothermal, safety analysis and accident consequence analysis. Results of the project provide important conditions to support practical educational and training curriculums in nuclear science and technology. (author)

  14. Developing a Science and Technology Centre for Supporting the Launching of a Nuclear Power Programme

    International Nuclear Information System (INIS)

    Badawy, I.

    2013-01-01

    The present investigation aims at developing a science and technology centre for supporting the launching of a nuclear power [NP] programme in a developing country with a relatively high economic growth rate. The development approach is based on enhancing the roles and functions of the proposed centre with respect to the main pillars that would have effect on the safe, secure and peaceful uses of the nuclear energy -particularly- in the field of electricity generation and sea-water desalination. The study underlines the importance of incorporating advanced research and development work, concepts and services provided by the proposed centre to the NP programme, to the regulatory systems of the concerned State and to the national nuclear industry in the fields of nuclear safety, radiation safety, nuclear safeguards, nuclear security and other related scientific and technical fields including human resources and nuclear knowledge management.

  15. Accelerator Mass Spectrometry with 15 UD pelletron at the Nuclear Science Centre, New Delhi

    International Nuclear Information System (INIS)

    Datta, S.K.

    1997-01-01

    The 15 UD Pelletron machine is widely used to carry on investigations in a variety of disciplines like nuclear physics, materials science, radiobiology etc. Accelerator Mass Spectrometry studies with 15 UD pelletron machine at Nuclear Science Centre are elaborated

  16. Dictionary of nuclear sciences and techniques

    International Nuclear Information System (INIS)

    Bigot, B.; Santarini, G.

    2008-01-01

    This reference book has been totally reworked in its fourth edition, in order to answer the needs of the numerous sectors of activity concerned by nuclear sciences and technologies: radiation protection, cancerology, neurology and pharmacology in the medical sector, power generation and more generally energy production, micro-electronics, quality control and on-line analysis in many industrial sectors, patrimony preservation, food safety, environmental and paleo-climate studies in relation with climate prospective, etc. This complete overview of the nuclear world integrates the regulatory aspects, necessary to shade light on it, and many other technological innovations. Elaborated with harmonization, clarification and exhaustiveness concerns, this dictionary is the result of a large consensus among the French-speaking nuclear community. It includes some 4800 entries with more than 250 color illustrations and an English-French glossary. Its aim is to offer to everyone a precise vocabulary, fully shared by everybody and necessary for exchanges and debates clarity. (J.S.)

  17. Proceedings of the 5th nuclear science and technology conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    The 5th conference on nuclear science and technology was held on 21-23 November, 1992 in Bangkok. This conference contain papers on non-power applications of nuclear technology in medicine, agriculture and industry. These application including irradiation of food for desinfestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of the nuclear power industry are also discussed.

  18. Proceedings of the Eighth Conference of Nuclear Sciences and Applications

    International Nuclear Information System (INIS)

    2004-02-01

    The publication has been set up as a textbook for researching dealing with radioisotope production during work with Human needs of Nuclear Science and applications. The book consists of the following chapters: chemistry; radioisotope production, trace analysis; environment monitoring; environmental effect; waste management; physics; reactors; nuclear safety and safeguards; materials; radiation protection ; agriculture; hydrology; nuclear medicine; medical applications; radiation chemistry; environmental studies; biological effects of ionizing radiation on agriculture;

  19. Proceedings of the 5th nuclear science and technology conference

    International Nuclear Information System (INIS)

    1994-11-01

    The 5th conference on nuclear science and technology was held on 21-23 November, 1992 in Bangkok. This conference contain papers on non-power applications of nuclear technology in medicine, agriculture and industry. These application including irradiation of food for desinfestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of the nuclear power industry are also discussed

  20. Proceedings of the 6th nuclear science and technology conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The 6th conference on nuclear science and technology was held on 2 - 4 December, 1996 in Bangkok. This conference contain papers on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  1. Utilization of nuclear research reactors in forensic science - Indian scenario

    International Nuclear Information System (INIS)

    Basu, A.K.; Tripathi, A.B.R.; Bhadkambekar, C.A.; Arya, Bharti; Chattopadhyay, N.

    2009-01-01

    Nuclear analytical techniques in Forensic Science is one of the most important fields of peaceful applications of atomic energy for societal cause. Forensic Science is oriented towards the examination of evidence specimens, collected from a scene of crime in order to establish the link between the suspect/criminal and the crime. This science therefore has a profound role to play in criminal justice delivery system. (author)

  2. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  3. Recruiting program for the future R and D leader in nuclear science and technology

    International Nuclear Information System (INIS)

    Kim, Wonho; Kim, Inchul; Min, Hwanki; Park, Jungseung; Jung, Sung Hyon; Jeong, Bitna; Choi, Myound Jong

    2012-04-01

    The national projects of advanced nuclear system development are underway, however, there was little in their need for human resources in the development of nuclear industry and in the nuclear R and D program for the last 10 years. At the same time, a large portion of well-experienced expert in the national research institute and the industry, are getting old and retired, drastically. They faced an unbalanced situation in their supply and demand of human resources in the field of nuclear science and technology. Bring up the experts such as scientists and engineers in nuclear technology makes an important issue as a national agenda. Regardless of the economically stagnated situation in the country, KAERI(Korea Atomic Energy Research Institute) has hired young nuclear scientists and engineers continuously since 2006 last, in order to substitute the increasing retired experts. However, they need more well-brought-up nuclear scientists and engineers in the near future, as a leader of nuclear science and technology. Through this project, we try to recruit a leader of nuclear science and technology, who can create and carry out the world top class R and D programme

  4. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  5. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  6. Content Development, Presentation and Delivery for eLearning in Nuclear Science and Engineering: Experiences with Emerging Authoring Tools

    International Nuclear Information System (INIS)

    Bamford, S.; Afriyie, P.; Comlan, E.

    2016-01-01

    Full text: Transference of explicit knowledge starts from content development, and proceeds with packaging and delivery. A comparative study of some selected authoring tools for knowledge creation in Nuclear Sciences and Engineering education is being carried out at the School of Nuclear and Allied Sciences in Accra, Ghana. These authoring tools include commercial software (Macromedia Suite CS6, Learning 6.0) as well as freeware software (Xerte, eXe). A course, X-ray Fluorescence Spectrometry (NSAP 603), at the postgraduate School of Nuclear and Allied Sciences (SNAS), has been selected for migration onto an eLearning platform. Different authoring tools have been employed to create some ICT-based modules for teaching and learning. This paper therefore shares the experiences realized in moving from course syllabus to digitized modules, integrating pedagogical considerations, the strengths and weakness of the selected authoring tools, user-interactivity and usability of the modules produced. The need and the basis for the adoption of an appropriate authoring tool for creation of scientific, mathematical, and engineering documents and learning materials has also been discussed. Leveraging on ICT to produce pedagogically sound learning materials for eLearning platforms promotes interests of students in nuclear sciences, and ensures continuity in producing qualified professionals. (author

  7. Proceedings of the Twelfth Seminar on Computation in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Arbie, Bakri; Ardisasmita, Syamsa; Bunyamin, M.; Karsono, M.; Sangadji; Aziz, Ferhat; Marsodi; Su'ud, Zaki; Suhartanto, Heru

    2001-07-01

    The proceedings on Seminar Computation in Nuclear Science and Technologyis routine activity that held on Center for Development of Informatics and Computation Technology. The aims of proceeding is to be able to Exchange Information for interest in computation, Modelling and Simulation. The Seminar is attended by BATAN's on University Research in nuclear science activity. This proceedings used for another research. There are 26 papers which have separated index

  8. Three voices: women working in nuclear science and technology

    International Nuclear Information System (INIS)

    1999-01-01

    Nuclear science and technology is a fascinating and growing work area for women. This short video portrays three professional women working within this field for the International Atomic Energy Agency

  9. European Master of Science in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, F.; Safieh, J.; Giot, M.; Mavko, B.; Sehgal, B.R.; Schaefer, A.; Goethem, G. van; D'haeseleer, W.

    2004-01-01

    The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. It appears that within the European university education and training network, nuclear engineering is presently sufficiently covered, although somewhat fragmented. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding a.o. from public and private is to be re-established. More, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include world-wide cooperation with academic institutions and research centres. The European master in nuclear engineering guarantees a high quality nuclear education in Europe by means of stimulating student and instructor exchange, through mutual checks of the quality of the programmes offered, by close collaboration with renowned nuclear-research groups at universities and laboratories. The concept for a nuclear master programme consists of a solid basket of recommended basic nuclear science and engineering courses, but also contains advanced courses as well as practical training. Some of the advanced courses also serve as part of the curricula for doctoral programmes. A second important issue identified is Continued Professional Development. In order to achieve the objectives and practical goals described above, the ENEN association was formed. This international, non-profit association is be considered as a step towards a virtual European Nuclear University symbolising the active collaboration between various national institutions pursuing nuclear education. (author)

  10. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--nuclear fusion

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  11. The pondering on law of the development of nuclear agriculture sciences in China

    International Nuclear Information System (INIS)

    Wang Zhidong

    2004-01-01

    The present and history of Nuclear Agricultural Sciences in China were studied in order to explore its law of development. The conclusion is that the human resource was one of the key factors and the system of market economy or plan economy was not an important factor for restricting the development of nuclear agricultural sciences in China. (authors)

  12. The pondering on the law of development of nuclear agriculture sciences in China

    International Nuclear Information System (INIS)

    Wang Zhidong

    2003-01-01

    The present and history of Nuclear Agricultural Sciences in China were studied in order to explore its law of development. The conclusion is that the human resource was one of the key factors and the system of market economy or plan economy was not an important factor for restricting the development of nuclear agricultural sciences in China

  13. Annual report-2011. Institute for Nuclear Research National Academy of Sciences of Ukraine

    International Nuclear Information System (INIS)

    Iivanyuk, F.O.

    2012-01-01

    Annual report contains information on the fundamental, scientific and applied investigations carried out in the Institute for Nuclear Research of the National Academy of Sciences of Ukraine in the year 2010. The report contains abstracts of research works in the fields of nuclear physics, atomic energy, radiation physics and radiation material science, physics of plasma, radiation ecology and biology.

  14. Science, society, and America's nuclear waste: Unit 2, Ionizing radiation

    International Nuclear Information System (INIS)

    1992-01-01

    ''Science, Society and America's Nuclear Waste'' is a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  15. Recent developments and case studies in nuclear forensic science

    International Nuclear Information System (INIS)

    Ray, I.L.F.; Wiss, T.; Thiele, H.

    2002-01-01

    Since 1994 the Institute for Transuranium Elements has played the leading role in Europe in the development of Nuclear Forensic Science. This is a new discipline which has developed out of necessity following the break up of the former Soviet Union and Eastern Block countries in 1989, which resulted in the emergence of a new form of illegal smuggling - that of nuclear materials. The Institute has been involved in the investigation of all the major cases of illicit trafficking involving nuclear- and nuclear-related materials in Europe from 1994, following the first major incident at Munich airport, up to the present time. Examples will be given here illustrating different types of cases: the accidental release of nuclear material into the environment, exercises carried out in cooperation with the German Federal Police (Bundeskriminalamt), and the removal of nuclear material with deliberate criminal intent

  16. Outline of scientific and research activities of the Faculty of Nuclear Science and Physical Engineering

    International Nuclear Information System (INIS)

    Loncar, G.

    1982-01-01

    A survey is presented of scientific and research activities carried out in the departments of the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. The first section lists the principal results achieved in the course of the 6th Five-Year Plan in Physical Electronics, Solid State Engineering, Materials Structure and Properties, Nuclear Physics, Theory and Technology of Nuclear Reactors, Dosimetry and Application of Ionizing Radiation and Nuclear Chemistry. The second part gives a summary of scientific and research work carried out in the Faculty of Nuclear Science and Physical Engineering in the 7th Five-Year Plan in all branches of science represented. The Faculty's achievements in international scientific cooperation are assessed. (author)

  17. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, L. E-mail: lyubov@stcu.kiev.ua; Janouch, F.; Owsiacki, L

    2001-06-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date 'Program Supporting Y2K Readiness at Ukrainian NPPs' initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ('Improved Zirconium-Based Elements for Nuclear Reactors'), information technologies for nuclear industries ('Ukrainian Nuclear Data Bank in Slavutich'), and radiation health science ('Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers')

  18. The fourth conference on nuclear science and engineering in Australia, 2001. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This conference, with the theme 'New Nuclear Century' consists of invited papers supported by contributed posters on the following topics: nuclear research and ANSTO's Replacement Research Reactor; Australian uranium resources; radioactive waste management; low-level radiation, radiation protection, nuclear safety, the environment and sustainable development; application of nuclear energy in Nuclear Medicine, non-destructive testing; nuclear science and technology for the future and nuclear education.

  19. The fourth conference on nuclear science and engineering in Australia, 2001. Conference handbook

    International Nuclear Information System (INIS)

    2001-01-01

    This conference, with the theme 'New Nuclear Century' consists of invited papers supported by contributed posters on the following topics: nuclear research and ANSTO's Replacement Research Reactor; Australian uranium resources; radioactive waste management; low-level radiation, radiation protection, nuclear safety, the environment and sustainable development; application of nuclear energy in Nuclear Medicine, non-destructive testing; nuclear science and technology for the future and nuclear education

  20. Nuclear forensic science-From cradle to maturity

    International Nuclear Information System (INIS)

    Mayer, K.; Wallenius, M.; Fanghaenel, T.

    2007-01-01

    Since the beginning of the 1990s, when the first seizures of nuclear material were reported, the IAEA recorded more than 800 cases of illicit trafficking of nuclear or other radioactive materials. Despite the decreasing frequency of seizures involving nuclear materials (i.e. uranium or plutonium), the issue continues to attract public attention and is a reason for concern due to the hazard associated with such materials. Once illicitly trafficked nuclear material has been intercepted, the questions of its intended use and origin are to be addressed. Especially the origin is of prime importance in order to close the gaps and improve the physical protection at the sites where the theft or diversion occurred. To answer the questions, a dedicated nuclear forensics methodology has been developed. In this paper, an overview is given on the methodologies used, the measurement techniques that are applies and on the characteristic parameters that help in the identification of the origin of the material. Some selected examples shall illustrate the challenges and the complexity associated with this work. In particular the past and on-going developments in this new area of science will be highlighted and special attention is attributed to the challenges ahead

  1. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  2. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  3. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.4--nuclear material

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally.This is the fourth one, the content is about nuclear materials, isotope separation, nuclear chemistry and radiological chemistry.

  4. Research in the nuclear sciences: summaries of FY 1978

    International Nuclear Information System (INIS)

    1978-06-01

    Programs funded in fiscal year 1978 by the Division of Nuclear Sciences/Office of Basic Energy Sciences are summarized. Each summary is preceded by a heading that includes institution, title, principal investigators, budget reporting category, and operating funds provided in FY 1978. The summaries are presented in alphabetical order by institution. Indexes are appended to facilitate the location of a summary according to an investigator's name or a budget reporting category

  5. Italian Science Fiction, Nuclear Technologies: Narrative Strategies Between the “Two Cultures” (1950s-1970s)

    International Nuclear Information System (INIS)

    Iannuzzi, Giulia

    2017-01-01

    This chapter critically investigates how science fiction interacted with, and contributed to the development of a collective imagery related to nuclear energy in Italy between the 1950s and the 1970s, within a context characterized by a difficult relationship between the “two cultures”. To do this, it takes into account the theme of nuclear technologies in science fiction genre narratives, and its treatment on the part of non-genre Italian writers. An initial enthusiasm toward nuclear energy is interpreted as part of new hopes connected to an unprecedented modernization in the peninsula and a new centrality of techno-science – of which science fiction was an apt expression. The hostility toward both nuclear technologies and science fiction on the part of the Italian cultural elite during subsequent decades is read as two different sides of the same “malaise of modernity”.

  6. Nuclear science in the 20th century. Its historical discoveries and impact on the world: Pt.1

    International Nuclear Information System (INIS)

    Liu Jun; Xu Furong; Zheng Chunkai; Shen Wenqing

    2003-01-01

    Nuclear science has been in existence for more than one hundred years, and has affected the world in many important aspects. In this paper, we give a brief overview of the history of nuclear science, including major discoveries such as the discovery of radioactivity, the electron, proton and neutron. The structures of atoms and atomic nuclei are explained, with some historic experiments and theories. The immense impact of nuclear science on the natural sciences and the world is reviewed

  7. Neutron scattering science at the Australian Nuclear Science and Technology Organisation (ANSTO)

    International Nuclear Information System (INIS)

    Knott, Robert

    2000-01-01

    Neutron scattering science at ANSTO is integrated into a number of fields in the Australian scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans to replace the present research reactor with a modern multi-purpose research reactor are well advanced. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. A brief overview will be presented of all the instruments presently available at ANSTO with emphasis on the SANS instrument. This will be followed by a description of the replacement research reactor and its instruments. (author)

  8. Neutron scattering science at the Australian Nuclear Science and Technology Organisation (ANSTO)

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Robert [Australian Nuclear Science and Technology Organisation (Australia)

    2000-10-01

    Neutron scattering science at ANSTO is integrated into a number of fields in the Australian scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans to replace the present research reactor with a modern multi-purpose research reactor are well advanced. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. A brief overview will be presented of all the instruments presently available at ANSTO with emphasis on the SANS instrument. This will be followed by a description of the replacement research reactor and its instruments. (author)

  9. UK Nuclear Science Forum. Progress report: Data studies during 2000

    International Nuclear Information System (INIS)

    Nichols, A.L.

    2001-06-01

    The UK Nuclear Science Forum (UKNSF) now meets once per year to discuss issues of direct relevance to forum members, and to review nuclear data for application in the UK nuclear industry. Links are also maintained through the year, mainly through e-mail and the normal postal system. Work of immediate interest includes the measurement and evaluation of decay data (e.g., half-lives and gamma-ray emission probabilities), fission yields and thermal neutron cross sections; all known UK studies in 2000 are summarised in this document. Specific applications and international links of relevance in the field of nuclear data are also described

  10. The development of a neuroscience-based methodology for the nuclear energy learning/teaching process

    International Nuclear Information System (INIS)

    Barabas, Roberta de C.; Sabundjian, Gaiane

    2015-01-01

    When compared to other energy sources such as fossil fuels, coal, oil, and gas, nuclear energy has perhaps the lowest impact on the environment. Moreover, nuclear energy has also benefited other fields such as medicine, pharmaceutical industry, and agriculture, among others. However, despite all benefits that result from the peaceful uses of nuclear energy, the theme is still addressed with prejudice. Education may be the starting point for public acceptance of nuclear energy as it provides pedagogical approaches, learning environments, and human resources, which are essential conditions for effective learning. So far nuclear energy educational researches have been conducted using only conventional assessment methods. The global educational scenario has demonstrated absence of neuroscience-based methods for the teaching of nuclear energy, and that may be an opportunity for developing new strategic teaching methods that will help demystifying the theme consequently improving public acceptance of this type of energy. This work aims to present the first step of a methodology in progress based on researches in neuroscience to be applied to Brazilian science teachers in order to contribute to an effective teaching/learning process. This research will use the Implicit Association Test (IAT) to verify implicit attitudes of science teachers concerning nuclear energy. Results will provide data for the next steps of the research. The literature has not reported a similar neuroscience-based methodology applied to the nuclear energy learning/teaching process; therefore, this has demonstrated to be an innovating methodology. The development of the methodology is in progress and the results will be presented in future works. (author)

  11. The development of a neuroscience-based methodology for the nuclear energy learning/teaching process

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, Roberta de C.; Sabundjian, Gaiane, E-mail: robertabarabas@usp.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    When compared to other energy sources such as fossil fuels, coal, oil, and gas, nuclear energy has perhaps the lowest impact on the environment. Moreover, nuclear energy has also benefited other fields such as medicine, pharmaceutical industry, and agriculture, among others. However, despite all benefits that result from the peaceful uses of nuclear energy, the theme is still addressed with prejudice. Education may be the starting point for public acceptance of nuclear energy as it provides pedagogical approaches, learning environments, and human resources, which are essential conditions for effective learning. So far nuclear energy educational researches have been conducted using only conventional assessment methods. The global educational scenario has demonstrated absence of neuroscience-based methods for the teaching of nuclear energy, and that may be an opportunity for developing new strategic teaching methods that will help demystifying the theme consequently improving public acceptance of this type of energy. This work aims to present the first step of a methodology in progress based on researches in neuroscience to be applied to Brazilian science teachers in order to contribute to an effective teaching/learning process. This research will use the Implicit Association Test (IAT) to verify implicit attitudes of science teachers concerning nuclear energy. Results will provide data for the next steps of the research. The literature has not reported a similar neuroscience-based methodology applied to the nuclear energy learning/teaching process; therefore, this has demonstrated to be an innovating methodology. The development of the methodology is in progress and the results will be presented in future works. (author)

  12. Integration of Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, M.; Eggermont, G

    2002-04-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised.

  13. Integration of Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Bovy, M.; Eggermont, G.

    2002-01-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised

  14. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.7--Nuclear electronics and nuclear detection technology sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about Nuclear electronics and nuclear detection technology

  15. Analysis of trends in publications and citations of papers on nuclear science and technology field in Korea: Focusing on the Scopus Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Choon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The data on the top 20 journals in the Science Citation Index(Expanded) for 10 years from 2005 to 2014 indicated the first and second positions for Korean papers were occupied by the Korean journals, which implied the need for globalization of target journals to publish Korean papers. Further study is required for comparative analysis of the factors impacting on the number of papers and citations, which is the criteria for quality evaluation of papers, in other area than the Nuclear Energy and Engineering to which this study was limited. As the media for research process and results, papers play an important role in the evaluation of research projects. While the traditional methods for evaluation of research results have been focused on quantity aspects, the implication of quality aspect is increasingly recognized. Most national labs have begun to shift from quantity to quality in their criteria for overall evaluation of research results. It is therefore desired to maximize the quality level of the research papers for which the trends in citation as quality indicator could be analyzed as well as the quantity aspect. This paper looks at the trends in the number of citation and papers as the indicators of quality and quantify, as drawn from Scopus Data Base. It also suggest top 5 Science Citation Index(Expanded) journals in terms of increase rate in both number of papers and citations. The purpose is to compare them with top 20 Science Citation Index(Expanded) journals in which Korea Atomic Energy Research researchers have published their papers in the past 10 years from 2005 to 2014 were submitted. This paper looked at the trends in the number of papers and citations as an indicator of quality of the research papers in the area of Nuclear Energy and Engineering which is in fact a limitation to the key subject area, not covering the whole nuclear science and technology.

  16. Analysis of trends in publications and citations of papers on nuclear science and technology field in Korea: Focusing on the Scopus Data Base

    International Nuclear Information System (INIS)

    Chun, Young Choon

    2015-01-01

    The data on the top 20 journals in the Science Citation Index(Expanded) for 10 years from 2005 to 2014 indicated the first and second positions for Korean papers were occupied by the Korean journals, which implied the need for globalization of target journals to publish Korean papers. Further study is required for comparative analysis of the factors impacting on the number of papers and citations, which is the criteria for quality evaluation of papers, in other area than the Nuclear Energy and Engineering to which this study was limited. As the media for research process and results, papers play an important role in the evaluation of research projects. While the traditional methods for evaluation of research results have been focused on quantity aspects, the implication of quality aspect is increasingly recognized. Most national labs have begun to shift from quantity to quality in their criteria for overall evaluation of research results. It is therefore desired to maximize the quality level of the research papers for which the trends in citation as quality indicator could be analyzed as well as the quantity aspect. This paper looks at the trends in the number of citation and papers as the indicators of quality and quantify, as drawn from Scopus Data Base. It also suggest top 5 Science Citation Index(Expanded) journals in terms of increase rate in both number of papers and citations. The purpose is to compare them with top 20 Science Citation Index(Expanded) journals in which Korea Atomic Energy Research researchers have published their papers in the past 10 years from 2005 to 2014 were submitted. This paper looked at the trends in the number of papers and citations as an indicator of quality of the research papers in the area of Nuclear Energy and Engineering which is in fact a limitation to the key subject area, not covering the whole nuclear science and technology

  17. Nuclear science and technology, a four-week residential summer program for high school rising seniors at NCSU

    International Nuclear Information System (INIS)

    Stam, E.

    1992-01-01

    In 1982, the North Carolina State University (NCSU) Department of Nuclear Engineering (NE Department) established a 2-week residential summer program on nuclear science and technology for high school rising seniors to stimulate their interest in nuclear engineering as a career. The program was designed with the following goals in mind: (1) to expose the students to mathematics and science fundamentals, which are essential for a career in science or engineering; (2) to demonstrate the use of nuclear energy and nuclear techniques in areas that affect the well being, technical progress, and the shape of our society; (3) to acquaint the students with the resources of NCSU when contemplating a career in science of engineering; and (4) to provide a relaxed setting for student-faculty interaction, which can provide motivation and guidance toward a career in science or engineering and ease the transition from high school to college

  18. Nuclear science

    International Nuclear Information System (INIS)

    1989-01-01

    This fact sheet answers specific questions about the Department of Energy's possible acquisition and conversion of a partially completed commercial nuclear power plant to a nuclear materials production facility. The nuclear power plant is the Washington Nuclear Plant number sign 1 owned by the Washington Public Power Supply System and is located on DOE's Hanford Reservation near Richland, Washington

  19. Nuclear science

    International Nuclear Information System (INIS)

    1989-04-01

    This report answers questions about the Department of Energy's possible acquisition and conversion of a partially completed commercial nuclear power plant to a nuclear materials production facility. The nuclear power plant is the Washington Nuclear Plant No.1 owned by the Washington Public Power Supply System and is located on DOE's Hanford Reservation near Richland, Washington

  20. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.7--Nuclear electronics and nuclear detection technology sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 57 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about Nuclear electronics and nuclear detection technology sub-volume

  1. Proceedings of the Nuclear Engineering Science and Technology - NESTeT 2011 Transactions

    International Nuclear Information System (INIS)

    2011-01-01

    This important European Nuclear Society (ENS) conference is dedicated to networking in nuclear education and training across the fields of engineering, science and technology. It is organised as a back-to-back event with the European Nuclear Young Generation Forum (ENYGF) which will attract over 150 Young Professionals from all over Europe. Exchange of information on available expertise, capacity, infrastructure and needs, together with networking and collaboration between all stakeholders involved is crucial for the development of an efficient education and training system that is able to provide adequately skilled workforce for a dynamically evolving sector. NESTet is designed to facilitate an exchange of information, collaboration and the sharing of best practices in nuclear education and training in engineering science and technology. It is an important networking opportunity for better co-ordination and collaboration between different stakeholders. The conference is targeted at all stakeholders responsible for human resources and skills development and stakeholders responsible for the development of education and training programmes in the nuclear sector. (authors)

  2. Research in the nuclear sciences: summaries of FY 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    Programs funded in fiscal year 1978 by the Division of Nuclear Sciences/Office of Basic Energy Sciences are summarized. Each summary is preceded by a heading that includes institution, title, principal investigators, budget reporting category, and operating funds provided in FY 1978. The summaries are presented in alphabetical order by institution. Indexes are appended to facilitate the location of a summary according to an investigator's name or a budget reporting category. (RWR)

  3. Proceeding of 29th domestic symposium on computational science and nuclear energy in the 21st century

    International Nuclear Information System (INIS)

    2001-10-01

    As the 29th domestic symposium of Atomic Energy Research Committee, the Japan Welding Engineering Society, the symposium was held titled as Computational science and nuclear energy in the 21st century'. Keynote speech was delivered titled as 'Nuclear power plants safety secured by computational science in the 21st century'. Three speakers gave lectures titled as 'Materials design and computational science', 'Development of advanced reactor in the 21st century' and 'Application of computational science to operation and maintenance management of plants'. Lectures held panel discussion titled as 'Computational science and nuclear energy in the 21st century'. (T. Tanaka)

  4. Effect of trainings on attitude formation towards nuclear science and technology

    International Nuclear Information System (INIS)

    Asuncion, Alvie J.; Loterina, Roel A.; Cansino, Percedita T.

    2011-01-01

    Nuclear energy's critical role in sustainable development has been highlighted in various reports and studies. This role, however, has been hampered by many influences; one of the most notable is public support which has been correlated with public attitudes. Public support drops rapidly in the midst of nuclear crises as in the case of the recent Fukushima accident, and unless interventions are made, this drop can become irreversible. Information dissemination and brief public communication may serve as short-term solutions, but these interventions appeal to opinions which are relatively more volatile than attitudes. Previous studies have shown that there are different pathways to attitude formation which include education and knowledge-building activities. In this study, the effect of training of the attitudes of participants towards nuclear science and technology was investigated. A questionnaire was designed and validated to measure attitudes towards Nuclear Science and Technology (NST) and was administered to participants of training courses conducted by the PNRI Nuclear Training Center. A total of 111 participants from five training courses were included as respondents which is 91% of the target population, of these, 30.6% are Educators, 44.1% are Medical Practitioners, and 25.2% are Licensees. Mean scores obtained from the questionnaire were analyzed and significant difference has been found at 0.05 confidence level, between participants' attitudes before and after attending a training course. There were slight differences observed from each group of respondents but over-all results show that knowledge-building activities like trainings can be utilized to improve public attitudes towards nuclear science and technology in the Philippine context. (author)

  5. Radiochemistry course in the undergraduate nuclear science program at Universiti Kebangsaan Malaysia

    International Nuclear Information System (INIS)

    Sarmani, S.B.; Yahaya, R.B.; Yasir, M.S.; Majid, A.Ab.; Khoo, K.S.; Rahman, I.A.; Mohamed, F.

    2015-01-01

    Universiti Kebangsaan Malaysia offered an undergraduate degree program in Nuclear Science since 1980 and the programme has undergone several modifications due to changes in national policy and priority. The programme covers nuclear sub-disciplines such as nuclear physics, radiobiology, radiochemistry, radiation chemistry and radiation safety. The radiochemistry component consists of radiochemistry, chemistry in nuclear industry, radiochemical analysis laboratory, radiopharmaceutical chemistry subjects and mini research project in radiochemistry. (author)

  6. Education and Training Activities of the SCK-CEN Academy for Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Coeck, M.; Kesteloot, N.; Clarijs, T.

    2016-01-01

    Full text: In 2012, The Belgian Nuclear Research Centre SCK-CEN officially launched its “Academy for Nuclear Science and Technology”. Thanks to its thorough experience in the field of nuclear science and technology, its innovative research and the availability of large and unique nuclear facilities, SCK-CEN is not only a renowned nuclear research institution, but also an important partner for nuclear education and training in Belgium as well as at international level. Within the SCK-CEN Academy, more than 60 years of nuclear expertise and experience gained from our different research projects is collected and transferred. In order to maintain and extend a competent workforce in nuclear industry, healthcare, research, and governmental organizations, and to transfer this nuclear knowledge to the next generations, the mission of the SCK-CEN Academy comprises four main tasks: (i) providing guidance to young scientists, (ii) organizing of courses, (iii) providing policy support and (iv) caring for critical-intellectual capacities. (author

  7. Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS)

    International Nuclear Information System (INIS)

    Da Ruan

    2000-01-01

    FLINS is the acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science. In 1994, SCK-CEN launched a programme on FLINS. The first FLINS project dealt with the specific prototyping of fuzzy logic control (FLC) of the BR-1 research reactor. This project focussed on controlling the power level of the BR1 reactor added value of FLC for both safety and economic aspects for a nuclear reactor control operation. Main achievements in 1999 are reported

  8. Nuclear security education and training at Naif Arab University for Security Sciences

    International Nuclear Information System (INIS)

    Amjad Fataftah

    2009-01-01

    Naif Arab University for Security Sciences (NAUSS) was established in 1978 as an Arab institution specialized in security sciences to fulfill the needs of the Arab law enforcement agencies for an academic institution that promotes research in security sciences, offers graduate education programs and conduct short-term training courses, which should contribute to the prevention and control of crimes in the Arab world. NAUSS and the IAEA organized the first workshop on nuclear security on November, 2006, which aimed to explore and improve the nuclear security culture awareness through the definitions of the nuclear security main pillars, Prevention, Detection and Response. In addition, NAUSS and IAEA organized a very important training course on April, 2008 on combating nuclear terrorism titled P rotection against nuclear terrorism: Protection of radioactive sources . In the past two years, IAEA has put tremendous efforts to develop an education program in nuclear security, which may lead into Master's degree in nuclear security, where NAUSS helped in this project through the participation in the IAEA organized consultancy and technical meetings for the development of this program along with many other academic, security and law enfacement experts and lawyers from many different institution in the world. NAUSS and IAEA drafted a work plan for the next coming two years which should lead into the gradual implementation of these educational programs at NAUSS. NAUSS also continues to participate in several local conferences and symposiums related to the peaceful application of nuclear power in the gulf region, and the need for a human resources development programs to fulfill the scientific and security needs which will arise from building nuclear power plants. NAUSS participated in the International Symposium on the Peaceful Application of Nuclear Technology in the GCC countries, organized by King Abdulaziz University in the city of Jeddah, Saudi Arabia. Also NAUSS

  9. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.6--nuclear physics

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the sixth one, the content is about nuclear physics, computational physics and particle accelerator

  10. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2011-10-15

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  11. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    International Nuclear Information System (INIS)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon

    2011-01-01

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  12. Imagine a universe with 85% down quarks: Mentoring for inclusive excellence in nuclear science

    Science.gov (United States)

    Yennello, Sherry J.

    2017-09-01

    If nature created six down quarks for every up quark the world might be a bit more strange. The US population is made up of over 50% women. Hispanic Americans and African Americans make up over 30% of the US population. The processes by which we foster curiosity, educate our youth, encourage people into science, recruit and retain people into physics and welcome them as members of our nuclear physics community results in a much different demographic in the membership of the DNP. Enabling the development of an identity as a scientist or nuclear scientist is a crucial part of mentoring young people to successful careers in nuclear science. Research experiences for students can play a critical role in that identity development. Since 2004, over 170 students have explored nuclear science through the Research Experiences for Undergraduates program Texas A&M University Cyclotron Institute.

  13. Empowering the Youth in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Abdulrazak, Shaukat

    2017-01-01

    The Technical Cooperation (TC) Strategic Goal “To increasingly promote tangible socio-economic impact by contributing directly in a cost-effective manner to the achievement of the major sustainable development priorities of each country.”. What does this mean? The successful implementation of nuclear science and technology for socioeconomic development requires skilled personnel such as Technicians and Engineers. The TC Programme focuses on building capacity in nuclear techniques that support a wide range of academic disciplines, which when applied with the relevant nuclear application can improve a country's development status. The TC Programme • builds capacity, and offers networking, knowledge sharing and partnership facilitation, through group and individual training, meetings and the provision of expert advice. • The main target audience for our trainings are young professionals employed in relevant institutions

  14. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--nuclear agriculture

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  15. Securing a better future for all: Nuclear techniques for global development and environmental protection. NA factsheet on nuclear physics: Facilitating the peaceful and practical uses of nuclear science

    International Nuclear Information System (INIS)

    2012-01-01

    When properly applied, nuclear science - the study of atomic nuclei and other subatomic particles - can contribute in many ways to the health, development and security of communities around the world. In this context, the IAEA plays an important role in helping interested Member States develop the capabilities and infrastructure necessary to manage their own programmes devoted to nuclear and radiological applications. The IAEA's nuclear science programme helps Member States to establish sound frameworks for the efficient, safe and secure use of new nuclear technologies, including accelerator facilities, research reactors and future nuclear fusion facilities. By applying nuclear technologies in a wide variety of areas such as energy production, health care, food and agriculture, industry and the environment, Member States can benefit immensely from the ensuing socioeconomic developments, as well as providing better living conditions for their citizens.

  16. From illicit trafficking to nuclear terrorism? - The role of nuclear forensics science

    International Nuclear Information System (INIS)

    Schenkel, R.; Cromboom, O.; Daures, P.; Janssens, W.; Koch, L.; Mayer, K.; Ray, I.

    2002-01-01

    The events of 11th September 2001 have reminded us of the importance of taking preventive action in the field of nuclear terrorism as well as measures to mitigate the effects after such an attack. We have seen in the last 10 years the emergence of a new and potentially hazardous form of smuggling: that of nuclear and radioactive materials. The threat of terrorist activities involving nuclear materials has now become a matter of concern as well. Dispersion of such materials over urban areas, their introduction in the food chain or drinking water system are examples of currently perceived risks to our modern societies. Following its early involvement in a large number of cases of illicit trafficking and environmental issues the Institute for Transuranium Elements has developed a new discipline to support Member State authorities to combat illicit trafficking and dealing with criminal environmental issues: nuclear forensic science. The principal aims of research in this field at ITU are: (1) To maintain and develop further investigative techniques for identifying the nature of seized materials, to assess the immediate danger, to locate the original source of the material and, as far as possible, the route it has taken, and to give an opinion on the probable intended use of the material; (2) To foster close contacts with law enforcement agencies -- Europol, Interpol, World Customs Organisation and national police forces -- and to develop techniques to optimise collaboration between standard forensic techniques and the special requirements of the nuclear scientist; (3) To develop and implement a programme of assistance for applicant countries in combating illicit trafficking within their own borders. This involves giving advice, training operators and officials in the detection of illicit materials and the supply of appropriate equipment, such as radiation detectors; (4) To maintain and update an extensive database on commercial nuclear materials -- a separate section

  17. Mass spectrometry in nuclear science and technology

    International Nuclear Information System (INIS)

    Komori, Takuji

    1985-01-01

    Mass spectrometry has been widely used and playing a very important role in the field of nuclear science and technology. A major reason for this is that not only the types of element but also its isotopes have to be identified and measured in this field. Thus, some applications of this analytical method are reviewed and discussed in this article. Its application to analytical chemistry is described in the second section following an introductory section, which includes subsections for isotropic dilution mass spectrometry, resonance ionization mass spectrometry and isotopic correlation technique. The isotopic ratio measurement for hydrogen, uranium and plutonium as well as nuclear material control and safeguards are also reviewed in this section. In the third section, mass spectrometry is discussed in relation to nuclear reactors, with subsections on natural uranium reactor and neutron flux observation. Some techniques for measuring the burnup fraction, including the heavy isotopic ratio method and fission product monitoring, are also described. In the fourth section, application of mass spectrometry to measurement of nuclear constants, such as ratio of effective cross-sectional area for 235 U, half-life and fission yield is reviewed. (Nogami, K.)

  18. Annual report of Nuclear Science Research Institute, JFY2005

    International Nuclear Information System (INIS)

    2007-04-01

    Japan Atomic Energy Agency (JAEA) was inaugurated on October 1st, 2005. Works for the operation and maintenance of various research facilities as well as safety management, radiation protection, and radioactive wastes management, which have been undertaken by departments in Tokai Research Establishment of Japan Atomic Energy Research Institute (JAERI), were inherited by newly established departments of Nuclear Science Research Institute (NSRI). The NSRI is composed of Planning and Coordination Office and seven departments such as Department of Operational Safety Administration, Department of Radiation Protection, Department of Research Reactor and Tandem Accelerator, Department of Hot Laboratories and Facilities, Department of Criticality and Fuel Cycle Research Facilities, Department of Decommissioning and Waste Management, and Engineering Services Department. This annual report of JFY 2005 summarizes the activities of NSRI and is expected to be referred to and utilized by R and D departments and project promotion sectors at NSRI site for the enhancement of their own research and management activities to attain their goals according to Middle-term Plan' successfully and effectively. In chapter 1, outline of organization and administrative activities of NSRI is described. In chapter 2, the following activities made by the departments in NSRI are summarized, i.e., (1) operation and maintenance of research reactors (JRR-3, JRR-4, NSRR), criticality assemblies (STACY, TRACY, FCA, TCA), hot laboratories, (BECKY, Reactor Fuel Examination Facility, WASTEF, Research Laboratory 4, Plutonium Research Laboratory 1, Tokai Hot Laboratory, etc), and large-scale facilities (Tandem accelerator, LSTF, THYNC, TPTF, etc), and (2) safety management, radiation protection, management of radioactive wastes, decommissioning of nuclear facilities, engineering services, utilities and maintenance, etc, all of which are indispensable for the stable and safe operation and utilization of the

  19. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  20. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, C.L., E-mail: cahill@gwu.edu [Department of Chemistry and Elliott School of International Affairs, The George Washington University, Washington, DC 20052 (United States); Feldman, G.; Briscoe, W.J. [Department of Physics, The George Washington University, Washington, DC 20052 (United States)

    2014-06-15

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.

  1. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    International Nuclear Information System (INIS)

    Cahill, C.L.; Feldman, G.; Briscoe, W.J.

    2014-01-01

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation

  2. CR-39 plastic nuclear track detector and its application in nuclear science

    International Nuclear Information System (INIS)

    Zhai Pengji; Tang Xiaowei; Wang Long; Liang Tianjiao

    2000-01-01

    The transparent and stable plastic material CR-39 can be used as a nuclear track detector which is highly sensitive to charged particles. It can record tracks induced by protons , alphas, fission fragments and other charged particles. Among various available solid state nuclear track detectors CR-39 has the lowest deposited energy density detection-threshold. The response of CR-39 to charged particles and the response curve of υ T of different charged particles to REL are given. The CR-39 detector is widely used in studies of nuclear reactions, angular distributions and reaction cross-sections caused by neutrons and charged particles. Neutron spectra, over a wide energy range, can be measured by the combination of CR-39 and a transformation screen. The successful applications of CR-39 in alpha particle dosimetry, environmental science (especially in the measurement of radon) and in biomedicine, such as the analysis of alpha radioactivity in sections of organic tissues, are described

  3. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.

    2013-01-01

    NuPECC (the Nuclear Physics European Collaboration Committee, an expert committee of the European Science Foundation) has the mission to strengthen European Collaboration in nuclear science through the promotion of nuclear physics and its trans-disciplinary use and application. NuPECC is currently...... working on a report on “Nuclear Physics for Medicine” and has set up a working group to review the present status and prospects of radionuclides for nuclear medicine. An interim report will be presented to seek comments and constructive input from EANM members. In particular it is investigated how nuclear...... physics Methods and nuclear physics facilities are supporting the development and supply of medical radionuclides and how this support could be further strengthened in future. Aspects that will be addressed: •In recent years, the reactor-based supply chain of 99Mo/99mTc generators was repeatedly...

  4. Proceedings of the Nuclear Engineering Science and Technology - NESTeT 2008 Transactions

    International Nuclear Information System (INIS)

    2008-01-01

    This important European Nuclear Society (ENS) conference is dedicated to networking in nuclear education and training across the fields of engineering, science and technology. An OECD study in 2000, 'Nuclear Education and Training: Cause for Concern?' recommended the following: -Governments have a strategic role to play in energy planning. Governments should contribute to, if not take responsibility for, integrated planning to ensure that necessary human resources are available. There should also be adequate resources for vibrant nuclear research and development programmes including modernisation of facilities; -The provision of basic and attractive educational programmes at university level is among the challenges of revitalising nuclear education; -Rigorous training programmes are needed to meet specific needs and exciting research projects should also be developed to attract quality students and employees to research institutes; -Industry, research institutes and universities need to work together to better co-ordinate efforts to encourage the younger generation and develop and promote a programme of collaboration in nuclear education and training. There should also be mechanisms for sharing best practices in promoting nuclear courses. The world is responding. From the Americas to Europe and Asia networks have been established to maintain nuclear knowledge and to ensure there is a suitably qualified nuclear workforce for the future. NESTet 2008 is designed to facilitate an exchange of information, collaboration and the sharing of best practices in nuclear education and training in engineering science and technology. (authors)

  5. Education in nuclear science at IPEN - CNEN, Sao Paulo, Brazil. Advanced School of Nuclear Energy-EAEN

    International Nuclear Information System (INIS)

    Semmler, R.; Catharino, M.G.M.; Vasconcellos, M.B.A.

    2012-01-01

    EAEN (Advanced School of Nuclear Energy, 2010) is an annual school that consists of a week of activities in the area of Nuclear Physics, Radiochemistry and uses of Nuclear Energy for a public made of high school students. The EAEN project represents a pioneering program on science education and dissemination of knowledge, conducted by researchers and focused mainly on high school and scientific education for the population in general. The school's priority is to explore the failures and the lack of education in the dissemination of nuclear energy for high school students as well as to attract prospective students with great potential for graduate courses of IPEN and other institutions in Sao Paulo and in Brazil. (author)

  6. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1968-01-01

    Advances in Nuclear Science and Technology Volume 4 provides information pertinent to the fundamental aspects of advanced reactor concepts. This book discusses the advances in various areas of general applicability, including modern perturbation theory, optimal control theory, and industrial application of ionizing radiations.Organized into seven chapters, this volume begins with an overview of the technology of sodium-cooled fast breeder power reactors and gas-cooled power reactors. This text then examines the key role of reactor safety in the development of fast breeder reactors. Other chapt

  7. Some comments on the requirement for nuclear data in the earth sciences

    International Nuclear Information System (INIS)

    Clayton, C.G.; Patrick, B.H.; Sanders, L.G.; Sowerby, M.G.

    1984-01-01

    The increasing application of nuclear techniques in the earth sciences, and especially the use of particle tracking codes, has focussed attention on the need for more accurate nuclear data and for data which particularly refer to elements of interest in the analysis of rocks and ores. The present paper gives a brief summary of the current and potential requirement for nuclear data in nuclear geophysics and an indication of several important areas where better data would be valuable. (author)

  8. Nuclear science symposium, 26th and symposium on nuclear power systems, 11th, 1979

    International Nuclear Information System (INIS)

    Kerns, C.R.

    1980-01-01

    Proceedings include 163 of the papers presented at the combined meetings, as well as two papers delivered at the plenary session on plant control beyond the 1980's and ionizing radiation dose hazards. One-hundred-and-sixty-two papers are indexed separately. Nuclear Science symposium included calorimeters and specific ionization (17 papers); PWC and Drift Chambers (7 papers); photo/optical detectors (10 papers); semiconductor detectors (11 papers); nuclear circuits and systems (11 papers); space instrumentation (9 papers); medical instrumentation (30 papers); data preprocessing (6 papers); data acquisition (11 papers); environmental instrumentation (15 papers); reactor instrumentation (16 papers). Fifteen Nuclear Systems Symposium papers covered: safety, RFI effects, detectors, monitoring systems, reactor protection, multiplexing of circuits, standard application, emergency planning and preparedness and operator/instrumentation interactions

  9. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    International Nuclear Information System (INIS)

    Casey, Leslie A.

    2014-01-01

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of 'game-changer' advances in science and technology.

  10. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  11. Dictionary of nuclear sciences and techniques; Dictionnaire des sciences et techniques nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bigot, B.; Santarini, G. [CEA Saclay (HC), 91 - Gif-sur-Yvette (France)

    2008-07-01

    This reference book has been totally reworked in its fourth edition, in order to answer the needs of the numerous sectors of activity concerned by nuclear sciences and technologies: radiation protection, cancerology, neurology and pharmacology in the medical sector, power generation and more generally energy production, micro-electronics, quality control and on-line analysis in many industrial sectors, patrimony preservation, food safety, environmental and paleo-climate studies in relation with climate prospective, etc. This complete overview of the nuclear world integrates the regulatory aspects, necessary to shade light on it, and many other technological innovations. Elaborated with harmonization, clarification and exhaustiveness concerns, this dictionary is the result of a large consensus among the French-speaking nuclear community. It includes some 4800 entries with more than 250 color illustrations and an English-French glossary. Its aim is to offer to everyone a precise vocabulary, fully shared by everybody and necessary for exchanges and debates clarity. (J.S.)

  12. Base isolation for nuclear power and nuclear material facilities

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Kircher, C.A.; Vaidya, N.; Constantinou, M.; Kelly, J.M.; Seidensticker, R.; Tajirian, F.F.; Ovadia, D.

    1989-01-01

    This report serves to document the status of the practice for the use of base isolation systems in the design and construction of nuclear power and nuclear material facilities. The report first describes past and current (1989) applications of base isolation in nuclear facilities. The report then provides a brief discussion of non-nuclear applications. Finally, the report summarizes the status of known base-isolation codes and standards

  13. Disciplinary analysis of nuclear engineering education for 21st century style science and technology

    International Nuclear Information System (INIS)

    Woo, Taeho

    2012-01-01

    The nuclear engineering education (NEE) is analyzed by the aspect of the advanced science and technology which is characterized by interdisciplinary R and D. The creative innovation is a goal of the education. This work is performed by the conceptual analysis and numerical analysis. Creativity and its innovation are represented as a critical role in the science and technology. So, the education should follow the characteristics of the creativity and its innovation philosophy. Using system dynamics (SD) method, the quantification of the education effect is performed. In addition, the dynamical simulation shows the expected situations of the education usefulness. The final result shows the highest value is 19.11 of Nuclear Industry Innovation. The value increases gradually. So, the education is well developed, as time goes on in this study. In this paper, the education of the nuclear science and technology is modelled for the interdisciplinary promotions in the nuclear industry. The conventional technology has focused on the unit subject and its related technologies. By the way, creativity and its innovation are shown as a critical role in the science and technology. Hence, the education should follow the characteristics of the creativity and its innovation philosophy. Following the characteristics of the 21 st style science and technology, it is necessary to construct the education program of the information technology (IT), nanotechnology (NT), and biotechnology (BT). (orig.)

  14. Applications of the gas chromatography in the nuclear science and technology

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.

    1972-01-01

    This paper is a review on the applications of the gas chromatography in the nuclear science and technology published up to December 1971. Its contents has been classified under the following heads; I) Radiogaschromatography, II) Isotope separation, III) Preparation of labelled molecules, IV) Nuclear fuel cycle, V) Nuclear reactor technology, VI) Irradiation chemistry, VIl) Separation of me tal compounds in gas phase, VIII) Applications of the gas chromatography carried out at the Junta de Energia Nuclear, Spain. Arapter VIII only includes the investigations carried out from January 1969 to December 1971. Previous investigations in this field has been published elsewhere. (Author)

  15. Data bank for nuclear science and technology

    International Nuclear Information System (INIS)

    Hajicek, J.

    1978-01-01

    The current state of the project for building a Data Bank for Nuclear Science and Technology is described. The tasks of the bank will be to provide data for nuclear sciences and technology in Czechoslovakia. The data bank is being projected as an open system consisting of a number of subject sections and it is expected to be formed in cooperation with the other CMEA countries. Current work is focused on securing the system in a comprehensive manner, on the necessary hardware and software, on organization and personnel. An experimental data sample from 22 selected PWR type power plants has been forwarded for processing to the Zentralinstitut fuer Isotopen- und Strahlenforschung in Leipzig using the EC 104O computer and the SOPS AIDOS program. The analysis of primary sources of the processed data showed that the data are, in fact, concentrated in a small number of specialist journals. It appears that the most favourable hardware and software solution of the project will be the use of the SIEMENS 7755 computer at the Central Institute for Scientific and Technical Information in Prague, using the SESAM and GOLEM retrieval systems. The data bank project is to be implemented after the year 1980. (Ha)

  16. Information on research in progress in Japan publication of 'Nuclear Science Information of Japan-Oral Presentation'

    International Nuclear Information System (INIS)

    Itabashi, Keizo; Nakajima, Hidemitsu; Yokoo, Hiroshi

    1988-01-01

    The new journal, 'Nuclear Science Information of Japan-Oral Presentation', which was entirely revised from the previous abstract journal called 'Nuclear Science Information of Japan' was introduced. This is to be published quaterly in principle and compiled information by oral presentation presented at main conferences, symposia and other kind of formal meetings in the field of nuclear science and technology in Japan. Not all of the oral presentation is always contributed later to a proceeding or a journal as a full paper in Japan. In some cases, the pre-conference paper might be a only publication of the oral presentation. In this meaning, this journal could be used as a search tool for the subjects and the projects of nuclear research and development in progress. (author)

  17. Studies and applications of nuclear tracks in solids in basic science and technology in Pakistan

    International Nuclear Information System (INIS)

    Khan, H.A.; Qureshi, I.E.; Khan, E.U.

    2008-01-01

    The solid state nuclear track detection (SSNTD) technique is now a well-established tool for the detection of charged particles with stopping power greater than a certain threshold value. Being a passive detection system, it existed in the form of primordial crystals and hence qualified to be regarded as the 'oldest' member of the nuclear detection systems. Since the advent of its laboratory use in 1958, the technique was adopted by different laboratories at different times all over the world. Pakistan is one of the countries that established an SSNTD-laboratory in the earliest developmental stage of the technique. Consequently, significant contributions were made by a small but energetic group of scientists toward the methodology of the technique as well as its applications in diverse areas such as nuclear physics, cosmology, material science, geology, geophysics, bio-medical physics and environmental science. In this article we will attempt to present a brief summary of the important advances made in the development of this technique and its innovative applications by Pakistani researchers in various fields of science and technology. As elsewhere in the world, the technique is not ubiquitous in all nuclear research laboratories in Pakistan because of the well-known limitations of the detection system. However, the number of workers involved in research studies has been growing over the years. These included both the fresh researchers as well as those who shifted from other research interests. This has resulted in a healthy reinforcement of the manpower engaged in SSNTD-based research work. After a selective presentation of the on-going investigations based on the use of SSNTDs in Pakistan, some comments are made for the possible future directions of progress. To put the Pakistani experience in international perspective, it is emphasized that the unique features of SSNTDs are facing serious challenges from rapid advances in high precision electronic detectors. The

  18. A research plan based on high intensity proton accelerator Neutron Science Research Center

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1997-01-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  19. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  20. Annual review of nuclear and particle science. Vol. 52

    International Nuclear Information System (INIS)

    Quigg, C.

    2002-01-01

    The 2002 volume of the ''Annual Review of Nuclear and Particle Science'' ranges from the applied to the speculative, from the accomplished to the inchoate, bearing witness to the vitality and diversity of subatomic physics. Milla Baldo Ceolin's prefatory chapter , ''The Discreet Charm of the Nuclear Emulsion Era,'' takes us back to the rebirth of particle physics in Europe after World War II through international emulsion collaborations that revealed wonders unimagined. Gaisser and Honda detail progress toward understanding the flux of atmospheric neutrinos, which is crucial for interpreting evidence for neutrino oscillations and searching for extraterrestrial neutrino sources. Elliott and Vogel's status report on double beta decay explores the sensitivity frontier and the prospects for testing the notion that the neutrino is its own antiparticle. Kado and Tully take stock of searches for electroweak theory's Higgs boson at CERN's Large Electron-Positron collider. Lee and Redwine draw lessons from three decades' exploration of pion-nucleus interactions at meson factories. Bedaque and van Kolck review recent progress in effective field theories that permit systematic treatment of few-nucleon systems. El-Khadra and Luke describe the ways in which Quantum Chromodynamics makes possible a precise determination of the b-quark mass. Harrison, Peggs, and Roser report on Brookhaven National Laboratory's Relativistic Heavy-Ion Collider, which explores new realms of collisions among heavy nuclei. Gomez-Cadenas and Harris introduce the scientific motivations and technical challenges of neutrino factories based on muon storage rings. The study of biological function through positron-emission tomography is a burgeoning application of antimatter. PET's history, practice, and promise are presented by Phelps. Michael Faraday's words, ''Nothing is too wonderful to be true,'' and ''Experiment is the best test,'' are especially apt for the delicious possibility that spacetime extends

  1. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.10--Nuclear Information sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 28 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about Nuclear Information sub-volume

  2. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.8--nuclear agriculture sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 10 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about nuclear agriculture sub-volume

  3. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.10--nuclear Information sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about nuclear Information and computer applications

  4. News from the Library: Nucleonica - web-driven nuclear science

    CERN Multimedia

    CERN Library

    2012-01-01

    Most of us are familiar with the Karlsruhe Nuclide Chart. It spreads from wall to wall and tells you all about decay chains of all known nuclides and isotopes.   The good news is that this resource is freely available here, the homepage of a suite of resources for nuclear science: a mass activity calculator, a decay engine, dosimetry and shielding calculations, range and stopping power calculations, gamma spectrum generator and analyzer, a virtual cloud chamber and a packaging calculator to name a few. All these programmes have been tested and approved by leading world experts. You can register to access these programmes here. A basic license is free, so anybody who is serious about Nuclear Science should register as soon as possible! A Premium account gives even more options in the calculations and utilities. If you think a premium account to Nucleonica would be useful for your work and for CERN in general, please contact CERN Library. Access the resource here. Literature in Focus: ...

  5. Public information and acceptance of nuclear engineering studies at the faculty of nuclear sciences and physical engineering of CTU Prague

    Energy Technology Data Exchange (ETDEWEB)

    Musilek, Ladislav; Matejka, Karel [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 115 19 Prague 1 (Czech Republic)

    1993-07-01

    The Faculty of Nuclear Sciences and Physical Engineering was founded in 1955, when the nuclear program in Czechoslovakia has been launched. In approximately the same time also some nuclear research institutes were founded, as, e.g., the Institute of Nuclear Research and the Research Institute of Nuclear Instruments, etc., extensive plans of development of nuclear power production were drafted, and everybody was very enthusiastic for this new branch of science and technology. The present status of nuclear technology and the new trends in applied hard sciences have resulted in widening the profile of the Faculty, because the staff has intended to preserve it as a modern and advanced part of the University. It means that now nuclear sciences represent about one third of the programme and the structure of its responsibilities. What is the public acceptance of the Faculty nowadays? Two unfavourable trends act against the interest to enrol at the Faculty. The first one is general - a decreasing interest of the young in engineering, given probably by both higher work-load in comparison with, e.g., social sciences, and a not very high social status of engineering graduates in the former socialist society. The second trend is given by a strong antinuclear opposition and campaigns in the past few years, relatively latent between the Chernobyl accident and 1989, because the former regime had not allow any discussions about this subject, and clearly apparent after the 1989 November revolution. These antinuclear tendencies were also fuelled by the effective Greenpeace campaign in 1990, imported mostly from Austria, and, unfortunately, unfounded from the scientific point of view. How can the Faculty resist this ebb of interest? First of all this can be achieved by suitable modification of curricula towards 'computerisation' and {sup e}cologisation{sup .} Among other activities priority is given to cooperation with mass media as the press, TV etc. Direct contacts with high and

  6. Public information and acceptance of nuclear engineering studies at the faculty of nuclear sciences and physical engineering of CTU Prague

    International Nuclear Information System (INIS)

    Musilek, Ladislav; Matejka, Karel

    1993-01-01

    The Faculty of Nuclear Sciences and Physical Engineering was founded in 1955, when the nuclear program in Czechoslovakia has been launched. In approximately the same time also some nuclear research institutes were founded, as, e.g., the Institute of Nuclear Research and the Research Institute of Nuclear Instruments, etc., extensive plans of development of nuclear power production were drafted, and everybody was very enthusiastic for this new branch of science and technology. The present status of nuclear technology and the new trends in applied hard sciences have resulted in widening the profile of the Faculty, because the staff has intended to preserve it as a modern and advanced part of the University. It means that now nuclear sciences represent about one third of the programme and the structure of its responsibilities. What is the public acceptance of the Faculty nowadays? Two unfavourable trends act against the interest to enrol at the Faculty. The first one is general - a decreasing interest of the young in engineering, given probably by both higher work-load in comparison with, e.g., social sciences, and a not very high social status of engineering graduates in the former socialist society. The second trend is given by a strong antinuclear opposition and campaigns in the past few years, relatively latent between the Chernobyl accident and 1989, because the former regime had not allow any discussions about this subject, and clearly apparent after the 1989 November revolution. These antinuclear tendencies were also fuelled by the effective Greenpeace campaign in 1990, imported mostly from Austria, and, unfortunately, unfounded from the scientific point of view. How can the Faculty resist this ebb of interest? First of all this can be achieved by suitable modification of curricula towards 'computerisation' and e cologisation . Among other activities priority is given to cooperation with mass media as the press, TV etc. Direct contacts with high and grammar

  7. Institute of Energy and Climate Research IEK-6. Nuclear Waste Management report 2011/2012. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2013-01-01

    The nuclear waste management section of the Institute of Energy and Climate Research IEK-6 in Juelich is focused on research on radiochemistry aspects/materials science relevant for the long-term safety of nuclear waste storage and disposal. Studies on innovative waste management strategies include partitioning o actinides and the development of ceramic waste forms. Structural research is covering solid state chemistry, crystallography and computational science to model actinide containing compounds. With respect to waste management concepts nondestructive essay techniques, waste treatment procedures and product quality control strategies were developed.

  8. Nuclear science and technology at epoch of scientific and technical revolution

    International Nuclear Information System (INIS)

    Petros'yants, A.M.

    1979-01-01

    It is pointed out at the great revolutionizing influence of practical application of the nuclear energy with development of scientific and technical progress. Nowadays atomic energy being directed on the peaceful application of it is acquiring in the life of society significance which is difficult to overestimate. Completely new branch of industry has been created which is as to technology, culture of production and precision is concerned, exceeding all which had been created by mankind. Now it is difficult to manage without atomic energy in every branch of industry, in agriculture, medicine and scientific researches. History and modern state are stated of the development of main directions of nuclear science and technology, in particular: in the field of charged particles physics; nuclear physics; production of transuranium elements. Particular place is occupied by the works on creation of new energy sources, in particular, using controlled thermonuclear reactions and energy of fission. One of the forms of utilization of plasma processes is creation of MHD - generators. Structure has been shown of development of nuclear energetics in the CMEA member-states. Main types of power reactors have been listed and their characteristics have been given. Perspectives of nuclear ships building is given, as well as perspectives of applications of radioisotopes and radiations in different fields of science and technology, in particular, in different branches of industry and in nuclear medicine. The role of CMEA is stated in organizing and co-ordination of efforts of the countries of socialism in the field of development of peaceful applications of nuclear energy [ru

  9. Nuclear Science Division annual report, July 1, 1981-September 30, 1982

    International Nuclear Information System (INIS)

    Mahoney, J.

    1983-06-01

    This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the β-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; β-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC

  10. Nuclear Science Division annual report, July 1, 1981-September 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J. (ed.)

    1983-06-01

    This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the ..beta..-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; ..beta..-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC.

  11. Science or Fiction - Is there a Future for Nuclear

    International Nuclear Information System (INIS)

    Wenisch, A.; Kromp, R.; Reinberger, D.

    2007-01-01

    This booklet served as preparation for both participants and speakers at the conference »Science or Fiction – Is there a Future for Nuclear?«. This international conference on fusion energy and new nuclear reactor models was organized by Global 2000/Friends of the Earth Austria and took place 8 November 2007 in Vienna. This booklet contains our contribution to the ongoing discussion about future energy security and what paths we should take. We focus on the possible future scenarios for nuclear power. The nuclear industry is trying to secure its own future by reintroducing old concepts like nuclear fusion and updating old fission reactors in so-called Generation IV systems. While there is enough information available on both fission and fusion energy from project financiers, research institutions and the European Commission, who gave the lion share of energy research funds into fusion research, we attempt here to provide a broader perspective and examine how much is Fiction and what these concepts could mean in some future Reality, which is upon us to decide on Now. (author)

  12. Science or Fiction - Is there a Future for Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Wenisch, A.; Kromp, R.; Reinberger, D.

    2007-07-01

    This booklet served as preparation for both participants and speakers at the conference »Science or Fiction – Is there a Future for Nuclear?«. This international conference on fusion energy and new nuclear reactor models was organized by Global 2000/Friends of the Earth Austria and took place 8 November 2007 in Vienna. This booklet contains our contribution to the ongoing discussion about future energy security and what paths we should take. We focus on the possible future scenarios for nuclear power. The nuclear industry is trying to secure its own future by reintroducing old concepts like nuclear fusion and updating old fission reactors in so-called Generation IV systems. While there is enough information available on both fission and fusion energy from project financiers, research institutions and the European Commission, who gave the lion share of energy research funds into fusion research, we attempt here to provide a broader perspective and examine how much is Fiction and what these concepts could mean in some future Reality, which is upon us to decide on Now. (author)

  13. Glenn T. Seaborg and heavy ion nuclear science

    International Nuclear Information System (INIS)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed

  14. Project-Based Science

    Science.gov (United States)

    Krajcik, Joe

    2015-01-01

    Project-based science is an exciting way to teach science that aligns with the "Next Generation Science Standards" ("NGSS"). By focusing on core ideas along with practices and crosscutting concepts, classrooms become learning environments where teachers and students engage in science by designing and carrying out…

  15. Policies of industrial market and science and technology: the case of Brazilian nuclear program

    International Nuclear Information System (INIS)

    Oliveira, R.G. de.

    1981-01-01

    The relationship between policies and the definition of a national program of nuclear energy, is considered. The case under study is the Brazilian one. It is shown that an overall evaluation of market, industry and science and technology is mandatory for the definition of a nuclear energy program, and serious fault and hesitation, leading to contradiction and failure, have their roots in a basic lack of definition in policies. The evolution of the Brazilian Nuclear Energy Program will probably remain at a mediocre level until a definition at the level of policy-making in marketing, industry and science and technology is firmly pursued and maintained. (Author) [pt

  16. Nuclear science in the 20th century. Radiation chemistry and radiation processing

    International Nuclear Information System (INIS)

    Fu Tao; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear science and technology to chemistry has led to two important subjects, radiation chemistry and radiation processing, which are playing important roles in many aspects of science and society. We review the development and major applications of radiation chemistry and radiation processing, including the basic physical and chemical mechanisms involved

  17. Moroccan experience in nuclear sciences and technology: Present status

    International Nuclear Information System (INIS)

    El Mediouri, K.

    2001-01-01

    The applications of nuclear technology started in Morocco in the early sixties and were developed particularly in the sectors of Agriculture, Education and Medicine. In the early seventies, these applications were extended to other important sectors such as Industry using gauges and NDT techniques, Mines and Hydrology. But a lack of sufficient and adequate infrastructure has limited the development of these applications. Further more, as Morocco relies totally on foreign imports to meet its energy needs, the option of nuclear power generation started to be considered seriously. This was the initiator of a real national reflection on an integrated program for all peaceful applications of nuclear energy which led to the progressive constitution of an institutional and regulatory frame. In this context, the National Center for Nuclear energy, Sciences and Techniques (CNESTEN), which is a public institution, was created in 1986. Its current programme and future are described in the paper. (author)

  18. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    International Nuclear Information System (INIS)

    Khaleel, Mohammad A.

    2009-01-01

    This report is an account of the deliberations and conclusions of the workshop on 'Forefront Questions in Nuclear Science and the Role of High Performance Computing' held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to (1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; (2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; (3) provide nuclear physicists the opportunity to influence the development of high performance computing; and (4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  19. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  20. Disciplinary analysis of nuclear engineering education for 21{sup st} century style science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Taeho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering; Yoon, Jaehwan [2G-PEM Engineers, Inc., Seoul (Korea, Republic of)

    2012-03-15

    The nuclear engineering education (NEE) is analyzed by the aspect of the advanced science and technology which is characterized by interdisciplinary R and D. The creative innovation is a goal of the education. This work is performed by the conceptual analysis and numerical analysis. Creativity and its innovation are represented as a critical role in the science and technology. So, the education should follow the characteristics of the creativity and its innovation philosophy. Using system dynamics (SD) method, the quantification of the education effect is performed. In addition, the dynamical simulation shows the expected situations of the education usefulness. The final result shows the highest value is 19.11 of Nuclear Industry Innovation. The value increases gradually. So, the education is well developed, as time goes on in this study. In this paper, the education of the nuclear science and technology is modelled for the interdisciplinary promotions in the nuclear industry. The conventional technology has focused on the unit subject and its related technologies. By the way, creativity and its innovation are shown as a critical role in the science and technology. Hence, the education should follow the characteristics of the creativity and its innovation philosophy. Following the characteristics of the 21{sup st} style science and technology, it is necessary to construct the education program of the information technology (IT), nanotechnology (NT), and biotechnology (BT). (orig.)

  1. Multi-disciplinary facilities at the centre for nuclear sciences, U.W.I

    International Nuclear Information System (INIS)

    Lalor, G.C.; Robotham, H.

    1994-01-01

    The Centre for Nuclear Sciences was established in 1984 with the mandate to introduce Caribbean scientists to the application of nuclear technology in multi-disciplinary studies, and to carry out research in areas of national and regional importance. It describes the present facilities and the major programmes being carried out at the Centre. (author) 9 refs

  2. 10. National Nuclear Science and Technologies Congress Proceedings Full Texts Volume 1

    International Nuclear Information System (INIS)

    2009-01-01

    X. National Nuclear Science and Technologies Congress was held on 6-9 October 2009 in Mugla, Turkey in the course of collaborative organization undertaken by Turkish Atomic Energy Authority, Mugla University and Sitki Kocman Foundation. This first volume of Proceedings Book contains 75 submitted presentations and 36 of them are full texts on applications of nuclear techniques.

  3. Overview of nuclear data activities at the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Michel-Sendis, F.; Dupont, E.; Gulliford, J.; Nordborg, G.

    2011-01-01

    The Nuclear Energy Agency (NEA) is a specialised agency within the Organisation for Economic Co-operation and Development (OECD). The mission of the NEA is to assist its member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for the safe, environmentally friendly and economical use of nuclear energy for peaceful purposes. All activities relevant to nuclear data measurements, evaluations and applications are managed by the NEA Nuclear Science Committee through the Nuclear Science section and the Data Bank, which work closely together. This paper gives an overview of current and planned nuclear data activities at the Nuclear Energy Agency through the program of work of the Data Bank in general and of the NEA Working Party on international nuclear data Evaluation Co-operation (WPEC) in particular. (authors)

  4. Centro Regional de Ciencias Nucleares (a Brazilian regional center for nuclear sciences) - activities report - 1999

    International Nuclear Information System (INIS)

    1999-12-01

    The annual activities report of 1999 of nuclear sciences regional center - Brazilian organization - introduces the next main topics: institutional relations; sectorial actions - logistic support and training, laboratory of radiation protection and dosimetry, laboratory of metrology, laboratory of chemical characterization; technical and scientific events; and financial resources and perspectives for 2000

  5. Electronics in nuclear science and technology

    International Nuclear Information System (INIS)

    Dastidar, P.R.

    1979-01-01

    Electronics plays a vital role in the field of nuclear research and industry. Nuclear instrumentation and control systems rely heavily on electronics for reliable plant operation and to ensure personnel safety from harmful radiations. Rapid developments in electronics have resulted in the gradual phasing out of pneumatic instruments and replacement by solid-state electronic systems. On-line computers are now being used extensively for centralised monitoring and control of large nuclear plants. The paper covers the following main topics: (i) radiation detection and measurement, (ii) systems for nuclear research and design, (iii) nuclear reactor control and safety systems and (iv) modern trends in reactor control and nuclear instrumentation systems. The methods for radiation detection, ionization chambers, self-powdered detectors and semiconductor detectors are discussed in brief, followed by the description of the electronic systems commonly used in nuclear research, namely the pulse height, multichannel, correlation and fourier analysers. NIM and CAMAC, the electronic system standards used in nuclear laboratories/industries are also outlined. Electronic systems used for nuclear reactor control, safety, reactor core monitoring, failed fuel detection and process control instrumentation, have been described. The application of computers to reactor control, plant data processing, better man-machine interface and the use of multiple computer systems for achieving better reliability have also been discussed. Micro-computer based instrumentation systems, computers in reactor safety and advanced nuclear instrumentation techniques are briefly illustrated. (auth.)

  6. Nuclear agricultural sciences in China. Current status and suggestion on future development

    International Nuclear Information System (INIS)

    Wen Xianfang; Wang Xunqing

    2004-01-01

    This paper reviewed the main achievements of nuclear agricultural sciences, analyzed its developmental gap and provided some thoughts on its future development in China. Since the research and application of nuclear agricultural sciences was initiated in 1956, it has penetrated into the main fields of agriculture and made outstanding achievements, in some fields, China keeps a leading place in the world. By the end of 2001, China obtained 625 mutant varieties and strains, accounting for 27.2% of the total number in the world. The total planting area of the mutant varieties amounted to about 9 million hectares, and brought about an annual increase of grains by 3-4 million tons, cotton by 1.5-1.8 million tons, oilseeds by 0.75 million tons, with total annual economic benefit of 3.3-4.0 billion RMB Yuan. Among the released mutant varieties, 18 were awarded the national innovation prize. China approved national hygiene standards for 6 classes of irradiated foods, and 17 national technological standards of irradiated foods. The annual amount of irradiated foods and agricultural commodities ranged from 80-100 thousand tons. In general, the application of nuclear agricultural sciences in mutation breeding, space breeding, agricultural isotope tracers, food irradiation, sterile insect technique and radiation hormesis, has made considerable advancement and gained tremendous economic, social as well as ecological benefits. As a result, the IAEA and its technical officials highly evaluated nuclear agriculture in China. In 1999, China was approved as the RCA lead country for thematic agriculture. In considering its future development, the focus should be placed on the applied basic research and the development of some key technologies, and endeavor to make some breakthroughs in the molecular mechanism of mutation breeding and space breeding, irradiation quarantine technology , isotope tracing in environmental protection, animal health and production. The general objective is

  7. Relevance of separation science and technology to nuclear fuel complex operations

    International Nuclear Information System (INIS)

    Rao, S.M.; Ojha, P.B.; Rajashri, M.; Mirji, K.V.; Kalidas, R.

    2004-01-01

    During the last three decades at Nuclear Fuel Complex (NFC), Hyderabad, the Science and Technology of separation to produce various reactor grade materials in tonnage quantity is being practiced in the fields of Zr/Hf, U and Nb/Ta. Apart from this, the separation science is also being used in the production of various high purity materials and in the analytical field. The separation science and technology that is used in the production and characterisation of reactor grade materials has many striking differences from that of the common metals. The relevance and significance of separation science in the field of nuclear materials arises mainly due to the harmful effects w.r.t corrosion property and absorption of neutron caused by the presence of impurities, that are to be brought down to ppm or sub ppm level. In many cases low separation factors, that too from a multi component system call for effective process control at every stage of the bulk production so as to get quality product consistently. This article brings out the importance of separation science and technology and various process standardisations/developments that have been carried out at NFC, starting from laboratory scale to pilot scale and up to industrial scale production in the case of (i) Uranium refining (ii) Zr-Hf separation (iii) Ta-Nb separation and (iv) High purity materials production. (author)

  8. Excerpts from the discussion [Scientific afternoon: Nuclear science and technology in food and agriculture

    International Nuclear Information System (INIS)

    1976-01-01

    This article presents excerpts from the discussion on nuclear science and technology in food and agriculture. The discussions covered all aspects of nuclear applications in food and agriculture, namely, food preservation cultivation, animal husbandry and pest control

  9. Overview of research in physics and health sciences at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Milton, J.C.D.

    1988-01-01

    Toxicology research was a logical extension of existing program at Chalk River. Research in radiotoxicology has been going on there since the early forties. An overview of the existing physics and health sciences research programs operating at the Research Company of Atomic Energy of Canada Limited was presented. Programs in nuclear physics, heavy ion nuclear physics, astrophysical neutrino physics, condensed matter physics, fusion, biology, dosimetry, and environmental sciences were briefly described. In addition, a description of the research company organization was provided

  10. An overview of the status of nuclear science education in pre-college programs

    International Nuclear Information System (INIS)

    Ling, A.C.; Atwood, C.H.

    1993-01-01

    This communication will provide an overview of the papers given in the Symposium entitled 'Pre-College Education in Nuclear Science' held under the auspices of the Division of Nuclear Chemistry and Technology of the American Chemical Society, and given at the 204th National Meeting of the American Chemical Society in Washington, D.C., on August 24-28, 1992. The Symposium consisted of 45 invited papers, and covered topics in nuclear science education at the high school, middle school, and elementary school levels. The Symposium also presented an overview of the involvement of university and federal laboratories in providing teaching and research opportunities for pre-college faculty and students, curriculum enhancement by special interest groups such as power and utility companies, as well as funding opportunities from private and federal agencies. (author)

  11. The use of social science knowledge in implementing the Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    Bradbury, J.A.

    1989-01-01

    This study investigates the use of social science knowledge by the Office of Civilian Radioactive Waste Management (OCRWM), a division of the U.S. Department of Energy (DOE), in implementing the Nuclear Waste Policy Act of 1982. The use of social science is examined both generally and in relation to a body of knowledge most relevant to the program, the social science risk literature. The study is restricted to the use by headquarters staff in relation to the largest repository and Monitored Retrievable Storage (MRS) projects. The literature on knowledge utilization and the Sabatier framework on knowledge use and policy learning provide the theoretical framework for the study. The research adopts a multistrategy approach, collecting data from two sources: (1) program documents, policy guidance, and meeting records; and (2) interviews with OCRWM officials. The constructs knowledge and use are conceptualized in different ways, each of which forms the basis for a different analytic approach. The research findings showed a very limited use of social science, more especially by the first repository program. Two reasons are advanced. First, the agency has viewed social science knowledge through technical lens and has applied an approach suited to technical problems to its structuring of waste management policy problems. Second, the degree of societal conflict over nuclear power and nuclear waste has prevented a constructive dialogue among the parties and thus reduced the possibility of policy learning

  12. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.2--nuclear power sub-volume (Pt.1)

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the second one, the content is about nuclear power (Pt.1)

  13. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    International Nuclear Information System (INIS)

    Schoenberg, Kurt F.

    2010-01-01

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  14. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  15. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Renae [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and University of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.

  16. Change of nuclear administrative system and long-term program for nuclear energy in Japan

    International Nuclear Information System (INIS)

    Yun, S. W.; Yang, M. H.; Jeong, H. S.

    2001-01-01

    Japanese new governmental adminstrative system was restructured and became in operation from January 1, 2001 including newly establishment of the Ministry of Cabinet. Accordingly, Japanese nuclear administrative system were also changed significantly, in order to reflect the changing policy environment and response to them more efficiently in the use and development of nuclear energy. Atomic Energy Commission, Nuclear Safety Commission administrated by Science and Technology Agency in the past, were moved to the Ministry of Cabinet, and Integrated Science and Technology Council was also newly established under the Ministry of Cabinet. And Ministry of Economy, Trade and Industry(METI) is in charge of nuclear energy policy and the Ministry of Education, Culture, Sports, Science and Technology(MEXT) is in charge of nuclear academic science consequently. At the same time, the revision work of 'Long-term Program for Research, Development and Utilization of Nuclear of Japan' established in 1994, has been carried out from 1999 in order to set up the long term based national nuclear policy towards the 21st century, and finally the results were open to the public in November 2000. Major changes of nuclear policy of Japan the will be good references in the establishing future national nuclear policy for the use and development of nuclear energy

  17. Textual and shape-based feature extraction and neuro-fuzzy classifier for nuclear track recognition

    Science.gov (United States)

    Khayat, Omid; Afarideh, Hossein

    2013-04-01

    Track counting algorithms as one of the fundamental principles of nuclear science have been emphasized in the recent years. Accurate measurement of nuclear tracks on solid-state nuclear track detectors is the aim of track counting systems. Commonly track counting systems comprise a hardware system for the task of imaging and software for analysing the track images. In this paper, a track recognition algorithm based on 12 defined textual and shape-based features and a neuro-fuzzy classifier is proposed. Features are defined so as to discern the tracks from the background and small objects. Then, according to the defined features, tracks are detected using a trained neuro-fuzzy system. Features and the classifier are finally validated via 100 Alpha track images and 40 training samples. It is shown that principle textual and shape-based features concomitantly yield a high rate of track detection compared with the single-feature based methods.

  18. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.3--nuclear power sub-volume (Pt.2)

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 86 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the third one, the content is about nuclear power sub-volume (Pt.2)

  19. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.2--nuclear power sub-volume (Pt.1)

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the second one, the content is about uranium mining, uranium metallurgy and nuclear power.

  20. Networking of institutions in India to promote research and education in nuclear science and engineering

    International Nuclear Information System (INIS)

    Puri, R.R.

    2007-01-01

    Full text: The Programme of Nuclear Energy and its Applications (NEA) is knowledge intensive requiring engineers and scientists having special education and training for its implementation. The paucity of manpower in managing this programme is partly due to limitations of the university system in catering to the needs of the nuclear industry. Those limitations arise due to several reasons, like, regulatory requirements which make it difficult to set up nuclear facilities in university environment, capital intensive nature of nuclear set-ups, paucity of teaching staff having hands-on experience and limited employment opportunities making nuclear option unattractive for talented youngsters. The Department of Atomic Energy of India (DAE) established in 1954 for shaping and managing the Indian NEA programme realized those limitations and opted for an in-house education and training programme leading to assured employment for young Engineering Graduates and Science Post Graduates. Called the Bhabha Atomic Research Centre (BARC) Training School Programme, it is in place since 1957. The Indian NEA programme is thus fortunate to be supported by a visionary human resource development (HRD) programme in nuclear science and technology practically right since its inception. The success of HRD programme of DAE lies in its broader outlook based on the premise that technology development and basic research go hand-in-hand. This outlook is reflected also in the way DAE has been managing the implementation of its programme in that on one hand it has set up centres for technological Research and Development and, on the other, it is providing Grant-in-Aid to several Institutes for carrying basic research. Moreover, DAE has not lost sight of the fact that success of its initiatives lies as much in the vibrant university system as in its own training and educational efforts. It has, therefore, created avenues for extra-mural funding for supporting research activities in universities in

  1. Nuclear science and technology: applications for the welfare of mankind

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2000-01-01

    A short review of used nuclear techniques in the practice is given. Nuclear techniques play an important role in environmental protection by providing assistance in promoting alternate sources of energy, reducing air pollution, managing fresh water resources, controlling water pollution and guarding the oceans and seas. They are also used to analyze minerals, soils, gases, water and other substances used in industry, and the results often influence economic, ecological, medical and legal decisions. The International Atomic Energy Agency works to foster the role of nuclear science and technology in support of sustainable human development. This involves both advancing knowledge and exploiting this knowledge to tackle pressing world-wide challenges - hunger, disease, natural resources management, environmental pollution and industrial quality control. (authors)

  2. Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.

    Science.gov (United States)

    French, Dan; Phillips, Connie

    One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate…

  3. Co-Chairs’ Summary of Technical Session 3B. Nuclear Forensic Science: Synergies with Other Disciplines I

    International Nuclear Information System (INIS)

    Nizamska, M.; Roger, I.

    2015-01-01

    Scientific disciplines, including radiochemistry, provide a technical foundation for the science of nuclear forensics. In addition, analytical chemistry, pathology and nuclear material measurements all contribute to the technical spectrum encompassing a nuclear forensic capability. Subject matter experts versed in the former production of nuclear material may contribute to improved understanding of process streams of interest to a nuclear forensic examination

  4. United Kingdom Nuclear Science Forum Progress Report. Data Studies during 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P. (ed.) [National Physical Laboratory, Acoustics and Ionising Radiation Division, Middlesex (United Kingdom)

    2010-02-15

    The United Kingdom Nuclear Science Forum (UKNSF) meets twice a year to discuss issues relating to the measurement and evaluation of nuclear data. Topics cover a wide range of applications in the UK nuclear industry. Links between members are maintained throughout the year, mainly through e-mail and the UKNSF website (www.uknsf.ofg.uk). Work of primary interest includes the measurement and evaluation of decay data (e.g. half-lives and gamma ray emission probabilities), fission yields, and neutron cross sections for fission and fusion. All known studies within the UK are summarised in this report. Specific applications and international links of relevance are also described. (author)

  5. United Kingdom Nuclear Science Forum Progress Report. Data Studies during 2008

    International Nuclear Information System (INIS)

    Hawkes, N.P.

    2010-02-01

    The United Kingdom Nuclear Science Forum (UKNSF) meets twice a year to discuss issues relating to the measurement and evaluation of nuclear data. Topics cover a wide range of applications in the UK nuclear industry. Links between members are maintained throughout the year, mainly through e-mail and the UKNSF website (www.uknsf.ofg.uk). Work of primary interest includes the measurement and evaluation of decay data (e.g. half-lives and gamma ray emission probabilities), fission yields, and neutron cross sections for fission and fusion. All known studies within the UK are summarised in this report. Specific applications and international links of relevance are also described. (author)

  6. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.5

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fifth one, the content is about radiation protection and nuclear chemical industry.

  7. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.7--nuclear fusion and plasma physics sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 22 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear fusion and plasma physics sub-volume

  8. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.9--nuclear technology applied in industry sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 35 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the ninth one, the content is about nuclear technology applied in industry sub-volume

  9. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.4--Nuclear chemistry and radiation chemistry sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 24 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fourth one, the content is about Nuclear chemistry and radiation chemistry sub-volume

  10. Index covering conferences cited in Nuclear Science Abstracts and the DOE Energy Data Base: 1962 to 1983. Parts 1-4

    International Nuclear Information System (INIS)

    Vannoy, D.M.

    1984-11-01

    The purpose of this publication is to list energy-related conferences, meetings, symposia, and congresses within the programmatic interests of the Department of Energy. The publication includes conferences assigned a number in the CONF- report number series from 1962 through 1983. All conferences cited in Nuclear Science Abstracts and the Energy Data Base are listed. The Office of Scientific and Technical Information (OSTI), Technical Information Center developed a numbering system in 1962 that quickly narrows the search for a particular conference proceedings, or one of the papers presented, to the year and month to help the individual seeking the information. This publication contains two computer-produced indexes. The first is a KWIC (Key Word in Context) index of the conference location and title. The second index is arranged numerically by CONF- number and provides location, date, and title information for each conference

  11. RWE NUKEM's 'Living' Nuclear Compendium eNICE. An internet-based, multifunctional nuclear information platform

    International Nuclear Information System (INIS)

    Kwasny, R.; Max, A.

    2002-01-01

    Information has become a commodity particularly important to industry, science, and politics. Information becomes critical because of its rapid change. The basis and the catalyst of this change in information are the information technologies now available, and the Internet with its varied contents. This makes the Internet a new market place which, although it is open, can quickly turn into an information maze because of its sheer volume. Also the nuclear industry must find its way through this maze. eNICE was created in order to build a bridge between the flood of information in the Internet and the information really needed in a specific case. eNICE (e stands for electronic, and NICE stands for Nuclear Information Compendium Europe), a living Internet-based nuclear compendium in the English language, is a unique combination of a broad spectrum of information and data about the use of nuclear power in Europe. The information and data contained in eNICE are interconnected with the World Wide Web in such a way that structured searching for nuclear information is possible quickly and efficiently. This avoids the difficulties sometimes encountered in searches in the Internet as a consequence of the unstructured volume of information. A monthly update of eNICE ensures that the data available are up to date and reliable. eNICE also offers direct access to the library used by RWE NUKEM for internal purposes. (orig.) [de

  12. Risk communications in nuclear energy as science and technology. Arrangement and analysis of academic findings and practical cases

    International Nuclear Information System (INIS)

    Toyoda, Satoshi

    2006-01-01

    Problems in communication among the government, enterprise, experts and so on and the society and people, now confront us in several areas of science and technology. In order to be accepted by the society, each area of science and technology has experienced common processes such as beginnings, business, society introduction, problem renovation and maturity. Each area can be positioned based on the degree of maturity, which helps to find solutions of the problems. Arrangement and analysis of academic findings and practical cases on risk communications in nuclear energy are described. (T. Tanaka)

  13. Proceedings of the Seventh Conference of Nuclear Sciences and Applications. Vol.1,2,3

    International Nuclear Information System (INIS)

    Aly, H.F.

    2000-01-01

    The publication has been set up as a textbook for nuclear sciences and applications vol.1: (1) radiochemistry; (2) radiation chemistry; (3) isotope production; (4) waste management; vol.2: (1) nuclear and reactor; (2) physics; (3) plasma physics; (4) instrumentation and devices; (5) trace and ultra trace analysis; (6) environmental; vol.3: (1) radiation protection; (2) radiation health hazards; (3) nuclear safety; (4) biology; (5) agriculture

  14. Proceedings of the Seventh Conference of Nuclear Sciences and Applications. Vol.1,2,3

    Energy Technology Data Exchange (ETDEWEB)

    Aly, H F [ed.

    2000-07-01

    The publication has been set up as a textbook for nuclear sciences and applications vol.1: (1) radiochemistry; (2) radiation chemistry; (3) isotope production; (4) waste management; vol.2: (1) nuclear and reactor; (2) physics; (3) plasma physics; (4) instrumentation and devices; (5) trace and ultra trace analysis; (6) environmental; vol.3: (1) radiation protection; (2) radiation health hazards; (3) nuclear safety; (4) biology; (5) agriculture.

  15. On-going research projects at Ankara Nuclear research center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text:The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  16. On-going research projects at Ankara Nuclear Research Center in Agriculture and Animal Science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  17. Radiation environmental impact assessment of the radioisotope's application on nuclear medical science

    International Nuclear Information System (INIS)

    Liu Hongshi

    2004-01-01

    The radiation environmental impact assessment of the radioisotope's application on nuclear medical science is introduced, including the assessment criteria, the assessment methods and the environmental impact assessment of three wastes emission. (authors)

  18. Proceedings of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Science and Technology part I : Physics and Nuclear Reactor

    International Nuclear Information System (INIS)

    Kusminarto; Sri Juari Santoso; Agus Taftazani; Sudjatmoko; Darsono; Samin; Syarip; Prajitno; Muhadi Ayub Wasitho; Sukarsono; Tjipto Sujitno; Elisabeth Supriyatni

    2009-07-01

    The Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity held by Centre for Accelerator Technology and Material Process, National Nuclear Energy Agency, for monitoring the research activity which achieved in National Nuclear Energy Agency. The proceedings contains papers presented on scientific meeting about Physics and Nuclear Reactor. The proceedings is the first part of the three parts which published in series. There are 28 papers. (PPIN)

  19. Information on research in progress in Japan publication of 'Nuclear Science Information of Japan-Oral Presentation'

    Energy Technology Data Exchange (ETDEWEB)

    Itabashi, Keizo; Nakajima, Hidemitsu; Yokoo, Hiroshi

    1988-03-01

    The new journal, 'Nuclear Science Information of Japan-Oral Presentation', which was entirely revised from the previous abstract journal called 'Nuclear Science Information of Japan' was introduced. This is to be published quaterly in principle and compiled information by oral presentation presented at main conferences, symposia and other kind of formal meetings in the field of nuclear science and technology in Japan. Not all of the oral presentation is always contributed later to a proceeding or a journal as a full paper in Japan. In some cases, the pre-conference paper might be a only publication of the oral presentation. In this meaning, this journal could be used as a search tool for the subjects and the projects of nuclear research and development in progress.

  20. Applications of nuclear technique in environmental and medical science

    International Nuclear Information System (INIS)

    Shi Xianfeng; Shen Hao; Liu Bo; Sun Minde; Yao Huiying; Zhou Shijun; Mi Yong

    2001-01-01

    The serious environmental pollution problem and application of the nuclear technique in environmental and medical sciences were discussed. The analysed results of the elemental distribution of particles in automobile exhaust, the aerosol particle of different size and the effect of Rare Earth on cells were reported. The authors can obtain some information related to element concentration. It offers a convenient method in inspecting the environmental pollution

  1. Female Contributions in Nuclear Science: Experiences at the Brazilian Commission for Nuclear Energy (CNEN/LAPOC)

    International Nuclear Information System (INIS)

    Carrijo da Silva Dias, D.; Leandro Bonifácio, R.; Augusto da Silva Alfenas, R.

    2015-01-01

    Female professional contributions in nuclear science and technology are no longer a novelty. Names such as Marie Curie, Chen Shiung Wu and Rosalyn Yalow are evidence of the incessant, worldwide efforts of women to take part in fields largely reserved for men. Although society has witnessed high level female achievements as early as in the 1800s, female scientists and technicians still face a long journey ahead in empowering themselves into full and equal participation in these areas. Today, the Laboratory of Poços de Caldas of the Brazilian Commission for Nuclear Energy (CNEN/LAPOC) experiences a process of women empowerment at all levels of the institution. At the Technical Section, two of the seven research departments are headed by female researchers who play essential roles in the institution’s quest for excellence. Today, their work include coordination of a major environmental research project involving most researchers at LAPOC, successful participations on international intercomparisons of radiometric analysis and development of new methodologies in nuclear field applications. At the administrative level, female collaborators lead the Administration Section, improving several aspects of internal management, promoting further interaction at the workplace and strengthening cooperation among all departments. Regarding the capacitation level, the Commission has a long tradition of welcoming students and junior researchers through institutional programmes of training and collaboration in several projects. Today CNEN/LAPOC works with twenty scholarship grantees — half of which are women. Not only the Laboratory has reached equality in participation, but unarguably the female participants have demonstrated the most remarkable achievements among the group, attested by their continuous academic pursuit through Master’s and Doctoral degrees, full collaboration in scientific publishing and attendance in training programmes at international level. The purpose

  2. Radiation and life: Proceedings of the 8. Nuclear Science and Technology Conference (NST8)

    International Nuclear Information System (INIS)

    2001-06-01

    The 8th conference on nuclear science and technology was held on 21-22 June 2001 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestration tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  3. Radiation and life: Proceedings of the 8. Nuclear Science and Technology Conference (NST8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The 8th conference on nuclear science and technology was held on 21-22 June 2001 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestration tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed.

  4. The MacNuclide nuclear data environment

    International Nuclear Information System (INIS)

    Stone, C.A.

    1992-01-01

    Advance in technology have produced intriguing tools that can be applied to problems in nuclear science. Information management in nuclear science is an example of how technology is not quickly exploited. The U.S. Department of Energy supports an extensive program to evaluate published nuclear properties and store them in an electronic data base. Much of the evaluation effort has focused on producing the journal Nuclear Data Sheets and the publication Table of Isotopes. Although the electronic data base can itself be a valuable source of information, the software used to access is was designed using decades-old technologies. The authors of this paper have developed a novel data-base management system for nuclear properties. The application is known as MacNuclide. It is a nuclear data-base environment that uses the highly interactive and intuitive windowing environmentsof desk-top computers. The environment is designed around that image of the chart of nuclides. Questions are posed to the data base by placing constraints on properties and defining collections of nuclides to be used in data-base seraches. Results are displayed either as a simple list of nuclides that meet the imposed constraints or as a color chart of nuclides

  5. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.10--nuclear technology economy and management modernization sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about nuclear technology economy and management modernization

  6. Nuclear reactions video (knowledge base on low energy nuclear physics)

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Kozhin, A.

    1999-01-01

    The NRV (nuclear reactions video) is an open and permanently extended global system of management and graphical representation of nuclear data and video-graphic computer simulation of low energy nuclear dynamics. It consists of a complete and renewed nuclear database and well known theoretical models of low energy nuclear reactions altogether forming the 'low energy nuclear knowledge base'. The NRV solves two main problems: 1) fast and visualized obtaining and processing experimental data on nuclear structure and nuclear reactions; 2) possibility for any inexperienced user to analyze experimental data within reliable commonly used models of nuclear dynamics. The system is based on the realization of the following principal things: the net and code compatibility with the main existing nuclear databases; maximal simplicity in handling: extended menu, friendly graphical interface, hypertext description of the models, and so on; maximal visualization of input data, dynamics of studied processes and final results by means of real three-dimensional images, plots, tables and formulas and a three-dimensional animation. All the codes are composed as the real Windows applications and work under Windows 95/NT

  7. Kodi Husimi and 'science and society'

    International Nuclear Information System (INIS)

    Konuma, Michiji; Otsuka, Masuhiko

    2009-01-01

    Kodi Husimi contributed not only to research and education on physics, but also to various problems on 'Science and Society'. Especially he was involved in administration on science as a member and president of the Science Council of Japan for many years. Based upon his experience on research in nuclear physics using neutron source he opposed nuclear weapons, and pursued peace. The establishment of the three basic principles on nuclear research and development for civil uses in Japan owes to Husimi. He also made effort for international scientific collaboration, especially for support on science in developing countries. He popularized beauty and charm of science through many publications from his young age to his later years. He kept his curiosity through all his life. (author)

  8. NNS computing facility manual P-17 Neutron and Nuclear Science

    International Nuclear Information System (INIS)

    Hoeberling, M.; Nelson, R.O.

    1993-11-01

    This document describes basic policies and provides information and examples on using the computing resources provided by P-17, the Neutron and Nuclear Science (NNS) group. Information on user accounts, getting help, network access, electronic mail, disk drives, tape drives, printers, batch processing software, XSYS hints, PC networking hints, and Mac networking hints is given

  9. The research and implementation of nuclear science and technology literature processing system based on smart client technology

    International Nuclear Information System (INIS)

    Zhang Shufeng

    2010-01-01

    Nuclear literature processing, namely cataloging, subject indexing and abstracting, is one of the highly specialized work, the quality and speed of literature processing have an important impact on the building of information resources in nuclear field. Firstly, the system's overall functionality was determined through the analysis of system requirements and the difficulties we meet with were pointed out. Secondly, the function of collaborative collecting and processing of nuclear literature is realized using smart client technology, achieve the purpose of providing a network platform to the literature processing specialists located in different places, therefore the out source of nuclear literature collecting and processing can be done. The article comprises three aspects: needs analysis and overall functional design, smart client technical presentations, Net platform based on smart client technology, nuclear literature processing system implementation. (author)

  10. Proceedings of the third Eurasian conference on nuclear science and its application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    The third Eurasian conference on nuclear science and its application was held on 5-8 October, 2004 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of particle physics, relativistic nuclear physics and physics of atomic nuclei, radiochemistry, radioisotope production, technology of radioisotopes and compounds, activations analysis applications, radionuclides, radioimmunoassays, application of radioisotopes in industry, medicine, biology and agriculture. More than 330 talks were presented in the meeting. (k.m.)

  11. Proceedings of the third Eurasian conference on nuclear science and its application

    International Nuclear Information System (INIS)

    2004-10-01

    The third Eurasian conference on nuclear science and its application was held on 5-8 October, 2004 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of particle physics, relativistic nuclear physics and physics of atomic nuclei, radiochemistry, radioisotope production, technology of radioisotopes and compounds, activations analysis applications, radionuclides, radioimmunoassays, application of radioisotopes in industry, medicine, biology and agriculture. More than 330 talks were presented in the meeting. (k.m.)

  12. Abstracts of the third Eurasian conference on nuclear science and its application

    Energy Technology Data Exchange (ETDEWEB)

    Yuldashev, B; Salikhbaev, U; Ibragimova, E; Fazylov, M [eds.

    2004-10-01

    The third Eurasian conference on nuclear science and its application was held on 5-8 October, 2004 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of particle physics, relativistic nuclear physics and physics of atomic nuclei, radiochemistry, radioisotope production, technology of radioisotopes and compounds, activations analysis applications, radionuclides, radioimmunoassays, application of radioisotopes in industry, medicine, biology and agriculture. More than 330 talks were presented in the meeting. (k.m.)

  13. Report on applications of nuclear science in New Zealand 1979-80

    International Nuclear Information System (INIS)

    1980-09-01

    This report describes the more important applications of nuclear science at various centres in New Zealand with emphasis on those involving research or new developments. The work within Goverment departments, universities, hospitals and industry is summarised, and this is followed by the main reports. (DAGR)

  14. Report on applications of nuclear science in New Zealand, 1981-82

    International Nuclear Information System (INIS)

    1982-10-01

    This report describes the more important applications of nuclear science at various centres in New Zealand with emphasis on those involving research or new developments. The work within the Government departments, universities, hospitals and industry is summarized, and this is followed by the main reports

  15. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  16. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  17. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.

    2010-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. Physical bases of nuclear medicine

    International Nuclear Information System (INIS)

    Isabelle, D.B.; Ducassou, D.

    1975-01-01

    The physical bases of nuclear medicine are outlined in several chapters devoted successively to: atomic and nuclear structures; nuclear reactions; radioactiity laws; a study of different types of disintegration; the interactions of radiations with matter [fr

  20. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--pulse power technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  1. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.10--nuclear technology economy and management modernization sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 18 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about nuclear technology economy and management modernization sub-volume

  2. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  3. Human resource development progress to sustain nuclear science and technology applications in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Nyobe, J.B.

    2004-01-01

    Full text: Cameroon as a Member of the International Atomic Energy Agency (IAEA) has made full use of the Agency's Technical Co-operation Programme in his effort to promote peaceful applications of nuclear science and technology at national level. This paper presents the progress made in the development of reliable human resources. Results obtained have been achieved through national and regional technical co-operation projects. Over the past twenty years, the development of human resources in nuclear science and technology has focused on the training of national scientists and engineers in various fields such as crop and animal production, human and animal nutrition, human health applications, medical physics, non-destructive testing in industry, groundwater management, maintenance of medical and scientific equipment, radiation protection and radioactive waste management. Efforts made also involve the development of graduate teaching in nuclear sciences at the national universities. However, the lack of adequate training facilities remains a major concern. The development of new training/learning methods is being considered at national level through network linking of national training centres with existing international training institutions, and the use of Information Communication Technologies (ICT) which offer great flexibility with regard to the number of trainees and the actual needs. (author)

  4. Human resource development progress to sustain nuclear science and technology applications in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Nyobe, J.B.

    2004-01-01

    Cameroon as a Member of the International Atomic Energy Agency (IAEA) has made full use of the Agency's Technical Co-operation Programme in his effort to promote peaceful applications of nuclear science and technology at national level. This paper presents the progress made in the development of reliable human resources. Results obtained have been achieved through national and regional technical co-operation projects. Over the past twenty years, the development of human resources in nuclear science and technology has focussed on the training of national scientists and engineers in various fields such as crop and animal production, human and animal nutrition, human health applications, medical physics, non destructive testing in industry, groundwater management, maintenance of medical and scientific equipment, radiation protection and radioactive waste management. Efforts made also involve the development of graduate teaching in nuclear sciences at the national universities. However, the lack of adequate training facilities remains a major concern. The development of new training/learning methods is being considered at national level through network linking of national training centres with existing international training institutions, and the use of Information Communication Technologies (ICT) which offer great flexibility with regard to the number of trainees and the actual needs. (author)

  5. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--isotope

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  6. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2011-01-01

    Due to the use of nuclear energy about 17.000 t (27.000 m 3 ) of high level waste and about 300.000 m 3 of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear graphite

  7. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M; Neumeier, S; Bosbach, D [eds.

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  8. NuclearFACTS: public engagement about the impacts of nuclear research

    Energy Technology Data Exchange (ETDEWEB)

    Dalzell, M.T.J.; Alexander, R.N.; Main, M.G., E-mail: matthew.dalzell@fedorukcentre.ca [Sylvia Fedoruk Canadian Centre for Nuclear Innovation, Saskatoon, SK, (Canada)

    2015-07-01

    The Forum for Accountability and Communities Talking nuclear Science - nuclearFACTS - is a cornerstone of the Sylvia Fedoruk Canadian Centre for Nuclear Innovation's efforts to engage the people of Saskatchewan in evidence-based conversations about the impacts of the nuclear research, development and training activities supported by the Fedoruk Centre. The second annual nuclearFACTS public colloquium was held 20 November 2014, and featured the participation of 16 research projects. This paper discusses the continued development of the nuclearFACTS concept and its role in the Fedoruk Centre's upstream engagement efforts. (author)

  9. Fundamental Science-Based Simulation of Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  10. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  11. Towards the European Nuclear Engineering Education Network

    International Nuclear Information System (INIS)

    Mavko, B.; Giot, M.; Sehgal, B.R.; Goethem, G. Van

    2003-01-01

    Current priorities of the scientific community regarding basic research lie elsewhere than in nuclear sciences. The situation today is significantly different than it was three to four decades ago when much of the present competence base in nuclear sciences was in fact generated. In addition, many of the highly competent engineers and scientists, who helped create the present nuclear industry, and its regulatory structure, are approaching retirement. To preserve nuclear knowledge and expertise through the higher nuclear engineering education in the 5 th framework program of the European Commission the project ENEN (European Nuclear Engineering Education Network) was launched, since the need to keep the university curricula in nuclear sciences and technology alive has been clearly recognized at European level. As the follow up of this project an international nuclear engineering education consortium of universities with partners from the nuclear sector is presently in process of being established This association called ENEN has as founding members: 14 universities and 8 research institutes from 17 European countries. (author)

  12. Impact of nuclear research on the future technology of nuclear power

    International Nuclear Information System (INIS)

    Iyengar, P.K.

    1979-01-01

    Policy makers in the developing countries tend to assess the value of any research project by its end-results. As research projects in the field of applied science or technology promise immediate and tangible benefits to the society, high priority is given to such projects in fund allocation by policy makers. On the other hand, basic or ''pure'' science is usually viewed as pursuit of knowledge for its own sake. It has been pointed out that such a view is a mistaken one and there is no real demarcation between basic science and applied science. More often than not, results of research in basic science form the basis of transforming old technologies into better ones and giving rise to new ones. On this background, a case has been emphatically put forward: (1) to identify areas of science, particularly in nuclear science, which may not appear relevant to the immediate problems but look promising in their application and (2) to make investments, even though heavy, for research in such areas. In case of nuclear science, research areas of potential application are high energy accelerators, implosion, fusion reactions, laser fusion, tokamak devices, fusion-fission hybrid reactor systems, breeding of fissile materials from fertile ones by accelerator based neutron sources. Impact of research in these areas on and its relevance to nuclear power generation is indicated and the-state-of-art in these areas in India is described. An appendix lucidly explains generation of nuclear energy from fission and discusses thermal and fast breeder reactors. (M.G.B.)

  13. Requirements for an evaluated nuclear data file for accelerator-based transmutation

    International Nuclear Information System (INIS)

    Koning, A.J.

    1993-06-01

    The importance of intermediate-energy nuclear data files as part of a global calculation scheme for accelerator-based transmutation of radioactive waste systems (for instance with an accelerator-driven subcritical reactor) is discussed. A proposal for three intermediate-energy data libraries for incident neutrons and protons is presented: - a data library from 0 to about 100 MeV (first priority), - a reference data library from 20 to 1500 MeV, - an activation/transmutation library from 0 to about 100 MeV. Furthermore, the proposed ENDF-6 structure of each library is given. The data needs for accelerator-based transmutation are translated in terms of the aforementioned intermediate-energy data libraries. This could be a starting point for an ''International Evaluated Nuclear Data File for Transmutation''. This library could also be of interest for other applications in science and technology. Finally, some conclusions and recommendations concerning future evaluation work are given. (orig.)

  14. Energy and nuclear sciences international who's who. 4. ed.

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    For this fourth edition the directory has been reformatted to A4 size to allow for the restructuring of both the biological data and the cover. The fourth edition contains details of over 3,500 including 400 for the first time, scientists and engineers concerned with new and improved methods of generating electricity. A wide range of people used the information provided in the last edition, among them information scientists, administrators, conference organizers, market researchers, financiers seeking technical advice, embassy staff, consultants, biochemists and engineers. Biographical enquiry forms were sent to officers in scientific societies in each nation, to directors and section leaders in industrial and official institutions where significant numbers of scientists relating to power and energy research are employed to heads of relevant academic departments, and to editorial board members of relevant journals. Part one lists biographical profiles of scientists in alphabetical order of surname. The subject index by country in Part two centres around nuclear and energy sciences divided into the following areas; electrical power engineering, energy conservation, energy planning, energy storage, fuel production, fusion technology, geothermal energy, nuclear sciences, high energy physics, low energy physics, wind and/or ocean energy. This allows the reader to locate experts in each of the above topic areas in around 90 countries. (Author)

  15. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools

  16. SCK•CEN Academy for Nuclear Science and Technology: Education and training activities

    International Nuclear Information System (INIS)

    Coeck, M.; Govers, K.

    2017-01-01

    1952: cradle of nuclear research, applications and energy development in Belgium > 60 years later: international player in the field of nuclear R&D. Understanding the benefits and risks of radioactivity requires . Scientific and technical insight and training. An insight in the context and a sense for the societal and philosophical aspects of the situation. There has been a Cooperation between technical universities, SCK•CEN and IRE in In Dutch and French. Policy support on E&T matters and international collaborations. EC Framework programs, Horizon 2020, expert groups of IAEA, OECD. IAEA CRP L53003 ''Sustainable education in nuclear science and technology'' (best practices applied by academia to address schools and society)

  17. Australian Nuclear Science and Technology Organization Act 1987 - No 3 of 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of this Act (ANSTO Act) is to establish a successor to the Australian Atomic Energy Commission (AAEC) set up under the Atomic Energy Act 1953. The Act provides for a new Organization with functions which, according to Government policy, better reflect the directions in which Australia's principal research organization should tend in that area, namely realignment of AAEC activities away from work on the nuclear fuel cycle, towards greater emphasis on applications of radioisotopes and radiation in medicine, industry, agriculture, science, commerce, etc. ANSTO is prohibited from undertaking any R and D into the design and production of nuclear weapons or nuclear explosive devices. (NEA) [fr

  18. Education of 'nuclear' students (BSc and MSc curricula) at the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague

    International Nuclear Information System (INIS)

    Matejka, K.; Zeman, J.

    2003-01-01

    The Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague has been educating nuclear power engineering experts for nearly half a century. The article describes the current status and prospects of education of new specialists at the faculty for all nuclear power-related areas within the MSc and BSc level curricula. The current transition to 'European type' structured education, enabling students who have graduated from the BSc programme to continue smoothly their MSc programme, is outlined. The major courses of the 'Nuclear Engineering' educational specialisation, focused on nuclear power, environment, and dosimetry, are highlighted, including the number of lessons taught in each study year. (author)

  19. International Conference-Session of the Section of Nuclear Physics of the Physical Sciences Division of RAS

    CERN Document Server

    2014-01-01

    From November 17 to 21, 2014 the Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences and the National Research Nuclear University MEPhI will hold in MEPhI, Moscow, the International Conference-Session of SNP PSD RAS "Physics of Fundamental Interactions". The program of the session covers basic theoretical and experimental aspects of particle physics and related problems of nuclear physics and cosmology, and will consist of 30-minute highlight and review talks as well as 10-15-minute contributed reports. All highlight talks and part of contributed reports will be presented at plenary sessions of the conference. The remaining reports will be presented at the sections which will be formed after receiving of abstracts. On the recommendation of the Organizing Committee reports and talks containing new unpublished results will be published in special issues of journals "Nuclear Physics" and "Nuclear Physics and Engineering". For the institutions belonging to the Rosatom s...

  20. Nuclear knowledge management: Russian lessons

    International Nuclear Information System (INIS)

    Gagarinski, A.; Yakovlev, N.

    2004-01-01

    Full text: Union, the issue of generation and accumulation of nuclear knowledge and human resources for realizing this knowledge in practice, have received strong governmental support, and were subject to strict control of the state. This policy, despite the well-known Russian difficulties related to the lag of computational base and complicated scientific and technical exchange with the West ('Iron Curtain'), in the 50-70's has made it possible both to solve the required defence tasks and ensure development of peaceful nuclear energy applications in the Soviet Union. The report briefly summarizes the main achievements in the field of nuclear knowledge management strategy in the period of fast nuclear energy deployment, which include: - establishment, on the base of the 'Uranium Project' founder institutions, of a series of nuclear science and engineering centers (Arzamas, Dimitrovgrad, Dubna, etc.), both within the nuclear branch and in the USSR and Soviet Republics' Academies of Science; - formation of scientific schools headed by eminent scientists, on the base of major nuclear energy issues, gathering creative teams with 'natural' nuclear knowledge transfer; - harmonious nuclear education system, including a large network of higher professional education institutions, which had a principal achievement - close relationship with the leading nuclear research centers; - creation of a regional centers' network intended for regular retraining of nuclear specialists; - creation and development of national centers for collecting, processing and evaluation of nuclear and other data (materials, thermal physics, etc.) necessary for nuclear engineering, as well as for development of algorithms and codes. Russian nuclear program as a whole, and KNM system in particular, received three severe crises in a short time period: - Chernobyl accident (1986); - restructuring of the political system (end of 80's - beginning of 90's); - collapse of the Soviet Union (1991). The report

  1. Report on the work of the Institute of Nuclear Sciences 27 January - December 1976

    International Nuclear Information System (INIS)

    1977-10-01

    The work of the New Zealand Institute of Nuclear Sciences during the period January-June 1975 is summarized under the following headings: A) Nuclear Physics; B) Radiation Research; C) Isotope Geochemistry - Stable Isotopes; D) Radiocarbon Dating and Fallout; E) Radioisotope Applications; F) Instrumentation. Appendices on current research projects, staff publications and library holdings are included. (D.C.R.)

  2. Report on the work of the Institute of Nuclear Sciences 26 July - December 1975

    International Nuclear Information System (INIS)

    1976-04-01

    The work of the New Zealand Institute of Nuclear Sciences during the period January-June 1975 is summarized under the following headings: A) Nuclear Physics; B) Radiation Research; C) Isotope Geochemistry - Stable Isotopes; D) Radiocarbon Dating and Fallout; E) Radioisotope Applications; F) Instrumentation. Appendices on current research projects, staff publications and library holdings are included. (D.C.R.)

  3. Proceedings of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Science and Technology part I : Physics and Nuclear Reactor

    International Nuclear Information System (INIS)

    Kamsul Abraha; Yateman Arryanto; Sri Jauhari S; Agus Taftazani; Kris Tri Basuki; Djoko Sardjono, Ign.; Sukarsono, R.; Samin; Syarip; Suryadi, MS; Sardjono, Y.; Tri Mardji Atmono; Dwiretnani Sudjoko; Tjipto Sujitno, BA.

    2007-08-01

    The Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity held by Centre for Accelerator Technology and Material Process, National Nuclear Energy Agency, for monitoring the research activity which achieved in National Nuclear Energy Agency. The Meeting was held in Yogyakarta on July 10, 2007. The proceedings contains papers presented on the meeting about Physics and Nuclear Reactor and there are 52 papers. The proceedings is the first part of the three parts which published in series. (PPIN)

  4. ANSTO's future plans for nuclear science and technology

    International Nuclear Information System (INIS)

    Blackburne, I.

    2003-01-01

    There are four key themes in ANSTO's future plans for nuclear science and technology: 1) ANSTO plans for the future - within its established 'core business areas', following a rigorous process, and incorporating extensive interaction with organisations around Australia and overseas. 2) The replacement research reactor (RRR) - a Major National Research Facility and the cornerstone of ANSTO's future activities. 3) A number of business development initiatives that have been launched by ANSTO over the past year, under the banner of Good science is good business at ANSTO. 4) ANSTO involvement in the national research priorities that the Prime Minister announced last December, in particular, by pursuing new research in the security and forensics area; its contribution to the 'Safeguarding Australia' national research priority. The Replacement Research Reactor now under construction will make an enormous difference to the work that ANSTO can undertake, and that others can perform using ANSTO's facilities

  5. Nanoscience in the InSTEC and its relationship with nuclear science and technologies

    International Nuclear Information System (INIS)

    Codorniu Pujals, Daniel; Aguilera Corrales, Yuri

    2015-01-01

    This paper deals with the application of different experimental and theoretical tools to study nanomaterials as well as research aimed at combining the use of nano- and nuclear technologies carried out at the Higher Institute of Technologies and Applied Sciences. The wide participation of students in the research is highlighted, thus contributing to the assimilation of concepts and methods of nanosciences by the graduates of nuclear careers. (author)

  6. Nuclear Science Division annual report, October 1, 1982-September 30, 1983

    International Nuclear Information System (INIS)

    Mahoney, J.

    1984-08-01

    This report summarizes research carried out within the Nuclear Science Division between October 1, 1982 and September 30, 1983. Experimental and theoretical investigations of heavy ion reactions are reported. In addition, the development of instrumentation for charge measurements and an on-line mass analyzer are discussed. Individual reports are cataloged separately

  7. Proceeding on the scientific meeting and presentation on basic research of nuclear science and technology (book I): physics, reactors

    International Nuclear Information System (INIS)

    Syarip; Prayitno; Samin; Agus Taftazani; Sudjatmoko; Pramudita Anggraita; Gede Sutresna W; Tjipto Sujitno; Slamet Santosa; Herry Poernomo; R Sukarsono; Prajitno

    2014-06-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is an annual activity held by Centre for Accelerator Science and Technology, National Nuclear Energy Agency, in Yogyakarta, for monitoring research activities achieved by the Agency. The papers presented in the meeting were collected into proceedings which were divided into two groups that are physics and nuclear reactors. The proceedings consists of three articles from keynote speakers and 25 articles from BATAN and others participants.(PPIKSN)

  8. Scientometric mapping of mass spectrometry research in nuclear science and technology: a global perspective. IT-8

    International Nuclear Information System (INIS)

    Sagar, Anil; Kademani, B.S.; Vijai Kumar

    2007-01-01

    This paper attempts to analyse quantitatively the growth and development of Mass Spectrometry research in Nuclear Science and Technology in terms of publication output as reflected in International Nuclear Information System (INIS) database (1970-2005). During 1970-2005, a total of 10913 papers were published in various domains: Chemistry, Materials and Earth Sciences (5286) (48.44%), Physical Sciences (2367) (21.69%), Engineering and Technology (1434) (13.14), Life and Environmental Sciences (1212) (11.11), other aspects of Nuclear and Non Nuclear Energy (492) (4.51%) and Isotopes, Isotope and Radiation Applications (122) (1.12%). There were only three papers published in 1970. The highest number of papers (816) were published in 2004. The average number of publications published per year was 303.13. United States topped the list with 2247 publications followed by Germany with 1333 publications, Japan with 820 publications, France with 525 publications, and India with 460 publications. Authorship and collaboration trend was towards multi-authored papers as 81.83 percent of the papers were collaborative is indicative of the multidisciplinary nature of research activity. The most prolific authors were: S.K. Aggarwal, Bhabha Atomic Research Centre, Mumbai, India with 113 publications, W. Kutschera, University of Vienna, Austria with 85 publications, and H.C. Jain, Bhabha Atomic Research Centre, Mumbai, India with 70 publications. The highly productive institutions were: Bhabha Atomic Research Centre, Mumbai (India) with 233 publications, Argonne National Laboratory (USA) with 150 publications, Oak Ridge National Laboratory (USA) with 146 publications, University of California (USA) with 118 publications, Los Alamos National Laboratory (USA) with 104 publications and Japan Atomic Energy Research Institute (Japan) with 91 publications. The journals most preferred by the scientists for publication of papers were: Nuclear Instruments and Methods in Physics Research

  9. East-west collaboration in nuclear science

    International Nuclear Information System (INIS)

    Wolfram von, Oertzen

    2002-01-01

    The Sandarski-2 meeting on east-west collaborations in nuclear sciences was held in May 2001 in Bulgaria with 115 participants from 17 European countries, Usa, Japan and Russia (Dubna). The scientific included 66 oral contributions. During the last decade Eastern Europe has undergone substantial political and economic changes. These changes have had a decisive impact on the scientific community in these countries, because the support for basic and applied science has decreased dramatically due to the collapse of economic systems. It should noted that there are still good resources: experimental installations, technical and scientific manpower and a well trained human intellectual reserve but conditions differ strongly from one institute to another. Many national and European institutions have set up support programs for the funding of local activities for scientists in their eastern institutions or by funding collaborations between eastern and western scientists. Many highly specialized eastern scientists work now in Europe, the Usa and Japan but the brain drain from the poorest eastern countries is a real problem. One recommendation put forward at this meeting is the creation of European structures for the support of scientists in their eastern home institutions in such a way that they can return and continue to work at home. (A.C.)

  10. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Oblozinsky, P.; Herman, M.

    2006-01-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6 Li, 10 B, Au and for 235,238 U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238 U and 208 Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  11. Twenty years of chemistry associated with the needs and utilization of nuclear reactors at the 'Boris Kidric' Institute of nuclear sciences, Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    1969-01-01

    This publication covers nine review papers on the following topics related to the needs and utilization of nuclear reactors in the Boris Kidric Institute of nuclear sciences during previous twenty years: radiochemistry, hot atom chemistry, isotope production, spent nuclear fuel reprocessing, chemistry of transuranium elements; liquid radioactive waste processing, purification of reactor coolant water by inorganic ion exchangers, research related to deuterium concentration processes, and chemical dosimetry at the RA reactor [sr

  12. The role of the science council of Japan (SCJ) in peaceful uses of nuclear energy. Previous activities and expectation in future

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    2005-01-01

    The Science Council of Japan (SCJ) was established as a special agency to deliberate and report on scientific matters, including research policies and grants. It also promotes the effective exchange of knowledge between researchers to achieve greater productivity in scientific research. It continuously strives to reform and innovate and leads to its 20th term based on latest amendments of the SCJ law, which will come into force in October 2005. This paper outlined its past activities on nuclear research and described expectation in its future activities to make a concrete statement on nuclear research based on comprehensive discussions from a different view of scientific research. (T. Tanaka)

  13. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  14. Nuclear and science-fiction: voyage through the social imaginary (1914-1980)

    International Nuclear Information System (INIS)

    Timbal-Duclaux, L.

    1981-01-01

    Is science fiction a pure literature of escape or fantasy. Or, under the mask of fiction, on the contrary, isn't it something which reveals the ideology and fantasies of an epoch. This is the contention put forward by the author who endeavours to relate this literature to the reactions of public opinion to the major scientific, economic and social problems of the times. Irony of fate: like the Princesses of olden times, nuclear energy is never so attractive as when it hasn't yet appeared. The postwar nuclear dream was succeeded by today's solar myth: although man needs to feel fear, he also needs to dream. But, in sort, these dreams and nightmares teach us less about nuclear energy than about the way in which man sees himself [fr

  15. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  16. Radiant research prospects? A review of nuclear waste issues in social science research

    International Nuclear Information System (INIS)

    Bergquist, Ann-Kristin

    2007-05-01

    The present report has been put together on behalf of KASAM and constitutes a review of social science research and literature that been produced on the nuclear waste issue in Sweden, with focus on recent research. The aim with the investigation has been to map the scope of and the direction of the independent research about nuclear waste in Sweden, in relation to the research that has been initiated and financed by the stakeholders that are participating in the decision-making process in the nuclear waste issue. Another aim has been to point out areas that have not been taken into consideration

  17. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    Science.gov (United States)

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  18. Proprietary, standard, and government-supported nuclear data bases

    International Nuclear Information System (INIS)

    Poncelet, C.G.; Ozer, O.; Harris, D.R.

    1975-07-01

    This study presents an assessment of the complex situation surrounding nuclear data bases for nuclear power technology. Requirements for nuclear data bases are identified as regards engineering functions and system applications for the many and various user groups that rely on nuclear data bases. Current practices in the development and generation of nuclear data sets are described, and the competitive aspect of design nuclear data set development is noted. The past and current role of the federal government in nuclear data base development is reviewed, and the relative merits of continued government involvement are explored. National policies of the United States and other industrial countries regarding the availability of nationally supported nuclear data information are reviewed. Current proprietary policies of reactor vendors regarding design library data sets are discussed along with the basis for such proprietary policies. The legal aspects of protective policies are explored as are their impacts on the nuclear power industry as a whole. The effect of the regulatory process on the availability and documentation of nuclear data bases is examined. Current nuclear data standard developments are reviewed, including a discussion of the standard preparation process. Standards currently proposed or in preparation that directly relate to nuclear data bases are discussed in some detail. (auth)

  19. Azerbaijan Academy of Sciences and CERN interested in developing cooperation in nuclear physics

    CERN Multimedia

    Babayeva, S

    2006-01-01

    "A meeting with representatives of the Central of European Researach for Nuclear (CERN) was held, on December 5, 2006, at the Institute of physics of the National Academy of Sciences of Azerbaijan." (1/2 page)

  20. International nuclear information system (INIS) at ANSTO

    International Nuclear Information System (INIS)

    Huxlin, M.

    2002-01-01

    Full text: INIS is the world-leading information system in the field of nuclear science and technology. It is operated by the International Atomic Energy Agency (IAEA) in collaboration with 103 Member States and 19 international organisations. It contains over 2 million bibliographic references (1970-present) and a unique collection of scientific and technical reports, conference papers, dissertations, patents and others documents, known as the g rey literature . ANSTO hosts the Australian INIS Centre, which is responsible for the collection and processing of the Australian material for inclusion in the database as well as dissemination of INIS output products in Australia. Through its participation in INIS Australia gains access to the result of billions of dollars of nuclear-related R and D from around the world, and promote nuclear scientific and technical developments in Australia to the international science community. A particular case is presented, which illustrates how INIS could be used to evaluate the research effort in nuclear science and technology. Citation analysis, usually based on journals indexed by Institute for Scientific Information, measures the impact of the research or rather the usefulness of research to other scientists doing related work. However, a bibliometric analysis of this kind will not be representative of the whole research effort in the field of nuclear science and technology where a relatively high proportion of the output (45%) is captured in the non-journal literature. Publication counts based upon all publications indexed in the INIS database, enables us to obtain statistics and scientific indicators regarding the overall research effort, trends and gaps within this particular field. Average productivity counts and time series analysis (1976-2000) give a glimpse into the Australia's performance in the sub-fields of Nuclear Chemistry, Nuclear Physics, Materials Science and Nuclear Medicine. It shows that Australia's share of