WorldWideScience

Sample records for based hardfacing alloys

  1. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods

  2. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    Science.gov (United States)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  3. The use of hardfacing alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Saarinen, K.; Aaltonen, P.

    1987-08-01

    In this report the structure and applications of cobalt-, nickel- and iron-based hardfacing alloys are reviewed. Cobalt-based hardfacing alloys are widely used in nuclear power plant components due to their good wear and corrosion resistance. However, the wear and corrosion products of the cobalt-containing alloys are released into the primary cooling water and transported to the reactor core where cobalt (Co-59) is transmuted to the radioactive isotope Co-60. It has been estimated that cobalt-based hardfacing alloys are responsible for up to 90% of the total cobalt released to the primary water circuit. The cobalt based hardfacing alloys are used in such components as valves, control blade pins and pumps, etc. In the Finnish nuclear power plants they are not used in in-core components. The replacement of cobalt-containing alloys in primary cooling system components is studied in many laboratories, but substitutes for the cobalt-based alloys in the complete range of nuclear hardfacing applications have so far not been found. However, the modified austenitic stainless steels have showed good resistance to galling wear and are therefore considered substitutes for cobalt-based alloys

  4. Friction behavior of cobalt base and nickel base hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    A friction behavior of the hardfacing materials such as cobalt base alloy ''Stellite'' and nickel base alloy ''Colmonoy'' used in the sliding components of a sodium cooled fast breeder reactor was investigated in various sodium environments. Also, friction tests on these materials were carried out in argon environment. And they were compared with those in sodium environment. The results obtained are as follows: (1) In argon, the cobalt base hardfacing alloy showed better friction behavior than the nickel base hardfacing alloy. In sodium, the latter was observed to have the better friction behavior being independent of the sodium temperature. (2) The friction coefficient of each material tends to become lower by pre-exposure in sodium. Particularly, this tendency was remarkable for the nickel base hardfacing alloy. (3) The friction coefficient between SUS 316 and one of these hardfacing materials was higher than that between latter materials. Also, some elements of hardfacing alloys were recognized to transfer on the friction surface of SUS 316 material. (4) It was observed that each tested material has a greater friction coefficient with a decrease of the oxygen content in sodium. (author)

  5. Effect of nano-additives on microstructure, mechanical properties and wear behaviour of Fe–Cr–B hardfacing alloy

    International Nuclear Information System (INIS)

    Gou, Junfeng; Lu, Pengpeng; Wang, You; Liu, Saiyue; Zou, Zhiwei

    2016-01-01

    Graphical abstract: Wear rate of the hardfacing layers with different nano-additives content and the counterpart GCr15 steel balls under conditions: normal load = 15 N, rotating speed = 400 rpm, total sliding time = 20 min. - Highlights: • Nano-additives remarkably improved the microstructure of hardfacing layers. • The hardness of hardfacing layers increased linearly with the increase of nano-additives. • The wear rate of the hardfacing layer with 0.65 wt.% nano-additives decreased about 88% than that of the hardfacing layer without nano-additives. • According to observation of wear tracks of hardfacing layers, the main wear mechanism was adhesion wear. - Abstract: Fe–Cr–B hardfacing alloys with different nano-additives content were investigated. The effects of nano-additives on the microstructures of hardfacing alloy were studied by using optical microscope, scanning electron microscope, X-ray diffractometer. The hardness and the fracture toughness of hardfacing alloys were measured, respectively. The sliding wear tests were carried out using a ball-on-disc tribometer. The experimental results showed that primary carbide of hardfacing alloys was refined and its distribution became uniform with content of nano-additives increased. The hardfacing alloys are composed of Cr_7C_3, Fe_7C_3, α-Fe and Fe_2B according to the results of X-ray diffraction. The hardness of hardfacing alloys increased linearly with the increase of nano-additives. The hardness of the hardfacing alloy with 1.5 wt.% nano-additives increased 54.8% than that of the hardfacing alloy without nano-additives and reached to 1011HV. The K_I_C of the hardfacing alloy with 0.65 wt.% nano-additives was 15.4 MPam"1"/"2, which reached a maximum. The value increased 57.1% than that of the hardfacing alloy without nano-additives. The wear rates of the hardfacing layer with 0.65 wt.% and 1.0 wt.% nano-additives decreased about 88% than that of the hardfacing layer without nano-additives. The main

  6. Selection of hardfacing material for components of the Indian Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Indira, R.; Albert, S.K.; Rao, B.P.S.; Jain, S.C.; Asokkumar, S.

    2004-01-01

    Nickel-base hardfacing alloys have been chosen to replace cobalt-base alloys as hardfacing material for components of the Indian Prototype Fast Breeder Reactor, for minimising the dose rate to personnel during maintenance and decommissioning, and to reduce the shielding thickness required for component handling. Induced activity, dose rate and shielding computations showed that replacing cobalt-base alloys with nickel-base alloys for hardfacing of components would result in a marked reduction in both the dose rate from the components and the thickness of lead handling flasks. Long-term ageing studies on the nickel-base hardface deposits on austenitic stainless steel showed that the hardface deposit would retain adequate hardness at the end of the components' design service-life of 40 years of exposure at 823 K

  7. Cobalt reduction of NSSS valve hardfacings for ALARA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joo Hak; Lee, Sang Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    This report informs NSSS designer that replacement of materials is one of the major means of ALARA implementation, and describes that NSSS valves with high-cobalt hardfacing are significant contributors to post-shutdown radiation fields caused by activation of cobalt-59 to cobalt-60. Generic procedures for implementing cobalt reduction programs for valves are presented. Discussions are presented of the general and specific design requirements for valve hardfacing in nuclear service. The nuclear safety issues involved with changing valve hardfacing materials are discussed. The common methods used to deposit hardfacing materials are described together with an explanation of the wear measurements. Wear resistance, corrosion resistance, friction coefficient, and mechanical properties of candidate hardfacing alloys are given. World-wide nuclear utility experience with cobalt-free hardfacing alloys is described. The use of low-cobalt or cobalt-free alloys in other nuclear plant components is described. 17 figs., 38 tabs., 18 refs. (Author).

  8. Cobalt reduction of NSSS valve hardfacings for ALARA

    International Nuclear Information System (INIS)

    Kim, Joo Hak; Lee, Sang Sub

    1994-07-01

    This report informs NSSS designer that replacement of materials is one of the major means of ALARA implementation, and describes that NSSS valves with high-cobalt hardfacing are significant contributors to post-shutdown radiation fields caused by activation of cobalt-59 to cobalt-60. Generic procedures for implementing cobalt reduction programs for valves are presented. Discussions are presented of the general and specific design requirements for valve hardfacing in nuclear service. The nuclear safety issues involved with changing valve hardfacing materials are discussed. The common methods used to deposit hardfacing materials are described together with an explanation of the wear measurements. Wear resistance, corrosion resistance, friction coefficient, and mechanical properties of candidate hardfacing alloys are given. World-wide nuclear utility experience with cobalt-free hardfacing alloys is described. The use of low-cobalt or cobalt-free alloys in other nuclear plant components is described. 17 figs., 38 tabs., 18 refs. (Author)

  9. Laser cladding of tungsten carbides (Spherotene) hardfacing alloys for the mining and mineral industry

    International Nuclear Information System (INIS)

    Amado, J.M.; Tobar, M.J.; Alvarez, J.C.; Lamas, J.; Yanez, A.

    2009-01-01

    The abrasive nature of the mechanical processes involved in mining and mineral industry often causes significant wear to the associated equipment and derives non-negligible economic costs. One of the possible strategies to improve the wear resistance of the various components is the deposition of hardfacing layers on the bulk parts. The use of high power lasers for hardfacing (laser cladding) has attracted a great attention in the last decade as an alternative to other more standard methods (arc welding, oxy-fuel gas welding, thermal spraying). In laser cladding the hardfacing material is used in powder form. For high hardness applications Ni-, Co- or Fe-based alloys containing hard phase carbides at different ratios are commonly used. Tungsten carbides (WC) can provide coating hardness well above 1000 HV (Vickers). In this respect, commercially available WC powders normally contain spherical micro-particles consisting of crushed WC agglomerates. Some years ago, Spherotene powders consisting of spherical-fused monocrystaline WC particles, being extremely hard, between 1800 and 3000 HV, were patented. Very recently, mixtures of Ni-based alloy with Spherotene powders optimized for laser processing were presented (Technolase). These mixtures have been used in our study. Laser cladding tests with these powders were performed on low carbon steel (C25) substrates, and results in terms of microstructure and hardness will be discussed

  10. Laser cladding of tungsten carbides (Spherotene) hardfacing alloys for the mining and mineral industry

    Energy Technology Data Exchange (ETDEWEB)

    Amado, J.M. [Departamento de Ingenieria Industrial II, Universidade da Coruna, Mendizabal s/n, Ferrol E-15403 (Spain); Tobar, M.J. [Departamento de Ingenieria Industrial II, Universidade da Coruna, Mendizabal s/n, Ferrol E-15403 (Spain)], E-mail: cote@udc.es; Alvarez, J.C.; Lamas, J.; Yanez, A. [Departamento de Ingenieria Industrial II, Universidade da Coruna, Mendizabal s/n, Ferrol E-15403 (Spain)

    2009-03-01

    The abrasive nature of the mechanical processes involved in mining and mineral industry often causes significant wear to the associated equipment and derives non-negligible economic costs. One of the possible strategies to improve the wear resistance of the various components is the deposition of hardfacing layers on the bulk parts. The use of high power lasers for hardfacing (laser cladding) has attracted a great attention in the last decade as an alternative to other more standard methods (arc welding, oxy-fuel gas welding, thermal spraying). In laser cladding the hardfacing material is used in powder form. For high hardness applications Ni-, Co- or Fe-based alloys containing hard phase carbides at different ratios are commonly used. Tungsten carbides (WC) can provide coating hardness well above 1000 HV (Vickers). In this respect, commercially available WC powders normally contain spherical micro-particles consisting of crushed WC agglomerates. Some years ago, Spherotene powders consisting of spherical-fused monocrystaline WC particles, being extremely hard, between 1800 and 3000 HV, were patented. Very recently, mixtures of Ni-based alloy with Spherotene powders optimized for laser processing were presented (Technolase). These mixtures have been used in our study. Laser cladding tests with these powders were performed on low carbon steel (C25) substrates, and results in terms of microstructure and hardness will be discussed.

  11. Effect of Laser Power on Metallurgical, Mechanical and Tribological Characteristics of Hardfaced Surfaces of Nickel-Based Alloy

    Science.gov (United States)

    Gnanasekaran, S.; Padmanaban, G.; Balasubramanian, V.

    2017-12-01

    In this present work, nickel based alloy was deposited on 316 LN austenitic stainless steel (ASS) by a laser hardfacing technique to investigate the influence of laser power on macrostructure, microstructure, microhardness, dilution and wear characteristics. The laser power varied from 1.1 to 1.9 kW. The phase constitution, microstructure and microhardness were examined by optical microscope, scanning electron microscopy, energy dispersion spectroscopy and Vickers microhardness tester. The wear characteristics of the hardfaced surfaces and substrate were evaluated at room temperature (RT) under dry sliding wear condition (pin-on-disc). The outcome demonstrates that as the laser power increases, dilution increases and hardness of the deposit decreases. This is because excess heat melts more volume of substrate material and increases the dilution; subsequently it decreases the hardness of the deposit. The microstructure of the deposit is characterized by Ni-rich carbide, boride and silicide.

  12. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  13. Nanophase hardfaced coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reisgen, U.; Stein, L.; Balashov, B.; Geffers, C. [RWTH Aachen University (Germany). ISF - Welding and Joining Institute

    2009-08-15

    This paper demonstrates the possibility of producing iron or chromium-based nanophase hardfaced coatings by means of common arc welding methods (TIG, PTA). The appropriate composition of the alloys to be deposited allows to control the structural properties and thus also the coating properties of the weld metal. Specific variations of the alloying elements allow also the realisation of a nanostructured solidification of the carbides and borides with cooling rates that are common for arc surfacing processes. The hardfaced coatings, which had been thus produced, showed phase dimensions of approximately 100-300 nm. Based on the results it is established that the influence of the surfacing parameters and of the coating thickness and thus the influence of the heat control on the nanostructuring process is, compared with the influence of the alloy composition, of secondary importance. The generation of nanoscale structures in hardfaced coatings allows the improvement of mechanical properties, wear resistance and corrosion resistance. Potential applications for these types of hardfaced coatings lie, in particular, in the field of cutting tools that are exposed to corrosion and wear. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Diese Arbeit demonstriert die Moeglichkeit zur Herstellung Eisen- und Chrom-basierter nanophasiger Hartauftragschweissschichten mithilfe ueblicher Lichtbogenschweissverfahren (WIG-, Plasma-Pulver-Auftragschweissen - PPA). Eine geeignete Zusammensetzung der aufzutragenden Legierungen ermoeglicht es, die Gefuegeeigenschaften und damit die Schichteigenschaften des Schweissgutes zu kontrollieren. Gezielte Variationen der Legierungselemente erlauben die Realisierung einer nanostrukturierten Erstarrung der Karbide und Boride bei fuer Lichtbogen-Auftragschweissprozessen ueblichen Abkuehlgeschwindigkeiten. In den so erzeugten Hartschichten werden Phasengroessen von ca. 100-300 nm erreicht. Auf Basis der gewonnenen Ergebnisse kann

  14. Microstructural investigation of hardfacing weld deposit obtained from CrB paste

    International Nuclear Information System (INIS)

    Ray, S.; Sarker, B.; Bhattacharya, S.

    1989-01-01

    Hardfacing weld deposits are used as a protective layer on engineering components and tools subjected to different modes of wear. Cheaper iron-based alloys with chromium and carbon or relatively expensive alloys with some niobium or titanium have long been used as standard hardfacing materials. In recent years boron has substituted the costlier alloying elements and the newly developed Fe-B-C alloys have shown encouraging results. The microstructure of the welded hardfacing deposit is one of the most important factors that determine its performance. The amount, size, distribution and hardness of the individual constituents play important roles in imparting the desired properties. Recently Colomonoy sweat on paste containing fine CrB particles (of about 12 μm average size) suspended in an organic binder has been marketed as the new generation hardfacing material. A thin coating of the paste is applied on the component surface, allowed to dry and welded. The welded deposit has been found to offer good wear resistance in many industrial applications. This paper reports the microstructural investigation of the welded deposit obtained from this paste

  15. Hardfacing materials and processes for valve applications

    International Nuclear Information System (INIS)

    Matthews, S.J.; Crook, P.

    1982-01-01

    The subject of hardfacing is a very high technology effort especially in the valve industry. The technology is manifested by the need for sophisticated high performance hardfacing alloys required to resist the demanding environments of fluid flow control valve service. High technology is also found in the automated methods currently being used to efficiently deposit high quality hardfacing overlays. 3 figures, 3 tables

  16. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Science.gov (United States)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  17. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  18. Modelling of residual stresses in valves Norem hard-facing alloys: a material characterization issue

    International Nuclear Information System (INIS)

    Mathieu, J.P.; Arnoldi, F.; Gauthier, E.; Beaurin, G.

    2011-01-01

    Replacement of cobalt-based hard-facing alloys (Stellite) is of high interest within the topic of reduction of human radiation exposure during field-work. Iron-based hard-facing alloys, such as Norem, are considered as good replacement candidates. Their wear characteristics are known to be quite equivalent to Stellite but are counter-balanced by lack of feedback in the field, especially about their resistance/toughness to brutal thermal shocks (60 C - 280 C for primary water). Norem alloys show a solid-solution strengthened austenitic dendrites matrix with a continuous network of eutectic and non-eutectic carbides at the grain boundaries. Toughness evaluation also requires information about residual stresses due to the welding (deposition) process: this work aims at furnishing tools for this purpose. First part of the work involved a microstructural study in order to compare the as-received material to other Norem samples previously observed in EDF's works and literature. A characterization of the different phase evolutions after heating and fast cooling of Norem is then made, in order to characterize whether metallurgical aspects have to be considered in the mechanical part during welding modelling: it appears that no strong solid-solid phase transformation may occur in welding situation. Tensile characterization is then performed on bulk PTAW (Plasma Transferred Arc Welding) specimens. A simplified welding simulation is eventually conducted on different axis-symmetric geometry and on real valve geometry in order to define a representative sample that will be used for further investigation on residual stresses. (authors)

  19. Aspects of a Co-free hardfacing Materials Development to Reduce the Radioactivity in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Kim, Hong Pyo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Suh, Jeong Hun [Inss Tek Co., Daejeon (Korea, Republic of)

    2007-07-01

    For the last one or two decades, active researches to develop Co-free hardfacing materials in order to replace Co-base stellite alloys have been done to reduce the radioactivity in the primary systems in nuclear power plants(NPPs). However, Co-free materials having superior mechanical properties to stellite alloys have not been developed up to now. There are two ways to increase the performance characteristics of the key parts needed to be coated with hardfacing materials, thus resulting in replacing the Co-base stellite alloys with superior mechanical properties; one of them is to develop new Co-free materials with a better quality in performance than that of satellite alloys. The other is to use new coating techniques developed to increase the coated surface properties of already developed Co-free materials. In this study, the aspect of newly developed Co-free materials is reviewed and the necessity of the development of new Co-free materials is emphasized for the replacement of Co-base satellite alloys. In addition, a new coating technique, which is called a laser hardfacing(cladding) technique(LHT), is introduced and its advantage and applicability to the key parts in NPPs are discussed using our experimental results to improve the properties of a surface coated with existing Co-free hardfacing materials. The coating technique using a laser beam having a high energy density has unique advantages to obtain various microstructures such as crystalline, amorphous, porous, and nano structures and also to get coating layers having high a hardness to result in an excellent resistance to erosion corrosion and wear.

  20. The development of cobalt-base alloy ball bearing

    International Nuclear Information System (INIS)

    Yu Xinshui; Chen Jianting; Wang Zaishu; Wang Ximei; Huang Chongming.

    1986-01-01

    The main technologies and experiences in developing a Cobalt-base alloy ball bearing are described. In the hardfacing of bearing races, a lower-hardness alloy of type St-6 is used rather than an alloy with hardness similar to that of the ball and finally the hardness of race is increased to match that of the ball by heat treatment. This improvement has certain advantages. The experience of whole developing technology indicates that strict control of the technology in the bearing-race hardfacing is the key problem in the quality assurance of bearings

  1. Hardfacing and welding rods by P/M

    International Nuclear Information System (INIS)

    Nayar, H.S.

    1977-01-01

    Certain hardfacing and welding rods are very hard and non-deformable. They are, as it is well known, generally produced by casting processes. Airco has developed a P/M process for producing these rods. The process is already practiced on a semi-production scale. In this process, the powder is poured into suitably designed and prepared molds, vibrated to pack the powder, and sintered at a temperature between the solidus and the liquidus temperatures of the alloy to produce rods with 85% or more of the theoretical density. The P/M process has some distinct advantages over the conventional casting processes. These advantages are highlighted. The process is suitable for producing Fe-, Ni-, Co-, and Cu-base hardfacing and welding rods with and without second phase hard particles such as WC. Microstructures, dimensional and density controls, weld-evaluations and hardness data are included to present evidence that the rods produced by the P/M process are suitable for various welding and hardfacing applications

  2. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Science.gov (United States)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  3. Effect of Ni Addition on the Wear and Corrosion Resistance of Fe-20Cr-1.7C-1Si Hardfacing Alloy

    International Nuclear Information System (INIS)

    Lee, Sung Hoon; Kim, Ki Nam; Kim, Seon Jin

    2011-01-01

    In order to improve the corrosion resistance of Fe-20Cr-1.7C-1Si hardfacing alloy without a loss of wear resistance, the effect of Ni addition was investigated. As expected, the corrosion resistance of the alloy increased with increasing Ni concentration. The wear resistance of the alloy did not decrease, even though the hardness decreased, up to Ni concentration of 5 wt.%. This was attributed to the fact that the decrease in hardness was counterbalanced by the strain-induced martensitic transformation. The wear resistance of the alloy, however, decreased abruptly with increases of the Ni concentration over 5 wt.%.

  4. Machinability of Stellite 6 hardfacing

    Directory of Open Access Journals (Sweden)

    Dudzinski D.

    2010-06-01

    Full Text Available This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  5. Microstructural and wear characteristics of cobalt free, nickel base intermetallic alloy deposited by laser cladding

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kumar, Santosh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2011-01-01

    This paper describes the microstructural and wear characteristics of Ni base intermetallic hardfacing alloy (Tribaloy-700) deposited on stainless steel-316 L substrate by laser cladding technique. Cobalt base hardfacing alloys have been most commonly used hardfacing alloys for application involving wear, corrosion and high temperature resistance. However, the high cost and scarcity of cobalt led to the development of cobalt free hardfacing alloys. Further, in the nuclear industry, the use of cobalt base alloys is limited due to the induced activity of long lived radioisotope 60 Co formed. These difficulties led to the development of various nickel and iron base alloys to replace cobalt base hardfacing alloys. In the present study Ni base intermetallic alloy, free of Cobalt was deposited on stainless steel- 316 L substrate by laser cladding technique. Traditionally, welding and thermal spraying are the most commonly employed hardfacing techniques. Laser cladding has been explored for the deposition of less diluted and fusion-bonded Nickel base clad layer on stainless steel substrate with a low heat input. The laser cladding parameters (Laser power density: 200 W/mm 2 , scanning speed: 430 mm/min, and powder feed rate: 14 gm/min) resulted in defect free clad with minimal dilution of the substrate. The microstructure of the clad layer was examined by Optical microscopy, Scanning electron microscopy, with energy dispersive spectroscopy. The phase analysis was performed by X-ray diffraction technique. The clad layer exhibited sharp substrate/clad interface in the order of planar, cellular, and dendritic from the interface upwards. Dilution of clad with Fe from substrate was very low passing from ∼ 15% at the interface (∼ 40 μm) to ∼ 6% in the clad layer. The clad layer was characterized by the presence of hexagonal closed packed (hcp, MgZn 2 type) intermetallic Laves phase dispersed in the eutectic of Laves and face centered cubic (fcc) gamma solid solution. The

  6. Study of magnetism in Ni–Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, G.V.K.; Kumar, Anish, E-mail: anish@igcar.gov.in; Chakraborty, Gopa; Albert, S.K; Rao, B. Purna Chandra; Bhaduri, A.K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni–Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni–Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr–C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co–Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni–Cr alloy deposits on stainless steel. - Highlights: • Study of evolution of ferromagnetism in Comonoy-6 deposit on austenitic steel. • Magnetic force microscopy (MFM) exhibited ferromagnetic matrix in first two layers. • The maximum MFM

  7. Hardfacing and packings for improved valve performance

    International Nuclear Information System (INIS)

    Aikin, J.A.; Patrick, J.N.F.; Inglis, I.

    2003-01-01

    The CANDU Owners Group (COG), Chemistry, Materials and Components (CMC) Program has supported an ongoing program on valve maintenance and performance for several years. An overview is presented of recent work on iron-based hardfacing, packing qualification, friction testing of polytetrafluoroethylene (PTFE) packings, and an investigation of re-torquing valve packing. Based on this program, two new valve-packing materials have been qualified for use in CANDU stations. By doing this, CANDU maintenance can avoid having only one packing qualified for station use, as well as assess the potential impact of the industry trend towards using lower gland loads. The results from corrosion tests by AECL and the coefficient of friction studies at Battelle' s tribology testing facilities on Delcrome 910, an iron-based hardfacing alloy, indicate it is an acceptable replacement for Stellite 6 under certain conditions. This information can be used to update in-line valve purchasing specifications. The renewed interest in friction characteristics, and environmental qualification (EQ) of packing containing PTFE has resulted in a new test program in these areas. The COG-funded valve programs have resulted in modifications to design specifications for nuclear station in-line valves and have led to better maintenance practices and valve reliability. In the end, this means lower costs and cheaper electricity. (author)

  8. Structure and Construction Assessment of the Surface Layer of Hardfaced Coating after Friction

    Directory of Open Access Journals (Sweden)

    Krzysztof Dziedzic

    2017-09-01

    Full Text Available The paper presents an analysis of the surface layer of Fe-Mn-C-B-Si-Ni-Cr alloy coating after friction with C45 steel. The coatings were obtained by arc welding (GMA. Flux-cored wires were used as a welding material. The flux-cored wires had a diameter of 2,4 mm. The tribological assessment was performed with the Amsler tribotester under dry friction conditions at unit pressures 10 MPa. The use of XPS spectroscopy allowed deep profile analysis of the surface layer. Based on the obtained results developed model of the surface layer for friction couple, hardfaced coating obtained from Fe-Mn-C-B-Si-Ni-Cr alloy – C45 steel. It was observed that the operational surface layer (OSL of hardfaced coatings contained oxides (B2O3, SiO2, NiO, Cr2O3, FeO, Fe3O4, Fe2O3, carbides (Fe3C, Cr7C3 and borides (FeB, Fe2B.

  9. Replacement of Co-base alloy for radiation exposure reduction in the primary system of PWR

    International Nuclear Information System (INIS)

    Han, Jeong Ho; Nyo, Kye Ho; Lee, Deok Hyun; Lim, Deok Jae; Ahn, Jin Keun; Kim, Sun Jin

    1996-01-01

    Of numerous Co-free alloys developed to replace Co-base stellite used in valve hardfacing material, two iron-base alloys of Armacor M and Tristelle 5183 and one nickel-base alloy of Nucalloy 488 were selected as candidate Co-free alloys, and Stellite 6 was also selected as a standard hardfacing material. These four alloys were welded on 316SS substrate using TIG welding method. The first corrosion test loop of KAERI simulating the water chemistry and operation condition of the primary system of PWR was designed and fabricated. Corrosion behaviors of the above four kinds of alloys were evaluated using this test loop under the condition of 300 deg C, 1500 psi. Microstructures of weldment of these alloys were observed to identify both matrix and secondary phase in each weldment. Hardnesses of weld deposit layer including HAZ and substrate were measured using micro-Vickers hardness tester. The status on the technology of Co-base alloy replacement in valve components was reviewed with respect to the classification of valves to be replaced, the development of Co-free alloys, the application of Co-free alloys and its experiences in foreign NPPs, and the Co reduction program in domestic NPPs and industries. 18 tabs., 20 figs., 22 refs. (Author)

  10. Hardfacing materials used in valves for seating and wear surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, W.G.

    1996-12-01

    Most valves and essentially all critical service valves utilize hardfacing materials for seating and wear surfaces to minimize wear and galling. The type of hardfacing materials used, the methods of deposition, and the quality of the final product all contribute to the wear characteristics, required operating force, and life of the final product. Over the last forty years the most prevalent hardfacing materials furnished to the commercial nuclear industry consisted of cobalt base and nickel base materials. In the last several years there has been extensive development and evaluation work performed on iron base hardfacing materials. This presentation will address the wear characteristics of the various materials and the importance of consistent quality of deposited materials necessary to achieve optimum product performance and longevity.

  11. Hardfacing materials used in valves for seating and wear surfaces

    International Nuclear Information System (INIS)

    Knecht, W.G.

    1996-01-01

    Most valves and essentially all critical service valves utilize hardfacing materials for seating and wear surfaces to minimize wear and galling. The type of hardfacing materials used, the methods of deposition, and the quality of the final product all contribute to the wear characteristics, required operating force, and life of the final product. Over the last forty years the most prevalent hardfacing materials furnished to the commercial nuclear industry consisted of cobalt base and nickel base materials. In the last several years there has been extensive development and evaluation work performed on iron base hardfacing materials. This presentation will address the wear characteristics of the various materials and the importance of consistent quality of deposited materials necessary to achieve optimum product performance and longevity

  12. Identification of internal defects of hardfacing coatings in regeneration of machine parts

    Directory of Open Access Journals (Sweden)

    Józwik Jerzy

    2017-01-01

    Full Text Available The quality control of hardfacing is one of the areas where non-destructive testing is applied. To detect defects and inconsistencies in the industrial practice one uses the same methods as in the testing of welded joints. Computed Tomography is a type of X-ray spectroscopy. It is used as a diagnostic method that allows to obtain layered images of examined hardfacing. The paper presents the use of Computed Tomography for the evaluation of defects of hardfacing parts and errors. Padding welds were produced using GMA consumable electrode welding with CO2 active gas. The padding material used were cored wires FILTUB DUR 16, and ones produced from a Fe-Mn-C-Si-Cr-Mo-Ti-W alloy. The layers were padded on to different surfaces: C45, 165CrV12, 42CrMo4, S235JR steel. Typical defects occurring in the pads and the influence of the type of wire on the concentration of defects were characterized. The resulting pads were characterized by occurring inconsistencies taking the form of pores, intrusions and fractures.

  13. Identification of internal defects of hardfacing coatings in regeneration of machine parts

    Science.gov (United States)

    Józwik, Jerzy; Dziedzic, Krzysztof; Pashechko, Mykhalo; Łukasiewicz, Andrzej

    2017-10-01

    The quality control of hardfacing is one of the areas where non-destructive testing is applied. To detect defects and inconsistencies in the industrial practice one uses the same methods as in the testing of welded joints. Computed Tomography is a type of X-ray spectroscopy. It is used as a diagnostic method that allows to obtain layered images of examined hardfacing. The paper presents the use of Computed Tomography for the evaluation of defects of hardfacing parts and errors. Padding welds were produced using GMA consumable electrode welding with CO2 active gas. The padding material used were cored wires FILTUB DUR 16, and ones produced from a Fe-Mn-C-Si-Cr-Mo-Ti-W alloy. The layers were padded on to different surfaces: C45, 165CrV12, 42CrMo4, S235JR steel. Typical defects occurring in the pads and the influence of the type of wire on the concentration of defects were characterized. The resulting pads were characterized by occurring inconsistencies taking the form of pores, intrusions and fractures.

  14. PTA hardfacing of Nb/Al coatings Revestimentos Nb/Al depositados por PTA

    Directory of Open Access Journals (Sweden)

    Karin Graf

    2012-06-01

    Full Text Available Hardfacing is widely applied to components yet the majority of the welding techniques available restrain the variety of hard alloys that can be deposited. Plasma Transferred Arc hardfacing offsets this drawback by using powdered feedstock offering the ability to tailor the chemical composition of the coating and as a consequence its properties. The high strength and chemical inertia of aluminide alloys makes them very suitable to protect components. However, the strong interaction with the substrate during hardfacing requires analysis of each alloy system to optimize its properties and weldability. This work analyzed coatings processed with a cast and ground Nb40wt%Al alloy and the effect of Fe and C on the coatings features. It confirmed that sound Nb aluminide coatings can be processed by plasma Transferred arc hardfacing and will have a strong interaction with the substrate, which determines the final microstructure and properties of coatings. Final remarks point out that during Nb-Al coating tailoring the interaction with the substrate has to be considered at the early stages of design process.Revestimentos soldados são amplamente usados para proteger componentes mecânicos entretanto a maioria das técnicas de soldagem disponíveis restringe a variedade de ligas de alta resistência que podem ser depositadas. O processo de plasma por arco transferido permite ultrapassar esta limitação ao utilizar material de adição na forma de pó, oferecendo a possibilidade de se customizar a composição dos revestimentos e em consequências as suas propriedades. A elevada resistência mecânica e inercia química das ligas de aluminetos tornam estas ligas atrativas para a proteção de componentes diversos. Entretanto a grande interação com o substrato que ocorre quando do processamento exige que para a otimização das propriedades e soldabilidade seja realizada uma a análise de cada sistema liga e substrato. Neste trabalho foram processados e

  15. Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment

    Science.gov (United States)

    Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia

    2018-04-01

    In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.

  16. Reparatory and Manufacturing Hard-Facing of Working Parts Made of Stainless Steels in Confectionary Industry

    Directory of Open Access Journals (Sweden)

    S. Rakic

    2012-09-01

    Full Text Available In this paper, for the sake of improving the reparatory hard-facing technology is especially analyzed reparatory hard-facing of tools for manufacturing compressed products in confectionary industry. Those products are being made of a mixture consisting of several powdery components, which is compressed under high pressure. In that way the connection between particles is realized, thus achieving certain hardness and strength of the confectionary product. The considered tool is made of high-alloyed stainless steel. The tool contains 30 identical working places. Besides the production process wear, on those tools, from time to time, appear mechanical damage on some of the products' shape punches, as cracks at the edges, where the products' final shapes are formed. Those damages are small, size wise, but they cause strong effect on the products' final shape. The aggravating circumstance is that the shape punch is extremely loaded in pressure, thus after the reparatory hard-facing, the additional heat treatment is necessary. Mechanical properties in the heat affected zone (HAZ are being leveled by annealing and what also partially reduces the residual internal stresses.

  17. Abrasion of Polymeric Composites on Basis of Machining Splinters from Hardfacing Alloys – Usable in Agrocomplex

    Directory of Open Access Journals (Sweden)

    Petr Valášek

    2014-01-01

    Full Text Available A paper focuses on a description of two-body and three-body abrasion wear of polymeric particle composites with fillers on a basis of machining splinters from hardfacing alloys. The abrasive wear is typical for functional surfaces of agricultural machines processing the soil. One of possibilities of the functional surface renovation is an application of resistant layers in a form of composite systems. Just the inclusion of hard inorganic particles into a polymeric matrix significantly increases its wear resistance. So long as the primary filler is replaced by the waste – by particles from the material machining – the matrix in which the filler is dispersed is a bearer of a material recyclation. This way of the recyclation is inexpensive, economic and sensitive to environment. The paper focuses on the experimental description of the two-body and three-body abrasion and the composites hardness, it describes a production of a prototype for field tests with the functional surface on the basis of the investigated composite system at the same time.

  18. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  19. Materials and methods for hard-facing of power engineering valves

    International Nuclear Information System (INIS)

    Frumin, I.I.; Gladkii, P.V.; Eremeev, V.B.; Perepliotchikov, E.F.

    1980-01-01

    In the Soviet Union a large experience in hard-facing for the water and steam valves has been accumulated. A workability of valves largely depends upon materials used and a technology of their deposition. Mechanized methods have been recently successfully developed, new hard-facing materials created are considered

  20. Modeling and experimental study of residual stresses in NOREM hardfacing coatings used in valve parts

    International Nuclear Information System (INIS)

    Beaurin, G.

    2012-01-01

    Hardfacing coatings are widely used on the surfaces of parts subjected to drastic loadings. Norem02 alloy, Fe-based, is used in PWR nuclear power plants on valves seating surfaces. Its microstructure consists of a dendritic austenite structure with ferrite islets and carbides. This work tends to demonstrate that for this alloy, metallurgical evolution during the welding process has very little influence on mechanical properties. Tensile behavior was characterized and completed by dilatometry tests in welding process temperature range until 1000 Celsius degrees, in order to identify an elastoplastic model with non linear kinematic hardening rule. Temperature, displacements, distortions and residual stresses were measured during the PTAW (Plasma Transferred Arc Welding) process and used to identify an equivalent thermal loading by solving an inverse problem. Finally, the numerical simulation of the whole process using the EDF FEM software Code-Aster is presented. Predicted temperatures are consistent with experimental ones. In the same way, predicted displacements, residual distortions and residual stresses at the end of the cooling phase are close to experimental measures, validating the modeling strategy presented in this work. (author)

  1. Friction characteristics of hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    Friction and self-welding test were conducted on several materials used for the contacting and sliding components of a sodium cooled fast breeder reactor. In the present study, the friction and self-welding characteristics of each material were evaluated through measuring the kinetic and breakaway friction coefficients. The influence of oscillating rotation and vertical reciprocating motion on the friction mode was also investigated. The results obtained are as follows: (1) Colmonoy No.6, the nickel base hardfacing alloy, indicated the lowest kinetic friction coefficient of all the materials in the present study. Also, Cr 3 C 2 /Ni-Cr material prepared by a detonation gun showed the most stable friction behavior. (2) The breakaway friction coefficient of each material was dependent upon dwelling time in a sodium environment. (3) The friction behavior of Cr 3 C 2 /Ni-Cr material was obviously related with the finishing roughness of the friction surface. It was anticipated that nichrome material as the binder of the chrome carbide diffused and exuded to the friction surface by sliding in sodium. (4) The friction coefficient in sliding mode of vertical reciprocating was lower than that of oscillating rotation. (author)

  2. Weld metal microstructures of hardfacing deposits produced by self-shielded flux-cored arc welding

    International Nuclear Information System (INIS)

    Dumovic, M.; Monaghan, B.J.; Li, H.; Norrish, J.; Dunne, D.P.

    2015-01-01

    The molten pool weld produced during self-shielded flux-cored arc welding (SSFCAW) is protected from gas porosity arising from oxygen and nitrogen by reaction ('killing') of these gases by aluminium. However, residual Al can result in mixed micro-structures of δ-ferrite, martensite and bainite in hardfacing weld metals produced by SSFCAW and therefore, microstructural control can be an issue for hardfacing weld repair. The effect of the residual Al content on weld metal micro-structure has been examined using thermodynamic modeling and dilatometric analysis. It is concluded that the typical Al content of about 1 wt% promotes δ-ferrite formation at the expense of austenite and its martensitic/bainitic product phase(s), thereby compromising the wear resistance of the hardfacing deposit. This paper also demonstrates how the development of a Schaeffler-type diagram for predicting the weld metal micro-structure can provide guidance on weld filler metal design to produce the optimum microstructure for industrial hardfacing applications.

  3. Mechanical and Tribological Characteristics of TIG Hardfaced Dispersive Layer by Reinforced with Particles Extruded Aluminium

    Directory of Open Access Journals (Sweden)

    R. Dimitrova

    2017-05-01

    Full Text Available The article presents the results of the implemented technology for generation of hardfaced dispersive layers obtained by additive material containing reinforcing phase of non-metal particles. The wear resistant coatings are deposited on pure aluminium metal matrix by shielded gas metal-arc welding applying tungsten inert gas (TIG with extruded aluminium wire reinforced by particles as additive material. Wire filler is produced by extrusion of a pack containing metalized and plated by flux micro/nano SiC particles. The metalized particles implanting in the metal matrix and its dispersive hardfacing are realized by solid-state welding under conditions of hot plastic deformation. Tribological characteristics are studied of the hardfaced layers of dispersive reinforced material on pure aluminium metal matrix with and without flux. Hardness profiles of the hardfaced layers are determined by nanoindentation. The surface layers are studied by means of Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analysis. Increase by 15-31 % of the wear resistance of the hardfaced layers and 30-40 % of their hardness was found, which is due to the implanted in the layer reinforcing phase of metalized micro/nano SiC particles.

  4. Plasma Transferred ARC (PTA Hardfacing of Recycled Hardmetal Reinforced Nickel-matrix Surface Composites

    Directory of Open Access Journals (Sweden)

    Arkadi ZIKIN

    2012-03-01

    Full Text Available The aim of this work was to apply coarse recycled hardmetal particles in combination with Ni-based matrix to produce wear resistant metal matrix composite (MMC thick coatings using plasma transferred arc hardfacing (PTA technology. Assignment of hardmetal waste as initial material can significantly decrease the production costs and improve the mechanical properties of coatings and, consequently, increase their wear resistance. The microstructure of MMC fabricated from a recycled powder was examined by optical and SEM/EDS microscopes, whereas quantitative analyses were performed by image analysis method. Micro-mechanical properties, including hardness and elastic modulus of features, were measured by nanoindentation. Furthermore, behaviour of materials subjected to abrasive and impact conditions was studied. Results show the recycled powder provides hardfacings of high quality which can be successfully used in the fabrication of wear resistant MMC coatings by PTA-technology.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1334

  5. APPLICATION OF QC TOOLS FOR CONTINUOUS IMPROVEMENT IN AN EXPENSIVE SEAT HARDFACING PROCESS USING TIG WELDING

    Directory of Open Access Journals (Sweden)

    Mohammed Yunus

    2016-09-01

    Full Text Available The present study is carried out to improve quality level by identifying the prime reasons of the quality related problems in the seat hardfacing process involving the deposition of cobalt based super alloy in I.C. Engine valves using TIG welding process. During the Process, defects like stellite deposition overflow, head melt, non-uniform stellite merging, etc., are observed and combining all these defects, the rejection level was in top position in Forge shop. We use widely referred QC tools of the manufacturing field to monitor the complete operation and continuous progressive process improvement to ensure ability and efficiency of quality management system of any firm. The work aims to identify the various causes for the rejection by the detailed study of the operation, equipment, materials and the various process parameters that are very important to get defects-free products. Also, to evolve suitable countermeasures for reducing the rejection percentage using seven QC tools. To further understand and validate the obtained results, we need to address other studies related to motivations, advantages, and disadvantages of applying quality control tools.

  6. Evaluation of cobalt and nickel base materials for sliding and static contact applications in a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Hoffman, N.J.; Droher, J.J.; Chang, J.Y.; Galioto, T.A.; Miller, R.L.; Schrock, S.L.; Whitlow, G.A.; Wilson, W.L.; Johnson, R.N.

    1976-01-01

    The paper covers pertinent metallurgical and tribological aspects of three alloys that are being considered for surfaces that must rub while immersed in liquid sodium coolant within a fast breeder reactor system. The alloys are cobalt-base hardfacing alloy type 6, Tribaloy 700, and Inconel 718. Topics discussed include chemistry and microstructure, hardness, and behavior in high-temperature sodium with respect to dynamic friction, diffusion bonding, and corrosion

  7. Improving the ballistic immunity of armour steel weldments by plasma transferred arc (PTA) hardfacing

    International Nuclear Information System (INIS)

    Babu, S.; Balasubramanian, V.; Madhusudhan Reddy, G.; Balasubramanian, T.S.

    2010-01-01

    This investigation describes about improving the ballistic immunity of armour steel joints which are fabricated by sandwiching of plasma transferred arc (PTA) hardfaced interlayers in between soft austenitic stainless steel (ASS) welds. From the results, the welds with sandwiched interlayer stopped all the projectiles successfully, irrespective of processes used, whereas welds without sandwiched interlayer were failed. In order to know the cause of failure, a detailed metallographic examination was carried out. The variation in microstructure and hardness at various zones of the weld are discussed. For the first time, it was found that the armour steel could be hardfaced by the PTA process with tungsten carbide powder.

  8. Fiber laser cladding of nickel-based alloy on cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Arias-González, F., E-mail: felipeag@uvigo.es [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Val, J. del [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J. [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain)

    2016-06-30

    Highlights: • Fiber laser cladding of Ni-based alloy on cast iron was experimentally studied. • Two different types of cast iron have been analyzed: gray and ductile cast iron. • Suitable processing parameters to generate a Ni-based coating were determined. • Dilution is higher in gray cast iron samples than in ductile cast iron. • Ni-based coating presents higher hardness than cast iron but similar Young's modulus. - Abstract: Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni-based

  9. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. (1) Development of a powder feeding system for the laser cladding. (2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. (3) Development of laser cladding technology with amorphous alloy. (4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. (5) Evaluation of the mechanical properties of the clads. (6) Development of an ultrasonic vibrator for VSR.

  10. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    International Nuclear Information System (INIS)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S.

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. 1) Development of a powder feeding system for the laser cladding. 2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. 3) Development of laser cladding technology with amorphous alloy. 4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. 5) Evaluation of the mechanical properties of the clads. 6) Development of an ultrasonic vibrator for VSR

  11. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    International Nuclear Information System (INIS)

    Suh, Jeong Hun; Kim, J. S.; Hwang, S. S.; Lim, Y. S.

    1999-08-01

    A technology of laser hardfacing of amorphous materials on materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. 1) Development of a power feeding system for the primary system. 2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. 3) Development of laser cladding technology with amorphous alloy. 4) Examination and analysis of the microstructure, chemical composition, and phase of the clad. 5) Evaluation of the mechanical properties of the clad. 6) Development of an ultrasonic vibrator for VSR. (author)

  12. Analysis of PTA hardfacing with CoCrWC and CoCrMoSi alloys

    Directory of Open Access Journals (Sweden)

    Adriano Scheid

    2013-12-01

    Full Text Available CoCrWC alloys are widely used to protect components that operate under wear and high temperature environments. Enhanced performance has been achieved with the CoCrMoSi alloys but processing this alloy system is still a challenge due to the presence of the brittle Laves phase, particularly when welding is involved. This work evaluated Plasma Transferred Arc coatings processed with the Co-based alloy CoMoCrSi - Tribaloy T400, reinforced with Laves phase, comparing its weldability to the CoCrWC - Stellite 6, reinforced with carbides. Coatings were also analyzed regarding the response to temperature exposure at 600°C for 7 days and subsequent effect on microstructure and sliding abrasive wear. Coatings characterization was carried out by light and scanning electron microscopy, X-ray diffraction and Vickers hardness. CoCrWC coatings exhibited a Cobalt solid solution dendritic microstructure and a thin interdendritic region with eutectic carbides, while CoCrMoSi deposits exhibit a large lamellar eutectic region of Laves phase and Cobalt solid solution and a small fraction of primary Laves phase. Although phase stability was observed by X-ray diffraction, coarsening of the microstructure occurred for both alloys. CoCrMoSi showed thicker lamellar Laves phase and CoCrWC coarser eutectic carbides. Coatings stability assessed by wear tests revealed that although the wear rate of the as-deposited CoCrMoSi alloy was lower than that of CoCrWC alloy its increase after temperature exposure was more significant, 22% against 15%. Results were discussed regarding the protection of industrial components in particular, bearings in 55AlZn hot dip galvanizing components.

  13. Estimation of the Thickness and the Material Combination of the Thermal Stress Control Layer (TSCL) for the Stellite21 Hardfaced STD61 Hot Working Tool Steel Using Three-Dimensional Finite Element Analysis

    International Nuclear Information System (INIS)

    Park, Na-Ra; Ahn, Dong-Gyu; Oh, Jin-Woo

    2014-01-01

    The research on a thermal stress control layer (TSCL) begins to undertake to reduce residual stress and strain in the vicinity of the joined region between the hardfacing layer and the base part. The goal of this paper is to estimate the material combination and the thickness of TSCL for the Stellite21 hardfaced STD61 hot working tool steel via three-dimensional finite element analysis (FEA). TSCL is created by the combination of Stellite21 and STD61. The thickness of TSCL ranges from 0.5 mm to 1.5 mm. The influence of the material combination and the thickness of TSCL on temperature, thermal stress and thermal strain distributions of the hardfaced part have been investigated. The results of the investigation have been revealed that a proper material combination of TSCL is Stellite21 of 50 % and STD61 of 50 %, and its appropriate thickness is 1.0 mm

  14. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance

    International Nuclear Information System (INIS)

    Farah, Alessandro Fraga

    1997-01-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  15. Introduction of Nickel Coated Silicon Carbide Particles in Aluminum Metal Matrix Hardfaced by MIG/TIG Processes on Precoated Flux Layer

    Directory of Open Access Journals (Sweden)

    V. Kamburov

    2018-03-01

    Full Text Available The aim of the study was to investigate an aluminium metal matrix surface layer hardfaced by shielded gas metal arc welding processes applying either metal inert gas (MIG or tungsten inert gas (TIG, with standard wire filler onto the precoated flux layer - a baked resistant film containing electroless nickel coated micro/nano SiC particles. During baking, the components of the flux (MgCl2, NaCl, KCl and Na3AlF6 form a low melting eutectic, which: protects the hardfaced surface from oxidation, provides electrical conductance and keeps the particles on the surface during welding, as well as facilitates particles wettability and their interfacial bonding with the molten metal into the weld puddle.

  16. Laser cladding Co-based alloy/SiCp composite coatings on IF steel

    International Nuclear Information System (INIS)

    Li Mingxi; He Yizhu; Sun Guoxiong

    2004-01-01

    Hardfacing coatings, made of Co-Cr-W-Ni-Si alloy + 20% SiCp, deposited by laser cladding on IF steel is introduced. Cross-section of such coatings has been examined to reveal their microstructure using optical microscope, scanning electron microscope (SEM) and X-ray diffractometer (XRD). MM-200 type wear tester is used to examine wear resistance of the coatings. The results showed that SiCp is dissolved completely during laser cladding process under this conditions, the primary phase γ-Co dendrite and Si 2 W, CoWSi, Cr 3 Si, CoSi 2 formed by C, Si reacting with other elements existed in the coatings. There existed some crystallization morphologies in different regions, such as planar (at the interface), followed cellular and dendrite crystallization from interface to the surface. The direction of solidification changes from one direction perpendicular to interface to multi-directions at the central and upper regions of the clad. The results also showed that the wear resistance of the clad improved by adding SiCp

  17. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  18. Qualification of tribological materials and coatings for use in sodium

    International Nuclear Information System (INIS)

    Johnson, R.N.; Farwick, D.G.

    1980-01-01

    This paper describes some essential performance measures and summarizes relative properties of some of newer tribological materials qualified for use in sodium systems. Tribaloy 700 is a nickel-base hardfacing alloy that combines low friction, galling resistance, and corrosion resistance. 14 refs

  19. Tribological coatings for liquid metal and irradiation environments

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1986-01-01

    Several metallurgical coatings have been developed that provide good tribological performances in high-temperature liquid sodium and that are relatively unaffected by neutron fluences to 6 X 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV). The coatings that have consistently provided the best tribological performance have been the nickel aluminide diffusion coatings created by the pack cementation process, chromium carbide or Tribaloy 700 trade mark (a nickel-base hardfacing alloy) applied by the detonation-gun process, and chromium carbide and other hardfacing alloy) applied by the detonation-gun process, and chromium carbide and other hardfacing materials applied by the electro-spark deposition process. The latter process is a relatively recent development for nuclear applications and is expected to find wide usage. Other coating processes, such as plasma-spray coating, sputtering, and chemical vapor deposition, were candidates for use on various components, but the coatings did not pass the required qualification tests or were not economically competitive. The advantages and limitations of the three selected processes are discussed, the tribological performance of the coatings is reviewed, and representative applications and their performance requirements are described

  20. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  1. Development of welding and hardfacing technology for the fast reactor programme in India

    International Nuclear Information System (INIS)

    Bhaduri, Arun Kumar

    2013-01-01

    Prior to the start of construction of the 500 MWe Prototype Fast Breeder Reactor (PFBR), extensive research backed technology development was planned and implemented for materials, welding consumables, fabrication of stringent-specification components and finalisation of quality assurance procedures of fabricated components. With close interaction amongst design, materials and non-destructive evaluation engineers, materials and welding consumable manufactures, and the fabrication industries, it has been possible to overcome the challenges during fabrication of all the structural welds and pipes. This paper presents a comprehensive experience of the development of welding and hardfacing technology for PFBR. (author)

  2. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  3. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Science.gov (United States)

    Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  4. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  5. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  6. Weld Bead Geometry of Ni-Based Alloy Deposited by PTA Process for Pipe Conduction of Shale Gas

    Science.gov (United States)

    Echavarria-Figueroa, C.; García-Vázquez, F.; Ruiz-Mondragón, J.; Hernández-García, H. M.; González-González, D.; Vargas, A.

    The transportation of shale gas has the problem that the piping used for the extraction does not resist the erosion generated by the amount of solids causing cracks over the surface and it is necessary to extend the life of the pipelines. Plasma transferred arc (PTA) welded coatings are used to improve the surface properties of mechanical parts. Therefore, in this paper is studied the use of Ni-based filler metal as weld bead deposits on A36 steel substrates by PTA. In order to determine the suitable conditions to ensure coating quality on the substrate a design of experiments (DOE) was determined. Welding current, feed rate, and travel speed were used as input parameters and the dilution percentage as the response variable. The composition and properties of hardfacing or overlay deposited are strongly influenced by the dilution obtained. Control of dilution is important, where typically low dilution is desirable. When the dilution is low, the final deposit composition will be closer to that of the filler metal, and the wear and corrosion resistance of the hardfacing will also be maintained. To evaluate the features on the weld beads/substrate interface a microstructural characterization was performed by using scanning electron microscopy and to evaluate the mechanical properties was carried out hardness test.

  7. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  8. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  9. Application of mechanical alloying to synthesis of intermetallic phases based alloys

    International Nuclear Information System (INIS)

    Dymek, S.

    2001-01-01

    Mechanical alloying is the process of synthesis of powder materials during milling in high energetic mills, usually ball mills. The central event in mechanical alloying is the ball-powder-ball collision. Powder particles are trapped between the colliding balls during milling and undergo deformation and/or fracture. Fractured parts are cold welded. The continued fracture and cold welding results in a uniform size and chemical composition of powder particles. The main applications of mechanical alloying are: processing of ODS alloys, syntheses of intermetallic phases, synthesis of nonequilibrium structures (amorphous alloys, extended solid solutions, nanocrystalline, quasi crystals) and magnetic materials. The present paper deals with application of mechanical alloying to synthesis Ni A l base intermetallic phases as well as phases from the Nb-Al binary system. The alloy were processed from elemental powders. The course of milling was monitored by scanning electron microscopy and X-ray diffraction. After milling, the collected powders were sieved by 45 μm grid and hot pressed (Nb alloys and NiAl) or hot extruded (NiAl). The resulting material was fully dense and exhibited fine grain (< 1 μm) and uniform distribution of oxide dispersoid. The consolidated material was compression and creep tested. The mechanical properties of mechanically alloys were superior to properties of their cast counterparts both in the room and elevated temperatures. Higher strength of mechanically alloyed materials results from their fine grains and from the presence of dispersoid. At elevated temperatures, the Nb-Al alloys have higher compression strength than NiAl-based alloys processed at the same conditions. The minimum creep rates of mechanically alloyed Nb alloys are an order of magnitude lower than analogously processed NiAl-base alloys. (author)

  10. Vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  11. Vanadium-base alloys for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  12. Processing and properties of Nb-Ti-based alloys

    International Nuclear Information System (INIS)

    Sikka, V.K.; Viswanathan, S.

    1992-01-01

    The processing characteristics, tensile properties, and oxidation response of two Nb-Ti-Al-Cr alloys were investigated. One creep test at 650 C and 172 MPa was conducted on the base alloy which contained 40Nb-40Ti-10Al-10Cr. A second alloy was modified with 0.11 at. % carbon and 0.07 at. % yttrium. Alloys were arc melted in a chamber backfilled with argon, drop cast into a water-cooled copper mold, and cold rolled to obtain a 0.8-mm sheet. The sheet was annealed at 1,100 C for 0.5 h. Longitudinal tensile specimens and oxidation specimens were obtained for both the base alloy and the modified alloy. Tensile properties were obtained for the base alloy at room temperature, 400, 600, 700, 800, 900, and 1,000 C, and for the modified alloy at room temperature, 400, 600, 700, and 800 C. Oxidation tests on the base alloy and modified alloy, as measured by weight change, were carried out at 600, 700, 800, and 900 C. Both the base alloy and the modified alloy were extremely ductile and were cold rolled to the final sheet thickness of 0.8 mm without an intermediate anneal. The modified alloy exhibited some edge cracking during cold during cold rolling. Both alloys recrystallized at the end of a 0.5-h annealing treatment. The alloys exhibited moderate strength and oxidation resistance below 600 C, similar to the results of alloys reported in the literature

  13. A sulfidation-resistant nickel-base alloy

    International Nuclear Information System (INIS)

    Lai, G.Y.

    1989-01-01

    For applications in mildly to moderately sulfidizing environments, stainless steels, Fe-Ni-Cr alloys (e.g., alloys 800 and 330), and more recently Fe-Ni-Cr-Co alloys (e.g., alloy 556) are frequently used for construction of process equipment. However, for many highly sulfidizing environments, few existing commercial alloys have adequate performance. Thus, a new nickel-based alloy containing 27 wt.% Co, 28 wt.% Cr, 4 wt.% Fe, 2.75 wt.% Si, 0.5 wt.% Mn and 0.05 wt.% C (Haynes alloy HR-160) was developed

  14. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Nickel based alloy, the characteristic of which is that it mainly includes in percentages by weight: 57-63 Ni, 7-18 Cr, 10-20 Fe, 4-6 Mo, 1-2 Nb, 0.2-0.8 Si, 0.01-0.05 Zr, 1.0-2.5 Ti, 1.0-2.5 Al, 0.02-0.06 C and 0.002-0.015 B. The aim is to create new nickel-chromium alloys, hardened in a solid solution and by precipitation, that are stable, exhibit reduced swelling and resistant to plastic deformation inside the reactor. These alloys of the gamma prime type have improved mechanical strengthm swelling resistance, structural stability and welding properties compared with Inconel 625 [fr

  15. Nickel and cobalt base alloys

    International Nuclear Information System (INIS)

    Houlle, P.

    1994-01-01

    Nickel base alloys have a good resistance to pitting, cavernous or cracks corrosion. Nevertheless, all the nickel base alloys are not equivalent. Some differences exit between all the families (Ni, Ni-Cu, Ni-Cr-Fe, Ni-Cr-Fe-Mo/W-Cu, Ni-Cr-Mo/W, Ni-Mo). Cobalt base alloys in corrosive conditions are generally used for its wear and cracks resistance, with a compromise to its localised corrosion resistance properties. The choice must be done from the perfect knowledge of the corrosive medium and of the alloys characteristics (chemical, metallurgical). A synthesis of the corrosion resistance in three medium (6% FeCl 3 , 4% NaCl + 1% HCl + 0.1% Fe 2 (SO 4 ) 3 , 11.5% H 2 SO 4 + 1.2% HCl + 1% Fe 2 (SO 4 ) 3 + 1% CuCl 2 ) is presented. (A.B.). 11 refs., 1 fig., 12 tabs

  16. Short Communication on “Self-welding susceptibility of NiCr-B hardfaced coating with and without NiCr-B coating on 316LN stainless steel in flowing sodium at elevated temperature”

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemant, E-mail: hemant@igcar.gov.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 (India); Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ramakrishnan, V.; Albert, S.K.; Bhaduri, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ray, K.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 (India)

    2017-02-15

    The self-welding susceptibility between NiCr-B coated 316LN stainless steel and the base metal, and that between NiCr-B hardfaced coatings has been evaluated in flowing sodium at 823 K for 90 and 135 days under contact stress of 8.0 and 11.0 MPa using a fabricated set-up. Neither any self-welding could be observed nor could any damage be detected on the specimen surfaces of the selected materials under the imposed experimental conditions, which indicate their satisfactory potential for applications in Fast Breeder Reactors.

  17. Engineering data bases for refractory alloys

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Harms, W.O.

    1985-01-01

    Refractory alloys based on niobium, molybdenum, tantalum, and tungsten are required for the multi-100kW(e) space nuclear reactor power concepts that have been assessed in the SP-100 Program because of the extremely high temperatures involved. A review is presented of the technology efforts on the candidate refractory alloys in the areas of availability/fabricability, mechanical properties, irradiation effects, and compatibility. Of the niobium-base alloys, only Nb-1Zr has a data base that is sufficiently comprehensive for the high level of confidence required in the reference-alloy selection process for the reactor concept to be tested in the Ground Engineering System (GES) Phase of the SP-100 Program. Based on relatively short-term tests, the alloy PWC-11 (Nb-1Zr-0.1C) appears to have significantly greater creep strength than Nb-1Zr; however, concerns as to whether this precipitation-hardened alloy will remain thermally stable during seven years of full-power reactor operation need to be resolved. Additional information on the reference GES alloy will be needed for the detailed engineering design of a space power system and the fabrication of prototypical GES test components. Expedient development and demonstration of an adequate total manufacturing capability will be required if a high risk of significant schedule slippages and cost overruns is to be avoided. 4 refs., 1 fig., 3 tabs

  18. Hard hardfacing by welding in the manufacture of valves; Problem Cobalt, alternatives, advantages, disadvantages

    International Nuclear Information System (INIS)

    Piquer Caballero, J.

    2014-01-01

    Alloys of recharge usually used in the field of the valves are base alloys cobalt (stellite), but in the field of nuclear power plants, due to radioactive activation of the cobalt, there is a growing trend to replace these alloys with other calls cobalt free . In this paper we will explore the most frequent and will be deducted the relevant advantages and disadvantages of these, in comparison with base alloys cobalt. (Author)

  19. New Developments of Ti-Based Alloys for Biomedical Applications

    Science.gov (United States)

    Li, Yuhua; Yang, Chao; Zhao, Haidong; Qu, Shengguan; Li, Xiaoqiang; Li, Yuanyuan

    2014-01-01

    Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications. PMID:28788539

  20. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Fujita, Takeshi; Hisatsune, Kunihiro

    2007-01-01

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  1. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Takanobu [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)]. E-mail: siraisi@nagasaki-u.ac.jp; Takuma, Yasuko [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Miura, Eri [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Fujita, Takeshi [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Hisatsune, Kunihiro [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)

    2007-06-15

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys.

  2. Studies on neutron irradiation effects of iron alloys and nickel-base heat resistant alloys

    International Nuclear Information System (INIS)

    Watanabe, Katsutoshi

    1987-09-01

    The present paper describes the results of neutron irradiation effects on iron alloys and nickel-base heat resistant alloys. As for the iron alloys, irradiation hardening and embrittlement were investigated using internal friction measurement, electron microscopy and tensile testings. The role of alloying elements was also investigated to understand the irradiation behavior of iron alloys. The essential factors affecting irradiation hardening and embrittlement were thus clarified. On the other hand, postirradiation tensile and creep properties were measured of Hastelloy X alloy. Irradiation behavior at elevated temperatures is discussed. (author)

  3. Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development

    International Nuclear Information System (INIS)

    Jung, In-Ho; Park, Woo-Jin; Ahn, Sang Ho; Kang, Dae Hoon; Kim, Nack J.

    2007-01-01

    Recently an Mg-Sn based alloy system has been investigated actively in order to develop new magnesium alloys which have a stable structure and good mechanical properties at high temperatures. Thermodynamic modeling of the Mg-Al-Mn-Sb-Si-Sn-Zn system was performed based on available thermodynamic, phase equilibria and phase diagram data. Using the optimized database, the phase relationships of the Mg-Sn-Al-Zn alloys with additions of Si and Sb were calculated and compared with their experimental microstructures. It is shown that the calculated results are in good agreement with experimental microstructures, which proves the applicability of thermodynamic calculations for new Mg alloy design. All calculations were performed using FactSage thermochemical software. (orig.)

  4. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  5. Electron beam and laser surface alloying of Al-Si base alloys

    International Nuclear Information System (INIS)

    Vanhille, P.; Tosto, S.; Pelletier, J.M.; Issa, A.; Vannes, A.B.; Criqui, B.

    1992-01-01

    Surface alloying on aluminium-base alloys is achieved either by using an electron beam or a laser beam, in order to improve the mechanical properties of the near-surface region. A predeposit of nickel is first realized by plasma spraying. Melting of both the coating and part of the substrate produces a surface alloy with a fine, dendritic microstructure with a high hardness. Enhancement of this property requires an increase in the nickel content. Various problems occur during the formation of nickel-rich surface layers: incomplete homogenization owing to a progressive increase of the liquidus temperature, cracks owing to the brittleness of this hard suface alloy, formation of a plasma when experiments are carried out in a gaseous environment (laser surface alloying). Nevertheless, various kinds of surface layers may be achieved; for example very hard surface alloys (HV 0.2 =900), with a thickness of about 500-600 μm, or very thick surface alloys (e>2 mm), with a fairly good hardness (greater than 350 HV 0.2 ). Thus, it is possible to obtain a large variety of new materials by using high energy beams on aluminium substrates. (orig.)

  6. Progress in development of iron base alloys

    International Nuclear Information System (INIS)

    Zackay, V.V.; Parker, E.R.

    1980-01-01

    The ways of development of new iron base high-strength alloys are considered. Perspectiveness of ferritic steel strengthening with intermetallides (TaFe 2 , for instance) is shown. Favourable combination of plasticity, strength and fracture toughness in nickel-free iron-manganese alloys (16-20%) is also pointed out. A strength level of alloyed maraging steels can be achieved by changes in chemical composition and by proper heat treatments of low- and medium-alloyed steels

  7. Stress corrosion crack tip microstructure in nickel-based alloys

    International Nuclear Information System (INIS)

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content

  8. Technical assessment of vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Gold, R.E.; Harrod, D.L.; Ammon, R.L.; Buckman, R.W. Jr.; Svedberg, R.C.

    1978-01-01

    A large data base has been compiled on vanadium-base alloys but the data base on any one alloy is quite limited. Great flexibility exists in the composition-microstructure-property relationship and this facilitates alloy optimization to meet diverse property requirements. Tensile properties and creep properties of existing alloys exceed likely requirements. Fatigue strength, including crack growth rate, is probably the most critical material property but no data exists for vanadium alloys. Swelling and irradiated ductility behavior look promising but require further evaluation. Vanadium alloy-liquid metal compatibility, particularly interstitial mass transfer, may be equally as critical as fatigue behavior; viability cannot be established with the existing data base. Fabricability must be given early consideration in alloys selection to guard against potentially serious problems in subsequent scale-up and production

  9. Corrosion and oxidation of vanadium-base alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Wiggins, G.

    1983-10-01

    The corrosion of several V-base alloys on exposure at elevated temperatures to helium environments containing hydrogen and/or water vapor are presented. These results are utilized to discuss the consequences of the selection of certain radiation-damage resistant, V-base alloys for structural materials applications in a fusion reactor

  10. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    Science.gov (United States)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  11. Self-positioned thin Pb-alloy base electrode Josephson junction

    International Nuclear Information System (INIS)

    Kuroda, K.; Sato, K.

    1986-01-01

    A self-positioned thin (SPOT) Pb-alloy base electrode Josephson junction is developed. In this junction, a 50-nm thick Pb-alloy base electrode is restricted within the junction region on an Nb underlayer using a self-alignment technique. The grain size reduction and the base electrode area restriction greatly improve thermal cycling stability, where the thermal cycling tests of 4000 proposed junctions (5 x 5 μm 2 ) showed no failures after 4000 cycles. In addition, the elimination of insulator layer stress on the Pb-alloy base electrode rectifies the problem of size effect on current density. The Nb underlayers also serve to isolate the Pb-alloy base electrodes from the resistors

  12. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  13. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  14. Nuclear valves latest development

    International Nuclear Information System (INIS)

    Isaac, F.; Monier, M.

    1993-01-01

    In the frame of Nuclear Power Plant upgrade (Emergency Power Supply and Emergency Core Cooling), Westinghouse had to face a new valve design philosophy specially for motor operated valves. The valves have to been designed to resist any operating conditions, postulated accident or loss of control. The requirements for motor operated valves are listed and the selected model and related upgrading explained. As part of plant upgrade and valves replacement, Westinghouse has sponsored alternative hardfacing research programme. Two types of materials have been investigated: nickel base alloys and iron base alloys. Programme requirements and test results are given. A new globe valve model (On-Off or regulating) is described developed by Alsthom Velan permitting the seat replacement in less than 10 min. (Z.S.) 2 figs

  15. Cast-in hardfacing composite

    International Nuclear Information System (INIS)

    Ji, Jia-Lin; Wang, Hua-Ming.

    1991-01-01

    Tungsten carbide and chromium ferroalloy particles in binderless state were placed on a vacuum sealed mold surface, and a wear resistant surface was formed by pouring high temperature liquid steel into the mold cavity. Higher surface hardness HRC 65-69 and increased toughness were obtained by this composite material. It is shown that a strengthened martensitic matrix alloyed by tungsten and chromium supports tungsten carbide particles as well as reformed carbides (M6C, M7C3). 3 refs

  16. Lead and lead-based alloys as waste matrix materials

    International Nuclear Information System (INIS)

    Arustamov, A.E.; Ojovan, M.I.; Kachalov, M.B.

    1999-01-01

    Metals and alloys with relatively low melting temperatures such as lead and lead-based alloys are considered in Russia as prospective matrices for encapsulation of spent nuclear fuel in containers in preparation for final disposal in underground repositories. Now lead and lead-based alloys are being used for conditioning spent sealed radioactive sources at radioactive waste disposal facilities

  17. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  18. Production and properties of light-metal base amorphous alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Masumoto, Tsuyoshi

    1993-01-01

    Light-metal base alloys with high specific strength and good corrosion resistance were produced through amorphization of Al and Mg-based alloys. The amorphous phase is formed in rapidly solidified Al-TM-Ln and Mg-TM-Ln (TM=transition metal, Ln=lanthanide metal) alloys. The highest tensile strength (σ f ) reaches 1,330 MPa for the Al base and 830 MPa for the Mg base. Furthermore, the Mg-based alloys have a large glass-forming capacity which enables to produce an amorphous phase by a metallic mold casting method. The extrusion of the Al-based amorphous powders at temperatures above crystallization temperature caused the formation of high strength materials with finely mixed structure consisting of dispersed intermetallic compounds in an Al matrix. The highest values of σ f and fatigue limit are as high as 940 and 313 MPa, respectively, at room temperature and 520 and 165 MPa at 473 K. The extruded Al-Ni-Mm alloy has already been used as machine parts and subsequent further development as practical materials is expected by taking these advantages

  19. The development of platinum-based alloys and their thermodynamic database

    Directory of Open Access Journals (Sweden)

    Cornish L.A.

    2002-01-01

    Full Text Available A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr alloys, and further work will be done to enhance the mechanical and oxidation properties of the alloys by adding small amounts of other elements to the base composition of Pt84:Al11:Ru2:Cr3.

  20. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  1. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  2. Diffusion of hydrogen interstitials in Zr based AB2 and mischmetal based AB5 alloys

    International Nuclear Information System (INIS)

    Mani, N; Ravi, N; Ramaprabhu, S

    2005-01-01

    The Zr based AB 2 alloys ZrMnFe 0.5 Ni 0.5 , ZrMnFe 0.5 Co 0.5 and mischmetal (Mm) based AB 5 alloy MmNi 3.5 Al 0.5 Fe 0.5 Co 0.5 have been prepared and characterized by means of powder x-ray diffractograms. The hydrogen absorption kinetics of these alloys have been studied in the temperature and pressure ranges 450-650 0 C and 10-100 mbar respectively with a maximum H to host alloy formula unit ratio of 0.01, using a pressure reduction technique. The diffusion coefficient of the hydrogen interstitials has been determined from hydrogen absorption kinetics experiments. The dependence of the diffusion coefficient on the alloy content has been discussed. For Mm based MmNi 3.5 Al 0.5 Fe 0.5 Co 0.5 alloy, the diffusion coefficient is about an order of magnitude higher than that of the Zr based alloys

  3. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    Science.gov (United States)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  4. Ti-Ni-based shape memory alloys as smart materials

    International Nuclear Information System (INIS)

    Otsuka, K.; Xu, Y.; Ren, X.

    2003-01-01

    Smart materials consist of three principal materials, ferroelectrics, shape memory alloys (SMA) and electro-active polymers (EAP). Among these SMAs, especially Ti-Ni-based alloys are important, since only they can provide large recoverable strains and high recovery stress. In the present paper the unique characteristics of Ti-Ni-based shape memory alloys are reviewed on an up-to-date basis with the aim of their applications to smart materials and structures. (orig.)

  5. Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Hsu, T.Y.

    2000-01-01

    Characteristics of martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys are briefly reviewed. By analyzing the influences of constituents and treatments on shape memory effect (SME) in Fe-Mn-Si, the main factors controlling SME are summarized as austenite strengthening, stacking fault energy (probability) and antiferromagnetic temperature. Contribution of thermomechanical training to SME is introduced. The Fe-Mn-Si-RE (rare earth elements) and Fe-Mn-Si-Cr-N alloys are recommended as two novel shape memory alloys with superior SME. (orig.)

  6. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    Wadood, Abdul; Yamabe-Mitarai, Yoko; Hosoda, Hideki

    2014-01-01

    TiAu (equiatomic) exhibits phase transformaion from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed

  7. Coatings for fast breeder reactor components

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1984-04-01

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  8. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys

    International Nuclear Information System (INIS)

    Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor

    2004-01-01

    The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was ∼2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid γ + Ni 5 Gd eutectic-type reaction at ∼1270 C. The solidification temperature ranges of the alloys varied from ∼100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at ∼1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques

  9. The development of platinum-based alloys and their thermodynamic database

    OpenAIRE

    Cornish L.A.; Hohls J.; Hill P.J.; Prins S.; Süss R.; Compton D.N.

    2002-01-01

    A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr ...

  10. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    International Nuclear Information System (INIS)

    Yu, J.; Jiang, C.; Zhang, Y.

    2017-01-01

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is found that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.

  11. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is found that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.

  12. Cerium Titanate Nano dispersoids in Ni-base ODS Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Chun, Young-Bum; Rhee, Chang-Kyu; Jang, Jinsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Hee-Suk [Korea Basic Science Institute, Jeonju (Korea, Republic of)

    2016-10-15

    Oxide-dispersion-strengthened (ODS) nickel-base alloys have potential for use in rather demanding elevated-temperature environments, such as aircraft turbine engines, heat exchanger of nuclear reactor. For improved high temperature performance, several ODS alloys were developed which possess good elevated temperature strength and over-temperature capacity plus excellent static oxidation resistance. The high temperature strength of ODS alloys is due to the presence of a uniform dispersion of fine, inert particles. Ceria mixed oxides have been studied because of their application potential in the formation of nanoclusters. By first principle study, it was estimated that the formation energy of the Ce-O dimer with voids in the nickel base alloy is lower than other candidates. The result suggests that the dispersion of the Ceria mixed oxides can suppress the voiding or swelling behavior of nickel base alloy during neutron irradiation. In this study, the evolution of cerium titanate nano particles was investigated using in-situ TEM. It was found that the Ce{sub 2}Ti{sub 3}O{sub 9} phase was easily formed rather than remain as CeO{sub 2} during annealing; Ti was effective to form the finer oxide particles. Ce{sub 2}Ti{sub 3}O{sub 9} is expected to do the great roll as dispersoids in Ni-base alloy, contribute to achieve the better high temperature property, high swelling resistance during neutron radiation.

  13. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    Science.gov (United States)

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  14. Corrosion resistance of Fe-based amorphous alloys

    International Nuclear Information System (INIS)

    Botta, W.J.; Berger, J.E.; Kiminami, C.S.; Roche, V.; Nogueira, R.P.; Bolfarini, C.

    2014-01-01

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe 66 B 30 Nb 4 , [(Fe 0.6 Co 0.4 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , [(Fe 0.7 Co 0.3 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , Fe 56 Cr 23 Ni 5.7 B 16 , Fe 53 Cr 22 Ni 5.6 B 19 and Fe 50 Cr 22 Ni 5.4 B 23 . The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau

  15. LASER CLADDING ON ALUMINIUM BASE ALLOYS

    OpenAIRE

    Pilloz , M.; Pelletier , J.; Vannes , A.; Bignonnet , A.

    1991-01-01

    laser cladding is often performed on iron or titanium base alloys. In the present work, this method is employed on aluminum alloys ; nickel or silicon are added by powder injection. Addition of silicon leads to sound surface layers, but with moderated properties, while the presence of nickel induces the formation of hard intermetallic compounds and then to an attractive hardening phenomena ; however a recovery treatment has to be carried out, in order to eliminate porosity in the near surface...

  16. Application of laser cladding to the aeroengine component. Koku engine buhin eno laser nikumori yosetsu no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Morita, A [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1991-08-01

    Keeping the pace with recent development and application of laser cladding, hard-facing is used more frequently on turbine blades made of superalloys used in aeroengines. This paper explains the basic principles and features of laser hard-facing technique, welding parameters, and examples of practical use. Examples of practical use include application to turbine blades used in ALF502R-5 turbo fan engines for commuter aircraft and high-pressure turbine blades used in RB211 turbo fan engines for large passenger aircraft. In the former engine, improvement of abrasion resistance was intended at the shroud section where blades are in contact with each other, for which inconel was used as the base material and CO-group alloy as the welding material. The welding used a powder supply system with a laser generator oscillating CO{sub 2} at 5 kW and employing a beam collecting mirror plus scanner to attain a beam covering wider width. Faces with higher performance were obtained than by the conventional TIG welding, and the finishing time was decreased largely. 2 refs., 9 figs., 3 tabs.

  17. Supercritical water corrosion of high Cr steels and Ni-base alloys

    International Nuclear Information System (INIS)

    Jang, Jin Sung; Han, Chang Hee; Hwang, Seong Sik

    2004-01-01

    High Cr steels (9 to 12% Cr) have been widely used for high temperature high pressure components in fossil power plants. Recently the concept of SCWR (supercritical water-cooled reactor) has aroused a keen interest as one of the next generation (Generation IV) reactors. Consequently Ni-base (or high Ni) alloys as well as high Cr steels that have already many experiences in the field are among the potential candidate alloys for the cladding or reactor internals. Tentative inlet and outlet temperatures of the anticipated SCWR are 280 and 510 .deg. C respectively. Among many candidate alloys there are austenitic stainless steels, Ni base alloys, ODS alloys as well as high Cr steels. In this study the corrosion behavior of the high Cr steels and Ni base (or high Ni) alloys in the supercritical water were investigated. The corrosion behavior of the unirradiated base metals could be used in the near future as a guideline for the out-of-pile or in-pile corrosion evaluation tests

  18. Characterization of the microstructure in Mg based alloy

    KAUST Repository

    Kutbee, Arwa T

    2013-06-01

    The cast products Mg–Sn based alloys are promising candidates for automobile industries, since they provide a cheap yet thermally stable alternative to existing alloys. One drawback of the Mg–Sn based alloys is their insufficient hardness. The hardenability can be improved by engineering the microstructure through additions of Zn to the base alloy and selective aging conditions. Therefore, detailed knowledge about the microstructural characteristics and the role of Zn to promote precipitation hardening is essential for age hardenable Mg-based alloys. In this work, microstructural investigation of the Mg–1.4Sn–1.3Zn–0.1Mn (at.%) precipitation system was performed using TEM. The chemical composition of the precipitates was analyzed using EDS. APT was employed to obtain precise chemical information on the distribution of Zn in the microstructure. It was found from microstructural studies that different precipitates with varying sizes and phases were present; lath-shaped precipitates of the Mg2Sn phase have an incoherent interface with the matrix, unlike the lath-shaped MgZn2 precipitates. Furthermore, nano-sized precipitates dispersed in the microstructure with short-lath morphology can either be enriched with Sn or Zn. On the other hand, APT analysis revealed the strong repulsion between Sn and Zn atoms in a portion of the analysis volume. However, larger reconstruction volume required to identify the role of Zn is still limited to the optimization of specimen preparation.

  19. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Takuya, E-mail: takuya4.ogawa@toshiba.co.jp [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Itatani, Masao; Saito, Toshiyuki; Hayashi, Takahiro; Narazaki, Chihiro; Tsuchihashi, Kentaro [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2012-02-15

    Recently, instances of SCC in Ni-base alloy weld metal of light water reactor components have been reported. Despite the possibility of propagation of SCC crack to the fusion line between low alloy steel (LAS) of pressure vessel and Ni-base alloy of internal structure, a fracture assessment method of dissimilar metal welded joint has not been established. The objective of this study is to investigate a fracture mode of dissimilar metal weld of LAS and Ni-base alloy for development of a fracture assessment method for dissimilar metal weld. Fracture tests were conducted using two types of dissimilar metal weld test plates with semi-elliptical surface crack. In one of the test plates, the fusion line lies around the surface points of the surface crack and the crack tips at the surface points have intruded into LAS. Material ahead of the crack tip at the deepest point is Ni-base alloy. In the other, the fusion line lies around the deepest point of the surface crack and the crack tip at the deepest point has intruded into LAS. Material ahead of the crack tip at the deepest point is LAS. The results of fracture tests using the former type of test plate reveal that the collapse load considering the proportion of ligament area of each material gives a good estimation for fracture load. That is, fracture assessment based on plastic collapse mode is applicable to the former type of test plate. It is also understood that a fracture assessment method based on the elastic-plastic fracture mode is suitable for the latter type of test plate.

  20. Acoustic properties of TiNiMoFe base alloys

    International Nuclear Information System (INIS)

    Gyunter, V.Eh.; Chernyshev, V.I.; Chekalkin, T.L.

    2000-01-01

    The regularity of changing the acoustic properties of the TiNi base alloys in dependence on the alloy composition and impact temperature is studied. It is shown that the oscillations of the TiNiMoFe base alloys within the temperature range of the B2 phase existence and possible appearance of the martensite under the load differ from the traditional materials oscillations. After excitation of spontaneous oscillations within the range of M f ≤ T ≤ M d there exists the area of long-term and low-amplitude low-frequency acoustic oscillations. It is established that free low-frequency oscillations of the TH-10 alloy sample are characterized by the low damping level in the given temperature range [ru

  1. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  2. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    International Nuclear Information System (INIS)

    Latuch, J; Cieslak, G; Dimitrov, H; Krasnowski, M; Kulik, T

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 deg. C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 deg. C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  3. Effect of alloying elements on the stability of Ni2M in Alloy690 based upon thermodynamic calculation

    International Nuclear Information System (INIS)

    Horiuchi, Toshiaki; Kuwano, Kazuhiro; Satoh, Naohiro

    2012-01-01

    Some researchers recently point out that Ni based alloys used in nuclear power plants have the ordering tendency, which is a potential to decrease mechanical properties within the expected lifetime of the plants. In the present study, authors evaluated the effect of 8 alloying elements on the ordering tendency in Alloy690 based upon thermodynamic calculation by Thermo-Calc. It is clarified that the additive amount of Fe, Cr, Ti and Si, particularly Fe and Cr, was influential for the stability of Ni 2 M, while that of Mn, Cu, B and C had almost no effect for that. Authors therefore designed the Ni 2 M stabilized alloy by no addition of Fe in Alloy690. Ni 2 M is estimated to be stable even at 773 K in the Ni 2 M stabilized alloy. The influence by long range ordering or precipitating of Ni 2 M in Alloy690 for mechanical properties or SCC susceptibility is expected to be clarified by the sample obtained in the present study. (author)

  4. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    OpenAIRE

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    2017-01-01

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decr...

  5. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  6. Formation and Applications of Bulk Glassy Alloys in Late Transition Metal Base System

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Shen Baolong

    2006-01-01

    This paper reviews our recent results of the formation, fundamental properties, workability and applications of late transition metal (LTM) base bulk glassy alloys (BGAs) developed since 1995. The BGAs were obtained in Fe-(Al,Ga)-(P,C,B,Si), Fe-(Cr,Mo)-(C,B), Fe-(Zr,Hf,Nb,Ta)-B, Fe-Ln-B(Ln=lanthanide metal), Fe-B-Si-Nb and Fe-Nd-Al for Fe-based alloys, Co-(Ta,Mo)-B and Co-B-Si-Nb for Co-based alloys, Ni-Nb-(Ti,Zr)-(Co,Ni) for Ni-based alloys, and Cu-Ti-(Zr,Hf), Cu-Al-(Zr,Hf), Cu-Ti-(Zr,Hf)-(Ni,Co) and Cu-Al-(Zr,Hf)-(Ag,Pd) for Cu-based alloys. These BGAs exhibit useful properties of high mechanical strength, large elastic elongation and high corrosion resistance. In addition, Fe- and Co-based glassy alloys have good soft magnetic properties which cannot be obtained for amorphous and crystalline type magnetic alloys. The Fe- and Ni-based BGAs have already been used in some application fields. These LTM base BGAs are promising as new metallic engineering materials

  7. Effects of alloying elements on nodular and uniform corrosion resistance of zirconium-based alloys

    International Nuclear Information System (INIS)

    Abe, Katsuhiro

    1992-01-01

    The effects of alloying and impurity elements (tin, iron, chromium, nickel, niobium, tantalum, oxygen, aluminum, carbon, nitrogen, silicon, and phosphorus) on the nodular and uniform corrosion resistance of zirconium-based alloys were studied. The improving effect of iron, nickel and niobium in nodular corrosion resistance were observed. The uniform corrosion resistance was also improved by nickel, niobium and tantalum. The effects of impurity elements, nitrogen, aluminum and phosphorus were negligibly small but increasing the silicon content seemed to improve slightly the uniform corrosion resistance. Hydrogen pick-up fraction were not changed by alloying and impurity elements except nickel. Nickel addition increased remarkably hydrogen pick-up fraction. Although the composition of secondary precipitates changed with contents of alloying elements, the correlation of composition of secondary precipitates to corrosion resistance was not observed. (author)

  8. Indentation creep behaviors of amorphous Cu-based composite alloys

    Science.gov (United States)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  9. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys

    International Nuclear Information System (INIS)

    Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C.

    2007-01-01

    High-entropy alloys are newly developed alloys that are composed, by definition, of at least five principal elements with concentrations in the range of 5-35 at.%. Therefore, the alloying behavior of any given principal element is significantly affected by all the other principal elements present. In order to elucidate this further, the influence of iron, silver and gold addition on the microstructure and hardness of AlCoCrCuNi-based equimolar alloys has been examined. The as-cast AlCoCrCuNi base alloy is found to have a dendritic structure, of which only solid solution FCC and BCC phases can be observed. The BCC dendrite has a chemical composition close to that of the nominal alloy, with a deficiency in copper however, which is found to segregate and form a FCC Cu-rich interdendrite. The microstructure of the iron containing alloys is similar to that of the base alloy. It is found that both of these aforementioned alloys have hardnesses of about 420 HV, which is equated to their similar microstructures. The as-cast ingot forms two layers of distinct composition with the addition of silver. These layers, which are gold and silver in color, are determined to have a hypoeutectic Ag-Cu composition and a multielement mixture of the other principal elements, respectively. This indicates the chemical incompatibility of silver with the other principal elements. The hardnesses of the gold (104 HV) and silver layers (451 HV) are the lowest and highest of the alloy systems studied. This is attributed to the hypoeutectic Ag-Cu composition of the former and the reduced copper content of the latter. Only multielement mixtures, i.e. without copper segregation, form in the gold containing alloy. Thus, it may be said that gold acts as a 'mixing agent' between copper and the other elements. Although several of the atom pairs in the gold containing alloy have positive enthalpies, thermodynamic considerations show that the high entropy contribution is sufficient to counterbalance

  10. Segregation in welded nickel-base alloys

    International Nuclear Information System (INIS)

    Akhtar, J.I.; Shoaib, K.A.; Ahmad, M.; Shaikh, M.A.

    1990-05-01

    Segregation effects have been investigated in nickel-base alloys monel 400, inconel 625, hastelloy C-276 and incoloy 825, test welded under controlled conditions. Deviations from the normal composition have been observed to varying extents in the welded zone of these alloys. Least effect of this type occurred in Monel 400 where the content of Cu increased in some of the areas. Enhancement of Al and Ti has been found over large areas in the other alloys which has been attributed to the formation of low melting slag. Another common feature is the segregation of Cr, Fe or Ti, most likely in the form of carbides. Enrichment of Al, Ti, Nb, Mb, Mo, etc., to different amounts in some of the areas of these materials is in- terpretted in terms of the formation of gamma prime precipitates or of Laves phases. (author)

  11. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Directory of Open Access Journals (Sweden)

    Qijun Li

    Full Text Available Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process. Keywords: Powder metallurgy, Nb-Ti based alloy, Porous material, Mechanical alloying, Plasma spheroidizing, Solidification microstructure

  12. Improved Mg-based alloys for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.; Ming, L.; Stetson, N.T.; Evans, J. [Energy Conversion Devices, Inc., Troy, MI (United States)

    1998-08-01

    The overall objective of this on-going work is to develop low temperature alloys capable of reversibly storing at least 3 wt.% hydrogen, allowing greater than for 2 wt.% at the system level which is required by most applications. Surface modification of Mg can be used to improve its H-sorption kinetics. The authors show here that the same Mg-transition metal-based multi-component alloy when prepared by melt-spinning results in a more homogeneous materials with a higher plateau pressure as compared to preparing the material by mechanical grinding. They have also shown that mechanically alloyed Mg{sub 50}Al{sub 45}Zn{sub 5} results in a sample having a higher plateau pressure.

  13. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  14. Analysis of iron-base alloys by low-wattage glow discharge emission spectrometry

    International Nuclear Information System (INIS)

    Wagatsuma, K.; Hirokawa, K.

    1984-01-01

    Several iron-base alloys were investigated by low-wattage glow discharge emission spectrometry. The emission intensity principally depended on the sputtering parameters of constituent elements in the alloy. However, in the case of chromium, stable and firm oxides formed on the surface influencing the yield of ejected atoms. This paper discusses the relation between the sputtering parameters in Fe-Ni, Fe-Cr, and Fe-Co alloys and their relative emission intensities. Additionally, quantitative analysis was performed for some ternary iron-base alloys and commercial stainless steels with the calibration factors of binary alloy systems

  15. The development of additive manufacturing technique for nickel-base alloys: A review

    Science.gov (United States)

    Zadi-Maad, Ahmad; Basuki, Arif

    2018-04-01

    Nickel-base alloys are an attractive alloy due to its excellent mechanical properties, a high resistance to creep deformation, corrosion, and oxidation. However, it is a hard task to control performance when casting or forging for this material. In recent years, additive manufacturing (AM) process has been implemented to replace the conventional directional solidification process for the production of nickel-base alloys. Due to its potentially lower cost and flexibility manufacturing process, AM is considered as a substitute technique for the existing. This paper provides a comprehensive review of the previous work related to the AM techniques for Ni-base alloys while highlighting current challenges and methods to solving them. The properties of conventionally manufactured Ni-base alloys are also compared with the AM fabricated alloys. The mechanical properties obtained from tension, hardness and fatigue test are included, along with discussions of the effect of post-treatment process. Recommendations for further work are also provided.

  16. Tungsten wire-nickel base alloy composite development

    Science.gov (United States)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  17. Elimination of Iron Based Particles in Al-Si Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2015-03-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by chrome. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases. By experimental work were used three different amounts of AlCr20 master alloy a three different temperature of chill mold. Our experimental work confirmed that chrome can be used as an iron corrector in Al-Si alloy, due to the change of intermetallic phases and shortening their length.

  18. Mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys

    International Nuclear Information System (INIS)

    Miao He; Wang Weiguo

    2010-01-01

    Research highlights: → The corrosion resistance of V-based phase is much lower than that of C14 Laves phase of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. - Abstract: In this work, the mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys were investigated systemically. Several key factors for example corrosion resistance, pulverization resistance and oxidation resistance were evaluated individually. The V-based solid solution phase has much lower anti-corrosion ability than C14 Laves phase in KOH solution, and the addition of Cr in V-Ti-based alloys can suppress the dissolution of the main hydrogen absorption elements of the V-based phase in the alkaline solution. During the charge/discharge cycling, the alloy particles crack or break into several pieces, which accelerates their corrosion/oxidation and increases the contact resistance of the alloy electrodes. Proper decreasing the Vickers hardness and enhancing the fracture toughness can increase the pulverization resistance of the alloy particles. The oxidation layer thickness on the alloy particle surface obviously increases during charge/discharge cycling. This deteriorates their electro-catalyst activation to the electrochemical reaction, and leads to a quick degradation. Therefore, enhancing the oxide resistance can obviously improve the cyclic stability of V-Ti-based hydrogen storage electrode alloys.

  19. Microstructure and mechanical properties of multiphase NiAl-based alloys

    Science.gov (United States)

    Pank, D. R.; Koss, D. A.; Nathal, M. V.

    1990-01-01

    The effect of the gamma-prime phase on the deformation behavior and fracture resistance of melt-spun ribbons and consolidated bulk specimens of a series of Nial-based alloys with Co and Hf additions has been examined. The morphology, location, and volume fraction of the gamma-prime phase are significant factors in enhancing the fracture resistance of the normally brittle NiAl-based alloys. In particular, the results indicate that a continuous-grain-boundary film of gamma-prime can impart limited room-temperature ductility regardless of whether B2 or L10 NiAl is present. Guidelines for microstructure control in multiphase NiAl-based alloys are also presented.

  20. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    Science.gov (United States)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  1. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  2. Improvement of the performance of Mg-based alloy electrodes at ambient temperatures

    International Nuclear Information System (INIS)

    Liu, H.K.; Chen, J.; Sun, L.; Bradhurst, D.H.; Dou, S.X.

    1998-01-01

    Full text: Rechargeable batteries are finding increased application in modern communications, computers, and electric vehicles. The Nickel-Metal Hydride (Ni-MH) battery has the best comprehensive properties. It is known that the important step to increase the energy density of Ni-MH battery is to improve the negative (metal hydride) electrode properties. Of all the hydrogen storage alloys studied previously, (the best know alloys are LaNi 5 , Mg 2 Ni, Ti 2 Ni , TiNi and Zr 2 Ni), the intermetallic compound Mg 2 Ni has the highest theoretical hydrogen storage capacity. The Mg 2 Ni-based hydrogen storage alloy is a promising material for increasing the negative electrode capacity of Ni-MH batteries because this alloy is superior to the LaNi 5 -system or the Zr-based alloys in materials cost and hydrogen absorption capacity. A serious disadvantage, however, is that the reactions of most magnesium based alloys with hydrogen require relatively high temperature (>300 deg C) and pressure (up to 10 atm) due to the slowness of the hydriding/dehydriding reactions. In this paper it is shown that with a combination of modifications to the alloy composition and methods of electrode preparation, magnesium-based alloys can be made into electrodes which will not only be useful at ambient temperatures but will have a useful cycle life and extremely high capacity

  3. Neutronographic Texture Analysis of Zirconium Based Alloys

    International Nuclear Information System (INIS)

    Kruz'elová, M; Vratislav, S; Kalvoda, L; Dlouhá, M

    2012-01-01

    Neutron diffraction is a very powerful tool in texture analysis of zirconium based alloys used in nuclear technique. Textures of five samples (two rolled sheets and three tubes) were investigated by using basal pole figures, inversion pole figures, and ODF distribution function. The texture measurement was performed at diffractometer KSN2 on the Laboratory of Neutron Diffraction, Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. Procedures for studying textures with thermal neutrons and procedures for obtaining texture parameters (direct and inverse pole figures, three dimensional orientation distribution function) are also described. Observed data were processed by software packages HEXAL and GSAS. Our results can be summarized as follows: i) All samples of zirconium alloys show the distribution of middle area into two maxima in basal pole figures. This is caused by alloying elements. A characteristic split of the basal pole maxima tilted from the normal direction toward the transverse direction can be observed for all samples, ii) Sheet samples prefer orientation of planes (100) and (110) perpendicular to rolling direction and orientation of planes (002) perpendicular to normal direction, iii) Basal planes of tubes are oriented parallel to tube axis, meanwhile (100) planes are oriented perpendicular to tube axis. Level of resulting texture and maxima position is different for tubes and for sheets. The obtained results are characteristic for zirconium based alloys.

  4. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  5. Corrosion behaviour of powder metallurgical and cast Al-Zn-Mg base alloys

    International Nuclear Information System (INIS)

    Sameljuk, A.V.; Neikov, O.D.; Krajnikov, A.V.; Milman, Yu.V.; Thompson, G.E.

    2004-01-01

    The behaviour of Al-Zn-Mg base alloys produced by powder metallurgy and casting has been studied using potentiodynamic polarisation in 0.3% and 3% NaCl solutions. The influence of alloy production route on microstructure has been examined by scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectrometry. An improvement in performance of powder metallurgy (PM) materials, compared with the cast alloy, was evident in solutions of low chloride concentration; less striking differences were revealed in high chloride concentration. Both powder metallurgy and cast alloys show two main types of precipitates, which were identified as Zn-Mg and Zr-Sc base intermetallic phases. The microstructure of the PM alloys is refined compared with the cast material, which assists understanding of the corrosion performance. The corrosion process commences with dissolution of the Zn-Mg base phases, with the relatively coarse phases present in the cast alloy showing ready development of corrosion

  6. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  7. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  8. Highly corrosion resistant zirconium based alloy for reactor structural material

    International Nuclear Information System (INIS)

    Ito, Yoichi.

    1996-01-01

    The alloy of the present invention is a zirconium based alloy comprising tin (Sn), chromium (Cr), nickel (Ni) and iron (Fe) in zirconium (Zr). The amount of silicon (Si) as an impurity is not more than 60ppm. It is preferred that Sn is from 0.9 to 1.5wt%, that of Cr is from 0.05 to 0.15wt%, and (Fe + Ni) is from 0.17 to 0.5wt%. If not less than 0.12wt% of Fe is added, resistance against nodular corrosion is improved. The upper limit of Fe is preferably 0.40wt% from a view point of uniform suppression for the corrosion. The nodular corrosion can be suppressed by reducing the amount of Si-rich deposition product in the zirconium based alloy. Accordingly, a highly corrosion resistant zirconium based alloy improved for the corrosion resistance of zircaloy-2 and usable for a fuel cladding tube of a BWR type reactor can be obtained. (I.N.)

  9. Precipitation hardened nickel-base alloys for sour gas environments

    International Nuclear Information System (INIS)

    Igarashi, M.; Mukai, S.; Kudo, T.; Okada, Y.; Ikeda, A.

    1987-01-01

    SCC (Stress Corrosion Cracking) in sour gas environments of γ'(gamma prime: Ni/sub 3/(Ti and/or Al)) and γ''(gamma double prime: Ni/sub 3/Nb) precipitation hardened nickel-base alloys has been studied using the SSRT (Slow Strain Rate Tensile) test, anodic polarization measurement and transmission electron microscopy (TEM). The γ'-type alloy containing Ti was more susceptible to SCC in the SSRT tests up to 350 0 F(450 K) than the γ''-type alloy containing Nb. The susceptibility to SCC was related to their deformation structures in terms of stress localization and sensitivity to pitting corrosion in H/sub 2/S solutions. TEM observation showed the γ'-type alloy deformed by the superlattice dislocations in coplanar structures. This mode of deformation induced the stress localization to some boundaries such as grain boundary and as a result the susceptibility to SCC of the γ'-type alloy was increased. On the other hand, the γ''-type alloy deformed by the massive dislocation not in coplanar structures so that it was less susceptible to SCC in terms of the stress localization. The anodic polarization measurement suggested the γ'-type alloy was more susceptible to pitting corrosion compared with the γ''-type alloy

  10. Corrosion behavior of Nb-based and Mo-based super heat-resisting alloys in liquid Li

    International Nuclear Information System (INIS)

    Saito, J.; Kano, S.; Morinaga, M.

    1998-07-01

    Research on structural materials which will be utilized even in the severe environment of high-temperature liquid alkali metals has been promoted in order to develop the frontiers of materials techniques. The super-heat resisting alloys which are based on refractory metals, Nb and Mo, are aimed as promising materials used in such an environment. The corrosion resistance in liquid Li and the mechanical properties such as creep and tensile strengths at high temperatures are important for these structural materials. On the basis of many experiments and analyses of these properties at 1473 K, the material design of Nb-based and Mo-based alloys has been carried out successfully. In this report, all the previous experimental results of corrosion tests in liquid Li were summarized systematically for Nb-based and Mo-based alloys. The corrosion mechanism was proposed on the basis of a series of analyses, in particular, focussing on the deposition mechanism of corrosion products on the surface and also on the initiation and growth mechanism of cracks on the corroded surface of Nb-based alloys. The principal results are as follows. (1) For the deposition mechanism, a reaction took place first between dissolved metallic elements and nitrogen which existed as an impurity in liquid Li and then corrosion products (nitrides) precipitated on the metal surface. Subsequently, another reaction took place between dissolved metallic elements in liquid Li, and corrosion products (intermetallic compounds) precipitated on the metal surface. The composition of deposited corrosion products could be predicted on the basis of the deposition mechanism. (2) For the crack initiation mechanism, the chemical potential diagrams were utilized in order to understand the formation of Li-M-O ternary oxides which caused cracks to be formed on the corroded surface. Consequently, it was evident that not only the concentration of the dissolved oxygen in the alloy but also the concentration of Li which

  11. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy

    International Nuclear Information System (INIS)

    Kim, W.Y.; Kim, H.S.; Kim, S.K.; Ra, T.Y.; Kim, M.S.

    2005-01-01

    Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb 5 Si 3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb 5 Si 3 . At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure. (orig.)

  12. Transmission electron microscopy characterization of laser-clad iron-based alloy on Al-Si alloy

    International Nuclear Information System (INIS)

    Mei, Z.; Wang, W.Y.; Wang, A.H.

    2006-01-01

    Microstructure characterization is important for controlling the quality of laser cladding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the iron-based alloy laser-clad on Al-Si alloy and an unambiguous identification of phases in the coating was accomplished. It was found that there is austenite, Cr 7 C 3 and Cr 23 C 6 in the clad region; α-Al, NiAl 3 , Fe 2 Al 5 and FeAl 2 in the interface region; and α-Al and silicon in the heat-affected region. A brief discussion was given for their existence based on both kinetic and thermodynamic principles

  13. DETERMINATION OF THE OPTIMAL TEMPERING TEMPERATURE IN HARD FACING OF THE FORGING DIES

    Directory of Open Access Journals (Sweden)

    Milan Mutavdžić

    2012-06-01

    Full Text Available Here is analyzed selection of the optimal technology for heat treatment during the reparation of the damaged forging dies. Those tools are manufactured from alloyed tool steels for operation at elevated temperatures. Those steels are prone to self-hardening, so in reparatory hard-facing they must be preheated, additionally heated and tempered. During the tempering, in temperature interval 500-600°C, a secondary increase of hardness and decrease of impact toughness occurs, the so-called reversible tempering brittleness. Here is shown that it can be avoided by application of metallurgical and technological measures. Metallurgical measures assume adequate selection of steels. Since the considered steels are per se prone to tempering brittleness, we conducted experimental investigations to define the technological measures to avoid it. Tests on models were conducted: tempering from different temperatures, slow heating and cooling in still air. Hardness measurements showed that at 520°C, the secondary increase of hardness occurs, with drop of the impact toughness. Additional hard-facing tests included samples tempered at various regimes. Samples were prepared for mechanical and metallographic investigations. Results presented illustrate influence of additional heat treatment on structure, hardness and mechanical properties of the hard-faced layers. This enabled establishing the possibility of avoiding the tempering brittleness through technological measures.

  14. Determination of the optimal tempering temperature in hard facing of the forging dies

    Directory of Open Access Journals (Sweden)

    Milan Mutavdžić

    2012-05-01

    Full Text Available Here is analyzed selection of the optimal technology for heat treatment during the reparation of the damaged forging dies. Those tools are manufactured from alloyed tool steels for operation at elevated temperatures. Those steels are prone to self-hardening, so in reparatory hard-facing they must be preheated, additionally heated and tempered. During the tempering, in temperature interval 500-600°C, a secondary increase of hardness and decrease of impact toughness occurs, the so-called reversible tempering brittleness. Here is shown that it can be avoided by application of metallurgical and technological measures. Metallurgical measures assume adequate selection of steels. Since the considered steels are per se prone to tempering brittleness, we conducted experimental investigations to define the technological measures to avoid it. Tests on models were conducted: tempering from different temperatures, slow heating and cooling in still air. Hardness measurements showed that at 520°C, the secondary increase of hardness occurs, with drop of the impact toughness. Additional hard-facing tests included samples tempered at various regimes. Samples were prepared for mechanical and metallographic investigations. Results presented illustrate influence of additional heat treatment on structure, hardness and mechanical properties of the hard-faced layers. This enabled establishing the possibility of avoiding the tempering brittleness through technological measures. 

  15. Microstructure evolution and texture development in thermomechanically processed Mg-Li-Al based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Department of Materials Science and Engineering, IIT Kanpur (India); Govind [Vikram Sarabhai Space Center, Trivandrum (India); Shekhar, Rajiv; Balasubramaniam, R. [Department of Materials Science and Engineering, IIT Kanpur (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, IIT Kanpur (India)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thermomechanical processing of novel LAT 971 and LATZ 9531 Mg-Al-Li based alloys. Black-Right-Pointing-Pointer Microstructural deviation from the equilibrium phase diagram. Black-Right-Pointing-Pointer Disparity in texture of these alloys after hot-rolling (recrystallization and grain growth). Black-Right-Pointing-Pointer Role of alloying and phase distribution in affecting the texture/interplaner spacing. - Abstract: In the present study, the influence of alloying and thermomechanical processing on the microstructure and texture evolution on the two Mg-Li-Al based alloys, namely Mg-9 wt% Li-7 wt% Al-1 wt% Sn (LAT971) and Mg-9 wt% Li-5 wt% Al-3 wt% Sn-1 wt% Zn (LATZ9531) has been elicited. Novel Mg-Li-Al based alloys were cast (induction melting under protective atmosphere) followed by hot rolling at {approx}573 K with a cumulative reduction of five. A contrary dual phase dendritic microstructure rich in {alpha}-Mg, instead of {beta}-Li phase predicted by equilibrium phase diagram of Mg-Li binary alloy was observed. Preferential presence of Mg-Li-Sn primary precipitates (size 4-10 {mu}m) within {alpha}-Mg phase and Mg-Li-Al secondary precipitates (<3 {mu}m) interspersed in {beta}-Li indicated their degree of dissolution during hot-rolling and homogenization in the dual phase matrix. Presence of Al, Sn and Zn alloying elements in the Mg-Li based alloy has resulted an unusual dual-phase microstructure, change in the lattice parameter, and intriguing texture evolution after hot-rolling of cast LAT 971 and LATZ9531 alloy. Strong texture was absent in the as-cast samples whereas texture development after hot-rolling revealed an increased activity of the non-basal (101{sup Macron }0) slip planes. The quantification of the grain average misorientation (less than 2 Degree-Sign ) using electron backscattered diffraction confirmed the presence of strain free grains in majority of the grains (fraction >0.75) after hot-rolling of Mg

  16. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  17. An overview of advanced high-strength nickel-base alloys for LWR applications

    International Nuclear Information System (INIS)

    Prybylowski, J.; Ballinger, R.G.

    1989-01-01

    This paper reviews our current understanding of the behavior of high strength nickel base alloys used in light water reactor (LWR) applications. Emphasis is placed on understanding the fundamental mechanisms controlling crack propagation in these environments. To provide a foundation for this survey, general mechanisms of stress corrosion cracking and hydrogen embrittlement are first reviewed. The behavior of high strength nickel base alloys in LWR environments, as well as in other relevant environments is then reviewed. Suggested mechanisms of crack propagation are discussed. Alternate alloys and microstructural modifications that may result in improved behavior are presented. It is now clear that, at temperatures near 100C, alloy X-750, the predominant high strength nickel base alloy used today in LWR applications, is susceptible to hydrogen embrittlement. A review of published data from hydrogen embrittlement studies of nickel base superalloys during electrolytic charging and in hydrogen sulfide/brine solutions suggests that other nickel base superalloys are available possessing resistance to hydrogen embrittlement superior to that of alloy X-750. Available results of tests in gaseous hydrogen suggest that reduced grain boundary precipitation and a fine distribution of intragranular precipitates that act as irreversible hydrogen traps is the optimum microstructure for hydrogen embrittlement resistance. 42 refs., 2 figs., 5 tabs

  18. A new high-strength iron base austenitic alloy with good toughness and corrosion resistance (GE-EPRI alloy-TTL)

    International Nuclear Information System (INIS)

    Ganesh, S.

    1989-01-01

    A new high strength, iron based, austenitic alloy has been successfully developed by GE-EPRI to satisfy the strength and corrosion resistance requirements of large retaining rings for high capacity generators (>840Mw). This new alloy is a modified version of the EPRI alloy-T developed by the University of California, Berkeley, in an earlier EPRI program. It is age hardenable and has the nominal composition (weight %): 34.5 Ni, 5Cr, 3Ti, 1Nb, 1Ta, 1Mo, .5Al, .3V, .01B. This composition was selected based on detailed metallurgical and processing studies on modified versions of alloy-T. These studies helped establish the optimum processing conditions for the new alloy and enabled the successful scale-up production of three large (50-52 inch dia) test rings from a 5,000 lb VIM-VAR billet. The rings were metallurgically sound and exhibited yield strength capabilities in the range 145 to 220 ksi depending on the extent of hot/cold work induced. The test rings met or exceeded all the property goals. The above alloy can provide a good combination of strength, toughness and corrosion resistance and, through an suitable modification of chemistry or processing conditions, could be a viable candidate for high strength LWR internal applications. 3 figs

  19. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...... and wear performance compared with conventional coatings like electroless nickel, hard chromioum and anodised aluminium....

  20. On the superconductivity of vanadium based alloys

    International Nuclear Information System (INIS)

    Brouers, F.; Rest, J. Van der

    1984-01-01

    The electron density of states of solid solutions of vanadium based transition metal alloys V 90 X 10 is computed with the aim of calculating the superconducting transition temperature using the McMillan formula. As observed experimentally for X on the left hand side of V in the periodic table, one obtains an increase of Tc while for X on the right hand side of V the critical temperature decreases. The detailed comparison with experiments indicate that when the bandwidths of the two constituents are different, one cannot neglect the variation of the electron-phonon interactions. Another important conclusion is that for alloys which are in the split-band limit like VAu, VPd and VPt, the agreement with experimental data can be obtained only by assuming that these alloys have a short-range order favouring clusters of pure vanadium. (Author) [pt

  1. Computational studies of physical properties of Nb-Si based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Lizhi [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered lattices including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.

  2. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    Science.gov (United States)

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  3. Glass formation and crystallization in Zr based alloys

    International Nuclear Information System (INIS)

    Dey, G. K.

    2011-01-01

    Metallic glasses have come in to prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. Though these have been produced for the last four decades, the necessity of rapid solidification at cooling rates of 10 5 K/sec or higher for their production, have restricted their geometry to thin ribbons and prevented their application to many areas despite their excellent properties. It has been shown in recent investigations that, many Zr base multicomponent alloys can be obtained in glassy state by cooling at much lower rate typically 10 2 to 10 3 K/sec. This has enabled production of these alloys in the glassy stat in bulk. By now, bulk metallic glasses have been produced in Mg, Ln, Zr, Fe, Pd-Cu, Pd-Fe, Ti and Ni- based alloys. Production of these glasses in bulk has opened avenue for their application in many areas where their excellent mechanical properties an corrosion resistance can be exploited. The transformation of the amorphous phase in these alloys to one or more crystalline phases, is an interesting phase transformation and can lead to formation of crystals in a variety of morphologies and a wide range of crystal sizes, including nanometer size crystals or nanocrystals. The bulk amorphous alloys exhibit higher fracture stress, combined with higher hardness and lower young's modulus than those of any crystalline alloy. The Zr- and Ti-based bulk amorphous alloy exhibit high bending and flexural strength values which are typically 2.0 to 2.5 time higher than those for crystalline counterparts. The composites of bulk metallic glass containing crystalline phases have been found to have special properties. This has been demonstrated in the case of composites of bulk metallic glass and tungsten wires wit the glass forming the matrix. Such a composite has a very high impact strength and is especially suitable for application as an armour penetrator in various types of shells used

  4. Influence of alkali metal hydroxides on corrosion of Zr-base alloys

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan

    1996-01-01

    The influence of group-1 alkali hydroxides on different Zr-based alloys have been carried out in static autoclaves at 350 deg C in pressurized water, conditioned in low(0.32 mmol), medium(4.3 mmol) and high(31.5 mmol) equimolar concentration of Li-, Na-, K-, Rb- and Cs-hydroxide. Two types of alloys have been investigated: Zr-Sn-(TRM, Transition metal) and Zr-Sn-Nb-(TRM, Transition metal). From the experiments the cation could be identified as the responsible species for corrosion of Zr alloy in alkalized water. The radius of the cation governs the accelerated corrosion in the pre-transition region of Zr alloy. Incorporation of alkali cation into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significant lower effect for the other bases. Nb containing alloys showed lower corrosion resistance than Zr-Sn-TRM alloys in all alkali solutions. Both types of alloys were corroded significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behavior in the different alkali environments and taking into account the tendency to accelerate the corrosion of Zr alloys, CsOH and KOH are possible alternate alkali for PWR (Pressurized Water Reactor) application. (author)

  5. Cu-based shape memory alloys with enhanced thermal stability and mechanical properties

    International Nuclear Information System (INIS)

    Chung, C.Y.; Lam, C.W.H.

    1999-01-01

    Cu-based shape memory alloys were developed in the 1960s. They show excellent thermoelastic martensitic transformation. However the problems in mechanical properties and thermal instability have inhibited them from becoming promising engineering alloys. A new Cu-Zn-Al-Mn-Zr Cu-based shape memory alloy has been developed. With the addition of Mn and Zr, the martensitic transformation behaviour and the grain size ca be better controlled. The new alloys demonstrates good mechanical properties with ultimate tensile strenght and ductility, being 460 MPa and 9%, respectively. Experimental results revealed that the alloy has better thermal stability, i.e. martensite stabilisation is less serious. In ordinary Cu-Zn-Al alloys, martensite stabilisation usually occurs at room temperature. The new alloy shows better thermal stability even at elevated temperature (∝150 C, >A f =80 C). A limited small amount of martensite stabilisation was observed upon ageing of the direct quenched samples as well as the step quenched samples. This implies that the thermal stability of the new alloy is less dependent on the quenching procedure. Furthermore, such minor martensite stabilisation can be removed by subsequent suitable parent phase ageing. The new alloy is ideal for engineering applications because of its better thermal stability and better mechanical properties. (orig.)

  6. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    International Nuclear Information System (INIS)

    Pol'dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret'yakov, B.N.

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit σsub(0.01) and yield limit σsub(0.2)) of three amorphous alloys on iron base Fe 80 B 20 , Fe 70 Cr 10 B 20 and Fe 70 Cr 5 Ni 5 B 20 are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials

  7. Corrosion assessment and enhanced biocompatibility analysis of biodegradable magnesium-based alloys

    Science.gov (United States)

    Pompa, Luis Enrique

    Magnesium alloys have raised immense interest to many researchers because of its evolution as a new third generation material. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium based alloys experience a natural phenomena to biodegrade in aqueous solutions due to its corrosive activity, which is excellent for orthopedic and cardiovascular applications. However, major concerns with such alloys are fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of an implant. In this investigation, three grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by a tetrazolium based bio-assay, MTS.

  8. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  9. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    International Nuclear Information System (INIS)

    Xu Jiang; Tao Jie; Jiang Shuyun; Xu Zhong

    2008-01-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 deg. C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2 O 3 , MoO 3 , SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer

  10. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    Science.gov (United States)

    Zhu, Min; Lu, Yanshan; Ouyang, Liuzhang; Wang, Hui

    2013-01-01

    Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys. PMID:28788353

  11. Prospects for designing structural cast eutectic alloys on Al-Ce-Ni system base

    International Nuclear Information System (INIS)

    Belov, N.A.; Naumova, E.S.

    1996-01-01

    The phase diagram of Al-Ce-Ni system is built for an aluminium corner at component concentration up to 16 mass %Ce and 8 mass%Ni. A ternary eutectic reaction is established at 12%Ce, 5%Ni and 626 deg C. The ternary eutectic alloy is similar in structure to rapidly cooled Al base alloys with transition metals. The possibility to design new cast alloys based on three-phase (Al)+NiAl 3 +CeAl 4 eutectics is under consideration. Al-Zn-Mg-Cu, Al-Sc and Al-Zr base alloys can be used as (Al) constituent of the eutectics. The new alloys may be considered as heat resistant ones due to the fact that no structural changes are observed in castings on heating up to 350 deg C. 18 refs.; 4 figs.; 2 tabs

  12. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  13. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    Science.gov (United States)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  14. Nickel-based materials and high-alloy, special stainless steels. 2. new rev. and enl. ed.

    International Nuclear Information System (INIS)

    Heubner, U.; Brill, U.; Hoffmann, T.; Jasner, M.; Kirchheiner, R.; Koecher, R.; Richter, H.; Rockel, M.; White, F.

    1993-01-01

    The book is intended as a source of information on nickel-based materials and special stainless steels and apart from the up-to-date materials data presents information on recent developments and knowledge gained, so that it may be a valuable aid to materials engineers looking for cost-effective resolutions of their materials problems in the chemical process industry, power plant operation, and high-temperature applications. The book presents eight individual contributions entitled as follows: (1) Nickel-base alloys and high-alloy, special stainless steels. - Materials survey and data sheets (Ulrich Heubner). (2) Corrosion of nickel-base alloys and special stainless steels (Manfred Rockel). (3) Welding of nickel-base alloys and high-alloy, special stainless steels (Theo Hoffmann). (4) High-temperature resistant materials (Ulrich Brill). (5) Application and processing of nickel-base materials in the chemical process industry and in pollution abatement equipment (Reiner Koecher). (6) Selected examples of applications of nickel-base materials in chemical plant (Manfred Jasner, Frederick White). (7) Applications of nickel-base alloys and special stainless steels in power plant. (8) The use of nickel-base alloys and stainless steels in pollution abatement processes (R. Kirchheiner). (orig./MM). 151 figs., 226 refs [de

  15. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    Science.gov (United States)

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal...Air Force Research Laboratory for accurately predicting compositions of new amorphous alloys specifically based on aluminium with properties superior

  16. Study of superficial films and of electrochemical behaviour of some nickel base alloys and titanium base alloys in solution representation of granitic, argillaceous and salted ground waters

    International Nuclear Information System (INIS)

    Quang, K.V.; Da Cunha Belo, M.; Benabed, M.S.; Bourelier, F.; Jallerat, N.; Pari, F.L.

    1985-01-01

    The corrosion behaviour of the stainless steels 304, 316 Ti, 25Cr-20Ni-Mo-Ti, nickel base alloys Hastelloy C4, Inconel 625, Incoloy 800, Ti and Ti-0.2% Pd alloy has been studied in the aerated or deaerated solutions at 20 0 C and 90 0 C whose compositions are representative of interstitial ground waters: granitic or clay waters or salt brine. The electrochemical techniques used are voltametry, polarization resistance and complexe impedance measurements. Electrochemical data show the respective influence of the parameters such as temperature, solution composition and dissolved oxygen, addition of soluble species chloride, fluoride, sulfide and carbonates, on which depend the corrosion current density, the passivation and the pitting potential. The inhibition efficiency of carbonate and bicarbonate activities against pitting corrosion is determined. In clay water at 90 0 C, Ti and Ti-Pd show very high passivation aptitude and a broad passive potential range. Alloying Pd increases cathodic overpotential and also transpassive potential. It makes the alloy less sensitive to the temperature effect. Optical Glow Discharge Spectra show three parts in the composition depth profiles of surface films on alloys. XPS and SIMS spectrometry analyses are also carried out. Electron microscopy observation shows that passive films formed on Ti and Ti-Pd alloy have amorphous structure. Analysis of the alloy constituents dissolved in solutions, by radioactivation in neutrons, gives the order of magnitude of the Ni base alloy corrosion rates in various media. It also points out the preferential dissolution of alloying iron and in certain cases of chromium

  17. Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys

    Science.gov (United States)

    La Roca, P.; Baruj, A.; Sade, M.

    2017-03-01

    Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.

  18. Correlation between Ni base alloys surface conditioning and cation release mitigation in primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Clauzel, M.; Guillodo, M.; Foucault, M. [AREVA NP SAS, Technical Centre, Le Creusot (France); Engler, N.; Chahma, F.; Brun, C. [AREVA NP SAS, Chemistry and Radiochemistry Group, Paris La Defense (France)

    2010-07-01

    The mastering of the reactor coolant system radioactive contamination is a real stake of performance for operating plants and new builds. The reduction of activated corrosion products deposited on RCS surfaces allows minimizing the global dose integrated by workers which supports the ALARA approach. Moreover, the contamination mastering limits the volumic activities in the primary coolant and thus optimizes the reactor shutdown duration and environment releases. The main contamination sources on PWR are due to Co-60 and Co-58 nuclides which come respectively Co-59 and Ni-58, naturally present in alloys used in the RCS. Co is naturally present as an impurity in alloys or as the main component of hardfacing materials (Stellites™). Ni is released mainly by SG tubes which represent the most important surface of the RCS. PWR steam generators (SG), due to the huge wetted surface are the main source of corrosion products release in the primary coolant circuit. As corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup, it is of primary importance to gain a better understanding of phenomenon leading to corrosion product release from SG tubes before setting up mitigation measures. Previous studies have shown that SG tubing made of the same material had different release rates. To find the origin of these discrepancies, investigations have been performed on tubes at the as-received state and after exposure to a nominal primary chemistry in titanium recirculating loop. These investigations highlighted the existence of a correlation between the inner surface metallurgical properties and the release of corrosion products in primary coolant. Oxide films formed in nominal primary chemistry are always protective, their morphology and their composition depending strongly on the geometrical, metallurgical and physico-chemical state of the surface on which they

  19. Technical assessment of niobium alloys data base for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Pionke, L J; Davis, J W

    1979-08-01

    Refractory metals are one class of material to be developed in the Alloy Development For Irradiation Performance (ADIP) program recently initiated. A principal purpose of the assessment reported herein is to establish the existing data base for niobium alloys in order to help guide the work to be performed in the ADIP program. Major ADIP decisions include alloy selection/modification and irradiated/unirradiated material testing. This Assessment addressed the topics of: (1) niobium alloy development history and niobium metallurgy, (2) unirradiated mechanical properties, (3) irradiated properties, (4) corrosion, and (5) environmental effects.

  20. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    Energy Technology Data Exchange (ETDEWEB)

    Pol' dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret' yakov, B.N. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit sigmasub(0.01) and yield limit sigmasub(0.2)) of three amorphous alloys on iron base Fe/sub 80/B/sub 20/, Fe/sub 70/Cr/sub 10/B/sub 20/ and Fe/sub 70/Cr/sub 5/Ni/sub 5/B/sub 20/ are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials.

  1. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-01-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary

  2. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  3. Reliability of copper based alloys for electric resistance spot welding

    International Nuclear Information System (INIS)

    Jovanovicj, M.; Mihajlovicj, A.; Sherbedzhija, B.

    1977-01-01

    Durability of copper based alloys (B-5 and B-6) for electric resistance spot-welding was examined. The total amount of Be, Ni and Zr was up to 2 and 1 wt.% respectively. Good durability and satisfactory quality of welded spots were obtained in previous laboratory experiments carried out on the fixed spot-welding machine of an industrial type (only B-5 alloy was examined). Electrodes made of both B-5 and B-6 alloy were tested on spot-welding grips and fixed spot-welding machines in Tvornica automobila Sarajevo (TAS). The obtained results suggest that the durability of electrodes made of B-5 and B-6 alloys is more than twice better than of that used in TAS

  4. Mechanical properties of soldered joints of niobium base alloys

    International Nuclear Information System (INIS)

    Grishin, V.L.

    1980-01-01

    Mechanical properties of soldered joints of niobium alloys widely distributed in industry: VN3, VN4, VN5A, VN5AE, VN5AEP etc., 0.6-1.2 mm thick are investigated. It is found out that the usage of zirconium-vanadium, titanium-tantalum solders for welding niobium base alloys permits to obtain soldered joints with satisfactory mechanical properties at elevated temperatures

  5. Effects of Cr and Nb contents on the susceptibility of Alloy 600 type Ni-base alloys to stress-corrosion cracking in a simulated BWR environment

    International Nuclear Information System (INIS)

    Akashi, Masatsune

    1995-01-01

    In order to discuss the effects of chromium and niobium contents on the susceptibility of Alloy 600 type nickel-base alloys to stress-corrosion cracking in the BWR primary coolant environment, a series of creviced bent-beam (CBB) tests were conducted in a high-temperature, high-purity water environment. Chromium, niobium, and titanium as alloying elements improved the resistivity to stress-corrosion cracking, whereas carbon enhanced the susceptibility to it. Alloy-chemistry-based correlations have been defined to predict the relative resistances of alloys to stress-corrosion cracking. A strong correlation was found, for several heats of alloys, between grain-boundary chromium depletion and the susceptibility to stress-corrosion cracking

  6. Galvanic corrosion resistance of welded dissimilar nickel-base alloys

    International Nuclear Information System (INIS)

    Corbett, R.A.; Morrison, W.S.; Snyder, R.J.

    1986-01-01

    A program for evaluating the corrosion resistance of various dissimilar welded nickel-base alloy combinations is outlined. Alloy combinations included ALLCORR, Hastelloy C-276, Inconel 72 and Inconel 690. The GTAW welding process involved both high and minimum heat in-put conditions. Samples were evaluated in the as-welded condition, as well as after having been aged at various condtions of time and temperature. These were judged to be most representative of process upset conditions which might be expected. Corrosion testing evaluated resistance to an oxidizing acid and a severe service environment in which the alloy combinations might be used. Mechanical properties are also discussed

  7. Fabrication of polymer-alloy based on polytetrafluoroethylene by radiation-crosslinking

    International Nuclear Information System (INIS)

    Oshima, A.; Asano, S.; Hyunga, T.; Ichizuri, S.; Washio, M.

    2003-01-01

    Perfluoropolymer such as polytetrafluoroethylene (PTFE), tetrafluoroethylene co-perfluoroalkylvinylether (PFA) and tetrafluoroethylene-co-hexafluoropropylene (FFP) have been classified to be a typical polymer of radiation-induced degradation. However, we confirmed that the crosslinking of PTFE, PFA and FEP proceed by irradiation under selective condition where oxygen-free and high temperature above the melting temperature of them. In this study, fabrication of polymer-alloy based on PTFE has been demonstrated by radiation-crosslinking techniques. The polymer alloy, which was PTFE fine powder contained with other polymeric materials, was obtained by electron beams irradiation under oxygen-free atmosphere. Characterization of polymer-alloy based on PTFE has been studied by various measurements such as solid state 19F- and 13C-NMR spectroscopy, thermal analysis (DSC, TGA)

  8. Multi-step wrought processing of TiAl-based alloys

    International Nuclear Information System (INIS)

    Fuchs, G.E.

    1997-04-01

    Wrought processing will likely be needed for fabrication of a variety of TiAl-based alloy structural components. Laboratory and development work has usually relied on one-step forging to produce test material. Attempts to scale-up TiAl-based alloy processing has indicated that multi-step wrought processing is necessary. The purpose of this study was to examine potential multi-step processing routes, such as two-step isothermal forging and extrusion + isothermal forging. The effects of processing (I/M versus P/M), intermediate recrystallization heat treatments and processing route on the tensile and creep properties of Ti-48Al-2Nb-2Cr alloys were examined. The results of the testing were then compared to samples from the same heats of materials processed by one-step routes. Finally, by evaluating the effect of processing on microstructure and properties, optimized and potentially lower cost processing routes could be identified

  9. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    Science.gov (United States)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  10. On the superconductivity of vanadium based alloys

    International Nuclear Information System (INIS)

    Brouers, F.; Rest, J.V. der

    1985-01-01

    We have computed the electron density of States of solid solutions of vanadium based transition metal alloys V 90 X 10 by using the tight-binding recursion method for degenerate d-bands in order to calculte the alloy superconducting transition temperature with the McMillan formula. As observed experimentally for X on the left hand side of V in the periodic table one obtains an increase of T c while for X on the right hand side of V the critical temperature decreases. The detailed comparison with experiments indicate that when the bandwidths of the two constituents are different, one cannot neglect the variation of the electron-phonon interactions. (author) [pt

  11. Fabrication and study of double sintered TiNi-based porous alloys

    Science.gov (United States)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  12. Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Xie Guoqiang; Li Song; Zhang Wei; Inoue, Akihisa

    2008-01-01

    The purpose of the current paper is to study the influence of Ti, V, Nb, Al, Sn and Pd additions on the glass-forming ability, formation of a supercooled liquid region and a devitrification process of some Ni-Zr glassy alloys as well as to compare the results with those obtained for similar Cu-based alloys studied earlier. The Ni-based glassy alloys were investigated by using X-ray diffraction, differential scanning and isothermal calorimetries. Although the studied Ni-based alloys showed high values of the reduced glass-transition temperature of about 0.6, their glass-forming ability is quite low. This fact may be explained by low stability of the supercooled liquid against crystallization and formation of the equilibrium intermetallic compounds with a high growth rate compared to those observed in similar Cu-based alloys studied earlier. Relatively low thermal conductivity of Ni-based alloys is also found to be another factor limiting their glass-forming ability

  13. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is ...

  14. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  15. High temperature oxidation and electrochemical investigations on nickel-base alloys

    International Nuclear Information System (INIS)

    Obigodi-Ndjeng, Georgia

    2011-01-01

    This study examined high-temperature oxidation behavior of different Ni-base alloys. In addition, electrochemical characterization of the alloy's corrosion behavior was carried out, including comparison of the properties of native passive films grown at room temperature and high temperature oxide scales. PWA 1483 (single-crystalline Ni-base superalloy) and model alloys Ni-Cr-X (where X is either Co or Al) were oxidized at 800 and 900 C in air for different time periods. The superalloy showed the best oxidation behavior at both temperatures, which might be due to the fact that the oxidation growth function is subparabolic for the model alloys and parabolic for the superalloy at 800 C. At higher temperatures, changes in the kinetics are induced, as the oxides grow faster, thus only PWA 1483 growth follows the parabolic law. Different scales in a typical sandwich form were detected, with the inner layer comprised of mostly Cr 2 O 3 , the middle layer was mixture of different oxides and spinels, depending on the alloying elements, and the oxide at the interface oxygen/oxide was found to be NiO. The influence of sample preparation could also be shown, as rougher surfaces change the oxidation kinetics from parabolic and subparabolic for polished samples to linear. The influence of moisture on the oxidation behavior of the 2 nd generation single crystal Ni-base superalloys (PWA 1484, PWA 1487, CMSX 4, Rene N5 and Rene N5+) was studied at 1000 C after 100 h oxidation period. It was found that the moisture increased the oxidation rate and mostly the transient oxides growth rate. The water vapor content in air also influenced the behavior of these alloys, as they showed a higher mass gain in air + 30% water vapor than in air + 10% water vapor. The alloys PWA 1484 and CMSX 4 showed respectively the worst and best behavior in all the studied atmospheres. The addition of reactive elements, such as Yttrium, Hafnium and Lanthanum is likely to enhance the oxidation behavior of PWA

  16. Hydrogen storage in binary and ternary Mg-based alloys. A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Miltin, D. [Alberta Univ., Edmonton (Canada); Poirier, E.; Fritzsche, H. [Canadian Neutron Beam Centre, Chalk River, ON (Canada)

    2010-07-01

    This study focuses on hydrogen sorption properties of cosputtered 1.5 micrometer thick Mg-based films with Al, Fe and Ti as alloying elements. We show that ternary Mg-Al-Ti and Mg-Fe-Ti alloys in particular display remarkable sorption behavior: at 200 C, the films are capable of absorbing 4-6 wt.% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable for over 100 ab- and desorption cycles for Mg-Al-Ti and Mg-Fe-Ti alloys. No degradation in capacity or kinetics is observed. Based on these observations, some general design principles for Mg-based hydrogen storage alloys are suggested. For Mg-Fe-Ti, encouraging preliminary results on multilayered systems are also presented. (orig.)

  17. Prevention of crack initiation in valve bodies under thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, J.; Coppolani, P.

    1996-12-01

    On site and testing experience has shown that cracking in valves affects mainly the stellite hardfacing on seats and discs but may also be a concern for valve bodies. Metallurgical investigations conducted by EDF laboratories on many damaged valves have shown that most of the damage had either a chemical, manufacturing, or operating origin with a strong correlation between the origins and the type of damage. The chemical defects were either excess ferritic dilution of stellite or excess carburizing. Excess carburizing leads to a too brittle hardfacing which cracks under excessive stresses induced on the seating surfaces, via the stem, by too high operating thrusts. The same conditions can also induce cracks of the seats in the presence, in the hardfacing, of hidden defects generated during the welding process. Reduction of the number of defects results first from controls during manufacturing, mainly in the thickness of stellite. On the other hand, maintenance must be fitted to the type of defect. In-situ lapping may lead to release of cobalt, resulting in contamination of the circuit. Furthermore, it is ineffectual in the case of a crack through the seating surface, as is often found on globe valves. The use of new technologies of valves with removable seats and cobalt-free alloys solves permanently this kind of problem.

  18. Determination of trace impurities in iron-based alloy using neutron activation analysis

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Waheed, S.; Ahmad, S.

    2000-01-01

    A radiochemical neutron activation analysis procedure has been developed and applied to investigate 40 major, minor, and trace impurities in iron-based alloy. A comparison of RNAA and INAA indicated a significant improvement in the detection limits. The extensive use of these alloys in the heavy mechanical industry, manufacturing of aircraft engines, nuclear applications, medical devices and chemical equipment requires their precise characterization. The concentration of iron in the iron-based alloy was found to be 86.7%, whereas Ca, Cr, K, Mg, Mn, V and W were the other constituents of the alloy, which constituted to around 12.89%. The rest of the elements were present in minor or trace levels. Most of the rare earth elements were also present in trace amounts. (orig.)

  19. Plate-shaped transformation products in zirconium-base alloys

    International Nuclear Information System (INIS)

    Banerjee, S.; Dey, G.K.; Srivastava, D.

    1997-01-01

    Plate-shaped products resulting from martensitic, diffusional, and mixed mode transformations in zirconium-base alloys are compared in the present study. These alloys are particularly suitable for the comparison in view of the fact that the lattice correspondence between the parent β (bcc) and the product α (hcp) or γ-hydride (fct) phases are remarkably similar for different types of transformations. Crystallographic features such as orientation relations, habit planes, and interface structures associated with these transformations have been compared, with a view toward examining whether the transformation mechanisms have characteristic imprints on these experimental observables

  20. Ductile-phase toughening and fatigue crack growth in Nb3Al base alloys

    International Nuclear Information System (INIS)

    Gnanamoorthy, R.; Hanada, S.

    1996-01-01

    Niobium aluminide (Nb 3 Al) base intermetallic compounds exhibit good high-temperature strength and creep properties and potential for applications above 1,200 C provided their inadequately low room-temperature ductility, fracture toughness and fatigue crack growth behavior are improved. Addition of tantalum to Nb 3 Al base materials improves the high-temperature strength significantly and seems to be a potential alloying element. In the present study, room temperature fracture toughness and fatigue crack growth behavior of tantalum alloyed Nb 3 Al base alloy prepared by ingot metallurgy are investigated

  1. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhairav [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Favaro, Gregory [CSM Instruments SA, Rue de la Gare 4, Galileo Center, CH-2034 Peseux (Switzerland); Inam, Fawad [Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Reece, Michael J. [School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Angadji, Arash [Orthopaedic Research UK, Furlong House, 10a Chandos Street, London W1G 9DQ (United Kingdom); Bonfield, William [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2012-07-01

    The average longevity of hip replacement devices is approximately 10-15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25-30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics. - Highlights

  2. EXAFS investigation on microstructure of La-based alloy deuteride

    CERN Document Server

    Chen Bo Fei; Xie Chao Mei; Chen Xi Ping; Liu Li Juan; Xie Ya Ning; Hu Tian Dou; Zhang Jing

    2002-01-01

    Extended X-ray absorption fine structure (EXAFS) spectra were measured to investigate the microstructure of La-based alloy deuteride. The radial structural functions of LaNi sub 4 sub . sub 2 sub 5 Al sub 0 sub . sub 7 sub 5 D sub x samples were obtained and the comparisons among different samples were performed. The results show that removal of deuterium is fast in La-Ni-Al hydrogen storage alloys under non-airtight condition

  3. Effect of heat treatment on the microstructure and properties of Ni based soft magnetic alloy.

    Science.gov (United States)

    Li, Chunhong; Ruan, Hui; Chen, Dengming; Li, Kejian; Guo, Donglin; Shao, Bin

    2018-04-20

    A Ni-based alloy was heat treated by changing the temperature and ambient atmosphere of the heat treatment. Morphology, crystal structure, and physical performance of the Ni-based alloy were characterized via SEM, XRD, TEM, and PPMS. Results show that due to the heat treatment process, the grain growth of the Ni-based alloy and the removal of impurities and defects are promoted. Both the orientation and stress caused by rolling are reduced. The permeability and saturation magnetization of the alloy are improved. The hysteresis loss and coercivity are decreased. Higher heat treatment temperature leads to increased improvement of permeability and saturation magnetization. Heat treatment in hydrogen is more conducive to the removal of impurities. At the same temperature, the magnetic performance of the heat-treated alloy in hydrogen is better than that of an alloy with heat treatment in vacuum. The Ni-based alloy shows an excellent magnetic performance on 1,373 K heat treatment in hydrogen atmosphere. In this process, the µ m , B s , P u , and H c of the obtained alloy are 427 mHm -1 , 509 mT, 0.866 Jm -3 , and 0.514 Am -1 , respectively. At the same time, the resistivity of alloy decreases and its thermal conductivity increases in response to heat treatment. © 2018 Wiley Periodicals, Inc.

  4. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  5. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  6. Computational design of precipitation-strengthened titanium-nickel-based shape memory alloys

    Science.gov (United States)

    Bender, Matthew D.

    Motivated by performance requirements of future medical stent applications, experimental research addresses the design of novel TiNi-based, superelastic shape-memory alloys employing nanoscale precipitation strengthening to minimize accommodation slip for cyclic stability and to increase output stress capability for smaller devices. Using a thermodynamic database describing the B2 and L21 phases in the Al-Ni-Ti-Zr system, Thermo-Calc software was used to assist modeling the evolution of phase composition during 600°C isothermal evolution of coherent L21 Heusler phase precipitation from supersaturated TiNi-based B2 phase matrix in an alloy experimentally characterized by atomic-scale Local Electrode Atom Probe (LEAP) microanalysis. Based on measured evolution of the alloy hardness (under conditions stable against martensitic transformation) a model for the combined effects of solid solution strengthening and precipitation strengthening was calibrated, and the optimum particle size for efficient strengthening was identified. Thermodynamic modeling of the evolution of measured phase fractions and compositions identified the interfacial capillary energy enabling thermodynamic design of alloy microstructure with the optimal strengthening particle size. Extension of alloy designs to incorporate Pt and Pd for reducing Ni content, enhancing radiopacity, and improving manufacturability were considered using measured Pt and Pd B2/L2 1 partitioning coefficients. After determining that Pt partitioning greatly increases interphase misfit, full attention was devoted to Pd alloy designs. A quantitative approach to radiopacity was employed using mass attenuation as a metric. Radiopacity improvements were also qualitatively observed using x-ray fluoroscopy. Transformation temperatures were experimentally measured as a function of Al and Pd content. Redlich-Kister polynomial modeling was utilized for the dependence of transformation reversion Af temperature on B2 matrix phase

  7. Interstitial-phase precipitation in iron-base alloys: a comparative study

    International Nuclear Information System (INIS)

    Pelton, A.R.

    1982-06-01

    Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy

  8. Corrosion of iron-base alloys by lithium

    International Nuclear Information System (INIS)

    Selle, J.E.

    1976-01-01

    A review of corrosion mechanisms operating in lithium-iron-base alloy systems is presented along with data obtained with thermal-convection loops of niobium-stabilized 2 1 / 4 percent Cr-1 percent Mo steel and types 304L and 321 stainless steels. A corrosion rate of 2.3 μm/year (0.09 mil/year) was obtained on the 2 1 / 4 percent Cr-1 percent Mo steel at 600 0 C. Considerably more mass transport of alloying constituents and a maximum corrosion rate of about 14 μm/year (0.55 mil/year) was obtained with the austenitic stainless steels. Results of metallography, x-ray fluorescence analysis, scanning electron microscopy, and weight-change data are presented and discussed

  9. Magnesium-based hydrogen alloy anodes for a nickel metal hydrides secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, N.; Luan, B.; Zhao, H.J.; Liu, H.K.; Dou, S.X. [Univ of Wollongong, Wollongong, NSW (Australia). Centre for Superconducting and Electronic Materials

    1996-12-31

    Extensive work has been carried out in our group to try utilizing magnesium-based hydrogen storage alloys as a low cost and high performance anode materials for Ni-MH battery. It was found that the modified Mg{sub 2}Ni alloy anodes were able to be charged-discharged effectively in a KOH aqueous solution at ambient temperature. The discharge capacity and cycle have been substantially improved in four ways: (1) by partial substitution of La, Ti, V, Zr, Ca for Mg and Fe, Co, Cu, Al, Si, Y, Mn for Ni in Mg{sub 2}Ni; (2) by composite of Mg{sub 2}Ni with another hydrogen storage alloys; (3) by room-temperature surface microencapsulation and, (4) by ultrasound treatment of alloy powders. A discharge capacity of 170 mAh/g has been obtained from the modified Mg{sub 2}Ni-type alloy electrode, and the cycle life has exceeded 350 cycles. The high rate dischargeability was also significantly improved by the modification. It was concluded that magnesium-based hydrogen storage alloys would become promising anode materials for Ni- MH secondary battery with further improvement of discharge capacity and cycling performance

  10. Magnesium-based hydrogen alloy anodes for a nickel metal hydrides secondary battery

    International Nuclear Information System (INIS)

    Cui, N.; Luan, B.; Zhao, H.J.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Extensive work has been carried out in our group to try utilizing magnesium-based hydrogen storage alloys as a low cost and high performance anode materials for Ni-MH battery. It was found that the modified Mg 2 Ni alloy anodes were able to be charged-discharged effectively in a KOH aqueous solution at ambient temperature. The discharge capacity and cycle have been substantially improved in four ways: (1) by partial substitution of La, Ti, V, Zr, Ca for Mg and Fe, Co, Cu, Al, Si, Y, Mn for Ni in Mg 2 Ni; (2) by composite of Mg 2 Ni with another hydrogen storage alloys; (3) by room-temperature surface microencapsulation and, (4) by ultrasound treatment of alloy powders. A discharge capacity of 170 mAh/g has been obtained from the modified Mg 2 Ni-type alloy electrode, and the cycle life has exceeded 350 cycles. The high rate dischargeability was also significantly improved by the modification. It was concluded that magnesium-based hydrogen storage alloys would become promising anode materials for Ni- MH secondary battery with further improvement of discharge capacity and cycling performance

  11. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    International Nuclear Information System (INIS)

    Long-Chao, Zhuo; Shu-Jie, Pang; Hui, Wang; Tao, Zhang

    2009-01-01

    Based on a new approach for designing glassy alloy compositions, bulk Al-based alloys with good glass-forming ability (GFA) are synthesized. The cast Al 86 Si 0.5 Ni 4.06 Co 2.94 Y 6 Sc 0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod. The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 GPa and maximum strength of 1.27 GPa as well as an obvious plastic strain of about 2.4% during compressive deformation. This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability. (condensed matter: structure, mechanical and thermal properties)

  12. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified

  13. The prospects of biodegradable magnesium-based alloys in osteosynthesis

    Directory of Open Access Journals (Sweden)

    V. N. Chorny

    2013-12-01

    various types of implants for osteosynthesis in traumatology and orthopedics. As the analysis of scientific papers over the past decade, the number of scientific articles devoted to the study of the properties of magnesium alloys and their effect on bone formation, as well as their use in osteosynthesis has grown significantly. Implants which are based on magnesium, may have several advantages over bioinert metal alloys, polymers, and bioceramics. They are not toxic, not carcinogenic, the mechanical properties of a structure close to the cortical bone, and may have osteoinductive and anti-bacterial action. Also, there is no need for a second surgical intervention. The main problems to be addressed, in our view, are as follows. 1. Need to examine the nature of -bone formation in the fracture in the presence of the implant based on magnesium alloy. 2. To examine the impact of products of magnesium degradation on the surrounding tissue and the body as a whole. 3. Loss of rigidity of the implant magnesium based alloy in the process of biodegradation.

  14. In vitro corrosion of dental Au-based casting alloys in polyvinylpyrrolidone-iodine solution.

    Science.gov (United States)

    Takasusuki, Norio; Ida, Yusuke; Hirose, Yukito; Ochi, Morio; Endo, Kazuhiko

    2013-01-01

    The corrosion and tarnish behaviors of two Au-based casting alloys (ISO type 1 and type 4 Au alloys) and their constituent pure metals, Au, Ag, Cu, Pt, and Pd in a polyvinylpyrrolidone-iodine solution were examined. The two Au alloys actively corroded, and the main anodic reaction for both was dissolution of Au as AuI₂(-). The amount of Au released from the ISO type 1 Au alloy was significantly larger than that from the ISO type 4 Au alloy (Palloy exhibited higher susceptibility to tarnishing than the type 4 alloy. The corrosion forms of the two Au alloys were found to be completely different, i.e., the type 1 alloy exhibited the corrosion attack over the entire exposed surface with a little irregularity whereas the type 4 alloy exhibited typical intergranular corrosion, which was caused by local cells produced by segregation of Pd and Pt.

  15. Research into Oil-based Colloidal-Graphite Lubricants for Forging of Al-based Alloys

    International Nuclear Information System (INIS)

    Petrov, A.; Petrov, P.; Petrov, M.

    2011-01-01

    The presented paper describes the topical problem in metal forging production. It deals with the choice of an optimal lubricant for forging of Al-based alloys. Within the scope of the paper, the properties of several oil-based colloidal-graphite lubricants were investigated. The physicochemical and technological properties of these lubricants are presented. It was found that physicochemical properties of lubricant compositions have an influence on friction coefficient value and quality of forgings.The ring compression method was used to estimate the friction coefficient value. Hydraulic press was used for the test. The comparative analysis of the investigated lubricants was carried out. The forging quality was estimated on the basis of production test. The practical recommendations were given to choose an optimal oil-based colloidal-graphite lubricant for isothermal forging of Al-based alloy.

  16. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Bafandeh, Mohammad Reza, E-mail: mr.bafandeh@gmail.com [Department of Materials Science and Engineering, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Gharahkhani, Raziyeh; Fathi, Mohammad Hossein [Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  17. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    International Nuclear Information System (INIS)

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-01-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  18. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    International Nuclear Information System (INIS)

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-01-01

    The aim of this study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. According to our study, the salient features for the ternary alloy are a negative SRO parameter between Ni–Cr and a positive between Cr–Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni–Cr and Ni–Fe pairs and positive for Cr–Cr and Fe–Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. The predicted SRO has an impact on point-defect energetics, electron–phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys

  19. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  20. Poor glass-forming ability of Fe-based alloys

    DEFF Research Database (Denmark)

    Zheng, H.J.; Hu, L.N.; Zhao, X.

    2017-01-01

    processes. By using the concept of fluid cluster and supercooled liquid fragility in metallic liquids, it has been found that this dynamic transition makes the Fe-based supercooled liquids become more unstable, which leads to the poor GFA of Fe-based alloys. Further, it has been found that the degree...

  1. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J. [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Department of Materials Science and Engineering, The Ohio State University — OSU, Columbus, OH 43221 (United States)

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showed a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.

  2. Hydrogen storage in binary and ternary Mg-based alloys: A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Mitlin, D. [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, T6G 2V4, Edmonton, Alberta (Canada); Poirier, E.; Fritzsche, H. [National Research Council Canada, SIMS, Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2010-03-15

    This study focused on hydrogen sorption properties of 1.5 {mu}m thick Mg-based films with Al, Fe and Ti as alloying elements. The binary alloys are used to establish as baseline case for the ternary Mg-Al-Ti, Mg-Fe-Ti and Mg-Al-Fe compositions. We show that the ternary alloys in particular display remarkable sorption behavior: at 200 C the films are capable of absorbing 4-6 wt% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable over cycling for the Mg-Al-Ti and Mg-Fe-Ti alloys. Even after 100 absorption/desorption cycles, no degradation in capacity or kinetics is observed. For Mg-Al-Fe, the properties are clearly worse compared to the other ternary combinations. These differences are explained by considering the properties of all the different phases present during cycling in terms of their hydrogen affinity and catalytic activity. Based on these considerations, some general design principles for Mg-based hydrogen storage alloys are suggested. (author)

  3. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Science.gov (United States)

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20-110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process.

  4. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  5. Fabrication of tungsten wire reinforced nickel-base alloy composites

    Science.gov (United States)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  6. Lave phase precipitation in Nb- and Ti-based alloys

    International Nuclear Information System (INIS)

    Tewari, R.; Vishwanadh, B.; Dey, G.K.

    2010-01-01

    In multicomponent Nb-based alloys system, which are potential candidate materials for high temperature applications, the presence of Laves phase was noticed along with the silicides in equilibrium with the soft β-matrix. In Ti-Cr alloys, which show a tendency for inverse melting, the formation of the phase was noticed in the β matrix upon aging. The Laves phase being topologically closed pack structure appears to have strong tendency for the formation provided the criterion of atomic size factor is met

  7. Friction and wear behaviour of Ni-Cr-B hardface coating on 316LN stainless steel in liquid sodium at elevated temperature

    Science.gov (United States)

    Kumar, Hemant; Ramakrishnan, V.; Albert, S. K.; Bhaduri, A. K.; Ray, K. K.

    2017-11-01

    The sliding friction and wear behaviour of Ni-Cr-B hardface coating made on 316LN stainless steel were evaluated in liquid sodium at 823 K by using a fabricated reciprocating-type tribometer. The test parameters have been selected based on operational conditions prevailing in the Indian sodium cooled fast breeder reactors (FBRs). Accordingly, the tests were carried out at sliding speeds of 2 and 16 mm/s under contact stresses of 10 and 40 MPa respectively using Ni-Cr-B coated pin and disc specimens. The static and dynamic friction coefficients are found to be in the ranges of 0.03-0.07 and 0.01-0.02 respectively under the imposed test conditions. The estimated wear rates (WR) are found to be in the range of 0.62 × 10-12 - 3.07 × 10-12 m3/m; the magnitude of WR increases with increase in the contact stress. The examination of the worn disc specimens by confocal laser scanning microscopy indicated higher damage in specimens tested at 40 MPa compared to that in specimens tested at 10 MPa; the quantitative estimation of damage was made by the number of scars and their depth. These observations corroborate well with the morphological features of the worn surfaces of the pin specimens examined by scanning electron microscopy. The results unambiguously indicate superior friction coefficients and wear resistance of Ni-Cr-B coatings in liquid sodium compared to that in air under identical test conditions.

  8. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2015-04-24

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  9. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    International Nuclear Information System (INIS)

    Xue, Dezhen; Zhou, Yumei; Ding, Xiangdong; Otsuka, Kazuhiro; Lookman, Turab; Sun, Jun; Ren, Xiaobing

    2015-01-01

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti 50 (Pd 50−x D x ) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q −1 ~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q −1 ~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges

  10. Influence of alkali metal hydroxides on corrosion of Zr-based alloys

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Ruhmann, H.; Garzarolli, F.

    1997-01-01

    In this study the influence of group-1 alkali hydroxides on different zirconium based alloys has been evaluated. The experiments have been carried out in small stainless steel autoclaves at 350 deg. C in pressurized 17 MPa water, with in low (0.32 mmol), medium (4.3 mmol) and high (31.5 mmol) equimolar concentrations of Li-, Na-, K-, Rb- and Cs-Hydroxides. Two types of alloys have been investigated: Zr-Sn-(Transition metal) and Zr-Sn-Nb-(Transition metal). The corrosion behaviour was evaluated from weight gain measurements. From the experiments the cation could be identified as the responsible species for zirconium alloy corrosion in alkalized water. The radius of the cation governs the corrosion behaviour in the pre accelerated region of zircaloy corrosion. Incorporating of alkali cations into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significantly lower effect for the other bases. Nb containing alloys show lower corrosion resistance than alloys from the Zr-Sn-TRM system in all alkali solutions. Both types of alloys corrode significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behaviour in the different alkali environments and taking into account the tendency to promote accelerate corrosion, CsOH and KOH are possible alternate alkalis for PWR application. (author). 17 refs, 15 figs, 5 tabs

  11. Influence of alkali metal hydroxides on corrosion of Zr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y H [Korea Atomic Energy Research Inst., Dae Jun (Korea, Republic of); Ruhmann, H; Garzarolli, F [Siemens-KWU, Power Generation Group, Erlangen (Germany)

    1997-02-01

    In this study the influence of group-1 alkali hydroxides on different zirconium based alloys has been evaluated. The experiments have been carried out in small stainless steel autoclaves at 350 deg. C in pressurized 17 MPa water, with in low (0.32 mmol), medium (4.3 mmol) and high (31.5 mmol) equimolar concentrations of Li-, Na-, K-, Rb- and Cs-Hydroxides. Two types of alloys have been investigated: Zr-Sn-(Transition metal) and Zr-Sn-Nb-(Transition metal). The corrosion behaviour was evaluated from weight gain measurements. From the experiments the cation could be identified as the responsible species for zirconium alloy corrosion in alkalized water. The radius of the cation governs the corrosion behaviour in the pre accelerated region of zircaloy corrosion. Incorporating of alkali cations into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significantly lower effect for the other bases. Nb containing alloys show lower corrosion resistance than alloys from the Zr-Sn-TRM system in all alkali solutions. Both types of alloys corrode significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behaviour in the different alkali environments and taking into account the tendency to promote accelerate corrosion, CsOH and KOH are possible alternate alkalis for PWR application. (author). 17 refs, 15 figs, 5 tabs.

  12. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Science.gov (United States)

    Varela, J. A.; Amado, J. M.; Tobar, M. J.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2015-05-01

    Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  13. Effect of B addition to hypereutectic Ti-based alloys

    International Nuclear Information System (INIS)

    Louzguina-Luzgina, Larissa V.; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2009-01-01

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 β-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied

  14. Long-life fatigue test results for two nickel-base structural alloys

    International Nuclear Information System (INIS)

    Mowbray, D.F.; Giaquinto, E.V.; Mehringer, F.J.

    1978-11-01

    The results are reported of fatigue tests on two nickel--base alloys, hot-cold-worked and stress-relieved nickel--chrome--iron Alloy 600 and mill-annealed nickel--chrome--moly--iron Alloy 625 in which S-N data were obtained in the life range of 10 6 to 10 10 cycles. The tests were conducted in air at 600 0 F, in the reversed membrane loading mode, at a frequency of approx. 1850 Hz. An electromagnetic, closed loop servo-controlled machine was built to perform the tests. A description of the machine is given

  15. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    Science.gov (United States)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  16. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  17. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Krishnamurthy, N.

    2013-12-01

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N 2 , H 2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  18. Bimetallic low thermal-expansion panels of Co-base and silicide-coated Nb-base alloys for high-temperature structural applications

    International Nuclear Information System (INIS)

    Rhein, R.K.; Novak, M.D.; Levi, C.G.; Pollock, T.M.

    2011-01-01

    Research highlights: → Low net thermal expansion bimetallic structural lattice constructed. → Temperatures on the order of 1000 deg. C reached. → Improved silicide coating for niobium alloy developed. - Abstract: The fabrication and high temperature performance of low thermal expansion bimetallic lattices composed of Co-base and Nb-base alloys have been investigated. A 2D sheet lattice with a coefficient of thermal expansion (CTE) lower than the constituent materials of construction was designed for thermal cycling to 1000 deg. C with the use of elastic-plastic finite element analyses. The low CTE lattice consisted of a continuous network of the Nb-base alloy C-103 with inserts of high CTE Co-base alloy Haynes 188. A new coating approach wherein submicron alumina particles were incorporated into (Nb, Cr, Fe) silicide coatings was employed for oxidation protection of the Nb-base alloy. Thermal gravimetric analysis results indicate that the addition of submicron alumina particles reduced the oxidative mass gain by a factor of four during thermal cycling, increasing lifetime. Bimetallic cells with net expansion of 6 x 10 -6 /deg. C and 1 x 10 -6 /deg. C at 1000 deg. C were demonstrated and their measured thermal expansion characteristics were consistent with analytical models and finite element analysis predictions.

  19. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    Science.gov (United States)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  20. Alloying effect on K shell X-ray fluorescence cross-sections and yields in Ti-Ni based shape memory alloys

    Directory of Open Access Journals (Sweden)

    Bünyamin Alım

    2018-04-01

    Full Text Available K shell X-ray fluorescence cross-sections (σKα, σKβ and σK, and K shell fluorescence yields (ωK of Ti, Ni both in pure metals and in different alloy compositions (TixNi1-x; x = 0.3, 0.4, 0.5, 0.6, 0.7 were measured by using energy dispersive X-ray fluorescence (EDXRF technique. The samples were excited by 22.69 keV X-rays from a 10 mCi Cd-109 radioactive point source and K X rays emitted by samples were counted by a high resolution Si(Li solid-state detector coupled to a 4 K multichannel analyzer (MCA. The alloying effects on the X-ray fluorescence (XRF parameters of Ti-Ni shape memory alloys (SMAs were investigated. It is clearly observed that alloying effect causes to change in K shell XRF parameter values in Ti-Ni based SMAs for different compositions of x. Also, the present investigation makes it possible to perform reliable interpretation of experimental σKα, σKβ and ωK values for Ti and Ni in SMAs and can also provide quantitative information about the changes of K shell X-ray fluorescence cross sections and fluorescence yields of these metals with alloy composition. Keywords: Alloying effect, XRF, K X-ray fluorescence cross-section, K shell fluorescence yield, Shape memory alloy

  1. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  2. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  3. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  4. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reclaru, L., E-mail: lucien.reclaru@pxgroup.com [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Unger, R.E.; Kirkpatrick, C.J. [Institute for Pathology, REPAIR Lab, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr.1, D-55101 Mainz (Germany); Susz, C.; Eschler, P.-Y.; Zuercher, M.-H. [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Antoniac, I. [Materials Science and Engineering Faculty, Politehnica of Bucharest, 060042 Bucharest (Romania); Luethy, H. [Institute of Dental Materials Science and Technology, University of Basel, Hebelstrasse 3, CH-4056 Basel (Switzerland)

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: Black-Right-Pointing-Pointer Nickel released was higher than the limits imposed in EU in contact with the skin. Black-Right-Pointing-Pointer No direct relationship between the

  5. Modification of fuel performance code to evaluate iron-based alloy behavior under LOCA scenario

    Energy Technology Data Exchange (ETDEWEB)

    Giovedi, Claudia; Martins, Marcelo Ramos, E-mail: claudia.giovedi@labrisco.usp.br, E-mail: mrmartin@usp.br [Laboratorio de Analise, Avaliacao e Gerenciamento de Risco (LabRisco/POLI/USP), São Paulo, SP (Brazil); Abe, Alfredo; Muniz, Rafael O.R.; Gomes, Daniel de Souza; Silva, Antonio Teixeira e, E-mail: ayabe@ipen.br, E-mail: dsgomes@ipen.br, E-mail: teixiera@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Accident tolerant fuels (ATF) has been studied since the Fukushima Daiichi accident in the research efforts to develop new materials which under accident scenarios could maintain the fuel rod integrity for a longer period compared to the cladding and fuel system usually utilized in Pressurized Water Reactors (PWR). The efforts have been focused on new materials applied as cladding, then iron-base alloys appear as a possible candidate. The aim of this paper is to implement modifications in a fuel performance code to evaluate the behavior of iron based alloys under Loss-of-Coolant Accident (LOCA) scenario. For this, initially the properties related to the thermal and mechanical behavior of iron-based alloys were obtained from the literature, appropriately adapted and introduced in the fuel performance code subroutines. The adopted approach was step by step modifications, where different versions of the code were created. The assessment of the implemented modification was carried out simulating an experiment available in the open literature (IFA-650.5) related to zirconium-based alloy fuel rods submitted to LOCA conditions. The obtained results for the iron-based alloy were compared to those obtained using the regular version of the fuel performance code for zircaloy-4. The obtained results have shown that the most important properties to be changed are those from the subroutines related to the mechanical properties of the cladding. The results obtained have shown that the burst is observed at a longer time for fuel rods with iron-based alloy, indicating the potentiality of this material to be used as cladding with ATF purposes. (author)

  6. Modification of fuel performance code to evaluate iron-based alloy behavior under LOCA scenario

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Martins, Marcelo Ramos; Abe, Alfredo; Muniz, Rafael O.R.; Gomes, Daniel de Souza; Silva, Antonio Teixeira e

    2017-01-01

    Accident tolerant fuels (ATF) has been studied since the Fukushima Daiichi accident in the research efforts to develop new materials which under accident scenarios could maintain the fuel rod integrity for a longer period compared to the cladding and fuel system usually utilized in Pressurized Water Reactors (PWR). The efforts have been focused on new materials applied as cladding, then iron-base alloys appear as a possible candidate. The aim of this paper is to implement modifications in a fuel performance code to evaluate the behavior of iron based alloys under Loss-of-Coolant Accident (LOCA) scenario. For this, initially the properties related to the thermal and mechanical behavior of iron-based alloys were obtained from the literature, appropriately adapted and introduced in the fuel performance code subroutines. The adopted approach was step by step modifications, where different versions of the code were created. The assessment of the implemented modification was carried out simulating an experiment available in the open literature (IFA-650.5) related to zirconium-based alloy fuel rods submitted to LOCA conditions. The obtained results for the iron-based alloy were compared to those obtained using the regular version of the fuel performance code for zircaloy-4. The obtained results have shown that the most important properties to be changed are those from the subroutines related to the mechanical properties of the cladding. The results obtained have shown that the burst is observed at a longer time for fuel rods with iron-based alloy, indicating the potentiality of this material to be used as cladding with ATF purposes. (author)

  7. Pack cementation diffusion coatings for Fe-base and refractory alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1998-03-10

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels and refractory metal alloys. A new comprehensive theory to treat the multi-component thermodynamic equilibria in the gas phase for several coexisting solid phases was developed and used. Many different processes to deposit various types of coatings on several types of steels were developed: Cr-Si codeposition for low- or medium-carbon steels, Cr-Al codeposition on low-carbon steels to yield either a Kanthal-type composition (Fe-25Cr-4Al in wt.%) or else a (Fe, Cr){sub 3}Al surface composition. An Fe{sub 3}Al substrate was aluminized to achieve an FeAl surface composition, and boron was also added to ductilize the coating. The developmental Cr-lean ORNL alloys with exceptional creep resistance were Cr-Al coated to achieve excellent oxidation resistance. Alloy wires of Ni-base were aluminized to provide an average composition of Ni{sub 3}Al for use as welding rods. Several different refractory metal alloys based on Cr-Cr{sub 2}Nb have been silicided, also with germanium additions, to provide excellent oxidation resistance. A couple of developmental Cr-Zr alloys were similarly coated and tested.

  8. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    Science.gov (United States)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  9. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    International Nuclear Information System (INIS)

    López-Ruiz, P; Ordás, N; Iturriza, I; García-Rosales, C; Lindig, S; Koch, F

    2011-01-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  10. Effects in Mg-Zn-based alloys strengthened by quasicrystalline phase

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Lukáč, F; Melikhova, O; Hruška, P; Procházka, I; Vlach, M; Stulíková, I; Smola, B; Jäger, A

    2016-01-01

    Magnesium Mg-based alloys are promising lightweight structural materials for automotive, aerospace and biomedical applications. Recently Mg-Zn-Y system attracted a great attention due to a stable icosahedral phase (I-phase) with quasicrystalline structure which is formed in these alloys. Positron lifetime spectroscopy and in situ synchrotron X-ray diffraction were used to study thermal stability of I-phase and precipitation effects in Mg-Zn-Y and Mg- Zn-Al alloys. All alloys containing quasicrystalline I-phase exhibit misfit defects characterized by positron lifetime of ∼ 300 ps. These defects are associated with the interfaces between I- phase particles and Mg matrix. The quasicrystalline I-phase particles were found to be stable up to temperatures as high as ∼ 370°C. The W-phase is more stable and melts at ∼ 420°C. Concentration of defects associated with I-phase decreases after annealing at temperatures above ∼ 300°C. (paper)

  11. Investigations of carbon diffusion and carbide formation in nickel-based alloys

    International Nuclear Information System (INIS)

    Schulten, R.; Bongartz, K.; Quadakkers, W.J.; Schuster, H.; Nickel, H.

    1989-11-01

    The present thesis describes the carburization behaviour of nickel based alloys in heavily carburizing environments. The mechanisms of carbon diffusion and carbide precipitation in NiCr alloys with and without ternary additions of iron, cobalt or molybdenum have been investigated. Using the results of carburization experiments, a mathematical model which describes carbon diffusion and carbide formation, was developed. The simulation of the carburization process was carried out by an iterative calculation of the local thermodynamic equilibrium in the alloy. An accurate description of the carbon profiles as a function of time became possible by using a finite-difference calculation. (orig.) [de

  12. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    Science.gov (United States)

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-08-09

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  13. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  14. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  15. Magnesium secondary alloys: Alloy design for magnesium alloys with improved tolerance limits against impurities

    Energy Technology Data Exchange (ETDEWEB)

    Blawert, C., E-mail: carsten.blawert@gkss.d [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Fechner, D.; Hoeche, D.; Heitmann, V.; Dietzel, W.; Kainer, K.U. [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Zivanovic, P.; Scharf, C.; Ditze, A.; Groebner, J.; Schmid-Fetzer, R. [TU Clausthal, Institut fuer Metallurgie, Robert-Koch-Str. 42, 38678 Clausthal-Zellerfeld (Germany)

    2010-07-15

    The development of secondary magnesium alloys requires a completely different concept compared with standard alloys which obtain their corrosion resistance by reducing the levels of impurities below certain alloy and process depending limits. The present approach suitable for Mg-Al based cast and wrought alloys uses a new concept replacing the {beta}-phase by {tau}-phase, which is able to incorporate more impurities while being electro-chemically less detrimental to the matrix. The overall experimental effort correlating composition, microstructure and corrosion resistance was reduced by using thermodynamic calculations to optimise the alloy composition. The outcome is a new, more impurity tolerant alloy class with a composition between the standard AZ and ZC systems having sufficient ductility and corrosion properties comparable to the high purity standard alloys.

  16. Failure probability analyses for PWSCC in Ni-based alloy welds

    International Nuclear Information System (INIS)

    Udagawa, Makoto; Katsuyama, Jinya; Onizawa, Kunio; Li, Yinsheng

    2015-01-01

    A number of cracks due to primary water stress corrosion cracking (PWSCC) in pressurized water reactors and Ni-based alloy stress corrosion cracking (NiSCC) in boiling water reactors have been detected around Ni-based alloy welds. The causes of crack initiation and growth due to stress corrosion cracking include weld residual stress, operating stress, the materials, and the environment. We have developed the analysis code PASCAL-NP for calculating the failure probability and assessment of the structural integrity of cracked components on the basis of probabilistic fracture mechanics (PFM) considering PWSCC and NiSCC. This PFM analysis code has functions for calculating the incubation time of PWSCC and NiSCC crack initiation, evaluation of crack growth behavior considering certain crack location and orientation patterns, and evaluation of failure behavior near Ni-based alloy welds due to PWSCC and NiSCC in a probabilistic manner. Herein, actual plants affected by PWSCC have been analyzed using PASCAL-NP. Failure probabilities calculated by PASCAL-NP are in reasonable agreement with the detection data. Furthermore, useful knowledge related to leakage due to PWSCC was obtained through parametric studies using this code

  17. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Jartych, E.

    2003-01-01

    Using the 57 Fe Moessbauer spectroscopy, a local atomic order in nanocrystalline alloys of iron with Al, Ni, W and Mo has been determined. Alloys were prepared by mechanical alloying method. Analysis of Moessbauer spectra was performed on the basis of the local environment model in terms of Warren-Cowley parameters. It was shown that impurity atoms are not randomly distributed in the volume of the first and the second co-ordination spheres of 57 Fe nuclei and they form clusters

  18. Effect of co-free valve on activity reduction in PWR

    International Nuclear Information System (INIS)

    Bahn, C.B.; Han, B.C.; Bum, J.S.; Hwang, I.S.; Lee, C.B.

    2002-01-01

    Radioactive nuclei, such as 68 Co and 60 Co, deposited on out-of-core surfaces in a pressurized water reactor (PWR) primary coolant system, are major sources of occupational radiation exposure to plant maintenance personnel and act as costly impediment to prompt and effective repairs. Valve hardfacing alloys exposed to primary coolant are considered as one of the main Co sources. To evaluate the Co-free valve, such as NOREM 02 and Deloro 50, the candidates for the alternative to Stellite 6, in a simulated PWR primary condition, SNU corrosion test loop (SCOTL) was constructed. For gate valves hard-faced with made of NOREM 02 and Deloro 50 hot cycling tests were conducted for up to 2,000 on-off cycles with cold leak tests at 1,000 cycle interval. It was observed that the leak rate of NOREM 02 (Fe-base) did not satisfy the nuclear grade valve leak criteria. After 1000 cycles test, while there was no leakage in case of Deloro 50 (Ni-base). Also, Deloro 50 showed no leakage after 2000 cycles. To estimate the activity reduction effect, we modified CRUDSIM-MIT which modeled the effects of coolant chemistry on the crud transport and activity buildup in the primary system of PWR. In the new code, crud evaluation and assessment (CREAT), 60 Co activity buildup prediction includes 1) Co-base valve replacement effect, 2) Co-base valve maintenance effect, and 3) control rod drive mechanism (CRDM) and main coolant pump (MCP) shaft contribution. CREAT predicted that the main contributor of Co activity buildup was the corrosion-induced release of Co from the steam generator (SG) tubing. With new SG's tubed with alloy 690, Korean Next Generation Reactor (APR-1400) is expected to have about 64% lower Co activity on SG surface. The use of all Co-free valves is expected to cut additional 8% of activity which is only marginal. (authors)

  19. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  20. Characterization of the microstructure in Mg based alloy

    KAUST Repository

    Kutbee, Arwa T

    2013-01-01

    hardening is essential for age hardenable Mg-based alloys. In this work, microstructural investigation of the Mg–1.4Sn–1.3Zn–0.1Mn (at.%) precipitation system was performed using TEM. The chemical composition of the precipitates was analyzed using EDS. APT

  1. Resistivity and Passivity Characterization of Ni-Base Glassy Alloys in NaOH Media

    Directory of Open Access Journals (Sweden)

    Khadijah M. Emran

    2018-01-01

    Full Text Available Resistivity and passivation behavior of two Ni-base bulk metallic glasses, with the nominal composition of Ni70Cr21Si0.5B0.5P8C ≤ 0.1Co ≤ 1Fe ≤ 1 (VZ1 and Ni72.65Cr7.3-Si6.7B2.15C ≤ 0.06Fe8.2Mo3 (VZ2, in various concentrations of NaOH solutions were studied. The investigations involved cyclic polarization (CP, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM methods. Cyclic polarization measurements showed spontaneous passivation for both Ni-base glassy alloys at all alkaline concentrations, due to the presence of chromium as an alloying element that formed an oxide film on the alloy surface. The EIS analysis showed that the passive layers grown on the two Ni-base glassy alloy surfaces are formed by a double oxide layer structure. Scanning electron microscope (SEM examinations of the electrode surface showed Cr, Ni, Fe, and O rich corrosion products that reduced the extent of corrosion damage. Atomic force microscopy (AFM imaging technique was used to evaluate the topographic and morphologic features of surface layers formed on the surface of the alloys.

  2. Crevice corrosion propagation on alloy 625 and alloy C276 in natural seawater

    International Nuclear Information System (INIS)

    McCafferty, E.; Bogar, F.D.; Thomas, E.D. II; Creegan, C.A.; Lucas, K.E.; Kaznoff, A.I.

    1997-01-01

    Chemical composition of the aqueous solution within crevices on two different Ni-Cr-Mo-Fe alloys immersed in natural seawater was determined using a semiquantitative thin-layer chromatographic method. Active crevices were found to contain concentrated amounts of dissolved Ni 2+ , Cr 3+ , Mo 3+ , and Fe 2+ ions. Propagation of crevice corrosion for the two alloys was determined from anodic polarization curves in model crevice solutions based upon stoichiometric dissolution or selective dissolution of alloy components. Both alloys 625 (UNS N06625) and C276 (UNS N10276) underwent crevice corrosion in the model crevice electrolytes. For the model crevice solution based upon selective dissolution of alloy constituents, the anodic dissolution rate for alloy 625 was higher than that for alloy C276. This trend was reversed for the model crevice solution based upon uniform dissolution of alloy constituents

  3. Hydrogen embrittlement considerations in niobium-base alloys for application in the ITER divertor

    International Nuclear Information System (INIS)

    Peterson, D.T.; Hull, A.B.; Loomis, B.A.

    1991-01-01

    The ITER divertor will be subjected to hydrogen from aqueous corrosion by the coolant and by transfer from the plasma. Global hydrogen concentrations are one factor in assessing hydrogen embrittlement but local concentrations affected by source fluxes and thermotransport in thermal gradients are more important considerations. Global hydrogen concentrations is some corrosion- tested alloys will be presented and interpreted. The degradation of mechanical properties of Nb-base alloys due to hydrogen is a complex function of temperature, hydrogen concentration, stresses and alloy composition. The known tendencies for embrittlement and hydride formation in Nb alloys are reviewed

  4. Vanadium-based alloy hydrides for heat pumps, compressors, and isotope separation

    International Nuclear Information System (INIS)

    Libowitz, G.G.

    1988-01-01

    A series of body-centered cubic (b.c.c.) solid solution alloys have been developed which appears to be unusually suitable for several applications involving metal hydrides. It is normally very difficult to induce the body-centered cubic metals, Nb, V, and Ta, to react with hydrogen; in bulk form the reaction will simply not occur at room temperature. Alloys containing Nb exhibited very large hysteresis effects on hydride formation and thus are not suitable for most applications. However, the V-Ti based alloys showed relatively little hysteresis, and because of their unusual thermodynamic properties offer significant advantages for the specific applications discussed below. (orig./HB)

  5. A Study on Development of High Strength Al-Zn Based alloy for Die Casting Ⅲ

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang-Soo; Park, Ik-Min [Pusan National University, Busan (Korea, Republic of); Yeom, Gil-Young; Lim, Kyoung-Mook [Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Son, Hyun-Jin [Oh-Sung Co. Ltd., Siheung (Korea, Republic of)

    2015-09-15

    In this study, the microstructural evolution and various characteristics of Al-20⁓45wt%Zn alloys were investigated. In terms of microstructure, as the amount of Zn addition to the alloys increased, the α-phase size decreased and the α+η non-equilibrium solidification phase fraction increased. Also, increasing Zn content improved the wear resistance of the alloys, but reduced the damping capacity and toughness of the alloys. Their physical properties of the Al-Zn alloy with high Zn content, specifically the wear resistance and toughness, were superior to those of commercial ALDC12 alloys for die-casting. Based on these results, we considered the possibility of application of the developed Al-Zn alloy as a structural material.

  6. A Study on Development of High Strength Al-Zn Based alloy for Die Casting Ⅲ

    International Nuclear Information System (INIS)

    Shin, Sang-Soo; Park, Ik-Min; Yeom, Gil-Young; Lim, Kyoung-Mook; Son, Hyun-Jin

    2015-01-01

    In this study, the microstructural evolution and various characteristics of Al-20⁓45wt%Zn alloys were investigated. In terms of microstructure, as the amount of Zn addition to the alloys increased, the α-phase size decreased and the α+η non-equilibrium solidification phase fraction increased. Also, increasing Zn content improved the wear resistance of the alloys, but reduced the damping capacity and toughness of the alloys. Their physical properties of the Al-Zn alloy with high Zn content, specifically the wear resistance and toughness, were superior to those of commercial ALDC12 alloys for die-casting. Based on these results, we considered the possibility of application of the developed Al-Zn alloy as a structural material.

  7. Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation

    International Nuclear Information System (INIS)

    Payet, Mickaël; Marchetti, Loïc; Tabarant, Michel; Chevalier, Jean-Pierre

    2015-01-01

    Highlights: • The dissolution of Ni and Fe cations occurs during corrosion of Ni-based alloys in SCW. • The nature of the oxide layer depends locally on the alloy microstructure. • The corrosion mechanism changes when cold-work increases leading to internal oxidation. - Abstract: Ni–Fe–Cr alloys are expected to be a candidate material for the generation IV nuclear reactors that use supercritical water at temperatures up to 600 °C and pressures of 25 MPa. The corrosion resistance of Alloy 690 in these extreme conditions was studied considering the surface finish of the alloy. The oxide scale could suffer from dissolution or from internal oxidation. The presence of a work-hardened zone reveals the competition between the selective oxidation of chromium with respect to the oxidation of nickel and iron. Finally, corrosion mechanisms for Ni based alloys are proposed considering the effects of plastically deformed surfaces and the dissolution.

  8. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, Thomas, E-mail: gebhardt@mch.rwth-aachen.de; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-06-30

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition-structure-property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  9. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    International Nuclear Information System (INIS)

    Gebhardt, Thomas; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-01-01

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition–structure–property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  10. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    Science.gov (United States)

    Yamakawa, K.; Shimomura, Y.

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT dislocation lines and voids are discussed.

  11. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, K.; Shimomura, Y. [Hiroshima Univ. (Japan). Faculty of Engineering

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT, dislocation lines and voids are discussed. (orig.) 8 refs.

  12. Effects of metallurgical factors on stress corrosion cracking of Ni-base alloys in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, T.; Sasaguri, N.; Onimura, K.

    1988-01-01

    Nickel-base Alloy 600 is the principal material used for the steam generator tubes of PWRs. Generally, this alloy has been proven to be satisfactory for this application, however when it is subjected to extremely high stress level in PWR primary water, it may suffer from stress corrosion cracking. The authors have systematically studied the effects of test temperature and such metallurgical factors as cold working, chemical composition and heat treatment on the stress corrosion cracking of Alloy 600 in high temperature water, and also on that of Alloy 690 which is a promising material for the tubes and may provide improved crrosion resistance for steam generators. The test materials, the stress corrosion cracking test and the test results are reported. When the test temperature was raise, the stress corrosion cracking of the nickel-base alloys was accelerated. The time of stress corrosion cracking occurrence decreased with increasing applied stress, and it occurred at the stress level higher than the 0.2 % offset proof stress of Alloy 600. In Alloy 690, stress corrosion cracking was not observed at such stress level. Cold worked Alloy 600 showed higher resistance to stress corrosion cracking than the annealed alloy. (Kako, I.)

  13. Using the PSCPCSP computer software for optimization of the composition of industrial alloys and development of new high-temperature nickel-base alloys

    Science.gov (United States)

    Rtishchev, V. V.

    1995-11-01

    Using computer programs some foreign firms have developed new deformable and castable high-temperature nickel-base alloys such as IN, Rene, Mar-M, Udimet, TRW, TM, TMS, TUT, with equiaxial, columnar, and single-crystal structures for manufacturing functional and nozzle blades and other parts of the hot duct of transport and stationary gas-turbine installations (GTI). Similar investigations have been carried out in Russia. This paper presents examples of the use of the PSCPCSP computer software for a quantitative analysis of structural und phase characteristics and properties of industrial alloys with change (within the grade range) in the concentrations of the alloying elements for optimizing the composition of the alloys and regimes of their heat treatment.

  14. Influence of aluminium content on the physical, mechanical and sliding wear properties of zinc-based alloys

    International Nuclear Information System (INIS)

    Prasad, B.K.; Patwardhan, A.K.; Yegneswaran, A.H.

    1997-01-01

    Attention has been focussed on the influence of Al content on the physical, mechanical and sliding wear properties of Zn-based alloys. Aspects studied include microstructure, density, electrical conductivity, hardness, tensile strength and elongation as well as sliding wear response of the alloys. Microstructural features of the alloys showed the presence of primary α, eutectic/eutectoid α + η (depending on whether the alloy was hypereutectic/hypereutectoid with regard to the concentration of Al) along with the meta stable ε phase. The study suggests that it is possible to design and develop Zn-based alloys with a wide range of concentration of Al. The alloys in turn attain different combinations of physical, mechanical and wear properties which could suit a variety of engineering applications. Increasing the Al content in the alloy system proves beneficial within limits. In other words, there exists an optimum quantity of Al which could reap its advantage to the maximum extent. This of course varies with reference to a specific property of the alloy(s). The changing response of the alloys has been explained in terms of their microstructural features and the effects produced as a result of the test conditions maintained while characterizing the specimens. (orig.)

  15. Aqueous electrochemistry of precipitation-hardened nickel base alloys

    International Nuclear Information System (INIS)

    Hosoya, K.; Ballinger, R.; Prybylowski, J.; Hwang, I.S.

    1990-11-01

    An investigation has been conducted to explore the importance of local crack tip electrochemical processes in precipitation-hardened Ni-Cr-Fe alloys driven by galvanic couples between grain boundary precipitates and the local matrix. The electrochemical behavior of γ' [Ni 3 (Al,Ti)] has been determined as a function of titanium concentration, temperature, and solution pH. The electrochemical behavior of Ni-Cr-Fe solid solution alloys has been investigated as a function of chromium content for a series of 10 Fe-variable Cr (6--18%)-balance Ni alloys, temperature, and pH. The investigation was conducted in neutral and pH3 solutions over the temperature range 25--300 degree C. The results of the investigation show that the electrochemical behavior of these systems is a strong function of temperature and composition. This is especially true for the γ' [Ni 3 (Al,Ti)] system where a transition from active/passive behavior to purely active behavior and back again occurs over a narrow temperature range near 100 degree C. Behavior of this system was also found to be a strong function of titanium concentration. In all cases, the Ni 3 (Al,Ti) phase was active with respect to the matrix. The peak in activity near 100 degree C correlates well with accelerated crack growth in this temperature range, observed in nickel-base alloy X-750 heat treated to precipitate γ' on the grain boundaries. 20 refs., 23 figs., 3 tabs

  16. Oxide characterization and hydrogen behaviors of Zr-based alloys

    International Nuclear Information System (INIS)

    Kim, Y. S.; Kim, D. J.; Kwon, S. H.; Lee, H. S.; Oh, S. J.; Yim, B. J.; Son, S. B.; Yun, S. P.

    2006-03-01

    The work scope and contents of the research are as follows : basic properties of zirconium alloys, hydrogen pick-up mechanism of zirconium alloy, effects of hydride on the corrosion behaviors of zirconium alloys, estimation on stress of oxide layer in the zirconium alloy, microstructure and characteristic of oxide in pre-hydrided zirconium alloys

  17. Aluminium base amorphous and crystalline alloys with Fe impurity

    International Nuclear Information System (INIS)

    Sitek, J.; Degmova, J.

    2006-01-01

    Aluminium base alloys show remarkable mechanical properties, however their low thermal stability still limits the technological applications. Further improvement of mechanical properties can be reached by partial crystallization of amorphous alloys, which gives rise to nanostructured composites. Our work was focused on aluminium based alloys with Fe, Nb and V additions. Samples of nominal composition Al 90 Fe 7 Nb 3 and Al 94 Fe 2 V 4 were studied in amorphous state and after annealing up to 873 K. From Moessbauer spectra taken on the samples in amorphous state the value of f-factor was determined as well as corresponding Debye temperatures were calculated. Annealing at higher temperatures induced nano and microcrystalline crystallization. Moessbauer spectra of samples annealed up to 573 K are fitted only by distribution of quadrupole doublets corresponding to the amorphous state. An increase of annealing temperature leads to the structural transformation, which consists in growth of nanometer sized aluminium nuclei. This is partly reflected in Moessbauer parameters. After annealing at 673 K intermetallic phase Al 3 Fe and other Al-Fe phases are created. In this case Moessbauer spectra are fitted by quadrupole doublets. During annealing up to 873 K large grains of Fe-Al phases are created. (authors)

  18. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    control tool was proved in two foundries. The method can also correctly predict the onset of fading. The corrosion resistance of the grain refined alloys was measured in two solutions having different hydrogen activities, pH 6 and pH8, and compared with the base alloys. Potentiodynamic polarization and long term weight loss experiments were conducted to evaluate the corrosion resistance. Cu-Zn alloys were evaluated for dezincification. In general, the grain refined alloys performed marginally better than the base alloys.

  19. Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr 65 ...

    Indian Academy of Sciences (India)

    The oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law for oxidation ...

  20. On the nature of the variation of martensitic transformation hysteresis and SME characteristics in Fe-Ni-base alloys

    International Nuclear Information System (INIS)

    Koval, Yu.N.; Monastyrsky, G.E.

    1995-01-01

    The purpose of this paper is to summarize the various investigations, both by the authors and other works, concerning with the martensitic transformation and SME in Fe-Ni-base alloys. The thermal hysteresis dependence on the alloying elements and thermal treatments are surveyed. The contribution and effect on SME characteristics of widely used alloying elements such as Ti, Nb, Ni, Al, Co, Ta and peculiarities of thermal treatment are discussed. It is noted the main goal of these treatments is to reduce the symmetry of transformation by the ordering or precipitation of a fine coherent phase. The physical principles of transformation hysteresis manipulation in Fe-base alloys is discussed and it concluded that the thermal cycling behavior of Fe-base alloys is very complex and is not clearly understood at present. On the other hand, it is pointed out that thermal cycling is an effective method for control and improvement of SME in these alloys. It is concluded that Fe-base alloys are highly evolved shape memory materials-having a wide working range, good workability and are relatively cheap. In addition, the properties are easily controlled by suitably alloying, aging and thermal cycling. (orig.)

  1. Thermodynamic properties and atomic structure of Ca-based liquid alloys

    Science.gov (United States)

    Poizeau, Sophie

    To identify the most promising positive electrodes for Ca-based liquid metal batteries, the thermodynamic properties of diverse Ca-based liquid alloys were investigated. The thermodynamic properties of Ca-Sb alloys were determined by emf measurements. It was found that Sb as positive electrode would provide the highest voltage for Ca-based liquid metal batteries (1 V). The price of such a battery would be competitive for the grid-scale energy storage market. The impact of Pb, a natural impurity of Sb, was predicted successfully and confirmed via electrochemical measurements. It was shown that the impact on the open circuit voltage would be minor. Indeed, the interaction between Ca and Sb was demonstrated to be much stronger than between Ca and Pb using thermodynamic modeling, which explains why the partial thermodynamic properties of Ca would not vary much with the addition of Pb to Sb. However, the usage of the positive electrode would be reduced, which would limit the interest of a Pb-Sb positive electrode. Throughout this work, the molecular interaction volume model (MIVM) was used for the first time for alloys with thermodynamic properties showing strong negative deviation from ideality. This model showed that systems such as Ca-Sb have strong short-range order: Ca is most stable when its first nearest neighbors are Sb. This is consistent with what the more traditional thermodynamic model, the regular association model, would predict. The advantages of the MIVM are the absence of assumption regarding the composition of an associate, and the reduced number of fitting parameters (2 instead of 5). Based on the parameters derived from the thermodynamic modeling using the MIVM, a new potential of mixing for liquid alloys was defined to compare the strength of interaction in different Ca-based alloys. Comparing this trend with the strength of interaction in the solid state of these systems (assessed by the energy of formation of the intermetallics), the systems with

  2. Shape recovery characteristics of biaxially prestrained Fe-Mn-Si-based shape memory alloy

    International Nuclear Information System (INIS)

    Wada, M.; Naoi, H.; Yasuda, H.; Maruyama, T.

    2008-01-01

    Fe-Mn-Si-based shape memory alloy has already been used practically for steel pipe joints. In most of the applications including the steel pipe joints, it is possible to estimate the reduction of diameter from the experimental data of the shape recovery after uniaxial stretching of the alloy materials. However, studies on shape recovery effects after biaxial stretching are important for the extensive applications of the alloy. In this study, we investigated the shape recovery strain after uniaxial and biaxial stretching and the microstructures of the alloy in order to see the effects of uniaxial and biaxial prestrain on the stress-induced martensitic transformation. Amounts of shape recovery strain in the biaxially prestrained specimens are smaller than those in the uniaxially prestrained specimens. Transmission electron microscopy revealed that reverse transformations of stress-induced martensitic ε-phase are prevented by slip bands formed at the same time in the biaxially prestrained specimens, but not in the uniaxially prestrained specimens. The technological data and interpretations presented in this study should be useful in forming design guidelines for promoting the extensive applications of Fe-Mn-Si-based shape memory alloy

  3. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    International Nuclear Information System (INIS)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  4. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    Science.gov (United States)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  5. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  6. Corrosion resistance of tantalum base alloys

    International Nuclear Information System (INIS)

    Gypen, L.A.; Brabers, M.; Deruyttre, A.

    1984-01-01

    The corrosion behaviour of substitutional Ta-Mo, Ta-W, Ta-Nb, Ta-Hf, Ta-Zr, Ta-Re, Ta-Ni, Ta-V, Ta-W-Mo, Ta-W-Nb, Ta-W-Hf and Ta-W-Re alloys has been investigated in various corrosive media, i.e. (1) concentrated sulfuric acid at 250 0 C and 200 0 C, (2) boiling hydrochloric acid of azeotropic composition, (3) concentrated hydrochloric acid at 150 0 C under pressure, (4) HF-Containing solutions and (5) 0.5% H 2 SO 4 at room temperature (anodisation). In highly corrosive media such as concentrated H 2 SO 4 at 250 0 C and concentrated HCl at 150 0 C tantalum is hydrogen embrittled, probably by stress induced precipitation of β-hydride. Both corrosion rate and hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C are strongly influenced by alloying elements. Small alloying additions of either Mo or Re decrease the corrosion rate and the hydrogen embrittlement, while Hf has the opposite effect. Hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C is completely eliminated by alloying Ta with 1 to 3 at % Mo (0.5 to 1.5 wt % Mo). These results can be explained in terms of oxygen deficiency of the Ta 2 O 5 film and the electronic structure of these alloys. (orig.) [de

  7. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  8. Zr - based alloys as hydride electrodes in Ni-MH batteries

    International Nuclear Information System (INIS)

    Biris, A.R.; Biris, A.S.; Misan, I.; Lupu, D.

    1999-01-01

    Hydrogen storage alloys, MH, are already used in Ni-MH alkaline batteries conquering an important share of the rechargeable nickel-cadmium battery market. This remarkable success is due not only to the replacement of the toxic material, cadmium, by metal hydrides but also to an increased specific energy, which makes them attractive for electric vehicles. Many research groups are concerned in the improvement of the hydride electrode characteristics: hydrogen storage capacity, high-rate discharge ability, increased cycle life. These properties can be modified by substitution of the base components of a given alloy. A comparison of two types of alloys suitable for MH electrodes LaNi 5 able to store 1.36 w/o hydrogen with Zr(Ti)-Ni alloys of the AB 2 Laves phase type structure showed that the latter could absorb higher amounts of hydrogen. We report part of studies on Zr-V-Cr-Ni of the 15 C type Laves phase structure using our original procedure for pasted electrodes. The substitution of Cr for V atoms in ZrV 0.5 Ni 1 . 5 did not increase the discharge capacity. However, it proved to have a remarkable effect on the discharge capacity C at low temperatures. C at - 12 deg. C as compared to 20 deg.C increases up to ∼ 65 % for Cr containing alloys. (authors)

  9. Corrosion and oxidation of vanadium-base alloys in helium environments

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1984-01-01

    The increase in weight of unalloyed V and V-5Ti, V-15Cr and V-15Cr-5Ti alloys at 725, 825 and 925 K was determined for exposure times ranging up to 1000 hours in He containing H 2 and/or H 2 O impurity. The microhardness of the specimens in a transverse section was also determined after exposure for 1000 hours. These results were utilized to discuss the consequences of the selection of certain radiation-damage resistant, V-base alloys for structural materials applications in a fusion reactor

  10. Quality assurance when surface welding nickel-based alloys; Qualitaetssicherung bei der Auftragsschweissung von Nickelbasislackierungen

    Energy Technology Data Exchange (ETDEWEB)

    Metschke, J. [Muellkraftwerk Schwandorf Betriebsgesellschaft mbH (Germany)

    2003-07-01

    The cladding of evaporator heat exchanger surfaces in refuse incineration boilers with alloy 625 can effectively protect against the corrosive wear of the basic tube if the described rules concerning the pre-treatment, processing, quality control and after-care are observed. This statement is supported by the positive experience with this alloy at the Schwandorf refuse-fired power plant over a period of eight years now. Since the maximum service temperature is limited to 420 C, alloy 625 is only suitable for protecting superheater pipes subject to certain conditions. Long-term experience with alternative nickel-based alloys (alloy 622, alloy 686 and others) are not yet available. (orig.) [German] Die Schweissplattierung von Verdampferwaermetauscherflaechen in Muellverbrennungskesseln mit Alloy 625 kann einen wirksamen Schutz gegen den korrosiven Verschleiss des Grundrohres darstellen, wenn die vorstehenden Regeln ueber Vorbehandlung, Verarbeitung, Qualitaetskontrolle und laufende Nachsorgearbeiten beachtet werden. Diese Aussage wird durch die positiven Erfahrungen mit dieser Legierung im Muellkraftwerk Schwandorf ueber einen Zeitraum von nunmehr acht Jahren gestuetzt. (orig.)

  11. Correlation Between Superheated Liquid Fragility And Onset Temperature Of Crystallization For Al-Based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Guo J.

    2015-06-01

    Full Text Available Amorphous alloys or metallic glasses have attracted significant interest in the materials science and engineering communities due to their unique physical, mechanical, and chemical properties. The viscous flow of amorphous alloys exhibiting high strain rate sensitivity and homogeneous deformation is considered to be an important characteristic in thermoplastic forming processes performed within the supercooled liquid region because it allows superplastic-like deformation behavior. Here, the correlation between the superheated liquid fragility, and the onset temperature of crystallization for Al-based alloys, is investigated. The activation energy for viscous flow of the liquid is also investigated. There is a negative correlation between the parameter of superheated liquid fragility and the onset temperature of crystallization in the same Al-based alloy system. The activation energy decreases as the onset temperature of crystallization increases. This indicates that the stability of a superheated liquid can affect the thermal stability of the amorphous alloy. It also means that a liquid with a large superheated liquid fragility, when rapidly solidified, forms an amorphous alloy with a low thermal stability.

  12. Straining electrode behavior and corrosion resistance of nickel base alloys in high temperature acidic solution

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo

    1992-01-01

    Repassivation behavior and IGA resistance of nickel base alloys containing 0∼30 wt% chromium was investigated in high temperature acid sulfate solution. (1) The repassivation rate was increased with increasing chromium content. And so the amounts of charge caused by the metal dissolution were decreased with increasing chromium content. (2) Mill-annealed Alloy 600 suffered IGA at low pH environment below about 3.5 at the fixed potentials above the corrosion potential in 10%Na 2 SO 4 +H 2 SO 4 solution at 598K. On the other hand, thermally-treated Alloy 690 was hard to occur IGA at low pH environments which mill-annealed Alloy 600 occurred IGA. (3) It was considered that the reason, why nickel base alloys containing high chromium content such as Alloy 690 (60%Ni-30%Cr-10%Fe) had high IGA/SCC resistance in high temperature acidic solution containing sulfate ion, is due to both the promotion of the repassivation and the suppression of the film dissolution by the formation of the dense chromium oxide film

  13. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, Alejandra, E-mail: aleja311@berkeley.edu [University of California Berkeley, Berkeley, CA 94706 (United States); Kramer, Kevin [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA (United States); Meier, Wayne; DeMuth, James; Reyes, Susana [TerraPower, Bellevue, WA 98005 (United States); Fratoni, Massimiliano [University of California Berkeley, Berkeley, CA 94706 (United States)

    2016-06-15

    Highlights: • Monte Carlo calculations were performed on numerous lithium ternary alloys. • Elements with high neutron multiplication performed well with low absorbers. • Enriching lithium decreases minimum lithium concentration of alloys by 60% or more. • Alloys that performed well neutronically were selected for activation calculations. • Alloys activated, except LiBaBi, do not pose major environmental or safety concerns. - Abstract: An attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based ternary alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys in the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as Pb, Sn, and Sr, perform well with those that have high neutron multiplication such as Pb and Bi. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium with {sup 6}Li significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR

  14. Corrosion of nickel-base heat resistant alloys in simulated VHTR coolant helium at very high temperatures

    International Nuclear Information System (INIS)

    Shindo, Masami; Kondo, Tatsuo

    1976-01-01

    A comparative evaluation was made on three commercial nickel-base heat resistant alloys exposed to helium-base atmosphere at 1000 0 C, which contained several impurities in simulating the helium cooled very high temperature nuclear reactor (VHTR) environment. The choice of alloys was made so that the effect of elements commonly found in commercial alloys were typically examined. The corrosion in helium at 1000 0 C was characterized by the sharp selection of thermodynamically unstable elements in the oxidizing process and the resultant intergranular penetration and internal oxidation. Ni-Cr-Mo-W type solution hardened alloy such as Hastelloy-X showed comparatively good resistance. The alloy containing Al and Ti such as Inconel-617 suffered adverse effect in contrast to its good resistance to air oxidation. The alloy nominally composed only of noble elements, Ni, Fe and Mo, such as Hastelloy-B showed least apparent corrosion, while suffered internal oxidation due to small amount of active impurities commonly existing in commercial heats. The results were discussed in terms of selection and improvement of alloys for uses in VHTR and the similar systems. (auth.)

  15. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  16. Thermodynamic properties of uranium in gallium–aluminium based alloys

    International Nuclear Information System (INIS)

    Volkovich, V.A.; Maltsev, D.S.; Yamshchikov, L.F.; Chukin, A.V.; Smolenski, V.V.; Novoselova, A.V.; Osipenko, A.G.

    2015-01-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  17. Thermodynamic properties of uranium in gallium–aluminium based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Volkovich, V.A., E-mail: v.a.volkovich@urfu.ru [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Maltsev, D.S.; Yamshchikov, L.F. [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Chukin, A.V. [Department of Theoretical Physics and Applied Mathematics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Smolenski, V.V.; Novoselova, A.V. [Institute of High-Temperature Electrochemistry UD RAS, Ekaterinburg, 620137 (Russian Federation); Osipenko, A.G. [JSC “State Scientific Centre - Research Institute of Atomic Reactors”, Dimitrovgrad, 433510 (Russian Federation)

    2015-10-15

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  18. Fragility of superheated melts and glass-forming ability in Pr-based alloys

    International Nuclear Information System (INIS)

    Meng, Q.G.; Zhou, J.K.; Zheng, H.X.; Li, J.G.

    2006-01-01

    The kinetic viscosity (η) of superheated melts, thermal properties (T x , T m , T L ) and X-ray diffraction analysis on the Pr-based bulk metallic glasses (BMG) are reported and discussed. A new refined concept, the superheated fragility defined as M' = E S δ x /k B , has been developed based on common solidification theory and the Arrhenius equation. The interrelationship between this kind of fragility and the glass-forming ability (GFA) is elaborated on and evaluated in Pr-based BMG and Al-based amorphous ribbon alloys. Using viscosity data of superheated melts, it is shown, theoretically and experimentally, that the fragility parameter M' may be used as a GFA indicator for metallic alloys

  19. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    Science.gov (United States)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  20. Compatibility between vandium-base alloys and flowing lithium: Partitioning of hydrogen at elevated temperatures

    International Nuclear Information System (INIS)

    Hull, A.B.; Chopra, O.K.; Loomis, B.; Smith, D.

    1989-12-01

    A major concern in fusion reactor design is possible hydrogen-isotope-induced embrittlement of structural alloys in the neutron environment expected in these reactors. Hydrogen fractionation occurs between lithium and various refractory metals according to a temperature-dependent distribution coefficient, K H , that is defined as the ration of the hydrogen concentration in the metallic specimen to that in the liquid lithium. In the present work, K H was determined for pure vanadium and several binary and ternary alloys, and the commercial Vanstar 7. Hydrogen distribution studies were performed in an austenitic steel forced-circulation lithium loop. Equilibrium concentrations of hydrogen in vanadium-base alloys exposed to flowing lithium at temperatures of 350 to 550 degree C were measured by inert gas fusion techniques and residual gas analysis. Thermodynamic calculations are consistent with the effect of chromium and titanium in the alloys on the resultant hydrogen fractionation. Experimental and calculated results indicate that K H values are very low; i.e., the hydrogen concentrations in the lithium-equilibrated vanadium-base alloy specimens are about two orders of magnitude lower than those in the lithium. Because of this low distribution coefficient, embrittlement of vanadium alloys by hydrogen in lithium would not be expected. 15 refs., 5 figs., 4 tabs

  1. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals

    International Nuclear Information System (INIS)

    Lee, Tae Hyun; Hwang, Il Soon; Kim, Hong Deok; Kim, Ji Hyun

    2015-01-01

    A technique developed to produce artificial intergranular stress corrosion cracks in structural components was applied to thick, forged alloy 600 base and alloy 182 weld metals for use in the qualification of nondestructive examination techniques for welded components in nuclear power plants. An externally controlled procedure was demonstrated to produce intergranular stress corrosion cracks that are comparable to service-induced cracks in both the base and weld metals. During the process of crack generation, an online direct current potential drop method using array probes was used to measure and monitor the sizes and shapes of the cracks. A microstructural characterization of the produced cracks revealed realistic conformation of the crack faces unlike those in machined notches produced by an electrodischarge machine or simple fatigue loading using a universal testing machine. A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

  2. Quantitative assessment of intergranular damage due to PWR primary water exposure in structural Ni-based alloys

    International Nuclear Information System (INIS)

    Ter-Ovanessian, Benoît; Deleume, Julien; Cloué, Jean-Marc; Andrieu, Eric

    2013-01-01

    Highlights: ► IG damage occurred on Ni-base alloys during exposure at high temperature water. ► Two characterization methods yield a tomographic analysis of this IG damage. ► Connected or isolated intergranular oxygen/oxide penetrations are quantified. ► Such quantitative description provides information on IGSCC susceptibility. - Abstract: Two nickel-based alloys, alloy 718 and alloy 600, known to have different resistances to IGSCC, were exposed to a simulated PWR primary water environment at 360 °C for 1000 h. The intergranular oxidation damage was analyzed in detail using an original approach involving two characterization methods (Incremental Mechanical Polishing/Microcopy procedure and SIMS imaging) which yielded a tomographic analysis of the damage. Intergranular oxygen/oxide penetrations occurred either as connected or isolated penetrations deep under the external oxide/substrate interface as far as 10 μm for alloy 600 and only 4 μm for alloy 718. Therefore, assessing this damage precisely is essential to interpret IGSCC susceptibility.

  3. First-principles investigations of iron-based alloys and their properties

    Science.gov (United States)

    Limmer, Krista Renee

    Fundamental understanding of the complex interactions governing structure-property relationships in iron-based alloys is necessary to advance ferrous metallurgy. Two key components of alloy design are carbide formation and stabilization and controlling the active deformation mechanism. Following a first-principles methodology, understanding on the electronic level of these components has been gained for predictive modeling of alloys. Transition metal carbides have long played an important role in alloy design, though the complexity of their interactions with the ferrous matrix is not well understood. Bulk, surface, and interface properties of vanadium carbide, VCx, were calculated to provide insight for the carbide formation and stability. Carbon vacancy defects are shown to stabilize the bulk carbide due to increased V-V bonding in addition to localized increased V-C bond strength. The VCx (100) surface energy is minimized when carbon vacancies are at least two layers from the surface. Further, the Fe/VC interface is stabilized through maintaining stoichiometry at the Fe/VC interface. Intrinsic and unstable stacking fault energy, gammaisf and gamma usf respectively, were explicitly calculated in nonmagnetic fcc Fe-X systems for X = Al, Si, P, S, and the 3d and 4d transition elements. A parabolic relationship is observed in gamma isf across the transition metals with minimums observed for Mn and Tc in the 3d and 4d periods, respectively. Mn is the only alloying addition that was shown to decrease gamma isf in fcc Fe at the given concentration. The effect of alloying on gammausf also has a parabolic relationship, with all additions decreasing gammaisf yielding maximums for Fe and Rh.

  4. Alloy 690 in PWR type reactors; Aleaciones base niquel en condiciones de primario de los reactores tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Briceno, D.; Serrano, M.

    2005-07-01

    Alloy 690, used as replacement of Alloy 600 for vessel head penetration (VHP) nozzles in PWR, coexists in the primary loop with other components of Alloy 600. Alloy 690 shows an excellent resistance to primary water stress corrosion cracking, while Alloy 600 is very susceptible to this degradation mechanisms. This article analyse comparatively the PWSCC behaviour of both Ni-based alloys and associated weld metals 52/152 and 82/182. (Author)

  5. Effects of composition on the order-disorder transformation in Ni-Cr based alloys

    International Nuclear Information System (INIS)

    Marucco, A.

    1991-01-01

    The Ni-Cr based alloys undergo an ordering transformation, due to the formation of an ordered Ni 2 Cr phase, which causes a lattice contraction and it is responsisble for ''negative creep'' or excessive stresses in constrained components. A short-range ordered (SRO) structure develops in the matrix phase after solution treatment and at early stages of ageing, which can transform to a long-range ordered (LRO) structure, depending on the alloy composition and on time and temperature of ageing, upon prolonged annealing below the critical temperature. In stoichiometric Ni 2 Cr alloy LRO forms in a few hours, but in off-stoichiometric alloys the transformation kinetics are very sluggish and LRO takes several tens of thousands of hours to form, when it forms. The ordering behaviours of stoichiometric Ni 2 Cr and Ni 3 Cr were studied by means of isothermal treatments in the temperature range 450-600degC for different ageing times up to 30 000 h, followed by lattice parameter measurements by X-ray diffraction and electrical resistivity measurements. Similar studies performed on a series of ternary Ni-Cr-Fe alloys revealed the dependence of the degree of order on Cr concentration and a markedly delaying influence of Fe on the ordering kinetics. Finally, long-term microstructural stability of some commercial Ni-Cr based alloys, widely used for high temperature applications, have been studied: the ordering behaviour and associated microstructural changes are discussed in this paper

  6. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Schwaighofer, Emanuel, E-mail: emanuel.schwaighofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Lindemann, Janny [Chair of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 17, D-03046 Cottbus (Germany); GfE Fremat GmbH, Lessingstr. 41, D-09599 Freiberg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Mayer, Svea [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria)

    2014-09-22

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s{sup −1} up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti{sub 5}Si{sub 3} silicides and h-type carbides Ti{sub 2}AlC enhance the dynamic recrystallization behavior during

  7. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    International Nuclear Information System (INIS)

    Schwaighofer, Emanuel; Clemens, Helmut; Lindemann, Janny; Stark, Andreas; Mayer, Svea

    2014-01-01

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s −1 up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti 5 Si 3 silicides and h-type carbides Ti 2 AlC enhance the dynamic recrystallization behavior during deformation within

  8. The Hydrogen Pickup Behavior for Zirconium-based Alloys in Various Out-of-pile Corrosion Test Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aomi, M.; Etoh, Y.; Ishimoto, S.; Une, K. [Nippon Nuclear Fuel Development, Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki-ken, 311-1313 (Japan); Ito, K. [Global Nuclear Fuel Japan Co., Ltd., 3-1 Uchikawa 2-chome, Yokosuka-shi, Kanagawa-ken, 239-0836 (Japan)

    2009-06-15

    An acceleration of hydrogen absorption in zirconium alloy claddings at high burnups is one of the most important issues limiting the fuel performance from the viewpoint of cladding integrity. In this context, advanced cladding materials with higher corrosion resistant and lower hydrogen absorption properties have been widely searched in various organizations. In this study, four kinds of zirconium-based alloys, whose in-pile data had been acquired [1,2] were subjected to comprehensive out-of-pile corrosion tests with various temperature and atmosphere conditions in order to investigate the correlation between in-pile and out-of-pile corrosion and hydrogen pick-up behavior, i.e. Zry-2, GNF-Ziron (Zry-2-based alloy with {approx}0.25 wt % of Fe), Hi-FeNi Zircaloy (Zry-2-based alloy with {approx}0.25 wt % of Fe and {approx}0.1 wt% Ni), and VB (Zr-based alloy containing Sn, Cr, and {approx}0.5 wt % of Fe). All the alloys were annealed in RXA condition. The out-of-pile corrosion tests were carried out in three different conditions of 400 deg. C steam, 475 deg. C supercritical water, and 290 deg. C LiOH aqueous solution. In addition to these alloys, several Zry-2-based alloys with various iron contents were tested in 290 deg. C LiOH aqueous solution. Among the four corrosion conditions, the 290 deg. C LiOH aqueous solution test well screened the hydrogen pick-up behavior of the alloys. The hydrogen absorption decreased with higher iron contents in the alloys in both the out-of-pile and in-pile conditions. Especially, the distinct suppression of hydrogen absorption was observed for VB with the highest iron content. The similar dependence of iron content on the hydrogen pick-up fraction was also obtained for the Zry-2-based alloys with different iron contents, which were corroded in the 290 deg. C LiOH aqueous solution condition. As for the corrosion behavior in the 290 deg. C LiOH aqueous solution condition, the weight gains of Zry-2, GNF-Ziron and VB followed the 1

  9. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  10. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure and microhard......Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure...... was primarily strengthened by the refined (Ge) dispersed phase. The distribution of phases played a relatively more crucial role in determining the ductility of the bulk solder alloy. In the present work it was found that among the low melting point metals, the addition of Sb to the Au-Ge eutectic would...

  11. Advanced Class of FML on the Base Al-Li Alloy 1441 with Lower Density

    Science.gov (United States)

    Antipov, V. V.; Senatorova, O. G.; Lukina, N. F.

    Structure, composition, properties combination of specimens and components, a number of technological parameters for production of advanced FML based on high-modulus Al-Li 1441 alloy (E 79 GPa) with reduced density (d 2.6 g/m3) and optimized adhesive prepreg reinforced with high-strength high-modulus VMP glass fibres are described. Service life 1441 alloy provides the possibility of manufacture of thin sheets (up to 0.3 mm), clad and unclad. Moreover, some experience on the usage of 1441 T1, T11 sheets and shapes in Be 200 and Be 103 aircraft was accumulated. The class of FML materials based on Al-Li alloy provide an 5% improvement in weight efficiency and stiffness of skin structures as compared with those made from FML with conventional Al-Cu-Mg (2024T3 a.o.) and Al-Zn-Mg-Cu (7475T76 a.o.) alloys.

  12. Detection and distribution of lithium in Mg-Li-Al based alloy by ToF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in [Metallurgical and Materials Engineering, MNIT Jaipur, 302017 (India); Adjunct Faculty, Materials Research Centre, MNIT Jaipur, 302017 (India)

    2016-12-01

    Highlights: • First time, Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) is used to investigate the surface as well as bulk microstructural features of novel Mg-Li-Al based alloy. • There are six multi-oxide layers present within the surface film of LATZ9531R. • Secondary ion imaging by ToF-SIMS with mass contrast effect (including Li) is possible for a multiphase lithium-containing alloy systems. - Abstract: Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) is used to investigate the surface as well as bulk microstructural features of novel Mg-Li-Al based alloy namely Mg-9Li-7Al-3Sn-1Zn (LATZ9531). ToF-SIMS study indicates that there are six multi-oxide layers present within the surface film of LATZ9531. Furthermore, The presence of Li containing phase has been qualitatively confirmed based on the high number of Li-ion counts in SIMS, and the same is verified quantitatively by using electron probe microanalysis (EPMA). The novel approach may be useful to determine the chemical composition of the phases in various alloys which has lighter alloying elements such as lithium.

  13. Microstructure-based modeling of tensile deformation of a friction stir welded AZ31 Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, Weijun, E-mail: weijun.he@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Zheng, Li [College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Xin, Renlong, E-mail: rlxin@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2017-02-27

    The deformation and fracture behaviors of friction stir welded (FSWed) Mg alloys are topics under investigation. The microstructure and texture of a FSWed Mg alloy were characterized by electron back scattered diffraction. Four characteristic sub-zones with different orientations in the FSWed Mg alloy joint were identified. The texture distribution across the stir zones and transition zone were obviously inhomogeneous. For comparison, four sub-regions in the base material were also characterized. Based on the experimental microstructure and texture, a crystal plasticity finite element model was developed to represent the friction stir welded Mg alloy. Simulations were carried out to study the effect of texture variation on the deformation behaviors during transverse tension. Compared with the base material case, strong macroscopic strain localization was observed for the FSWed joint case after transverse tension. Strain localization may have contributed to the decayed elongation of the FSWed joint in the transverse tension. Texture variation in the thermal-mechanical affected zone did not change the deformation mechanism in the stir zones, while it did decrease the strain localization, thus assuming to improve the elongation of the friction stir welded Mg alloy.

  14. Microstructure-based modeling of tensile deformation of a friction stir welded AZ31 Mg alloy

    International Nuclear Information System (INIS)

    He, Weijun; Zheng, Li; Xin, Renlong; Liu, Qing

    2017-01-01

    The deformation and fracture behaviors of friction stir welded (FSWed) Mg alloys are topics under investigation. The microstructure and texture of a FSWed Mg alloy were characterized by electron back scattered diffraction. Four characteristic sub-zones with different orientations in the FSWed Mg alloy joint were identified. The texture distribution across the stir zones and transition zone were obviously inhomogeneous. For comparison, four sub-regions in the base material were also characterized. Based on the experimental microstructure and texture, a crystal plasticity finite element model was developed to represent the friction stir welded Mg alloy. Simulations were carried out to study the effect of texture variation on the deformation behaviors during transverse tension. Compared with the base material case, strong macroscopic strain localization was observed for the FSWed joint case after transverse tension. Strain localization may have contributed to the decayed elongation of the FSWed joint in the transverse tension. Texture variation in the thermal-mechanical affected zone did not change the deformation mechanism in the stir zones, while it did decrease the strain localization, thus assuming to improve the elongation of the friction stir welded Mg alloy.

  15. Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry

    Science.gov (United States)

    Yuge, Koretaka

    2018-04-01

    Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.

  16. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  17. Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors

    Science.gov (United States)

    Jolodosky, Alejandra

    The goal of this dissertation is to examine the neutronic properties of a novel type of fusion reactor blanket material in the form of lithium-based ternary alloys. Pure liquid lithium, first proposed as a blanket for fusion reactors, is utilized as both a tritium breeder and a coolant. It has many attractive features such as high heat transfer and low corrosion properties, but most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns including degradation of the concrete containment structure. The work of this thesis began as a collaboration with Lawrence Livermore National Laboratory in an effort to develop a lithium-based ternary alloy that can maintain the beneficial properties of lithium while reducing the reactivity concerns. The first studies down-selected alloys based on the analysis and performance of both neutronic and activation characteristics. First, 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and energy multiplication factor (EMF). Alloys with adequate results based on TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). The straightforward approach to obtain Monte Carlo TBR and EMF results required 231 simulations per alloy and became computationally expensive, time consuming, and inefficient. Consequently, alternate methods were pursued. A collision history-based methodology recently developed for the Monte Carlo code Serpent, calculates perturbation effects on practically

  18. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints

    Directory of Open Access Journals (Sweden)

    Kittima Sillapasa

    2017-02-01

    Full Text Available Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σa (R = −1 = 1.68 HV (σa is in MPa and HV has no unit. It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints.

  19. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es; Sánchez, M.; Ureña, A.

    2017-07-15

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface. - Highlights: •W-Eurofer brazed joints, manufactured using Cu-based mechanically alloyed powders as filler is proposed. •The benefits derivate from the alloyed composition could improve the operational brazeability of the studied system. •Tested pre-alloyed fillers have a more homogeneous melting stage which enhances its spreading and flowing capabilities. •This behaviour could lead to work with higher heating rates and lower brazing temperatures.

  20. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  1. Electrode characteristics of the (Mm)Ni 5-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Soo; Choi, Seung Jun; Chang, Min Ho; Choi, Jeon; Park, Choong Nyun [Chonnam National University, Kwangju (Korea, Republic of)

    1995-06-01

    The MmNi-based alloy electrode was studied for use a negative electrode in Ni-MH battery. Alloys with MmNi{sub 5}-{sub x} M{sub x}(M=Co,Al,Mn) composition were synthesized, and their electrode characteristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in MmNi{sub 5}-{sub x} M{sub x} increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is MmNi{sub 3}.5 Co{sub 0}.7 Al{sub 0}.5 Mn{sub 0}.3. (author). 9 refs., 9 figs., 1 tab.

  2. Monte Carlo simulation of ordering transformations in Ni-Mo-based alloys

    International Nuclear Information System (INIS)

    Kulkarni, U.D.

    2004-01-01

    The quenched in state of short range order (SRO) in binary Ni-Mo alloys is characterized by intensity maxima at {1 (1/2) 0} and equivalent positions in the reciprocal space. Ternary addition of a small amount of Al to the binary alloy, on the other hand, leads to a state of SRO that gives rise to intensity maxima at {1 0 0} and equivalent, in addition to {1 (1/2) 0} and equivalent, positions in the selected area electron diffraction patterns. Different geometric patterns of streaks of diffuse intensity, joining the SRO maxima with the superlattice positions of the emerging long range ordered (LRO) structures or in some cases between the superlattice positions of different LRO structures, are observed during the SRO-to-LRO transitions in the Ni-Mo-based and other 1 (1/2) 0 alloys. Monte Carlo simulations have been carried out here in order to shed some light on the atomic structures of the SRO and the SRO-to-LRO transition states in these alloys

  3. Low in reactor creep Zr-base alloy tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Holt, R.A.

    1984-01-01

    This invention relates to zirconium alloy tubes especially for use in nuclear power reactors. More particularly it relates to quaternary 3.5 percent Sn, 1 percent Mo, 1 percent Nb, balance Zr alloy tubes which have been extruded, cold worked and heat treated to lower their dislocation density. In one embodiment the alloys are cold worked less than 5 percent and stress relieved to produce a low dislocation density and in another embodiment the alloys are cold worked up to about 50 percent and annealed to produce a very low dislocation density and also small equiaxed β grains

  4. On the use of titanium hydride for powder injection moulding of titanium-based alloys

    International Nuclear Information System (INIS)

    Carrenoo-Morelli, E.; Bidaux, J.-E.

    2009-01-01

    Full text: Titanium and titanium-based alloys are excellent materials for a number of engineering applications because of their high strength, lightweight, good corrosion resistance, non magnetic characteristic and biocompatibility. The current processing steps are usually costly, and there is a growing demand for net-shape solutions for manufacturing parts of increasing complexity. Powder injection moulding is becoming a competitive alternative, thanks to the advances in production of good quality base-powders, binders and sintering facilities. Titanium hydride powders, have the attractiveness of being less reactive than fine titanium powders, easier to handle, and cheaper. This paper summarizes recent advances on PIM of titanium and titanium alloys from TiH2 powders, including shape-memory NiTi alloys. (author)

  5. Development of new zirconium based alloys for burn-up extension of light water reactor fuels, (1)

    International Nuclear Information System (INIS)

    Isobe, Takeshi; Matsuo, Yutaka

    1992-01-01

    Steam corrosion tests and tensile were conducted to investigate the effects of alloying elements such as Sn, Nb, Fe, Cr, Mo and V, and the mechanical properties of Nb-containing Zr-base alloys. The corrosion resistance of Zr-base alloys in comparison to Zr'y-4 was significantly improved by the reduction of the Sn content by 0.5 wt% and by a small addition of Nb (about 0.05 to 0.2 wt%). However, the decrease in solute Sn atoms degraded mechanical properties. The increase of the total content of Fe and Cr from 0.3 to 0.7 wt% improved the mechanical properties without affecting the corrosion resistance. The decrease of the Fe/Cr ratio from 6.0 to 0.5 increased the corrosion resistance. Small addition of Mo and/or V resulted in a further improvement of mechanical properties. Based on these experiments, three Nb-containing Zr-base alloys with equivalent mechanical properties and superior corrosion resistance to Zr'y-4 were developed. (author)

  6. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  7. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  8. Synthesis and characterization of Mg-based amorphous alloys and their use for decolorization of Azo dyes

    International Nuclear Information System (INIS)

    Iqbal, M; Wang, W H

    2014-01-01

    Mg-based alloys are light weight and have wide range of applications in the automotive industry. These alloys are widely used because of their very attractive physical and mechanical properties and corrosion resistance. The properties and applications can be further improved by changing the nature of materials from crystalline to amorphous. In this study, melt spun ribbons (MSRs) of Mg 70 Zn 25 Ca 5 Mg 68 Zn 27 Ca 5 alloys were prepared by melt spinning technique by using 3-4N pure metals. Characterization of the samples was done by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and energy dispersive x-ray analyzer (EDAX). Microstructural investigations were conducted by using scanning electron microscopy (SEM), atomic force microscopy (AFM) as well as optical and stereo scan microscopy techniques. DSC results showed multistage crystallization. Activation energy was found to be 225 kJ/mol by Kissinger method indicating good thermal stability against crystallization. XRD, DSC, SEM and EDS (energy dispersive spectroscopy) results are agreed very well. In order to study decolorization, the MSRs of Mg 70 Zn 25 Ca 5 Mg 68 Zn 27 Ca 5 alloys were treated repeatedly with various azo dyes at room temperature. In order to compare the results, MSRs of amorphous Zr- and Ni-based metallic glasses were also treated. Reaction of MSRs with azo dyes results in their decolorization in a few hours. Decolorization of azo dyes takes place by introducing amorphous MSRs which results in breaking the -N=N- bonds that exist in dye contents. It is concluded that Mg-based alloys are useful for paint and dye industries and will be beneficial to control water pollution. Comparison of results showed that Mg-based alloys are more efficient than Zr- and Ni-based amorphous alloys for decolorization of azo dyes

  9. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  10. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    The specified alloys consist of Ni, Cr and Fe as main constituents, and Mo, Nb, Si, Zr, Ti, Al, C and B as minor constituents. They are said to exhibit high weldability and long-time structural stability, as well as low swelling under nuclear radiation conditions, making them especially suitable for use as a duct material and control element cladding for sodium-cooled nuclear reactors. (U.K.)

  11. VANADIUM ALLOYS

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  12. Stress corrosion cracking of nickel base alloys in PWR primary water

    International Nuclear Information System (INIS)

    Guerre, C.; Chaumun, E.; Crepin, J.; De Curieres, I.; Duhamel, C.; Heripre, E.; Herms, E.; Laghoutaris, P.; Molins, R.; Sennour, M.; Vaillant, F.

    2013-01-01

    Stress corrosion cracking (SCC) of nickel base alloys and associated weld metals in primary water is one of the major concerns for pressurized water reactors (PWR). Since the 90's, highly cold-worked stainless steels (non-sensitized) were also found to be susceptible to SCC in PWR primary water ([1], [2], [3]). In the context of the life extension of pressurized water reactors, laboratory studies are performed in order to evaluate the SCC behaviour of components made of nickel base alloys and of stainless steels. Some examples of these laboratory studies performed at CEA will be given in the talk. This presentation deals with both initiation and propagation of stress corrosion cracks. The aims of these studies is, on one hand, to obtain more data regarding initiation time or crack growth rate and, one the other hand, to improve our knowledge of the SCC mechanisms. The aim of these approaches is to model SCC and to predict components life duration. Crack growth rate (CGR) tests on Alloy 82 with and without post weld heat treatment are performed in PWR primary water (Figure 1). The heat treatment seems to be highly beneficial by decreasing the CGR. This result could be explained by the effect of thermal treatment on the grain boundary nano-scopic precipitation in Alloy 82 [4]. The susceptibility to SCC of cold worked austenitic stainless steels is also studied. It is shown that for a given cold-working procedure, SCC susceptibility increases with increasing cold-work ([2], [5]). Despite the fact that the SCC behaviour of Alloy 600 has been widely studied for many years, recent laboratory experiments and analysis ([6], [7], [8]) showed that oxygen diffusion is not a rate-limiting step in the SCC mechanism and that chromium diffusion in the bulk close the crack tip could be a key parameter. (authors)

  13. Hydrogenation properties and microstructure of Ti-Mn-based alloys for hybrid hydrogen storage vessel

    International Nuclear Information System (INIS)

    Shibuya, Masachika; Nakamura, Jin; Akiba, Etsuo

    2008-01-01

    Ti-Mn-based AB 2 -type alloys which are suitable for a hybrid hydrogen storage vessel have been synthesized and evaluated hydrogenation properties. As the third element V was added to Ti-Mn binary alloys. All the alloys synthesized in this work mainly consist of the C14 Laves and BCC phase. In the case of Ti0.5V0.5Mn alloy, the amounts of hydrogen absorption was 1.8 wt.% at 243 K under the atmosphere of 7 MPa H 2 , and the hydrogen desorption pressure was in the range of 0.2-0.4 MPa at 243 K. The hydrogen capacity of this alloy did not saturate under 7 MPa H 2 and seems to increase with hydrogen pressure up to 35 MPa that is estimated working pressure of the hybrid hydrogen storage vessel

  14. Corrosion performance of new Zircaloy-2-based alloys

    International Nuclear Information System (INIS)

    Rudling, P.; Mikes-Lindbaeck, M.; Lethinen, B.; Andren, H.O.; Stiller, K.

    1994-01-01

    A material development project was initiated to develop a new zirconium alloy, outside the ASTM specifications for Zircaloy-2 and Zircaloy-4, with optimized hydriding and corrosion properties for both boiling water reactors and pressurized water reactors. A number of different alloys were manufactured. These alloys were long-term corrosion tested in autoclaves at 400 C in steam. Also, a 520 C/24 h steam test was carried out. The zirconium metal microstructure and the chemistry of precipitates were characterized by analytical electron microscopy. The metal matrix chemistry was determined by atom probe analysis. The paper describes the correlations between corrosion material performance and zirconium alloy microstructure

  15. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  16. Room temperature deformation of in-situ grown quasicrystals embedded in Al-based cast alloy

    Directory of Open Access Journals (Sweden)

    Boštjan Markoli

    2013-12-01

    Full Text Available An Al-based cast alloy containing Mn, Be and Cu has been chosen to investigate the room temperature deformation behavior of QC particles embedded in Al-matrix. Using LOM, SEM (equipped with EDS, conventional TEM with SAED and controlled tensile and compression tests, the deformation response of AlMn2Be2Cu2 cast alloy at room temperature has been examined. Alloy consisted of Al-based matrix, primary particles and eutectic icosahedral quasicrystalline (QC i-phase and traces of Θ-Al2Cu and Al10Mn3. Tensile and compression specimens were used for evaluation of mechanical response and behavior of QC i-phase articles embedded in Al-cast alloy. It has been established that embedded QC i-phase particles undergo plastic deformation along with the Al-based matrix even under severe deformation and have the response resembling that of the metallic materials by formation of typical cup-and-cone feature prior to failure. So, we can conclude that QC i-phase has the ability to undergo plastic deformation along with the Al-matrix to greater extent contrary to e.g. intermetallics such as Θ-Al2Cu for instance.

  17. Development of silicide coating over molybdenum based refractory alloy and its characterization

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Banerjee, S.; Sharma, I.G.; Suri, A.K.

    2010-01-01

    Molybdenum based refractory alloys are potential candidate materials for structural applications in high temperature compact nuclear reactors and fusion reactors. However, these alloys being highly susceptible to oxidation in air or oxygen at elevated temperature, undergoes severe losses from highly volatile molybdenum trioxide species. Present investigation, therefore, examines the feasibility of development of silicide type of coating over molybdenum base TZM alloy shape (Mo > 99 wt.%) using pack cementation coating technique. TZM alloy was synthesized in this laboratory from oxide intermediates of MoO 2 , TiO 2 and ZrO 2 in presence of requisite amount of carbon, by alumino-thermic reduction smelting technique. The arc melted and homogenized samples of TZM alloy substrate was then embedded in the chosen and intimately mixed pack composition consisting of inert matrix (Al 2 O 3 ), coating powder (Si) and activator (NH 4 Cl) taken in the judicious proportion. The sealed charge packs contained in an alumina crucible were heated at temperatures of 1000 o C for 8-16 h heating cycle to develop the coating. The coating phase was confirmed to be of made of MoSi 2 by XRD analysis. The morphology of the coating was studied by SEM characterization. It had revealed that the coating was diffusion bonded where Si from coating diffused inward and Mo from TZM substrate diffused outward to form the coating. The coating was found to be resistant to oxidation when tested in air up to 1200 o C. A maximum 100 μm of coating thickness was achieved on each side of the substrate.

  18. Comparison of the tensile bond strength of high-noble, noble, and base metal alloys bonded to enamel.

    Science.gov (United States)

    Sen, D; Nayir, E; Pamuk, S

    2000-11-01

    Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.

  19. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  20. Effect of molybdenum and chromium additions on the mechanical properties of Fe3Al-based alloys

    International Nuclear Information System (INIS)

    Sun Yangshan; Xue Feng; Mei Jianping; Yu Xingquan; Zhang Lining

    1995-01-01

    Iron aluminides based on Fe 3 Al offer excellent oxidation and sulfidation resistance, with lower material cost and density than stainless steels. However, their potential use as structural material has been hindered by limited ductility and a sharp drop in strength above 600 C. Recent development efforts have indicated that adequate engineering ductility of 10--20% and tensile yield strength of as high as 500 MPa can be achieved through control of composition and microstructure. These improved tensile properties make Fe 3 Al-based alloys more competitive against conventional austenic and ferritic steels. The improvement of high temperature mechanical properties has been achieved mainly by alloying processes. Molybdenum has been found to be one of the most important alloying elements for strengthening Fe 3 Al-based alloys at high temperatures. However, the RT(room temperature) ductility decreases with the increase of a molybdenum addition. On the other hand, a chromium addition to Fe 3 Al-based alloys is very efficient for improving RT ductility but not beneficial to yield strength at temperatures to 800 C. The purpose of the present paper is to report the effects of combined additions of molybdenum and chromium on mechanical properties at ambient temperature and high temperature of 600 C

  1. Hard hardfacing by welding in the manufacture of valves; Problem Cobalt, alternatives, advantages, disadvantages; Recargues Duros por Soldadura en la Fabricacion de Valvulas ; el Problema del Cobalto, alternativas, ventajas, inconvenientes

    Energy Technology Data Exchange (ETDEWEB)

    Piquer Caballero, J.

    2014-07-01

    Alloys of recharge usually used in the field of the valves are base alloys cobalt (stellite), but in the field of nuclear power plants, due to radioactive activation of the cobalt, there is a growing trend to replace these alloys with other calls cobalt free . In this paper we will explore the most frequent and will be deducted the relevant advantages and disadvantages of these, in comparison with base alloys cobalt. (Author)

  2. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    International Nuclear Information System (INIS)

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of γ-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation γ-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed

  3. Thermodynamic properties of some gallium-based binary alloys

    International Nuclear Information System (INIS)

    Awe, O.E.; Odusote, Y.A.; Akinlade, O.; Hussain, L.A.

    2008-01-01

    We have studied the concentration dependence of the free energy of mixing, concentration-concentration fluctuations in the long-wavelength limit, the chemical short-range order parameter, the enthalpy and entropy of mixing of Ga-Zn, Ga-Mg and Al-Ga binary alloys at different temperatures using a quasi-chemical approximation for compound forming binary alloys and that for simple regular alloys. From the study of the thermodynamic quantities, we observed that thermodynamic properties of Ga-Zn and Al-Ga exhibit positive deviations from Raoultian behaviour, while Ga-Mg exhibits negative deviation. Hence, this study reveals that both Ga-Zn and Al-Ga are segregating systems, while chemical order exists in Ga-Mg alloy in the whole concentration range. Furthermore, our investigation indicate that Al-Ga binary alloy have a tendency to exhibit ideal mixture behaviour in the concentration range 0≤c Al ≤0.30 and 0.7≤c Al ≤1

  4. Designing magnetic compensated states in tetragonal Mn{sub 3}Ge-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    You, Yurong; Xu, Guizhou, E-mail: gzxu@njust.edu.cn; Hu, Fang; Gong, Yuanyuan; Liu, Er; Peng, Guo; Xu, Feng, E-mail: xufeng@njust.edu.cn

    2017-05-01

    Magnetic compensated materials attracted much interests due to the observed large exchange bias and large coercivity, and also their potential applications in the antiferromagnetic spintronics with merit of no stray field. In this work, by using ab-initio studies, we designed several Ni (Pd, Pt) doped Mn{sub 3}Ge-based D0{sub 22}-type tetragonal Heusler alloys with fully compensated states. Theoretically, we find the total moment change is asymmetric across the compensation point (at ~x=0.3) in Mn{sub 3-x}Y{sub x}Ge (Y=Ni, Pd, Pt). In addition, an uncommon discontinuous jump is observed across the critical zero-moment point, indicating that some non-trivial properties may emerge at this point. Further electronic analyses of these compensated alloys reveal high spin polarizations at the Fermi level, which is advantageous for spin transfer torque applications. - Highlights: • Several new fully compensated magnetic states are identified in Mn{sub 3}Ge-based tetragonal alloys. • The magnetic moment changes are asymmetric upon Ni, Pd and Pt substitution. • Discontinuous jumps exist across the compensated points. • The three compensated alloys possess large spin polarizations.

  5. High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Gadiyar, H.S.

    1990-01-01

    These investigations lead to the development of a new technique for charging hydrogen into metals and alloys. In this technique a mixture of sulfates and bisulfates of sodium and potassium is kept saturated with water at 250-300degC in an open pyrex glass beaker and electrolysed using platinum anode and the material to be charged as the cathode. Most of the studies were carried out on Zr alloys. It is shown that because of the high hydrogen flux available at the surface and the high diffusivity of hydrogen in metals at these temperatures the materials pick up hydrogen faster and more uniformly than the conventional electrolytic charging at room temperature and high temperature autoclaving in LiOH solutions. Chemical analysis, metallographic examination and XRD studies confirm this. This technique has been used to charge hydrogen into many iron and nickel base austentic alloys, which are very resistant to hydrogen pick up and to H-embrittlement. Since this involved a novel method of electrolysing water, the hydrogen/deuterium isotopic ratio has been studied. At this temperatures the D/H ratio in the evolved hydrogen gas was found to be closer to the value in the liquid water, which means a smaller separation factor. This confirm the earlier observation that separation factor decreases with increase of temperature. (author). 16 refs., 21 fi gs., 6 tabs

  6. Liquid alkali metals and alkali-based alloys as electron-ion plasmas

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1981-06-01

    The article reviews the theory of thermodynamic and structural properties of liquid alkali metals and alkali-based alloys, within the framework of linear screening theory for the electron-ion interactions. (author)

  7. Nanoscale characterization of martensite structures in copper based shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Adiguzel, O, E-mail: oadiguzel@firat.edu.t [Firat University Department of Physics, 23169 Elazig (Turkey)

    2010-11-01

    Martensitic transformations are first order displacive transitions and occur in the materials on cooling from high temperature. Shape memory effect is an unusual property exhibited by certain alloy systems, and leads to martensitic transition. Copper-based alloys exhibit this property in beta phase field which possess simple bcc- structures, austenite structure at high-temperatures. As temperature is lowered the austenite undergoes martensitic transition following two ordering reactions, and structural changes in nanoscale govern this transition. Atomic movements are also confined to interatomic lengths in sub-{mu}m or angstrom scale in martensitic transformation. The formation of the layered structures in copper based alloys consists of shears and shear mechanism. Martensitic transformations occur in a few steps with the cooperative movement of atoms less than interatomic distances by means of lattice invariant shears on a {l_brace}110{r_brace} - type plane of austenite matrix which is basal plane or stacking plane of martensite. The lattice invariant shears occurs, in two opposite directions, <110> -type directions on the {l_brace}110{r_brace}-type plane. These shears gives rise to the formation of layered structure.

  8. Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass% Si-Fe alloy electrode

    Energy Technology Data Exchange (ETDEWEB)

    Stambekova, Kuralay [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China); Lin, Hung-Mao [Department of Mechanical Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan (China); Uan, Jun-Yen, E-mail: jyuan@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China)

    2012-03-01

    This study experimentally investigates the surface modification of 5083 Al alloy by the electrical discharge alloying (EDA) process with a Si-Fe alloy as an electrode. Samples were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), micro-hardness and corrosion resistance tests. The micro-hardness of EDA alloyed layer was evidently higher than that of the base metal (5083 Al alloy). The TEM results show that the matrix of the alloyed layer has an amorphous-like structure; the matrix contains fine needle-like Si particles, block-like Si particles and nano-size Al{sub 4.5}FeSi and Al{sub 13}Fe{sub 4} particles. The TEM results support experimental results for the high hardness of the alloyed layer. Moreover, the EDA alloyed layer with composite microstructures has good corrosion resistance in NaCl aqueous solution.

  9. Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C. E-mail: dejulian@padova.infm.it; Sangregorio, C.; Mattei, G.; Maurizio, C.; Battaglin, G.; Gonella, F.; Lascialfari, A.; Lo Russo, S.; Gatteschi, D.; Mazzoldi, P.; Gonzalez, J.M.; D' Acapito, F

    2001-04-01

    A comparative study of the magnetic properties of Co and Ni based alloy nanoparticles (Ni-Co, Ni-Cu and Co-Cu) formed in a silica matrix by ion implantation is presented. Different ion doses and implantation sequences were realized in order to obtain different nanostructures. The structural and magnetic properties observed for the Cu{sub 50}Ni{sub 50} nanoparticles are similar to those of the Cu{sub 60}Ni{sub 40} bulk alloy. The crystal structure of Co{sub x}Ni{sub 1-x} (0{<=}x{<=}1) nanoparticles is similar to that of the corresponding bulk alloy. The magnetic properties depend on the ion-implanted dose and on the alloy composition. The samples prepared by implanting a 15x10{sup 16} ions/cm{sup 2} total dose contain nanoparticles, which are superparamagnetic at room temperature and their magnetic behavior is influenced by dipolar interparticle interactions. The magnetization of the CoNi samples at high magnetic field is larger than that of the corresponding bulk alloy and follows the same composition dependence of that quantity measured in the alloy.

  10. Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix

    International Nuclear Information System (INIS)

    De Julian Fernandez, C.; Sangregorio, C.; Mattei, G.; Maurizio, C.; Battaglin, G.; Gonella, F.; Lascialfari, A.; Lo Russo, S.; Gatteschi, D.; Mazzoldi, P.; Gonzalez, J.M.; D'Acapito, F.

    2001-01-01

    A comparative study of the magnetic properties of Co and Ni based alloy nanoparticles (Ni-Co, Ni-Cu and Co-Cu) formed in a silica matrix by ion implantation is presented. Different ion doses and implantation sequences were realized in order to obtain different nanostructures. The structural and magnetic properties observed for the Cu 50 Ni 50 nanoparticles are similar to those of the Cu 60 Ni 40 bulk alloy. The crystal structure of Co x Ni 1-x (0≤x≤1) nanoparticles is similar to that of the corresponding bulk alloy. The magnetic properties depend on the ion-implanted dose and on the alloy composition. The samples prepared by implanting a 15x10 16 ions/cm 2 total dose contain nanoparticles, which are superparamagnetic at room temperature and their magnetic behavior is influenced by dipolar interparticle interactions. The magnetization of the CoNi samples at high magnetic field is larger than that of the corresponding bulk alloy and follows the same composition dependence of that quantity measured in the alloy

  11. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Science.gov (United States)

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  12. Inconel type resistive alloys based on ultrahigh purity nickel

    International Nuclear Information System (INIS)

    Matsarin, K.A.; Matsarin, S.K.

    2000-01-01

    The new nickel high-ohm alloys (ρ = 1.2-1.4 μOhm · m), containing the W, Al, Mo alloying elements in the quantity, not exceeding their solubility in a solid solution, are developed on the basis of the Inconel-type standard alloy. The optical composition of the alloy was determined by the results of the alloy was determined by the results of the electric resistance measurement and technological effectiveness indices (relative to the pressure and workable metal yield). The following optimal component concentrations were established: 14-17 %Cr; 10-12 %Fe; 0.5-1.0 %Cu; 1.0-1.5 %Mn; 0.1-0.2 %C; 0.4-0.6 %Si; 0.5-3.0 %W; 5-16 %Mo; 0.5-2.0 %Al; the remainder - Ni. The new alloys are recommended as materials for resistive elements of direct-glow cathode nodes of low capacity electron tubes [ru

  13. Shape memory and pseudoelastic properties of Fe-Mn-Si and Ti-Ni based alloys

    International Nuclear Information System (INIS)

    Guenin, G.

    1997-01-01

    The aim of this presentation is to analyse and discuss some recent advances in shape memory and pseudoelastic properties of different alloys. Experimental work in connection with theoretical ones will be reviewed. The first part is devoted to the microstructural origin of shape memory properties of Fe-Mn-Si based alloys (γ-ε transformation); the second part is a synthetic analysis of the effects of thermomechanical treatments on shape memory and pseudoelastic effects in Ti-Ni alloys, with some focus on the behaviour of the R phase introduced. (orig.)

  14. High temperature steam oxidation of Al3Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Kim, Il-Hyun; Jung, Yang-Il; Kim, Hyun-Gil; Park, Dong-Jun; Choi, Byung-Kwon

    2013-01-01

    We investigated the feasibility to apply Al 3 Ti-based alloys as the surface layer for improving the oxidation resistance of Zr fuel claddings under accident conditions. Two types of Al 3 Ti-based alloys with the compositions of Al–25Ti–10Cr and Al–21Ti–23Cr in atomic percent were prepared by arc-melting followed by homogenization annealing at 1423 K for 48 h. Al–25Ti–10Cr alloy showed an L1 2 quasi-single phase microstructure with a lot of needle-shaped minor phase and pores. Al–21Ti–23Cr alloy consisted of an L1 2 matrix and Cr 2 Al as the second phase. Al 3 Ti-based alloys showed an extremely low oxidation rate in a 1473 K steam for up to 7200 s when compared to Zircaloy-4. Both alloys exhibited almost the same oxidation rate in the early stage of oxidation, but Al–25Ti–10Cr showed a little lower oxidation rate after 4000 s than Al–21Ti–23Cr. The difference in the oxidation rate between two types of Al 3 Ti-based alloys was too marginal to distinguish the oxidation behavior of each alloy. The resultant oxide exhibited almost the same characteristics in both alloys even though the microstructure was explicitly distinguished from each other. The crystal structure of the oxide formed up to 2000 s was identified as Al 2 O 3 in both alloys. The oxide morphology consisted of columnar grains whose length was almost identical to the average oxide thickness. On the basis of the results obtained, it is considered that Al 3 Ti-based alloy is one of the promising candidates for the oxidation-resistant surface layer on Zr fuel claddings

  15. Lifetime assessment of thick-walled components made of nickel-base alloys under near-service loading conditions

    International Nuclear Information System (INIS)

    Hueggenberg, Daniel

    2015-01-01

    Until 2050 the renewable energies should provide 80% of the power in Germany according to Renewable Energy law. Due to that reason the conventional power plants are not used for base load, but rather for the supply of average and peak load. The change of the operating mode leads to shorter times at stationary temperatures and the number of faster start-ups/shut-downs of the power plants will increase. As a result of this the components are exposed to an interacting load of creep and fatigue which reduces the lifetimes. The aim of this thesis is the development and verification of a lifetime assessment procedure for components made of the nickel-base alloys Alloy 617 mod. and Alloy 263 under creep fatigue loading conditions based on numerical phenomenological models and on the approaches of different standards/recommendations. The focus lies on two components of the high temperature material test rig II (HWT II), a header made of Alloy 617 mod. and Alloy 263 as well as a formed part made of Alloy 617 mod. For the basis characterization of the HWT II melts, specimens of the Alloy 617 mod. and Alloy 263 are tested in uniaxial tensile tests, (creep-)fatigue tests, creep tests and charpy tests in a temperature range between 20 C and 725 C. From the comparisons of the test results and the material specifications respectively the results of the projects COORETEC DE4, MARCKO DE2 and MARCKO700 no deviations were obvious for both materials with the exception of the creep test results with Alloy 617 mod. material. The creep tests with Alloy 617 mod. material of the HWT II melt show differences regarding the deformation and damage behavior. In addition to the basis characterization tests some complex lab tests for the characterization of the material behavior under creep-fatigue and multiaxial loading conditions were conducted. The developments of the microstructure, the precipitations as well as the structure of dislocations are investigated in the light optical microscope

  16. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    Science.gov (United States)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  17. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    Science.gov (United States)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  18. Production and characterization of stainless steel based Fe-Cr-Ni-Mn-Si(-Co) shape memory alloys

    International Nuclear Information System (INIS)

    Otubo, J.

    1995-01-01

    It is well known that the Fe based alloys can exhibit shape memory effect due to the γ to ε martensitic transformation. The effect may not be as striking as observed in the NiTi alloy but it might become attractive from the practical point of view. In this work, two compositions of Fe-Cr-Ni-Mn-Si(-Co) stainless steel based shape memory alloy, prepared by the VIM technique, will be presented. The results are good with shape recovery of 95% for a pre-strain of 4% after some training cycles. In terms of workability the alloys produced are worse than the usual AISI304. However, adjusting the thermo-mechanical processing, it is perfectly possible to produce wire as thin as 1,20mm in dia. or down. (orig.)

  19. An experimental study of the magnetic ordering in Pd-based Fe and Mn alloys

    International Nuclear Information System (INIS)

    Verbeek, B.H.

    1979-01-01

    This thesis presents the results of an investigation on the magnetic ordering phenomena in some Pd based alloys with small concentrations of magnetic impurities. It has been the object to explore the ordering mechanisms in these alloys which lead to various types of magnetism at low temperature. The experimental techniques used are described. (Auth.)

  20. High-temperature deformation of a mechanically alloyed niobium-yttria alloy

    International Nuclear Information System (INIS)

    Chou, I.; Koss, D.A.; Howell, P.R.; Ramani, A.S.

    1997-01-01

    Mechanical alloying (MA) and hot isostatic pressing have been used to process two Nb alloys containing yttria particles, Nb-2 vol.%Y 2 O 3 and Nb-10 vol.%Y 2 O 3 . Similar to some thermomechanically processed nickel-based alloys, both alloys exhibit partially recrystallized microstructures, consisting of a 'necklace' of small recrystallized grains surrounding much larger but isolated, unrecrystallized, cold-worked grains. Hot compression tests from 1049 to 1347 C (0.5-0.6T MP ) of the 10% Y 2 O 3 alloy show that MA material possesses a much higher yield and creep strength than its powder-blended, fully recrystallized counterpart. In fact, the density-compensated specific yield strength of the MA Nb-10Y 2 O 3 exceeds that of currently available commercial Nb alloys. (orig.)

  1. Development of aluminide coatings on vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, D.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3/5 at.% dissolved aluminum in sealed V and V-20 wt.% Ti capsules at temperatures between 775 and 880 degrees C. After each test, the capsules were opened and the samples were examined by optical microscopy and scanning electron microscopy (SEM), and analyzed by electron-energy-dispersive spectroscopy (EDS) and X-ray diffraction. Hardness of the coating layers and bulk alloys was determined by microidentation techniques. The nature of the coatings, i.e., surface coverage, thickness, and composition, varied with exposure time and temperature, solute concentration in lithium, and alloy composition. Solute elements that yielded adherent coatings on various substrates can provide a means of developing in-situ electrical insulator coatings by reaction of the reactive layers with dissolved nitrogen in liquid lithium

  2. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture

    Science.gov (United States)

    Ignatiev, Victor; Surenkov, Alexander; Gnidoy, Ivan; Kulakov, Alexander; Uglov, Vadim; Vasiliev, Alexander; Presniakov, Mikhail

    2013-09-01

    In Russia, R&D on Molten Salt Reactor (MSR) are concentrated now on fast/intermediate spectrum concepts which were recognized as long term alternative to solid fueled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarizes results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salt on tellurium attack and to develop means of controlling tellurium cracking in the special Ni-based alloys recently developed for molten salt actinide recycler and tranforming (MOSART) system. Tellurium corrosion of Ni-based alloys was tested at temperatures up to 750 °C in stressed and unloaded conditions in molten LiF-BeF2 salt mixture fueled by about 20 mol% of ThF4 and 2 mol% of UF4 at different [U(IV)]/[U(III)] ratios: 0.7, 4, 20, 100 and 500. Following Ni-based alloys (in mass%): HN80М-VI (Mo—12, Cr—7.6, Nb—1.5), HN80МТY (Mo—13, Cr—6.8, Al—1.1, Ti—0.9), HN80МТW (Mo—9.4, Cr—7.0, Ti—1.7, W—5.5) and ЕМ-721 (W—25.2, Cr—5.7, Ti—0.17) were used for the study in the corrosion facility. If the redox state the fuel salt is characterized by uranium ratio [U(IV)]/[U(III)] uranium intermetallic compounds and alloys with nickel and molybdenum. This leads to spontaneous behavior of alloy formation processes on the specimens' surface and further diffusion of uranium deep into the metallic phase. As consequence of this films of intermetallic compounds and alloys of nickel, molybdenum, tungsten with uranium are formed on the alloys specimens' surface, and intergranular corrosion does not take place. In the fuel salt with [U(IV)]/[U(III)] = 4-20 the potentials of uranium

  3. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  4. Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys

    Science.gov (United States)

    Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.

    2018-05-01

    Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.

  5. The electrochemical behaviour of various non-precious Ni and Co based alloys in artificial saliva

    Directory of Open Access Journals (Sweden)

    Mareci D.

    2005-07-01

    Full Text Available Five non-precious Ni-Co based alloys were analyzed with respect to their corrosion behaviour. The correlation between the amount of the elements Cr, Mo, V and the corrosion behaviour, expressed by the PREN (pitting resistance equivalent number index in the case of the allied steels, was extended for Ni-Cr and Co-Cr dental alloys characterization. Open circuit potential, corrosion current densities, as a measure of the corrosion rate, and main parameters of the corrosion process were evaluated from linear and cyclic polarization curves, for five Ni-Cr or Co-Cr alloys in an Afnor type artificial saliva. The maintenance times of the alloy in the corrosive medium influence the corrosion rate; the corrosion current values decrease with the maintenance time due to their passivation in solution. The microscopic analysis of the alloy surfaces shows that this passivation in solution does not modify the corrosion type. The alloys with PREN 32.9 are susceptible of localized corrosion.

  6. Experimental Studies on Al (5.7% Zn) Alloy based Hybrid MMC

    Science.gov (United States)

    Shivaprakash, Y. M.; Ramu, H. C.; Chiranjivee; Kumar, Roushan; Kumar, Deepak

    2018-02-01

    In this investigation, an attempt is made to disperse SiC (20-25 microns) and Gr (15-20 microns) in the aluminium alloy having Zn, Mg and coper as major alloying elements. The composite is further subjected to mechanical testing to determine various properties like hardness, tensile strength and wear resistance. The alloy and composite samples were tested in the un heat treated conditions. All the tests were done at the laboratory conditions as per ASTM standards. The Pin-On-Disc tribometer is used to test the two-body abrasive sliding wear behaviour in dry conditions. The wear pattern is analysed by the optical images of worn surface taken in an inverted metallurgical microscope. The calculated density is found to be reducing as the SiC and Gr quantity is increased in the base alloy. The as cast Al alloy was found to be having highest hardness. The introduction of SiC tend to increase the hardness and UTS, since Gr is also introduced simultaneously which tends to reduce the hardness and UTS of composite. The composite having highest quantity of Gr showed superior wear resistance which is mainly because the Gr particulates provide an inbuilt lubricating properties to composite. The analysis of images of worn surface showed the abrasive and delamination pattern of wear. The composites developed in the present work can be used in the automobile and aerospace parts that are light in weight and require self-lubricating properties to enhance the wear resistance.

  7. The corrosion behaviour of Zr3Al-based alloys

    International Nuclear Information System (INIS)

    Murphy, E.V.; Wieler, R.

    1977-07-01

    The corrosion resistance of several zirconium-aluminum alloys with aluminum contents ranging from 7.6 to 9.6 wt% was examined in 300 deg C and 325 deg C water, 350 deg C and 400 deg C steam and in air and wet CO 2 at 325 deg C and 400 deg C. In the transformed alloys there are three phases present, αZr, Zr 2 Al and Zr 3 Al of which the αZr phase is the least corrosion resistant. The most important factor controlling the corrosion behaviour of these alloys was found to be the size, distribution and amount of the αZr phase in the transformed alloys, which in turn was dependent upon the microstructural scale of the untransformed alloys

  8. Corrosion properties of plasma deposited nickel and nickel-based alloys

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Pražák, M.; Kalabisová, E.; Kreislová, K.; Had, J.; Neufuss, Karel

    2003-01-01

    Roč. 48, č. 3 (2003), s. 215-226 ISSN 0001-7043 R&D Projects: GA ČR GA106/99/0298 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma deposits, nickel, nickel-based alloys Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  9. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm2O3 addition prepared by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul

    2008-01-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm 2 O 3 powders, which are prepared on Q235 steel plate by 2.0 kW CO 2 laser deposition. The results indicate that with rare earth oxide Sm 2 O 3 addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm 2 O 3 /Ni-base alloy coatings have similar microstructure showing the primary phase of γ-Ni dendrite and eutectic containing γ-Ni and Cr 23 C 6 phases. However, compared to micron-Sm 2 O 3 /Ni-base alloy, preferred orientation of γ-Ni dendrite of nano-Sm 2 O 3 /Ni-base alloy is weakened. Planar crystal of several-μm thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm 2 O 3 /Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm 2 O 3 /Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm 2 O 3 size from micron to nano. The improvement on tribological property of nano-Sm 2 O 3 /Ni-base alloy over micron-Sm 2 O 3 /Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO 3 solution, the corrosion resistance is greatly improved with nano-Sm 2 O 3 addition since the decrease of corrosion ratio along grain-boundary in nano-Sm 2 O 3 /Ni-base alloy coating contributes to harmonization of corrosion potential

  10. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    Science.gov (United States)

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. ODS Alloys for Nuclear Applications

    International Nuclear Information System (INIS)

    Jang, Jin Sung

    2006-01-01

    ODS (oxide dispersion strengthening) alloy is one of the potential candidate alloys for the cladding or in reactor components of Generation IV reactors and for the structural material even for fusion reactors. It is widely accepted as very resistant material to neutron irradiation as well as strong material at high temperature due to its finely distributed and stable oxide particles. Among Generation IV reactors SFR and SCWR are anticipated in general to run in the temperature range between 300 and 550 .deg. C, and the peak cladding temperature is supposed to reach at about 620 .deg. C during the normal operation. Therefore Zr.base alloys, which have been widely known and adopted for the cladding material due to their excellent neutron economics, are no more adequate at these operating conditions. Fe-base ODS alloys in general has a good high temperature strength at the above high temperature as well as the neutron resistance. In this study a range of commercial grade ODS alloys and their applications are reviewed, including an investigation of the stability of a commercial grade 20% Cr Fe-base ODS alloy(MA956). The alloy was evaluated in terms of the fracture toughness change along with the aging treatment. Also an attempt of the development of 9% Cr Fe-base ODS alloys is introduced

  12. Effect of Immersion in Simulated Body Fluid on the Mechanical Properties and Biocompatibility of Sintered Fe–Mn-Based Alloys

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2016-12-01

    Full Text Available Fe–Mn-based degradable biomaterials (DBMs are promising candidates for temporary implants such as cardiovascular stents and bone fixation devices. Identifying their mechanical properties and biocompatibility is essential to determine the feasibility of Fe–Mn-based alloys as DBMs. This study presents the tensile properties of two powder metallurgical processed Fe–Mn-based alloys (Fe–28Mn and Fe–28Mn-3Si, in mass percent as a function of immersion time in simulated body fluid (SBF. In addition, short-term cytotoxicity testing was performed to evaluate the in vitro biocompatibility of the sintered Fe–Mn-based alloys. The results reveal that an increase in immersion duration deteriorated the tensile properties of both the binary and ternary alloys. The tensile properties of the immersed alloys were severely degraded after being soaked in SBF for ≥45 days. The ion concentration in SBF released from the Fe–28Mn-3Si samples was higher than their Fe–28Mn counterparts after 7 days immersion. The preliminary cytotoxicity testing based on the immersed SBF medium after 7 days immersion suggested that both the Fe–28Mn-3Si and Fe–28Mn alloys presented a good biocompatibility in Murine fibroblast cells.

  13. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications

    International Nuclear Information System (INIS)

    Gordin, D.M.; Busardo, D.; Cimpean, A.; Vasilescu, C.; Höche, D.; Drob, S.I.; Mitran, V.; Cornen, M.; Gloriant, T.

    2013-01-01

    In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility. - Highlights: • A superelastic Ni-free Ti-based biomedical alloy was treated in surface by implantation of nitrogen ions. • Much higher superficial hardness and wear resistance were obtained. • A clear enhancement of the corrosion resistance in SBF was observed. • In-vitro tests performed on human fetal osteoblasts indicated an excellent level of cytocompatibility

  14. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gordin, D.M. [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France); Busardo, D. [Quertech Ingénierie, 9 rue de la Girafe, 14000 Caen (France); Cimpean, A. [University of Bucharest, Department of Biochemistry and Molecular Biology, Spl. Independentei 91-95, 050095 Bucharest (Romania); Vasilescu, C. [Institute of Physical Chemistry «Ilie Murgulescu» of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Höche, D. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht -Zentrum für Material- und Küstenforschung GmbH Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Drob, S.I. [Institute of Physical Chemistry «Ilie Murgulescu» of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Mitran, V. [University of Bucharest, Department of Biochemistry and Molecular Biology, Spl. Independentei 91-95, 050095 Bucharest (Romania); Cornen, M. [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France); Gloriant, T., E-mail: Thierry.Gloriant@insa-rennes.fr [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2013-10-15

    In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility. - Highlights: • A superelastic Ni-free Ti-based biomedical alloy was treated in surface by implantation of nitrogen ions. • Much higher superficial hardness and wear resistance were obtained. • A clear enhancement of the corrosion resistance in SBF was observed. • In-vitro tests performed on human fetal osteoblasts indicated an excellent level of cytocompatibility.

  15. Amorphization of Fe-based alloy via wet mechanical alloying assisted by PCA decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Pană, O. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-11-01

    Amorphization of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) alloy has been attempted both by wet and dry mechanical alloying starting from a mixture of elemental powders. Powder amorphization was not achieved even after 140 hours of dry mechanical alloying. Using the same milling parameters, when wet mechanical alloying was used, the powder amorphization was achieved after 40 h of milling. Our assumption regarding the powder amorphization capability enhancement by contamination with carbon was proved by X-ray Photoelectron Spectroscopy (XPS) measurements which revealed the presence of carbon in the chemical composition of the wet mechanically alloyed sample. Using shorter milling times and several process control agents (PCA) (ethanol, oleic acid and benzene) with different carbon content it was proved that the milling duration required for powder amorphization is linked to the carbon content of the PCA. Differential Scanning Calorimetry (DSC), thermomagnetic (TG) and X-ray Diffraction (XRD) measurements performed to the heated samples revealed the fact that, the crystallisation occurs at 488 °C, thus leading to the formation of Fe{sub 3}Si and Fe{sub 2}B. Thermogravimetry measurements performed under H{sub 2} atmosphere, showed the same amount of contamination with C, which is about 2.3 wt%, for the amorphous samples regardless of the type of PCA. Saturation magnetisation of the wet milled samples decreases upon increasing milling time. In the case of the amorphous samples wet milled with benzene up to 20 h and with oleic acid up to 30 h, the saturation magnetisation has roughly the same value, indicating the same degree of contamination. The XRD performed on the samples milled using the same parameters, revealed that powder amorphization can be achieved even via dry milling, just by adding the equivalent amount of elemental C calculated from the TG plots. This proves that in this system by considering the atomic species which can contaminate the powder, they can be

  16. Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria

    Science.gov (United States)

    Stein, Frank; Philips, Noah

    2018-03-01

    High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).

  17. Mechanical and microstructural characterization of the nickel base alloy (Alloy 600) after heat treatment

    International Nuclear Information System (INIS)

    Fernandes, Stela Maria de Carvalho

    1993-01-01

    The characterization of microstructural and mechanical properties of cold rolled and heat treated alloys 600 made in Brazil were investigated. The recovery and recrystallization behavior as well as solubilization and aging have been studied using optical, scanning electron and transmission electron microscopy. Microhardness and tensile testing have been carried out. The recovery process of the cold rolled alloy 600 occurred until 600 deg C and the recrystallization stage was situated between 600 and 850 deg C. The primary recrystallization temperature was obtained at 850 deg C after 1 hour (isochronal heat treatments). The aged alloy 600 shows carbide precipitation on grains bu with ductility maintenance. (author)

  18. The Properties of 7xxx Series Alloys Formed by Alloying Additions

    Directory of Open Access Journals (Sweden)

    Kwak Z.

    2015-06-01

    Full Text Available Currently there is a constant development in the field of aluminium alloys engineering. This results from, i.a., better understanding of the mechanisms that direct strengthening of these alloys and the role of microalloying. Now it is microalloying in aluminum alloys that is receiving a lot of attention. It affects substantially the macro- and microstructure and kinetics of phase transformation influencing the properties during production and its exploitation. 7xxx series aluminum alloys, based on the Al-Zn-Mg-Cu system, are high-strength alloys, moreover, the presence of Zr and Sr further increases their strength and improves resistance to cracking.

  19. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  20. Creep resistance in a new alloy based on Fe3Al

    International Nuclear Information System (INIS)

    Morris, D.G.

    1994-01-01

    Iron aluminide alloys based on the composition Fe 3 Al are receiving considerable attention as structural materials for applications at high temperatures in view of their excellent resistance to oxidation and corrosion as well as reasonable mechanical properties. Recently, problems associated with poor ductility at room temperature have been alleviated by small additions of Cr and by microstructure control, as well by as the realization that the low ductility is, in part, extrinsic behavior due to environmental attack. These materials suffer also from a loss of their good strength at temperatures above about 600 C, and recent attention has led also to the development of creep resistant alloys. The present report considers a new alloy developed for improved creep resistance which shows also good oxidation and erosion resistance. Effort has been devoted to an examination of the dislocation structures that characterize deformation, both cold and hot, during fast tensile straining as well as during creep testing

  1. Oxidation-induced phase transformations and lifetime limits of chromia-forming nickel-base alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton

    2011-12-05

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of δ-Ni{sub 3}Nb and (Ni,Mo,Si){sub 6}C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900-1000 C in oxidation-induced chromium depletion in the subsurface zone of the alloy. Microstructural analyses of the cross-sectioned specimens revealed that this process results in formation of a wide subsurface zone in which the mentioned strengthening phases are dissolved, in spite of the fact that both phases do not contain substantial amounts of the scale-forming element chromium. The cross-sectional analyses revealed that, in parallel to the formation of a precipitate depleted zone, a thin, continuous layer of niobium-rich intermetallic precipitates formed in the immediate vicinity of the scale/alloy interface. The Subsurface Phase Enrichment (abbreviated as SPE) was shown to be the result of an uphill-diffusion of niobium, i.e. the element stabilizing the strengthening precipitates δ-Ni{sub 3}Nb, in the chromium activity gradient and is thus a natural consequence of the oxidation-induced chromium depletion beneath the chromia scale. The thermodynamic calculations carried out using the Thermo-Calc/DICTRA software packages revealed that in alloy 625 the chemical activity of niobium decreases with decreasing chromium content. As chromium is being continuously removed from the alloy as the result of the chromia scale growth, the zone of lowest Nb-activity is formed in the location with the lowest chromium concentration, i.e. the scale/alloy interface. This creates a driving force for Nb to diffuse towards the scale/alloy interface against its own concentration gradient, which is known

  2. Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A., E-mail: ainouebmg@yahoo.co.jp [International Institute of Green Materials, Josai International University, Togane 283-8555 (Japan); School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Physics, King Abdulaziz University, Jeddah 22254 (Saudi Arabia); Wang, Z.; Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Han, Y. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Kong, F.L. [International Institute of Green Materials, Josai International University, Togane 283-8555 (Japan); Shalaan, E.; Al-Marzouki, F. [Department of Physics, King Abdulaziz University, Jeddah 22254 (Saudi Arabia)

    2015-07-25

    Highlights: • A multicomponent Zr{sub 55}Al{sub 10}Fe{sub 6}Co{sub 6}Ni{sub 6}Cu{sub 6}Pd{sub 6}Ag{sub 5} bulk glassy alloy was formed. • The high-order multiplication suppression of the decrease in mechanical strength. • The BGAs show good corrosion resistance and slow growth rate of primary precipitates. - Abstract: We examined the formation, thermal stability, mechanical properties and corrosion behavior of a multicomponent Zr{sub 55}Al{sub 10}Fe{sub 6}Co{sub 6}Ni{sub 6}Cu{sub 6}Pd{sub 6}Ag{sub 5} bulk glassy alloy, with the aim of clarifying the effect of high-order multiplication of the number of components on their properties. The bulk glassy alloy rods of 2 and 6 mm in diameter were formed by suction casting even at the low total content of typical glass-forming 3-d late transition metals like Co, Ni and Cu. The Vickers hardness is different in the center region and in the outer surface region. The difference seems to reflect the relaxation level of glassy structure. The Young’s modulus and the compressive fracture strength are nearly the same for the base Zr{sub 55}Al{sub 10}Ni{sub 5}Cu{sub 30} alloy in spite of the existence of immiscible atomic pairs. Moreover, the multicomponent alloy exhibits better corrosion resistance than that for the base alloy. The glassy phase changes to a supercooled liquid state at 720 K and then starts to crystallize at 754 K with a single exothermic peak, in contrast to the appearance of a wide supercooled liquid region for the base alloy. The primary crystalline phase precipitates with very short incubation time and very low growth rate, which are different from those for the base alloy. The extremely low growth rate of the crystallites is presumably due to the reduction of diffusivity of late transition metal elements resulting from multiplication. Thus, the high-order multiplication has the features of (1) the maintenance of high glass-forming ability even at the lower Co, Ni and Cu content and in the absence of

  3. Life prediction for high temperature low cycle fatigue of two kinds of titanium alloys based on exponential function

    Science.gov (United States)

    Mu, G. Y.; Mi, X. Z.; Wang, F.

    2018-01-01

    The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.

  4. The role of Si and Ca on new wrought Mg-Zn-Mn based alloy

    International Nuclear Information System (INIS)

    Ben-Hamu, G.; Eliezer, D.; Shin, K.S.

    2007-01-01

    The development of new wrought magnesium alloys for automotive industry has increased in recent years due to their high potential as structural materials for low density and high strength/weight ratio demands. However, the poor mechanical properties of the magnesium alloys have led to search a new kind of magnesium alloys for better strength and ductility. Magnesium alloys show strong susceptibility to localized corrosion in chlorides solutions due to their inhomogeneous microstructure. The existence of intermetallics in the microstructure of magnesium alloys might represent initiation sites for localized corrosion. This is due to the formation of galvanic couples between the intermetallics and the surrounding matrix. The main objective of this research is to investigate the corrosion behavior of new magnesium alloys; Mg-Zn-Mn-Si-Ca (ZSMX) alloys. The ZSM6X1 + YCa alloys were prepared by using hot extrusion method. AC and DC polarization tests were carried out on the extruded rods, which contain different amounts of silicon or calcium. The potential difference in air between different phases and the matrix was examined using scanning Kelvin probe force microscopy (SKPFM). The phases present in the alloys have been identified by optical microscopy and scanning electron microscopy/energy dispersive X-ray spectroscopy. Four different phases were found, i.e. intermetallics containing Si-Mn, Mg-Si, Mg-Zn and Mg-Si-Ca phase. All phases exhibited higher potential differences relative to magnesium matrix indicating a cathodic behavior. The potential difference revealed significant dependence on the chemical composition of the phases. Based on the results obtained from the scanning Kelvin probe force microscopy, the cathodic phases are effective sites for the initiation of localized corrosion in Mg-Zn-Mn-Si-Ca alloys

  5. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  6. Ignition characteristics of the nickel-based alloy UNS N07001 in pressurized oxygen

    Science.gov (United States)

    Bransford, J. W.; Billiard, P. A.

    1990-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel-based alloy UNS N07001. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to combustion from temperatures below the solidus temperature. In addition, the alloy had a tendency to develop combustion zones (hot spots) at high oxygen pressures when the incremental (step) heating test mode was used. Unique points on the temperature-time curves that describe certain events are defined and the temperatures at which these events occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  7. The mode of stress corrosion cracking in Ni-base alloys in high temperature water containing lead

    International Nuclear Information System (INIS)

    Hwang, S.S.; Kim, H.P.; Lee, D.H.; Kim, U.C.; Kim, J.S.

    1999-01-01

    The mode of stress corrosion cracking (SCC) in Ni-base alloys in high temperature aqueous solutions containing lead was studied using C-rings and slow strain rate testing (SSRT). The lead concentration, pH and the heat treatment condition of the materials were varied. TEM work was carried out to observe the dislocation behavior in thermally treated (TT) and mill annealed (MA) materials. As a result of the C-ring test in 1M NaOH+5000 ppm lead solution, intergranular stress corrosion cracking (IGSCC) was found in Alloy 600MA, whereas transgranular stress corrosion cracking (TGSCC) was found in Alloy 600TT and Alloy 690TT. In most solutions used, the SCC resistance increased in the sequence Alloy 600MA, Alloy 600TT and Alloy 690TT. The number of cracks that was observed in alloy 690TT was less than in Alloy 600TT. However, the maximum crack length in Alloy 690TT was much longer than in Alloy 600TT. As a result of the SSRT, at a nominal strain rate of 1 x 10 -7 /s, it was found that 100 ppm lead accelerated the SCC in Alloy 600MA (0.01%C) in pH 10 at 340 C. IGSCC was found in a 100 ppm lead condition, and some TGSCC was detected on the fracture surface of Alloy 600MA cracked in the 10000 ppm lead solution. The mode of cracking for Alloy 600 and Alloy 690 changed from IGSCC to TGSCC with increasing grain boundary carbide content in the material and lead concentration in the solution. IGSCC seemed to be retarded by stress relaxation around the grain boundaries, and TGSCC in the TT materials seemed to be a result of the crack blunting at grain boundary carbides and the enhanced Ni dissolution with an increase of the lead concentration. (orig.)

  8. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures

    International Nuclear Information System (INIS)

    Li, Yinghong; Zhou, Liucheng; He, Weifeng; He, Guangyu; Wang, Xuede; Nie, Xiangfan; Wang, Bo; Luo, Sihai; Li, Yuqin

    2013-01-01

    We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30–200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation. (paper)

  9. Magnetic properties of fcc Ni-based transition metal alloy

    Czech Academy of Sciences Publication Activity Database

    Kudrnovský, Josef; Drchal, Václav

    2009-01-01

    Roč. 100, č. 9 (2009), s. 1193-1196 ISSN 1862-5282 R&D Projects: GA MŠk OC 150; GA AV ČR IAA100100616 Institutional research plan: CEZ:AV0Z10100520 Keywords : transition metal alloys * Ni-based * pair exchange interactions * Curie temperatures * renormalized RPA Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  10. Magnetic properties of fcc Ni-based transition metal alloy

    Czech Academy of Sciences Publication Activity Database

    Kudrnovský, Josef; Drchal, Václav; Bruno, P.

    2008-01-01

    Roč. 77, č. 22 (2008), 224422/1-224422/8 ISSN 1098-0121 R&D Projects: GA MŠk OC 150; GA AV ČR IAA100100616; GA ČR GA202/07/0456 Institutional research plan: CEZ:AV0Z10100520 Keywords : Ni-based alloys * magnetic properties * Curie temperatures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  11. Transient liquid phase bonding of titanium-, iron- and nickel-based alloys

    Science.gov (United States)

    Rahman, A. H. M. Esfakur

    The operating temperature of land-based gas turbines and jet engines are ever-increasing to increase the efficiency, decrease the emissions and minimize the cost. Within the engines, complex-shaped parts experience extreme temperature, fatigue and corrosion conditions. Ti-based, Ni-based and Fe-based alloys are commonly used in gas turbines and jet engines depending on the temperatures of different sections. Although those alloys have superior mechanical, high temperature and corrosion properties, severe operating conditions cause fast degradation and failure of the components. Repair of these components could reduce lifecycle costs. Unfortunately, conventional fusion welding is not very attractive, because Ti reacts very easily with oxygen and nitrogen at high temperatures, Ni-based superalloys show heat affected zone (HAZ) cracking, and stainless steels show intergranular corrosion and knife-line attack. On the other hand, transient liquid phase (TLP) bonding method has been considered as preferred joining method for those types of alloys. During the initial phase of the current work commercially pure Ti, Fe and Ni were diffusion bonded using commercially available interlayer materials. Commercially pure Ti (Ti-grade 2) has been diffusion bonded using silver and copper interlayers and without any interlayer. With a silver (Ag) interlayer, different intermetallics (AgTi, AgTi2) appeared in the joint centerline microstructure. While with a Cu interlayer eutectic mixtures and Ti-Cu solid solutions appeared in the joint centerline. The maximum tensile strengths achieved were 160 MPa, 502 MPa, and 382 MPa when Ag, Cu and no interlayers were used, respectively. Commercially pure Fe (cp-Fe) was diffusion bonded using Cu (25 m) and Au-12Ge eutectic interlayer (100 microm). Cu diffused predominantly along austenite grain boundaries in all bonding conditions. Residual interlayers appeared at lower bonding temperature and time, however, voids were observed in the joint

  12. Noble metal alloys for metal-ceramic restorations.

    Science.gov (United States)

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  13. Corrosion behaviour of austenitic stainless steel, nickel-base alloy and its weldments in aqueous LiBr solutions

    Energy Technology Data Exchange (ETDEWEB)

    Blasco-Tamarit, E.; Igual-Munoz, A.; Garcia Anton, J.; Garcia-Garcia, D. [Departamento de Ingenieria Quimica y Nuclear. E.T.S.I.Industriales, Universidad Politecnica de Valencia, P.O. Box 22012 E-46071 Valencia (Spain)

    2004-07-01

    With the advances in materials production new alloys have been developed, such as High- Alloy Austenitic Stainless Steels and Nickel-base alloys, with high corrosion resistance. These new alloys are finding applications in Lithium Bromide absorption refrigeration systems, because LiBr is a corrosive medium which can cause serious corrosion problems, in spite of its favourable properties as absorbent. The objective of the present work was to study the corrosion resistance of a highly alloyed austenitic stainless steel (UNS N08031) used as base metal, a Nickel-base alloy (UNS N06059) used as its corresponding filler metal, and the weld metal obtained by the Gas Tungsten Arc Welding (GTAW) procedure. The materials have been tested in different LiBr solutions (400 g/l, 700 g/l, 850 g/l and a commercial 850 g/l LiBr heavy brine containing Lithium Chromate as corrosion inhibitor), at 25 deg. C. Open Circuit Potential tests and potentiodynamic anodic polarization curves have been carried out to obtain information about the general electrochemical behaviour of the materials. The polarization curves of all the alloys tested were typical of passivable materials. Pitting corrosion susceptibility has been evaluated by means of cyclic potentiodynamic curves, which provide parameters to analyse re-passivation properties. The galvanic corrosion generated by the electrical contact between the welded and the base material has been estimated from the polarization diagrams according to the Mixed Potential Method. Samples have been etched to study the microstructure by Scanning Electron Microscopy (SEM). The results demonstrate that the pitting resistance of all these materials increases as the LiBr concentration decreases. In general, the presence of chromate tended to shift the pitting potential to more positive values than those obtained in the 850 g/l LiBr solution. (authors)

  14. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.

    Science.gov (United States)

    Benatti, O F; Miranda, W G; Muench, A

    2000-09-01

    The low resistance to corrosion is the major problem related to the use of copper-aluminum alloys. This in vitro and in vivo study evaluated the corrosion of 2 copper-aluminum alloys (Cu-Al and Cu-Al-Zn) compared with a nickel-chromium alloy. For the in vitro test, specimens were immersed in the following 3 corrosion solutions: artificial saliva, 0.9% sodium chloride, and 1.0% sodium sulfide. For the in vivo test, specimens were embedded in complete dentures, so that one surface was left exposed. The 3 testing sites were (1) close to the oral mucosa (partial self-cleaning site), (2) surface exposed to the oral cavity (self-cleaning site), and (3) specimen bottom surface exposed to the saliva by means of a tunnel-shaped perforation (non-self-cleaning site). Almost no corrosion occurred with the nickel-chromium alloy, for either the in vitro or in vivo test. On the other hand, the 2 copper-aluminum-based alloys exhibited high corrosion in the sulfide solution. These same alloys also underwent high corrosion in non-self-cleaning sites for the in vivo test, although minimal attack was observed in self-cleaning sites. The nickel-chromium alloy presented high resistance to corrosion. Both copper-aluminum alloys showed considerable corrosion in the sulfide solution and clinically in the non-self-cleaning site. However, in self-cleaning sites these 2 alloys did not show substantial corrosion.

  15. EIS pitting temperature determination of A182 nickel based alloy in simulated BWR environment containing dilute seawater

    International Nuclear Information System (INIS)

    Lavigne, Olivier; Shoji, Tetsuo; Takeda, Yoichi

    2014-01-01

    Graphical abstract: - Highlights: • Stable pitting events in function of the temperature are monitored by electrochemical impedance spectroscopy. • The pitting temperature for the nickel based alloy A182 in solution containing 450 ppm Cl − is defined as above 160 °C. • The presented method can be applied for others passive alloys as stainless steel in solution containing aggressive anions. - Abstract: A method based on electrochemical impedance spectroscopy (EIS) measurements to monitor the pitting temperature of passive alloys in a given media is developed in this communication. The pitting corrosion behavior of the nickel based alloy 182 in water containing 450 ppm by weight of chloride is presented in this study. The analysis of the EIS fit parameters from the proposed equivalent electrical circuit allows to determine the temperature from which stable pitting event occurs at open circuit potential. For the A182 sample this temperature is measured above 160 °C

  16. Basic research for alloy design of Nb-base alloys as ultra high temperature structural materials; Chokoon kozoyo niobuki gokin no gokin sekkei no tame no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, E [Tohoku University, Sendai (Japan); Yoshimi, K; Hanada, S [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1997-02-01

    This paper describes an influence of additional elements on the high temperature deformation behavior of Nb-base solid solution alloys. Highly concentrated solid solution single crystals of Nb-Ta and Nb-Mo alloys were prepared. Compression test and strain rate sudden change test were conducted in the vacuum at temperatures ranging from 77 to 1773 K, to determine the strain rate sensitivity index. Yield stress of the Nb-Ta alloy was similar to that of Nb alloy at temperatures over 0.3{times}T{sub M}, where T{sub M} is fusing point of Nb. While, the yield stress increased with increasing the impurity oxygen concentration at temperatures below 0.3{times}T{sub M}. The yield stress became much higher than that of Nb alloy. The strain rate sensitivity index showed positive values in the whole temperature range. On the other hand, the yield stress of Nb-Mo alloy was higher than that of Nb alloy in the whole temperature range, and increased with increasing the Mo concentration. The strain rate sensitivity index showed negative values at the temperature range from 0.3{times}T{sub M} to 0.4{times}T{sub M}. It was found that serration occurred often for Nb-40Mo alloys. 1 ref., 4 figs., 1 tab.

  17. High-temperature deformation of B2 NiAl-base alloys

    International Nuclear Information System (INIS)

    Lee, I.G.; Ghosh, A.K.

    1994-01-01

    The high-temperature deformation behavior of three rapidly solidified and processed NiAl-base alloys--NiAl, NiAl containing 2 pct TiB 2 , and NiAl containing 4 pct HfC--have been studied and their microstructural and textural changes during deformation characterized. Compressions tests were conducted at 1,300 and 1,447 K at strain rates ranging from 10 -6 to 10 -2 s -1 . HfC-containing material showed dispersion strengthening as well as some degree of grain refinement over NiAl, while TiB 2 dispersoid-containing material showed grain refinement as well as secondary recrystallization and did not improve high-temperature strength. Hot-pack rolling was also performed to develop thin sheet materials (1.27-mm thick) and from these alloys. Without dispersoids, NiAl rolled easily at 1,223 K and showed low flow stress and good ductility during the hot-rolling operation. Rolling of dispersoid-containing alloys was difficult due to strain localization and edge-cracking effects, resulting partly from the high flow stress at the higher strain rate during the rolling operation. Sheet rolling initially produced a {111} texture, which eventually broke into multiple-texture components with severe deformation

  18. Microstructures and mechanical properties of two-phase alloys based on NbCr{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.C.; Kotula, P.G.; Cady, C.M.; Mauro, M.E.; Thoma, D.J.

    1999-07-01

    A two-phase, NbCrTi alloy (bcc + C15 Laves phase) has been developed using several alloy design methodologies. In efforts to understand processing-microstructure-property relationships, different processing routes were employed. The resulting microstructures and mechanical properties are discussed and compared. Plasma arc melted (PAM) samples served to establish baseline, as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.

  19. Review of lithium iron-base alloy corrosion studies

    International Nuclear Information System (INIS)

    DeVan, J.H.; Selle, J.E.; Morris, A.E.

    1976-01-01

    An extensive literature search was conducted on the compatibility of ferrous alloys with lithium, with the emphasis on austenitic stainless steels. The information is summarized and is divided into two sections. The first section gives a brief summary and the second is an annotated bibliography. Comparisons of results are complicated by differences in lithium purity, alloy composition, alloy treatment, flow rates, and lithium handling procedures. For long-term application, austenitic stainless steels appear to be limited to about 500 0 C. While corrosion can probably not be decreased to zero, a considerable reduction to tolerable and predictable amounts appears possible

  20. Corrosion behaviour of cladded nickel base alloys

    International Nuclear Information System (INIS)

    Brandl, W.; Ruczinski, D.; Nolde, M.; Blum, J.

    1995-01-01

    As a consequence of the high cost of nickel base alloys their use as surface layers is convenient. In this paper the properties of SA-as well as RES-cladded NiMo 16Cr16Ti and NiCr21Mo14W being produced in single and multi-layer technique are compared and discussed with respect to their corrosion behaviour. Decisive criteria describing the qualities of the claddings are the mass loss, the susceptibility against intergranular corrosion and the pitting corrosion resistance. The results prove that RES cladding is the most suitable technique to produce corrosion resistant nickel base coatings. The corrosion behaviour of a two-layer RES deposition shows a better resistance against pitting than a three layer SAW cladding. 7 refs

  1. Copper-base alloys processed by rapid solidification and ion implantation

    International Nuclear Information System (INIS)

    Wood, J.V.; Elvidge, C.J.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Henriksen, O.

    1985-01-01

    Alloys of Cu-Sn and Cu-B have been processed by both melt spinning and ion implantation. In some instances (e.g. Cu-Sn alloys) rapidly solidified ribbons have been subjected to further implantation. This paper describes the similarities and differences in structure of materials subjected to a dynamic and contained process. For example in Cu-B alloys (up to 2wt% Boron) extended solubility is found in implanted alloys which is not present to the same degree in rapidly solidified alloys of the same composition. Likewise the range and nature of the reversible martensitic transformation is different in both cases as examined by electron microscopy and differential scanning calorimetry. (orig.)

  2. Nickel based alloys for molten salt applications in pyrochemical reprocessing applications

    International Nuclear Information System (INIS)

    Ningshen, S.; Ravi Shankar, A.; Rao, Ch. Jagadeeswara; Mallika, C.; Kamachi Mudali, U.

    2016-01-01

    Pyrochemical reprocessing route is one of the best option for reprocessing of spent metallic nuclear fuel from future fast breeder in many countries, especially in the US (Integral fast reactor, IFR), Russia (Research Institute of Atomic Reactors, RIAR), Japan, Korea and India. This technology with intrinsic nuclear proliferation resistance is regarded as one of the most promising nuclear fuel cycle technologies of the next-generation. However, the selection of materials of construction for pyrochemical reprocessing plants is challenging because of the extreme environments, i.e., high radiation, corrosive molten salt (LiCl-KCl, LiCl-KCl-CsCl, KCl-NaCl-MgCl 2 , etc.), reactive molten metals, and high temperature. Efforts have been made to develop compatible materials for various unit operations like salt preparation, electrorefining, cathode processing and alloy casting in pyrochemical reprocessing. Nickel and its alloy are the candidate materials for salt purification exposed to molten LiCl-KCl under Cl 2 bubbling, in air or ultra high purity argon environment. In the present study, the corrosion behavior of candidate materials like Inconel 600, Inconel 625, Inconel 690 exposed to molten LiCl-KCl eutectic salt environment at 500 to 600 °C have been carried out. The surface morphology of the exposed samples and scales were examined by SEM/EDX and XRD. The weight loss results indicated that Inconel 600 and Inconel 690 offer better corrosion resistance compared to Inconel 625 in air and chlorine environment. Higher corrosion of Inconel 625 is attributed to development of Mo rich salt layers. However, Ni base alloys exhibited a decreasing trend of weight loss with increasing time of exposure and weight gain was observed under UHP Ar environment. The mechanism of corrosion of Ni base alloys appeared to be due to formation of Cr rich and Ni rich layers of Cr 2 O 3 , NiO and spinel oxides at the surface and subsequent spallation. Based on the present studies, Inconel 690

  3. Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism

    International Nuclear Information System (INIS)

    Lostak, Thomas; Maljusch, Artjom; Klink, Björn; Krebs, Stefan; Kimpel, Matthias; Flock, Jörg; Schulz, Stephan; Schuhmann, Wolfgang

    2014-01-01

    Zr-based conversion layers are considered as environmentally friendly alternatives replacing trication phosphatation in the automotive industry. Based on excellent electronic barrier properties they provide an effective corrosion protection of the metallic substrate. In this work, thin protective layers were grown on novel Zn-Al-Mg alloy coated steel sheets by increasing the local pH-value at the sample surface leading to deposition of a Zr-based conversion layer. For this purpose Zn-Al-Mg alloy (ZM) coated steel sheets were treated in an aqueous model conversion solution containing well-defined amounts of hexafluorozirconic acid (H 2 ZrF 6 ) and characterized after different immersion times with SKPFM and field emission SEM (FE-SEM)/EDX techniques. A deposition mechanism of Zr-based conversion coatings on microstructural heterogeneous Zn-Al-Mg alloy surfaces was proposed

  4. Influence of oxygen on hydrogen storage and electrode properties for micro-designed V-based battery alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, M.; Takahashi, K.; Isomura, A. [Mater. R and D Co., Ltd., Aichi (Japan). IMRA; Sakai, T. [Osaka National Research Institute, Midorigaoka, Ikeda-shi, Osaka, 563 (Japan)

    1998-01-30

    The influence of oxygen on micro-structure, hydrogen storage and electrode properties were investigated for the alloy V{sub 3}TiNi{sub 0.56}Co{sub 0.14}Nb{sub 0.047}Ta{sub 0.047}. Since titanium in the alloy worked as a deoxidizer to form the oxide phase, the alloy preserved a large hydrogen capacity in the oxygen concentration range below 5000 mass ppm. More oxygen than 6000 mass ppm caused a remarkable contraction of the unit cell of the vanadium-based main phase and then a decrease in the hydrogen storage capacity. The contraction was accompanied by the precipitation of the Ti-based oxide phase. (orig.) 15 refs.

  5. Corrosion-electrochemical behaviour and mechanical properties ofaluminium alloy-321, alloyed by barium

    International Nuclear Information System (INIS)

    Ganiev, I.; Mukhiddinov, G.N.; Kargapolova, T.V.; Mirsaidov, U.

    1995-01-01

    The purpose of present work is studying of influence of barium additionson electrochemical corrosion of casting aluminium-copper alloy Al-321,containing as base alloying components copper, chromium, manganese, titanium,zirconium, cadmium

  6. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  7. Superconducting pinning in BCC niobium-base alloys

    International Nuclear Information System (INIS)

    Hu, S.

    1981-01-01

    The structure dependence of critical current density J/sub c/ in superconducting alloys Nb--Zr and Nb--Ti was studied by means of x-ray analysis and tensile test. Experimental results indicate that, in the absence of second phase particles, annealing increases J/sub c/ in deformed alloys due to rearrangement of dislocations into cell structure and the cell walls are effective pinning centers for magnetic flux. In the precipitation process of second phase particles, new dislocations are formed due to the relaxation of coherent stress field. These new dislocations increases the dislocation density and the flux pinning ability of the cell walls, which in turn lead to a further increase of J/sub c/. The mechanism that causes precipitates to increase the current-carrying ability in Nb--Zr and Nb--Ti alloys is therefore the same as that of cold-work deformation

  8. Knowledge-based artificial neural network model to predict the properties of alpha+ beta titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Banu, P. S. Noori; Rani, S. Devaki [Dept. of Metallurgical Engineering, Jawaharlal Nehru Technological University, HyderabadI (India)

    2016-08-15

    In view of emerging applications of alpha+beta titanium alloys in aerospace and defense, we have aimed to develop a Back propagation neural network (BPNN) model capable of predicting the properties of these alloys as functions of alloy composition and/or thermomechanical processing parameters. The optimized BPNN model architecture was based on the sigmoid transfer function and has one hidden layer with ten nodes. The BPNN model showed excellent predictability of five properties: Tensile strength (r: 0.96), yield strength (r: 0.93), beta transus (r: 0.96), specific heat capacity (r: 1.00) and density (r: 0.99). The developed BPNN model was in agreement with the experimental data in demonstrating the individual effects of alloying elements in modulating the above properties. This model can serve as the platform for the design and development of new alpha+beta titanium alloys in order to attain desired strength, density and specific heat capacity.

  9. Strain ageing and yield plateau phenomena in γ-TiAl based alloys containing boron

    International Nuclear Information System (INIS)

    Cheng, T.T.; Bate, P.S.; Botten, R.R.; Lipsitt, H.A.

    1999-01-01

    There has been considerable interest over the past few years in γ-TiAl based alloys since they offer a combination of low density and useful mechanical properties at temperatures higher than those possible with conventional titanium alloys. However, there are still serious limitations to their use in engineering components due to their limited ductility and fracture toughness. Much of the recent work has been focused on improving the room temperature ductility of these materials, and a significant part of the work has been involved with studying the effects of thermo-mechanical processing (TMP) and alloying. One of the alloying additions which has received much attention is boron. Addition of boron (≥0.5 at.%) leads to refined as-cast grain structures and can increase the strength and ductility of these alloys. If boron does segregate to grain boundaries, it would be expected that segregation would also occur at dislocations, which can result in solute locking and yield point phenomena. Nakano and Umakoshi's results show some signs of this, with regions of distinct upward curvature in stress-strain curves for boron-containing material, although the flow stress was always increasing with strain. Evidence of strain ageing in TiAl alloys containing boron has also been reported by Wheeler et al., and the work reported here also suggests that boron can act to produce solute locking of glide dislocations in a different class of near γ-TiAl alloys

  10. Antimony Influence on Shape of Eutectic Silicium in Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2017-12-01

    Full Text Available Liquid AI-Si alloys are usually given special treatments before they are cast to obtain finer or modified matrix and eutectic structures, leading to improved properties. For many years, sodium additions to hypoeutectic and eutectic AI-Si melts have been recognized as the most effective method of modifying the eutectic morphology, although most of the group IA or IIA elements have significant effects on the eutectic structure. Unfortunately, many of these approaches also have associated several founding difficulties, such as fading, forming dross in presence of certain alloying elements, reduced fluidity, etc. ln recent years, antimony additions to AI-Si castings have attracted considerable attention as an alternative method of refining the eutectic structure. Such additions eliminate many of the difficulties listed above and provide permanent (i.e. non-fading refining ability. In this paper, the authors summarize work on antimony treatment of Al-Si based alloys.

  11. Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys using Laboratory-Based Accelerated Corrosion and Electro-Chemical Methods

    Science.gov (United States)

    2014-07-01

    Spray. Journal of Failure Analysis and Prevention 2008, 8 (2), 164–175. 34. Aluminium Alloy 5083, Plate and Sheet; SAE-AMS-QQ-A-250/6S; SAE...Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods...Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods Brian E. Placzankis, Joseph P

  12. Nickel-based gadolinium alloy for neutron adsorption application in ram packages

    International Nuclear Information System (INIS)

    Robino, C.; McConnell, P.; Mizia, R.

    2004-01-01

    This paper will outline the results of a metallurgical development program that is investigating the alloying of gadolinium into a nickel-chromium-molybdenum alloy matrix. Gadolinium has been chosen as the neutron absorption alloying element due to its high thermal neutron absorption cross section and low solubility in the expected U.S. repository environment. The nickel-chromium-molybdenum alloy family was chosen for its known corrosion performance, mechanical properties, and weldability. The workflow of this program includes chemical composition definition, primary and secondary melting studies, ingot conversion processes, properties testing, and national consensus codes and standards work. The microstructural investigation of these alloys shows that the gadolinium addition is not soluble in the primary austenite metallurgical phase and is present in the alloy as gadolinium-rich second phase. This is similar to what is observed in a stainless steel alloyed with boron. The mechanical strength values are similar to those expected for commercial Ni-Cr-Mo alloys. The alloys have been corrosion tested in simulated Yucca Mountain aqueous chemistries with acceptable results. The initial results of weldability tests have also been acceptable. Neutronic testing in a moderated critical array has generated favorable results. An American Society for Testing and Materials material specification has been issued for the alloy and a Code Case has been submitted to the American Society of Mechanical Engineers for code qualification. The ultimate goal is acceptance of the alloy for use at the Yucca Mountain repository

  13. X-ray fluorescence determination of Sn, Sb, Pb in lead-based bearing alloys using a solution technique

    Science.gov (United States)

    Tian, Lunfu; Wang, Lili; Gao, Wei; Weng, Xiaodong; Liu, Jianhui; Zou, Deshuang; Dai, Yichun; Huang, Shuke

    2018-03-01

    For the quantitative analysis of the principal elements in lead-antimony-tin alloys, directly X-ray fluorescence (XRF) method using solid metal disks introduces considerable errors due to the microstructure inhomogeneity. To solve this problem, an aqueous solution XRF method is proposed for determining major amounts of Sb, Sn, Pb in lead-based bearing alloys. The alloy samples were dissolved by a mixture of nitric acid and tartaric acid to eliminated the effects of microstructure of these alloys on the XRF analysis. Rh Compton scattering was used as internal standard for Sb and Sn, and Bi was added as internal standard for Pb, to correct for matrix effects, instrumental and operational variations. High-purity lead, antimony and tin were used to prepare synthetic standards. Using these standards, calibration curves were constructed for the three elements after optimizing the spectrometer parameters. The method has been successfully applied to the analysis of lead-based bearing alloys and is more rapid than classical titration methods normally used. The determination results are consistent with certified values or those obtained by titrations.

  14. Effect of preconditioning cobalt and nickel based dental alloys with Bacillus sp. extract on their surface physicochemical properties and theoretical prediction of Candida albicans adhesion

    International Nuclear Information System (INIS)

    Balouiri, Mounyr; Bouhdid, Samira; Sadiki, Moulay; Ouedrhiri, Wessal; Barkai, Hassan; El Farricha, Omar; Ibnsouda, Saad Koraichi; Harki, El Houssaine

    2017-01-01

    Biofilm formation on dental biomaterials is implicated in various oral health problems. Thus the challenge is to prevent the formation of this consortium of microorganisms using a safe approach such as antimicrobial and anti-adhesive natural products. Indeed, in the present study, the effects of an antifungal extract of Bacillus sp., isolated from plant rhizosphere, on the surface physicochemical properties of cobalt and nickel based dental alloys were studied using the contact angle measurements. Furthermore, in order to predict the adhesion of Candida albicans to the treated and untreated dental alloys, the total free energy of adhesion was calculated based on the extended Derjaguin-Landau-Verwey-Overbeek approach. Results showed hydrophobic and weak electron-donor and electron-acceptor characteristics of both untreated dental alloys. After treatment with the antifungal extract, the surface free energy of both dental alloys was influenced significantly, mostly for cobalt based alloy. In fact, treated cobalt based alloy became hydrophilic and predominantly electron donating. Those effects were time-dependent. Consequently, the total free energy of adhesion of C. albicans to this alloy became unfavorable after treatment with the investigated microbial extract. A linear relationship between the electron-donor property and the total free energy of adhesion has been found for both dental alloys. Also, a linear relationship has been found between this latter and the hydrophobicity for the cobalt based alloy. However, the exposure of nickel based alloy to the antifungal extract failed to produce the same effect. - Highlights: • Assessment of dental alloys physicochemical properties using contact angle method • Evaluation for the first time of microbial coating impact on dental alloys surface • Decrease of hydrophobicity of treated cobalt-chromium alloy with antifungal extract • Increase of Lewis base property of treated cobalt-chromium with treatment

  15. Effect of preconditioning cobalt and nickel based dental alloys with Bacillus sp. extract on their surface physicochemical properties and theoretical prediction of Candida albicans adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Balouiri, Mounyr, E-mail: b.mounyr@gmail.com [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco); Bouhdid, Samira [Faculté des Sciences de Tétouan, Université Abdelmalek Essaadi, Avenue de Sebta, Mhannech II, 93002 Tétouan (Morocco); Sadiki, Moulay; Ouedrhiri, Wessal; Barkai, Hassan; El Farricha, Omar [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco); Ibnsouda, Saad Koraichi [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco); Cité de l' innovation, Université Sidi Mohamed Ben Abdellah, BP 2626, 30007 Fez (Morocco); Harki, El Houssaine [Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, BP 2202, 30007 Fez (Morocco)

    2017-02-01

    Biofilm formation on dental biomaterials is implicated in various oral health problems. Thus the challenge is to prevent the formation of this consortium of microorganisms using a safe approach such as antimicrobial and anti-adhesive natural products. Indeed, in the present study, the effects of an antifungal extract of Bacillus sp., isolated from plant rhizosphere, on the surface physicochemical properties of cobalt and nickel based dental alloys were studied using the contact angle measurements. Furthermore, in order to predict the adhesion of Candida albicans to the treated and untreated dental alloys, the total free energy of adhesion was calculated based on the extended Derjaguin-Landau-Verwey-Overbeek approach. Results showed hydrophobic and weak electron-donor and electron-acceptor characteristics of both untreated dental alloys. After treatment with the antifungal extract, the surface free energy of both dental alloys was influenced significantly, mostly for cobalt based alloy. In fact, treated cobalt based alloy became hydrophilic and predominantly electron donating. Those effects were time-dependent. Consequently, the total free energy of adhesion of C. albicans to this alloy became unfavorable after treatment with the investigated microbial extract. A linear relationship between the electron-donor property and the total free energy of adhesion has been found for both dental alloys. Also, a linear relationship has been found between this latter and the hydrophobicity for the cobalt based alloy. However, the exposure of nickel based alloy to the antifungal extract failed to produce the same effect. - Highlights: • Assessment of dental alloys physicochemical properties using contact angle method • Evaluation for the first time of microbial coating impact on dental alloys surface • Decrease of hydrophobicity of treated cobalt-chromium alloy with antifungal extract • Increase of Lewis base property of treated cobalt-chromium with treatment

  16. Internal nitridation of nickel-base alloys; Innere Nitrierung von Nickelbasis-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Krupp, U.; Christ, H.J. [Siegen Univ. (Gesamthochschule) (Germany). Inst. fuer Werkstofftechnik

    1998-12-31

    The chromuim concentration is the crucial variable in nitridation processes in nickel-base alloys. Extensive nitridation experiments with various specimen alloys of the system Ni-Cr-Al-Ti have shown that the Cr itself starts to form nitrides as from elevated initial concentrations of about 10 to 20 weight%, (depending on temperature), but that lower concentrations have an earlier effect in that they induce a considerable increase in the N-solubility of the nickel-base alloys. This causes an accelerated nitridation attack on the alloying elements Ti and Al. Apart from experimental detection and analysis, the phenomenon of internal nitridation could be described as well by means of a mathematical model calculating the diffusion with the finite-differences method and determining the precipitation thermodynamics by way of integrated equilibrium calculations. (orig./CB) [Deutsch] Im Verlauf der Hochtemperaturkorrosion von Nickelbasis-Superlegierungen kann durch beanspruchungsbedingte Schaedigungen der Oxiddeckschicht ein Verlust der Schutzwirkung erfolgen und als Konsequenz Stickstoff aus der Atmosphaere in den Werkstoff eindringen. Der eindiffundierende Stickstoff bildet vor allem mit den Legierungselementen Al, Cr und Ti Nitridausscheidungen, die zu einer relativ rasch fortschreitenden Schaedigung fuehren koennen. Eine bedeutende Rolle bei diesen Nitrierungsprozessen in Nickelbasislegierungen spielt die Cr-Konzentration in der Legierung. So ergaben umfangreiche Nitrierungsexperimente an verschiedenen Modellegierungen des Systems Ni-Cr-Al-Ti, dass Cr zwar selbst erst ab Ausgangskonzentrationen von ca. 10-20 Gew.% (abhaengig von der Temperatur) Nitride bildet, allerdings bereits bei geringen Konzentrationen die N-Loeslichkeit von Nickelbasis-Legierungen entscheidend erhoeht. Dies hat zur Folge, dass es zu einem beschleunigten Nitrierungsangriff auf die Legierungselemente Ti und Al kommt. Neben den experimentellen Untersuchungen konnte das Phaenomen der inneren

  17. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    Science.gov (United States)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  18. Cyclic Deformation and Fatigue Behaviors of Alloy 617 Base Metal and Weldments at 900℃ for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Kim, Byung Tak; Dewa, Rando T.; Hwang, Jeong Jun; Kim, Tae Su [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    An analysis of cyclic deformation can contribute to a deeper understanding of the fatigue fracture mechanisms as well as to improvements in the design and application of VHTR system. However, the studies associated with cyclic deformation and low cycle fatigue (LCF) properties of Alloy 617 have focused mainly on the base metal, with little attention given to the weldments. Totemeier studied on high-temperature creep-fatigue of Alloy 617 base metal and weldments. Current research activities at PKNU and KAERI focus on the study of cyclic deformation and LCF behaviors of Alloy 617 base metal (BM) and weldments (WM) specimens were machined from GTAW buttwelded plates at very high-temperature of 900℃. In this work, the cyclic deformation characteristics and fatigue behaviors of Alloy 617 BM and WM are studied and discussed with respect to LCF. In this paper, cyclic deformation and low cycle fatigue behaviors of Alloy 617 base metal and weldments was evaluated using strain-controlled LCF tests at 900℃for 0.6% total strain range. Results of the current experiments can be concluded; The WM specimen has shown a higher cyclic stress response than the BM specimen. The fatigue life of WM specimen was reduced relative to that of BM specimen.

  19. Development of Fe-Ni and Ni-base alloys without {gamma}' strengthening for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Semba, Hiroyuki; Okada, Hirokazu; Igarashi, Masaaki; Hirata, Hiroyuki [Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo (Japan). Corporate Research and Development Labs.; Yoshizawa, Mitsuru [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Steel Tube Works

    2010-07-01

    An Fe-Ni base alloy, 23Cr-45Ni-7W alloy (HR6W) strengthened by Fe{sub 2}W-type Laves phase is one of the candidate materials for the piping application. Stability of long-term creep strength and superior creep rupture ductility have been proved by creep rupture tests up to 60000h at 650-800 C. The 10{sup 5}h extrapolated creep rupture strength at 700 C approved by TUV is 85MPa. It has also been confirmed that HR6W has excellent microstructural stability by means of microstructural observations after term creep tests and aging. A thick wall pipe of HR6W, which is 457mm in diameter and 60mm in wall thickness, has successfully been manufactured by the Erhart Push Bench press method. This trial production has shown that hot workability of HR6W is sufficient for manufacturing thick wall piping for A-USC plants. A new Ni-base alloy, 30r-50Ni-4W alloy (HR35) has been proposed for piping application having comparable creep rupture strength with Alloy 617 at 700 C. This alloy is not strengthened by {gamma}' phase but mainly by {alpha}-Cr phase. The 10{sup 5}h extrapolated creep rupture strength is estimated to be 114 MPa at 700 C. It has sufficient creep rupture ductility compared with Alloy 617. A thick wall pipe of HR35 has also been successfully manufactured. Capability of HR6W and HR35 as structural materials for A-USC plants has been examined in detail. They have high resistance to relaxation cracking after welding. It is, therefore, concluded that both the alloys are promising candidates especially for thick wall piping in A-USC power plants. (orig.)

  20. Solidification of Al-Sn-Cu Based Immiscible Alloys under Intense Shearing

    Science.gov (United States)

    Kotadia, H. R.; Doernberg, E.; Patel, J. B.; Fan, Z.; Schmid-Fetzer, R.

    2009-09-01

    The growing importance of Al-Sn based alloys as materials for engineering applications necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.

  1. New technique for producing the alloys based on transition metals

    International Nuclear Information System (INIS)

    Dolukhanyan, S.K.; Aleksanyan, A.G.; Shekhtman, V.Sh.; Mantashyan, A.A.; Mayilyan, D.G.; Ter-Galstyan, O.P.

    2007-01-01

    In principle new technique was elaborated for obtaining the alloys of refractory metals by their hydrides compacting and following dehydrogenation. The elaborated technique is described. The conditions of alloys formation from different hydrides of appropriate metals was investigated in detail. The influence of the process parameters such as: chemical peculiarities, composition of source hydrides, phase transformation during dehydrogenation, etc. on the alloys formation were established. The binary and tertiary alloys of α and ω phases: Ti 0 .8Zr 0 .8; Ti 0 .66Zr 0 .33; Ti 0 .3Zr 0 .8; Ti 0 .2Zr 0 .8; Ti 0 .8Hf 0 .2; Ti 0 .6Hf 0 .4Ti 0 .66Zr 0 .23Hf 0 .11; etc were recieved. Using elaborated special hydride cycle, an earlier unknown effective process for formation of alloys of transition metals was realized. The dependence of final alloy structure on the composition of initial mixture and hydrogen content in source hydrides was established

  2. Mechanical properties of Fe3Al-based alloys with addition of carbon, niobium and titanium

    International Nuclear Information System (INIS)

    Zhang Zhengrong; Liu Wenxi

    2006-01-01

    Several Fe 3 Al-based iron aluminides with the addition of alloying elements carbon, niobium and titanium were produced by vacuum induction melting (VIM) and hot spinning forging. Analytic techniques including transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used in studying the microstructure and fracture manner of these alloys. The results show that due to the addition of alloying elements, the superlattice dislocations tend towards multiple slipping, leaving behind on their slip plane ribbons of square-shaped slip-induced antiphase boundaries. The elongation of Fe 3 Al in tension at room temperature increased to about 10% by the addition of suitable alloying elements, the usage of thermo-mechanical processing that has the function of refining grains and substructures, and subsequent annealing

  3. Analysis of nickel-base alloys by Grimm-type glow discharge emission and x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ferreira, N.P.; Strauss, J.A.; Van Maarseveen, I.; Ivanfy, A.B.

    1985-01-01

    Nickel-base alloys can be analysed as satisfactorily as steels by XRF as well as by the Grimm-type source, in spite of problems caused by element combinations, spectral line overlap and the influence of the structure and heat conduction properties on sputtering in the glow discharge source. This extended abstract briefly discusses the use of Grimm-type glow discharge emission and XRF as techniques for the analysis of nickel-base alloys

  4. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Gu, E-mail: jglee88@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of); Lee, Gyoung-Ja; Park, Jin-Ju [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of); Lee, Min-Ku, E-mail: leeminku@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of)

    2017-05-15

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  5. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    International Nuclear Information System (INIS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-01-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  6. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  7. Long-term creep rupture strength of weldment of Fe-Ni based alloy as candidate tube and pipe for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Research Laboratory; Marumoto, Yoshihide [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2010-07-01

    A lot of works have been going to develop 700C USC power plant in Europe and Japan. High strength Ni based alloys such as Alloy 617, Alloy 740 and Alloy 263 were the candidates for boiler tube and pipe in Europe, and Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is also a candidate for tube and pipe in Japan. One of the Key issues to achieve 700 C boilers is the welding process of these alloys. Authors investigated the weldability and the long-term creep rupture strength of HR6W tube. The weldments were investigated metallurgically to find proper welding procedure and creep rupture tests are ongoing exceed 38,000 hours. The long-term creep rupture strengths of the HST weld joints are similar to those of parent metals and integrity of the weldments was confirmed based on with other mechanical testing results. (orig.)

  8. Effects of La and Ce Addition on the Modification of Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Emad M. Elgallad

    2016-01-01

    Full Text Available This study focuses on the effects of the addition of rare earth metals (mainly lanthanum and cerium on the eutectic Si characteristics in Al-Si based alloys. Based on the solidification curves and microstructural examination of the corresponding alloys, it was found that addition of La or Ce increases the alloy melting temperature and the Al-Si eutectic temperature, with an Al-Si recalescence of 2-3°C, and the appearance of post-α-Al peaks attributed to precipitation of rare earth intermetallics. Addition of La or Ce to Al-(7–13% Si causes only partial modification of the eutectic Si particles. Lanthanum has a high affinity to react with Sr, which weakens the modification efficiency of the latter. Cerium, however, has a high affinity for Ti, forming a large amount of sludge. Due to the large difference in the length of the eutectic Si particles in the same sample, the normal use of standard deviation in this case is meaningless.

  9. Influence of ecologically friendly cores on surface quality of castings based on magnesium alloys

    Directory of Open Access Journals (Sweden)

    P. Lichý

    2014-07-01

    Full Text Available Constructional materials as Al - alloys can be replaced by other materials with high strength to low mass density ratio, e.g. Mg-alloys. In order to pre-casting of holes and cavities cores based on pure inorganic salt can be applied due to easy cleaning of even geometrically complex pre-cast holes. This technology is applied mainly for gravity and low-pressure casting technology. This contribution is aimed at studying of mutual interaction of the Mg-alloy and the salt core. Experiments were focused on surface quality; macro- and microstructure of testing casting samples determination. Metallographic analysis and scanning electron microscope (SEM with X-ray energy-dispersion superficial and spot microanalysis (EDAX were employed.

  10. Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling

    Science.gov (United States)

    Marker, Cassie

    An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database

  11. Hot corrosion studies on nickel-based alloys containing silicon

    International Nuclear Information System (INIS)

    Kerr, T.W.; Simkovich, G.

    1976-01-01

    Alloys of Ni--Cr, Ni--Si and Ni--Cr--Si were oxidized and ''hot corroded'' in pure oxygen at 1000 0 C. In the oxidation experiments it was found that small amounts of either chromium or silicon in nickel increased the oxidation rates in comparison to pure nickel in accord with Wagner's parabolic oxidation theory. At high concentrations of the alloying elements the oxidation rates decreased due to the formation of oxide phases other than nickel oxide in the scale. Hot corrosion experiments were conducted on both binary and ternary alloys by oxidizing samples coated with 1.0 mg/cm 2 of Na 2 SO 4 in oxygen at 1000 0 C. In general it was found that high chromium and high silicon alloys displayed excellent resistance to the hot corrosion process gaining or losing less than 0.5 mg/cm 2 in 1800 min at temperature. Microprobe and x-ray diffraction studies of the alloy and the scale indicate that amorphous SiO 2 probably formed to aid in retarding both the oxidation and the hot corrosion process

  12. Ultra-precision machining induced phase decomposition at surface of Zn-Al based alloy

    International Nuclear Information System (INIS)

    To, S.; Zhu, Y.H.; Lee, W.B.

    2006-01-01

    The microstructural changes and phase transformation of an ultra-precision machined Zn-Al based alloy were examined using X-ray diffraction and back-scattered electron microscopy techniques. Decomposition of the Zn-rich η phase and the related changes in crystal orientation was detected at the surface of the ultra-precision machined alloy specimen. The effects of the machining parameters, such as cutting speed and depth of cut, on the phase decomposition were discussed in comparison with the tensile and rolling induced microstrucutural changes and phase decomposition

  13. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  14. Numerical multi-criteria optimization methods for alloy design. Development of new high strength nickel-based superalloys and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Ralf; Mueller, Alexander; Ritter, Nils C.; Singer, Robert F. [Institute of Science and Technology of Metals, Department of Materials Science and Engineering, University of Erlangen (Germany)

    2016-07-01

    A new approach for the design of optimum balanced metallic alloys is presented. It is based on a mathematical multi-criteria optimization method which uses different property models to predict the alloy behavior in dependency of composition. These property models are mostly based on computational thermodynamics (CALPHAD-method). The full composition range of the alloying elements can be considered using these models. In alloy design usually several contradicting goals have to be fulfilled. This is handled by the calculation of so-called Pareto-fronts. The aim of our approach is to guide the experimental research towards new alloy compositions that have a high probability of having very good properties. Consequently the number of required test alloys can be massively reduced. The approach will be demonstrated for the computer-aided design of a new Re-free superalloy with nearly identical creep strength as that of Re-containing superalloys. Our starting point for the design was to maintain the good properties of the gamma prime-phase in well-known alloys like CMSX-4 and to maximize the solid solution strengthening of W and Mo. The presented experimental measurements proof the excellent properties.

  15. New concept of composite strengthening in Co-Re based alloys for high temperature applications in gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, D.; Roesler, J.; Fricke, T.; Schmitz, F. [Technische Univ. Braunschweig (DE). Inst. fuer Werkstoffkunde (IfW); Piegert, S. [Siemens AG, Berlin (DE). Energy Sector (F PR GT EN)

    2010-07-01

    High temperature material development is mainly driven by gas turbine needs. Today, Ni-based superalloys are the dominant material class in the hot section of turbines. Material development will continue to push the maximum service temperature of Ni-superalloys upwards. However, this approach has a fundamental limit and can not be sustained indefinitely, as the Ni-superalloys are already used very close to their melting point. Within the frame work of a DFG Forschergruppe program (FOR 727) - ''Beyond Ni-base Superalloys'' - Co-Re based alloys are being developed as a new generation of high temperature materials that can be used at +100 C above single crystal Ni-superalloys. Along with other strengthening concepts, hardening by second phase is explored to develop a two phase composite alloy. With quaternary Co-Re-Cr-Ni alloys we demonstrate this development concept, where Co{sub 2}Re{sub 3}-type {sigma} phase is used in a novel way as the hardening phase. Thermodynamic calculation was used for designing model alloy compositions. (orig.)

  16. Partially and fully de-alloyed glassy ribbons based on Au: Application in methanol electro-oxidation studies

    Energy Technology Data Exchange (ETDEWEB)

    Paschalidou, Eirini Maria, E-mail: epaschal@unito.it [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy); Scaglione, Federico [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy); Gebert, Annett; Oswald, Steffen [Leibniz Institut für Festkörper- und Werkstoffforschung IFW, Helmholtzstraße 20, 01069, Dresden (Germany); Rizzi, Paola; Battezzati, Livio [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy)

    2016-05-15

    In this work, electrochemical de-alloying of an amorphous alloy, Au{sub 40}Cu{sub 28}Ag{sub 7}Pd{sub 5}Si{sub 20}, cast in ribbon form by melt spinning, has been performed, obtaining self standing nanoporous materials suitable for use as electrodes for electrocatalytic applications. The de-alloying encompasses removal of less noble elements and the crystallization of Au, resulting in interconnected ligaments whose size and morphology are described as a function of time. Depending on de-alloying time, the crystals may contain residual amounts of Cu, Ag and Pd, as shown by Auger Electron Spectroscopy (AES), Energy Dispersive Spectroscopy (EDS) and Cyclic Voltammetry (CV) in a basic solution. Current density peaks in the 0.16–0.28 V range (vs Ag/AgCl) indicate that the porous ribbons are active for the electro-oxidation of methanol. The partially de-alloyed samples, which still partially contain the amorphous phase because of the shorter etching times, have finer ligaments and display peaks at lower potential. However, the current density decreases rapidly during repeated potential scans. This is attributed to the obstruction of Au sites, mainly by the Cu oxides formed during the scans. The fully de-alloyed ribbons display current peaks at about 0.20 V and remain active for hundreds of scans at more than 60% of the initial current density. They can be fully re-activated to achieve the same performance levels after a brief immersion in nitric acid. The good activity is due to trapped Ag and Pd atoms in combination with ligament morphology. - Graphical abstract: Fine ligaments and pores made by de-alloying a glassy ribbon of a Au-based alloy, homogeneously produced across the thickness (25 μm) for studying methanol's electro-oxidation behavior. - Highlights: • Size and composition of nanoporous layers tailored in de-alloying Au-based glassy ribbons. • From amorphous precursor fine crystals occur in ligaments with residual Pd and Ag. • Fully de-alloyed

  17. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    International Nuclear Information System (INIS)

    Chen, Erlei; Zhang, Kemin; Zou, Jianxin

    2016-01-01

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10"−"5 A cm"−"2 to 1.64 × 10"−"6 A cm"−"2. The results show that laser cladding is an efficient method to improve surface properties of Mg–Rare earth alloys.

  18. Fe-based bulk amorphous alloys with iron contents as high as 82 at%

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Yao, Ke-Fu, E-mail: kfyao@tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-07-15

    Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe{sub 81}P{sub 8.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe{sub 82}Mo{sub 1}P{sub 6.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications. - Highlights: • Novel Fe-based BAA with no other metallic element except 81 at% Fe was prepared. • Fe-based bulk amorphous alloy (BAA) with the highest Fe content (82%) was prepared. • Very high saturation magnetization of 1.59 T has been achieved. • A new thought for designing Fe-based BAA with high Fe content was provided.

  19. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  20. Effect of Al and Y2O3 on Mechanical Properties in Mechanically Alloyed Nanograin Ni-Based Alloys.

    Science.gov (United States)

    Kim, Chung Seok; Kim, Il-Ho

    2015-08-01

    The effects of aluminum and Y2O3 on the mechanical properties in nano grain Ni-based alloys have been investigated. The test specimens are prepared by mechanical alloying at an Ar atmosphere. The addition of Y2O3 and Al may cause an increase in the tensile strength at room temperature, 400 °C and 600 °C. However, it was confirmed that the increase of tensile strength at room temperature and 400 °C was predominantly caused by addition of Y2O3, while that at 600 °C was mainly due to addition of Al. These results can be attributed to the dispersion strengthening of Y2O3, preventing the formation of Cr2O3 and the change of fracture mode at 600 °C by the addition of Al.

  1. Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hattel, Jesper Henri; Hald, John

    2010-01-01

    of the Au–Sn binary system were explored in this work. Furthermore, the effects of thermal aging on the microstructure and microhardness of these promising Au–Sn based ternary alloys were investigated. For this purpose, the candidate alloys were aged at a lower temperature, 150°C for up to 1week...

  2. Three-dimensional microstructure-based micromechanical modeling for TC6 titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoju; Shi, Ran [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing 100081 (China); Fan, Qunbo, E-mail: fanqunbo@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing 100081 (China); Xia, Yumeng; Zhang, Hongmei [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing 100081 (China)

    2017-02-08

    A new in-depth evaluation of the micromechanical response of TC6 (Ti–6Al–1.5Cr–2.5Mo–0.5Fe–0.3Si) titanium alloy subjected to uniaxial tensile loading is performed based on micromechanical modeling. This evaluation includes reconstruction of the three-dimensional annealed microstructure (annealing at 800 °C for 2 h, then air cooled) of the alloy via dual-energy micro-computed tomography. In addition, constitutive relations of the constituent phases were determined via synchrotron-based in-situ high-energy X-ray diffraction and a self-consistent model as well as nanoindentation tests combined with finite element modeling. The results revealed that the stress concentration was translated from the primary α phase to the secondary α phase, then to the β phase. Moreover, the stress generated was re-transferred to the primary α phase when the strain was increased from 0.00 to 0.05. This transfer is indicative of crack initiation in the primary α grains.

  3. Nanocrystallinity and magnetic property enhancement in melt-spun iron-rare earth-base hard magnetic alloys

    International Nuclear Information System (INIS)

    Davies, H.A.; Manaf, A.; Zhang, P.Z.

    1993-01-01

    Refinement of the grain size below ∼35 nm mean diameter in melt-spun FeNdB-base alloys leads to enhancement of remanent polarization, J r , above the level predicted by the Stoner-Wohlfarth theory for an aggregate of independent, randomly oriented, and uniaxial magnetic particles. This article summarizes the results of the recent systematic research on this phenomenon, including the influence of alloy composition and processing conditions on the crystallite size, degree of enhancement of J r , and maximum energy product (BH) max . It has been shown that the effect can also occur in ternary FeNdB alloys, without the addition of silicon or aluminum, which was originally thought necessary, providing the nanocrystallites are not magnetically decoupled by a paramagnetic second phase. Values of (BH) max above 160 kJ. m -3 have been achieved. The relationship between grain size, J r , intrinsic coercivity, J H c , and (BH) max are discussed in terms of magnetic exchange coupling, anisotropy, and other parameters. Recent extension of this work to the enhancement of properties in Fe-Mischmental-Boron-base alloys and to bonded magnets with a nanocrystalline structure is also described

  4. Aeronautical Industry Requirements for Titanium Alloys

    Science.gov (United States)

    Bran, D. T.; Elefterie, C. F.; Ghiban, B.

    2017-06-01

    The project presents the requirements imposed for aviation components made from Titanium based alloys. A significant portion of the aircraft pylons are manufactured from Titanium alloys. Strength, weight, and reliability are the primary factors to consider in aircraft structures. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Many forces and structural stresses act on an aircraft when it is flying and when it is static and this thesis describes environmental factors, conditions of external aggression, mechanical characteristics and loadings that must be satisfied simultaneously by a Ti-based alloy, compared to other classes of aviation alloys (as egg. Inconel super alloys, Aluminum alloys).For this alloy class, the requirements are regarding strength to weight ratio, reliability, corrosion resistance, thermal expansion and so on. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  5. Generalized corrosion of nickel base alloys in high temperature aqueous media: a contribution to the comprehension of the mechanisms

    International Nuclear Information System (INIS)

    Marchetti-Sillans, L.

    2007-11-01

    In France, nickel base alloys, such as alloy 600 and alloy 690, are the materials constituting steam generators (SG) tubes of pressurized water reactors (PWR). The generalized corrosion resulting from the interaction between these alloys and the PWR primary media leads, on the one hand, to the formation of a thin protective oxide scale (∼ 10 nm), and on the other hand, to the release of cations in the primary circuit, which entails an increase of the global radioactivity of this circuit. The goal of this work is to supply some new comprehension elements about nickel base alloys corrosion phenomena in PWR primary media, taking up with underlining the effects of metallurgical and physico-chemical parameters on the nature and the growth mechanisms of the protective oxide scale. In this context, the passive film formed during the exposition of alloys 600, 690 and Ni-30Cr, in conditions simulating the PWR primary media, has been analyzed by a set of characterization techniques (SEM, TEM, PEC and MPEC, XPS). The coupling of these methods leads to a fine description, in terms of nature and structure, of the multilayered oxide forming during the exposition of nickel base alloys in primary media. Thus, the protective part of the oxide scale is composed of a continuous layer of iron and nickel mixed chromite, and Cr 2 O 3 nodules dispersed at the alloy / mixed chromite interface. The study of protective scale growth mechanisms by tracers and markers experiments reveals that the formation of the mixed chromite is the consequence of an anionic mechanism, resulting from short circuits like grain boundaries diffusion. Besides, the impact of alloy surface defects has also been studied, underlining a double effect of this parameter, which influences the short circuits diffusion density in oxide and the formation rate of Cr 2 O 3 nodules. The sum of these results leads to suggest a description of the nickel base alloys corrosion mechanisms in PWR primary media and to tackle some

  6. Neutron-absorbing alloys

    International Nuclear Information System (INIS)

    Portnoi, K.I.; Arabei, L.B.; Gryaznov, G.M.; Levi, L.I.; Lunin, G.L.; Kozhukhov, V.M.; Markov, J.M.; Fedotov, M.E.

    1975-01-01

    A process is described for the production of an alloy consiting of 1 to 20% In, 0.5 to 15% Sm, and from 3 to 18% Hf, the balance being Ni. Such alloys show a good absorption capacity for thermal and intermediate neutrons, good neutron capture efficiency, and good corrosion resistance, and find application in nuclear reactor automatic control and safety systems. The Hf provides for the maintenance of a reasonably high order of neutron capture efficiency throughout the lifetime of a reactor. The alloys are formed in a vacuum furnace operating with an inert gas atmosphere at 280 to 300 mm.Hg. They have a corrosion resistance from 3 to 3.5 times that of the Ag-based alloys commonly employed, and a neutron capture efficiency about twice that of the Ag alloys. Castability and structural strength are good. (U.K.)

  7. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Science.gov (United States)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  8. Effect of irradiation damage and helium on the swelling and structure of vanadium-base alloys

    International Nuclear Information System (INIS)

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1993-12-01

    Swelling behavior and microstructural evolution of V-Ti, V-Cr-Ti, and V-Ti-Si alloys were investigated after irradiation at 420--600C up to 114 dpa. The alloys exhibited swelling maxima between 30 and 80 dpa and swelling decreased on irradiation to higher dpa. This is in contrast to the monotonically increasing swelling of binary alloys that contain Fe, Ni, Cr, Mo, W, and Si. Precipitation of dense Ti 5 Si 3 promotes good resistance to swelling of the Ti-containing alloys and it was concluded that Ti of >3 wt.% and 400--1000 wppm Si are necessary to effectively suppress swelling. Swelling was minimal in V-4Cr-4Ti, identified as the most promising alloy based on good mechanical properties and superior resistance to irradiation embrittlement. V-20Ti doped with B exhibited somewhat higher swelling because of He generation. Lithium atoms, generated from transmutation of 10 B, formed γ-LiV 2 O 5 precipitates and did not seem to produce undesirable effects on mechanical properties

  9. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Heikki SARJAS

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  10. Swelling in neutron irradiated nickel-base alloys

    International Nuclear Information System (INIS)

    Brager, H.R.; Bell, W.L.

    1972-01-01

    Inconel 625, Incoloy 800 and Hastelloy X were neutron irradiated at 500 to 700 0 C. It was found that of the three alloys investigated, Inconel 625 offers the greatest swelling resistance. The superior swelling resistance of Inconel 625 relative to that of Hastelloy-X is probably related to differences in the concentrations of the minor rather than major alloy constituents, and can involve (a) enhanced recombination of defects in the Inconel 625 and (b) preferential attraction of vacancies to incoherent precipitates. (U.S.)

  11. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  12. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Dewa, Rando Tungga; Kim, Won Gon

    2016-01-01

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction

  13. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Dewa, Rando Tungga [Pukyung National Univ., Busan (Korea, Republic of); Kim, Won Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction.

  14. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    Science.gov (United States)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  15. Multi-scale Modelling of bcc-Fe Based Alloys for Nuclear Applications

    International Nuclear Information System (INIS)

    Malerba, Lorenzo

    2008-01-01

    , advanced techniques to fit interatomic potentials consistent with thermodynamics are proposed and the results of their application to the mentioned alloys are presented. Next, the development of advanced methods, based on the use of artificial intelligence, to improve both the physical reliability and the computational efficiency of kinetic Monte Carlo codes for the study of point-defect clustering and phase changes beyond the scale of MD, is reported. These recent progresses bear the promise of being able, in the near future, of producing reliable tools for the description of the microstructure evolution of realistic model alloys under irradiation. (author)

  16. Vanadium Influence on Iron Based Intermetallic Phases in AlSi6Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-10-01

    Full Text Available Negative effect of iron in Al-Si alloys mostly refers with iron based intermetallic phases, especially Al5FeSi phases. These phases are present in platelet-like forms, which sharp edges are considered as main cracks initiators and also as contributors of porosity formation. In recent times, addition of some elements, for example Mn, Co, Cr, Ni, V, is used to reduce influence of iron. Influence of vanadium in aluminium AlSi6Cu4 alloy with intentionally increased iron content is presented in this article. Vanadium amount has been graduated and chemical composition of alloy has been analysed by spectral analysis. Vanadium influence on microstructural changes was evaluated by microstructural analysis and some of intermetallic particles were reviewed by EDX analysis.

  17. Vanadium alloys for structural applications in fusion systems: A review of vanadium alloy mechanical and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.; Smith, D.L.

    1991-12-16

    The current knowledge is reviewed on (1) the effects of neutron irradiation on tensile strength and ductility, ductile-brittle transition temperature, creep, fatigue, and swelling of vanadium-base alloys, (2) the compatibility of vanadium-base alloys with liquid lithium, water, and helium environments, and (3) the effects of hydrogen and helium on the physical and mechanical properties of vanadium alloys that are potential candidates for structural materials applications in fusion systems. Also, physical and mechanical properties issues are identified that have not been adequately investigated in order to qualify a vanadium-base alloy for the structural material in experimental fusion devices and/or in fusion reactors.

  18. Vanadium alloys for structural applications in fusion systems: A review of vanadium alloy mechanical and physical properties

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1991-01-01

    The current knowledge is reviewed on (1) the effects of neutron irradiation on tensile strength and ductility, ductile-brittle transition temperature, creep, fatigue, and swelling of vanadium-base alloys, (2) the compatibility of vanadium-base alloys with liquid lithium, water, and helium environments, and (3) the effects of hydrogen and helium on the physical and mechanical properties of vanadium alloys that are potential candidates for structural materials applications in fusion systems. Also, physical and mechanical properties issues are identified that have not been adequately investigated in order to qualify a vanadium-base alloy for the structural material in experimental fusion devices and/or in fusion reactors

  19. Combined thermodynamic study of nickel-base alloys. Progress report

    International Nuclear Information System (INIS)

    Brooks, C.R.; Meschter, P.J.

    1981-01-01

    Achievements during this period are the following: (1) initiation of a high-temperature study of the Ni-Ta system using the galvanic cell technique, (2) emf study of high-temperature thermodynamics in the Ni-Mo system, (3) measured heat capacity data on ordered and disordered Ni 4 Mo, (4) heat capacities of Ni and disordered Ni 3 Fe, and (5) computer correlation of thermodynamic and phase diagram data in binary Ni-base alloys

  20. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures

    International Nuclear Information System (INIS)

    Oliveira, Fabio Branco Vaz de

    2008-01-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature, time and

  1. Development of Mo base alloys for conductive metal-alumina cermet applications

    International Nuclear Information System (INIS)

    Stephens, J.J.; Damkroger, B.K.; Monroe, S.L.

    1996-01-01

    A study of thermal expansion for binary Mo-V and ternary Mo-V-Fe/Mo-V-Co alloys has been conducted, with the aim of finding a composition which matches the CTE of 94% alumina ceramic. The overall goal was to identify an alloy which can be used in conductive 27 vol.% metal/73 vol.% alumina cermets. Besides thermal expansion properties, two additional requirements exist for this alloy: (1) compatibility with a hydrogen sinter fire atmosphere and (2) a single phase BCC microstructure. They have identified a ternary alloy with a nominal composition of Mo-22wt.% V-3Fe for use in cermet fabrication efforts. This paper summarizes thermal expansion properties of the various alloys studied, and compares the results with previous CTE data for Mo-V binary alloys

  2. Development of vanadium base alloys for fusion first-wall/blanket applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Chung, H.M.; Loomis, B.A.; Matsui, H.; Votinov, S.; VanWitzenburg, W.

    1994-01-01

    Vanadium alloys have been identified as a leading candidate material for fusion first-wall/blanket applications. Certain vanadium alloys exhibit favorable safety and environmental characteristics, good fabricability, high temperature and heat load capability, good compatibility with liquid metals and resistance to irradiation damage effects. The current focus is on vanadium alloys with (3-5)% Cr and (3-5)% Ti with a V-4Cr-4Ti alloy as the leading candidate. Preliminary results indicate that the crack-growth rates of certain alloys are not highly sensitive to irradiation. Results from the Dynamic Helium Charging Experiment (DHCE) which simulates fusion relevant helium/dpa ratios are similar to results from neutron irradiated material. This paper presents an overview of the recent results on the development of vanadium alloys for fusion first wall/blanket applications

  3. Base-metal dental casting alloy biocompatibility assessment using a human-derived three-dimensional oral mucosal model.

    LENUS (Irish Health Repository)

    McGinley, E L

    2012-01-01

    Nickel-chromium (Ni-Cr) alloys used in fixed prosthodontics have been associated with type IV Ni-induced hypersensitivity. We hypothesised that the full-thickness human-derived oral mucosa model employed for biocompatibility testing of base-metal dental alloys would provide insights into the mechanisms of Ni-induced toxicity. Primary oral keratinocytes and gingival fibroblasts were seeded onto Alloderm™ and maintained until full thickness was achieved prior to Ni-Cr and cobalt-chromium (Co-Cr) alloy disc exposure (2-72 h). Biocompatibility assessment involved histological analyses with cell viability measurements, oxidative stress responses, inflammatory cytokine expression and cellular toxicity analyses. Inductively coupled plasma mass spectrometry analysis determined elemental ion release levels. We detected adverse morphology with significant reductions in cell viability, significant increases in oxidative stress, inflammatory cytokine expression and cellular toxicity for the Ni-Cr alloy-treated oral mucosal models compared with untreated oral mucosal models, and adverse effects were increased for the Ni-Cr alloy that leached the most Ni. Co-Cr demonstrated significantly enhanced biocompatibility compared with Ni-Cr alloy-treated oral mucosal models. The human-derived full-thickness oral mucosal model discriminated between dental alloys and provided insights into the mechanisms of Ni-induced toxicity, highlighting potential clinical relevance.

  4. Aeronautical requirements for Inconel 718 alloy

    Science.gov (United States)

    Elefterie, C. F.; Guragata, C.; Bran, D.; Ghiban, B.

    2017-06-01

    The project goal is to present the requirements imposed by aviation components made from super alloys based on Nickel. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Alloy 718. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, yield strength and fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it’s what limits the lifetime of the airframe. Also, the excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  5. Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Tufan, E-mail: tufanroyburdwan@gmail.com [Theory and Simulations Lab, HRDS, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Chakrabarti, Aparna [Theory and Simulations Lab, HRDS, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India)

    2017-04-25

    Using density functional theory based calculations, we have carried out in-depth studies of effect of Co substitution on the magnetic properties of Ni and Pt-based shape memory alloys. We show the systematic variation of the total magnetic moment, as a function of Co doping. A detailed analysis of evolution of Heisenberg exchange coupling parameters as a function of Co doping has been presented here. The strength of RKKY type of exchange interaction is found to decay with the increase of Co doping. We calculate and show the trend, how the Curie temperature of the systems vary with the Co doping. - Highlights: • We discuss the effects of Co doping on magnetic properties of Ni/Pt based Heusler alloys. • Indirect RKKY interaction is maximum for shape memory alloy like systems. • We predict Pt{sub 2}MnSn as a probable ferromagnetic shape memory alloy.

  6. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    Science.gov (United States)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  7. Simultaneous study of sputtering and secondary ion emission of binary Fe-based alloys

    International Nuclear Information System (INIS)

    Riadel, M.M.; Nenadovic, T.; Perovic, B.

    1976-01-01

    The sputtering and secondary ion emission of binary Fe-based alloys of simple phase diagrams have been studied simultaneously. A series FeNi and FeCr alloys in the concentration range of 0-100% have been bombarded by 4 keV Kr + ions in a secondary ion mass spectrometer. The composition of the secondary ions has been analysed and also a fraction of the sputtered material has been collected and analysed by electron microprobe. The surface topography of the etched samples has been studied by scanning electron microscope. The relative sputtering coefficients of the metals have been determined, and the preferential sputtering of the alloying component of lower S have been proved. The etching pictures of samples are in correlation with the sputtering rates. Also the degree of secondary ionization has been calculated from the simultaneously measured ion emission and sputtering data. α + shows the change in the concentration range of the melting point minimum. This fact emphasizes the connection between the physico-chemical properties of alloys and their secondary emission process. From the dependence of the emitted homo- and hetero-cluster ions, conclusions could be shown concerning the production mechanism of small metallic aggregates

  8. Progress with alloy 33 (UNS R20033), a new corrosion resistant chromium-based austenitic material

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.; Eichenhofer, K.W.; Renner, M.

    1996-01-01

    Alloy 33 (UNS R20033), a new chromium-based corrosion resistant austenitic material with nominally (wt. %) 33 Cr, 32 Fe, 31 Ni, 1.6 Mo, 0.6 Cu, 0.4 N has been introduced to the market in 1995. This paper provides new data on this alloy with respect to mechanical properties, formability, weldability, sensitization characteristics and corrosion behavior. Mechanical properties of weldments including ductility have been established, and match well with those of wrought plate material, without any degradation of ISO V-notch impact toughness in the heat affected zone. When aged up to 8 hours between 600 C and 1,000 C the alloy is not sensitized when tested in boiling azeotropic nitric acid (Huey test). Under field test conditions alloy 33 shows excellent resistance to corrosion in flowing 96--98.5% H 2 SO 4 at 135 C--140 C and flowing 99.1% H 2 SO 4 at 150 C. Alloy 33 has also been tested with some success in 96% H 2 SO 4 with nitrosyl additions at 240 C. In nitric acid alloy 33 is corrosion resistant up to 85% HNO 3 and 75 C or even more. Alloy 33 is also corrosion resistant in 1 mol. HCl at 40 C and in NaOH/NaOCl-solutions. In artificial seawater the pitting potential remains unchanged up to 75 C and is still well above the seawater's redox potential at 95 C. Alloy 33 can be easily manufactured into all product forms required. The new data provided support the multipurpose character of alloy 33 to cope successfully with many requirements of the Chemical Process Industry, the Oil and Gas Industry and the Refinery Industry

  9. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Rupa, E-mail: rupadasgupta@ampri.res.in; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-25

    Highlights: • Cu based SMAs with high transition temperature could be made using LM route. • The properties depend on alloying composition. • Property characterisation establishes feasibility of making SMAs. - Abstract: The effect of alloying seven different elements [Zn, Si, Fe, Ni, Mg, Cr and Ti] on the microstructure, hardness, phase precipitation and transformation temperature in a Cu–12.5Al–5Mn alloy with a view to possible improvements as a result of these additions is the focus of the reported study. The base alloy has been chosen keeping in mind its ability to exhibit shape memory properties and improved ductility over other Cu-based SMAs. The objective was to ascertain changes or improvements attained due to the individual tertiary additions. The samples were prepared through liquid metallurgy route using pure copper, aluminum, manganese and the respective quaternary alloying elements in right quantities to weigh 1000 g of the alloy in total and were melted together. Samples from the cast alloys were subject to homogenisation treatment at 200 °C for 2 h in a muffle furnace and furnace cooled. Samples from the homogenised alloys were heated and held for 2 h at 920 °C followed by ice quenching to obtain the desired martensitic structure for shape memory behaviour. The alloys in the cast, homogenised and quenched conditions were metallographically polished to observe the martensitic phase formation mainly in quenched samples which is a pre requisite for exhibiting shape memory properties in these alloys. X-ray Diffraction studies were carried out on the cast and quenched samples using Cu Kα target; and the phases identified indicate martensitic phase precipitation; however in some cases the precipitation is incomplete. Differential Scanning Calorimetric [DSC] studies were carried out on quenched samples from room temperature to 600 °C maintaining a constant rate of 10 °C/min. Results indicate clear transformation peaks in all the samples which

  10. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    International Nuclear Information System (INIS)

    Dasgupta, Rupa; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-01

    Highlights: • Cu based SMAs with high transition temperature could be made using LM route. • The properties depend on alloying composition. • Property characterisation establishes feasibility of making SMAs. - Abstract: The effect of alloying seven different elements [Zn, Si, Fe, Ni, Mg, Cr and Ti] on the microstructure, hardness, phase precipitation and transformation temperature in a Cu–12.5Al–5Mn alloy with a view to possible improvements as a result of these additions is the focus of the reported study. The base alloy has been chosen keeping in mind its ability to exhibit shape memory properties and improved ductility over other Cu-based SMAs. The objective was to ascertain changes or improvements attained due to the individual tertiary additions. The samples were prepared through liquid metallurgy route using pure copper, aluminum, manganese and the respective quaternary alloying elements in right quantities to weigh 1000 g of the alloy in total and were melted together. Samples from the cast alloys were subject to homogenisation treatment at 200 °C for 2 h in a muffle furnace and furnace cooled. Samples from the homogenised alloys were heated and held for 2 h at 920 °C followed by ice quenching to obtain the desired martensitic structure for shape memory behaviour. The alloys in the cast, homogenised and quenched conditions were metallographically polished to observe the martensitic phase formation mainly in quenched samples which is a pre requisite for exhibiting shape memory properties in these alloys. X-ray Diffraction studies were carried out on the cast and quenched samples using Cu Kα target; and the phases identified indicate martensitic phase precipitation; however in some cases the precipitation is incomplete. Differential Scanning Calorimetric [DSC] studies were carried out on quenched samples from room temperature to 600 °C maintaining a constant rate of 10 °C/min. Results indicate clear transformation peaks in all the samples which

  11. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  12. Hardening of niobium alloys at precrystallization annealing

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Pustovalov, V.A.

    1989-01-01

    Niobium base alloys were investigated. It is shown that precrystallization annealing of niobium-molybdenum, niobium-vanadium and niobium-zirconium alloys elevates much more sufficiently their resistance to microplastic strains, than to macroplastic strains. Hardening effect differs sufficiently for different alloys. The maximal hardening is observed for niobium-vanadium alloys, the minimal one - for niobium-zirconium alloys

  13. Effect of similar elements on improving glass-forming ability of La-Ce-based alloys

    International Nuclear Information System (INIS)

    Zhang Tao; Li Ran; Pang Shujie

    2009-01-01

    To date the effect of unlike component elements on glass-forming ability (GFA) of alloys have been studied extensively, and it is generally recognized that the main consisting elements of the alloys with high GFA usually have large difference in atomic size and atomic interaction (large negative heat of mixing) among them. In our recent work, a series of rare earth metal-based alloy compositions with superior GFA were found through the approach of coexistence of similar constituent elements. The quinary (La 0.5 Ce 0.5 ) 65 Al 10 (Co 0.6 Cu 0.4 ) 25 bulk metallic glass (BMG) in a rod form with a diameter up to 32 mm was synthesized by tilt-pour casting, for which the glass-forming ability is significantly higher than that for ternary Ln-Al-TM alloys (Ln = La or Ce; TM = Co or Cu) with critical diameters for glass-formation of several millimeters. We suggest that the strong frustration of crystallization by utilizing the coexistence of La-Ce and Co-Cu to complicate competing crystalline phases is helpful to construct BMG component with superior GFA. The results of our present work indicate that similar elements (elements with similar atomic size and chemical properties) have significant effect on GFA of alloys.

  14. Nickel-base alloys having a low coefficient of thermal expansion

    International Nuclear Information System (INIS)

    Baldwin, J.F.; Maxwell, D.H.

    1975-01-01

    Alloy compositions consisting predominantly of nickel, chromium, molybdenum, carbon, and boron are disclosed. The alloys possess a duplex structure consisting of a nickel--chromium--molybdenum matrix and a semi-continuous network of refractory carbides and borides. A combination of desirable properties is provided by these alloys, including elevated temperature strength, resistance to oxidation and hot corrosion, and a very low coefficient of thermal expansion

  15. New high strength technologically ecological and expedient economically advantageous alloys on Fe-C base

    International Nuclear Information System (INIS)

    Kolev, B.V.

    2003-01-01

    The paper presents framework a part of by now obtained results of the authors studies in the period 1967(68) - 2002 about possibilities for obtaining new high-strength and wear resistant cast alloys on, Fe-C base (complex alloyed steels and cast irons of different systems with different structure, reflected in over 125 articles, 15 inventions (patents) and other scientific studies. The paper includes summarized results and discussion. Key words: new austenite steels and cast irons, mechanical characteristics, wear resistance. (Original)

  16. Purification in the interaction between yttria mould and Nb-silicide-based alloy during directional solidification: A novel effect of yttrium

    International Nuclear Information System (INIS)

    Ma, Limin; Tang, Xiaoxia; Wang, Bin; Jia, Lina; Yuan, Sainan; Zhang, Hu

    2012-01-01

    Nb-silicide-based alloys were directionally solidified in yttria moulds. As a result of thermal dissociation of yttria, the alloys were slightly contaminated with oxygen, which caused a competitive oxidation between yttrium and hafnium. The addition of 0.15 at.% yttrium reduced the oxygen increment by 42%, because the buoyant inclusions concentrated around the top surface. The yttrium addition caused a significant purification of the interaction between the yttria mould and the Nb-silicide-based alloys during the directional solidification.

  17. Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Viskari, L., E-mail: viskari@chalmers.se [Chalmers University of Technology, Gothenburg (Sweden); Stiller, K. [Chalmers University of Technology, Gothenburg (Sweden)

    2011-05-15

    Atom probe tomography (APT) allows near atomic scale compositional- and morphological studies of, e.g. matrix, precipitates and interfaces in a wide range of materials. In this work two Ni-base superalloys with similar compositions, Alloy 718 and its derivative Allvac 718Plus, are subject for investigation with special emphasis on the latter alloy. The structural and chemical nuances of these alloys are important for their properties. Of special interest are grain boundaries as their structure and chemistry are important for the materials' ability to resist rapid environmentally induced crack propagation. APT has proved to be suitable for analyses of these types of alloys using voltage pulsed APT. However, for investigations of specimens containing grain boundaries and other interfaces the risk for early specimen fracture is high. Analyses using laser pulsing impose lower electrical field on the specimen thereby significantly increasing the success rate of investigations. Here, the effect of laser pulsing was studied and the derived appropriate acquisition parameters were then applied for microstructural studies, from which initial results are shown. Furthermore, the influence of the higher evaporation field experienced by the hardening {gamma}' Ni{sub 3}(Al,Nb) precipitates on the obtained results is discussed. -- Research highlights: {yields} Laser pulsed APT is shown to be a good method for analysis of Ni-based superalloys. {yields} The evaporation field is shown to be different for different phases which affects reconstructions. {yields} B and P are shown to segregate to grain boundaries. {yields} Initial results of {delta}-phase analysed by APT are shown.

  18. Adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by selective laser melting technique.

    Science.gov (United States)

    Ye, Ye; Jiao, Ting; Zhu, Jiarui; Sun, Jian

    2018-01-24

    The purpose of the study was to evaluate the adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by the selective laser melting (SLM) technique. Twenty pairs of edentulous casts were randomly and evenly divided into two groups, and manufacturing of the Co-Cr alloy maxillary complete denture base was conducted either by the SLM technique or by the conventional method. The base-cast sets were transversally sectioned into three sections at the distal canines, mesial of the first molars and the posterior palatal zone. The gap between the metal base and cast was measured in these three sections with a stereoscopic microscope, and the data were analysed using t tests. A total of five specimens of 5 mm diameter were fabricated with the Co-Cr alloy by SLM and the traditional casting technology. A scanning electron microscope (SEM) was used to evaluate the differences in microstructure between these specimens. There was no statistical difference between the three sections in all four groups (P > 0.05). At the region of the canines, the clearance value for the SLM Co-Cr alloy group was larger than that of the conventional method group (P  0.05). The SLM Co-Cr alloy has a denser microstructure behaviour and less casting defect than the cast Co-Cr alloy. The SLM technique showed initial feasibility for the manufacture of dental bases of complete dentures, but large sample studies are needed to prove its reliability in clinical applications. The mechanical properties and microstructure of the denture frameworks prepared by selective laser melting indicate that these dentures are appropriate for clinical use.

  19. The corrosion and passivity of sputtered Mg–Ti alloys

    International Nuclear Information System (INIS)

    Song, Guang-Ling; Unocic, Kinga A.; Meyer, Harry; Cakmak, Ercan; Brady, Michael P.; Gannon, Paul E.; Himmer, Phil; Andrews, Quinn

    2016-01-01

    Highlights: • A supersaturated single phase Mg–Ti alloy can be obtained by magnetron sputtering. • The anodic dissolution of Mg–Ti alloy is inhibited by Ti addition. • The alloy becomes passive when Ti content is high and the alloy has become Ti based. • The formation of a continuous thin passive film is responsible for the passivation of the alloy. - Abstract: This study explored the possibility of forming a “stainless” Mg–Ti alloy. The electrochemical behavior of magnetron-sputtered Mg–Ti alloys was measured in a NaCl solution, and the surface films on the alloys were examined by XPS, SEM and TEM. Increased corrosion resistance was observed with increased Ti content in the sputtered Mg–Ti alloys, but passive-like behavior was not reached until the Ti level (atomic %) was higher than the Mg level. The surface film that formed on sputtered Mg–Ti based alloys in NaCl solution was thick, discontinuous and non-protective, whereas a thin, continuous and protective Mg and Ti oxide film was formed on a sputtered Ti–Mg based alloy.

  20. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  1. Low temperature irradiation effects on iron-boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, Alain.

    1983-01-01

    Three iron-boron amorphous alloys and the crystalline Fe 3 B alloy have been irradiated at liquid hydrogen temperature. 2,4 MeV electron irradiation induces the creation of point defects in the amorphous alloys as well as in the crystalline Fe 3 B alloy. These point defects can be assimilated to iron ''Frenkel pairs''. They have been characterized by determining their intrinsic electrical resistivity and their formation volume. The displacement threshold energy of iron atoms has also been determined. 10 B fission fragments induce, in these amorphous alloys, displacement cascades which lead to stable vacancy rich zones. This irradiation also leads to a structural disorder in relation with the presence of defects. 235 U fission fragments irradiation modifies drastically the structure of the amorphous alloys. The results have been interpreted on the basis of the coexistence of two opposite processes which induce local disorder and crystallisation respectively [fr

  2. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Science.gov (United States)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  3. Synthesis of Mo5SiB2 based nanocomposites by mechanical alloying and subsequent heat treatment

    International Nuclear Information System (INIS)

    Abbasi, A.R.; Shamanian, M.

    2011-01-01

    Research highlights: → α-Mo-Mo 5 SiB 2 nanocomposite was produced after 20 h milling of Mo-Si-B powders. → Heat treatment of 5 h MAed powders led to the formation of boride phases. → Heat treatment of 10 h MAed powders led to the formation of Mo 5 SiB 2 phase. → By increasing heat treatment time, quantity of Mo 5 SiB 2 phase increased. → 5 h heat treatment of 20 h MAed powders led to the formation of Mo 5 SiB 2 -based composite. - Abstract: In this study, systematic investigations were conducted on the synthesis of Mo 5 SiB 2 -based alloy by mechanical alloying and subsequent heat treatment. In this regard, Mo-12.5 mol% Si-25 mol% B powder mixture was milled for different times. Then, the mechanically alloyed powders were heat treated at 1373 K for 1 h. The phase transitions and microstructural evolutions of powder particles during mechanical alloying and heat treatment were studied by X-ray diffractometry and scanning electron microscopy. The results showed that the phase evolutions during mechanical alloying and subsequent heat treatment are strongly dependent on milling time. After 10 h of milling, a Mo solid solution was formed, but, no intermetallic phases were detected at this stage. However, an α-Mo-Mo 5 SiB 2 nanocomposite was formed after 20 h of milling. After heat treatment of 5 h mechanically alloyed powders, small amounts of MoB and Mo 2 B were detected and α-Mo-MoB-Mo 2 B composite was produced. On the other hand, heat treatment of 10 h and 20 h mechanically alloyed powders led to the formation of an α-Mo-Mo 5 SiB 2 -MoSi 2 -Mo 3 Si composite. At this point, there is a critical milling time (10 h) for the formation of Mo 5 SiB 2 phase after heat treatment wherein below that time, boride phase and after that time, Mo 5 SiB 2 phase are formed. In the case of 20 h mechanically alloyed powders, by increasing heat treatment time, not only the quantity of α-Mo was reduced and the quantity of Mo 5 SiB 2 was increased, but also new boride

  4. AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2013-12-31

    In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.

  5. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    Science.gov (United States)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  6. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    International Nuclear Information System (INIS)

    Krishnan, V.B.; Singh, J.D.; Woodruff, T.R.; Vaidyanathan, R.; Notardonato, W.U.

    2004-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed

  7. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    International Nuclear Information System (INIS)

    Rieth, M.; Materna-Morris, E.; Dudarev, S.L.; Boutard, J.-L.; Keppler, H.; Mayor, J.

    2009-01-01

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  8. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Erlei [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Kemin, E-mail: zhangkm@sues.edu.cn [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zou, Jianxin [National Engineering Research Center of Light Alloys Net Forming & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-03-30

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10{sup −5} A cm{sup −2} to 1.64 × 10{sup −6} A cm{sup −2}. The results show that laser cladding is an efficient method to improve

  9. Creep Rupture Properties for Base and Weld Metals of Alloy 617

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Kim, Min-Hwan; Park, Jae-Young; Ekaputra, I. M. W.

    2015-01-01

    The allowable deformation in the welds is also restricted to half the deformation permitted for the base metal, since the ductility of the welds at elevated temperatures is generally low. For a design use, the data of the tensile and creep properties for Alloy 617 WM should be sufficiently provided, and in particular, to develop a design code of Alloy 617 WM. However, the data for the WM are very rare and limited until now, although the data for the BM are available in the ASME draft code case, which was suspended at the end of the 1980s owing to a lack of support and interes. In this report, the creep data for Alloy 617 WM, which was fabricated by a gas tungsten arc welding (GTAW) procedure, were obtained by a series of creep tests at 800 .deg. C, and the creep properties of the WM were compared with those of the BM. The high-temperature creep properties for Alloy 617 WM, fabricated by a gas tungsten arc welding (GTAW) procedure, were investigated by a series of creep tests with different stress levels at 800 .deg. C, and the creep test data for the WM were compared with those of the BM. From the results, it was found that the WM had a slightly longer creep rupture life and lower creep rate than the BM, and a particularly lower rupture elongation. The lower creep rate in the WM was due to the lower rupture elongation than the BM

  10. Ni3Al intermetallide-based alloy: a promising material for turbine blades

    International Nuclear Information System (INIS)

    Kablov, E.N.; Lomberg, B.S.; Buntushkin, V.P.; Golubovskij, E.R.; Muboyadzhyan, S.A.

    2002-01-01

    A consideration is given to properties and structure of a cast intermetallic alloy grade VKNA-4U-mono- with monocrystalline structure in the temperature range of 20-1250 deg C. The influence of long-term heating at 1200 deg C on the stability of alloy mechanical properties is investigated. The advantages of a cast alloy on the basis of alloyed intermetallic compound Ni 3 Al are demonstrated, the processing and physical properties of the alloy are presented [ru

  11. Study of the growth of cavities during creep of Mg base alloys

    International Nuclear Information System (INIS)

    Henckes-viatte, Marguerite.

    1975-12-01

    Nucleation and growth of intergranular cavities during tensile creep of magnesium base alloys, especially a MgAlSi alloy with 0,8% aluminium and 0,2% silicium, have been investigated. Cavities have been found to nucleate preferentially on precipitates. Their number follows a nearly linear law in function of time and elongation. The cavity nucleation model suggested by Smith and Barnby, by grain boundary sliding with precipitates acting as barriers, explains best our experimental results. Cavity growth during the major part of tensile creep tests performed at 350 deg C, can be accounted for by Hull and Rimmer grain boundary diffusion model, modified so as to include continuous cavity nucleation. At the end of the tertiary creep stage, other mechanisms such as plastic instability as well as mechanical growth seem to be operating. Cavities observed in areas denuded of precipitates formed during high temperature creep in a hydrided MgZr alloy, have also been investigated. Nucleation and growth of these cavities explain by mechanisms similar to the above ones [fr

  12. Magneto-electronic, thermal, and thermoelectric properties of some Co-based quaternary alloys

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2018-01-01

    In this study, quaternary Heusler alloys CoFeCrZ (Z = Si, As, Sb) were investigated based on the modified Becke-Johnson exchange potential. The electronic structures demonstrated that CoFeCrZ (Z = Si, As, Sb) alloys are completely spin polarized with indirect bandgap and has an integer magnetic moment according to the Slater-Pauling rule. Pugh's and Poisson's ratios showed that these materials are highly ductile with high melting temperatures. The thermal properties comprising the thermal expansion coefficient, heat capacity, and Grüneisen parameter were evaluated at various pressures from 0 to 20 GPa. The Grüneisen parameter values indicated the strong anharmonicity of the lattice vibrations that predominated in these compounds. We also studied the dependency of the thermoelectric transport properties on the temperature, i.e., the thermal conductivity and Seebeck coefficient. These alloys exhibited low lattice thermal conductivity and good Seebeck coefficients at room temperature. The half-metallic structures of these compounds with large band gaps and adequate Seebeck coefficients mean that they are suitable for use in spintronic and thermoelectric device applications.

  13. Characterization of Nano Sized Microstructures in Fe and Ni Base ODS Alloys Using Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Han, Young-Soo; Jang, Jin-Sung; Mao, Xiaodong

    2015-01-01

    Ferritic ODS(Oxide-dispersion-strengthened) alloy is known as a primary candidate material of the cladding tubes of a sodium fast reactor (SFR) in the Generation IV research program. In ODS alloy, the major contribution to the enhanced high-temperature mechanical property comes from the existence of nano-sized oxide precipitates, which act as obstacles to the movement of dislocations. In addition for the extremely high temperature application(>950 .deg. C) of future nuclear system, Ni base ODS alloys are considered as candidate materials. Therefore the characterization of nano-sized microstructures is important for determining the mechanical properties of the material. Small angle neutron scattering (SANS) technique non-destructively probes structures in materials at the nano-meter length of scale (1 - 1000 nm) and has been a very powerful tool in a variety of scientific/engineering research areas. In this study, nano-sized microstructures were quantitatively analyzed by small angle neutron scattering. Quantitative microstructural information on nanosized oxide in ODS alloys was obtained from SANS data. The effects of the thermo mechanical treatment on the size and volume fraction of nano-sized oxides were analyzed. For 12Cr ODS alloy, the experimental A-ratio is two-times larger than the theoretical A-ratio., and this result is considered to be due to the imperfections included in YTaO 4 . For Ni base ODS alloy, the volume fraction of the mid-sized particles (- 30 nm) increases rapidly as hot extrusion temperature decreases

  14. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  15. Salvaging of service exposed cast alloy 625 cracker tubes of ammonia based Heavy Water Plants

    International Nuclear Information System (INIS)

    Kumar, Niraj; Misra, B.; Mahajan, M.P.; Mittra, J.; Sundararaman, M.; Chakravartty, J.K.

    2006-01-01

    In ammonia based heavy water plants, cracking of ammonia vapour, enriched in deuterium is carried out inside a cracker tube, packed with catalyst. These cracker tubes are made of alloy 625 (either wrought or cast) having dimensions of about 12.5 metres long, 88 mm outer diameter and 7.9 mm wall thickness. Seventy such tubes are housed in a typical ammonia cracker unit. The anticipated design life of such tube is 1,00,000 hrs. when operated at 720 degC based on creep as main degradation mechanism. Presently, these tubes are being operated at 680 degC skin temperature. Alloy 625 tubes are costly and normally not manufactured in India and are being imported. The cast alloy 625 cracker tubes have outlived their design life of 100,000 hrs. Therefore it has been decided to salvage the cast cracker tubes and extend the life further as it had already been done for wrought tubes. Similar to the earlier attempt of resolutionising of wrought alloy 625 tubes, efforts are in progress to salvage these cast tubes. In this study, cast tubes samples were subjected to solution-annealing treatment at two different temperatures, 1100degC and 1160degC respectively for two hrs. Mechanical properties along with the microstructure of the samples, which were resolutionized at 1160degC were comparable with that of virgin material. The 12.5 metres long cast alloy 625 cracker tubes will also be shortly solution-annealed in a specially designed resistance heating furnace after completing some more tests. (author)

  16. Tungsten wire--nickel base alloy composite development. Contractor report, 1 Jun 1974--29 Feb 1976

    International Nuclear Information System (INIS)

    Brentnall, W.D.; Moracz, D.J.

    1976-03-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed, and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W--Hf--C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/m 2 (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics

  17. In-place measurement of specific electric resistance during precipitation of γ'-precipitating Ni base alloys

    International Nuclear Information System (INIS)

    Silomon, M.

    1991-01-01

    During precipitation and coarsening of a second phase, the electric resistance of an alloy changes. Continuous resistance measurement is possible during heat treatment and can be conducted with limited experimental effort; any metallographic determination of the temperature and time dependencies of structural changes, however, requires very high effort. For this reason, an instrument was set up which permits continuous measurement of the resistance at precipitation temperature and during heating or cooling, while providing sufficient resolution for minor changes. Both measuring methods are conducted on technologically relevant alloys such as Nimonic PE 16 and those based on Ni-20 At.% Cr with deliberately varied additions of Al and Ti (accompanying investigations: TEM, SANS, and calorimetry). Their usefulness for alloy development is discussed within the scope of current concepts of demixing kinetics and resistance of alloys. Essential results concern the matrix/γ'-phase mismatch, the Ni 2 Cr short range order, and determination of the γ'-solvus temperature. (orig.) With 53 figs., 4 tabs [de

  18. Alloying effects of refractory elements in the dislocation of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Shiyu Ma

    2016-12-01

    Full Text Available The alloying effects of W, Cr and Re in the [100] (010 edge dislocation cores (EDC of Ni-based single crystal superalloys are investigated using first-principles based on the density functional theory (DFT. The binding energy, Mulliken orbital population, density of states, charge density and radial distribution functions are discussed, respectively. It is clearly demonstrated that the addition of refractory elements improves the stability of the EDC systems. In addition, they can form tougher bonds with their nearest neighbour (NN Ni atoms, which enhance the mechanical properties of the Ni-based single crystal superalloys. Through comparative analysis, Cr-doped system has lower binding energy, and Cr atom has evident effect to improve the systemic stability. However, Re atom has the stronger alloying effect in Ni-based single crystal superalloys, much more effectively hindering dislocation motion than W and Cr atoms.

  19. Fracture behavior of nickel-based alloys in water

    Energy Technology Data Exchange (ETDEWEB)

    Mills, W.J.; Brown, C.M.

    1999-08-01

    The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting J{sub IC} tests in air and hydrogenated water. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54 C water with 150 cc H{sub 2}/kg H{sub 2}O, J{sub IC} values were typically 70% to 95% lower than their air counterparts. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescence to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature cracking is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on low temperature crack propagation were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to low temperature cracking as the toughness in 54 C water remained high and a microvoid coalescence mechanism was operative in both air and water.

  20. A multi-component Zr alloy with comparable strength and Higher plasticity than Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Ma, M.Z.; Jing, R.; Yu, P.F.; Zhang, Y.F.; Wang, B.A.; Liu, R.P.

    2013-01-01

    Zirconium (Zr)-based bulk metallic glass possesses the highest potential as a structural material among metallic glasses. Although Zr-based bulk metallic glass exhibits extremely high strength, its potential application has been restricted by a number of issues, such as fragility, small size, difficult fabrication into different shapes and poisonous beryllium content, among others. In this paper, a Zr-based crystal alloy with comparable strength and higher plasticity than Zr-based bulk metallic glass is presented. The proposed Zr-based alloy has a tensile strength greater than 1600 MPa. That value is comparable to the 1500 MPa to 2000 MPa strength of Zr-based bulk metallic glasses (BMGs). The ductility in terms of elongation reached 6.2%; at the same time, the 1400 MPa tensile strength was retained. This phenomenon is not possible for Zr-based BMGs. XRD results show that the proposed ultrahigh-strength Zr-based crystal alloy has two-phase structures: an hcp-structured α phase and a bcc-structured β phase. The forged specimen exhibits a typical basket-weave microstructure, which is characterised by the interlaced plate α phase separated from the β phase matrix. Fine, short bar-shaped α phases precipitated along the original β grain boundary together with ultrafine dot-shaped α phases that presented inside the original β grain when the ageing temperature was between 500 °C and 525 °C. As the ageing temperature increased, the dot-shaped α phase grew into plate shapes, decreasing the material's strength and increasing its plasticity. The ultrafine dot-shaped and short bar-shaped α phases in the original β phase matrix are the main strengthening mechanisms of the ultrahigh-strength Zr-based crystal alloy.