Biologically based multistage modeling of radiation effects
William Hazelton; Suresh Moolgavkar; E. Georg Luebeck
2005-08-30
This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of
M. Q. Suo; Li, Y. P.; Huang, G. H.; Fan, Y. R.; Li, Z
2013-01-01
An inventory-theory-based inexact multistage stochastic programming (IB-IMSP) method is developed for planning water resources systems under uncertainty. The IB-IMSP is based on inexact multistage stochastic programming and inventory theory. The IB-IMSP cannot only effectively handle system uncertainties represented as probability density functions and discrete intervals but also efficiently reflect dynamic features of system conditions under different flow levels within a multistage context....
M. Q. Suo
2013-01-01
Full Text Available An inventory-theory-based inexact multistage stochastic programming (IB-IMSP method is developed for planning water resources systems under uncertainty. The IB-IMSP is based on inexact multistage stochastic programming and inventory theory. The IB-IMSP cannot only effectively handle system uncertainties represented as probability density functions and discrete intervals but also efficiently reflect dynamic features of system conditions under different flow levels within a multistage context. Moreover, it can provide reasonable transferring schemes (i.e., the amount and batch of transferring as well as the corresponding transferring period associated with various flow scenarios for solving water shortage problems. The applicability of the proposed IB-IMSP is demonstrated by a case study of planning water resources management. The solutions obtained are helpful for decision makers in not only identifying different transferring schemes when the promised water is not met, but also making decisions of water allocation associated with different economic objectives.
Zhu, Limin; He, Gaiyun; Song, Zhanjie
2016-03-01
Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process (MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.
Pricing convertible bonds based on a multi-stage compound-option model
Gong, Pu; He, Zhiwei; Zhu, Song-Ping
2006-07-01
In this paper, we introduce the concept of multi-stage compound options to the valuation of convertible bonds (CBs). Rather than evaluating a nested high-dimensional integral that has arisen from the valuation of multi-stage compound options, we found that adopting the finite difference method (FDM) to solve the Black-Scholes equation for each stage actually resulted in a better numerical efficiency. By comparing our results with those obtained by solving the Black-Scholes equation directly, we can show that the new approach does provide an approximation approach for the valuation of CBs and demonstrate that it offers a great potential for a further extension to CBs with more complex structures such as those with call and/or put provisions.
Yu-Long QI; Chen-Chen CAI; Ping-Zhen LANG
2013-01-01
Double-layer,multi-roller plate crusher is a new device,that uses a multi-stage series crushing style to break particles,with the crushing ratio distribution directly influencing the machine's performance.Three crushing ratios of 2.25,2.15 and 2.0 1,used for fuzzy physical programming,were determined.The comparison of the optimized result between the double-layer multi-roller plate crusher and a high pressure roll grinder showed that the double-layer multi-roller plate crusher had a better performance,reducing crushing force and wear.
Nuclear data libraries are widely used in reactor design, shielding, and activation analyses. In many instances there is either a complete lack of paucity of data; therefore nuclear reaction models must supplement and augment experimental data. Theoretical nuclear models, therefore, go hand in hand with data in creating the best nuclear data libraries possible. The intranuclear cascade model (INC), the first and classical approach to describing the preequilibrium regime, follows coordinate-space, particle trajectories within the nucleus by means of the Monte Carlo algorithm in which numerical simulation of the scattering process is based on experimental nucleon-nucleon scattering cross sections. Angular distributions are calculated but the emission at back angles can underpredict data by a few orders of magnitude. The multistage preequilibrium exciton model (MPM) has been implemented in LAHET, the Los Alamos National Laboratory version of the high-energy transport code, in order to correct this defect. Preequilibrium models are statistical, but employ an analytical solution technique. First, the MPM does not completely replace the INC, even at low-incident energies. It is possible that augmenting the MPM with a nuclear surface model, which provides greater particle emission at the tail of the spectra, may allow MPM to replace INC for these cases. Second, a more physical interfacing scheme between MPM and the Bertini model INC is being sought that would employ an excitation energy dependence. This would augment the present ISABEL INC counting scheme that follows the number of excitons created
Multi-stage separations based on dielectrophoresis
Mariella, Jr., Raymond P.
2004-07-13
A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.
Heterogeneity in multistage carcinogenesis and mixture modeling
Morgenthaler Stephan
2008-07-01
Full Text Available Abstract Carcinogenesis is commonly described as a multistage process, in which stem cells are transformed into cancer cells via a series of mutations. In this article, we consider extensions of the multistage carcinogenesis model by mixture modeling. This approach allows us to describe population heterogeneity in a biologically meaningful way. We focus on finite mixture models, for which we prove identifiability. These models are applied to human lung cancer data from several birth cohorts. Maximum likelihood estimation does not perform well in this application due to the heavy censoring in our data. We thus use analytic graduation instead. Very good fits are achieved for models that combine a small high risk group with a large group that is quasi immune.
Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard;
2012-01-01
of the multi-stage heating system in a wafer based glass moulding process. In order to investigate the importance of the radiation from the interior and surface of the glass, a simple finite volume code is developed to model one dimensional radiation–conduction heat transfer in the glass wafer for an...... different pressures. Finally, the three-dimensional modelling of the multi-stage heating system in the wafer based glass moulding process is simulated with the FEM software ABAQUS for a particular industrial application for mobile phone camera lenses to obtain the temperature distribution in the glass wafer...... of the heating system in the glass moulding process considering detailed heating mechanisms therefore plays an important part in optimizing the heating system and the subsequent pressing stage in the lens manufacturing process.The current paper deals with three-dimensional transient thermal modelling...
Sequential maneuvering decisions based on multi-stage influence diagram in air combat
无
2007-01-01
A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat.The model based on the multi-stage influence diagram graphically describes the elements of decision process,and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's Dreferences under uncertain conditions.Considering an active opponent,the opponent's maneuvers can be modeled stochastically.The solution of multistage influence diagram Can be obtained by converting the multistage influence diagram into a two-level optimization problem.The simulation results show the model is effective.
Ramsey Stochastic Model via Multistage Stochastic Programming
Kaňková, Vlasta
Vol. Part II. České Budějovice: University of South Bohemia in České Budějovice, Faculty of Economy , 2010 - (Houda, M.; Friebelová, J.), s. 328-333 ISBN 978-80-7394-218-2. [28th International Conference on Mathematical Methods in Economics 2010. České Budějovice (CZ), 08.09.2010-10.09.2010] R&D Projects: GA ČR GAP402/10/0956; GA ČR(CZ) GA402/08/0107; GA ČR GAP402/10/1610 Institutional research plan: CEZ:AV0Z10750506 Keywords : Ramsey stochastic model * Multistage stochastic programming * Confidence intervals * Autoregressive sequences * Stability * Empirical estimates Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2010/E/kankova-ramsey stochastic model via multistage stochastic programming.pdf
Recent developments in the multistage modeling of cohort data for carcinogenic risk assessment.
Mazumdar, S; Redmond, C K; Costantino, J P; Patwardhan, R N; Zhou, S. Y.
1991-01-01
The modeling of cohort data based on the Armitage-Doll multistage model of the carcinogenic process has gained popular acceptance as a methodology for quantitative risk assessment for estimating the dose-related relationships between different occupational and environmental carcinogenic exposures and cancer mortality. The multistage model can be used for extrapolation to low doses relevant for setting environmental standards and also provides information regarding whether more than one stage ...
Zhanghua Lian; Ying Zhang; Xu Zhao; Shidong Ding; Tiejun Lin
2015-01-01
Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, ...
A Quasi-One-Dimensional CFD Model for Multistage Turbomachines
Olivier Léonard; Olivier Adam
2008-01-01
The objective of this paper is to present a fast and reliable CFD model that is able to simulate stationary and transient operations of multistage compressors and turbines. This analysis tool is based on an adapted version of the Euler equations solved by a time-marching, finite-volume method. The Euler equations have been extended by including source terms expressing the blade-flow interactions. These source terms are determined using the velocity triangles and a row-by-row representation of the blading at mid-span. The losses and deviations undergone by the fluid across each blade row are supplied by correlations. The resulting flow solver is a performance prediction tool based only on the machine geometry, offering the possibility of exploring the entire characteristic map of a multistage compressor or turbine. Its efficiency in terms of CPU time makes it possible to couple it to an optimization algorithm or to a gas turbine performance tool. Different test-cases are presented for which the calculated characteristic maps are compared to experimental ones.
Axial flow, multi-stage turbine and compressor models
Design models of multi-stage, axial-flow turbine and compressor are developed for high temperature nuclear reactor power plants with Closed Brayton Cycle for energy conversion. The models are based on a mean-line through-flow analysis for free-vortex flow, account for the profile, secondary, end wall, trailing edge and tip clearance losses in the cascades, and calculate the geometrical parameters of the blade cascades. The effects of the mean-stage work coefficient, flow coefficient and stage reaction on the design and performance of helium turbine and compressor are investigated. The results compare favorably with those reported for 6 stages helium turbine and 20 stages helium compressor. Also presented and discussed are the results of parametric analyses of a 530-MW helium turbine, and a 251-MW helium compressor.
Robust modified GA based multi-stage fuzzy LFC
In this paper, a robust genetic algorithm (GA) based multi-stage fuzzy (MSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operates under deregulation based on the bilateral policy scheme. In this strategy, the control signal is tuned online from the knowledge base and the fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of the membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by modified genetic algorithms. The classical genetic algorithms are powerful search techniques to find the global optimal area. However, the global optimum value is not guaranteed using this method, and the speed of the algorithm's convergence is extremely reduced too. To overcome this drawback, a modified genetic algorithm is being used to tune the membership functions of the proposed MSF controller. The effectiveness of the proposed method is demonstrated on a three area restructured power system with possible contracted scenarios under large load demand and area disturbances in comparison with the multi-stage fuzzy and classical fuzzy PID controllers through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers. Moreover, this newly developed control strategy has a simple structure, does not require an accurate model of the plant and is fairly easy to implement, which can be useful for the real world complex power systems
A NOVEL METHOD FOR MULTISTAGE SCENARIO GENERATION BASED ON CLUSTER ANALYSIS
XIAODONG JI; XIUJUAN ZHAO; XIULI CHAO
2006-01-01
Based on cluster analysis, a novel method is introduced in this paper to generate multistage scenarios. A linear programming model is proposed to exclude the arbitrage opportunity by appending a scenario to the generated scenario set. By means of a cited stochastic linear goal programming portfolio model, a case is given to exhibit the virtues of this scenario generation approach.
A multistage model of hospital bed requirements.
Pendergast, J F; Vogel, W B
1988-01-01
This article presents a model for projecting future hospital bed requirements, based on clinical judgment and basic probability theory. Clinical judgment is used to define various categories of care, including a category for patients who are inappropriately hospitalized, for a large teaching hospital with a heavy indigent and psychiatric workload. Survey results and discharge abstract data are then used to calculate expected discharges and patient days for each clinical category. These expect...
Multistage Effort and the Equity Structure of Venture Investment Based on Reciprocity Motivation
Chuan Ding
2015-01-01
Full Text Available For venture capitals, it is a long process from an entry to its exit. In this paper, the activity of venture investment will be divided into multistages. And, according to the effort level entrepreneurs will choose, the venture capitalists will provide an equity structure at the very beginning. As a benchmark for comparison, we will establish two game models on multistage investment under perfect rationality: a cooperative game model and a noncooperative one. Further, as a cause of pervasive psychological preference behavior, reciprocity motivation will influence the behavior of the decision-makers. Given this situation, Rabin’s reciprocity motivation theory will be applied to the multistage game model of the venture investment, and multistage behavior game model will be established as well, based on the reciprocity motivation. By looking into the theoretical derivations and simulation studies, we find that if venture capitalists and entrepreneurs both have reciprocity preferences, their utility would have been Pareto improvement compared with those under perfect rationality.
Zhanghua Lian
2015-03-01
Full Text Available Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, open differential-pressure sliding sleeve, and open ball-injection sliding sleeve under a hold-down packer. Moreover, mathematical models were respectively built for the above three cases. According to the Lame formula and Von Mises stress calculation formula for the thick-walled cylinder in the theory of elastic mechanics, a mathematical model was also established to calculate the equivalent stress for tubing string safety evaluation when the fracturing string was under the combined action of inner pressure, external squeezing force and axial stress, and another mathematical model was built for the mechanical strength and safety evaluation of multi-stage fracturing strings. In addition, a practical software was developed for the mechanical safety evaluation of horizontal well multi-stage fracturing strings according to the mathematical model developed for the mechanical calculation of the multi-packer string in horizontal wells. The research results were applied and verified in a gas well of Tahe Oilfield in the Tarim Basin with excellent effects, providing a theoretical basis and a simple and reliable technical means for optimal design and safety evaluation of safe operational parameters of multi-stage fracturing strings in horizontal wells.
Discontinuous transition of a multistage independent cascade model on networks
We propose a multistage version of the independent cascade model, which we call a multistage independent cascade (MIC) model, on networks. This model is parameterized by two probabilities: the probability T1 that a node adopting a fad increases the awareness of a neighboring susceptible node and the probability T2 that an adopter directly causes a susceptible node to adopt the fad. We formulate a tree approximation for the MIC model on an uncorrelated network with an arbitrary degree distribution pk. Applied on a random regular network with degree k = 6, this model exhibits a rich phase diagram, including continuous and discontinuous transition lines for fad percolation and a continuous transition line for the percolation of susceptible nodes. In particular, the percolation transition of fads is discontinuous (continuous) when T1 is larger (smaller) than a certain value. A similar discontinuous transition is observed in random graphs and scale-free networks. Furthermore, assigning a finite fraction of initial adopters dramatically changes the phase boundaries. (paper)
Wetness measurements in a model multistage low pressure steam turbine
Comprehensive measurement of wetness losses, exhaust fog droplet diameters, wetness and coarse water content have been taken in a model multistage LP steam turbine over a wide range of flow conditions. It was found that for conventional condensing turbine exhaust wetness fractions of approximately 0.10, the measured wetness loss factor was in reasonable agreement with the Baumann value. Comparison of exhaust wetness fractions derived from dynamometer power and five-hole probe radial traverse measurements, with those found independently from the Central Electricity Research Laboratories optical probe traverses, generally showed agreement to within approximately ±0.01. (author)
Modelling of losses in multi-stage axial compressors with subsonic conditions / William James Swift
Swift, William James
2003-01-01
The need was identified to develop an analytical performance prediction code for subsonic multistage axial compressors that can be included in network analysis software. It was found that performance calculations based on an elementary one-dimensional meanline prediction method could achieve remarkable accuracy, provided that sound models are used for the losses, deviation and the onset of rotating stall. Consequently, this study focuses on gaining more expertise on the modelli...
Gökdoğan, Ahmet; Merdan, Mehmet; Yildirim, Ahmet
2012-01-01
The goal of this study is presented a reliable algorithm based on the standard differential transformation method (DTM), which is called the multi-stage differential transformation method (MsDTM) for solving Hantavirus infection model. The results obtanied by using MsDTM are compared to those obtained by using the Runge-Kutta method (R-K-method). The proposed technique is a hopeful tool to solving for a long time intervals in this kind of systems.
A Predictive Model of Multi-Stage Production Planning for Fixed Time Orders
Kozłowski Edward
2014-09-01
Full Text Available The traditional production planning model based upon a deterministic approach is well described in the literature. Due to the uncertain nature of manufacturing processes, such model can however incorrectly represent actual situations on the shop floor. This study develops a mathematical modeling framework for generating production plans in a multistage manufacturing process. The devised model takes into account the stochastic model for predicting the occurrence of faulty products. The aim of the control model is to determine the number of products which should be manufactured in each planning period to minimize both manufacturing costs and potential financial penalties for failing to fulfill the order completely.
Zhi-jian Wang; Jian-she Zheng; Lu-lu Li; Shuai Luo
2013-01-01
The three-dimensional flow physical model of any stage of the 20BZ4 multistage centrifugal pump is built which includes inlet region, impeller flow region, guide-vane flow region and exit region. The three-dimensional unsteady turbulent flow numerical model is created based on Navier-Stoke solver and standard k-ε turbulent equations. The method of multireference frame (MRF) and SIMPLE algorithm are used to simulate the flow in multistage centrifugal pump based on FLUENT software. The distribu...
Mean squared error properties of the kernel-based multi-stage median predictor for time series
J.G. de Gooijer; A. Gannoun; D. Zerom Godefay
2002-01-01
We propose a kernel-based multi-stage conditional median predictor for -mixing time series of Markovian structure. Mean squared error properties of single-stage and multi-stage conditional medians are derived and discussed.
Multi-stage Stochastic Programming Models in Production Planning
Abas Esmaeili
2013-10-01
Full Text Available Production planing is a key area of operations management. An important methodology for production planing is mathematical programming. Traditonal mathematical programming models for production planing are deterministic, and canot provide robust production plans in the presence of uncertainty. As such, deterministic planing models may yield unsatisfactory decisions. Stochastic programming, an active branch of mathematical programming dealing with optimization problems involving uncertain data, has sen several sucesful aplications in production planing. Unlike alternative aproaches to decision making under uncertainty, such as Markov decision proceses, stochastic programming requires few asumptions on the underlying stochastic proceses and alows for modeling of complicated decision structures. On the other hand, stochastic programming asumes finite number of stages and exogenous uncertainties. With recent increase in computational power and algorithmic developments, the limitations of stochastic programming arising from computational dificulties have ben relieved to a large extent. Nowadays, god production planing is a considered as one of the reason for improvement in production and many studies have ben conducted in order to identify the models of production planing. The main purpose of this research is to study multi-stage stochastic programming models in production planing.
Discontinuous Transition of a Multistage Independent Cascade Model on Networks
Hasegawa, Takehisa
2012-01-01
We study a multistage independent cascade (MIC) model in complex networks. This model is parameterized by two probabilities: T1 is the probability that a node adopting a fad increases the awareness of a neighboring susceptible node until it abandons the fad, and T2 is the probability that an adopter directly causes a susceptible node to adopt the fad. We formulate a framework of tree approximation for the MIC model on an uncorrelated network with an arbitrary given degree distribution. As an application, we study this model on a random regular network with degree k=6 to show that it has a rich phase diagram including continuous and discontinuous transition lines for the percolation of fads as well as a continuous transition line for the percolation of susceptible nodes. In particular, the percolation transition of fads is discontinuous (continuous) when T1 is larger (smaller) than a certain value. Furthermore, the phase boundaries drastically change by assigning a finite fraction of initial adopters. We discu...
Yu-ke Chen; Yan Zou; Zhe Chen
2014-01-01
Multistage voting is a common voting form through which the winners are selected. By virtue of weighted multistage voting rules, in this paper, we establish a weighted voting model by analyzing the correlation between individual preference and group preference. The weights of voters in each voting stage are adjusted through preference deviation degrees between individual preferences and group preference, and the ranking among candidates in each stage is determined according to weighted Borda ...
Multistage Development of MÃ¼ller-Achenbach model for Shape Memory Alloy
Simin A. Oshkovr
2008-01-01
Full Text Available This research focused on the conceptual development of constitutive MÃ¼ller-Achenbach model and proceeds to construct a model based on phase transition under changing temperature and load for variants of martensite in shape memory alloy CuAlNi (Copper-aluminum-nickel. Problem statement: Motivation of this research is rare information of a variant of martensite phase (M++ and prediction of the shape recovery of shape memory alloy in this stage of transformation. Approach: The mathematical equations proposed a prediction of stability of Austenite phases and extend it to multistage martensitic phase transformation. These phase transformations occurred by loading on the material. Equations described free energy landscape in CuAlNi shape memory alloys at low (260K and high temperature (440K. The model evaluated the free energy due to the phase transformation between the austenite and multistage martensitic structures. Results: Results for M++ phase showed decrease in temperature from 440K to 260K presented decrease in stress approximately from 1 kN to 0.4kN and free energy from 5 kJ/kg to 0.1 kJ/kg. Equations have been solved and plotted by software programmed in MATLAB. Conclusions/Recommendations: The model which has derived focused on homogeneous shape memory alloys, but future performance requirements will most likely be met with heterogeneous materials. Therefore, simulation models for heterogeneous materials must be developed.
On use of the multistage dose-response model for assessing laboratory animal carcinogenicity
Nitcheva, Daniella; Piegorsch, Walter W.; West, R. Webster
2007-01-01
We explore how well a statistical multistage model describes dose-response patterns in laboratory animal carcinogenicity experiments from a large database of quantal response data. The data are collected from the U.S. EPA’s publicly available IRIS data warehouse and examined statistically to determine how often higher-order values in the multistage predictor yield significant improvements in explanatory power over lower-order values. Our results suggest that the addition of a second-order par...
Tran, Duc-Minh
2014-10-01
Reduced models of multi-stage cyclic structures such as bladed-disk assemblies are developed by using the multi-stage cyclic symmetry reduction and/or component mode synthesis methods. The multi-stage cyclic symmetry reduction consists in writing the equations of the bladed disks, the inter-disk structures, the inter-disk constraints and the whole multi-stage coupled system in terms of the traveling wave coordinates for all the phase indexes of the reference sectors and for all the bladed disks. Several reduced coupled systems are then solved by selecting at each time only one or a few phase indexes for each bladed disk and by applying the cyclic symmetry boundary conditions. On the other hand, component mode synthesis methods are used either independently or in combination with the multi-stage cyclic symmetry reduction to obtain reduced models of the multi-stage structure. Two of them are particularly efficient, that are firstly component mode synthesis methods with interface modes applied on the bladed disks and secondly component mode synthesis methods with traveling wave coordinates applied on the reference sectors.
Modeling multistage decision processes with Reflexive Game Theory
Tarasenko, Sergey
2012-01-01
This paper introduces application of Reflexive Game Theory to the matter of multistage decision making processes. The idea behind is that each decision making session has certain parameters like "when the session is taking place", "who are the group members to make decision", "how group members influence on each other", etc. This study illustrates the consecutive or sequential decision making process, which consist of two stages. During the stage 1 decisions about the parameters of the ultima...
Ruiz Perea, Antonio; Perera Velamazán, Ricardo
2008-01-01
This study aims to develop a multistage scheme for damage detection for large structures based on experimental modal data and on finite element (FE) model updating methods applied on simple FE models. In the first stage, occurrence and approximate location of damage is performed by using damage functions in order to decrease the number of parameters to be updated. The goal in the second stage is to identify the specific damaged members and damage extent by considering only the members belongi...
Multistage Stochastic Programming and its Applications in Energy Systems Modeling and Optimization
Golari, Mehdi
considering the integration of renewable energy resources into production planning of energy-intensive manufacturing industries. Recently, a growing number of manufacturing companies are considering renewable energies to meet their energy requirements to move towards green manufacturing as well as decreasing their energy costs. However, the intermittent nature of renewable energies imposes several difficulties in long term planning of how to efficiently exploit renewables. In this study, we propose a scheme for manufacturing companies to use onsite and grid renewable energies provided by their own investments and energy utilities as well as conventional grid energy to satisfy their energy requirements. We propose a multistage stochastic programming model and study an efficient solution method to solve this problem. We examine the proposed framework on a test case simulated based on a real-world semiconductor company. Moreover, we evaluate long-term profitability of such scheme via so called value of multistage stochastic programming.
Multistage principal component analysis based method for abdominal ECG decomposition
Reflection of fetal heart electrical activity is present in registered abdominal ECG signals. However this signal component has noticeably less energy than concurrent signals, especially maternal ECG. Therefore traditionally recommended independent component analysis, fails to separate these two ECG signals. Multistage principal component analysis (PCA) is proposed for step-by-step extraction of abdominal ECG signal components. Truncated representation and subsequent subtraction of cardio cycles of maternal ECG are the first steps. The energy of fetal ECG component then becomes comparable or even exceeds energy of other components in the remaining signal. Second stage PCA concentrates energy of the sought signal in one principal component assuring its maximal amplitude regardless to the orientation of the fetus in multilead recordings. Third stage PCA is performed on signal excerpts representing detected fetal heart beats in aim to perform their truncated representation reconstructing their shape for further analysis. The algorithm was tested with PhysioNet Challenge 2013 signals and signals recorded in the Department of Obstetrics and Gynecology, Lithuanian University of Health Sciences. Results of our method in PhysioNet Challenge 2013 on open data set were: average score: 341.503 bpm2 and 32.81 ms. (paper)
A Multi-Stage Optimization Model With Minimum Energy Consumption-Wireless Mesh Networks
S. Krishnakumar
2012-09-01
Full Text Available Optimization models related with routing, bandwidth utilization and power consumption are developed in the wireless mesh computing environment using the operations research techniques such as maximal flow model, transshipment model and minimax optimizing algorithm. The Path creation algorithm is used to find the multiple paths from source to destination.A multi-stage optimization model is developed by combining the multi-path optimization model, optimization model in capacity utilization and energy optimization model and minimax optimizing algorithm. The input to the multi-stage optimization model is a network with many source and destination. The optimal solution obtained from this model is a minimum energy consuming path from source to destination along with the maximum data rate over each link. The performance is evaluated by comparing the data rate values of superimposed algorithm and minimax optimizing algorithm. The main advantage of this model is the reduction of traffic congestion in the network.
A semi-analytical modelling of multistage bunch compression with collective effects
Zagorodnov, Igor; Dohlus, Martin
2010-07-15
In this paper we introduce an analytical solution (up to the third order) for a multistage bunch compression and acceleration system without collective effects. The solution for the system with collective effects is found by an iterative procedure based on this analytical result. The developed formalism is applied to the FLASH facility at DESY. Analytical estimations of RF tolerances are given. (orig.)
Carlen Peter L
2011-04-01
Full Text Available Abstract Background Epilepsy is a common neurological disorder characterized by recurrent electrophysiological activities, known as seizures. Without the appropriate detection strategies, these seizure episodes can dramatically affect the quality of life for those afflicted. The rationale of this study is to develop an unsupervised algorithm for the detection of seizure states so that it may be implemented along with potential intervention strategies. Methods Hidden Markov model (HMM was developed to interpret the state transitions of the in vitro rat hippocampal slice local field potentials (LFPs during seizure episodes. It can be used to estimate the probability of state transitions and the corresponding characteristics of each state. Wavelet features were clustered and used to differentiate the electrophysiological characteristics at each corresponding HMM states. Using unsupervised training method, the HMM and the clustering parameters were obtained simultaneously. The HMM states were then assigned to the electrophysiological data using expert guided technique. Minimum redundancy maximum relevance (mRMR analysis and Akaike Information Criterion (AICc were applied to reduce the effect of over-fitting. The sensitivity, specificity and optimality index of chronic seizure detection were compared for various HMM topologies. The ability of distinguishing early and late tonic firing patterns prior to chronic seizures were also evaluated. Results Significant improvement in state detection performance was achieved when additional wavelet coefficient rates of change information were used as features. The final HMM topology obtained using mRMR and AICc was able to detect non-ictal (interictal, early and late tonic firing, chronic seizures and postictal activities. A mean sensitivity of 95.7%, mean specificity of 98.9% and optimality index of 0.995 in the detection of chronic seizures was achieved. The detection of early and late tonic firing was
Multistage models are used to both describe the biological steps in developing a cancer and as a mathematical description of the relationship of exposure to tumor incidence. With the rapid development of molecular biology the stages of tumor development are becoming understood. Specifically, the effect and role of proto-oncogenes and suppressor genes are exciting developments in the field of carcinogenesis. Mathematically the field has moved from the original Armitage-Doll multistage model to the more current cell kinetic models. These latter models attempt to describe both the rate of cell mutation and the birth-death process involved in clonal expansion. This then allows modeling of both initiation and promotion or cellular proliferation. The field of radiation carcinogenesis has a considerable body of data and knowledge. Unfortunately, relatively little work has been done with the cell kinetic models as to estimation of tumor incidence. This may be due to the newness of kinetic models in general. The field holds promise and it is essential if we are to develop better human risk estimates from exposure to ionizing radiation. (author)
A Multistage Control Mechanism for Group-Based Machine-Type Communications in an LTE System
Wen-Chien Hung
2013-01-01
Full Text Available When machine-type communication (MTC devices perform the long-term evolution (LTE attach procedure without bit rate limitations, they may produce congestion in the core network. To prevent this congestion, the LTE standard suggests using group-based policing to regulate the maximum bit rate of all traffic generated by a group of MTC devices. However, previous studies on the access point name-aggregate maximum bit rate based on group-based policing are relatively limited. This study proposes a multistage control (MSC mechanism to process the operations of maximum bit rate allocation based on resource-use information. For performance evaluation, this study uses a Markov chain with to analyze MTC application in a 3GPP network. Traffic flow simulations in an LTE system indicate that the MSC mechanism is an effective bandwidth allocation method in an LTE system with MTC devices. Experimental results show that the MSC mechanism achieves a throughput 22.5% higher than that of the LTE standard model using the group-based policing, and it achieves a lower delay time and greater long-term fairness as well.
Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes
Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme
2014-01-01
This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.
Multi-stage genetic fuzzy systems based on the iterative rule learning approach
González Muñoz, Antonio; Herrera Triguero, Francisco
1997-01-01
Genetic algorithms (GAs) represent a class of adaptive search techniques inspired by natural evolution mechanisms. The search properties of GAs make them suitable to be used in machine learning processes and for developing fuzzy systems, the so-called genetic fuzzy systems (GFSs). In this contribution, we discuss genetics-based machine learning processes presenting the iterative rule learning approach, and a special kind of GFS, a multi-stage GFS based on the iterative rule...
Multi-stage phase retrieval algorithm based upon the gyrator transform
Rodrigo, José A.; Duadi, H.; Alieva, Tatiana; Zalevsky, Z.
2010-01-01
The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and exp...
Lung cancer from radon and smoking: a multistage model for the WISMUT uranium miners
Full text: In the world's third-largest uranium-mining province located in areas of Saxony and Thuringia in the former German Democratic Republic, the WISMUT Company conducted extensive uranium mining starting in 1946. Up to 1990, when mining activities were discontinued, most of the 400,000 employees had been exposed to uranium ore dust and radon and its progeny. It is well established that, besides smoking, such exposures are associated with an increased risk of lung cancer. From about 130,000 known miners a huge cohort of 59,000 miners has been formed and in an epidemiological analysis lung cancer risks have been evaluated (Grosche et al., 2006). We will present an alternative approach using a biologically-based multistage carcinogenesis model quantifying the lung-cancer risk related to both the exposure to radon and smoking habits. This mechanistic technique allows for extrapolation to the low exposures that are important for present-day radiation protection purposes and the transfer of risk across populations. The model is applied to a sub-cohort of about 35,000 persons who were employed at WISMUT after 1955, with known annual exposures estimated from the job-exposure matrix (Lehmann et al., 2004). Unfortunately, detailed information on smoking is missing for most miners. However, this information has been retrieved in two case-control studies, one of which was nested in the cohort while the other was not (Brueske-Hohlfeld et al., 2006). For these studies, the relevant smoking parameters are assembled in so-called smoking spectra that are next projected onto the entire cohort using a Monte-Carlo sampling method. Individual smoking habits that are randomly assigned to the cohort members, together with the information on annual exposure to radon, is used as an input for the multistage model. Model parameters related to radon and tobacco exposure are fitted with a maximum-likelihood technique. We will show results of the observed and expected lung
Material modeling for multistage tube hydroforming process simulation
Saboori, Mehdi
The Aerospace industries of the 21st century demand the use of cutting edge materials and manufacturing technology. New manufacturing methods such as hydroforming are relatively new and are being used to produce commercial vehicles. This process allows for part consolidation and reducing the number of parts in an assembly compared to conventional methods such as stamping, press forming and welding of multiple components. Hydroforming in particular, provides an endless opportunity to achieve multiple crosssectional shapes in a single tube. A single tube can be pre-bent and subsequently hydroformed to create an entire component assembly instead of welding many smaller sheet metal sections together. The knowledge of tube hydroforming for aerospace materials is not well developed yet, thus new methods are required to predict and study the formability, and the critical forming limits for aerospace materials. In order to have a better understanding of the formability and the mechanical properties of aerospace materials, a novel online measurement approach based on free expansion test is developed using a 3D automated deformation measurement system (AramisRTM) to extract the coordinates of the bulge profile during the test. These coordinates are used to calculate the circumferential and longitudinal curvatures, which are utilized to determine the effective stresses and effective strains at different stages of the tube hydroforming process. In the second step, two different methods, a weighted average method and a new hardening function are utilized to define accurately the true stress-strain curve for post-necking regime of different aerospace alloys, such as inconel 718 (IN 718), stainless steel 321 (SS 321) and titanium (Ti6Al4V). The flow curves are employed in the simulation of the dome height test, which is utilized for generating the forming limit diagrams (FLDs). Then, the effect of stress triaxiality, the stress concentration factor and the effective plastic
An integrated multi-stage supply chain inventory model with imperfect production process
Soumita Kundu; Tripti Chakrabarti
2015-01-01
This paper deals with an integrated multi-stage supply chain inventory model with the objective of cost minimization by synchronizing the replenishment decisions for procurement, production and delivery activities. The supply chain structure examined here consists of a single manufacturer with multi-buyer where manufacturer orders a fixed quantity of raw material from outside suppliers, processes the materials and delivers the finished products in unequal shipments to each customer. In this p...
Using multistage models to describe radiation-induced leukaemia
The Armitage-Doll model of carcinogenesis is fitted to data on leukaemia mortality among the Japanese atomic bomb survivors with the DS86 dosimetry and on leukaemia incidence in the International Radiation Study of Cervical Cancer patients. Two different forms of model are fitted: the first postulates up to two radiation-affected stages and the second additionally allows for the presence at birth of a non-trivial population of cells which have already accumulated the first of the mutations leading to malignancy. Among models of the first form, a model with two adjacent radiation-affected stages appears to fit the data better than other models of the first form, including both models with two affected stages in any order and models with only one affected stage. The best fitting model predicts a linear-quadratic dose-response and reductions of relative risk with increasing time after exposure and age at exposure, in agreement with what has previously been observed in the Japanese and cervical cancer data. However, on the whole it does not provide an adequate fit to either dataset. The second form of model appears to provide a rather better fit, but the optimal models have biologically implausible parameters (the number of initiated cells at birth is negative) so that this model must also be regarded as providing an unsatisfactory description of the data. (author)
Yaprak Gedik
2016-01-01
To generate a protective vaccine against toxoplasmosis, multistage vaccines and usage of challenging models mimicking natural route of infection are critical cornerstones. In this study, we generated a BAG1 and GRA1 multistage vaccine that induced strong immune response in which the protection was not at anticipated level. In addition, the murine model was orally challenged with tissue cysts to mimic natural route of infection.
Multi-stage Stochastic Programming Models in Production Planning
Abas Esmaeili; Ahmad Jafarnejad; Fariborz Jolai
2013-01-01
Production planing is a key area of operations management. An important methodology for production planing is mathematical programming. Traditonal mathematical programming models for production planing are deterministic, and canot provide robust production plans in the presence of uncertainty. As such, deterministic planing models may yield unsatisfactory decisions. Stochastic programming, an active branch of mathematical programming dealing with optimization problems involving uncertain d...
Zhi-jian Wang
2013-01-01
Full Text Available The three-dimensional flow physical model of any stage of the 20BZ4 multistage centrifugal pump is built which includes inlet region, impeller flow region, guide-vane flow region and exit region. The three-dimensional unsteady turbulent flow numerical model is created based on Navier-Stoke solver and standard k-ε turbulent equations. The method of multireference frame (MRF and SIMPLE algorithm are used to simulate the flow in multistage centrifugal pump based on FLUENT software. The distributions of relative velocity, absolute velocity, static pressure, and total pressure in guide vanes and impellers under design condition are analyzed. The simulation results show that the flow in impeller is mostly uniform, without eddy, backflow, and separation flow, and jet-wake phenomenon appears only along individual blades. There is secondary flow at blade end and exit of guide vane. Due to the different blade numbers of guide vane and impeller, the total pressure distribution is asymmetric. This paper also simulates the flow under different working conditions to predict the hydraulic performances of centrifugal pump and external characteristics including flow-lift, flow-shaft power, and flow-efficiency are attained. The simulation results are compared with the experimental results, and because of the mechanical losses and volume loss ignored, there is a little difference between them.
Biotransformation of polyphenols in a dynamic multistage gastrointestinal model.
Sadeghi Ekbatan, Shima; Sleno, Lekha; Sabally, Kebba; Khairallah, Joelle; Azadi, Behnam; Rodes, Laetitia; Prakash, Satya; Donnelly, Danielle J; Kubow, Stan
2016-08-01
A multi-reactor gastrointestinal model was used to digest a mixture of pure polyphenol compounds, including non-flavonoid phenolic acids (chlorogenic acid, caffeic acid, ferulic acid) and a flavonoid (rutin) to identify phenolic metabolites and short chain fatty acids (SCFAs) and compare relative antioxidant capacities following a 24h digestion. Biotransformation of these polyphenols occurred in the colonic compartments generating phenylpropionic, benzoic, phenylacetic and cinnamic acids. Total SCFAs increased in all colonic vessels with a rise in the proportion of propionic to acetic acid. Antioxidant capacity increased significantly in all compartments, but first in the stomach, small intestine and ascending colon. After 24h, the colonic vessels without parent polyphenols, but containing new metabolites, had antioxidant capacities similar to the stomach and small intestine, containing parent compounds. Biotransformation of pure polyphenols resulted in different phenolic metabolite and SCFAs profiles in each colonic segment, with important health implications for these colonic compartments. PMID:26988524
Zietzschmann, F; Altmann, J; Hannemann, C; Jekel, M
2015-10-15
Multi-stage reuse of powdered activated carbon (PAC) is often applied in practice for a more efficient exploitation of the PAC capacity to remove organic micro-pollutants (OMP). However, the adsorption mechanisms in multi-stage PAC reuse are rarely investigated, as large-scale experiments do not allow for systematic tests. In this study, a laboratory method for the separation of PAC/water suspensions and the subsequent reuse of the PAC and the water was developed. The method was tested on wastewater treatment plant (WWTP) effluent in a setup with up to 7 PAC reuse stages. The tests show that the overall OMP removal from WWTP effluent can be increased when reusing PAC. The reason is that a repeated adsorption in multi-stage PAC reuse results in similar equilibrium concentrations as a single-stage adsorption. Thus, a single relationship between solid and liquid phase OMP concentrations appears valid throughout all stages. This also means that the adsorption efficiency of multi-stage PAC reuse setups can be estimated from the data of a single-stage setup. Furthermore, the overall OMP removals in multi-stage setups coincide with the overall UV254 removals, and for each respective OMP one relationship to UV254 removal is valid throughout all stages. The results were modeled by a simple modification of the equivalent background compound model (EBCM) which was also used to simulate the additional OMP removals in multi-stage setups with up to 50 reuse stages. PMID:26117373
Direction of Arrival Estimation Based on the Multistage Nested Wiener Filter
Xiaodong He; Bin Tang
2015-01-01
A novel direction of arrival (DOA) estimation technique based on data level and order recursive Multistage Nested Wiener Filters (MSNWF) which is used in adaptive beamforming for subarray signal is proposed in this paper. The two subarrays using the same array geometry are used to form a signal whose phase relative to the reference signal is a function of the DOA. The DOA is estimated by calculating the phase-shift between the reference signal and its phase-shifted version. The performance of...
Forestry inventory based on multistage sampling with probability proportional to size
Lee, D. C. L.; Hernandez, P., Jr.; Shimabukuro, Y. E.
1983-01-01
A multistage sampling technique, with probability proportional to size, is developed for a forest volume inventory using remote sensing data. The LANDSAT data, Panchromatic aerial photographs, and field data are collected. Based on age and homogeneity, pine and eucalyptus classes are identified. Selection of tertiary sampling units is made through aerial photographs to minimize field work. The sampling errors for eucalyptus and pine ranged from 8.34 to 21.89 percent and from 7.18 to 8.60 percent, respectively.
Reduction of multi-stage disk models: Application to an industrial rotor
Sternchüss, Arnaud,; Balmes, Etienne; Jean, Pierrick; Lombard, Jean Pierre
2009-01-01
The present study deals with the reduction of models of multi-stage bladed disk assemblies. The proposed method relies on the substructuring of the rotor into sectors. The bladed disks are coupled by intermediate rings which remove the problem of incompatible meshes. The sectors are represented by super-elements whose kinematic subspaces are spanned by a set of cyclic modeshapes and a set of normal modes when their left and right interfaces are fixed. The first step is to compute the cyclic m...
A Multi-Stage Wear Model for Grid-to-Rod Fretting of Nuclear Fuel Rods
Blau, Peter Julian [ORNL
2014-01-01
The wear of fuel rod cladding against the supporting structures in the cores of pressurized water nuclear reactors (PWRs) is an important and potentially costly tribological issue. Grid-to-rod fretting (GTRF), as it is known, involves not only time-varying contact conditions, but also elevated temperatures, flowing hot water, aqueous tribo-corrosion, and the embrittling effects of neutron fluences. The multi-stage, closed-form analytical model described in this paper relies on published out-of-reactor wear and corrosion data and a set of simplifying assumptions to portray the conversion of frictional work into wear depth. The cladding material of interest is a zirconium-based alloy called Zircaloy-4, and the grid support is made of a harder and more wear-resistant material. Focus is on the wear of the cladding. The model involves an incubation stage, a surface oxide wear stage, and a base alloy wear stage. The wear coefficient, which is a measure of the efficiency of conversion of frictional work into wear damage, can change to reflect the evolving metallurgical condition of the alloy. Wear coefficients for Zircaloy-4 and for a polyphase zirconia layer were back-calculated for a range of times required to wear to a critical depth. Inputs for the model, like the friction coefficient, are taken from the tribology literature in lieu of in-reactor tribological data. Concepts of classical fretting were used as a basis, but are modified to enable the model to accommodate the complexities of the PWR environment. Factors like grid spring relaxation, pre-oxidation of the cladding, multiple oxide phases, gap formation, impact, and hydrogen embrittlement are part of the problem definition but uncertainties in their relative roles limits the ability to validate the model. Sample calculations of wear depth versus time in the cladding illustrate how GTRF wear might occur in a discontinuous fashion during months-long reactor operating cycles. A means to account for grid/rod gaps
Real-time video fusion based on multistage hashing and hybrid transformation with depth adjustment
Zhao, Hongjian; Xia, Shixiong; Yao, Rui; Niu, Qiang; Zhou, Yong
2015-11-01
Concatenating multicamera videos with differing centers of projection into a single panoramic video is a critical technology of many important applications. We propose a real-time video fusion approach to create wide field-of-view video. To provide a fast and accurate video registration method, we propose multistage hashing to find matched feature-point pairs from coarse to fine. In the first stage of multistage hashing, a short compact binary code is learned from all feature points, and then we calculate the Hamming distance between each two points to find the candidate-matched points. In the second stage, a long binary code is obtained by remapping the candidate points for fine matching. To tackle the distortion and scene depth variation of multiview frames in videos, we build hybrid transformation with depth adjustment. The depth compensation between two adjacent frames extends into multiple frames in an iterative model for successive video frames. We conduct several experiments with different dynamic scenes and camera numbers to verify the performance of the proposed real-time video fusion approach.
Modeling Humans as Reinforcement Learners: How to Predict Human Behavior in Multi-Stage Games
Lee, Ritchie; Wolpert, David H.; Backhaus, Scott; Bent, Russell; Bono, James; Tracey, Brendan
2011-01-01
This paper introduces a novel framework for modeling interacting humans in a multi-stage game environment by combining concepts from game theory and reinforcement learning. The proposed model has the following desirable characteristics: (1) Bounded rational players, (2) strategic (i.e., players account for one anothers reward functions), and (3) is computationally feasible even on moderately large real-world systems. To do this we extend level-K reasoning to policy space to, for the first time, be able to handle multiple time steps. This allows us to decompose the problem into a series of smaller ones where we can apply standard reinforcement learning algorithms. We investigate these ideas in a cyber-battle scenario over a smart power grid and discuss the relationship between the behavior predicted by our model and what one might expect of real human defenders and attackers.
A multi-stage approach for damage detection in structural systems based on flexibility
Grande, E.; Imbimbo, M.
2016-08-01
The paper proposes a fusion approach for damage detection in structural applications in the case of multiple damage locations and three-dimensional systems. Based on the Dempster-Shafer evidence theory, a multi-stage approach is proposed with the mode shapes assumed as primary sources and local decisions based on a flexibility method. The proposed approach has been applied to two case studies, a a fixed end beam analyzed in other papers and a three dimensional structures codified in a Benchmark problem. Both the case studies have shown the ability and the efficiency of the proposed approach to detect damage also in the case of multiple damage, limited number of identified parameters and noise measurements.
SOLAR ABSORBING COOLING SYSTEMS BASED ON MULTISTAGE HEAT-MASS-TRANSFER DEVICES
Doroshenko A.V.
2014-08-01
Full Text Available The article presents the worked out schematics for the alternative refrigeration systems and of air-conditioning systems, based on the use of absorbing cycle and of the sunny energy for the regeneration (renewals of absorbent solution. We use here the cascade principle of construction of all heat-mass-transfer apparatus with variation of both the temperature level and the growth of absorbent concentration on the cascade stages. The heat-mass-transfer equipment as a part of the drying and cooling units is standardized and is executed by means of multistage monoblock compositions from poly-meric materials. The preliminary analysis of possibilities of the sunny systems in application to the tasks of cooling of environment and air-conditioning systems is carried out.
Qin, Nan; Bak, Claus Leth; Abildgaard, Hans;
2016-01-01
This paper proposes an automatic voltage control (AVC) system for power systems with limited continuous voltage control capability. The objective is to minimize the operational cost over a period, which consists of the power loss in the grid, the shunt switching cost, the transformer tap change...... cost and the generator reactive power output cost. The problem is formulated in a multi-stage optimal reactive power flow (MORPF) framework, solved by the nonlinear programming techniques via a rolling process. The voltage uncertainty caused by wind power forecasting errors is considered in the optimal...... electricity control center, where study cases based on the western Danish power system demonstrate the superiority of the proposed AVC system in term of the cost minimization. Monte Carlo simulations are carried out to verify the proposed method on the robustness improvements....
An integrated multi-stage supply chain inventory model with imperfect production process
Soumita Kundu
2015-09-01
Full Text Available This paper deals with an integrated multi-stage supply chain inventory model with the objective of cost minimization by synchronizing the replenishment decisions for procurement, production and delivery activities. The supply chain structure examined here consists of a single manufacturer with multi-buyer where manufacturer orders a fixed quantity of raw material from outside suppliers, processes the materials and delivers the finished products in unequal shipments to each customer. In this paper, we consider an imperfect production system, which produces defective items randomly and assumes that all defective items could be reworked. A simple algorithm is developed to obtain an optimal production policy, which minimizes the expected average total cost of the integrated production-inventory system.
Mohammed Abdul WAZED; Shamsuddin AHMED; Yusoff Bin NUKMANt
2011-01-01
It is essential to manage customers' diverse desires and to keep manufacturing costs as low as possible for survival in competition and eventually in production.Sharing resources in manufacturing for different products is a vital method of accomplishing this goal.The advantages of using a common process in production are stated in the literature.However,the mathematical models as well as simulation or conceptual models are not sufficient.The main objective of this paper is to develop mathematical models for multiproduct and multistage production under quality and breakdown uncertainties.The idea of the process commonality is incorporated in the proposed models.The models are validated by primary data collected from a Malaysian company and comparison of the timely requirement schedules of earlier MRP Ⅱ and the proposed models under stable and perfect production environments.An appreciable convergence of the outcomes is observed.However,the proposed models are carrying additional information about the available locations of the parts in a time frame.After validation,the effects of process commonality on cost,capacity and the requirement schedule under uncertainties are examined.It is observed that the use of common processes in manufacturing is always better than the non-commonality scenario in terms of production cost.However,the increase in capacity requirement for commonality designs is higher for an ideal system,while it is less when the system suffers from breakdowns and a quality problem.
A simple multistage closed-(box+reservoir model of chemical evolution
Caimmi R.
2011-01-01
Full Text Available Simple closed-box (CB models of chemical evolution are extended on two respects, namely (i simple closed-(box+reservoir (CBR models allowing gas outflow from the box into the reservoir (Hartwick 1976 or gas inflow into the box from the reservoir (Caimmi 2007 with rate proportional to the star formation rate, and (ii simple multistage closed-(box+reservoir (MCBR models allowing different stages of evolution characterized by different inflow or outflow rates. The theoretical differential oxygen abundance distribution (TDOD predicted by the model maintains close to a continuous broken straight line. An application is made where a fictitious sample is built up from two distinct samples of halo stars and taken as representative of the inner Galactic halo. The related empirical differential oxygen abundance distribution (EDOD is represented, to an acceptable extent, as a continuous broken line for two viable [O/H]-[Fe/H] empirical relations. The slopes and the intercepts of the regression lines are determined, and then used as input parameters to MCBR models. Within the errors (-+σ, regression line slopes correspond to a large inflow during the earlier stage of evolution and to low or moderate outflow during the subsequent stages. A possible inner halo - outer (metal-poor bulge connection is also briefly discussed. Quantitative results cannot be considered for applications to the inner Galactic halo, unless selection effects and disk contamination are removed from halo samples, and discrepancies between different oxygen abundance determination methods are explained.
Mahlke, Debora
2011-07-01
This thesis is concerned with the development and implementation of an optimization method for the solution of multistage stochastic mixed-integer programs arising in energy production. Motivated by the strong increase in electricity produced from wind energy, we investigate the question of how energy storages may contribute to integrate the strongly fluctuating wind power into the electric power network. In order to study the economics of energy storages, we consider a power generation system which consists of conventional power plants, different types of energy storages, and an offshore wind park which supplies a region of certain dimension with electrical energy. On this basis, we aim at optimizing the commitment of the facilities over several days minimizing the overall costs. We formulate the problem as a mixed-integer optimization program concentrating on the combinatorial and stochastic aspects. The nonlinearities arising from partial load efficiencies of the units are approximated by piece-wise linear functions. In order to account for the uncertainty regarding the fluctuations of the available wind power and of the prices for electricity purchased on the spot market, we describe the affected data via a scenario tree. Altogether, we obtain a stochastic multistage mixed-integer problem (SMIP) of high complexity whose solution is algorithmically and computationally challenging. The main focus of this thesis is on the development of a scenario tree-based decomposition approach combined with a branch-and-bound method (SD-BB) for solution of the SMIP described above. This novel method relies on the decomposition of the original formulation into several subproblems based on the splitting of the scenario tree into subtrees. Using a branch-and-bound framework which we extend by Lagrangian relaxation, we can solve the problem to global optimality. In order to support the solution process, we investigate the polyhedral substructure which results from the description
An e-quality control model for multistage machining processes of workpieces
2008-01-01
To track and control the changes of process quality attributes in multistage machining processes(MMPs),an e-quality control(e-QC) model is proposed.The e-QC model is defined as a quality information service node with e-formalizing technology,whose input/output and intermediate process(that is IPO) are known to other nodes,and its implemention in MMPs is provided.In order to establish the e-QC model,a measuring network is constructed to acquire the original quality data,and the changes of process quality attributes are monitored and diagnosed by the integrated quality analysis tools attached to the e-QC,which can be tracked by information template network in real time.Furthermore,a hierarchical control method is adopted to coordinate e-QCs,in which the quality loss and adjusting cost are used to quantify the opportunities for e-QCs to improve process quality.At last,a prototype is developed to verify the proposed methods.
An e-quality control model for multistage machining processes of workpieces
LIU DaoYu; JIANG PingYu; ZHANG YingFeng
2008-01-01
To track and control the changes of process quality attributes in multistage ma-chining processes (MMPs), an e-quality control (e-QC) model is proposed. The e-QC model is defined as a quality information service node with e-formalizing technology, whose input/output and intermediate process (that is IPO) are known to other nodes, and its implemention in MMPs is provided. In order to establish the e-QC model, a measuring network is constructed to acquire the original quality data, and the changes of process quality attributes are monitored and diagnosed by the integrated quality analysis tools attached to the e-QC, which can be tracked by in-formation template network in real time. Furthermore, a hierarchical control method is adopted to coordinate e-QCs, in which the quality loss and adjusting cost are used to quantify the opportunities for e-QCs to improve process quality. At last, a prototype is developed to verify the proposed methods.
Mariela Cerrada
2015-09-01
Full Text Available There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.
In this paper, the authors present a new multistage framework for reliability-based Distribution Expansion Planning (DEP) in which expansion options are a reinforcement and/or installation of substations, feeders, and Distributed Generations (DGs). The proposed framework takes into account not only costs associated with investment, maintenance, and operation, but also expected customer interruption cost in the optimization as four problem objectives. At the same time, operational restrictions, Kirchhoff's laws, radial structure limitation, voltage limits, and capital expenditure budget restriction are considered as problem constraints. The proposed model is a non-convex optimization problem having a non-linear, mixed-integer nature. Hence, a hybrid Self-adaptive Global-based Harmony Search Algorithm (SGHSA) and Optimal Power Flow (OPF) were used and followed by a fuzzy satisfying method in order to obtain the final optimal solution. The SGHSA is a recently developed optimization algorithm which imitates the music improvisation process. In this process, the harmonists improvise their instrument pitches, searching for the perfect state of harmony. The planning methodology was demonstrated on the 27-node, 13.8-kV test system in order to demonstrate the feasibility and capability of the proposed model. Simulation results illustrated the sufficiency and profitableness of the newly developed framework, when compared with other methods. - Highlights: • A new multistage framework is presented for reliability-based DEP problem. • In this paper, DGs are considered as an expansion option to increase the flexibility of the proposed model. • In this paper, effective factors of DEP problem are incorporated as a multi-objective model. • In this paper, three new algorithms HSA, IHSA and SGHSA are proposed. • Results obtained by the proposed SGHSA algorithm are better than others
A design methodology for a magnetorheological fluid damper based on a multi-stage radial flow mode
Liao, C. R.; Zhao, D. X.; Xie, L.; Liu, Q.
2012-08-01
In this paper, a magnetorheological (MR) fluid damper based on a multi-stage radial flow mode is put forward, compared with traditional ones with annular damping channel which are of low magnetic field utilization and high energy consumption. The equivalent magnetic circuit model is derived, along with the relation between the magnetic induction at the working gap and the exciting current in the field coils. The finite-element software ANYSY is used to analyze the distribution of the magnetic field in the MR valve. The flow differential equation for a MR fluid in radial flow is theoretically set up, and the numerical solution is validated by means of the Herschel-Bulkley constitutive model. A MR damper was designed and fabricated in Chongqing University in accordance with the technical requirements of a railway vehicle anti-yaw damper, and the force-displacement characteristic of the damper was tested with J95-I type shock absorber test-bed. The results show that the experimental damping forces are in good agreement with the analytical ones, and the methodology is believed to help predict the damping force of a MR damper.
A design methodology for a magnetorheological fluid damper based on a multi-stage radial flow mode
In this paper, a magnetorheological (MR) fluid damper based on a multi-stage radial flow mode is put forward, compared with traditional ones with annular damping channel which are of low magnetic field utilization and high energy consumption. The equivalent magnetic circuit model is derived, along with the relation between the magnetic induction at the working gap and the exciting current in the field coils. The finite-element software ANYSY is used to analyze the distribution of the magnetic field in the MR valve. The flow differential equation for a MR fluid in radial flow is theoretically set up, and the numerical solution is validated by means of the Herschel–Bulkley constitutive model. A MR damper was designed and fabricated in Chongqing University in accordance with the technical requirements of a railway vehicle anti-yaw damper, and the force–displacement characteristic of the damper was tested with J95-I type shock absorber test-bed. The results show that the experimental damping forces are in good agreement with the analytical ones, and the methodology is believed to help predict the damping force of a MR damper. (paper)
Moustafa Magdi S.
2006-01-01
The paper presents a model of multistage degraded system subjected to random failures and partial repairs. A transient analysis is performed and transient probabilities are calculated to find the availability, the means of life time and operational life time. In the paper, constant state dependent transition rates for the degradation process as well as failure process are considered. On the other hand the partial repairs follow general distributions. This paper extends previous systems that c...
Intelligent Search Method Based ACO Techniques for a Multistage Decision Problem EDP/LFP
Mostefa RAHLI
2006-07-01
Full Text Available The implementation of a numerical library of calculation based optimization in electrical supply networks area is in the centre of the current research orientations, thus, our project in a form given is centred on the development of platform NMSS1. It's a software environment which will preserve many efforts as regards calculations of charge, smoothing curves, losses calculation and economic planning of the generated powers [23].The operational research [17] in a hand and the industrial practice in the other, prove that the means and processes of simulation reached a level of very appreciable reliability and mathematical confidence [4, 5, 14]. It is of this expert observation that many processes make confidence to the results of simulation.The handicaps of this approach or methodology are that it makes base its judgments and handling on simplified assumptions and constraints whose influence was deliberately neglected to be added to the cost to spend [14].By juxtaposing the methods of simulation with artificial intelligence techniques, gathering set of numerical methods acquires an optimal reliability whose assurance can not leave doubt.Software environment NMSS [23] can be a in the field of the rallying techniques of simulation and electric network calculation via a graphic interface. In the same software integrate an AI capability via a module expert system.Our problem is a multistage case where are completely dependant and can't be performed separately.For a multistage problem [21, 22], the results obtained from a credible (large size problem calculation, makes the following question: Could choice of numerical methods set make the calculation of a complete problem using more than two treatments levels, a total error which will be the weakest one possible? It is well-known according to algorithmic policy; each treatment can be characterized by a function called mathematical complexity. This complexity is in fact a coast (a weight overloading
Multi-stage kernel-based conditional quantile prediction in time series
J.G. de Gooijer; A. Gannoun; D. Zerom Godefay
2001-01-01
We present a multi-stage conditional quantile predictor for time series of Markovian structure. It is proved that at any quantile level p \\in (0,1), the asymptotic mean squared error (MSE) of the new predictor is smaller than the single-stage conditional quantile predictor. A simulation study confir
无
2006-01-01
Unbalanced multi-stage logistics systems are optimized using an improved genetic algorithm based on the Prüfer number and the effective capacity coding. The improved decoding procedure uses the node capacity of the logistics system as an important factor, which influences the decoding procedure. As a result, any Prüfer number produced stochastically can be decoded to a feasible logistics pattern, which matchs the node capacities of the logistics system. With effective capacity coding, an unbalanced logistics system can be converted to a set of balanced systems. The effective capacity coding was combined with the Prüfer number to construct the chromosome for the new method to search the whole solution space of the unbalanced multi-stage logistics system. Simulation results show that the new method finds a better solution with less computational time than st-GA. Although using a little more memory, the new method is still an efficient and robust method for optimizing unbalanced multi-stage logistics systems.
Wang, Y. Y.; Huang, G. H.; Wang, S.; Li, W.; Guan, P. B.
2016-08-01
In this study, a risk-based interactive multi-stage stochastic programming (RIMSP) approach is proposed through incorporating the fractile criterion method and chance-constrained programming within a multi-stage decision-making framework. RIMSP is able to deal with dual uncertainties expressed as random boundary intervals that exist in the objective function and constraints. Moreover, RIMSP is capable of reflecting dynamics of uncertainties, as well as the trade-off between the total net benefit and the associated risk. A water allocation problem is used to illustrate applicability of the proposed methodology. A set of decision alternatives with different combinations of risk levels applied to the objective function and constraints can be generated for planning the water resources allocation system. The results can help decision makers examine potential interactions between risks related to the stochastic objective function and constraints. Furthermore, a number of solutions can be obtained under different water policy scenarios, which are useful for decision makers to formulate an appropriate policy under uncertainty. The performance of RIMSP is analyzed and compared with an inexact multi-stage stochastic programming (IMSP) method. Results of comparison experiment indicate that RIMSP is able to provide more robust water management alternatives with less system risks in comparison with IMSP.
Nonlinear model predictive control of a multistage evaporator system using recurrent neural networks
Atuonwu, J.C.; Cao, Y.; Rangaiah, G.P.; Tade, M.O.
2011-01-01
The use of multistage evaporators, motivated by the energy economy from reusing the flashed steam is common in a wide range of process industries. Such evaporators however present several control problems which manifest in the form of strong interactions among the many process variables, significant
张爱宁; 玄兆辉; 马巧丽
2012-01-01
Based on VRS model of data envelopment analysis and the data of the second investigation of R&D Resources, the paper puts forward the measuring method for efficiency of R&D activity to calculate the efficiency of R&D activity of Cansu provinces in 2009. Meanwhile, the paper analyzes the DEA validity, pure technical efficiency and scale efficiency of various regions. In order to reach a better efficiency, it makes a further study on the reasons of low-efficiency of R&D activity and how to adjust the combination between inputs and outputs correctly in some areas.%本文基于数据包络分析的VRS模型原理提出了R&D活动效率的测算方法,运用第二次R&D资源清查资料对甘肃省2009年各市州的R&D活动效率进行了测算,分析了各地区R&D活动的DEA有效性、纯技术效率、规模效益情况,并就部分地区R&D活动效率低的原因及如何调整其投入产出项的组合,从而达到较高的效率进行了深入研究.
Multistage stochastic optimization
Pflug, Georg Ch
2014-01-01
Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book
On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model
The total time evolution of the reactant concentrations in the basic enzyme-substrate reaction is simulated by an adaptation of the standard analytic homotopy-perturbation method (HPM). The standard HPM is converted into a hybrid numeric-analytic method called the multistage HPM (MHPM). The numerical results obtained from the MHPM and the classical fourth-order Runge-Kutta (RK4) method are in complete agreement
Accounting for rotation in a multi-stage cyclo-symmetric model - a case study
Balmes, Etienne; Bucher, Izhak
2010-01-01
Rotating structures typically have stages with cyclo-symmetric geometries that are periodic by rotation. The spatial Fourier transform of ﬁelds at periodic positions leads to multiple uncoupled low cost problems for each Fourier harmonic. Real rotors are assemblies of stages that have different number of sectors. This motivated the extension of cyclo-symmetry to multistage assemblies. The resulting methodology gives access to low cost predictions of full rotor dynamics. The present paper summ...
Liu, Shibing; Yang, Bingen
2015-08-01
Flexible multistage rotating systems that are supported or guided by long water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Vibration analysis of this type of machinery for performance and duality requires accurate modeling of WLRBs and related rotor-bearing assemblies. This work presents a new model of WLRBs, with attention given to the determination of bearing dynamic coefficients. Due to its large length-to-diameter ratio, a WLRB cannot be described by conventional pointwise bearing models with good fidelity. The bearing model proposed in this paper considers spatially distributed bearing forces. For the first time in the literature, the current study addresses the issue of mixed lubrication in the operation of WLRBs, which involves interactions of shaft vibration, elastic deformation of rubber material and fluid film pressure, and validates the WLRB model in experiments. Additionally, with the new bearing model, vibration analysis of WLRB-supported flexible multistage rotating systems is performed through use of a distributed transfer function method, which delivers accurate and closed-form analytical solutions of steady-state responses without discretization.
Unsihuay-Vila, Clodomiro; Marangon-Lima, J.W.; Souza, A.C Zambroni de [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], emails: clodomirounsihuayvila @gmail.com, marangon@unifei.edu.br, zambroni@unifei.edu.br; Perez-Arriaga, I.J. [Universidad Pontificia Comillas, Madrid (Spain)], email: ipa@mit.edu
2010-07-01
A novel multi objective, multi area and multistage model to long-term expansion-planning of integrated generation and transmission corridors incorporating sustainable energy developing is presented in this paper. The proposed MESEDES model is a multi-regional multi-objective and 'bottom-up' energy model which considers the electricity generation/transmission value-chain, i.e., power generation alternatives including renewable, nuclear and traditional thermal generation along with transmission corridors. The model decides the optimal location and timing of the electricity generation/transmission abroad the multistage planning horizon. The MESEDES model considers three objectives belonging to sustainable energy development criteria such as: a) the minimization of investments and operation costs of : power generation, transmission corridors, energy efficiency (demand side management (DSM) programs) considering CO2 capture technologies; b) minimization of Life Cycle Greenhouse Gas Emissions (LC GHG); c) maximization of the diversification of electricity generation mix. The proposed model consider aspects of the carbon abatement policy under the CDM - Clean Development Mechanism or European Union Greenhouse Gas Emission Trading Scheme. A case study is used to illustrate the proposed framework. (author)
Richard Sollom
Full Text Available BACKGROUND: The Chin State of Burma (also known as Myanmar is an isolated ethnic minority area with poor health outcomes and reports of food insecurity and human rights violations. We report on a population-based assessment of health and human rights in Chin State. We sought to quantify reported human rights violations in Chin State and associations between these reported violations and health status at the household level. METHODS AND FINDINGS: Multistaged household cluster sampling was done. Heads of household were interviewed on demographics, access to health care, health status, food insecurity, forced displacement, forced labor, and other human rights violations during the preceding 12 months. Ratios of the prevalence of household hunger comparing exposed and unexposed to each reported violation were estimated using binomial regression, and 95% confidence intervals (CIs were constructed. Multivariate models were done to adjust for possible confounders. Overall, 91.9% of households (95% CI 89.7%-94.1% reported forced labor in the past 12 months. Forty-three percent of households met FANTA-2 (Food and Nutrition Technical Assistance II project definitions for moderate to severe household hunger. Common violations reported were food theft, livestock theft or killing, forced displacement, beatings and torture, detentions, disappearances, and religious and ethnic persecution. Self reporting of multiple rights abuses was independently associated with household hunger. CONCLUSIONS: Our findings indicate widespread self-reports of human rights violations. The nature and extent of these violations may warrant investigation by the United Nations or International Criminal Court. Please see later in the article for the Editors' Summary.
KAERI has developed the dynamic code (KAERI-DySCo) to analyze the start-up behaviors of the SI process components. This study focuses on the verification of a simulation module for the sulfuric acid multi-stage distillation column in the KAERI-DySCo. In agreement with the steady state values measured experimentally by KIST, it has been finally confirmed that the SAMDC, which is one of the simulation modules in KAERI-DySCo for the dynamic simulation code of VHTR-based SI hydrogen production facilities, is a feasible simulation module for calculating the start-up dynamic behavior of a sulfuric acid multistage distillation column
Validation of multi-stage telephone-based identification of cognitive impairment and dementia
Chui Helena
2005-04-01
Full Text Available Abstract Background Many types of research on dementia and cognitive impairment require large sample sizes. Detailed in-person assessment using batteries of neuropyschologic testing is expensive. This study evaluates whether a brief telephone cognitive assessment strategy can reliably classify cognitive status when compared to an in-person "gold-standard" clinical assessment. Methods The gold standard assessment of cognitive status was conducted at the University of Southern California Alzheimer Disease Research Center (USC ADRC. It involved an examination of patients with a memory complaint by a neurologist or psychiatrist specializing in cognitive disorders and administration of a battery of neuropsychologic tests. The method being evaluated was a multi-staged assessment using the Telephone Interview of Cognitive Status-modified (TICSm with patients and the Telephone Dementia Questionnaire (TDQ with a proxy. Elderly male and female patients who had received the gold standard in-person assessment were asked to also undergo the telephone assessment. The unweighted kappa statistic was calculated to compare the gold standard and the multistage telephone assessment methods. Sensitivity for classification with dementia and specificity for classification as normal were also calculated. Results Of 50 patients who underwent the gold standard assessment and were referred for telephone assessment, 38 (76% completed the TICS. The mean age was 78.1 years and 26 (68% were female. When comparing the gold standard assessment and the telephone method for classifying subjects as having dementia or no dementia, the sensitivity of the telephone method was 0.83 (95% confidence interval 0.36, 1.00, the specificity was 1.00 (95% confidence interval 0.89,1.00. Kappa was 0.89 (95% confidence interval 0.69, 1.000. Considering a gold-standard assessment of age-associated memory impairment as cognitive impairment, the sensitivity of the telephone approach is 0.38 (95
Zhu, Ying
2015-01-01
Econometric models based on observational data are often endogenous due to measurement error, autocorrelated errors, simultaneity and omitted variables, non-random sampling, self-selection, etc. Parameter estimates of these models without corrective measures may be inconsistent. The potential high-dimensional feature of these models (where the dimension of the parameters of interests is comparable to or even larger than the sample size) further complicates the statistical estimation and infer...
Multistage Three-Way Decisions of Spam SMS Filtering Model%多阶段三支决策垃圾短信过滤模型
李建林; 黄顺亮
2014-01-01
提出了一种多阶段三支决策垃圾短信过滤模型。该模型使用不同的信息粒度对短信进行表示，运用序列决策（即多阶段、多步骤决策），在不同的决策阶段基于不同的信息粒度分别进行三支决策，有效地避免了当信息粒度太大或信息量不足时进行不合理的决策，对于不能满足当前决策条件的信息，可以通过补充足够的粒度信息作进一步的决策。最后通过实验证明了该模型的合理性和有效性。%This paper proposes a multistage three-way decisions of spam SMS (short messaging service) filtering model. By using different granularity information to express the SMS, with the sequence decisions (i.e., multistage, multiple steps in decision-making), at different decision-making stages, based on different information granularity respectively three-way decision-making, those can avoid to make irrational decisions when the message size is too big or insufficient information. If the information does not meet the current decision-making conditions, this model can add enough granularity information before making a further decision. Finally, the experimental results prove the rationality and validity of the model.
Empirical vs. Expected IRT-Based Reliability Estimation in Computerized Multistage Testing (MST)
Zhang, Yanwei; Breithaupt, Krista; Tessema, Aster; Chuah, David
2006-01-01
Two IRT-based procedures to estimate test reliability for a certification exam that used both adaptive (via a MST model) and non-adaptive design were considered in this study. Both procedures rely on calibrated item parameters to estimate error variance. In terms of score variance, one procedure (Method 1) uses the empirical ability distribution…
Zhang, Zhongyang; Liao, Yiliang
2016-04-01
For structural and engineering steels, accurate modeling of stress-strain relation of ferrite phase is of particular importance, since the modeling results could benefit new material system design and process-microstructure-property analysis. Several modeling efforts have been made to achieve this target. However, few efforts have been put on the Lüders elongation behavior of ferrite. As a result, the modeling results from proposed models do not match well with experimental data, particularly at a relatively low-strain range. Furthermore, without the consideration of yield point elongation due to the formation of Lüders bands, additional calibration parameters are required to capture the stress level of stress-strain curves. In this work, a multi-stage model is developed to predict the stress-strain relation of ferrite phase steel under room temperature tension. This model is capable of capturing the grain size effect on both Lüders elongation and work-hardening behaviors of ferrite. The modeling results are extensively validated by experimental data.
Improved Heuristics for Multi-Stage Requirements Planning Systems
Joseph D. Blackburn; Robert A. Millen
1982-01-01
Most of the recent studies of heuristic lot-sizing techniques for multi-stage material requirements planning systems have investigated the problem in the context of a single stage. In this paper, the multi-stage problem is first modeled analytically to indicate the potential errors inherent in the commonly proposed single-pass, stage-by-stage approaches (e.g., Wagner-Whitin). Then, based on this analysis, several simple cost modifications are suggested to improve the global optimality of thes...
Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi
2003-01-01
A computational model is presented for simulating axial compressor stall inception and development via disturbances with length scales on the order of several (typically about three) blade pitches. The model was designed for multi-stage compressors in which stall is initiated by these short wavelength disturbances, also referred to as spikes. The inception process described is fundamentally nonlinear, in contrast to the essentially linear behavior seen in so-called modal stall inception . The model was able to capture the following experimentally observed phenomena: (1) development of rotating stall via short wavelength disturbances, (2) formation and evolution of localized short wavelength stall cells in the first stage of a mismatched compressor, (3) the switch from long to short wavelength stall inception resulting from the re-staggering of the inlet guide vane, (4) the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic. Parametric investigations indicated that (1) short wavelength disturbances were supported by the rotor blade row, (2) the disturbance strength was attenuated within the stators, and (3) the reduction of inter-blade row gaps can suppress the growth of short wavelength disturbances. It is argued that each local component group (rotor plus neighboring stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group.
A new model to predict multi-stage pyrolysis of flammable materials in standard fire tests
Test procedures to assess material flammability are focused on radiative heating of the examined material followed by ignition of volatiles produced by pyrolysis. In this work, a new model (Pyropolis) for predicting thermal degradation of polymer materials exposed to the external heat flux is presented. Composite materials of interest consist of a matrix polymer and a (glass or carbonized) fiber. If temperature is sufficiently high, the matrix polymer degrades thereby producing solid and/or gaseous components. Solid decomposition products may exhibit a considerable size change, which is a notable feature of intumescent materials also considered in this work. The model incorporates multi-step decomposition mechanism including two reactions in anaerobic conditions and four reactions in oxidative atmosphere. Kinetic data could be derived from TGA, DSC and PCFC/MCC measurements, which are processed by either simplified (peak value based) or comprehensive (non-linear optimization) approach suitable for both n-th order and autocatalytic reactions. The model is validated by comparing predictions of gasification rates for to two distinct types of non-charring (PS) and charring intumescent (PC) polymers. Reasonable agreement has been obtained with the measured mass loss rates, which are proportional to the heat release rates if volatiles are ignited.
SOLAR ABSORBING COOLING SYSTEMS BASED ON MULTISTAGE HEAT-MASS-TRANSFER DEVICES
Doroshenko A.V.; Ludnitsky K.V.
2014-01-01
The article presents the worked out schematics for the alternative refrigeration systems and of air-conditioning systems, based on the use of absorbing cycle and of the sunny energy for the regeneration (renewals) of absorbent solution. We use here the cascade principle of construction of all heat-mass-transfer apparatus with variation of both the temperature level and the growth of absorbent concentration on the cascade stages. The heat-mass-transfer equipment as a part of the drying and coo...
SOLAR MULTI-STAGE ABSORPTION REFRIGERATION SYSTEMS BASED ON FILM TYPE HEAT-MASS EXCHANGE APPARATUSES
Дорошенко, О.В.; Антонова, А.Р.; Людницький, К.В.
2015-01-01
The paper presents the developed circuit solutions for alternative refrigeration systems based on the of heat-absorption cycle and solar energy utilization for regeneration (recovery) of the absorbent solution. Cascade principle of heat-mass exchange apparatuses construction was applied, of drying and cooling loops with varying of temperature level and increasing of absorbent concentration on the cascade steps. Film type heat and mass transfer equipment, which is the part of the drying and ...
A multi-stage model for fundamental functional properties in primary visual cortex.
Nastaran Hesam Shariati
Full Text Available Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. We here define a model that accounts for many of the empirical observations concerning direction selectivity. The model describes a single column of cat primary visual cortex and comprises a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small (∼4 ms interval, and it is this difference that confers direction selectivity on model neurons. We show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex.
Randomly Wired Multistage Networks
Maggs, Bruce M.
1993-01-01
Randomly wired multistage networks have recently been shown to outperform traditional multistage networks in three respects. First, they have fast deterministic packet-switching and circuit-switching algorithms for routing permutations. Second, they are nonblocking, and there are on-line algorithms for establishing new connections in them, even if many requests for connections are made simultaneously. Finally, and perhaps most importantly, they are highly fault tolerant.
Wind power integration studies using a multi-stage stochastic electricity system model
Meibom, Peter; Barth, R.; Brand, H.; Weber, C.
A large share of integrated wind power causes technical and financial impacts on the operation of the existing electricity system due to the fluctuating behaviour and unpredictability of wind power. The presented stochastic electricity market model optimises the unit commitment considering four k...
Ambles, A.; Halim, M.; Jacquesy, J.-C.; Vitorovic, D.; Ziyad, M. (Universite de Poitiers, Poitiers (France). Lab. de Chimie)
1994-01-01
A 15-step alkaline permanganate degradation of kerogen from Moroccan Timahdit Oil Shale (Y-layer) was carried out. Oxidation products were obtained in a good yield (64 wt% based on initial kerogen). Detailed g.c. and g.c.-m.s. analyses of ether- and water-soluble acids and products of further controlled permanganate degradation of precipitated acids served as a basis for the quantitative estimation of the contributions of various types of products and for comparison with other kerogens. Taking into account the dominant aliphatic (44.2%) and aromatic (34.8%) nature of the acidic oxidation products, the existence of an aliphatic cross-linked nucleus mixed with cross-linked aromatic units in the Timahdit-Y shale kerogen is postulated. These findings were corroborated by FT-i.r. and [sup 13]C CP-MAS n.m.r. analyses. Saturated hydrocarbons were also found in the oxidation products; they were probably trapped in the kerogen matrix. 34 refs., 7 figs., 4 tabs.
Split-plot designs for multistage experimentation
Kulahci, Murat; Tyssedal, John
2016-01-01
at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....
Model reduction applied to multi-stage assemblies of bladed disks
Sternchüss, Arnaud; Balmes, Etienne; Jean, Pierrick; Lombard, Jean Pierre
2008-01-01
This paper deals with model reduction of assemblies of bladed disks. Some considerations about the use of the Fourier theory to describe the dynamics of assemblies of geometrically periodic structures are first recalled. This allows to define a set of spatially mono-harmonic solutions that are used to build the kinematic subspaces in a subsequent reduction process. The main characteristics of this sector substructuring technique are then presented and discussed. Finally, the proposed methodol...
Solving multistage stochastic programming models of portfolio selection with outstanding liabilities
Edirisinghe, C. [Univ. of Tennessee, Knoxville, TN (United States)
1994-12-31
Models for portfolio selection in the presence of an outstanding liability have received significant attention, for example, models for pricing options. The problem may be described briefly as follows: given a set of risky securities (and a riskless security such as a bond), and given a set of cash flows, i.e., outstanding liability, to be met at some future date, determine an initial portfolio and a dynamic trading strategy for the underlying securities such that the initial cost of the portfolio is within a prescribed wealth level and the expected cash surpluses arising from trading is maximized. While the trading strategy should be self-financing, there may also be other restrictions such as leverage and short-sale constraints. Usually the treatment is limited to binomial evolution of uncertainty (of stock price), with possible extensions for developing computational bounds for multinomial generalizations. Posing as stochastic programming models of decision making, we investigate alternative efficient solution procedures under continuous evolution of uncertainty, for discrete time economies. We point out an important moment problem arising in the portfolio selection problem, the solution (or bounds) on which provides the basis for developing efficient computational algorithms. While the underlying stochastic program may be computationally tedious even for a modest number of trading opportunities (i.e., time periods), the derived algorithms may used to solve problems whose sizes are beyond those considered within stochastic optimization.
Andrew F Brouwer
Full Text Available Differences in prognosis in HPV-positive and HPV-negative oral (oropharyngeal and oral cavity squamous cell carcinomas (OSCCs and increasing incidence of HPV-related cancers have spurred interest in demographic and temporal trends in OSCC incidence. We leverage multistage clonal expansion (MSCE models coupled with age-period-cohort (APC epidemiological models to analyze OSCC data in the SEER cancer registry (1973-2012. MSCE models are based on the initiation-promotion-malignant conversion paradigm in carcinogenesis and allow for interpretation of trends in terms of biological mechanisms. APC models seek to differentiate between the temporal effects of age, period, and birth cohort on cancer risk. Previous studies have looked at the effect of period and cohort on tumor initiation, and we extend this to compare model fits of period and cohort effects on each of tumor initiation, promotion, and malignant conversion rates. HPV-related, HPV-unrelated except oral tongue, and HPV-unrelated oral tongue sites are best described by placing period and cohort effects on the initiation rate. HPV-related and non-oral-tongue HPV-unrelated cancers have similar promotion rates, suggesting similar tumorigenesis dynamics once initiated. Estimates of promotion rates at oral tongue sites are lower, corresponding to a longer sojourn time; this finding is consistent with the hypothesis of an etiology distinct from HPV or alcohol and tobacco use. Finally, for the three subsite groups, men have higher initiation rates than women of the same race, and black people have higher promotion than white people of the same sex. These differences explain part of the racial and sex differences in OSCC incidence.
Brouwer, Andrew F; Eisenberg, Marisa C; Meza, Rafael
2016-01-01
Differences in prognosis in HPV-positive and HPV-negative oral (oropharyngeal and oral cavity) squamous cell carcinomas (OSCCs) and increasing incidence of HPV-related cancers have spurred interest in demographic and temporal trends in OSCC incidence. We leverage multistage clonal expansion (MSCE) models coupled with age-period-cohort (APC) epidemiological models to analyze OSCC data in the SEER cancer registry (1973-2012). MSCE models are based on the initiation-promotion-malignant conversion paradigm in carcinogenesis and allow for interpretation of trends in terms of biological mechanisms. APC models seek to differentiate between the temporal effects of age, period, and birth cohort on cancer risk. Previous studies have looked at the effect of period and cohort on tumor initiation, and we extend this to compare model fits of period and cohort effects on each of tumor initiation, promotion, and malignant conversion rates. HPV-related, HPV-unrelated except oral tongue, and HPV-unrelated oral tongue sites are best described by placing period and cohort effects on the initiation rate. HPV-related and non-oral-tongue HPV-unrelated cancers have similar promotion rates, suggesting similar tumorigenesis dynamics once initiated. Estimates of promotion rates at oral tongue sites are lower, corresponding to a longer sojourn time; this finding is consistent with the hypothesis of an etiology distinct from HPV or alcohol and tobacco use. Finally, for the three subsite groups, men have higher initiation rates than women of the same race, and black people have higher promotion than white people of the same sex. These differences explain part of the racial and sex differences in OSCC incidence. PMID:26963717
Contraceptive intentions among Christian women in India: a multi-stage Logit model analysis
Niyati Joshi
2014-06-01
Results: Though spatial factors affect both Christian and non-Christian women, SLI directly affect Christian womens' intention while it operates through education for non-Christian women. The best model for future contraceptive intention among Christian women is affected by unmet need operating through standard of living. Conclusions: The study finds two different paths of causation affecting future contraceptive intentions of Christian and non-Christian women with separate policy concerns and suggests that paths to future contraceptive intentions of Christian women may act as a social learning through diffusion process for non-Christian women. [Int J Reprod Contracept Obstet Gynecol 2014; 3(3.000: 523-532
Formation of porous gas hydrates: Diffraction experiments and multi-stage model
Staykova, D. K.; Genov, G.; Goreshnik, E.; Salamatin, A. N.; Kuhs, W. F.
2003-04-01
Laboratory-grown gas hydrates were examined by cryo scanning electron microscopy and found to have a sub-micron porous structure. This microstructure is undistinguishable from the one observed in natural gas hydrates suggesting similar formation processes. In-situ observations of the formation of synthetic porous methane and carbon dioxide hydrates starting from ice Ih powders with known surfaces areas were made using time-resolved neutron diffraction on the high-flux diffractometer D20 (ILL, Grenoble) at different pressures and temperatures. Some runs were also made going through the ice melting point into liquid water. At similar reduced fugacities, the reaction of carbon dioxide was distinctly faster than that of methane. The transient formation of carbon dioxide hydrate crystal structure II was observed in coexistence with the usual type-I hydrate reaching a maximum of 5% after 5 h of the reaction at 272 K. At lower temperatures a temporary inhibition of formation was observed in the case of carbon dioxide. The rate of methane hydrate growth showed little pressure sensitivity in our experiments at low temperatures ~230 K in contrast to the situation at higher temperatures. A phenomenological model for the kinetics of the gas hydrate formation from ice powders is developed with special account of sample consolidation effects. It describes the initial stage (I) of hydrate film spreading over the ice surface and the two subsequent stages which are limited (II) by the clathration reaction at the ice-hydrate interface and (III) by the gas and water transport (diffusion) through the hydrate shells surrounding the shrinking ice cores. Comparable activation energies of the CH4-hydrate formation are found in deuterated and hydrogenated systems for the reaction-limited process (stage II) to be 8.1 and 9.5 kcal/mol, respectively. In the case of a diffusion-limited clathration (stage III) the activation energy can be estimated as 14.3 kcal/mol. The relevance of our
Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo
2016-03-01
With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to
Nichols, J. D.; Gialdini, M.; Jaakkola, S.
1974-01-01
A quasi-operational study demonstrating that a timber inventory based on manual and automated analysis of ERTS-1, supporting aircraft data and ground data was made using multistage sampling techniques. The inventory proved to be a timely, cost effective alternative to conventional timber inventory techniques. The timber volume on the Quincy Ranger District of the Plumas National Forest was estimated to be 2.44 billion board feet with a sampling error of 8.2 percent. Costs per acre for the inventory procedure at 1.1 cent/acre compared favorably with the costs of a conventional inventory at 25 cents/acre. A point-by-point comparison of CALSCAN-classified ERTS data with human-interpreted low altitude photo plots indicated no significant differences in the overall classification accuracies.
Multi-stage complex contagions
Melnik, Sergey; Ward, Jonathan A.; Gleeson, James P.; Porter, Mason A.
2013-03-01
The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks. Agents at different stages—which could, for example, represent differing levels of support for a social movement or differing levels of commitment to a certain product or idea—exert different amounts of influence on their neighbors. We demonstrate that the presence of even one additional stage introduces novel dynamical behavior, including interplay between multiple cascades, which cannot occur in single-stage contagion models. We find that cascades—and hence collective action—can be driven not only by high-stage influencers but also by low-stage influencers.
Li, Yongping; Huang, Guohe
2009-03-01
In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability. PMID:19320267
Coupling methods for multistage sampling
Chauvet, Guillaume
2015-01-01
Multistage sampling is commonly used for household surveys when there exists no sampling frame, or when the population is scattered over a wide area. Multistage sampling usually introduces a complex dependence in the selection of the final units, which makes asymptotic results quite difficult to prove. In this work, we consider multistage sampling with simple random without replacement sampling at the first stage, and with an arbitrary sampling design for further stages. We consider coupling ...
A Multistage Approach for Image Registration.
Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi
2016-09-01
Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology. PMID:26292357
The complicated task of design optimization of compact heat exchangers (CHEs) have been effectively performed by using evolutionary algorithms (EAs) in the recent years. However, mainly due to difficulties of handling extra variables, the design approach has been based on constant rates of heat duty in the available literature. In this paper, a new design strategy is presented where variable operating conditions, which better represent real-world problems, are considered. The proposed strategy is illustrated using a case study for design of a plate-fin heat exchanger though it can be employed for all types of heat exchangers without much change. Learning automata based particle swarm optimization (LAPSO), is employed for handling nine design variables while satisfying various equality and inequality constraints. For handling the constraints, a novel feasibility based ranking strategy (FBRS) is introduced. The numerical results indicate that the design based on variable heat duties yields in more cost savings and superior thermodynamics efficiency comparing to a conventional design approach. Furthermore, the proposed algorithm has shown a superior performance in finding the near-optimum solution for this task when it is compared to the most popular evolutionary algorithms in engineering applications, i.e. genetic algorithm (GA) and particle swarm optimization (PSO). - Highlights: • Multi-stage design of heat exchangers is presented. • Feasibility based ranking strategy is employed for constraint handling. • Learning abilities added to particle swarm optimization
Multistage Campaigning in Social Networks
Farajtabar, Mehrdad; Harati, Sahar; Song, Le; Zha, Hongyuan
2016-01-01
We consider the problem of how to optimize multi-stage campaigning over social networks. The dynamic programming framework is employed to balance the high present reward and large penalty on low future outcome in the presence of extensive uncertainties. In particular, we establish theoretical foundations of optimal campaigning over social networks where the user activities are modeled as a multivariate Hawkes process, and we derive a time dependent linear relation between the intensity of exogenous events and several commonly used objective functions of campaigning. We further develop a convex dynamic programming framework for determining the optimal intervention policy that prescribes the required level of external drive at each stage for the desired campaigning result. Experiments on both synthetic data and the real-world MemeTracker dataset show that our algorithm can steer the user activities for optimal campaigning much more accurately than baselines.
Multistage vector (MSV) therapeutics.
Wolfram, Joy; Shen, Haifa; Ferrari, Mauro
2015-12-10
One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. PMID:26264836
Tani, Shusuke; Blyth, Benjamin John; Shang, Yi; Morioka, Takamitsu; Kakinuma, Shizuko; Shimada, Yoshiya
2016-01-01
The risk of radiation-induced cancer adds to anxiety in low-dose exposed populations. Safe and effective lifestyle changes which can help mitigate excess cancer risk might provide exposed individuals the opportunity to pro-actively reduce their cancer risk, and improve mental health and well-being. Here, we applied a mathematical multi-stage carcinogenesis model to the mouse lifespan data using adult-onset caloric restriction following irradiation in early life. We re-evaluated autopsy records with a veterinary pathologist to determine which tumors were the probable causes of death in order to calculate age-specific mortality. The model revealed that in both irradiated and unirradiated mice, caloric restriction reduced the age-specific mortality of all solid tumors and hepatocellular carcinomas across most of the lifespan, with the mortality rate dependent more on age owing to an increase in the number of predicted rate-limiting steps. Conversely, irradiation did not significantly alter the number of steps, but did increase the overall transition rate between the steps. We show that the extent of the protective effect of caloric restriction is independent of the induction of cancer from radiation exposure, and discuss future avenues of research to explore the utility of caloric restriction as an example of a potential post-irradiation mitigation strategy. PMID:27390741
Danielle B Ulanet
Full Text Available The Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt cancer cells, genetic alterations leading to tumor suppressor loss of function or oncogene gain of function can also incite tumor development via effects on the tumor microenvironment. In a transgenic mouse model of multi-stage pancreatic neuroendocrine carcinogenesis (PNET driven by inhibition of the canonical p53 and Rb tumor suppressors with SV40 large T-antigen (Tag, stochastic progression to tumors is limited in part by a requirement for initiation of an angiogenic switch. Despite inhibition of p53 by Tag in this mouse PNET model, concomitant disruption of Arf via genetic knockout resulted in a significantly accelerated pathway to tumor formation that was surprisingly not driven by alterations in tumor cell proliferation or apoptosis, but rather via earlier activation of the angiogenic switch. In the setting of a constitutional p53 gene knockout, loss of Arf also accelerated tumor development, albeit to a lesser degree. These findings demonstrate that Arf loss of function can promote tumorigenesis via facilitating angiogenesis, at least in part, through p53-independent mechanisms.
Jennifer S. Sonderman
2012-05-01
Full Text Available To enable spatial analyses within a large, prospective cohort study of nearly 86,000 adults enrolled in a 12-state area in the southeastern United States of America from 2002-2009, a multi-stage geocoding protocol was developed to efficiently maximize the proportion of participants assigned an address level geographic coordinate. Addresses were parsed, cleaned and standardized before applying a combination of automated and interactive geocoding tools. Our full protocol increased the non-Post Office (PO Box match rate from 74.5% to 97.6%. Overall, we geocoded 99.96% of participant addresses, with only 5.2% at the ZIP code centroid level (2.8% PO Box and 2.3% non-PO Box addresses. One key to reducing the need for interactive geocoding was the use of multiple base maps. Still, addresses in areas with population density 920 persons/km2 (odds ratio (OR = 5.24; 95% confidence interval (CI = 4.23, 6.49, as were addresses collected from participants during in-person interviews compared with mailed questionnaires (OR = 1.83; 95% CI = 1.59, 2.11. This study demonstrates that population density and address ascertainment method can influence automated geocoding results and that high success in address level geocoding is achievable for large-scale studies covering wide geographical areas.
李军超; 杨芬芬; 周志强
2015-01-01
Although multi-stage incremental sheet forming has always been adopted instead of single-stage forming to form parts with a steep wall angle or to achieve a high forming performance, it is largely dependent on empirical designs. In order to research multi-stage forming further, the effect of forming stages (n) and angle interval between the two adjacent stages (Δα) on thickness distribution was investigated. Firstly, a finite element method (FEM) model of multi-stage incremental forming was established and experimentally verified. Then, based on the proposed simulation model, different strategies were adopted to form a frustum of cone with wall angle of 30° to research the thickness distribution of multi-pass forming. It is proved that the minimum thickness increases largely and the variance of sheet thickness decreases significantly as the value of n grows. Further, with the increase of Δα, the minimum thickness increases initially and then decreases, and the optimal thickness distribution is achieved with Δα of 10°. Additionally, a formula is deduced to estimate the sheet thickness after multi-stage forming and proved to be effective. And the simulation results fit well with the experimental results.
Disjoint Paths Multi-stage Interconnection Networks Stability Problem
Rastogi, Ravi; Chauhan, Durg Singh; Govil, Mahesh Chandra
2012-01-01
This research paper emphasizes that the Stable Matching problems are the same as the problems of stable configurations of Multi-stage Interconnection Networks (MIN). The authors have solved the Stability Problem of Existing Regular Gamma Multi-stage Interconnection Network (GMIN), 3-Disjoint Gamma Multi-stage Interconnection Network (3DGMIN) and 3-Disjoint Path Cyclic Gamma Multi-stage Interconnection Network (3DCGMIN) using the approaches and solutions provided by the Stable Matching Problem. Specifically Stable Marriage Problem is used as an example of Stable Matching. For MINs to prove Stable two existing algorithms are used:-the first algorithm generates the MINs Preferences List in time and second algorithm produces a set of most Optimal Pairs of the Switching Elements (SEs) (derived from the MINs Preferences List) in time. Moreover, the paper also solves the problem of Ties that occurs between the Optimal Pairs. The results are promising as the comparison of the MINs based on their stability shows that ...
A Multistage Method for Multiobjective Route Selection
Wen, Feng; Gen, Mitsuo
The multiobjective route selection problem (m-RSP) is a key research topic in the car navigation system (CNS) for ITS (Intelligent Transportation System). In this paper, we propose an interactive multistage weight-based Dijkstra genetic algorithm (mwD-GA) to solve it. The purpose of the proposed approach is to create enough Pareto-optimal routes with good distribution for the car driver depending on his/her preference. At the same time, the routes can be recalculated according to the driver's preferences by the multistage framework proposed. In the solution approach proposed, the accurate route searching ability of the Dijkstra algorithm and the exploration ability of the Genetic algorithm (GA) are effectively combined together for solving the m-RSP problems. Solutions provided by the proposed approach are compared with the current research to show the effectiveness and practicability of the solution approach proposed.
Levesque, Luc
2012-01-01
A method is proposed to simplify analytical computations of the transfer function for electrical circuit filters, which are made from repetitive identical stages. A method based on the construction of Pascal's triangle is introduced and then a general solution from two initial conditions is provided for the repetitive identical stage. The present…
Experiments for Multi-Stage Processes
Tyssedal, John; Kulahci, Murat
2015-01-01
Multi-stage processes are very common in both process and manufacturing industries. In this article we present a methodology for designing experiments for multi-stage processes. Typically in these situations the design is expected to involve many factors from different stages. To minimize the req...... number of stages and also show how to identify and estimate the effects. Both regular and non-regular designs are considered as base designs in generating the overall design.......Multi-stage processes are very common in both process and manufacturing industries. In this article we present a methodology for designing experiments for multi-stage processes. Typically in these situations the design is expected to involve many factors from different stages. To minimize the...... required number of experimental runs, we suggest using mirror image pairs of experiments at each stage following the first. As the design criterion, we consider their projectivity and mainly focus on projectivity 3 designs. We provide the methodology for generating these designs for processes with any...
Charcoal Production via Multistage Pyrolysis
Adetoyese Olajire Oyedun; Ka Leung Lam; Chi Wai Hui
2012-01-01
Interests in charcoal usage have recently been re-ignited because it is believed that charcoal is a muchbetter fuel than wood. The conventional charcoal production consumes a large amount of energy due to the prolonged heating time and cooling time which contribute to the process completing in one to several days. Wood py-rolysis consists of both endothermic and exothermic reactions as well as the decomposition of the different components at different temperature range （hemicellulose： 200-260℃; cellulose： 240-350℃ and lignin： 280-500℃）. Inthis study we propose a multistagepyrolysis which is an approach to carry out pyrolysis with multiple heating stages so as to gain certain processing benefits. We propose a three-stage approach which includes rapid stepwise heating stage to a variable target temperatures of 250 ℃, 300℃, 350 ℃ and 400 ℃, slow and gradual heatingstage to a tinal temperature of 400℃ and adiabatic with cooling stage. The multi-stage pyrolysis process can save 30% energy and the processing time by using a first temperature target of 300 ℃and heating rate of 5℃.min-1 to produce a fixed-carbon yield of 25.73% as opposed to the base case with a fixed-carbon yield of23.18%.
Pourteau, Amaury; Bousquet, Romain; Vidal, Olivier; Plunder, Alexis; Duesterhoeft, Erik; Candan, Osman; Oberhänsli, Roland
2015-04-01
We provide new insights into the prograde evolution of HP/LT meta-sedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe-Mg-carpholite- and chloritoid-bearing rocks from the Afyon zone (Anatolia). Study samples, stemming from three different areas of the metamorphic belt, include typical quartz-carpholite veins as well as quartz-free and quartz-bearing phyllites. All samples exhibit multiple stages of carpholite, whereas zoning was until now rarely documented in this type of rocks. We document continuous, and discontinuous compositional (ferro-magnesian substitution) zoning of carpholite (overall XMg = 0.27-0.73) and chloritoid (overall XMg = 0.07-0.30), as well as clear equilibrium, and disequilibrium (i.e. reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2-20.0). Among this range, only values of 7-11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for (NaK)FMASH rock compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe-carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature, and calls for a future evaluation of possible use as a thermometer, valid for blueschist-facies conditions, which has so far been missing. In addition, calculations show significant effective bulk composition
褚菲; 王福利; 王小刚
2011-01-01
提出了一种核函数非线性偏最小二乘(PLS)与机理模型相结合的多级离心压缩机性能预测混合建模方法,用以预测离心压缩机的输出压比.通过分析大型离心压缩机多级压缩过程的机理,利用能最守恒关系,在压缩机各级气流损失计算和等熵效率定义的基础上建立了多级离心压缩机性能预测机理模型；利用核函数非线性PLS对机理模型的误差进行了修正.实验结果验证了该方法相比于机理模型的有效性,将其应用于实际生产过程中,取得了满意的效果.%A hybrid modeling method is proposed to predict the pressure ratio of multi-stage centrifugal compressor, which combines kernel nonlinear partial least squares (PLS) and principle model. Through analyzing the mechanism of multi-stage compression process, calculating airflow loss and defining isentropic efficiency, a principle model for performance prediction of multi-stage centrifugal compressor is established, and kernel nonlinear PLS is also used to correct the error of the principle model. Experiment analysis verifies the validity that the effectiveness of the method is better than that of ordinary principle model. The proposed method was applied to practical industrial process and result demonstrates that the method achieves satisfactory estimation performance.
Neural Network Learning for Principal Component Analysis： A Multistage Decomposition Approach
FENGDazheng; ZHANGXianda; BAOZheng
2004-01-01
This paper presents a novel neural network model for finding the principal components of an Ndimensional data stream. This neural network consists of r (≤N) neurons, where the i-th neuron has only N - i+1 weights and an N- i+1 dimensional input vector, while each neuron in most of the relative classical neural networks includes N weights and an N dimensional input vector. All the neurons are trained by the NIC algorithm under the single component case[7] so as to get a series of dimension-reducing principal components in which the dimension number of the i-th principal component is N- i+1. In multistage dimension-reducing processing, the weight vector of i-th neuron is always orthogonal to the subspace constructed from the weight vectors of the first i-1 neurons. By systematic reconstruction technique, wecan recover all the principal components from a series of dimension-reducing ones. Its remarkable advantage is that its computational efficiency of the neural network learning based on the Novel information criterion (NIC) is improved and the weight storage is reduced, by the multistage dimension-reducing processing (multistage decomposition)for the covariance matrix or the input vector sequence. In addition, we study several important properties of the NIC learning algorithm.
Khoo, Wai Gea
1999-01-01
This thesis proposes new methods, based on dynamic programming, for solving certain single-stage and multi-stage integer stochastic knapsack problems. These problems model stochastic portfolio optimization problems (SPOPs) which assume deterministic unit weight, and normally distributed unit return with known mean and variance for each item type. Given an initial wealth, the objective is to select a portfolio that maximizes the probability of achieving or exceeding a specified final return th...
Interconnected Levels of Multi-Stage Marketing
Vedel, Mette; Geersbro, Jens; Ritter, Thomas
2012-01-01
different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...... in a multi-stage marketing context. This understanding assists managers in assessing and balancing different aspects of multi- stage marketing. The triadic perspective also offers avenues for further research.......Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...
Chen, Zhao-Bo; Nie, Shu-Kai; Ren, Nan-Qi; Chen, Zhi-Qiang; Wang, Hong-Cheng; Cui, Min-Hua
2011-10-15
The results of the use of an expert system (ES) to control a novel multi-stage loop membrane bioreactor (MLMBR) for the simultaneous removal of organic substances and nutrients are reported. The study was conducted at a bench-scale plant for the purpose of meeting new discharge standards (GB21904-2008) for the treatment of chemical synthesis-based pharmaceutical wastewater (1200-9600 mg/L COD, 500-2500 mg/L BOD5, 50-200 mg/L NH4+-N and 105-400 mg/L TN in the influent water) by developing a distributed control system. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances and nitrogen levels in the outlet while using the minimum amount of energy. The proposed distributed control system, which is supervised by a Knowledge-Based Expert System (KBES) constructed with G2 (a tool for expert system development) and a back propagation BP artificial neural network, permits the on-line implementation of every operating strategy of the experimental system. A support vector machine (SVM) is applied to achieve pattern recognition. A set of experiments involving variable sludge retention time (SRT), hydraulic retention time (HRT) and dissolved oxygen (DO) was carried out. Using the proposed system, the amounts of COD, TN and NH4+-N in the effluent decreased by 55%, 62% and 38%, respectively, compared to the usual operating conditions. These improvements were achieved with little energy cost because the performance of the treatment plant was optimized using operating rules implemented in real time. PMID:21862097
唐小平; 白超英; 刘宽厚
2011-01-01
The grid-based raytracing algorithms,such as the finite-difference eikonal equation solver and the shortest-path method,are all based on the Fermat (minimum travel time) principle, which is able to track the first reflected arrivals only. In heterogeneous media involving a relatively larger velocity contrast or complex reflected interface. The seismic wavefronts are self-intersected, as a result, the rays are multi-paths. In order to simulate such multivalued and multiple reflected arrivals, we put forward an algorithm to trace the multivalued and multiple reflected arrivals, it referred as the extreme value algorithm based on the multistage modified shortest-path method, which is capable of tracking the multivalued and multiple reflected arrivals in velocity model included complex reflected interfaces. The principles of the extreme value are that;we firstly conduct down-wind raytracing from both sources and receivers to the sampled reflected interfaces and record the traveltimes and raypaths at each sampled reflected point,and sum up traveltime value at each reflected point, and form a stacked' traveltime-distance' curve (or surface for 3D case);secondly we solve extremum values for this stacked'traveltime-distance'curveCor surface).in which the location of the extreme points are the reflected points; finally we link the raypaths and add traveltimes from the source to the reflected point,and then to the receiver. Thus the multivalued and multiple reflected arrivals are successfully traced. This algorithm has a simple principle, high accuracy, fast CPU time and easy adaptation for complex media-Compared with the fast marching method and error analysis.it is evident that the extreme value of the multistage shortest-path method is a feasible and efficient algorithm for tracking the multivalued and multiple reflected arrivals.%基于网格单元扩展的射线追踪算法,如:较为流行的有限差分解程函方程法和最短路径法均是建立在费马(最小
Analysis and Optimization of a Multistage Inventory-Queue System
Liming Liu; Xiaoming Liu; David D. Yao
2004-01-01
An important issue in the management of supply chains and manufacturing systems is to control inventory costs at different locations throughout the system while satisfying an end-customer service-level requirement. The challenge involved is to solve a nonlinear constrained optimization problem that captures the key dynamics of a complex production-inventory system. In this paper, we first develop a multistage inventory-queue model and a job-queue decomposition approach that evaluates the perf...
DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection
Ouyang, Wanli; Luo, Ping; Zeng, Xingyu; Qiu, Shi; Tian, Yonglong; Li, Hongsheng; Yang, Shuo; Wang, Zhe; Xiong, Yuanjun; Qian, Chen; Zhu, Zhenyao; Wang, Ruohui; Loy, Chen-Change; Wang, Xiaogang; Tang, Xiaoou
2014-01-01
In this paper, we propose multi-stage and deformable deep convolutional neural networks for object detection. This new deep learning object detection diagram has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. With the proposed multi-stage training strategy, multiple classifiers are jointly optimized to process samples at different dif...
Return Vane Installed in Multistage Centrifugal Pump
Miyano, Masafumi; Kanemoto, Toshiaki; Kawashima, Daisuke; Wada, Akihiro; Hara, Takashi; Sakoda, Kazuyuki
2008-01-01
To optimize the stationary components in the multistage centrifugal pump, the effects of the return vane profile on the performances of the multistage centrifugal pump were investigated experimentally, taking account of the inlet flow conditions for the next stage impeller. The return vane, whose trailing edge is set at the outer wall position of the annular channel downstream of the vane and which discharges the swirl-less flow, gives better pump performances. By equipping such return vane w...
Multi-stage LTL transport systems in supply chain management
Gonzalez-Feliu, Jesus
2013-01-01
This paper aims to unify concepts and to describe the multi-stage transport systems and their integratyion to supply chain management. Multi-stage distribution systems are common logistics management, and often they are assimilated to multi-stage transport strategies. However, transport is often considered as an external operation or a specific stage, even when it is a multi-stage system. First, the paper presents the main concepts of multi-stage transport systems by defining the concept an m...
Pilot-scale multistage membrane process for the separation of CO2 from LNG-fired flue gas
Choi, Seung Hak
2013-06-01
In this study, a multistage pilot-scale membrane plant was constructed and operated for the separation of CO2 from Liquefied Natural Gas (LNG)-fired boiler flue gas of 1000 Nm3/day. The target purity and recovery of CO2 were 99 vol.% and 90%, respectively. For this purpose, asymmetric polyethersulfone (PES) hollow fibers membranes has been developed in our previous work and has evaluated the effects of operating pressure and feed concentration of CO2 on separation performance. The operating and permeation data obtained were also analyzed in relation with the numerical simulation data using countercurrent flow model. Based on these results, in this study, four-staged membrane process including dehumidification process has been designed, installed, and operated to demonstrate the feasibility of multistage membrane systems for removing CO2 from flue gases. The operation results using this plant were compared to the numerical simulation results on multistage membrane process. The experimental results matched well with the numerical simulation data. The concentration and the recovery of CO2 in the permeate stream of final stage were ranged from 95-99 vol.% and 70-95%, respectively, depending on the operating conditions. This study demonstrated the applicability of the membrane-based pilot plant for CO2 recovery from flue gas. © 2013 Elsevier B.V. All rights reserved.
Fuzzy-like multiple objective multistage decision making
Xu, Jiuping
2014-01-01
Decision has inspired reflection of many thinkers since the ancient times. With the rapid development of science and society, appropriate dynamic decision making has been playing an increasingly important role in many areas of human activity including engineering, management, economy and others. In most real-world problems, decision makers usually have to make decisions sequentially at different points in time and space, at different levels for a component or a system, while facing multiple and conflicting objectives and a hybrid uncertain environment where fuzziness and randomness co-exist in a decision making process. This leads to the development of fuzzy-like multiple objective multistage decision making. This book provides a thorough understanding of the concepts of dynamic optimization from a modern perspective and presents the state-of-the-art methodology for modeling, analyzing and solving the most typical multiple objective multistage decision making practical application problems under fuzzy-like un...
HOMOGENEOUS MULTISTAGE ARCHITECTURE FOR REAL-TIME IMAGE PROCESSING
Hanen Chenini
2012-12-01
Full Text Available In this article, we present a new multistage architecture oriented to real-time complex processing applications. Given a set of rules, this proposed architecture allows the using of different communication links (point to point link, hardware router… to connect unlimited number of parallel computing elements (software processors to follow the increasing complexity of algorithms. In particular, this work brings out a parallel implementation of multihypothesis approach for road recognition application on the proposed Multiprocessor Systemon-Chip (MP-SoC architecture. This algorithm is usually the main part of the lane keeping applications. Experimental results using images of a real road scene are presented. Using a low cost FPGA-based System-on-Chip, our hardware architecture is able to detect and recognize the roadsides in a time limit of 60 mSec. Moreover, we demonstrate that our multistage architecture may be used to achieve good speed-up in solving automotive applications.
Multi-stage magnetic induction mass accelerator
The magnetic induction method of mass acceleration readily lends itself to multi-staging. In the limit of many stages, such an accelerator approaches a distributed energy source system where only closing switches are necessary. We describe the design and performance of a three-stage accelerator, each driven by a separate capacitor bank. This system was modeled using a previously reported computer code. In order to do this the code was modified to calculate projectile acceleration through a succession of driver coils: Thermal conductivity and surface melting models were also added. The former is necessary due to the extended transit time through many stages. The latter is needed in anticipation of the more extreme ohmic heating when the capacitor banks are replaced by explosive-driven, magnetic flux compression generators. The performance goal of this system is to at least double the kinetic energy of a 0.3 kgm copperclad, steel projectile injected at a velocity of 300 m/sec from an explosive-driven gun. We then plan to test the system at the thermal and mechanical limit by using explosive-driven, magnetic flux compression generators as energy sources. We envision a six-stage system driven by three generators
Ping Wen; Kewen Tang; Jicheng Zhou; Panliang Zhang
2015-01-01
Based on the interfacial ligand exchange model and the law of conservation of mass, the multi-stage enantioselective liquid–liquid extraction model has been established to analyze and discuss on multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine (PGL) enantiomers. The influence of phase ratio, extractant concentra-tion, and PF6−concentration on the concentrations of enantiomers in the extract and raffinate was investigated by experiment and simulation. A good agreement between model and experiment was obtained. On this basis, the influence of many parameters such as location of stage, concentration levels, extractant excess, and number of stages on the symmetric separation performance was simulated. The optimal location of feed stage is the middle of fractional extraction equipment. The feed flow must satisfy a restricted relationship on flow ratios and the liquid throughout of centrifugal device. For desired purity specification, the required flow ratios decrease with extractant concentration and increase with PF6−concentration. When the number of stages is 18 stages at extractant excess of 1.0 or 14 stages at extractant excess of 2.0, the eeeq (equal enantiomeric excess) can reach to 99%.
GOUTAUDIER; Christelle; TENU; Richard; COUNIOUX; Jean-Jacques
2010-01-01
It is very rare that a one-step process of extraction leads to the pure compound with a high degree of purity specified by an industrial application.The various stages of a synthesis process and possible secondary reactions may lead to the synthesis of more or less complex and highly diluted solutions.In this work,the rationale and strategy for extraction and purification of a high added value compound are discussed.All the thinking is based on the knowledge and the exploitation of phase diagrams and then developed for different unit operations of the process.The most significant research tools are the experimental data and the modelling of phase equilibrium to estimate the yield of each step of extraction.The significant example chosen involves all the basic methods of phase separation,starting with liquid-vapour equilibrium:stripping of high volatility components and then more or less complex distillation are classically employed.The theoretical plateau number can be deduced from the equilibrium equation curves.The second step is based on the study of the liquid-liquid equilibrium and is an intermediate step for enrichment of the solution when distillation is not possible.A final step based on solid-liquid equilibrium consists of the selective crystallization of the pure product at low temperature,in order to satisfy the requirements of purity and safety imposed by industrial use.The conclusion includes all isolation operations in the form of a general extraction and purification scheme.
Chen, Kyle Dakai
Since the market for semiconductor products has become more lucrative and competitive, research into improving yields for semiconductor fabrication lines has lately received a tremendous amount of attention. One of the most critical tasks in achieving such yield improvements is to plan the in-line inspection sampling efficiently so that any potential yield problems can be detected early and eliminated quickly. We formulate a multi-stage inspection planning model based on configurations in actual semiconductor fabrication lines, specifically taking into account both the capacity constraint and the congestion effects at the inspection station. We propose a new mixed First-Come-First-Serve (FCFS) and Last-Come-First-Serve (LCFS) discipline for serving the inspection samples to expedite the detection of potential yield problems. Employing this mixed FCFS and LCFS discipline, we derive approximate expressions for the queueing delays in yield problem detection time and develop near-optimal algorithms to obtain the inspection logistics planning policies. We also investigate the queueing performance with this mixed type of service discipline under different assumptions and configurations. In addition, we conduct numerical tests and generate managerial insights based on input data from actual semiconductor fabrication lines. To the best of our knowledge, this research is novel in developing, for the first time in the literature, near-optimal results for inspection logistics planning in multi-stage production systems with congestion effects explicitly considered.
Chen, Zhao-bo; He, Zhang-wei; Tang, Cong-cong; Hu, Dong-xue; Cui, Yu-bo; Wang, Ai-jie; Zhang, Ying; Yan, Li-long; Ren, Nan-qi
2014-09-01
In this study, three novel multi-sparger multi-stage airlift loop membrane bioreactors (Ms(2)ALMBRs) were set up in parallel for treating synthetic high-strength 7-ACA pharmaceutical wastewater under different HRTs, temperatures and pHs, respectively. During the 200-day operating time, average COD removal efficiencies were 94.96%, 96.05% and 93.9%. While average 7-ACA removal efficiencies were 66.44%, 59.04% and 59.60%, respectively. The optimal conditions were 10h, 15-35°C and 7-9 for HRT, temperature and pH, respectively. Moreover, the sludge characteristics and microorganism drug-resistances were explored. Results showed that different temperatures and pHs influenced contaminant removals by affecting MLSS concentration and β-lactamase activity significantly. In addition, mathematical statistical models, built on the polynomial and linear regression techniques, were developed for exploring the inner relationships between HRT, temperature and pH changes and MLSS concentrations, β-lactamase activities and contaminant removals of the Ms(2)ALMBR system. PMID:24994681
Jingjing Guo; Haitao Wang; Liehui Zhang; Chengyong Li
2015-01-01
Triple-porosity model is usually adopted to describe reservoirs with multiscaled pore spaces, including matrix pores, natural fractures, and vugs. Multiple fractures created by hydraulic fracturing can effectively improve the connectivity between existing natural fractures and thus increase well deliverability. However, little work has been done on pressure transient behavior of multistage fractured horizontal wells in triple-porosity reservoirs. Based on source/sink function method, this pap...
Sensor placement for active control of surge in multi-stage axial compressors
In this paper, a methodology is presented to determine the optimal sensor choice for active control of surge in multi-stage axial flow compressors. In this method, the compression system is modeled based on the conservation equations of mass, momentum and energy. The model is then linearized at unstable steady-state points, and the Linear Quadratic Gaussian controllers are designed to stabilize the compression system. The effects of different sensor types and locations on active stabilization process are then investigated for both low and high compressor speeds. Based on this sensor placement methodology, the sensor location and type are selected in order to minimize the estimation error and air bleed mass flow. The results are presented to show the effectiveness of the methodology. These results show that the proper sensor location is dependent on the compressor rotational speed and the instability origination
王春峰; 杨建林; 蒋祥林
2002-01-01
The current portfolio model for property-liability insurance company is only single period that can not meet the practical demands of portfolio management, and the purpose of this paper is to develop a multiperiod model for its portfolio problem. The model is a multistage stochastic programming which considers transaction costs, cash flow between time periods, and the matching of asset and liability; it does not depend on the assumption for normality of return distribution. Additionally, an investment constraint is added. The numerical example manifests that the multiperiod model can more effectively assist the property-liability insurer to determine the optimal composition of insurance and investment portfolio and outperforms the single period one.%财产保险公司的投资组合模型均是单期的,不能充分满足投资组合管理实践的需要.为提供多期规划工具,建立了一个多阶段的随机规划模型.它考虑了交易成本,分析了不同时期的现金流,讨论了资产负债的匹配问题,去掉了收益分布的正态假定,并增加了一种投资约束.数值实例的计算结果表明,多期模型能更好地帮助财产保险公司选择保险与投资的优化组合,其性能要优于单期模型.
Dynamics of multi-stage infections on networks
Sherborne, N; Kiss, I Z
2015-01-01
This paper investigates the dynamics of infectious diseases with a non-exponentially distributed infectious period. This is achieved by considering a multi-stage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks. Stochastic simulations of dynamics on networks are performed and compared to the results of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. The agreement between the pairwise and simulation methods is excellent in the cases we consider.
Multi-stage shifter for subsecond time resolution of emulsion gamma-ray telescopes
To observe gamma-ray sources precisely, a balloon-borne experiment with a new type of detector, the emulsion gamma-ray telescope, is planned. A multi-stage shifter mechanism based on the concept of an analog clock serves as a time stamper with subsecond time resolution and uses multiple moving stages mounted on the emulsion chambers. This new technique was employed in a test experiment using a small-scale model in a short-duration balloon flight. Tracks recorded in nuclear emulsion were read by a fully automated scanning system, were reconstructed, and time information were assigned by analysis of their position displacements in the shifter layers. The estimated time resolution was 0.06–0.15 s. The number of tracks passing through the detector was counted every second, and hadron jets were detected as significant excesses observed in the counting rate. In future, the multi-stage shifter is greatly contributing to ongoing efforts to increase the effective area of emulsion gamma-ray telescopes.
Multi-stage shifter for subsecond time resolution of emulsion gamma-ray telescopes
Rokujo, H.; Aoki, S.; Takahashi, S.; Kamada, K.; Mizutani, S.; Nakagawa, R.; Ozaki, K.
2013-02-01
To observe gamma-ray sources precisely, a balloon-borne experiment with a new type of detector, the emulsion gamma-ray telescope, is planned. A multi-stage shifter mechanism based on the concept of an analog clock serves as a time stamper with subsecond time resolution and uses multiple moving stages mounted on the emulsion chambers. This new technique was employed in a test experiment using a small-scale model in a short-duration balloon flight. Tracks recorded in nuclear emulsion were read by a fully automated scanning system, were reconstructed, and time information were assigned by analysis of their position displacements in the shifter layers. The estimated time resolution was 0.06-0.15 s. The number of tracks passing through the detector was counted every second, and hadron jets were detected as significant excesses observed in the counting rate. In future, the multi-stage shifter is greatly contributing to ongoing efforts to increase the effective area of emulsion gamma-ray telescopes.
Interconnected levels of multi-stage marketing: A triadic approach
Vedel, Mette; Geersbro, Jens; Ritter, Thomas
2012-01-01
Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. ...
Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems
Hassan Saberi Nik
2014-01-01
Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.
ZHUO Jie; SUN Chao
2004-01-01
The performance of the multistage Constant Modulus (CM) array, one of the most striking blind beamforming algorithms, for the source Directions-of-Arrival (DOA) estimation was analyzed via computer simulations and water tank experiments, and was compared to that of other DOA estimation algorithms including the ‘non-blind' and the ‘blind'. Firstly, a nominal array model and an array model with gain and phase perturbations were established,respectively. Secondly, the multistage CM array algorithm was described and computer simulations were conducted. Simulation results showed that the multistage CM array could correctly estimate the DOA at the same time when the sources were blindly recovered, and the angle separating ability of the algorithm was beyond the Rayleigh resolution limit. By changing the variance of the array model errors, it was also verified that the multistage CM array was more robust to the errors than some other algorithms mentioned in this paper. Finally, water tank experiments and data processing results were provided. Situations with different array sizes and source angular separations were considered. It was shown that the results were in good agreement with computer simulations. Results of computer simulations and water tank experiments verified that the DOAs of the multiple independent sources could be blindly and robustly estimated with the multistage CM array.
Noe, Reinhold; Maucher, A.; Ricken, Raimund
1999-04-01
A 4-stage spectral polarimeter based on Ti:LiNbO3 acousto- optical TE-TM converters has been realized. It has about 20 dB stopband suppression and can measure polarimetric spectra as well as the time evolution of the state of polarization. A simple optical spectrum analyzer is also proposed.
Generalisations of the two-mutation carcinogenesis model of Moolgavkar, Venzon and Knudson (to allow for an arbitrary number of mutational stages), and of the model of Armitage and Doll, are fitted to the Japanese atomic bomb survivor mortality data. Models with two or three mutations give adequate descriptions of the excess mortality of solid cancers. For leukaemia the fit of the three-mutation model is preferable to that of the two-mutation model. The optimal three-mutation leukaemia model provides a satisfactory fit only when both first and second mutation rates are radiation-affected. Examination of other epidemiological data leads to the conclusion that without some extra stochastic 'stage' appended (such as might be provided by consideration of the process of development of a malignant clone from a single malignant cell) the two-mutation model is perhaps not well able to describe the pattern of excess risk for solid cancers that is often seen after exposure to radiation. The optimal three-mutation models predict low-dose population risks for a current UK population of 5.5-8.0 x 10-2 excess cancer deaths Sv-1, 6.8-9.8 x 10-2 radiation-induced cancer deaths Sv-1 or 1.0-1.4 years of life lost Sv-1. Risks for a current Japanese population are 6.8 x 10-2 excess cancer deaths Sv-1, 8.0 x 10-2 radiation-induced cancer deaths Sv-1, or 1.2 years of life lost Sv-1. (author)
Multi-stage fuzzy load frequency control using PSO
In this paper, a particle swarm optimization (PSO) based multi-stage fuzzy (PSOMSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operate under deregulation based on the bilateral policy scheme. In this strategy the control is tuned on line from the knowledge base and fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by PSO algorithm, that has a strong ability to find the most optimistic results. The motivation for using the PSO technique is to reduce fuzzy system effort and take large parametric uncertainties into account. This newly developed control strategy combines the advantage of PSO and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed PSO based MSF (PSOMSF) controller is tested on a three-area restructured power system under different operating conditions and contract variations. The results of the proposed PSOMSF controller are compared with genetic algorithm based multi-stage fuzzy (GAMSF) control through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes
An integral equation solution for multistage turbomachinery design calculations
Mcfarland, Eric R.
1993-01-01
A method was developed to calculate flows in multistage turbomachinery. The method is an extension of quasi-three-dimensional blade-to-blade solution methods. Governing equations for steady compressible inviscid flow are linearized by introducing approximations. The linearized flow equations are solved using integral equation techniques. The flows through both stationary and rotating blade rows are determined in a single calculation. Multiple bodies can be modelled for each blade row, so that arbitrary blade counts can be analyzed. The method's benefits are its speed and versatility.
Diggle, Peter J
2007-01-01
Model-based geostatistics refers to the application of general statistical principles of modeling and inference to geostatistical problems. This volume provides a treatment of model-based geostatistics and emphasizes on statistical methods and applications. It also features analyses of datasets from a range of scientific contexts.
Parveen Kaur Parmar
Full Text Available Myanmar transitioned to a nominally civilian parliamentary government in March 2011. Qualitative reports suggest that exposure to violence and displacement has declined while international assistance for health services has increased. An assessment of the impact of these changes on the health and human rights situation has not been published.Five community-based organizations conducted household surveys using two-stage cluster sampling in five states in eastern Myanmar from July 2013-September 2013. Data was collected from 6, 178 households on demographics, mortality, health outcomes, water and sanitation, food security and nutrition, malaria, and human rights violations (HRV. Among children aged 6-59 months screened, the prevalence of global acute malnutrition (representing moderate or severe malnutrition was 11.3% (8.0-14.7. A total of 250 deaths occurred during the year prior to the survey. Infant deaths accounted for 64 of these (IMR 94.2; 95% CI 66.5-133.5 and there were 94 child deaths (U5MR 141.9; 95% CI 94.8-189.0. 10.7% of households (95% CI 7.0-14.5 experienced at least one HRV in the past year, while four percent reported 2 or more HRVs. Household exposure to one or more HRVs was associated with moderate-severe malnutrition among children (14.9 vs. 6.8%; prevalence ratio 2.2, 95% CI 1.2-4.2. Household exposure to HRVs was associated with self-reported fair or poor health status among respondents (PR 1.3; 95% CI 1.1-1.5.This large survey of health and human rights demonstrates that two years after political transition, vulnerable populations of eastern Myanmar are less likely to experience human rights violations compared to previous surveys. However, access to health services remains constrained, and risk of disease and death remains higher than the country as a whole. Efforts to address these poor health indicators should prioritize support for populations that remain outside the scope of most formal government and donor programs.
Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows
Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.
2016-06-01
A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.
Critical assessment of multistage pseudospark switches
Frank, K; Petzenhauser, I
2004-01-01
In repetitive pulsed power there is a strong increasing demand for the development of high voltage pulse forming networks (PFN), which can be operated with high repetition rates and simultaneously with extremely long lifetime. Typical applications for such PFN's are modulators for the next generation of accelerators, pulse generators for flue gas cleaning with electrostatic precipitators, high power gas lasers, accelerators for medical radiography and drivers of high power microwaves. For instance, in the next generation linear collider the traditional thyratron/PFN modulators will no longer meet the new requirements. Multistage thyratrons are available for hold- off voltages up to 240 kV, but their handling is complicated, the reliability poor and the costs are high. To equip the 1600 modulators, which are planned for SLAC's next linear collider, with multistage thyratrons is unaffordable. Solid-state devices in combination with step-up transformers are under discussion, but their performance is not yet sati...
Multi-stage drying of PVA aqueous solution film; PVA suiyoeki no bunri tofu kanso
Kishi, M.; Inoue, S. [Dai Nippon Printing Co. Ltd., Tokyo (Japan); Imakawa, H. [Kobe University, Kobe (Japan), Faculty of Engineering; Okazaki, M. [Kyoto University, Kyoto (Japan). Faculty of Engineering
1995-07-10
In a multi-stage coating and drying process, in which PVA (Polyvinyl alcohol) film was formed by repeating twice a set of operations consisting of coating PVA aqueous solution and convective drying of it, the drying process was numerically simulated using a drying model based on mass transfer within a coated film. The possibility of minimizing drying time was also investigated. Total drying time, summed over the first and second stages, required to yield a target mean moisture concentration in the solution film was calculated while changing the final mean moisture concentration of the first stage. It was found that the minimum drying time appeared for each target concentration and the effect of reduction on the total drying time became significant with increasing target concentration. 12 refs., 5 figs., 1 tab.
The optimal multi-stage contest
Fu, Qiang; Lu, Jingfeng
2006-01-01
This paper investigates the optimal (effort-maximizing) structure of multi-stage sequential-elimination contests with pooling competition in each stage. We allow the contest organizer to design the contest structure in two arms: contest sequence (the number of stages, and the number of remaining contestants in each stage), and prize allocation. First, we find that the optimality of "winner-take-all" (single final winner, single final prize, no intermediate prizes) is independent of the contes...
Multi-stage sampling in genetic epidemiology.
Whittemore, A S; Halpern, J
When data are expensive to collect, it can be cost-efficient to sample in two or more stages. In the first stage a simple random sample is drawn and then stratified according to some easily measured attribute. In each subsequent stage a random subset of previously selected units is sampled for more detailed observation, with a unit's sampling probability determined by its attributes as observed in the previous stages. These designs are useful in many medical studies; here we use them in genetic epidemiology. Two genetic studies illustrate the strengths and limitations of the approach. The first study evaluates nuclear and mitochondrial DNA in U.S. blacks. The goal is to estimate the relative contributions of white male genes and white female genes to the gene pool of African-Americans. This example shows that the Horvitz-Thompson estimators proposed for multi-stage designs can be inefficient, particularly when used with unnecessary stratification. The second example is a multi-stage study of familial prostate cancer. The goal is to gather pedigrees, blood samples and archived tissue for segregation and linkage analysis of familial prostate cancer data by first obtaining crude family data from prostate cancer cases and cancer-free controls. This second example shows the gains in efficiency from multi-stage sampling when the individual likelihood or quasilikelihood scores vary substantially across strata. PMID:9004389
Bayesian synthetic evaluation of multistage reliability growth with instant and delayed fix modes
无
2008-01-01
In the multistage reliability growth tests with instant and delayed fix modes, the failure data can be assumed to follow Weibull processes with different parameters at different stages. For the Weibull process within a stage, by the proper selection of prior distribution form and the parameters, a concise posterior distribution form is obtained, thus simplifying the Bayesian analysis. In the multistage tests, the improvement factor is used to convert the posterior of one stage to the prior of the subsequent stage. The conversion criterion is carefully analyzed to determine the distribution parameters of the subsequent stage's variable reasonably. Based on the mentioned results, a new synthetic Bayesian evaluation program and algorithm framework is put forward to evaluate the multistage reliability growth tests with instant and delayed fix modes. The example shows the effectiveness and flexibility of this method.
Design of intermediate die shape of multistage profile drawing for linear motion guide
Lee, Sang Kon; Lee, Jae Eun; Kim, Sung Min; Kim, Byung Min [Pusan National University, Busan (Korea, Republic of)
2010-12-15
The design of an intermediate die shape is very important in multistage profile drawing. In this study, two design methods for the intermediate die shape of a multistage profile drawing for producing a linear motion guide (LM) guide is proposed. One is the electric field analysis method using the equipotential lines generated by electric field analysis, and the other is the virtual die method using a virtual drawing die constructed from the initial material and the final product shape. In order to design the intermediate die shapes of a multistage profile drawing for producing LM guide, the proposed design methods are applied, and then FE analysis and profile drawing experiment are performed. As a result, based on the measurement of dimensional accuracy, it can be known that the intermediate die shape can be designed effectively
Said Alforjani Said
2013-10-01
Full Text Available This work describes how the design and operation parameters of the Multi-Stage Flash (MSF desalination process are optimised when the process is subject to variation in seawater temperature, fouling and freshwater demand throughout the day. A simple polynomial based dynamic seawater temperature and variable freshwater demand correlations are developed based on actual data which are incorporated in the MSF mathematical model using gPROMS models builder 3.0.3. In addition, a fouling model based on stage temperature is considered. The fouling and the effect of noncondensable gases are incorporated into the calculation of overall heat transfer co-efficient for condensers. Finally, an optimisation problem is developed where the total daily operating cost of the MSF process is minimised by optimising the design (no of stages and the operating (seawater rejected flowrate and brine recycle flowrate parameters.
Multistage Magnetic Separator of Cells and Proteins
Barton, Ken; Ainsworth, Mark; Daily, Bruce; Dunn, Scott; Metz, Bill; Vellinger, John; Taylor, Brock; Meador, Bruce
2005-01-01
The multistage electromagnetic separator for purifying cells and magnetic particles (MAGSEP) is a laboratory apparatus for separating and/or purifying particles (especially biological cells) on the basis of their magnetic susceptibility and magnetophoretic mobility. Whereas a typical prior apparatus based on similar principles offers only a single stage of separation, the MAGSEP, as its full name indicates, offers multiple stages of separation; this makes it possible to refine a sample population of particles to a higher level of purity or to categorize multiple portions of the sample on the basis of magnetic susceptibility and/or magnetophoretic mobility. The MAGSEP includes a processing unit and an electronic unit coupled to a personal computer. The processing unit includes upper and lower plates, a plate-rotation system, an electromagnet, an electromagnet-translation system, and a capture-magnet assembly. The plates are bolted together through a roller bearing that allows the plates to rotate with respect to each other. An interface between the plates acts as a seal for separating fluids. A lower cuvette can be aligned with as many as 15 upper cuvette stations for fraction collection during processing. A two-phase stepping motor drives the rotation system, causing the upper plate to rotate for the collection of each fraction of the sample material. The electromagnet generates a magnetic field across the lower cuvette, while the translation system translates the electromagnet upward along the lower cuvette. The current supplied to the electromagnet, and thus the magnetic flux density at the pole face of the electromagnet, can be set at a programmed value between 0 and 1,400 gauss (0.14 T). The rate of translation can be programmed between 5 and 2,000 m/s so as to align all sample particles in the same position in the cuvette. The capture magnet can be a permanent magnet. It is mounted on an arm connected to a stepping motor. The stepping motor rotates the arm to
Multistage epidermal carcinogenesis in transgenic mice: cooperativity and paradox.
Greenhalgh, D A; Wang, X J; Roop, D R
1996-04-01
Skin cancer is one of the most prevalent forms of human neoplasia with a frequency approaching that of all other neoplasms combined. Given this alarming statistic, which may be further exacerbated by increased ultraviolet B irradiation from ozone depletion, it is vital that realistic, relevant model systems are developed to increase our understanding of the underlying molecular mechanisms of carcinogenesis that result in or evaluate new treatment modalities. Toward this goal, the ability to stably introduce genes into the germline of mice has greatly enhanced prospects for generation of transgenic animal models of multistage molecular carcinogenesis. Moreover, when genes are combined with regulatory sequences that target their expression to specific tissues, investigators are able to study neoplasia both in the context of living organisms and in the tissues suspected of being the targets of these genes. The epidermis is an attractive tissue for targeted gene expression; not only is it a model for epithelial diseases in general, but the accessibility of the epidermis allows easy detection of progressive pathological changes that result from transgene expression and facilitates assessment of the potential role played by environmental factors. We have developed a targeting vector based on the human keratin gene (HK1), which is expressed exclusively in the epidermis of transgenic mice, at a late stage in development and in both basal and differentiated cells. Through the use of this targeting ability, rasHa, fos, and TGF alpha transgenic mice have been developed that exhibit preneoplastic epidermal hyperplasia and hyperkeratosis, and later benign, regression prone papillomas. Together, coexpression of two oncogenes cooperated to give autonomous papillomas, which possessed the phenotypic stability to allow assessment of a third genetic event, namely loss of the p53 tumor suppressor gene, via mating with p53 knockout mice. Loss of p53 expression, however, identified a
Sharpening of the multistage modified comb filters
Nikolić Marko
2011-01-01
Full Text Available This paper describes the application of filter sharpening method to the modified comb filter (MCF in the case of decimation factor, which is product of two or more positive integers. It is shown that in the case of multistage decimation with MCF, filters in each stage are also MCF. Applying the sharpening to the decimation filter in the last stage provides very good results, with savings in the number of operations comparing to the case of sharpening of the complete filter. Direct-form FIR polyphase filter structure is proposed for the filters in each stage.
Multistage Stochastic Programming Problems; Stability and Approximation
Kaňková, Vlasta
Berlin: Springer, 2007 - (Waldmann, K.; Stocker, U.), s. 595-600 ISBN 978-3-540-69994-1. [Annual International Conference of the German Operations Research Society (GOR). Karlsruhe (DE), 06.09.2006-08.09.2006] R&D Projects: GA ČR GA402/04/1294; GA ČR GA402/05/0115; GA ČR(CZ) GA402/06/1417 Institutional research plan: CEZ:AV0Z10750506 Keywords : Multistage Sstochastic programming problems * individal probability constraints * autoregressive (generally) nonlinear sequence Subject RIV: BB - Applied Statistics, Operational Research
Unemployment problem via multistage stochastic programming
Kaňková, Vlasta; Chovanec, Petr
Bratislava: University of Economics in Bratislava, 2006 - (Pekár, J.; Lukáčik, M.), s. 69-76 ISBN 80-8078-129-X. [Quantitative Methods in Economics. Multiple Criteria Decision Making XIII. Bratislava (SK), 06.12.2006-08.12.2006] R&D Projects: GA ČR GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : Multistage stochastic programming problems * unemployment problem * restructuralization * random element * probability constraints Subject RIV: BB - Applied Statistics, Operational Research
Catalytic multi-stage liquefaction (CMSL)
Comolli, A.G.; Ganguli, P.; Karolkiewicz, W.F.; Lee, T.L.K.; Pradhan, V.R.; Popper, G.A.; Smith, T.; Stalzer, R.
1996-11-01
Under contract with the U.S. Department of Energy, Hydrocarbon Technologies, Inc. has conducted a series of eleven catalytic, multi-stage, liquefaction (CMSL) bench scale runs between February, 1991, and September, 1995. The purpose of these runs was to investigate novel approaches to liquefaction relating to feedstocks, hydrogen source, improved catalysts as well as processing variables, all of which are designed to lower the cost of producing coal-derived liquid products. This report summarizes the technical assessment of these runs, and in particular the evaluation of the economic impact of the results.
Yi, Huqiang; Liu, Peng; Sheng, Nan; Gong, Ping; Ma, Yifan; Cai, Lintao
2016-03-01
Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible zeta potential around -30 mV at pH 7.4, but switched to +15 mV at pH 5.0. Moreover, FD-NPs effectively loaded DOX with a loading capacity at 15.7 wt%. At pH 7.4, only 24.5% DOX was released within 60 h. However, at pH 5.0, the presence of 10 mM DTT dramatically accelerated DOX release with over 90% of DOX released within 10 h. Although the FD-NPs only enhanced DOX uptake in FA receptor positive (FR+) cancer cells at pH 7.4, a weak acidic condition promoted FD-NP-facilitated DOX uptake in both FR+ HeLa and FR- A549 cells, as well as significantly improving cellular binding and end/lysosomal escape. In vivo studies in a HeLa cancer model demonstrated that the charge-reversible FD-NPs delivered DOX into tumors more effectively than charge-irreversible nanoparticles. Hence, these multistage responsive FD-NPs would serve as highly efficient drug vectors for targeted cancer chemotherapy.Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible
Nonlinear resonances in a multi-stage free-electron laser amplifier
Hashimoto, S. [Graduate Univ. for Advanced Studies, Ibaraki-ken (Japan); Takayama, K. [National Lab. for High Energy Physics, Ibaraki-ken (Japan)
1995-12-31
A two-beam accelerator (TBA) is a possible candidate of future linear colliders, in which the demanded rf power is provided by a multi-stage free-electron laser (MFEL). After if amplification in each stage, a driving beam is re-accelerated by an induction unit and propagates into the next stage. Recently it has been recognized that the multi-stage character of the MFEL causes resonances between its periodicity and the synchrotron motion in an rf bucket. Since the synchrotron oscillation is strongly modulated by the resonance and at the worst a large fraction of particles is trapped in the resonance islands, the nonlinear resonances in the FEL longitudinal beam dynamics can lead to notable degradation of the MFEL performance, such as output fluctuation and phase modulation which have been big concerns in the accelerator society. The overall efficiency of the MFEL and the quality of the amplified microwave power are key issues for realizing the TBA/FEL Particularly the rf phase and amplitude errors must be maintained within tolerance. One of significant obstacles is an amplification of undesired modes. If a small-size waveguide is employed, the FEL resonance energies for undesired higher order modes shift very far from that for a fundamental mode; so it is possible to prevent higher order modes from evolving. Such a small-size waveguide, however, gives a high power density in the FEL. Simulation results have demonstrated that the nonlinear resonances occur in die FEL longitudinal motion when the power density exceeds some threshold. An analytical method for studying the nonlinear resonance in the TBA/FEL is developed based on the macroparticle model which can describe analytically the drastic behaviors in the evolutions of the phase and amplitude. In the theory the basic 1D-FEL equations are reduced to a nonlinear pendulum equation with respect to the ponderomotive phase.
Subsychronous vibration of multistage centrifugal compressors forced by rotating stall
Fulton, J. W.
1987-01-01
A multistage centrifugal compressor, in natural gas re-injection service on an offshore petroleum production platform, experienced subsynchronous vibrations which caused excessive bearing wear. Field performance testing correlated the subsynchronous amplitude with the discharge flow coefficient, demonstrating the excitation to be aerodynamic. Adding two impellers allowed an increase in the diffuser flow angle (with respect to tangential) to meet the diffuser stability criteria based on factory and field tests correlated using the theory of Senoo (for rotating stall in a vaneless diffuser). This modification eliminated all significant subsynchronous vibrations in field service, thus confirming the correctness of the solution. Other possible sources of aerodynamically induced vibrations were considered, but the judgment that those are unlikely has been confirmed by subsequent experience with other similar compressors.
Silicon nanowire networks for multi-stage thermoelectric modules
Highlights: • Fabricated flexible single, double, and quadruple stacked Si thermoelectric modules. • Measured an enhanced power production of 27%, showing vertical stacking is scalable. • Vertically scalable thermoelectric module design of semiconducting nanowires. • Design can utilize either p or n-type semiconductors, both types are not required. • ΔT increases with thickness therefore power/area can increase as modules are stacked. - Abstract: We present the fabrication and characterization of single, double, and quadruple stacked flexible silicon nanowire network based thermoelectric modules. From double to quadruple stacked modules, power production increased 27%, demonstrating that stacking multiple nanowire thermoelectric devices in series is a scalable method to generate power by supplying larger temperature gradient. We present a vertically scalable multi-stage thermoelectric module design using semiconducting nanowires, eliminating the need for both n-type and p-type semiconductors for modules
Enrique Arriola-Guevara
2007-01-01
Full Text Available Se presenta un análisis comparativo de modelos de flujo desarrollados para los sólidos de un sistema de lechos fuente en multietapa (multistage spouted bed diseñado por Arriola (1997. Se seleccionaron modelos de distribución del tiempo de residencia de los sólidos adecuados para la aplicación comercial del sistema en el tratamiento de granos y semillas. La determinación experimental de la función de distribución del tiempo de residencia se llevó acabo mediante la técnica estímulo-respuesta utilizando partículas coloreadas. Se compararon cuatro modelos: tres de compartimentos y el de tanques-en-serie. La comparación de esos modelos mostró que los de compartimentos son los más apropiados para aplicaciones comerciales. El análisis estadístico permite afirmar que el modelo más recomendable, debido a su simplicidad, es el modelo de compartimentos propuesto por ArriolaA comparative analysis of flow models developed for the solids in a multistage spouted bed system designed by Arriola (1997, is presented. Models for the residence time distribution, suitable for commercial applications in processing seeds and grains, has been selected in the study. The experimental residence time distribution function was obtained by the stimulus-response technique using colored particles. Four models were compared: three compartment models, and the stirred-tank-in-series model. Evaluation of these models showed that the compartment models are more suitable for commercial applications. The statistical analysis allows to conclude that the best model, due to its simplicity, is the compartment model proposed by Arriola
Paramagnetic defects in multistage ion-implanted polyamide films
multistage ion implantation accompanied with the decreasing in the implantation energy thus permits to create the highly conductive channels between the surface and the buried conducting carbonaceous layer appearing in the interior of the implanted region that opens up the fresh opportunities for fabrication the polymer-based planar functional electronic devices
Heimann, Tobias; Delingette, Hervé
2011-01-01
This chapter starts with a brief introduction into model-based segmentation, explaining the basic concepts and different approaches. Subsequently, two segmentation approaches are presented in more detail: First, the method of deformable simplex meshes is described, explaining the special properties of the simplex mesh and the formulation of the internal forces. Common choices for image forces are presented, and how to evolve the mesh to adapt to certain structures. Second, the method of point...
Mahboobeh Pakzad; Salar Faramarzi; Amir Ghamarani
2014-01-01
Background and Aim : Hearing loss affects human adjustment with environment and may be followed by mental complications such as behavioral problems. This study was conducted to investigate the effectiveness of group behavioral management training of mothers based on the model of positive parenting on the rate of behavioral disorders of primary school deaf students in Isfahan.Methods: The research method was semi-experimental with pre and post-test plan and control group. Using multi-stage sam...
Multistage Robust Unit Commitment with Dynamic Uncertainty Sets and Energy Storage
Lorca, Alvaro; Sun, Xu Andy
2016-01-01
The deep penetration of wind and solar power is a critical component of the future power grid. However, the intermittency and stochasticity of these renewable resources bring significant challenges to the reliable and economic operation of power systems. Motivated by these challenges, we present a multistage adaptive robust optimization model for the unit commitment (UC) problem, which models the sequential nature of the dispatch process and utilizes a new type of dynamic uncertainty sets to ...
CFD analysis of unsteady cavitation phenomena in multistage pump with inducer
This paper presents the numerical simulation of the cavitating flow phenomena in the suction part of a radial-flow multistage water pump with a high rotational speed. The pump is equipped with an inducer. Besides the usual focus on the cavitation inception or the drop of the pump total head this CFD analysis also studies the possibility of the cavitation surge and attempts to quantify the risk of cavitation erosion for different flow conditions. The ANSYS CFX commercial CFD package was used to solve the URANS equations coupled with the Rayleigh-Plesset Model. The SST-SAS turbulence model was employed to capture unsteady phenomena inside the pump. The model for the prediction of the cavitation erosion risk is based on coupling the CFD analysis of 3D turbulent flow with the analysis of the dynamics of bubbles travelling along selected trajectories using the full Rayleigh-Plesset equation. The model assumes that the water at the pump inlet contains a known number of nuclei with a known size distribution. The erosion potential (or aggressiveness) of the collapse is estimated from the energy dissipated during the collapse. The presented CFD analysis has provided a map of regions endangered by cavitation erosion. The cavitation instability in the backflow vortices has been detected at 60% of the optimal flow coefficient close to the NPSHr value.
Rowe, Sidney E.
2010-01-01
In September 2007, the Engineering Directorate at the Marshall Space Flight Center (MSFC) created the Design System Focus Team (DSFT). MSFC was responsible for the in-house design and development of the Ares 1 Upper Stage and the Engineering Directorate was preparing to deploy a new electronic Configuration Management and Data Management System with the Design Data Management System (DDMS) based upon a Commercial Off The Shelf (COTS) Product Data Management (PDM) System. The DSFT was to establish standardized CAD practices and a new data life cycle for design data. Of special interest here, the design teams were to implement Model Based Definition (MBD) in support of the Upper Stage manufacturing contract. It is noted that this MBD does use partially dimensioned drawings for auxiliary information to the model. The design data lifecycle implemented several new release states to be used prior to formal release that allowed the models to move through a flow of progressive maturity. The DSFT identified some 17 Lessons Learned as outcomes of the standards development, pathfinder deployments and initial application to the Upper Stage design completion. Some of the high value examples are reviewed.
Synthetic Multiple-Imputation Procedure for Multistage Complex Samples
Zhou Hanzhi
2016-03-01
Full Text Available Multiple imputation (MI is commonly used when item-level missing data are present. However, MI requires that survey design information be built into the imputation models. For multistage stratified clustered designs, this requires dummy variables to represent strata as well as primary sampling units (PSUs nested within each stratum in the imputation model. Such a modeling strategy is not only operationally burdensome but also inferentially inefficient when there are many strata in the sample design. Complexity only increases when sampling weights need to be modeled. This article develops a generalpurpose analytic strategy for population inference from complex sample designs with item-level missingness. In a simulation study, the proposed procedures demonstrate efficient estimation and good coverage properties. We also consider an application to accommodate missing body mass index (BMI data in the analysis of BMI percentiles using National Health and Nutrition Examination Survey (NHANES III data. We argue that the proposed methods offer an easy-to-implement solution to problems that are not well-handled by current MI techniques. Note that, while the proposed method borrows from the MI framework to develop its inferential methods, it is not designed as an alternative strategy to release multiply imputed datasets for complex sample design data, but rather as an analytic strategy in and of itself.
PARALLEL MULTI-STAGE & MULTI-STEP METHOD IN ODES
Xiao-qiu Song
2000-01-01
In this paper, the theory of parallel multi-stage & multi-step method is dis cussed, which is a form of combining Runge-Kutta method with linear multi-step method that can be used for parallel computation.
Wang, Wenrui; Wu, Yaohua; Wu, Yingying
2016-04-01
E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.
Wang, Wenrui; Wu, Yaohua; Wu, Yingying
2016-05-01
E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.
Multi-stage high order semi-Lagrangian schemes for incompressible flows in Cartesian geometries
Cameron, Alexandre; Dormy, Emmanuel
2016-01-01
Efficient transport algorithms are essential to the numerical resolution of incompressible fluid flow problems. Semi-Lagrangian methods are widely used in grid based methods to achieve this aim. The accuracy of the interpolation strategy then determines the properties of the scheme. We introduce a simple multi-stage procedure which can easily be used to increase the order of accuracy of a code based on multi-linear interpolations. This approach is an extension of a corrective algorithm introduced by Dupont \\& Liu (2003, 2007). This multi-stage procedure can be easily implemented in existing parallel codes using a domain decomposition strategy, as the communications pattern is identical to that of the multi-linear scheme. We show how a combination of a forward and backward error correction can provide a third-order accurate scheme, thus significantly reducing diffusive effects while retaining a non-dispersive leading error term.
2014-01-01
This paper discusses a complex biological problem which is the fermentation of glycerol by Klebsiella pneumoniae in batch culture. We set up an improved multistage model involving the concentration of intracellular substances. Furthermore, the existence, uniqueness, and continuity of solutions with respect to the parameters are discussed. On the condition that glycerol and 1,3-propanediol are assumed to pass the cell membrane by passive diffusion coupled with facilitated transport, we take th...
Three-Dimensional Aerodynamic Instabilities In Multi-Stage Axial Compressors
Tan, Choon S.; Gong, Yifang; Suder, Kenneth L. (Technical Monitor)
2001-01-01
This thesis presents the conceptualization and development of a computational model for describing three-dimensional non-linear disturbances associated with instability and inlet distortion in multistage compressors. Specifically, the model is aimed at simulating the non-linear aspects of short wavelength stall inception, part span stall cells, and compressor response to three-dimensional inlet distortions. The computed results demonstrated the first-of-a-kind capability for simulating short wavelength stall inception in multistage compressors. The adequacy of the model is demonstrated by its application to reproduce the following phenomena: (1) response of a compressor to a square-wave total pressure inlet distortion; (2) behavior of long wavelength small amplitude disturbances in compressors; (3) short wavelength stall inception in a multistage compressor and the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic; (4) progressive stalling behavior in the first stage in a mismatched multistage compressor; (5) change of stall inception type (from modal to spike and vice versa) due to IGV stagger angle variation, and "unique rotor tip incidence" at these points where the compressor stalls through short wavelength disturbances. The model has been applied to determine the parametric dependence of instability inception behavior in terms of amplitude and spatial distribution of initial disturbance, and intra-blade-row gaps. It is found that reducing the inter-blade row gaps suppresses the growth of short wavelength disturbances. It is also concluded from these parametric investigations that each local component group (rotor and its two adjacent stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group. For completeness, the methodology has been extended to
A Simulated Annealing Algorithm for the Optimization of Multistage Depressed Collector Efficiency
Vaden, Karl R.; Wilson, Jeffrey D.; Bulson, Brian A.
2002-01-01
The microwave traveling wave tube amplifier (TWTA) is widely used as a high-power transmitting source for space and airborne communications. One critical factor in designing a TWTA is the overall efficiency. However, overall efficiency is highly dependent upon collector efficiency; so collector design is critical to the performance of a TWTA. Therefore, NASA Glenn Research Center has developed an optimization algorithm based on Simulated Annealing to quickly design highly efficient multi-stage depressed collectors (MDC).
Doroshenko A.V.; Kirillov V.H.; Antonova A.R.; Liudnicky K.V.
2015-01-01
In the article, the developed schematics are presented for the alternative refrigeration systems and air-conditioning systems, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution. Multi-stage principle of construction of drying and cool contours of solar systems is used with growth of concentration of absorbent on the stages of cooler. An absorber with internal evaporative cooling, allowing to remove the separate evaporated cooler, usually included ...
Alfieri, L.; Velasco, D.; Thielen, J.
2011-01-01
The deadly combination of short to no warning lead times and the vulnerability of urbanized areas makes flash flood events extremely dangerous for the modern society. This paper contributes to flash flood early warning by proposing a multi-stage warning system for heavy precipitation events based on threshold exceedances within a probabilistic framework. It makes use of meteorological products at different resolutions, namely, numerical weather predictions (NWP), radar-NWP b...
Nishida, Yoshifumi; Kobayashi, Hiromi; Nishida, Hideo; Sugimura, Kazuyuki
2013-01-01
The effect of the design parameters of a return channel on the performance of a multistage centrifugal compressor was numerically investigated, and the shape of the return channel was optimized using a multiobjective optimization method based on a genetic algorithm to improve the performance of the centrifugal compressor. The results of sensitivity analysis using Latin hypercube sampling suggested that the inlet-to-outlet area ratio of the return vane affected the total pressure loss in the r...
Scalable Layer-2/Layer-3 Multistage Switching Architectures for Software Routers
Bianco, Andrea; Neri, Fabio; Mellia, Marco
2006-01-01
Software routers are becoming an important alternative to proprietary and expensive network devices, because they exploit the economy of scale of the PC market and open-source software. When considering maximum performance in terms of throughput, PC-based routers suffer from limitations stemming from the single PC architecture, e.g., limited bus bandwidth, and high memory access latency. To overcome these limitations, in this paper we present a multistage architecture that combines a layer-2 ...
Some recommendations for multi-arm multi-stage trials.
Wason, James; Magirr, Dominic; Law, Martin; Jaki, Thomas
2016-04-01
Multi-arm multi-stage designs can improve the efficiency of the drug-development process by evaluating multiple experimental arms against a common control within one trial. This reduces the number of patients required compared to a series of trials testing each experimental arm separately against control. By allowing for multiple stages experimental treatments can be eliminated early from the study if they are unlikely to be significantly better than control. Using the TAILoR trial as a motivating example, we explore a broad range of statistical issues related to multi-arm multi-stage trials including a comparison of different ways to power a multi-arm multi-stage trial; choosing the allocation ratio to the control group compared to other experimental arms; the consequences of adding additional experimental arms during a multi-arm multi-stage trial, and how one might control the type-I error rate when this is necessary; and modifying the stopping boundaries of a multi-arm multi-stage design to account for unknown variance in the treatment outcome. Multi-arm multi-stage trials represent a large financial investment, and so considering their design carefully is important to ensure efficiency and that they have a good chance of succeeding. PMID:23242385
Jingjing Guo
2015-01-01
Full Text Available Triple-porosity model is usually adopted to describe reservoirs with multiscaled pore spaces, including matrix pores, natural fractures, and vugs. Multiple fractures created by hydraulic fracturing can effectively improve the connectivity between existing natural fractures and thus increase well deliverability. However, little work has been done on pressure transient behavior of multistage fractured horizontal wells in triple-porosity reservoirs. Based on source/sink function method, this paper presents a triple-porosity model to investigate the transient pressure dynamics and flux distribution for multistage fractured horizontal wells in fractured-vuggy reservoirs with consideration of stress-dependent natural fracture permeability. The model is semianalytically solved by discretizing hydraulic fractures and Pedrosa’s transformation, perturbation theory, and integration transformation method. Type curves of transient pressure dynamics are generated, and flux distribution among hydraulic fractures for a fractured horizontal well with constant production rate is also discussed. Parametric study shows that major influential parameters on transient pressure responses are parameters pertinent to reservoir properties, interporosity mass transfer, and hydraulic fractures. Analysis of flux distribution indicates that flux density gradually increases from the horizontal wellbore to fracture tips, and the flux contribution of outermost fractures is higher than that of inner fractures. The model can also be extended to optimize hydraulic fracture parameters.
ZeroX Algorithms with Free crosstalk in Optical Multistage Interconnection Network
M.A.Al- Shabi
2013-03-01
Full Text Available Multistage interconnection networks (MINs have been proposed as interconnecting structures in various types of communication applications ranging from parallel systems, switching architectures, to multicore systems and advances. Optical technologies have drawn the interest for optical implementation in MINs to achieve high bandwidth capacity at the rate of terabits per second. Crosstalk is the major problem with optical interconnections; it not only degrades the performance of network but also disturbs the path of communication signals. To avoid crosstalk in Optical MINs many algorithms have been proposed by many researchers and some of the researchers suppose some solution to improve Zero Algorithm. This paper will be illustrated that is no any crosstalk appears in Zero based algorithms (ZeroX, ZeroY and ZeroXY in using refine and unique case functions. Through simulation modeling, the Zero based algorithm approach yields the best performance in terms of minimal routing time in and number of passes comparison to the previous algorithms tested for comparison in this paper.
Scenario trees and policy selection for multistage stochastic programming using machine learning
Defourny, Boris; Wehenkel, Louis
2011-01-01
We propose a hybrid algorithmic strategy for complex stochastic optimization problems, which combines the use of scenario trees from multistage stochastic programming with machine learning techniques for learning a policy in the form of a statistical model, in the context of constrained vector-valued decisions. Such a policy allows one to run out-of-sample simulations over a large number of independent scenarios, and obtain a signal on the quality of the approximation scheme used to solve the multistage stochastic program. We propose to apply this fast simulation technique to choose the best tree from a set of scenario trees. A solution scheme is introduced, where several scenario trees with random branching structure are solved in parallel, and where the tree from which the best policy for the true problem could be learned is ultimately retained. Numerical tests show that excellent trade-offs can be achieved between run times and solution quality.
LSTM based Conversation Models
Luan, Yi; Ji, Yangfeng; Ostendorf, Mari
2016-01-01
In this paper, we present a conversational model that incorporates both context and participant role for two-party conversations. Different architectures are explored for integrating participant role and context information into a Long Short-term Memory (LSTM) language model. The conversational model can function as a language model or a language generation model. Experiments on the Ubuntu Dialog Corpus show that our model can capture multiple turn interaction between participants. The propos...
Minimizing the Switch and Link Conflicts in an Optical Multi-stage Interconnection Network
Bhardwaj, Ved Prakash; Tyagi, Vipin
2012-01-01
Multistage Interconnection Networks (MINs) are very popular in switching and communication applications. A MIN connects N inputs to N outputs and is referred as an N \\times N MIN; having size N. Optical Multistage Interconnection Network (OMIN) represents an important class of Interconnection networks. Crosstalk is the basic problem of OMIN. Switch Conflict and Link Conflict are the two main reason of crosstalk. In this paper, we are considering both problems. A number of techniques like Optical window, Improved Window, Heuristic, Genetic, and Zero have been proposed earlier in this research domain. In this paper, we have proposed two algorithms called Address Selection Algorithm and Route Selection Algorithm (RSA). RSA is based on Improved Window Method. We have applied the proposed algorithms on existing Omega network, having shuffle-exchange connection pattern. The main functionality of ASA and RSA is to minimize the number of switch and link conflicts in the network and to provide conflict free routes.
A multi-stage noise adaptive switching filter for extremely corrupted images
Dinh, Hai; Adhami, Reza; Wang, Yi
2015-07-01
A multi-stage noise adaptive switching filter (MSNASF) is proposed for the restoration of images extremely corrupted by impulse and impulse-like noise. The filter consists of two steps: noise detection and noise removal. The proposed extrema-based noise detection scheme utilizes the false contouring effect to get better over detection rate at low noise density. It is adaptive and will detect not only impulse but also impulse-like noise. In the noise removal step, a novel multi-stage filtering scheme is proposed. It replaces corrupted pixel with the nearest uncorrupted median to preserve details. When compared with other methods, MSNASF provides better peak signal to noise ratio (PSNR) and structure similarity index (SSIM). A subjective evaluation carried out online also demonstrates that MSNASF yields higher fidelity.
Particle swarm optimization of ascent trajectories of multistage launch vehicles
Pontani, Mauro
2014-02-01
Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state
Dynamic Multi-Stage Placement of Phasor Measurement Units using Bat Optimization Algorithm
S. E. Razavi Asfali
2014-07-01
Full Text Available In recent years, utilization of phasor measurement units (PMUs has increased in monitoring, control and protection of power systems. In reality, power systems are large scale, accordingly, financial limitations (due to PMU cost and technical problems are avoiding to install all necessary PMUs in one stage. Therefore, the PMUs usually are installed in several stages. This paper proposes a new dynamic multi-stage PMU placement approach by introducing a new index related to network observability in planning stages. Despite of conventional methods, the proposed multi-stage PMU placement is investigated dependently, simultaneously, and dynamically. Moreover, the phasing of PMUs of all stages is achieved in a single optimization process. Furthermore, in order to consider the practical aspect, the channel and communication limitations are covered in this study. According to the complexity of the proposed model, Bat Algorithm is used as an optimization tool to solve the proposed dynamic multi-stage PMU placement model. The proposed approach is applied on standard IEEE 14-, 57- and 118- bus test systems as well as Iranian 230- and 400-kV transmission network. Finally, the obtained results are compared with the results of conventional methods and ability of the proposed approach is investigated.
AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS
Crouse, J. E.
1994-01-01
The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified
The influence of annular seal clearance to the critical speed of the multistage pump
In the multistage pump of high head, pressure difference in two ends of annular seal clearance and rotor eccentric would produce the sealing fluid force, the effect of which can be expressed by a damping and stiffness coefficient. It has a great influence on the critical speed of the rotor system. In order to research the influence of the annular seal to the rotor system, this paper used CFD method to conduct the numerical simulation for the flow field of annular seal clearance. The radial and tangential forces were obtained to calculate the annular dynamic coefficients. Also dynamic coefficient were obtained by Matlab. The rotor system was modeled using ANSYS finite software and the critical speed with and without annular seal clearance were calculated. The result shows: annular seal's fluid field is under the comprehensive effect of pressure difference and rotor entrainment. Due to the huge pressure difference in front annular seal, fluid flows under pressure difference; the low pressure difference results in the more obvious effect on the clearance field in back annular seal. The first order critical speed increases greatly with the annular seal clearance; while the average growth rate of the second order critical speed is only 3.2%; the third and fourth critical speed decreases little. Based on the above result, the annular seal has great influence to the first order speed, while has little influence on the rest
Application of multi-stage Monte Carlo method for solving machining optimization problems
Miloš Madić
2014-08-01
Full Text Available Enhancing the overall machining performance implies optimization of machining processes, i.e. determination of optimal machining parameters combination. Optimization of machining processes is an active field of research where different optimization methods are being used to determine an optimal combination of different machining parameters. In this paper, multi-stage Monte Carlo (MC method was employed to determine optimal combinations of machining parameters for six machining processes, i.e. drilling, turning, turn-milling, abrasive waterjet machining, electrochemical discharge machining and electrochemical micromachining. Optimization solutions obtained by using multi-stage MC method were compared with the optimization solutions of past researchers obtained by using meta-heuristic optimization methods, e.g. genetic algorithm, simulated annealing algorithm, artificial bee colony algorithm and teaching learning based optimization algorithm. The obtained results prove the applicability and suitability of the multi-stage MC method for solving machining optimization problems with up to four independent variables. Specific features, merits and drawbacks of the MC method were also discussed.
Controllability in Multi-Stage Laser Ion Acceleration
Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.
2015-11-01
The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.
Multi-stage methodology to detect health insurance claim fraud.
Johnson, Marina Evrim; Nagarur, Nagen
2016-09-01
Healthcare costs in the US, as well as in other countries, increase rapidly due to demographic, economic, social, and legal changes. This increase in healthcare costs impacts both government and private health insurance systems. Fraudulent behaviors of healthcare providers and patients have become a serious burden to insurance systems by bringing unnecessary costs. Insurance companies thus develop methods to identify fraud. This paper proposes a new multistage methodology for insurance companies to detect fraud committed by providers and patients. The first three stages aim at detecting abnormalities among providers, services, and claim amounts. Stage four then integrates the information obtained in the previous three stages into an overall risk measure. Subsequently, a decision tree based method in stage five computes risk threshold values. The final decision stating whether the claim is fraudulent is made by comparing the risk value obtained in stage four with the risk threshold value from stage five. The research methodology performs well on real-world insurance data. PMID:25600704
Costa Ricardo JS
2013-01-01
Full Text Available Abstract Background Anecdotal evidence suggests ultra-runners may not be consuming sufficient water through foods and fluids to maintenance euhydration, and present sub-optimal sodium intakes, throughout multi-stage ultra-marathon (MSUM competitions in the heat. Subsequently, the aims were primarily to assess water and sodium intake habits of recreational ultra-runners during a five stage 225 km semi self-sufficient MSUM conducted in a hot ambient environment (Tmax range: 32°C to 40°C; simultaneously to monitor serum sodium concentration, and hydration status using multiple hydration assessment techniques. Methods Total daily, pre-stage, during running, and post-stage water and sodium ingestion of ultra-endurance runners (UER, n = 74 and control (CON, n = 12 through foods and fluids were recorded on Stages 1 to 4 by trained dietetic researchers using dietary recall interview technique, and analysed through dietary analysis software. Body mass (BM, hydration status, and serum sodium concentration were determined pre- and post-Stages 1 to 5. Results Water (overall mean (SD: total daily 7.7 (1.5 L/day, during running 732 (183 ml/h and sodium (total daily 3.9 (1.3 g/day, during running 270 (151 mg/L ingestion did not differ between stages in UER (p vs. CON. Exercise-induced BM loss was 2.4 (1.2% (p p > 0.05 vs. CON pre-stage. Asymptomatic hyponatraemia (n = 8 UER, corresponding to 42% of sampled participants. Pre- and post-stage urine colour, urine osmolality and urine/plasma osmolality ratio increased (p p Conclusion Water intake habits of ultra-runners during MSUM conducted in hot ambient conditions appear to be sufficient to maintain baseline euhydration levels. However, fluid over-consumption behaviours were evident along competition, irrespective of running speed and gender. Normonatraemia was observed in the majority of ultra-runners throughout MSUM, despite sodium ingestion under benchmark recommendations.
Ifenthaler, Dirk; Seel, Norbert M.
2013-01-01
In this paper, there will be a particular focus on mental models and their application to inductive reasoning within the realm of instruction. A basic assumption of this study is the observation that the construction of mental models and related reasoning is a slowly developing capability of cognitive systems that emerges effectively with proper…
Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui; Yenne, Britt; Vansickle, Larry; Ballantyne, Michael
1992-01-01
Domain-specific knowledge is required to create specifications, generate code, and understand existing systems. Our approach to automating software design is based on instantiating an application domain model with industry-specific knowledge and then using that model to achieve the operational goals of specification elicitation and verification, reverse engineering, and code generation. Although many different specification models can be created from any particular domain model, each specification model is consistent and correct with respect to the domain model.
Charbonnier, D.
2004-12-15
The physical phenomena observed in turbomachines are generally three-dimensional and unsteady. A recent study revealed that a three-dimensional steady simulation can reproduce the time-averaged unsteady phenomena, since the steady flow field equations integrate deterministic stresses. The objective of this work is thus to develop an unsteady deterministic stresses model. The analogy with turbulence makes it possible to write transport equations for these stresses. The equations are implemented in steady flow solver and e model for the energy deterministic fluxes is also developed and implemented. Finally, this work shows that a three-dimensional steady simulation, by taking into account unsteady effects with transport equations of deterministic stresses, increases the computing time by only approximately 30 %, which remains very interesting compared to an unsteady simulation. (author)
Model-based Software Engineering
Kindler, Ekkart
2010-01-01
The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...
Principles of models based engineering
Dolin, R.M.; Hefele, J.
1996-11-01
This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.
Model Construct Based Enterprise Model Architecture and Its Modeling Approach
无
2002-01-01
In order to support enterprise integration, a kind of model construct based enterprise model architecture and its modeling approach are studied in this paper. First, the structural makeup and internal relationships of enterprise model architecture are discussed. Then, the concept of reusable model construct (MC) which belongs to the control view and can help to derive other views is proposed. The modeling approach based on model construct consists of three steps, reference model architecture synthesis, enterprise model customization, system design and implementation. According to MC based modeling approach a case study with the background of one-kind-product machinery manufacturing enterprises is illustrated. It is shown that proposal model construct based enterprise model architecture and modeling approach are practical and efficient.
Effect of Crosstalk on Permutation in Optical Multistage Interconnection Networks
Kaur, Er Sandeep; Aggarwal, Er Deepak
2010-01-01
Optical MINs hold great promise and have advantages over their electronic networks.they also hold their own challenges. More research has been done on Electronic Multistage Interconnection Networks, (EMINs) but these days optical communication is a good networking choice to meet the increasing demands of high-performance computing communication applications for high bandwidth applications. The electronic Multistage Interconnection Networks (EMINs) and the Optical Multistage Interconnection Networks (OMINs) have many similarities, but there are some fundamental differences between them such as the optical-loss during switching and the crosstalk problem in the optical switches. To reduce the negative effect of crosstalk, various approaches which apply the concept of dilation in either the space or time domain have been proposed. With the space domain approach, extra SEs are used to ensure that at most one input and one output of every SE will be used at any given time. For an Optical network without crosstalk, ...
Multi-Stage Bunch Compressors for the International Linear Collider
Tenenbaum, Peter G.; Raubenheimer, Tor O.; Wolski, Andrzej
2005-01-01
We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1 percent, compared to over 3 percent for a single-stage design. Analytic and simulation studies of the multi-stage bunch compr...
Multi-Stage Bunch Compressors for the International Linear Collider
We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1%, compared to over 3% for a single-stage design. Analytic and simulation studies of the multi-stage bunch compressors are presented, along with performance comparisons to a single-stage system. Parameters for extending the systems to a larger total compression factor are discussed
Multi-Stage Bunch Compressors for the International Linear Collider
Tenenbaum, P G; Wolski, Andrzej
2005-01-01
We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1%, compared to over 3% for a single-stage design. Analytic and simulation studies of the multi-stage bunch compressors are presented, along with performance comparisons to a single-stage system. Parameters for extending the systems to a larger total compression factor are discussed.
Bodypart Recognition Using Multi-stage Deep Learning.
Yan, Zhennan; Zhan, Yiqiang; Peng, Zhigang; Liao, Shu; Shinagawa, Yoshihisa; Metaxas, Dimitris N; Zhou, Xiang Sean
2015-01-01
Automatic medical image analysis systems often start from identifying the human body part contained in the image; Specifically, given a transversal slice, it is important to know which body part it comes from, namely "slice-based bodypart recognition". This problem has its unique characteristic--the body part of a slice is usually identified by local discriminative regions instead of global image context, e.g., a cardiac slice is differentiated from an aorta arch slice by the mediastinum region. To leverage this characteristic, we design a multi-stage deep learning framework that aims at: (1) discover the local regions that are discriminative to the bodypart recognition, and (2) learn a bodypart identifier based on these local regions. These two tasks are achieved by the two stages of our learning scheme, respectively. In the pre-train stage, a convolutional neural network (CNN) is learned in a multi-instance learning fashion to extract the most discriminative local patches from the training slices. In the boosting stage, the learned CNN is further boosted by these local patches for bodypart recognition. By exploiting the discriminative local appearances, the learned CNN becomes more accurate than global image context-based approaches. As a key hallmark, our method does not require manual annotations of the discriminative local patches. Instead, it automatically discovers them through multi-instance deep learning. We validate our method on a synthetic dataset and a large scale CT dataset (7000+ slices from wholebody CT scans). Our method achieves better performances than state-of-the-art approaches, including the standard CNN. PMID:26221694
A theoretical analysis of price elasticity of energy demand in multistage energy conversion systems
The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases. (author)
A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems
The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases
A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems
Lowe, R J
2003-01-01
The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of ener...
Graph Model Based Indoor Tracking
Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin
2009-01-01
The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...... infrastructure for different symbolic positioning technologies, e.g., Bluetooth and RFID. More specifically, the paper proposes a model of indoor space that comprises a base graph and mappings that represent the topology of indoor space at different levels. The resulting model can be used for one or several...... indoor positioning technologies. Focusing on RFID-based positioning, an RFID specific reader deployment graph model is built from the base graph model. This model is then used in several algorithms for constructing and refining trajectories from raw RFID readings. Empirical studies with implementations...
Doktorov, Alexander B
2016-08-28
Manifestations of the "cage" effect at the encounters of reactants have been theoretically treated on the example of multistage reactions (including bimolecular exchange reactions as elementary stages) proceeding from different active sites in liquid solutions. It is shown that for reactions occurring near the contact of reactants, consistent consideration of quasi-stationary kinetics of such multistage reactions (possible in the framework of the encounter theory only) can be made on the basis of chemical concepts of the "cage complex," just as in the case of one-site model described in the literature. Exactly as in the one-site model, the presence of the "cage" effect gives rise to new channels of reactant transformation that cannot result from elementary event of chemical conversion for the given reaction mechanism. Besides, the multisite model demonstrates new (as compared to one-site model) features of multistage reaction course. PMID:27586911
Cluster Based Text Classification Model
Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock
2011-01-01
We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases the...... classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...... datasets. Our model also outperforms A Decision Cluster Classification (ADCC) and the Decision Cluster Forest Classification (DCFC) models on the Reuters-21578 dataset....
Multistage variable probability forest volume inventory. [the Defiance Unit of the Navajo Nation
Anderson, J. E. (Principal Investigator)
1979-01-01
An inventory scheme based on the use of computer processed LANDSAT MSS data was developed. Output from the inventory scheme provides an estimate of the standing net saw timber volume of a major timber species on a selected forested area of the Navajo Nation. Such estimates are based on the values of parameters currently used for scaled sawlog conversion to mill output. The multistage variable probability sampling appears capable of producing estimates which compare favorably with those produced using conventional techniques. In addition, the reduction in time, manpower, and overall costs lend it to numerous applications.
MULTISTAGED BURNER DESIGN FOR IN-FURNACE NOX CONTROL
The paper gives results of an evaluation of a multistage combustion modification design, combining two advanced NOx control technologies, on a pilot-scale (0.9 MW) package boiler simulator for in-furnace NOx control of high nitrogen fuel combustion applications. A low NOx precomb...
LOW NOX, HIGH EFFICIENCY MULTISTAGED BURNER: GASEOUS FUEL RESULTS
The paper discusses the evaluation of a multistaged combustion burner design on a 0.6 MW package boiler simulator for in-furnace NOx control and high combustion efficiency. Both deep air staging, resulting in a three-stage configuration, and boiler front wall fuel staging of undo...
Nuclear-Reaction Control by Multistage Mathematical-Programming
I. Leikkonen
1980-04-01
Full Text Available The method of Multistage Mathematical Programming (MMP has been adapted for optimal control of the spatial power distribution in nuclear reactors. Changes in power distribution arise from variations in the operational conditions of the reactor, and excite oscillations which in large reactors may approach the stability limit.
Defining characteristics of multi-speed multistage hydrocyclone
В.О. Михайлюк
2008-03-01
Full Text Available In the given work characteristics of technological petrocontaining water current in multistage hydrocyclones at various speeds containing working chambers with changing cross-section sections are examined. The theoretical substantiation of the conditions promoting their application for division of petrocontaining water in systems of their preparation for reuse or returning in environment is brought.
An idealized mathematical model for carcinogenesis is proposed, based on age-time patterns of excess solid cancer risk seen in the Radiation Effects Research Foundation data on A-bomb survivors. The primary component is similar to the Armitage-Doll multistage model, with the interpretation that the events in that model are somatic mutations. The manner of extending this model to incorporate effects of a specific carcinogen, here an acute irradiation, is novel in the sense that the irradiation can cause any one of the mutations in the multi-event process. The motivation for this formulation is the observation that the excess solid cancer rate associated with radiation exposure appears largely to depend only on attained age, rather than on age at exposure and time since exposure. The model is fitted to the A-bomb survivor data on a class of cancers consisting of the major non-sex-specific types. (author)
Base Flow Model Validation Project
National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of...
Modeling Guru: Knowledge Base for NASA Modelers
Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.
2009-05-01
Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the
Multistage Off-Line Permutation Packet Routing on a Mesh: An Approach with Elementary Mathematics
Kevin Chiew; Yingjiu Li
2009-01-01
Various methods have been proposed for off-line permutation packet routing on a mesh. One of the methods is known as multistage routing, in which the first stage is crucial. For the first stage of routing, the previous study normally converts it to a problem of graph theory and proves the existence of solutions. However, there is a lack of simple algorithms to the first stage of routing. This article presents an explicit and simple approach for the first stage of routing based on elementary mathematics.
Bækgaard, Lars
2004-01-01
We present and discuss a modeling approach that supports event-based modeling of information and activity in information systems. Interacting human actors and IT-actors may carry out such activity. We use events to create meaningful relations between information structures and the related...
Modelling Gesture Based Ubiquitous Applications
Zacharia, Kurien; Varghese, Surekha Mariam
2011-01-01
A cost effective, gesture based modelling technique called Virtual Interactive Prototyping (VIP) is described in this paper. Prototyping is implemented by projecting a virtual model of the equipment to be prototyped. Users can interact with the virtual model like the original working equipment. For capturing and tracking the user interactions with the model image and sound processing techniques are used. VIP is a flexible and interactive prototyping method that has much application in ubiquitous computing environments. Different commercial as well as socio-economic applications and extension to interactive advertising of VIP are also discussed.
Knapp, Sibylle; Gilli, Adrian; Anselmetti, Flavio S.; Hajdas, Irka
2016-04-01
Lateglacial and Holocene rock-slope failures occur often as multistage failures where paraglacial adjustment and stress adaptation are hypothesised to control stages of detachment. However, we have only limited datasets to reconstruct detailed stages of large multistage rock-slope failures, and still aim at improving our models in terms of geohazard assessment. Here we use lake sediments, well-established for paleoclimate and paleoseismological reconstruction, with a focus on the reconstruction of rock-slope failures. We present a unique inventory from Lake Oeschinen (Bernese Alps, Switzerland) covering about 2.4 kyrs of rock-slope failure history. The lake sediments have been analysed using sediment-core analysis, radiocarbon dating and seismic-to-core and core-to-core correlations, and these were linked to historical and meteorological records. The results imply that the lake is significantly younger than the ~9 kyrs old Kandersteg rock avalanche (Tinner et al., 2005) and shows multiple rock-slope failures, two of which could be C14-dated. Several events detached from the same area potentially initiated by prehistoric earthquakes (Monecke et al., 2006) and later from stress relaxation processes. The data imply unexpected short recurrence rates that can be related to certain detachment scarps and also help to understand the generation of a historical lake-outburst flood. Here we show how polymethodical analysis of lake sediments can help to decipher massive multistage rock-slope failure. References Monecke, K., Anselmetti, F.S., Becker, A., Schnellmann, M., Sturm, M., Giardini, D., 2006. Earthquake-induced deformation structures in lake deposits: A Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae, 99(3), 343-362. Tinner, W., Kaltenrieder, P., Soom, M., Zwahlen, P., Schmidhalter, M., Boschetti, A., Schlüchter, C., 2005. Der nacheiszeitliche Bergsturz im Kandertal (Schweiz): Alter und Auswirkungen auf die
A multi-stage sampling strategy for the delineation of soil pollution in a contaminated brownfield
A multi-stage sampling strategy, based on sequential Gaussian simulation, was presented to optimize the step-wise selection of a small numbers of additional samples to delineate soil pollution. This strategy was applied to a Belgian brownfield of 5.2 ha polluted with lead (Pb). Starting from an initial number of 240 samples in stage 1, additional samples were added, 25 per stage, and the reduction of the uncertainty in the Pb delineation was monitored. Twenty stages were used. Already in stage 6 a local optimum was found based on the median conditional coefficient of variation. An independent validation confirmed that this index was to be preferred over the median conditional variance. So for the brownfield considered our procedure indicated that 365 selected samples would have been sufficient, representing a gain of 70.7% in sampling effort compared to current practice which resulted in a sampling effort of 1245 samples. - A multi-stage sampling strategy based on geostatistics provides an efficient procedure to delineate a pollution in a contaminated brownfield
Realization of Multistage FIR Filters using Pipelining-Interleaving
M. Ciric
2012-11-01
Full Text Available Multistage digital filters can be one of the solutions for the realization of filters with a narrow transition zone. If requirements for the width of transition zone are too strict, then they are the only alternative, and the decimation/interpolation must be performed in several steps. Combining decimation/interpolation operations related to the implementation of multi-channel filters in the PI (pipelining/interleaving technique can give an efficient structure of multichannel multistage filter. Using the advantages offered by newer generations of FPGA chips in terms of digital design structure, it is possible to realize such filters with considerable savings of hardware resources and reduce the effect of finite length codeword. This paper proposes such an efficient implementation and presents the results of such a realization with FPGA components.
Performance of Multi-Channel Multi-Stage Spectrum Sensing
Gabran, Wesam; Čabrić, Danijela
2010-01-01
We present an analytical framework which enables performance evaluation of different multi-channel multi-stage spectrum sensing protocols for Opportunistic Spectrum Access networks. Analyzed performance metrics include the average secondary user throughput and the average collision probability between the primary and secondary users. The analysis framework takes into account buffering of incoming secondary user traffic, parallel and single channel access, as well as prolonged channel observation periods at the first and last stage of sensing. The main results show that when a constraint is given upon the probability of primary user mis-detection, multi-stage sensing is in most cases superior to the single stage sensing counterpart. Further, prolonged channel observation at the first sensing stage decreases the collision probability considerably while keeping the throughput at an acceptable level. Finally, in most network scenarios considered in this work, two stages of sensing are enough to obtain the maximum...
Nicolas La Roche-Carrier; Guyh Dituba Ngoma; Walid Ghie
2013-01-01
This paper deals with the numerical investigation of a liquid flow in a first stage of a multistage centrifugal pump consisting of an impeller, diffuser with return vanes, and casing. The continuity and Navier-Stokes equations with the k-ε turbulence model and standard wall functions were used. To improve the design of the pump's first stage, the impacts of the impeller blade height and diffuser vane height, number of impeller blades, diffuser vanes and diffuser return vanes, and wall roughne...
Sketch-based geologic modeling
Rood, M. P.; Jackson, M.; Hampson, G.; Brazil, E. V.; de Carvalho, F.; Coda, C.; Sousa, M. C.; Zhang, Z.; Geiger, S.
2015-12-01
Two-dimensional (2D) maps and cross-sections, and 3D conceptual models, are fundamental tools for understanding, communicating and modeling geology. Yet geologists lack dedicated and intuitive tools that allow rapid creation of such figures and models. Standard drawing packages produce only 2D figures that are not suitable for quantitative analysis. Geologic modeling packages can produce 3D models and are widely used in the groundwater and petroleum communities, but are often slow and non-intuitive to use, requiring the creation of a grid early in the modeling workflow and the use of geostatistical methods to populate the grid blocks with geologic information. We present an alternative approach to rapidly create figures and models using sketch-based interface and modelling (SBIM). We leverage methods widely adopted in other industries to prototype complex geometries and designs. The SBIM tool contains built-in geologic rules that constrain how sketched lines and surfaces interact. These rules are based on the logic of superposition and cross-cutting relationships that follow from rock-forming processes, including deposition, deformation, intrusion and modification by diagenesis or metamorphism. The approach allows rapid creation of multiple, geologically realistic, figures and models in 2D and 3D using a simple, intuitive interface. The user can sketch in plan- or cross-section view. Geologic rules are used to extrapolate sketched lines in real time to create 3D surfaces. Quantitative analysis can be carried our directly on the models. Alternatively, they can be output as simple figures or imported directly into other modeling tools. The software runs on a tablet PC and can be used in a variety of settings including the office, classroom and field. The speed and ease of use of SBIM enables multiple interpretations to be developed from limited data, uncertainty to be readily appraised, and figures and models to be rapidly updated to incorporate new data or concepts.
Process for multi-stage treatment of radioactive waste water
For the multi-stage treatment of radioactive waste waters with a decanter the solids contained in the waste waters are dried up to a residual moisture of 10% and are subsequently disposed. Solids remaining in the liquid part are removed with a separator up to the colloidal range, whereas the liquid product of the decanter is filtered up to the molecular range so that it can be used as industrial water. (orig.)
Numerical Study of Multistage Transcritical Organic Rankine Cycle Axial Turbines
SCIACOVELLI, L.; CINNELLA, Paola
2014-01-01
Transonic flows through axial, multi-stage, transcritical ORC turbines, are investigated by using a numerical solver including advanced multiparameter equations of state and a high-order discretization scheme. The working fluids in use are the refrigerants R134a and R245fa, classified as dense gases due to their complex molecules and relatively high molecular weight. Both inviscid and viscous numerical simulations are carried out to quantify the impact of dense gas effects and viscous effe...
Multi-Stage Transportation Problem With Capacity Limit
I. Brezina; Z. Čičková; J. Pekár; M. Reiff
2010-01-01
The classical transportation problem can be applied in a more general way in practice. Related problems as Multi-commodity transportation problem, Transportation problems with different kind of vehicles, Multi-stage transportation problems, Transportation problem with capacity limit is an extension of the classical transportation problem considering the additional special condition. For solving such problems many optimization techniques (dynamic programming, linear programming, special algor...