Artroskopska artrodeza gležnja
Šantić, Veljko; Tudor, Anton; Legović, Dalen; Šestan, Branko; Mokrović, Hrvoje; Zec, Andrej
2013-01-01
Cilj: Uznapredovala artroza gležnja kod koje se bol i smanjena pokretljivost zgloba ne poboljšavaju na konzervativnu terapiju predstavlja indikaciju za artrodezu gležnja. Cilj ovog rada bio je analizirati rezultate liječenja uznapredovale artroze gležnja artroskopskom artrodezom gležnja. Metode: U Klinici za ortopediju Lovran u razdoblju od 2000. do 2010. godine 8 bolesnika liječeno je artroskopskom artrodezom gležnja. Prosječna dob bolesnika bila je 55,5 godina. Kod svih boles...
Spatial interpolation approach based on IDW with anisotropic spatial structures
Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang
2015-12-01
In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.
Orthonormal bases for anisotropic α-modulation spaces
Rasmussen, Kenneth Niemann
2012-01-01
In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we s...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized.......In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...
Orthonormal bases for anisotropic α-modulation spaces
Rasmussen, Kenneth Niemann
In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we s...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized.......In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...
Hyperbolic metamaterial based on anisotropic Mie-type resonance.
Lan, Chuwen; Bi, Ke; Li, Bo; Cui, Xiaohan; Zhou, Ji; Zhao, Qian
2013-12-01
A hyperbolic metamaterial (MM) based on anisotropic Mie-type resonance is theoretically and experimentally demonstrated in microwave range. Based on the shape-dependent Mie-type resonance, metamaterials with indefinite permeability or permittivity parameters are designed by tailoring the isotropic particle into an anisotropic one. The flat lens consisting of anisotropic dielectric resonators has been designed, fabricated and tested. The experimental observation of refocusing and a plane wave with ominidirectional radiation directly verify the predicted properties, which confirm the potential application in negative index material and superlens. This work will also help to develop all-dielectric anisotropic MM devices such as 3D spatial power combination, cloak, and electromagnetic wave converter, etc. PMID:24514510
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian
2016-01-15
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
Mathematical model of non-isothermal creep based anisotropic damage
Галаган, Ю. Н.; Лысенко, С. В.; Львов, Г. И.
2008-01-01
А mathematical model of nonisothermic creep for anisotropic damage case is considered. Constitutive relation of creep rate and kinematic equation of damage evolution are assumed temperature dependent. A second range tensor is used for description damage. A technique based on existing experimental curves for the identification of material creep constants is presented.
Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces
Verre, R.; Maccaferri, N.; Fleischer, K.; Svedendahl, M.; Odebo Länk, N.; Dmitriev, A.; Vavassori, P.; Shvets, I. V.; Käll, M.
2016-05-01
Anisotropic media induce changes in the polarization state of transmitted and reflected light. Here we combine this effect with the refractive index sensitivity typical of plasmonic nanoparticles to experimentally demonstrate self-referenced single wavelength refractometric sensing based on polarization conversion. We fabricated anisotropic plasmonic metasurfaces composed of gold dimers and, as a proof of principle, measured the changes in the rotation of light polarization induced by biomolecular adsorption with a surface sensitivity of 0.2 ng cm-2. We demonstrate the possibility of miniaturized sensing and we show that experimental results can be reproduced by analytical theory. Various ways to increase the sensitivity and applicability of the sensing scheme are discussed.Anisotropic media induce changes in the polarization state of transmitted and reflected light. Here we combine this effect with the refractive index sensitivity typical of plasmonic nanoparticles to experimentally demonstrate self-referenced single wavelength refractometric sensing based on polarization conversion. We fabricated anisotropic plasmonic metasurfaces composed of gold dimers and, as a proof of principle, measured the changes in the rotation of light polarization induced by biomolecular adsorption with a surface sensitivity of 0.2 ng cm-2. We demonstrate the possibility of miniaturized sensing and we show that experimental results can be reproduced by analytical theory. Various ways to increase the sensitivity and applicability of the sensing scheme are discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01336h
Anisotropic Upper Critical Field of Iron-Based Superconductors
Huang, Ruiqi; She, Weilong
2016-09-01
The upper critical field and its anisotropy are the easiest properties to examine in the research of iron-based superconductors. Based on warped cylindrical Fermi surface models, we investigate the temperature and angle dependence of the upper critical field in detail by employing the quasi-classical formalism of the Werthamer-Helfand-Hohenberg (WHH) theory. Our numerical results reveal the anisotropy of the upper critical field, which may be caused by an anisotropic gap function (e.g., d-wave pairing) or an anisotropic Fermi surface, respectively. Further, according to our analysis, this anisotropy can be modulated by the deformation of the Fermi surface and will be strongly suppressed by the Pauli paramagnetic effect.
Anisotropic Coarse-Grained Model for Proteins Based On Gay–Berne and Electric Multipole Potentials
Shen, Hujun; LI Yan; Ren, Pengyu; Zhang, Dinglin; Li, Guohui
2014-01-01
Gay–Berne anisotropic potential has been widely used to evaluate the nonbonded interactions between coarse-grained particles being described as elliptical rigid bodies. In this paper, we are presenting a coarse-grained model for twenty kinds of amino acids and proteins, based on the anisotropic Gay–Berne and point electric multipole (EMP) potentials. We demonstrate that the anisotropic coarse-grained model, namely GBEMP model, is able to reproduce many key features observed from experimental ...
Anisotropic Smoothing Improves DT-MRI-Based Muscle Fiber Tractography
Buck, Amanda K. W.; Ding, Zhaohua; Elder, Christopher P; Towse, Theodore F.; Damon, Bruce M.
2015-01-01
Purpose To assess the effect of anisotropic smoothing on fiber tracking measures, including pennation angle, fiber tract length, and fiber tract number in the medial gastrocnemius (MG) muscle in healthy subjects using diffusion-weighted magnetic resonance imaging (DW-MRI). Materials and Methods 3T DW-MRI data were used for muscle fiber tractography in the MG of healthy subjects. Anisotropic smoothing was applied at three levels (5%, 10%, 15%), and pennation angle, tract length, fiber tract nu...
Ultra-wideband reflective polarization converter based on anisotropic metasurface
Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu
2016-08-01
In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).
COMPOUND TWIN CORONAL MASS EJECTIONS IN THE 2012 MAY 17 GLE EVENT
Shen, C.; Wang, Yuming [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Li, G.; Kong, X.; Hu, J. [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Sun, X. D. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Ding, L. [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Chen, Y.; Xia, L., E-mail: gang.li@uah.edu [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, Weihai 264209 (China)
2013-02-15
We report a multiple spacecraft observation of the 2012 May 17 GLE event. Using the coronagraph observations by SOHO/LASCO, STEREO-A/COR1, and STEREO-B/COR1, we identify two eruptions resulting in two coronal mass ejections (CMEs) that occurred in the same active region and close in time ({approx}2 minutes) in the 2012 May 17 GLE event. Both CMEs were fast. Complicated radio emissions, with multiple type II episodes, were observed from ground-based stations: Learmonth and BIRS, as well as the WAVES instrument on board the Wind spacecraft. High time-resolution SDO/AIA imaging data and SDO/HMI vector magnetic field data were also examined. A complicated pre-eruption magnetic field configuration, consisting of twisted flux-tube structure, is reconstructed. Solar energetic particles (SEPs) up to several hundred MeV nucleon{sup -1} were detected in this event. Although the eruption source region was near the west limb, the event led to ground-level enhancement. The existence of two fast CMEs and the observation of high-energy particles with ground-level enhancement agrees well with a recently proposed 'twin CME' scenario.
Transport of solar protons through the atmosphere during GLE
Using the PLANETOCOSMICS simulation framework we simulated solar proton transport through the Earth's atmosphere and estimated angular and energy distributions of secondaries (protons, electrons, positrons, muons, photons and neutrons) at various atmospheric levels. As the source spectrum of solar protons at the boundary of atmosphere the spectra obtained with the GLE modeling from the data of neutron monitor network in a number of events have been used. These Monte Carlo simulation results were compared with the available solar cosmic ray neutron monitor and balloon measurements. The calculated solar proton spectra are in good agreement with the balloon and neutron monitor observational data.
Olivier Ihl
2011-06-01
Full Text Available La réforme du mode de scrutin ne manque jamais en France de soulever les plus vives controverses. Quelle que soit son ampleur, elle provoque des réactions passionnées, et déjà chez ceux dont la position dépend des configurations de jeu que cette règle délimite. Quel est au juste le pouvoir de régulation d’un mode de scrutin ? De quelle force bénéficie ce type de disposition électorale ? Si le vote est un procédé par lequel les voix recueillies conditionnent une décision collective, ce que l’o...
Establishing vertebrate model systems for the study of Gle1 mediated motor neuron disease
Tsai, Joseph
2011-01-01
Gle1 is an evolutionary conserved protein involved in both mRNA export and translation. A recent study linked mutations in Gle1 with recessive and fatal motor neuron diseases characterized by ventral horn motor neuron degeneration before birth. This is particularly interesting in light of a growing pool of evidence indicating that a common denominator in many motor neuron disorders is defects in mRNA regulation. To investigate the role of Gle1 in motor neuron development, we used chick and mo...
Qiu, Yang; Wang, Fei; Liu, Ying-Mei; Wang, Wei; Chu, Liang-Yin; Wang, Hua-Lin
2015-08-01
Easy fabrication and independent control of the internal and external morphologies of core-shell microparticles still remain challenging. Core-shell microparticle comprised of a previously unknown internal anisotropic structure and a spherical shell was fabricated by microfluidic-based emulsificaiton and photopolymerization. The interfacial and spatial 3D morphology of the anisotropic structure were observed by SEM and micro-CT respectively. Meanwhile, a series of layer-by-layer scans of the anisotropic structure were obtained via the micro-CT, which enhanced the detail characterization and analysis of micro materials. The formation mechanism of the internal anisotropic structure may be attributed to solution-directed diffusion caused by the semipermeable membrane structure and chemical potential difference between inside and outside of the semipermeable membrane-like polymerized shell. The morphology evolution of the anisotropic structure was influenced and controlled by adjusting reaction parameters including polymerization degree, polymerization speed, and solute concentration difference. The potential applications of these microparticles in microrheological characterization and image enhancement were also proposed by embedding magnetic nanoparticles in the inner core.
Gilbert damping and anisotropic magnetoresistance in iron-based alloys
Berger, L.
2016-07-01
We use the two-current model of Campbell and Fert to understand the compositional dependence of the Gilbert damping parameter in certain iron alloys. In that model, spin-up and spin-down carriers have different resistivities ρ↑ and ρ↓. We emphasize the part of the Gilbert parameter, called Gsf, generated by spin-flip interband processes. Both Gsf and the anisotropic magnetoresistance Δρ are proportional to the square of the spin-orbit parameter, and also proportional to ρ↑. In bcc alloys of iron with V, Cr, Mo, etc. solutes on the left of iron in the periodic table, ρ↑ is increased by a scattering resonance (Gomes and Campbell, 1966, 1968). Then ρ↑, Δρ, and Gsf all exhibit a peak at the same moderate concentration of the solute. We find the best fit between this theory and existing experimental data of Gilbert damping for Fe-V epitaxial films at room temperature (Cheng, 2006; Scheck et al., 2007). At room temperature, the predicted Gsf peak is masked by a background arising from non-flip intraband processes. At elevated temperatures, the peak is expected to become more prominent, and less hidden in the background.
Anisotropic optical flow algorithm based on self-adaptive cellular neural network
Zhang, Congxuan; Chen, Zhen; Li, Ming; Sun, Kaiqiong
2013-01-01
An anisotropic optical flow estimation method based on self-adaptive cellular neural networks (CNN) is proposed. First, a novel optical flow energy function which contains a robust data term and an anisotropic smoothing term is projected. Next, the CNN model which has the self-adaptive feedback operator and threshold is presented according to the Euler-Lagrange partial differential equations of the proposed optical flow energy function. Finally, the elaborate evaluation experiments indicate the significant effects of the various proposed strategies for optical flow estimation, and the comparison results with the other methods show that the proposed algorithm has better performance in computing accuracy and efficiency.
Qing, Hai; Mishnaevsky, Leon
2010-01-01
A 3D anisotropic continuum damage model is developed for the computational analysis of the elastic–brittle behaviour of fibre-reinforced composite. The damage model is based on a set of phenomenological failure criteria for fibre-reinforced composite, which can distinguish the matrix and fibre...... failure under tensile and compressive loading. The homogenized continuum theory is adopted for the anisotropic elastic damage constitutive model. The damage modes occurring in the longitudinal and transverse directions of a ply are represented by a damage vector. The elastic damage model is implemented in...
Invisibility Cloaks Modeled by Anisotropic Metamaterials Based on Inductor-capacitor Networks
Liu, Xiao; Li, Chao; Yao, Kan; Meng, Xiankun; Li, Fang
2009-01-01
Based on the transformation optics, a novel transmission-line (TL) approach to realize invisibility cloaking using planar anisotropic metamaterials (MTMs) is proposed. The two-dimensional cylindrical cloaks are modeled based on inductor-capacitor (L-C) MTMs networks. The three elements of the constitutive parameters are all allowed to be spatially inhomogeneous which lead to the full parameter realization of a cylindrical cloak. As an example, a cloak working at VHF band is modeled and its in...
A Planar Anisotropic Yield Function Based on Multi Axial Stress States in Finite Elements
Carleer, B.D.; Meinders, T.; Pijlman, H.H.; Huetink, J.; Vegter, H.
1997-01-01
A new material description based on multi axial stress states has been developed. The material description has been introduced for the planar isotropic case. Based on the isotropic case the description is extended to a planar anisotropic description. The Limiting Dome Height test is used to examine the material description. Both the strain distribution and the punch height at failure are very well described with the new material description.
Martirosyan, H.; Chilingarian, A.
2005-01-01
We are investigated possible correlations between the calculated arrival times of the first relativistic ions at Earth and GLE start times registered by surface monitors. The analysis is based on the arrival times and energies of the first solar ions, registered by the Solar Isotope Spectrometer (SIS) on board of the ACE satellite, and protons, registered by GOES satellites. We consider both cases when the interplanetary propagation of the first high energy ions is essentially scatter-free an...
Seitel, Mark; Tse, Stephen; Shan, Jerry
2011-11-01
We investigate liquid suspensions of micron-scale, anisotropic particles as potential acoustic metafluids having anisotropic and actively controllable acoustic properties. The effective mass density (and hence the sound propagation speed) of these metafluids can vary because the added mass of an anisotropic particle suspended in the fluid changes with the particle's orientation relative to the direction of the wave propagation. A suspension with disc-like particles oriented broadside to the direction of wave propagation is thus expected to have higher effective inertia and lower sound speed than a suspension with particles with end-on alignment. To test these predictions, sound speed is measured with a time-of-flight method in suspensions of micron-size nickel flakes suspended in oil, with and without magnetic-field-induced alignment of the particles. The sound speed, relative to the unaligned case, is found to decrease for particles oriented broadside to the sound wave, and increase for edgewise alignment. We also investigate the frequency dependence of the effective sound speed, since the added mass effect is expected to diminish as the flow becomes steady at low frequencies. The experimental results are compared to the predictions of a model proposed by Ahuja & Hardee (J. Acoust. Soc. Am 1978) for the acoustic properties of aligned oblate-spheroid suspensions.
Maccaferri, Nicolò; Bergamini, Luca; Pancaldi, Matteo; Schmidt, Mikolaj K; Kataja, Mikko; Dijken, Sebastiaan van; Zabala, Nerea; Aizpurua, Javier; Vavassori, Paolo
2016-04-13
We present a novel concept of a magnetically tunable plasmonic crystal based on the excitation of Fano lattice surface modes in periodic arrays of magnetic and optically anisotropic nanoantennas. We show how coherent diffractive far-field coupling between elliptical nickel nanoantennas is governed by the two in-plane, orthogonal and spectrally detuned plasmonic responses of the individual building block, one directly induced by the incident radiation and the other induced by the application of an external magnetic field. The consequent excitation of magnetic field-induced Fano lattice surface modes leads to highly tunable and amplified magneto-optical effects as compared to a continuous film or metasurfaces made of disordered noninteracting magnetoplasmonic anisotropic nanoantennas. The concepts presented here can be exploited to design novel magnetoplasmonic sensors based on coupled localized plasmonic resonances, and nanoscale metamaterials for precise control and magnetically driven tunability of light polarization states. PMID:26967047
Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations
Degond, Pierre; Deluzet, Fabrice; Lozinski, Alexei; Narski, Jacek; Negulescu, Claudia
2010-01-01
The present paper introduces an efficient and accurate numerical scheme for the solution of a highly anisotropic elliptic equation, the anisotropy direction being given by a variable vector field. This scheme is based on an asymptotic preserving reformulation of the original system, permitting an accurate resolution independently of the anisotropy strength and without the need of a mesh adapted to this anisotropy. The counterpart of this original procedure is the larger system size, enlarged ...
Estimation of the cosmic ray ionization in the Earth's atmosphere during GLE71
Lev, Dorman
2016-07-01
DYASTIMA is an application, based on Geant4, which simulates the cascades of particles that are generated due to the interactions of cosmic ray particles with the atmospheres of the planets. The first version of DYASTIMA has been successfully applied to the Earth's atmosphere, providing results that are in accordance with the publications of other models. Since then, important improvements and extensions have been made to this application, including a graphical user interface environment that allows the more effective management of the configuration parameters. Also, the actual modeling of the atmosphere has been changed allowing the definition of more complex cases and at the same time providing, in a more efficient way (with respect to the program's previous version) enhanced outputs. In this work, we combine the new version of DYASTIMA with the NMBANGLE PPOLA model, that estimates the spectrum of SEPs during relativistic proton events using ground level neutron monitor data from the worldwide network. Such a joint model has as a primary scope the simulation of a SEP event and of its secondary products at different altitudes in the Earth's atmosphere, providing at the same time an estimation of the respective ionization rates and of their spatial and temporal dependence. We apply this joint model to GLE 71, on 17 May 2012, and we discuss the results.
Mithun Kumar PK
2014-11-01
Full Text Available Medical image segmentation is a fundamental task in the medical imaging field. Optimal segmentation is required for the accurate judgment or appropriate clinical diagnosis. In this paper, we proposed automatically gradient threshold estimator of anisotropic diffusion for Meyer’s Watershed algorithm based optimal segmentation. The Meyer’s Watershed algorithm is the most significant for a large number of regions separations but the over segmentation is the major drawback of the Meyer’s Watershed algorithm. We are able to remove over segmentation after using anisotropic diffusion as a preprocessing step of segmentation in the Meyer’s Watershed algorithm. We used a fixed window size for dynamically gradient threshold estimation. The gradient threshold is the most important parameter of the anisotropic diffusion for image smoothing. The proposed method is able to segment medical image accurately because of obtaining the enhancement image. The introducing method demonstrates better performance without loss of any clinical information while preserving edges. Our investigated method is more efficient and effective in order to segment the region of interests in the medical images indeed.
Zhao, Yi; Cao, Xiangyu; Gao, Jun; Sun, Yu; Yang, Huanhuan; Liu, Xiao; Zhou, Yulong; Han, Tong; Chen, Wei
2016-04-01
We propose a new strategy to design broadband and wide angle diffusion metasurfaces. An anisotropic structure which has opposite phases under x- and y-polarized incidence is employed as the “0” and “1” elements base on the concept of coding metamaterial. To obtain a uniform backward scattering under normal incidence, Simulated Annealing algorithm is utilized in this paper to calculate the optimal layout. The proposed method provides an efficient way to design diffusion metasurface with a simple structure, which has been proved by both simulations and measurements.
Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations
Degond, Pierre; Lozinski, Alexei; Narski, Jacek; Negulescu, Claudia
2010-01-01
The present paper introduces an efficient and accurate numerical scheme for the solution of a highly anisotropic elliptic equation, the anisotropy direction being given by a variable vector field. This scheme is based on an asymptotic preserving reformulation of the original system, permitting an accurate resolution independently of the anisotropy strength and without the need of a mesh adapted to this anisotropy. The counterpart of this original procedure is the larger system size, enlarged by adding auxiliary variables and Lagrange multipliers. This Asymptotic-Preserving method generalizes the method investigated in a previous paper [arXiv:0903.4984v2] to the case of an arbitrary anisotropy direction field.
Zhao, Yi; Cao, Xiangyu; Gao, Jun; Sun, Yu; Yang, Huanhuan; Liu, Xiao; Zhou, Yulong; Han, Tong; Chen, Wei
2016-01-01
We propose a new strategy to design broadband and wide angle diffusion metasurfaces. An anisotropic structure which has opposite phases under x- and y-polarized incidence is employed as the “0” and “1” elements base on the concept of coding metamaterial. To obtain a uniform backward scattering under normal incidence, Simulated Annealing algorithm is utilized in this paper to calculate the optimal layout. The proposed method provides an efficient way to design diffusion metasurface with a simple structure, which has been proved by both simulations and measurements. PMID:27034110
A Comparison of PDE-based Non-Linear Anisotropic Diffusion Techniques for Image Denoising
Weeratunga, S K; Kamath, C
2003-01-06
PDE-based, non-linear diffusion techniques are an effective way to denoise images. In a previous study, we investigated the effects of different parameters in the implementation of isotropic, non-linear diffusion. Using synthetic and real images, we showed that for images corrupted with additive Gaussian noise, such methods are quite effective, leading to lower mean-squared-error values in comparison with spatial filters and wavelet-based approaches. In this paper, we extend this work to include anisotropic diffusion, where the diffusivity is a tensor valued function which can be adapted to local edge orientation. This allows smoothing along the edges, but not perpendicular to it. We consider several anisotropic diffusivity functions as well as approaches for discretizing the diffusion operator that minimize the mesh orientation effects. We investigate how these tensor-valued diffusivity functions compare in image quality, ease of use, and computational costs relative to simple spatial filters, the more complex bilateral filters, wavelet-based methods, and isotropic non-linear diffusion based techniques.
Accuracy Analysis of Anisotropic Yield Functions based on the Root-Mean Square Error
Huh, Hoon; Lou, Yanshan; Bae, Gihyun; Lee, Changsoo
2010-06-01
This paper evaluates the accuracy of popular anisotropic yield functions based on the root-mean square error (RMSE) of the yield stresses and the R-values. The yield functions include Hill48, Yld89, Yld91, Yld96, Yld2000-2d, BBC2000 and Yld2000-18p yield criteria. Two kind steels and five kind aluminum alloys are selected for the accuracy evaluation. The anisotropic coefficients in yield functions are computed from the experimental data. The downhill simplex method is utilized for the parameter evaluation for the yield function except Hill48 and Yld89 yield functions after the error functions are constructed. The yield stresses and the R-values at every 15°from the rolling direction (RD) and the yield stress and R-value at equibiaxial tension conditions are predicted from each yield function. The predicted yield stresses and R-values are then compared with the experimental data. The root-mean square errors (RMSE) are computed to quantitatively evaluate the yield function. The RMSEs are calculated for the yield stresses and the R-values separately because the yield stress difference is much smaller that the difference in the R-values. The RMSEs of different yield functions are compared for each material. The Hill48 and Yld89 yield functions are the worst choices for the anisotropic description of the yield stress anisotropy while Yld91 yield function is the last choice for the modeling of the R-value directionality. Yld2000-2d and BBC2000 yield function have the same accuracy on the modeling of both the yield stress anisotropy and the R-value anisotropy. The best choice is Yld2000-18 yield function to accurately describe the yield tress and R-value directionalities of sheet metals.
A flexible, anisotropic and portable stress sensor (logarithmic reversible response between 40–350 kPa) was fabricated, in which i) the sensing material, ii) the electrical contacts and iii) the encapsulating material, were based on polydimethylsiloxane (PDMS) composites. The sensing material is a slide of an anisotropic magnetorheological elastomer (MRE), formed by dispersing silver-covered magnetite particles (Fe3O4@Ag) in PDMS and by curing in the presence of a uniform magnetic field. Thus, the MRE is a structure of electrically conducting pseudo-chains (needles) aligned in a specific direction, in which electrical conductivity increases when stress is exclusively applied in the direction of the needles. Electrical conductivity appears only between contact points that face each other at both sides of the MRE slide. An array of electrical contacts was implemented based on PDMS-silver paint metallic composites. The array was encapsulated with PDMS. Using Fe3O4 superparamagnetic nanoparticles also opens up possibilities for a magnetic field sensor, due to the magnetoresistance effects. (paper)
Anisotropic ferromagnetic behaviors in highly orientated epitaxial NiO-based thin films
Yu-Jun Zhang
2015-07-01
Full Text Available Antiferromagnetic materials attract a great amount of attention recently for promising antiferromagnet-based spintronics applications. NiO is a conventional antiferromagnetic semiconductor material and can show ferromagnetism by doping other magnetic elements. In this work, we synthesized epitaxial Fe-doped NiO thin films on SrTiO3 substrates with various crystal orientations by pulsed laser deposition. The room-temperature ferromagnetism of these films is anisotropic, including the saturated magnetization and the coercive field. The anisotropic magnetic behaviors of Fe-doped NiO diluted magnetic oxide system should be closely correlated to the magnetic structure of antiferromagnetic NiO base. Within the easy plane of NiO, the coercive field of the films becomes smaller, and larger coercive field while tested out of the easy plane of NiO. The saturated magnetization anisotropy is due to different strain applied by different substrates. These results lead us to more abundant knowledge of the exchange interactions in this conventional antiferromagnetic system.
Correia, Teresa; Arridge, Simon
2016-02-01
Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, depending on the regularisation strength. Edge preserving methods, such as anisotropic diffusion regularisation (AD), can preserve important features in the fluorescence image and smooth out noise. However, AD has limited ability to distinguish an edge from noise. In this two-part paper, we propose a patch-based anisotropic diffusion regularisation (PAD), where regularisation strength is determined by a weighted average according to the similarity between patches around voxels within a search window, instead of a simple local neighbourhood strategy. However, this method has higher computational complexity and, hence, we wavelet compress the patches (PAD-WT) to speed it up, while simultaneously taking advantage of the denoising properties of wavelet thresholding. The proposed method combines the nonlocal means (NLM), AD and wavelet shrinkage methods, which are image processing methods. Therefore, in this first paper, we used a denoising test problem to analyse the performance of the new method. Our results show that the proposed PAD-WT method provides better results than the AD or NLM methods alone. The efficacy of the method for fDOT image reconstruction problem is evaluated in part 2.
Single-crystal microwires based on doped Bi for anisotropic thermoelectric devices
We have investigated the possibility to use a microwire of BiSn to design an anisotropic thermoelectric generator. The glass-coated microwire of pure and Sn-doped bismuth was obtained by the Ulitovsky method; it was a cylindrical single-crystal with orientation (1011) along the wire axis; the C3 axis was inclined at an angle of 70 degrees to the microwire axis. It is found that doping of bismuth wires with tin increases the thermopower anisotropy in comparison with Bi by a factor of 2 - 3 in the temperature range of 200-300 K. For a Bi microwire with a core diameter of 10 μm with a glass coating with outer diameter of 35 μm, the transverse thermopower is ∼ 150 μV/(K*cm); for BiSn, 300 μV/(K*cm). The design of an anisotropic thermogenerator based on BiSn microwire is proposed. The miniature thermogenerator will be efficient for power supply of devices with low useful current. In addition to the considerable thermopower anisotropy of BiSn wires in a glass coating, they exhibit stable thermoelectric properties, high mechanical strength and flexibility, which allows designing thermoelectric devices of various configurations on their basis.
Gao, Kai
2015-06-05
The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.
FAST DISCRETE CURVELET TRANSFORM BASED ANISOTROPIC FEATURE EXTRACTION FOR IRIS RECOGNITION
Amol D. Rahulkar
2010-11-01
Full Text Available The feature extraction plays a very important role in iris recognition. Recent researches on multiscale analysis provide good opportunity to extract more accurate information for iris recognition. In this work, a new directional iris texture features based on 2-D Fast Discrete Curvelet Transform (FDCT is proposed. The proposed approach divides the normalized iris image into six sub-images and the curvelet transform is applied independently on each sub-image. The anisotropic feature vector for each sub-image is derived using the directional energies of the curvelet coefficients. These six feature vectors are combined to create the resultant feature vector. During recognition, the nearest neighbor classifier based on Euclidean distance has been used for authentication. The effectiveness of the proposed approach has been tested on two different databases namely UBIRIS and MMU1. Experimental results show the superiority of the proposed approach.
Nemeth, Michael P.
2014-01-01
Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.
Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.
2015-09-01
In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.
Acoustic planar hyperlens based on anisotropic density-near-zero metamaterials
Based on anisotropic density-near-zero metamaterials, we demonstrate a planar hyperlens with resolution beyond the diffraction limit in both one and two lateral dimensions. In contrast to the cylindrical hyperlens with elliptical dispersions of finite anisotropy, the proposed planar hyperlens is designed with flat near-zero dispersion that supports wave tunneling with extremely high phase velocity for infinite large transverse wave vectors. Therefore, the acoustic evanescent waves immediately concentrate into the designed oblique path till the output surface, leading to a subwavelength resolution. Prototype hyperlens is constructed with a membrane-network by means of equivalent lumped-circuit model, and the subwavelength magnifying performance for a pair of one-dimensional line objects as well as the complex two-dimensional structure is demonstrated. This method provides diverse routes to construct hyperlens operating without the limitation on imaging region in practical applications
Acoustic planar hyperlens based on anisotropic density-near-zero metamaterials
Gu, Yuan; Cheng, Ying; Liu, Xiaojun
2015-09-01
Based on anisotropic density-near-zero metamaterials, we demonstrate a planar hyperlens with resolution beyond the diffraction limit in both one and two lateral dimensions. In contrast to the cylindrical hyperlens with elliptical dispersions of finite anisotropy, the proposed planar hyperlens is designed with flat near-zero dispersion that supports wave tunneling with extremely high phase velocity for infinite large transverse wave vectors. Therefore, the acoustic evanescent waves immediately concentrate into the designed oblique path till the output surface, leading to a subwavelength resolution. Prototype hyperlens is constructed with a membrane-network by means of equivalent lumped-circuit model, and the subwavelength magnifying performance for a pair of one-dimensional line objects as well as the complex two-dimensional structure is demonstrated. This method provides diverse routes to construct hyperlens operating without the limitation on imaging region in practical applications.
Detection of Human Impacts by an Adaptive Energy-Based Anisotropic Algorithm
Manuel Prado-Velasco
2013-10-01
Full Text Available Boosted by health consequences and the cost of falls in the elderly, this work develops and tests a novel algorithm and methodology to detect human impacts that will act as triggers of a two-layer fall monitor. The two main requirements demanded by socio-healthcare providers—unobtrusiveness and reliability—defined the objectives of the research. We have demonstrated that a very agile, adaptive, and energy-based anisotropic algorithm can provide 100% sensitivity and 78% specificity, in the task of detecting impacts under demanding laboratory conditions. The algorithm works together with an unsupervised real-time learning technique that addresses the adaptive capability, and this is also presented. The work demonstrates the robustness and reliability of our new algorithm, which will be the basis of a smart falling monitor. This is shown in this work to underline the relevance of the results.
Correia, Teresa; Koch, Maximilian; Ale, Angelique; Ntziachristos, Vasilis; Arridge, Simon
2016-02-01
Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, depending on the regularisation strength. Edge preserving methods, such as anisotropic diffusion regularisation (AD), can preserve important features in the fluorescence image and smooth out noise. However, AD has limited ability to distinguish an edge from noise. We propose a patch-based anisotropic diffusion regularisation (PAD), where regularisation strength is determined by a weighted average according to the similarity between patches around voxels within a search window, instead of a simple local neighbourhood strategy. However, this method has higher computational complexity and, hence, we wavelet compress the patches (PAD-WT) to speed it up, while simultaneously taking advantage of the denoising properties of wavelet thresholding. Furthermore, structural information can be incorporated into the image reconstruction with PAD-WT to improve image quality and resolution. In this case, the weights used to average voxels in the image are calculated using the structural image, instead of the fluorescence image. The regularisation strength depends on both structural and fluorescence images, which guarantees that the method can preserve fluorescence information even when it is not structurally visible in the anatomical images. In part 1, we tested the method using a denoising problem. Here, we use simulated and in vivo mouse fDOT data to assess the algorithm performance. Our results show that the proposed PAD-WT method provides high quality and noise free images, superior to those obtained using AD.
Wang, Hui
2014-05-01
This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my
Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien
2016-08-01
In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.
Was the GLE on May 17, 2012 linked with the M5.1-class flare the first in the 24th solar cycle?
Augusto, C R A; Navia, C E; Felicio, A C S; Freire, F; Pinto, A C S; Pimentel, B; Paulista, M; Vianna, J; Fauth, C; Sinzi, T
2013-01-01
On May 17, 2012 an M5.1-class flare exploded from the sun. An O-type coronal mass ejection (CME) was also associated with this flare. There was an instant increase in proton flux with peak at $\\geq 100$ MeV, leading to S2 solar radiation storm level. In about 20 minutes after the X-ray emission, the solar particles reached the Earth.It was the source of the first (since December 2006) ground level enhancement (GLE) of the current solar cycle 24. The GLE was detected by neutron monitors (NM) and other ground based detectors. Here we present an observation by the Tupi muon telescopes (Niteroi, Brazil, $22^{0}.9 S$, $43^{0}.2 W$, 3 m above sea level) of the enhancement of muons at ground level associated with this M5.1-class solar flare. The Tupi telescopes registered a muon excess over background $\\sim 20\\%$ in the 5-min binning time profile. The Tupi signal is studied in correlation with data obtained by space-borne detectors (GOES, ACE), ground based neutron monitors (Oulu) and air shower detectors (the IceTo...
A computer model of the physical fates, biological effects, and economic damages resulting from releases of oil and other hazardous materials has been developed by ASA to be used in Type A natural resource damage assessments under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Natural Resource Damage Assessment Models for Great Lakes Environments (NRDAM/GLE) and for Coastal and Marine Environments (NRDAM/GLE) and for Coastal and Marine Environments (NRDAM/CME) will become available. These models will also support NOAA's damage assessment regulations under the Oil Pollution Act of 1990. The physical and biological models are three-dimensional. Direct mortality from toxic concentrations and oiling, impacts of habitat loss, and food web losses are included in the model. Estimation of natural resource damages is based both on the lost value of injured resources and on the costs for restoration or replacement of those resources. A coupled geographical information system (GIS) allows gridded representation of complex coastal boundaries, variable bathymetry, shoreline types, and multiple biological habitats. The models contain environmental, geographical, chemical, toxicological, biological, restoration and economic databases with the necessary information to estimate damages. Chemical and toxicological data are included for about 470 chemicals and oils. Biological data are unique to 77 coastal and marine plus 11 Great Lakes provinces, and to habitat type. Restoration and economic valuations are also regionally specific
Cooper pairing in the Fe-based superconductors is thought to occur due to the projection of the antiferromagnetic interactions between iron atoms onto the complex momentum-space electronic structure. A key consequence is that distinct anisotropic energy gaps Δi(k) with specific relative orientations should occur on the different electronic bands i. To determine this previously unresolved gap structure high-precision spectroscopy is required. Here we introduce the STM technique of intra-band Bogolyubov quasiparticle scattering interference (QPI) to iron-based superconductor studies, focusing on LiFeAs. We identify the QPI signatures of three hole-like dispersions and, by introducing a new QPI technique, determine the magnitude and relative orientations of corresponding anisotropic Δi(k). Intra-band Bogolyubov QPI therefore yields the spectroscopic information required to identify the mechanism of superconductivity in Fe-based superconductors.
AN INTERPRETATION OF GLE71 CONCURRENT CME-DRIVEN SHOCK WAVE
Particle accelerations in solar flares and CME-driven shocks can sometimes result in very high-energy particle events (≥1 GeV) that are known as ground level enhancements (GLEs). Recent studies on the first GLE event (GLE71 2012 May 17 01:50 UT) of solar cycle 24 suggested that CME-driven shock played a leading role in causing the event. To verify this claim, we have made an effort to interpret the GLE71 concurrent shock wave. For this, we have deduced the possible speed and height of the shock wave in terms of the frequency (MHz) of the solar radio type II burst and its drift rate (MHz min–1), and studied the temporal evolution of the particle intensity profiles at different heights of the solar corona. For a better perception of the particle acceleration in the shock, we have studied the solar radio type II burst with concurrent solar radio and electron fluxes. When the particle intensity profiles are necessarily shifted in time at ∼1 AU, it is found that the growth phases of the electron and cosmic ray intensity fluxes are strongly correlated (>0.91; ≥0.87) with the frequency drift rate of the type II burst, which is also consistent with the intensive particle accelerations at upper coronal heights (∼≥0.80 R S < 1.10 R S). Thus, we conclude that the CME-driven shock was possibly capable of producing the high-energy particle event. However, since the peaks of some flare components are found to be strongly associated with the fundamental phase of the type II burst, the preceding flare is supposed to contribute to the shock acceleration process
A Motion Planning Method for Omnidirectional Mobile Robot Based on the Anisotropic Characteristics
Chuntao Leng
2008-11-01
Full Text Available A more suitable motion planning method for an omni-directional mobile robot (OMR, an improved APF method (iAPF, is proposed in this paper by introducing the revolving factor into the artificial potential field (APF. Accordingly, the motion direction derived from traditional artificial potential field (tAPF is regulated. The maximum velocity, maximum acceleration and energy consumption of the OMR moving in different directions are analyzed, based on the kinematic and dynamic constraints of an OMR, and the anisotropy of OMR is presented in this paper. Then the novel concept of an Anisotropic-Function is proposed to indicate the quality of motion in different directions, which can make a very favorable trade-off between time-optimality, stability and efficacy-optimality. In order to obtain the optimal motion, the path that the robot can take in order to avoid the obstacle safely and reach the goal in a shorter path is deduced. Finally, simulations and experiments are carried out to demonstrate that the motion resulting from the iAPF is high-speed, highly stable and highly efficient when compared to the tAPF.
Anisotropic viscoelastic-viscoplastic continuum model for high-density cellulose-based materials
Tjahjanto, D. D.; Girlanda, O.; Östlund, S.
2015-11-01
A continuum material model is developed for simulating the mechanical response of high-density cellulose-based materials subjected to stationary and transient loading. The model is formulated in an infinitesimal strain framework, where the total strain is decomposed into elastic and plastic parts. The model adopts a standard linear viscoelastic solid model expressed in terms of Boltzmann hereditary integral form, which is coupled to a rate-dependent viscoplastic formulation to describe the irreversible plastic part of the overall strain. An anisotropic hardening law with a kinematic effect is particularly adopted in order to capture the complex stress-strain hysteresis typically observed in polymeric materials. In addition, the present model accounts for the effects of material densification associated with through-thickness compression, which are captured using an exponential law typically applied in the continuum description of elasticity in porous media. Material parameters used in the present model are calibrated to the experimental data for high-density (press)boards. The experimental characterization procedures as well as the calibration of the parameters are highlighted. The results of the model simulations are systematically analyzed and validated against the corresponding experimental data. The comparisons show that the predictions of the present model are in very good agreement with the experimental observations for both stationary and transient load cases.
Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart
2015-03-01
High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.
An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media
Waheed, Umair bin
2015-03-30
Computation of first-arrival traveltimes for quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization - and it requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We addressed this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function was updated to capture the effects of the higher order nonlinear terms. We used Aitken\\'s extrapolation to speed up convergence rate of the iterative algorithm. The result is an algorithm for computing first-arrival traveltimes in tilted anisotropic media. We evaluated the applicability and usefulness of our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests determined that the proposed method matches the first arrivals obtained by wavefield extrapolation, even for strongly anisotropic and highly complex subsurface structures. Thus, for the cases where two-point ray tracing fails, our method can be a potential substitute for computing traveltimes. The approach presented here can be easily extended to compute first-arrival traveltimes for anisotropic media with lower symmetries, such as monoclinic or even the triclinic media.
A solar cosmic rays Ground Level Enhancement (GLE) event associated with a X7.1/2b solar flare in 2005 January 20 was observed by the Yangbajing solar neutron telescope (SNT) and neutron monitor (NM), located at Yangbajing Tibet (90.53 degree E, 30.11 degree N, 4310m a.s.l) with the highest vertical geomagnetic cut-off rigidity of 14.1 GV in NM network. The statistical significance of the counting rate enhancement recorded by solar neutron telescope in >40 MeV channel was 3.7 σ in the time window of 07:00-07:05UT and 6.0σ in the time window of 07:00-07:20UT, respectively. The onset time of 06:51-06:52UT for this GLE event was clearly observed by the Yangbajing NM. Our Observation indicates that solar protons have been accelerated up to energies of >10 GeV during this solar event. (authors)
Ran, Jiabing; Xie, Lingjun; Sun, Guanglin; Hu, Jingxiao; Chen, Si; Jiang, Pei; Shen, Xinyu; Tong, Hua
2016-11-01
To date, great efforts have been made to prepare different kinds of isotropic tissue engineering (TE) scaffolds. However, little attention has been paid to anisotropic porous scaffolds in spite of many examples of their excellent performances. In this work, a facile method termed "ammonia-induced method" (AIM) was proposed and applied to generate anisotropic pores in chitosan (CS)-based scaffolds. The pore structures of these scaffolds were studied in detail. In order to clarify the rationale behind this process, a speculative explanation was provided on basis of the experimental results and the theory of Uras (Uras & Devlin, 2000). Compression tests indicated that the mechanical strengths of these scaffolds were sufficient for TE applications. In vitro cell culture showed that MC3T3-E1 cells cultivated in the pores of these scaffolds had positive proliferation potential. We anticipated that this novel AIM could inspire research not only in TE but also in other fields. PMID:27516311
Shen, Hujun; Li, Yan; Ren, Pengyu; Zhang, Dinglin; Li, Guohui
2014-02-10
Gay-Berne anisotropic potential has been widely used to evaluate the non-bonded interactions between coarse-grained particles being described as elliptical rigid bodies. In this paper, we are presenting a coarse-grained model for twenty kinds of amino acids and proteins, based on the anisotropic Gay-Berne and point electric multipole (EMP) potentials. We demonstrate that the anisotropic coarse-grained model, namely GBEMP model, is able to reproduce many key features observed from experimental protein structures (Dunbrack Library) as well as from atomistic force field simulations (using AMOEBA, AMBER and CHARMM force fields) while saving the computational cost by a factor of about 10~200 depending on specific cases and atomistic models. More importantly, unlike other coarse-grained approaches, our framework is based on the fundamental intermolecular forces with explicit treatment of electrostatic and repulsion-dispersion forces. As a result, the coarse-grained protein model presented an accurate description of non-bonded interactions (particularly electrostatic component) between hetero-/homo-dimers (such as peptide-peptide, peptide-water). In addition, the encouraging performance of the model was reflected by the excellent correlation between GBEMP and AMOEBA models in the calculations of the dipole moment of peptides. In brief, the GBEMP model given here is general and transferable, suitable for simulating complex biomolecular systems. PMID:24659927
Dobruchowska, Ewa, E-mail: ewa.dobruchowska@tu.koszalin.pl [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland); Institute of Technology and Education, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland); Marszalek, Tomasz; Ulanski, Jacek [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland)
2014-08-01
The continuous anisotropic organic semiconductor/dielectric composites consisting of a top, unidirectionally oriented crystalline layer of perylenediimide derivative (2,9-di(pent-3-yl)-anthra[1,9-def:6,5,10-d′e′f′]diisoquinoline-1,3,8, 10-tetrone) (PTCDI-C5(3)) and a bottom layer of poly(bisphenol A carbonate) (PC) support were obtained in a one batch solution process, with the use of the so called the zone-casting method. Scanning electron microscopy images have shown that the top PTCDI-C5(3) layer is made of long, parallel crystallites in the form of ribbons that exhibit birefringence when placed between a pair of crossed polarisers in the optical microscope. Furthermore, the polarised UV–Vis absorbance and photoluminescence experiments revealed that the alignment of the PTCDI-C5(3) molecules is caused by π–π interactions between the conjugated perylene cores, and their stacks are parallel to the long axis of the crystallites and to the polymer surface. The high value of the calculated polarisation ratio, which equals 0.64, constitutes a confirmation of a high degree of molecular order within the semiconducting component of the zone-cast composites. - Highlights: • Bi-layer composites were produced by a single batch solution based method. • The top-layer was made of an n-type organic semiconductor — perylene derivative. • Polarised absorbance and photoluminescence were used to study optical anisotropy. • High polarisation ratio of 0.64 was obtained for the top-layer of the composite.
The continuous anisotropic organic semiconductor/dielectric composites consisting of a top, unidirectionally oriented crystalline layer of perylenediimide derivative (2,9-di(pent-3-yl)-anthra[1,9-def:6,5,10-d′e′f′]diisoquinoline-1,3,8, 10-tetrone) (PTCDI-C5(3)) and a bottom layer of poly(bisphenol A carbonate) (PC) support were obtained in a one batch solution process, with the use of the so called the zone-casting method. Scanning electron microscopy images have shown that the top PTCDI-C5(3) layer is made of long, parallel crystallites in the form of ribbons that exhibit birefringence when placed between a pair of crossed polarisers in the optical microscope. Furthermore, the polarised UV–Vis absorbance and photoluminescence experiments revealed that the alignment of the PTCDI-C5(3) molecules is caused by π–π interactions between the conjugated perylene cores, and their stacks are parallel to the long axis of the crystallites and to the polymer surface. The high value of the calculated polarisation ratio, which equals 0.64, constitutes a confirmation of a high degree of molecular order within the semiconducting component of the zone-cast composites. - Highlights: • Bi-layer composites were produced by a single batch solution based method. • The top-layer was made of an n-type organic semiconductor — perylene derivative. • Polarised absorbance and photoluminescence were used to study optical anisotropy. • High polarisation ratio of 0.64 was obtained for the top-layer of the composite
Compact planar far-field superlens based on anisotropic left-handed metamaterials
Shen, Nian-Hai; Foteinopoulou, Stavroula; Kafesaki, Maria; Koschny, Thomas; Ozbay, Ekmel; Economou, Eleftherios N.; Soukoulis, Costas M.
2009-09-01
Pendry’s perfect lens has spurred intense interest for its practical realization at visible frequencies. However, fabrication of low-loss isotropic left-handed metamaterials is a current challenge. In this work, we theoretically show that under specific conditions anisotropic metamaterial slabs can emulate Pendry’s perfect-lens phenomenon on a plane. Geometric optics leads to a new lens formula for this special anisotropic metamaterial superlens, which allows significant shrinkage of the metamaterial slab thickness for a certain range of far-field operation. Conversely, such anisotropic metamaterial superlens with the same thickness as its isotropic analog can operate for much larger distances between object and lens. We present numerical simulations which confirm our theoretical calculations. In particular, we find subdiffraction focusing that rivals the perfect isotropic negative-index metamaterial lens performance and obeys the new lens formula as predicted. In addition, we demonstrate that it is possible to attain far-field superfocusing with a metamaterial slab as thin as half the free-space wavelength. We believe this work will inspire new anisotropic metamaterial designs and opens a promising route for the realization of compact far-field superlenses in the visible regime.
Seytanoglu, A; Alsomali, N I; Valori, C F; McGown, A; Kim, H R; Ning, K; Ramesh, T; Sharrack, B; Wood, J D; Azzouz, M
2016-05-13
GLE1 mutations cause lethal congenital contracture syndrome 1 (LCCS1), a severe autosomal recessive fetal motor neuron disease, and more recently have been associated with amyotrophic lateral sclerosis (ALS). The gene encodes a highly conserved protein with an essential role in mRNA export. The mechanism linking Gle1 function to motor neuron degeneration in humans has not been elucidated, but increasing evidence implicates abnormal RNA processing as a key event in the pathogenesis of several motor neuron diseases. Homozygous gle1(-/-) mutant zebrafish display various aspects of LCCS, showing severe developmental abnormalities including motor neuron arborization defects and embryonic lethality. A previous gene expression study on spinal cord from LCCS fetuses indicated that oligodendrocyte dysfunction may be an important factor in LCCS. We therefore set out to investigate the development of myelinating glia in gle1(-/-) mutant zebrafish embryos. While expression of myelin basic protein (mbp) in hindbrain oligodendrocytes appeared relatively normal, our studies revealed a prominent defect in Schwann cell precursor proliferation and differentiation in the posterior lateral line nerve. Other genes mutated in LCCS have important roles in Schwann cell development, thereby suggesting that Schwann cell deficits may be a common factor in LCCS pathogenesis. These findings illustrate the potential importance of glial cells such as myelinating Schwann cells in motor neuron diseases linked to RNA processing defects. PMID:26921650
Zhang, Liang; Song, Zhengyong; Huo Liu, Qing
2015-07-01
We show that the linear polarization state of electromagnetic waves can be efficiently rotated to its orthogonal direction by an alternative design of anisotropic plasmonic meta-surfaces. Numerical results demonstrate that the reflection coefficient converting to cross-polarization after reflection is larger than 71% within an octave frequency band from ∼232 \\text{THz} to ∼490 \\text{THz} . The designed system is much thinner than conventional geometric-optics devices, and takes favorable advantage of little energy loss.
Martirosyan, H
2005-01-01
We are investigated possible correlations between the calculated arrival times of the first relativistic ions at Earth and GLE start times registered by surface monitors. The analysis is based on the arrival times and energies of the first solar ions, registered by the Solar Isotope Spectrometer (SIS) on board of the ACE satellite, and protons, registered by GOES satellites. We consider both cases when the interplanetary propagation of the first high energy ions is essentially scatter-free and the diffusion of high energy ions during propagation in the interplanetary magnetic field. We extrapolate the time-velocity and time-rigidity relationships to calculate the expected arrival times of the relativistic ions that are energetic enough to enter the atmosphere at the Aragats geographical location and produce secondary fluxes that reach the monitors.
Pierre, C.
2015-12-01
The Earthscope TA deployment across the continental United-State (US) has reached its eastern part, providing the opportunity for high-resolution 3D seismic velocity imaging of both lithosphere and asthenosphere across the entire north-American continent (NA). Previously (Yuan et al., 2014), we presented a 3D radially anisotropic shear wave (Vs) model of North America (NA) lithospheric mantle based on full waveform tomography, combining teleseismic and regional distance data sampling the NA. Regional wavefield computations were performed numerically, using a regional Spectral Element code (RegSEM, Cupillard et al., 2012), while teleseismic computations were performed approximately, using non-linear asymptotic coupling theory (NACT, Li and Romanowicz, 1995). For both datasets, the inversion was performed iteratively, using a Gauss-Newton scheme, with kernels computed using either NACT or the surface wave, path average approximation (PAVA), depending on the source-station distance. We here present a new radially anisotropic lithospheric/asthenospheric model of Vs for NA based entirely on SEM-based numerical waveforms from an augmented dataset of 155 regional events and 70 teleseismic events. The forward wavefield computations are performed using RegSEM down to 40s, starting from our most recent whole mantle 3D radially anisotropic Vs model (SEMUCB-wm1, French and Romanowicz, 2014). To model teleseismic wavefields within our regional computational domain, we developed a new modeling technique which allows us to replace a distant source by virtual sources at the boundary of the computational domain (Masson et al., 2014). Computing virtual sources requires one global simulation per teleseismic events.We then compare two models obtained: one using NACT/PAVA kernels as in our previous work, and another using hybrid kernels, where the Hessian is computed using NACT/PAVA, but the gradient is computed numerically from the adjoint wavefield, providing more accurate kernels
One-way acoustic mirror based on anisotropic zero-index media
Gu, Zhong-ming; Liang, Bin, E-mail: liangbin@nju.edu.cn, E-mail: jccheng@nju.edu.cn; Yang, Jing; Cheng, Jian-chun, E-mail: liangbin@nju.edu.cn, E-mail: jccheng@nju.edu.cn [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Zou, Xin-ye [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Yong [CNRS, Institut Jean Lamour, Vandoeuvre-lès-Nancy F-54506, France and Institut Jean Lamour, Université de Lorraine, Boulevard des Aiguillettes, BP: 70239, 54506 Vandoeuvre-lès-Nancy (France); Yang, Jun [Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-11-23
We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control.
Paranin, Vyacheslav D.; Karpeev, Sergey V.; Kazanskiy, Nikolay L.; Krasnov, Andrey P.
2016-03-01
The optical system for converting laser beams with circular polarization to cylindrical vector beams on the basis of anisotropic crystals has been developed. The experimental research of beam formation quality has been carried out on the both polarization and structural characteristics. The research showed differences in the formation of the azimuthal and radial polarizations for Gaussian modes and Bessel beams. The boundaries of changes of the optical system parameters to form different types of polarizations with different amplitude and phase distributions have been identified.
One-way acoustic mirror based on anisotropic zero-index media
We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control
Chen, Meng Huo
2015-03-18
Summary: A two-grid convergence analysis based on the paper [Algebraic analysis of aggregation-based multigrid, by A. Napov and Y. Notay, Numer. Lin. Alg. Appl. 18 (2011), pp. 539-564] is derived for various aggregation schemes applied to a finite element discretization of a rotated anisotropic diffusion equation. As expected, it is shown that the best aggregation scheme is one in which aggregates are aligned with the anisotropy. In practice, however, this is not what automatic aggregation procedures do. We suggest approaches for determining appropriate aggregates based on eigenvectors associated with small eigenvalues of a block splitting matrix or based on minimizing a quantity related to the spectral radius of the iteration matrix. © 2015 John Wiley & Sons, Ltd.
Application of triton X-100 surfactant for silicon anisotropic etching in KOH-based solutions
Rola, Krzysztof P.; Zubel, Irena
2013-10-01
The results of etching of silicon surfaces with different crystallographic orientations in KOH solutions containing a nonionic surfactant Triton X-100 are presented in this paper. The etch rate ratio R(100)/R(110) >1, typical of KOH + IPA and TMAH + Triton X-100 mixtures, is achieved. The surface morphology of Si( hkl) wafers is closely investigated by SEM and AFM. The very low roughness of (110) and its vicinal ( hh1) planes is observed and measured. In addition, the relatively smooth ( h11) surfaces are obtained in the solution with Triton X-100 surfactant, as compared to the KOH solutions containing alcohols. Due to good smoothness of the studied surfaces, the KOH solution with Triton X-100 seems to be especially interesting for bulk micromachining employing non-standard ( hkl) planes. The examples of mesas and trenches fabricated by anisotropic etching in the KOH solution containing Triton X-100 surfactant are presented. Keywords: silicon anisotropic etching;Triton X-100; potassium hydroxide; Si( hkl) surfaces
Robert, Stéphane; Battie, Yann; Jamon, Damien; Royer, Francois
2007-04-10
Optimal performances of integrated optical devices are obtained by the use of an accurate and reliable characterization method. The parameters of interest, i.e., optical indices and thickness of the waveguide structure, are calculated from effective indices by means of an inversion procedure. We demonstrate how an artificial neural network can achieve such a process. The artificial neural network used is a multilayer perceptron. The first result concerns a simulated anisotropic waveguide. The accuracy in the determination of optical indices and waveguide thickness is 5 x 10(-5) and 4 nm, respectively. Then an experimental application on a silica-titania thin film is performed. In addition, effective indices are measured by m-lines spectroscopy. Finally, a comparison with a classical optimization algorithm demonstrates the robustness of the neural method. PMID:17384718
Estimating the energy deposition based on anisotropic fluxes measured by POES MEPED
Sandanger, Marit Irene; Stadsnes, Johan; Nesse Tyssøy, Hilde; Glesnes Ødegaard, Linn-Kristine; Åsnes, Arne
2015-04-01
The Medium Energy Proton and Electron Detector (MEPED) onboard the Polar Orbiting Operational Environmental Satellites (POES) consists of two electron telescopes, one viewing nearly radially outward from Earth (the 0o detector) and the other viewing antiparallel to the satellite's velocity (the 90o detector). Energetic particle measurements from POES are often used to estimate the energy deposition in the mesosphere. The electron fluxes usually show strong pitch angle anisotropy. Until now, it has been customary to derive a lower estimate of the energy deposition in the mesosphere from the 0o detector, while an upper estimate is derived from the 90odetector. We have developed a method using measurements from both the 0o and 90o telescopes in a combination with theoretically determined pitch angle distributions, in order to give a more precise estimate of the energy deposition in the upper atmosphere. The derived anisotropic flux distributions are used to calculate the energy deposition during Relativistic Electron Precipitation (REP) events.
New X-Ray Tomography Method Based on the 3D Radon Transform Compatible with Anisotropic Sources
Vassholz, M.; Koberstein-Schwarz, B.; Ruhlandt, A.; Krenkel, M.; Salditt, T.
2016-02-01
In this work, we propose a novel computed tomography (CT) approach for three-dimensional (3D) object reconstruction, based on a generalized tomographic geometry with two-dimensional angular sampling (two angular degrees of freedom). The reconstruction is based on the 3D radon transform and is compatible with anisotropic beam conditions. This allows isotropic 3D imaging with a source, which can be extended along one direction for increased flux, while high resolution is achieved by a small source size only in the orthogonal direction. This novel scheme for analytical CT is demonstrated by numerical simulations and proof-of-concept experiments. In this way high resolution and coherence along a single direction determines the reconstruction quality of the entire 3D data set, opening up, for example, new opportunities to achieve nanoscale resolution and/or phase contrast with low brilliance sources such as laboratory x-ray or neutron sources.
Wang, C. G.; Wu, X. Z.; di, D.; Dong, P. T.; Xiao, R.; Wang, S. Q.
2016-02-01
Repeatable fabrication of sensitive plasmonic substrates through a simple procedure has become a major challenge for SERS-based sensing and imaging. Herein, a new class of high-performance SERS substrates, including pyramid, ridged-hexagon, and quasi-triangle nanostructures, is successfully fabricated based on the nanosphere lithography technique and anisotropic wet etching. Using the wafer-scale Cr-hole array as the etching mask, cavity-templates of various configurations are fabricated by the orientation-dependent wet etching technique, from where the nanostructure arrays are finally peeled-off. The anisotropic wet etching on (100), (110), and (111) silicon wafers has been systematically studied at the nanoscale revealing the formation mechanism of these cavity-templates. The peeled-off nanostructure arrays provide high-density tips and/or gaps (about 2.5 × 107 mm-2) and thus facilitate the generation of ``hot spots''. The distribution of the electromagnetic field is visualized by the finite difference time domain calculation. And the calculation results are validated by SERS characterization. The SERS enhancement factors of these substrates are in the order of 106-107, with the maximum enhancement factor of 1.32 × 107 yielded by the ridged-hexagon arrays. The proposed nanostructure arrays present excellent homogeneity and reproducibility (with the largest relative standard deviation of 16.43%) for the reason that the SERS-active substrates are peeled-off from an identical template. The cost-effective fabrication, high sensitivity, good homogeneity and well-performed reproducibility demonstrate that these orientation-dependent NSs are good candidates for SERS-based in vitro and in situ detection and biosensing.Repeatable fabrication of sensitive plasmonic substrates through a simple procedure has become a major challenge for SERS-based sensing and imaging. Herein, a new class of high-performance SERS substrates, including pyramid, ridged-hexagon, and quasi
Anisotropic Ambient Volume Shading.
Ament, Marco; Dachsbacher, Carsten
2016-01-01
We present a novel method to compute anisotropic shading for direct volume rendering to improve the perception of the orientation and shape of surface-like structures. We determine the scale-aware anisotropy of a shading point by analyzing its ambient region. We sample adjacent points with similar scalar values to perform a principal component analysis by computing the eigenvectors and eigenvalues of the covariance matrix. In particular, we estimate the tangent directions, which serve as the tangent frame for anisotropic bidirectional reflectance distribution functions. Moreover, we exploit the ratio of the eigenvalues to measure the magnitude of the anisotropy at each shading point. Altogether, this allows us to model a data-driven, smooth transition from isotropic to strongly anisotropic volume shading. In this way, the shape of volumetric features can be enhanced significantly by aligning specular highlights along the principal direction of anisotropy. Our algorithm is independent of the transfer function, which allows us to compute all shading parameters once and store them with the data set. We integrated our method in a GPU-based volume renderer, which offers interactive control of the transfer function, light source positions, and viewpoint. Our results demonstrate the benefit of anisotropic shading for visualization to achieve data-driven local illumination for improved perception compared to isotropic shading. PMID:26529745
Wang, C G; Wu, X Z; Di, D; Dong, P T; Xiao, R; Wang, S Q
2016-02-28
Repeatable fabrication of sensitive plasmonic substrates through a simple procedure has become a major challenge for SERS-based sensing and imaging. Herein, a new class of high-performance SERS substrates, including pyramid, ridged-hexagon, and quasi-triangle nanostructures, is successfully fabricated based on the nanosphere lithography technique and anisotropic wet etching. Using the wafer-scale Cr-hole array as the etching mask, cavity-templates of various configurations are fabricated by the orientation-dependent wet etching technique, from where the nanostructure arrays are finally peeled-off. The anisotropic wet etching on (100), (110), and (111) silicon wafers has been systematically studied at the nanoscale revealing the formation mechanism of these cavity-templates. The peeled-off nanostructure arrays provide high-density tips and/or gaps (about 2.5 × 10(7) mm(-2)) and thus facilitate the generation of "hot spots". The distribution of the electromagnetic field is visualized by the finite difference time domain calculation. And the calculation results are validated by SERS characterization. The SERS enhancement factors of these substrates are in the order of 10(6)-10(7), with the maximum enhancement factor of 1.32 × 10(7) yielded by the ridged-hexagon arrays. The proposed nanostructure arrays present excellent homogeneity and reproducibility (with the largest relative standard deviation of 16.43%) for the reason that the SERS-active substrates are peeled-off from an identical template. The cost-effective fabrication, high sensitivity, good homogeneity and well-performed reproducibility demonstrate that these orientation-dependent NSs are good candidates for SERS-based in vitro and in situ detection and biosensing. PMID:26853057
Règle d'installation détection d'intrusion
2010-01-01
Une installation de détection d’intrusion a pour objectif la surveillance des éléments de valeur par la mise en œuvre de moyens de détection automatiques destinés à détecter et à signaler l’approche, la pénétration et/ou le déplacement d’un intrus dans les zones à surveiller. Pour garantir la mise en œuvre d’un système efficace et adapté aux besoins du client, la règle APSAD R81 définit des exigences techniques minimales et une méthodologie en quatre étapes : une analyse de risque pour préciser le niveau de surveillance et les solutions techniques à mettre en place, puis les phases de conception, de réalisation et de maintenance de l’installation.
Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99
The influence of orientation on the stress rupture properties of a single crystal superalloy SRR99 was investigated at temperatures of 760 and 1040 deg. C. It is found that the creep anisotropic behaviour is pronounced at the lower temperature of 760 deg. C and the stress rupture life ranks in the order [0 0 1] > [1 1 1] > [0 1 1]. Despite the anisotropy of stress rupture life is evidently reduced at the higher temperature, the [1 1 1] orientation exhibits the longest life. At 760 deg. C, EBSD (electron back scattered diffraction) was adopted to measure the lattice rotation and the deduced results indicate that the dominant slip systems are {1 1 1} during stress rupture test. At 1040 deg. C, the ranking order of the stress rupture life is [1 1 1] > [0 0 1] > [0 1 1] and the single crystal close to [0 1 1] orientation still shows the poorest life. In the [0 0 1] and [1 1 1] samples, regular γ' raft structure is formed compared with [0 1 1] samples. Further observations made by TEM investigations reveal the underlying deformation mechanisms for crystals with orientations near [0 0 1], [0 1 1] and [1 1 1] under two test conditions.
Effect of additives on the anisotropic etching of silicon by using a TMAH based solution
Jun, Ki-Hwa; Kim, Bum-Joon; Kim, Jung-Sik
2015-09-01
In this study, the anisotropic etching properties of single crystal silicon were examined using a tetramethyl ammonium hydroxide (TMAH). The variations in the Si etching rate and surface morphology at different etching temperatures and TMAH concentrations were evaluated. The effects of different additives were also examined. As the THAM concentration (10-25 wt. %) decreased, the etching rate increased from 10 μm/h to 70 μm/h at temperatures between 70°C and 90°C. On the other hand, the etched surface roughness became degraded as the hillock density and corner undercut ratio increased. To solve these problems, four additives, pyrazine, ammonium persulfate (AP), ammonium hydrogen sulfate (AHS), and isopropyl alcohol (IPA), were added to the TMAH solution. The experimental results showed that these additives play an important role in increasing the etching rate up to 10-20%. The etched surface was also improved significantly by the decreased hillock density on the surface. The addition of IPA to the TMAH solution showed excellent results in improving the etched surface flatness and the undercutting compensation. On the other hand, one of the characteristics of IPA is the decrease in etching rate with increasing amount of IPA. [Figure not available: see fulltext.
Muthinti, Gangadhara R.; Medikonda, Manasa; Fronheiser, Jody; Kamineni, Vimal K.; Peterson, Brennan; Race, Joseph; Diebold, Alain C.
2013-04-01
The uses of strained channel became prevalent at the 65 nm node and have continued to be a large part of logic device performance improvements in every technology generation. These material and integration innovations will continue to be important in sub-22nm devices, and are already being applied in finFET devices where total available in-channel strains are potentially higher. The measurement of structures containing these materials is complicated by the intrinsic correlation of the measured optical thickness and variation of optical properties with strain, as well as the dramatic reduction in total volume of the device. Optical scatterometry has enabled characterization of the feature shape and dimensions of complex 3D structures, including non-planar transistors and memory structures. Ellipsometric methods have been successfully applied to the measurement of thin films of SiGe and related strained structures. A direction for research is validating that the thin film stress results can be extended into the much more physically complex 3D shape. There are clear challenges in this: the stress in a SiGe fin is constrained to match the underlying Si along one axis, but the sides and top are free, leading to very large strain gradients both along the fin width and height. Practical utilization of optical techniques as a development tool is often limited by the complexity of the scatterometry model and setup, and this added material complexity presents a new challenge. In this study, generalized spectroscopic ellipsometric measurements of strained grating was undertaken, in parallel with reference cross sectional and top down SEM data. The measurements were modeled for both anisotropy calculations, as well as full scatterometry calculations, fitting the strain and structure. The degree to which strain and CD can be quickly quantified in an optical model is discussed. Sum decomposition method has been implemented to extract the effective anisotropic coefficients and a
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Spaliński, Michał
2016-01-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.
Anisotropic progressive photon mapping
Liu, XiaoDan; Zheng, ChangWen
2014-01-01
Progressive photon mapping solves the memory limitation problem of traditional photon mapping. It gives the correct radiance with a large passes, but it converges slowly. We propose an anisotropic progressive photon mapping method to generate high quality images with a few passes. During the rendering process, different from standard progressive photon mapping, we store the photons on the surfaces. At the end of each pass, an anisotropic method is employed to compute the radiance of each eye ray based on the stored photons. Before move to a new pass, the photons in the scene are cleared. The experiments show that our method generates better results than the standard progressive photon mapping in both numerical and visual qualities.
Occhipinti, Laura; Chang, Yiming; Altvater, Martin; Menet, Anna M; Kemmler, Stefan; Panse, Vikram G
2013-09-01
Multiple export receptors passage bound pre-ribosomes through nuclear pore complexes (NPCs) by transiently interacting with the Phe-Gly (FG) meshwork of their transport channels. Here, we reveal how the non-FG interacting yeast mRNA export factor Gly-Leu-FG lethal 2 (Gle2) functions in the export of the large pre-ribosomal subunit (pre-60S). Structure-guided studies uncovered conserved platforms used by Gle2 to export pre-60S: an uncharacterized basic patch required to bind pre-60S, and a second surface that makes non-FG contacts with the nucleoporin Nup116. A basic patch mutant of Gle2 is able to function in mRNA export, but not pre-60S export. Thus, Gle2 provides a distinct interaction platform to transport pre-60S to the cytoplasm. Notably, Gle2's interaction platforms become crucial for pre-60S export when FG-interacting receptors are either not recruited to pre-60S or are impaired. We propose that large complex cargos rely on non-FG as well as FG-interactions for their efficient translocation through the nuclear pore complex channel. PMID:23907389
Qiu, Cheng-Wei; Novitsky, Andrey V.; Ma, Hua; Qu, Shaobo
2009-01-01
An analytical method of electromagnetic wave interactions with a general radially anisotropic cloak is established. It is able to deal with arbitrary parameters ($\\epsilon_r(r)$, $\\mu_r(r)$, $\\epsilon_t(r)$ and $\\mu_t(r)$) of a radially anisotropic inhomogeneous shell. The general cloaking condition is proposed from the wave relations for the first time. We derive the parameters of a novel class of spherical nonlinear cloaks and examine its invisibility performance by the proposed method at v...
Chen, Jun-Wei; Huang, Chiu-Chang; Chao, Chih-Yu
2014-05-14
To overcome the problem of high driving voltage and low contrast ratio in the switchable scattering device of conventional liquid-crystal (LC) physical gel, a new type of supramolecular LC physical gel has been developed and fabricated through the fibrous self-assembly of the polyfluorene-based π-conjugated polymer, poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT), in nematic LC mixture E7. It was found that the rubbed interface between the LC molecules and polyimide layer can induce the LC physical gels to demonstrate fantastic light scattering characteristic. The gels with oriented self-assembled supramolecular structures exhibiting significant anisotropic light scattering in the main-chain direction of the F8BT molecules under an extremely low driving voltage (ca. 2.7 V) are reported for the first time. In addition, the contrast ratio can be reached exceeding 1000. In contrast to conventional LC physical gels, the large reduction of driving voltages of the supramolecular gel provides great possibility for application in various electro-optical devices such as tunable polarizers, transflective displays, and polarized light modulators. PMID:24724859
Occhipinti, L.; Chang, Y.; Altvater, M.; Menet, A. M.; Kemmler, S.; Panse, V. G.
2013-01-01
Multiple export receptors passage bound pre-ribosomes through nuclear pore complexes (NPCs) by transiently interacting with the Phe-Gly (FG) meshwork of their transport channels. Here, we reveal how the non-FG interacting yeast mRNA export factor Gly-Leu-FG lethal 2 (Gle2) functions in the export of the large pre-ribosomal subunit (pre-60S). Structure-guided studies uncovered conserved platforms used by Gle2 to export pre-60S: an uncharacterized basic patch required to bind pre-60S, and a sec...
Lipnikov, Konstantin [Los Alamos National Laboratory; Agouzal, Abdellatif [UNIV DE LYON; Vassilevski, Yuri [Los Alamos National Laboratory
2009-01-01
We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.
Song, L.; Huang, X.
2011-12-01
Anisotropic distribution model (ADM) plays a uniquely central role in converting broadband radiance measurement to broadband flux. Scene type classifications are usually needed for such ADM and such classifications are usually done with auxiliary measurements and information since broadband radiance does not contain detailed information about temperature, humidity, and clouds. Recently Huang et al. (2008 and 2010) has developed spectral ADM based on such scene type classifications and successfully derived spectral flux from spectral radiance measurement. Unlike broadband radiances, the spectrally resolved radiances indeed contain rich information about temperature, humidity, and clouds. Therefore, it is meaningful to explore whether it is possible to develop scene-type classification solely based on spectral radiance and consequently to construct spectral ADM solely base on radiances measurement. Using AIRS spectrum as an example, here we develop a clear-sky scene classification algorithm solely based on AIRS radiances. The definitions of scene types are similar to those of clear-sky scene types used in CERES SSF algorithm, which are discrete intervals based on surface skin temperature, lapse rate (temperature change of the first 300 mb above the surface), and the total precipitable water (TPW). Brightness temperature of AIRS channel at 963.8 cm-1 are used for determine corresponding discrete intervals of surface skin temperature. This channel is also used in conjunction with a channel at 748.6 cm-1 for categorizing the lapse rate. Given the slow varying of water vapor continuum in the window region and the dominant weight of lower tropospheric humidity in TPW, a double-differential technique is used to categorize the TPW. By choosing two pairs of AIRS channels with similar frequency intervals, the technique can classify the TPW without any a priori information about continuum absorption since double differencing largely remove the slow-varying continuum
Lihui LANG; Joachim DANCKERT; Karl Brian NIELSEN
2005-01-01
The hydrodynamic deep drawing process enables net shape or near net shape forming of complicated sheet metal parts made from difficultly forming materials, such as aluminium or high strength steels. Based on the conventional hydrodynamic deep drawing process, a new process, hydrodynamic deep drawing process, in which radial pressure is applied to the rim of the blank, is proposed. This new process has been analysed using FEM simulations and the obtained results have been compared with the experimental results. The material used in the experiments was Al-Mg-Si alloy, and in the FEM-simulations the elastic-plastic behaviour of Al-Mg-Si alloy was modelled using Barlat's 89 yield criteria.
Anisotropic tensile properties of tungsten fiber reinforced Zr based metallic glass composites
The tensile properties and deformation behaviors of Zr based metallic glass composites containing different tungsten fiber orientations were investigated. The angles (θf) between tungsten fiber orientation and loading axial direction are 0°, 15°, 30°, 45°, 60°, 75° and 90°, respectively. The results show that the strength and the failure modes vary with θf. The tensile strength of the composite decreases as the θf increases. The tensile strength of the composite at θf=90° is only 253 MPa. The plasticity of all the composites do not be improved. The composites failed approximately 90° normal fault at θf=0°/15°, while the composites failed along the tungsten fiber when the θf is bigger than or equal to 30° because of the low axial grain boundary strength of the elongated W grains
Highlights: ► Propose a modified Chaboche model to describe mechanical behavior of DS superalloy. ► Use an explicit integration method to achieve FEM calculation of the constitutive model. ► Develop a new grouping optimization method to identify the material parameters. ► Study the fracture mechanisms of tensile and creep specimens of DS superalloy. -- Abstract: A transversely isotropic continuum elasto-viscoplasticity model is formulated to capture the tensile and creep behaviors of a directionally solidified (DS) nickel-base superalloy. A fourth-order tensor is introduced to model material anisotropy. The Kachanov damage evolution equation is coupled with stress tensor to improve capability of modeling creep deformation. This model is implemented as an ABAQUS user material (UMAT) subroutine using a self-adaptive explicit integration scheme. A grouping optimization strategy is employed to identify the material parameters by fitting experimental curves of isothermal tension and creep loading at high temperature. Failure mechanisms are investigated by observing the fracture morphology by means of Scanning Electron Microscope (SEM) with the Energy Dispersive X-ray Spectrometer (EDXS). The results obtained showed that Chaboche constitutive model coupled with anisotropy and creep damage was able to characterize the rate-dependent anisotropic tensile and creep behaviors of DS superalloy and the simulation results agreed well with the experimental data. The tensile fracture surface of DS superalloy mainly contained a mixture of large cleavage planes and small amount of dimples. Meanwhile, the creep fracture mechanism of DS superalloy at 760 and 850 °C was transgranular fracture induced by the dimple accumulation. The morphology of the dimples and non-metallic inclusions at 760 °C was different from that at 850 °C.
ANISOTROPIC POLARIZATION TENSORS FOR ELLIPSES AND ELLIPSOIDS
Hyeonbae Kang; Kyoungsun Kim
2007-01-01
In this paper we present a systematic way of computing the polarization tensors,anisotropic as well as isotropic, based on the boundary integral method. We then use this method to compute the anisotropic polarization tensor for ellipses and ellipsoids. The computation reveals the pair of anisotropy and ellipses which produce the same polarization tensors.
Degond, Pierre; Lozinski, Alexei; Narski, Jacek; Negulescu, Claudia
2011-01-01
The concern of the present work is the introduction of a very efficient Asymptotic Preserving scheme for the resolution of highly anisotropic diffusion equations. The characteristic features of this scheme are the uniform convergence with respect to the anisotropy parameter $0
Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof
2013-01-01
of the composite is inclined compared to a standard pressure independent yield surfaces. The evolution of the macroscopic yield surface is investigated by quantifying both anisotropic hardening (expansion) and kinematic hardening (translation), where the coefficients of anisotropy and the Bauschinger stress...
Sumathi, K; Anandh, K R; Mahesh, V; Ramakrishnan, S
2014-01-01
In this work an attempt has been made to enhance the edges and segment the boundary of intima-media layer of Common Carotid Artery (CCA) using anisotropic diffusion filter and level set method. Ultrasound B mode longitudinal images of normal and abnormal images of common carotid arteries are used in this study. The images are subjected to anisotropic diffusion filter to generate edge map. This edge map is used as a stopping boundary in variational level set method without re-initialisation to segment the intima-media layer. Geometric features are extracted from this layer and analyzed statistically. Results show that anisotropic diffusion filtering is able to extract the edges in both normal and abnormal images. The obtained edge maps are found to have high contrast and sharp edges. The edge based variational level set method is able to segment the intima-media layer precisely from common carotid artery. The extracted geometrical features such as major axis and extent are found to be statistically significant in differentiating normal and abnormal images. Thus this study seems to be clinically useful in diagnosis of cardiovascular disease. PMID:25569941
Efficient Wavefield Extrapolation In Anisotropic Media
Alkhalifah, Tariq
2014-07-03
Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.
Recension d'ouvrage : Cru, D. (2014). Le risque et la règle. Toulouse: Erès
Marc Favaro
2014-01-01
Analyse d'ouvrage par Marc Favaro Cru, D. (2014). Le risque et la règle. Toulouse: Erès Le texte que propose Damien Cru dans la collection Clinique du travail des éditions Erès reprend pour l'essentiel le contenu du mémoire qu'il présentait en 1995 à l'EPHE (sous la direction d'A. Weill-Fassina). Auteur bien connu du monde de la prévention des risques au travail, il est plus particulièrement identifié comme un spécialiste de la prévention dans le BTP. Son texte étant d'ailleurs sous-titré « l...
Stoklasová, Pavla; Sedlák, Petr; Seiner, Hanuš; Landa, Michal
2015-01-01
Roč. 56, February 2015 (2015), s. 381-389. ISSN 0041-624X R&D Projects: GA ČR GPP101/12/P428 Institutional support: RVO:61388998 Keywords : surface acoustic waves * anisotropic materials * Ritz-Rayleigh method * inverse problem Subject RIV: BI - Acoustic s Impact factor: 1.942, year: 2014 http://www.sciencedirect.com/science/article/pii/S0041624X14002686
VESNA JOVIC; JELENA LAMOVEC; MIRJANA POPOVIC; ZARKO LAZIC
2007-01-01
The undercutting process of thermal SiO2 microcantilevers with different orientations on (100) Si wafer was studied. The silicon substrate was removed by anisotropic chemical etching with a 25 wt. % aqueous solution of TMAH or a 30 wt. % aqueous KOH solution at 80 °C. It was found that oriented cantilevers were undercutting frontally along the length and oriented cantilevers experience undercutting along the width of the cantilever, which is a less time consuming process. The studies showed...
For the comprehensive characterization of nanoparticles cross-sectional investigation on the atomic scale by analytical and high-resolution transmission electron microscopy (TEM) is indispensable. Cross-sectioning is especially important for anisotropic nanoparticles to gain information on structure and chemistry along all important projections. We present a focused ion beam (FIB) method for site- and orientation-specific cross-sectioning of arbitrary nanoparticles that are dispersed on a substrate. By adopting a shadow geometry originally developed for thin sensitive films' protection of the specimen by a platinum layer is avoided. This enables simultaneous observation (from the front side) by the electron beam and ion-beam sectioning (from the back side of the supporting substrate) of individually selected particles with excellent accuracy on the nanometer scale. The feasibility and general applicability of the method is demonstrated by site-specific sectioning and cross-section HRTEM investigation of two types of anisotropic nanostructures: silver nanorods with five-fold twin structure and Janus-type silver patchy particles. -- Highlights: ► TEM preparation method for cross-sectioning of individual anisotropic nanoparticles. ► Method applicable to all types of nanoparticles that can be dispersed on a substrate. ► Shadow-FIB geometry enables simultaneous observation and ion beam sectioning. ► Feasibility of the method demonstrated for Ag nanowires and patchy particles. ► HRTEM analyses provide insight into internal defect structures and interfaces.
Purpose: Our aim of this study was to propose a computational approach for determination of anisotropic planning target volume (PTV) margins based on statistical shape analysis with taking into account time variations of clinical target volume (CTV) shapes for the prostate cancer radiation treatment planning (RTP). Methods: Systematic and random setup errors were measured using orthogonal projection and cone beam computed tomography (CBCT) images for data of 20 patients, who underwent the intensity modulated radiation therapy for prostate cancer. The low-risk, intermediate-risk, and high-risk CTVs were defined as only a prostate, a prostate plus proximal 1-cm seminal vesicles, and a prostate plus proximal 2-cm seminal vesicles, respectively. All CTV regions were registered with a reference CTV region with a median volume to remove the effect of the setup errors, and converted to a point distribution models. The systematic and random errors for translations of CTV regions were automatically evaluated by analyzing the movements of centroids of CTV regions. The random and systematic errors for shape variations of CTV regions were obtained from covariance matrices based on point distributions for the CTV contours on CBCT images of 72 fractions of 10 patients. Anisotropic PTV margins for 6 directions (right, left, anterior, posterior, superior and inferior) were derived by using Yoda’s PTV margin model. Results: PTV margins with and without shape variations were 5.75 to 8.03 mm and 5.23 to 7.67 mm for low-risk group, 5.87 to 8.33 mm and 5.23 to 7.67 mm for intermediate-risk group, and 5.88 to 8.25 mm and 5.29 to 7.82 mm for highrisk group, respectively. Conclusion: The proposed computational approach could be feasible for determination of the anisotropic PTV margins with taking into account CTV shape variations for the RTP
Averaging anisotropic cosmologies
Barrow, J D; Barrow, John D.; Tsagas, Christos G.
2006-01-01
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of pressure-free Bianchi-type models. Adopting the Buchert averaging scheme, we identify the kinematic backreaction effects by focussing on spacetimes with zero or isotropic spatial curvature. This allows us to close the system of the standard scalar formulae with a propagation equation for the shear magnitude. We find no change in the already known conditions for accelerated expansion. The backreaction terms are expressed as algebraic relations between the mean-square fluctuations of the models' irreducible kinematical variables. Based on these we investigate the early evolution of averaged vacuum Bianchi type $I$ universes and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. We also discuss the possibility of accelerated expansion due to ...
Dhar, Prodyut; Kumar, Amit; Katiyar, Vimal
2016-07-20
This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low
In association with development of diffusion MR imaging technologies for anisotropic diffusion measurement in living body, related research is explosively increasing including research fields of applied mathematics and visualization in addition to MR imaging, biomedical image technology, and medical science. One of the reasons is that the diffusion MRI data set is a set of high dimensional image information beyond conventional scalar or vector images, and is attractive for the researchers in the related fields. This survey paper is mainly aimed at introducing state-of-the-art of post processing techniques reported in the literature for diffusion MRI data, such as analysis and visualization. (author)
Degond, Pierre; Narski, Jacek; Negulescu, Claudia
2011-01-01
The concern of the present work is the introduction of a very efficient Asymptotic Preserving scheme for the resolution of highly anisotropic diffusion equations. The characteristic features of this scheme are the uniform convergence with respect to the anisotropy parameter $0<\\eps <<1$, the applicability (on cartesian grids) to cases of non-uniform and non-aligned anisotropy fields $b$ and the simple extension to the case of a non-constant anisotropy intensity $1/\\eps$. The mathematical approach and the numerical scheme are different from those presented in the previous work [Degond et al. (2010), arXiv:1008.3405v1] and its considerable advantages are pointed out.
Troitskii, Yu V.; Troshin, B. I.
1998-01-01
A method is proposed for producing dielectric — metal polarising mirrors for normal light incidence. The anisotropic properties of the mirrors are imposed by an obliquely deposited metal film. The subsequent deposition of isotropic dielectric coatings ensures a high reflectance of visible light. Experiments were carried out on nickel and aluminium in combination with MgF2 and ZnS. At the 0.63 μm wavelength the reflectance was 98% and 95.5% for two linear polarisations of light incident on a mirror with a six-layer dielectric coating on an aluminium film.
Fabrication of SiO2-based microcantilevers by anisotropic chemical etching of (100 single crystal Si
VESNA JOVIC
2007-11-01
Full Text Available The undercutting process of thermal SiO2 microcantilevers with different orientations on (100 Si wafer was studied. The silicon substrate was removed by anisotropic chemical etching with a 25 wt. % aqueous solution of TMAH or a 30 wt. % aqueous KOH solution at 80 °C. It was found that oriented cantilevers were undercutting frontally along the length and oriented cantilevers experience undercutting along the width of the cantilever, which is a less time consuming process. The studies showed that the orientation of SiO2 microbridges enables theirs fabrication on a (100 oriented Si substrate.
Wang, Shuai; Wang, Yu; Zi, Yanyang; He, Zhengjia
2015-12-01
A generalized and efficient model for rotating anisotropic rotor-bearing systems is presented in this paper with full considerations of the system's anisotropy in stiffness, inertia and damping. Based on the 3D finite element model and the model order reduction method, the effects of anisotropy in shaft and bearings on the forced response and whirling of anisotropic rotor-bearing systems are systematically investigated. First, the coefficients of journal bearings are transformed from the fixed frame to the rotating one. Due to the anisotropy in shaft and bearings, the motion is governed by differential equations with periodically time-variant coefficients. Then, a free-interface complex component mode synthesis (CMS) method is employed to generate efficient reduced-order models (ROM) for the periodically time-variant systems. In order to solve the obtained equations, a variant of Hill's method for systems with multiple harmonic excitations is developed. Four dimensionless parameters are defined to quantify the types and levels of anisotropy of bearings. Finally, the effects of the four types of anisotropy on the forced response and whirl orbits are studied. Numerical results show that the anisotropy of bearings in stiffness splits the sole resonant peak into two isolated ones, but the anisotropy of bearings in damping coefficients mainly affect the response amplitudes. Moreover, the whirl orbits become much more complex when the shaft and bearings are both anisotropic. In addition, the cross-coupling stiffness coefficients of bearings significantly affect the dynamic behaviors of the systems and cannot be neglected, though they are often much smaller than the principle stiffness terms.
Anisotropic Stars II Stability
Dev, K; Dev, Krsna; Gleiser, Marcelo
2003-01-01
We investigate the stability of self-gravitating spherically symmetric anisotropic spheres under radial perturbations. We consider both the Newtonian and the full general-relativistic perturbation treatment. In the general-relativistic case, we extend the variational formalism for spheres with isotropic pressure developed by Chandrasekhar. We find that, in general, when the tangential pressure is greater than the radial pressure, the stability of the anisotropic sphere is enhanced when compared to isotropic configurations. In particular, anisotropic spheres are found to be stable for smaller values of the adiabatic index $\\gamma$.
The possible effect of cosmic ray particles on atmospheric chemistry and physics is highly debated. In most of the proposed models, the induced by cosmic rays atmospheric ionization plays an important role. While the contribution of Galactic cosmic ray particles to ion production is almost constant, the relativistic solar particles could produce a significant excess of ion pairs, specifically over polar caps following major solar eruptions. In general, this effect is strong at short time scales. The ground level enhancement GLE 59 on Bastille Day 14 of July 2000 is among the strongest recorded events during the solar cycle 23. The maximal ionization effect in the Earth atmosphere is computed for the polar and sub-polar region using Monte Carlo simulation of cosmic ray induced atmospheric cascade. The time evolution of the solar particle spectra is explicitly considered throughout the event. The simulations of atmospheric cascade are performed with the CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron generators and realistic summer atmospheric model. The ion rate in the atmosphere is obtained for various rigidity cut-offs, namely 1 GV, 2 GV and 3 GV, corresponding to polar and sub-polar regions. The application of the obtained results is discussed
Zhang Zhi-Dong; Chang Chun-Rui; Ma Dong-Lai
2009-01-01
Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model,in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals.We confirm in the thin hybrid nematic film the existence of a biaxially nonbent structure and the structarc transition from the biaxial to the bent-director structure,which is similar to the result obtained using the Lebwohl-Lasher model.However,the step-like director's profile,characteristic for the biaxial structure,is spatially asymmetric in the film because the pair potential leads to K1≠K3.We estimate the upper cell thickness to be 69 spin layers,in which the biaxial structure can be found.
Wang, Y. Y.; Song, C.; Cui, B.; Wang, G. Y.; Zeng, F.; Pan, F.
2012-09-01
We investigate the exchange coupling between perpendicular anisotropy (PMA) Co/Pt and IrMn in-plane antiferromagnets (AFMs), as well as tunneling anisotropic magnetoresistance (TAMR) in [Pt/Co]/IrMn/AlOx/Pt tunnel junctions, where Co/Pt magnetization drives rotation of AFM moments with the formation of exchange-spring twisting. When coupled with a PMA ferromagnet, the AFM moments partially rotate with out-of-plane magnetic fields, in contrast with being pinned along the easy direction of IrMn for in-plane fields. Because of the superior thermal tolerance of perpendicular exchange coupling and the stability of moments in ˜6nm-thick IrMn, TAMR gets significantly enhanced up to room temperature. Their use would advance the process towards practical AFM spintronics.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Xuesong Long; Xianghe Peng; Wenli Pi
2008-01-01
A pearlitic steel is composed of numerous pearlitic colonies with random orientations,and each colony consists of many parallel lamellas of ferrite and cementite.The constitutive behavior of this kind of materials may involve both inherent anisotropy and plastic deformation induced anisotropy.A description of the cyclic plasticity for this kind of dual-phase materials is proposed by use of a microstructure-based constitutive model for a pearlitic colony,and the Hill's self-consistent scheme incorporating anisotropic Eshelby tensor for ellipsoidal inclusions.The corresponding numerical algorithm is developed.The responses of pearlitic steel BS11 and single-phase hard-drawn copper subjected to asymmetrically cyclic loading are analyzed.The analytical results agree very well with experimental ones.Compared with the results using isotropic Eshelby tensor,it is shown that the isotropic approximation can provide acceptable overall responses in a much simpler way.
A new testing technique based on sampling phased arrays has been developed at Fraunhofer Institut. It permits the detection and quantitative analysis of defects in acoustically anisotropic and/or inhomogeneous materials amongst others. This testing technique relies on an expansion of the principle of synthetic aperture focussing (SAFT) with due consideration to material anisotropy and inhomogeneity (inverse phase adaptation). Since the characteristics of material anisotropy are generally not known, an additional algorithm for automatic determination the material's elastic properties was developed. The new testing technique permits quantitative ultrasonic testing of austenitic weld seams and dissimilar metal weld seams in a single scan with two and three-dimensional location-related representation of test results and reliable data on the size, type and location of defects.
Yisu Lu
2014-01-01
Full Text Available Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.
Palii, Andrei V; Reu, Oleg S; Ostrovsky, Sergei M; Klokishner, Sophia I; Tsukerblat, Boris S; Sun, Zhong-Ming; Mao, Jiang-Gao; Prosvirin, Andrey V; Zhao, Han-Hua; Dunbar, Kim R
2008-11-01
In this article we report for the first time experimental details concerning the synthesis and full characterization (including the single-crystal X-ray structure) of the spin-canted zigzag-chain compound [Co(H2L)(H2O)]infinity [L = 4-Me-C6H4-CH2N(CPO3H2)2], which contains antiferromagnetically coupled, highly magnetically anisotropic Co(II) ions with unquenched orbital angular momenta, and we also propose a new model to explain the single-chain magnet behavior of this compound. The model takes into account (1) the tetragonal crystal field and the spin-orbit interaction acting on each Co(II) ion, (2) the antiferromagnetic Heisenberg exchange between neighboring Co(II) ions, and (3) the tilting of the tetragonal axes of the neighboring Co units in the zigzag structure. We show that the tilting of the anisotropy axes gives rise to spin canting and consequently to a nonvanishing magnetization for the compound. In the case of a strong tetragonal field that stabilizes the orbital doublet of Co(II), the effective pseudo-spin-1/2 Hamiltonian describing the interaction between the Co ions in their ground Kramers doublet states is shown to be of the Ising type. An analytical expression for the static magnetic susceptibility of the infinite spin-canted chain is obtained. The model provides an excellent fit to the experimental data on both the static and dynamic magnetic properties of the chain. PMID:18839950
Kwon, B.; Sakuraba, Y., E-mail: Yuya.Sakuraba@nims.go.jp; Sukegawa, H.; Li, S.; Furubayashi, T. [National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Qu, G.; Hono, K. [National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Graduate School Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)
2016-01-14
We fabricated (001)-oriented C1{sub b}-NiMnSb epitaxial films on MgO substrate by a magnetron sputtering system and systematically investigated the structure, magnetic property, and anisotropic magnetoresistance (AMR) effect. NiMnSb film was deposited using a stoichiometric NiMnSb target which has Mn-deficient (Mn ∼ 28.7 at. %) off-stoichiometric composition ratio. We have investigated bulk spin-polarization in NiMnSb films by measuring AMR on the basis of recent study for half-metallic L2{sub 1}-Heusler compounds. Although the negative sign of AMR ratio, which is indicative of half-metallic nature, was observed in the single layer NiMnSb films, the magnitude of AMR ratio (−0.10% at RT) was about half of the largest value reported for half-metallic L2{sub 1}-Heusler compounds. The current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) devices of NiMnSb/Ag/NiMnSb show MR ratio of 13.2% at 10 K and 4.2% at 300 K, which is higher than the previous result for NiMnSb/Cu/NiMnSb CPP-GMR devices [Caballero et al., J. Magn. Magn. Mater. 198–199, 55 (1999)], but much less than the CPP-GMR using L2{sub 1}-Heusler electrodes. The reduction of intrinsic bulk spin-polarization originating from the Mn-deficiency in NiMnSb layer is expected to be the main reason for small MR values.
Highlights: • Microstructure evolution and its influence on the magnetic properties were investigated. • The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. • The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. • Magnetic properties and temperature coefficient of coercivity are indeed very promising without heavy rare earth elements. -- Abstract: Anisotropic magnets were prepared by spark plasma sintering (SPS) followed by hot deformation (HD) using melt-spun powders as the starting material. Good magnetic properties with the remanence Jr > 1.32 T and maximum of energy product (BH)max > 303 kJ/m3 have been obtained. The microstructure evolution during HD and its influence on the magnetic properties were investigated. The fine grain zone and coarse grain zone formed in the SPS showed different deformation behaviors. The microstructure also had an important effect on the temperature coefficients of coercivity. A strong domain-wall pinning model was valid to interpret the coercivity mechanism of the HDed magnets. The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. The polarization characteristics of HDed magnets were demonstrated. It was found out that the HDed magnets had better corrosion resistance than the counterpart sintered magnet
Averaging anisotropic cosmologies
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of anisotropic pressure-free models. Adopting the Buchert scheme, we recast the averaged scalar equations in Bianchi-type form and close the standard system by introducing a propagation formula for the average shear magnitude. We then investigate the evolution of anisotropic average vacuum models and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. The presence of nonzero average shear in our equations also allows us to examine the constraints that a phase of backreaction-driven accelerated expansion might put on the anisotropy of the averaged domain. We close by assessing the status of these and other attempts to define and calculate 'average' spacetime behaviour in general relativity
Anisotropic Metamaterial Optical Fibers
Pratap, Dheeraj; Pollock, Justin G; Iyer, Ashwin K
2014-01-01
Internal physical structure can drastically modify the properties of waveguides: photonic crystal fibers are able to confine light inside a hollow air core by Bragg scattering from a periodic array of holes, while metamaterial loaded waveguides for microwaves can support propagation at frequencies well below cutoff. Anisotropic metamaterials assembled into cylindrically symmetric geometries constitute light-guiding structures that support new kinds of exotic modes. A microtube of anodized nanoporous alumina, with nanopores radially emanating from the inner wall to the outer surface, is a manifestation of such an anisotropic metamaterial optical fiber. The nanopores, when filled with a plasmonic metal such as silver or gold, greatly increase the electromagnetic anisotropy. The modal solutions in anisotropic circular waveguides can be uncommon Bessel functions with imaginary orders.
Variations of parameters of cosmic ray rigidity spectrum during GLE of September 29, 1989
The universal expression for the differential rigid spectrum, making it possible to describe the observed protons spectra within the range from the MeV units up to the tens of GeV for the wide class of events is obtained within the frames of the model of the cosmic rays modulation through the regular electromagnetic fields of the ionosphere in the basis of the Liouville theorem. The parameters of the obtained spectrum are determined through the data of the land-based and satellite measurements during the solar proton event on September 29, 1989
Enhancement of non-resonant dielectric cloaks using anisotropic composites
Takezawa, Akihiro
2014-01-01
The effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, they can be efficiently designed by handling the physical properties of anisotropic materials directly. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 10% compared with existing multilayer cloaking by isotropic materials in eight-layer cylindrical cloaking materials. The same performance with eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using anisotropic materials. Cloaking with a about 50% reduct...
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Pérez-Nadal, Guillem
2016-01-01
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates "scaling like time" is generically greater than one. We propose the Cartesian product of two curved spaces, with the metric of each space parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry.
On the Newtonian anisotropic configurations
Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Fazel, M.R.; Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Sciences, Tehran (Iran, Islamic Republic of)
2015-06-15
In this paper we are concerned with the effects of an anisotropic pressure on the boundary conditions of the anisotropic Lane-Emden equation and the homology theorem. Some new exact solutions of this equation are derived. Then some of the theorems governing the Newtonian perfect fluid star are extended, taking the anisotropic pressure into account. (orig.)
B B Bhowmik; A Rajput
2004-06-01
Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.
Dynamics of Anisotropic Universes
Pérez, J
2006-01-01
We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in some precise sence.
Interpolation theory of anisotropic finite elements and applications
2008-01-01
Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.
Interpolation theory of anisotropic finite elements and applications
CHEN ShaoChun; XIAO LiuChao
2008-01-01
Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.
Grechnev, V V
2016-01-01
Ground Level Enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Due to their rareness, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited its understanding. Analysis of extra observations found for this event provided new results shading light on the flare. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30-05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK...
Doblaré, M; García, J M
2001-09-01
In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (García, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This
This is part I of a series of two papers dedicated to the presentation of a novel, large throughput, experimental procedure to determine the three-dimensional distribution of the etch rate of silicon in a wide range of anisotropic etchants, including a total of 30 different etching conditions in KOH, KOH+IPA, TMAH and TMAH+Triton solutions at various concentrations and temperatures. The method is based on the use of previously reported, vertically micromachined wagon wheels (WWs) (Wind and Hines 2000 Surf. Sci. 460 21–38; Nguyen and Elwenspoek 2007 J. Electrochem. Soc. 154 D684–91), focusing on speeding up the etch rate extraction process for each WW by combining macrophotography and image processing procedures. The proposed procedure positions the WWs as a realistic alternative to the traditional hemispherical specimen. The obtained, extensive etch rate database is used to perform wet etching simulations of advanced systems, showing good agreement with the experimental counterparts. In part II of this series (Gosálvez et al J. Micromech. Microeng. 21 125008), we provide a theoretical analysis of the etched spoke shapes, a detailed comparison to the etch rates from previous studies and a self-consistency study of the measured etch rates against maximum theoretical values derived from the spoke shape analysis.
Gosálvez, M. A.; Pal, Prem; Ferrando, N.; Hida, H.; Sato, K.
2011-12-01
This is part I of a series of two papers dedicated to the presentation of a novel, large throughput, experimental procedure to determine the three-dimensional distribution of the etch rate of silicon in a wide range of anisotropic etchants, including a total of 30 different etching conditions in KOH, KOH+IPA, TMAH and TMAH+Triton solutions at various concentrations and temperatures. The method is based on the use of previously reported, vertically micromachined wagon wheels (WWs) (Wind and Hines 2000 Surf. Sci. 460 21-38 Nguyen and Elwenspoek 2007 J. Electrochem. Soc. 154 D684-91), focusing on speeding up the etch rate extraction process for each WW by combining macrophotography and image processing procedures. The proposed procedure positions the WWs as a realistic alternative to the traditional hemispherical specimen. The obtained, extensive etch rate database is used to perform wet etching simulations of advanced systems, showing good agreement with the experimental counterparts. In part II of this series (Gosálvez et al J. Micromech. Microeng. 21 125008), we provide a theoretical analysis of the etched spoke shapes, a detailed comparison to the etch rates from previous studies and a self-consistency study of the measured etch rates against maximum theoretical values derived from the spoke shape analysis.
Abedini, M. J.; Nasseri, M.; Burn, D. H.
2012-04-01
In any geostatistical study, an important consideration is the choice of an appropriate, repeatable, and objective search strategy that controls the nearby samples to be included in the location-specific estimation procedure. Almost all geostatistical software available in the market puts the onus on the user to supply search strategy parameters in a heuristic manner. These parameters are solely controlled by geographical coordinates that are defined for the entire area under study, and the user has no guidance as to how to choose these parameters. The main thesis of the current study is that the selection of search strategy parameters has to be driven by data—both the spatial coordinates and the sample values—and cannot be chosen beforehand. For this purpose, a genetic-algorithm-based ordinary kriging with moving neighborhood technique is proposed. The search capability of a genetic algorithm is exploited to search the feature space for appropriate, either local or global, search strategy parameters. Radius of circle/sphere and/or radii of standard or rotated ellipse/ellipsoid are considered as the decision variables to be optimized by GA. The superiority of GA-based ordinary kriging is demonstrated through application to the Wolfcamp Aquifer piezometric head data. Assessment of numerical results showed that definition of search strategy parameters based on both geographical coordinates and sample values improves cross-validation statistics when compared with that based on geographical coordinates alone. In the case of a variable search neighborhood for each estimation point, optimization of local search strategy parameters for an elliptical support domain—the orientation of which is dictated by anisotropic axes—via GA was able to capture the dynamics of piezometric head in west Texas/New Mexico in an efficient way.
Fractures in anisotropic media
Shao, Siyi
Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The
Molecular anisotropic magnetoresistance
Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy
2015-01-01
Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by $3d$ transition-metal wires. We show that the gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symm...
Extremely Anisotropic Scintillations
Walker, Mark; Bignall, Hayley
2008-01-01
A small number of quasars exhibit interstellar scintillation on time-scales less than an hour; their scintillation patterns are all known to be anisotropic. Here we consider a totally anisotropic model in which the scintillation pattern is effectively one-dimensional. For the persistent rapid scintillators J1819+3845 and PKS1257-326 we show that this model offers a good description of the two-station time-delay measurements and the annual cycle in the scintillation time-scale. Generalising the model to finite anisotropy yields a better match to the data but the improvement is not significant and the two additional parameters which are required to describe this model are not justified by the existing data. The extreme anisotropy we infer for the scintillation patterns must be attributed to the scattering medium rather than a highly elongated source. For J1819+3845 the totally anisotropic model predicts that the particular radio flux variations seen between mid July and late August should repeat between late Au...
A Morphing framework to couple non-local and local anisotropic continua
Azdoud, Yan
2013-05-01
In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.
Electromagnetism on anisotropic fractal media
Ostoja-Starzewski, Martin
2013-04-01
Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.
Vinogradov, A V; Milichko, V A; Zaake-Hertling, H; Aleksovska, A; Gruschinski, S; Schmorl, S; Kersting, B; Zolnhofer, E M; Sutter, J; Meyer, K; Lönnecke, P; Hey-Hawkins, E
2016-05-01
A highly stable metal-organic framework, [{Fe3(ACTBA)2}X·6DEF]n (1; X = monoanion), based on trinuclear iron(iii) secondary building units connected by tetracarboxylates with an anthracene core, 2,6,9,10-tetrakis(p-carboxylatophenyl)anthracene (ACTBA), is reported. Depending on the direction of light polarisation, crystals of 1 exhibit anisotropic optical properties with birefringence Δn = 0.3 (λ = 590 nm). PMID:26906040
A generalized anisotropic deformation formulation for geomaterials
Lei, Z.; Rougier, Esteban; Knight, E. E.; Munjiza, A.; Viswanathan, H.
2016-04-01
In this paper, the combined finite-discrete element method (FDEM) has been applied to analyze the deformation of anisotropic geomaterials. In the most general case geomaterials are both non-homogeneous and non-isotropic. With the aim of addressing anisotropic material problems, improved 2D FDEM formulations have been developed. These formulations feature the unified hypo-hyper elastic approach combined with a multiplicative decomposition-based selective integration for volumetric and shear deformation modes. This approach is significantly different from the co-rotational formulations typically encountered in finite element codes. Unlike the co-rotational formulation, the multiplicative decomposition-based formulation naturally decomposes deformation into translation, rotation, plastic stretches, elastic stretches, volumetric stretches, shear stretches, etc. This approach can be implemented for a whole family of finite elements from solids to shells and membranes. This novel 2D FDEM based material formulation was designed in such a way that the anisotropic properties of the solid can be specified in a cell by cell basis, therefore enabling the user to seed these anisotropic properties following any type of spatial variation, for example, following a curvilinear path. In addition, due to the selective integration, there are no problems with volumetric or shear locking with any type of finite element employed.
Messier, K. P.; Serre, M. L.
2015-12-01
Radon (222Rn) is a naturally occurring chemically inert, colorless, and odorless radioactive gas produced from the decay of uranium (238U), which is ubiquitous in rocks and soils worldwide. Exposure to 222Rn is likely the second leading cause of lung cancer after cigarette smoking via inhalation; however, exposure through untreated groundwater is also a contributing factor to both inhalation and ingestion routes. A land use regression (LUR) model for groundwater 222Rn with anisotropic geological and 238U based explanatory variables is developed, which helps elucidate the factors contributing to elevated 222Rn across North Carolina. Geological and uranium based variables are constructed in elliptical buffers surrounding each observation such that they capture the lateral geometric anisotropy present in groundwater 222Rn. Moreover, geological features are defined at three different geological spatial scales to allow the model to distinguish between large area and small area effects of geology on groundwater 222Rn. The LUR is also integrated into the Bayesian Maximum Entropy (BME) geostatistical framework to increase accuracy and produce a point-level LUR-BME model of groundwater 222Rn across North Carolina including prediction uncertainty. The LUR-BME model of groundwater 222Rn results in a leave-one out cross-validation of 0.46 (Pearson correlation coefficient= 0.68), effectively predicting within the spatial covariance range. Modeled results of 222Rn concentrations show variability among Intrusive Felsic geological formations likely due to average bedrock 238U defined on the basis of overlying stream-sediment 238U concentrations that is a widely distributed consistently analyzed point-source data.
Anisotropic conductivity tensor imaging using magnetic induction tomography
Magnetic induction tomography aims to reconstruct the electrical conductivity distribution of the human body using non-contact measurements. The potential of the method has been demonstrated by various simulation studies and a number of phantom experiments. These studies have all relied on models having isotropic distributions of conductivity, although the human body has a highly heterogeneous structure with partially anisotropic properties. Therefore, whether the conventional modeling approaches used so far are appropriate for clinical applications or not is still an open question. To investigate the problem, we performed a simulation study to investigate the feasibility of (1) imaging anisotropic perturbations within an isotropic medium and (2) imaging isotropic perturbations inside a partially anisotropic background. The first is the case for the imaging of anomalies that have anisotropic characteristics and the latter is the case e.g. in lung imaging where an anisotropic skeletal muscle tissue surrounds the lungs and the rib cage. An anisotropic solver based on the singular value decomposition was used to attain conductivity tensor images to be compared with the ones obtained from isotropic solvers. The results indicate the importance of anisotropic modeling in order to obtain satisfactory reconstructions, especially for the imaging of the anisotropic anomalies, and address the resolvability of the conductivity tensor components
Model anisotropic quantum Hall states
Qiu, R. -Z.; Haldane, F.D.M.; Wan, Xin; Yang, Kun; Yi, Su
2012-01-01
Model quantum Hall states including Laughlin, Moore-Read and Read-Rezayi states are generalized into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding anisotropic two- or multi-body Hamiltonians, and explicitly illustrate the existence of geometric degrees of in the fractional quantum Hall effect. These generalized model quantum Hall states can provide a good description of the quantum Hall system with anisotropic interactions. Some numeri...
Letícia Streck
2016-06-01
Full Text Available Previous studies reported low benznidazole (BNZ loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR and oil-to-water ratio w/w (OWR change the phase behavior of different lipid-based drug delivery systems (LBDDS produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16 stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4 were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment.
Streck, Letícia; Sarmento, Víctor H. V.; Machado, Paula R. L.; Farias, Kleber J. S.; Fernandes-Pedrosa, Matheus F.; da Silva-Júnior, Arnóbio Antônio
2016-01-01
Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment. PMID:27376278
Streck, Letícia; Sarmento, Víctor H V; Machado, Paula R L; Farias, Kleber J S; Fernandes-Pedrosa, Matheus F; da Silva-Júnior, Arnóbio Antônio
2016-01-01
Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment. PMID:27376278
On the Relativistic anisotropic configurations
Shojai, F; Stepanian, A
2016-01-01
In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov (TOV) equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behaviour of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.
Sergey F Pravdin
Full Text Available We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers on wave propagation using the ten Tusscher-Panfilov (2006 ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.
Relaxation of Anisotropic Glasses
Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar; Yue, Yuanzheng
2004-01-01
Anisotropic glasses are obtained from uniaxial compressing and pulling of glass forming liquids above the transition temperature range. To freeze-in, at least partly the structural state of the flowing melt, cylindrical samples were subjected to a controlled cooling process under constant load...... differential scanning calorimetry (DSC) and dilatometry. The energy release and expansion-shrinkage behaviour of the glasses are investigated as a function of the applied deformation stress. Structural origins of the frozen-in birefringence induced by viscous flow are discussed and correlation between the...
Anisotropically Inflating Universes
Barrow, J D; Barrow, John D.; Hervik, Sigbjorn
2008-01-01
We show that in theories of gravity that add quadratic curvature invariants to the Einstein-Hilbert action there exist expanding vacuum cosmologies with positive cosmological constant which do not approach the de Sitter universe. Exact solutions are found which inflate anisotropically. This behaviour is driven by the Ricci curvature invariant and has no counterpart in the general relativistic limit. These examples show that the cosmic no-hair theorem does not hold in these higher-order extensions of general relativity and raises new questions about the ubiquity of inflation in the very early universe and the thermodynamics of gravitational fields.
Anisotropic Stars Exact Solutions
Dev, K; Dev, Krsna; Gleiser, Marcelo
2000-01-01
We study the effects of anisotropic pressure on the properties of spherically symmetric, gravitationally bound objects. We consider the full general relativistic treatment of this problem and obtain exact solutions for various form of equations of state connecting the radial and tangential pressures. It is shown that pressure anisotropy can have significant effects on the structure and properties of stellar objects. In particular, the maximum value of 2M/R can approach unity (2M/R < 8/9 for isotropic objects) and the surface redshift can be arbitrarily large.
Optics of anisotropic nanostructures
Rokushima, Katsu; Antoš, Roman; Mistrík, Jan; Višňovský, Štefan; Yamaguchi, Tomuo
2006-07-01
The analytical formalism of Rokushima and Yamakita [J. Opt. Soc. Am. 73, 901-908 (1983)] treating the Fraunhofer diffraction in planar multilayered anisotropic gratings proved to be a useful introduction to new fundamental and practical situations encountered in laterally structured periodic (both isotropic and anisotropic) multilayer media. These are employed in the spectroscopic ellipsometry for modeling surface roughness and in-depth profiles, as well as in the design of various frequency-selective elements including photonic crystals. The subject forms the basis for the solution of inverse problems in scatterometry of periodic nanostructures including magnetic and magneto-optic recording media. It has no principal limitations as for the frequencies and period to radiation wavelength ratios and may include matter wave diffraction. The aim of the paper is to make this formalism easily accessible to a broader community of students and non-specialists. Many aspects of traditional electromagnetic optics are covered as special cases from a modern and more general point of view, e.g., plane wave propagation in isotropic media, reflection and refraction at interfaces, Fabry-Perot resonator, optics of thin films and multilayers, slab dielectric waveguides, crystal optics, acousto-, electro-, and magneto-optics, diffraction gratings, etc. The formalism is illustrated on a model simulating the diffraction on a ferromagnetic wire grating.
Anisotropic spheres in general relativity
A prescription originally conceived for perfect fluids is extended to the case of anisotropic pressures. The method is used to obtain exact analytical solutions of the Einstein equations for spherically symmetric selfgravitating distribution of anisotropic matter. The solutions are matched to the Schwarzschild exterior metric. (author). 15 refs
Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing
2016-08-01
Rytov theory was employed to establish the transmission model for the optical vortices carried by Bessel-Gaussian (BG) beams in weak anisotropic turbulence based on the generalized anisotropic von Karman spectrum. The influences of asymmetry anisotropic turbulence eddies and source parameters on the signal orbital angular momentum (OAM) mode detection probability of partially coherent BG beams in anisotropic turbulence were discussed. Anisotropic characteristics of the turbulence could enhance the OAM mode transmission performance. The spatial partially coherence of the beam source would increase turbulent aberration's effect on the optical vortices. BG beams could dampen the influences of the turbulence because of their nondiffraction and self-healing characteristics. PMID:27505641
The Anisotropic Geometrodynamics For Cosmology
Siparov, Sergey V.
2009-05-01
The classical geometrodynamics (GRT) and its modern features based on the use of the Fridman-Robertson-Walker type metrics are still unable to explain several important issues of extragalactic observations like flat rotation curves of the spiral galaxies, Tully-Fisher law, globular clusters behavior in comparisson to that of the stars belonging to the galactic plane etc. The chalenging problem of the Universe expansion acceleration stemming from the supernovae observations demands the existence of the repulsion forces which brings one to the choice between the cosmological constant and some quintessence. The popular objects of discussion are now still dark (matter and energy), nevertheless, they are supposed to correspond to more than 95% of the Universe which seems to be far from satisfactory. According to the equivalence principle we can not experimentally distinguish between the inertial forces and the gravitational ones. Since there exist the inertial forces depending on velocity (Coriolis), it seems plausible to explore the velocity dependent gravitational forces. From the mathematical point of view it means that we should use the anisotropic metric. It immediately turns out that the expression for the Einstein-Hilbert action changes in a natural way - contrary to the cases of f(R)-theories, additional scalar fields, arbitrary MOND functions etc.. We use the linear approximation for the metric and derive the generalized geodesics and the equation for the gravity force that contains not only the Newton-Einstein term. The relation between the obtained results and those of Lense-Thirring approach are discussed. The resulting anisotropic geometrodynamics includes all the results of the GRT and is used to give the explanation to the problems mentioned above. One of the impressive consequences is the possibility to explain the observed Hubble red shift not by the Doppler effect as usually but by the gravitational red shift originating from the metric anisotropy.
Anisotropic Cosmological Model with Variable G and Lambda
Tripathy, S K; Routray, T R
2015-01-01
Anisotropic Bianchi-III cosmological model is investigated with variable gravitational and cosmological constants in the framework of Einstein's general relativity. The shear scalar is considered to be proportional to the expansion scalar. The dynamics of the anisotropic universe with variable G and Lambda are discussed. Without assuming any specific forms for Lambda and the metric potentials, we have tried to extract the time variation of G and Lambda from the anisotropic model. The extracted G and Lambda are in conformity with the present day observation. Basing upon the observational limits, the behaviour and range of the effective equation of state parameter are discussed.
Q-factor and absorption enhancement for plasmonic anisotropic nanoparticles
Liu, Wei; Miroshnichenko, Andrey E
2016-01-01
We investigate the scattering and absorption properties of anisotropic metal-dielectric core-shell nanoparticles. It is revealed that the radially anisotropic dielectric layer can accelerate the evanescent decay of the localized resonant surface modes, leading to Q-factor and absorption rate enhancement. Moreover, the absorption cross section can be maximized to reach the single resonance absorption limit. We further show that such artificial anisotropic cladding materials can be realized by isotropic layered structures, which may inspire many applications based on scattering and absorption of plasmonic nanoparticles.
Prediction on instability in planar anisotropic sheet metal forming processes
In this paper instability of planar anisotropic sheet metal during a few forming processes is investigated for the time. For this reason components of the constitutive tangent tensor for planar anisotropic sheets are developed. By using the above tensor location of necking is predicted. Direction of the shear band is also predicted using the acoustic tensor. A finite element program is prepared based on large deformations of planar anisotropic sheet metals. In this program rotations of principal directions of anisotropy are also taken in to account. Results obtained from the presented model are in good agreement with experimental observations
Thermodynamics of anisotropic branes
Ávila, Daniel; Patiño, Leonardo; Trancanelli, Diego
2016-01-01
We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a `Minkowski embedding', in which they lie outside of the horizon, and a `black hole embedding', in which they fall into the horizon. This transition depends on two independent dimensionless ratios, which are formed out of the black hole temperature, its anisotropy parameter, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.
Enhancement of non-resonant dielectric cloaks using anisotropic composites
Cloaking techniques conceal objects by controlling the flow of electromagnetic waves to minimize scattering. Herein, the effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, anisotropic materials can be efficiently designed through optimization of their physical properties. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 2.8% and 25% in eight- and three-layer cylindrical cloaking materials, respectively, compared with multilayer cloaking by isotropic materials. In all cloaking examples, the optimized microstructures of the two-phase composites are identified as the simple lamination of two materials, which maximizes the anisotropy. The same performance as published for eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using the anisotropic material. Cloaking with an approximately 50% reduction of total scattering width is achieved even in an octagonal object. Since the cloaking effect can be realized using just a few layers of the laminated anisotropic dielectric composite, this may have an advantage in the mass production of cloaking devices
Enhancement of non-resonant dielectric cloaks using anisotropic composites
Takezawa, Akihiro, E-mail: akihiro@hiroshima-u.ac.jp; Kitamura, Mitsuru [Division of Mechanical Systems and Applied Mechanics, Institute of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima (Japan)
2014-01-15
Cloaking techniques conceal objects by controlling the flow of electromagnetic waves to minimize scattering. Herein, the effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, anisotropic materials can be efficiently designed through optimization of their physical properties. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 2.8% and 25% in eight- and three-layer cylindrical cloaking materials, respectively, compared with multilayer cloaking by isotropic materials. In all cloaking examples, the optimized microstructures of the two-phase composites are identified as the simple lamination of two materials, which maximizes the anisotropy. The same performance as published for eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using the anisotropic material. Cloaking with an approximately 50% reduction of total scattering width is achieved even in an octagonal object. Since the cloaking effect can be realized using just a few layers of the laminated anisotropic dielectric composite, this may have an advantage in the mass production of cloaking devices.
Enhancement of non-resonant dielectric cloaks using anisotropic composites
Akihiro Takezawa
2014-01-01
Full Text Available Cloaking techniques conceal objects by controlling the flow of electromagnetic waves to minimize scattering. Herein, the effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, anisotropic materials can be efficiently designed through optimization of their physical properties. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 2.8% and 25% in eight- and three-layer cylindrical cloaking materials, respectively, compared with multilayer cloaking by isotropic materials. In all cloaking examples, the optimized microstructures of the two-phase composites are identified as the simple lamination of two materials, which maximizes the anisotropy. The same performance as published for eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using the anisotropic material. Cloaking with an approximately 50% reduction of total scattering width is achieved even in an octagonal object. Since the cloaking effect can be realized using just a few layers of the laminated anisotropic dielectric composite, this may have an advantage in the mass production of cloaking devices.
Enhancement of non-resonant dielectric cloaks using anisotropic composites
Takezawa, Akihiro; Kitamura, Mitsuru
2014-01-01
Cloaking techniques conceal objects by controlling the flow of electromagnetic waves to minimize scattering. Herein, the effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, anisotropic materials can be efficiently designed through optimization of their physical properties. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 2.8% and 25% in eight- and three-layer cylindrical cloaking materials, respectively, compared with multilayer cloaking by isotropic materials. In all cloaking examples, the optimized microstructures of the two-phase composites are identified as the simple lamination of two materials, which maximizes the anisotropy. The same performance as published for eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using the anisotropic material. Cloaking with an approximately 50% reduction of total scattering width is achieved even in an octagonal object. Since the cloaking effect can be realized using just a few layers of the laminated anisotropic dielectric composite, this may have an advantage in the mass production of cloaking devices.
Chen, M.; Niu, F.; Liu, Q.; Tromp, J.
2015-12-01
EARA2014 -a 3-D radially anisotropic model of the crust and mantle beneath East Asia down to 900 km depth- is developed by adjoint tomography based on a spectral element method. The data set used for the inversion comprises 1.7 million frequency-dependent traveltime measurements from waveforms of 227 earthquakes recorded by 1869 stations. After 20 iterations, the new model (named EARA2014) exhibits sharp and detailed wave speed anomalies with improved correlations with surface tectonic units compared to previous models. As part of tectonic interpretations of EARA2014, we investigated the seismic wavespeed anomalies beneath two prominent uplifted regions in East Asia: (1) Hangai Dome, an intra-continental low-relief surface with more than 2 km elevation in central Mongolia, and (2) Tibetan Plateau, a vast continental-margin surface with an average elevation of 4.5 km in west China. We discover beneath Hangai Dome a deep low shear wavespeed (low-V) conduit indicating a slightly warmer (54 K-127 K) upwelling from the transition zone. We propose that the mantle upwelling induced decompression melting in the uppermost mantle and that excess heat associated with melt transport modified the lithosphere that isostatically compensates the surface uplift of Hangai Dome at upper mantle depths (> 80 km). On the other hand, we observe no discernable focused deep mantle upwelling directly beneath Tibetan Plateau, which is instead dominated by a strong high-V structure, appearing below 100 km depth and extending to the bottom of the mantle transition zone. However, we find a very strong and localized low-V anomaly beneath the Tibetan Plateau in the crust and uppermost mantle (at depths of ~50 km and 100 km) mainly confined within the Songpan Ganzi Fold Belt and the northern Qiangtang Block. This low-V anomaly is spatially linked to a low-V anomaly beneath the Chuandian Block in the same depth range, which is fed by a deep mantle upwelling directly beneath Hainan Volcano in south
Anisotropic Inflation with General Potentials
Shi, Jiaming; Qiu, Taotao
2015-01-01
Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.
Dynamical 3-Space: Anisotropic Brownian Motion Experiment
Cahill R. T.
2015-01-01
In 2014 Jiapei Dai reported evidence of anisotropic Brownian motion of a toluidine blue colloid solution in water. In 2015 Felix Scholkmann analysed the Dai data and detected a sidereal time dependence, indicative of a process driving the preferred Brownian mo- tion diffusion direction to a star-based preferred direction. Here we further analyse the Dai data and extract the RA and Dec of that preferred direction, and relate the data to previous determinations from NASA Spacecr...
Thermal fluctuations and critical behavior in a magnetized, anisotropic plasma
Hazeltine, R. D.; Mahajan, S. M. [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)
2013-12-15
Thermal fluctuations in a magnetized, anisotropic plasma are studied by applying standard methods, based on the Einstein rule, to the known thermodynamic potential of the system. It is found in particular that magnetic fluctuations become critical when the anisotropy p{sub ∥}−p{sub ⊥} changes sign. By examining the critical region, additional insight on the equations of state for near-critical anisotropic plasma is obtained.
Hybrid anisotropic materials for wind power turbine blades
Golfman, Yosif
2012-01-01
Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades. This boo
Mironov, VS; Chibotaru, Liviu; Ceulemans, Arnout
2003-01-01
Unusual spin coupling between Mo-III and Mn-II cyano-bridged ions in bimetallic molecular magnets based on the [Mo-III(CN)(7)](4-) heptacyanometalate is analyzed in terms of the superexchange theory. Due to the orbital degeneracy and strong spin-orbit coupling on Mo-III, the ground state of the pentagonal-bipyramidal [Mo-III(CN)(7)](4-) complex corresponds to an anisotropic Kramers doublet. Using a specially adapted kinetic exchange model we have shown that the Mo-III-CN-Mn-II superexchange i...
Photon states in anisotropic media
Deepak Kumar
2002-08-01
Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.
Application of Anisotropic Texture Components
Eschner, Th.; Fundenberger, J.-J.
1997-01-01
The description of textures in terms of texture components is an established conception in quantitative texture analysis. Recent developments lead to the representation of orientation distribution functions as a weighted sum of model functions, each corresponding to one anisotropic texture component. As was shown previously, an adequate texture description is possible with only a very small number of anisotropic texture components. As a result, textures and texture changes can be described by...
Autofocus imaging: Experimental results in an anisotropic austenitic weld
Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.; Hunter, A.
2012-05-01
The quality of an ultrasonic array image, especially for anisotropic material, depends on accurate information about acoustic properties. Inaccuracy of acoustic properties causes image degradation, e.g., blurring, errors in locating of reflectors and introduction of artifacts. In this paper, for an anisotropic austenitic steel weld, an autofocus imaging technique is presented. The array data from a series of beacons is captured and then used to statistically extract anisotropic weld properties by using a Monte-Carlo inversion approach. The beacon and imaging systems are realized using two separated arrays; one acts as a series of beacons and the other images these beacons. Key to the Monte-Carlo inversion scheme is a fast forward model of wave propagation in the anisotropic weld and this is based on the Dijkstra algorithm. Using this autofocus approach a measured weld map was extracted from an austenitic weld and used to reduce location errors, initially greater than 6mm, to less than 1mm.
Wireless energy transfer between anisotropic metamaterials shells
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted
Recent progress in the understanding of the texture formation mechanism in the hydrogenation-disproportionation-desorption-recombination (HDDR) process, improvements of stability with regard to thermal and structural losses, and the state-of-the-art performance of both compression and injection molded magnets made from the newly developed anisotropic HDDR powders are reported. Transmission electron microscopy observations of disproportionated Nd endash Fe endash Co endash Ga endash Zr endash B alloys have revealed the existence of finely dispersed crystallites of Nd2(Fe,Co,Ga)14B which have a common crystallographic orientation. It is proposed that, upon removal of hydrogen, the hydrogen-disproportionated structure recombines from these crystallites to form textured submicron crystallites of the 2:14:1 phase. Using highly anisotropic HDDR powders, energy products (BH)max exceeding 170 kJ/m3 (21 MGOe) have been obtained on compression-molded resin-bonded magnets and 130 kJ/m3 (16 MGOe) on injection-molded ones. High coercivity HDDR powders with an intrinsic coercivity (HcJ) exceeding 1.27 MA/m (16 kOe) have also been obtained by replacing part of Nd with Dy, which enabled improvement of thermal stability. It is shown that the degradation of magnetic performance of resin-bonded HDDR magnets is prevented by eliminating pore formation during the molding process. copyright 1997 American Institute of Physics
Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass
Zhou, Xiaoming; Hu, Gengkai
2011-01-01
A metamaterial slab of anisotropic mass with one diagonal component being infinity and the other being zero is demonstrated to behave as a superlens for acoustic imaging beyond the diffraction limit. The underlying mechanism for extraordinary transmission of evanescent waves is attributed to the zero mass effect. Microstructure design for such anisotropic lens is also presented. In contrast to the anisotropic superlens based on Fabry-P\\'erot resonant mechanism, the proposed lens operates with...
Wang, Kang-Ning; Sun, Zan-Dong; Dong, Ning
2015-12-01
Economic shale gas production requires hydraulic fracture stimulation to increase the formation permeability. Hydraulic fracturing strongly depends on geomechanical parameters such as Young's modulus and Poisson's ratio. Fracture-prone sweet spots can be predicted by prestack inversion, which is an ill-posed problem; thus, regularization is needed to obtain unique and stable solutions. To characterize gas-bearing shale sedimentary bodies, elastic parameter variations are regarded as an anisotropic Markov random field. Bayesian statistics are adopted for transforming prestack inversion to the maximum posterior probability. Two energy functions for the lateral and vertical directions are used to describe the distribution, and the expectation-maximization algorithm is used to estimate the hyperparameters of the prior probability of elastic parameters. Finally, the inversion yields clear geological boundaries, high vertical resolution, and reasonable lateral continuity using the conjugate gradient method to minimize the objective function. Antinoise and imaging ability of the method were tested using synthetic and real data.
Foronda, F R; Lang, F; Möller, J S; Lancaster, T; Boothroyd, A T; Pratt, F L; Giblin, S R; Prabhakaran, D; Blundell, S J
2015-01-01
Although muon spin relaxation is commonly used to probe local magnetic order, spin freezing, and spin dynamics, we identify an experimental situation in which the measured response is dominated by an effect resulting from the muon-induced local distortion rather than the intrinsic behavior of the host compound. We demonstrate this effect in some quantum spin ice candidate materials Pr(2)B(2)O(7) (B=Sn, Zr, Hf), where we detect a static distribution of magnetic moments that appears to grow on cooling. Using density functional theory we show how this effect can be explained via a hyperfine enhancement arising from a splitting of the non-Kramers doublet ground states on Pr ions close to the muon, which itself causes a highly anisotropic distortion field. We provide a quantitative relationship between this effect and the measured temperature dependence of the muon relaxation and discuss the relevance of these observations to muon experiments in other magnetic materials. PMID:25615502
Maulik, Romit
2016-01-01
In this paper, we introduce a relaxation filtering closure approach to account for subgrid scale effects in explicitly filtered large eddy simulations using the concept of anisotropic diffusion. We utilize the Perona-Malik diffusion model and demonstrate its shock capturing ability and spectral performance for solving the Burgers turbulence problem, which is a simplified prototype for more realistic turbulent flows showing the same quadratic nonlinearity. Our numerical assessments present the behavior of various diffusivity functions in conjunction with a detailed sensitivity analysis with respect to the free modeling parameters. In comparison to direct numerical simulation (DNS) and under-resolved DNS results, we find that the proposed closure model is efficient in the prevention of energy accumulation at grid cut-off and is also adept at preventing any possible spurious numerical oscillations due to shock formation under the optimal parameter choices. In contrast to other relaxation filtering approaches, it...
Breast ultrasound despeckling using anisotropic diffusion guided by texture descriptors.
Gómez Flores, Wilfrido; Pereira, Wagner Coelho de Albuquerque; Infantosi, Antonio Fernando Catelli
2014-11-01
Breast ultrasound (BUS) is considered the most important adjunct method to mammography for diagnosing cancer. However, this image modality suffers from an intrinsic artifact called speckle noise, which degrades spatial and contrast resolution and obscures the screened anatomy. Hence, it is necessary to reduce speckle artifacts before performing image analysis by means of computer-aided diagnosis systems, for example. In addition, the trade-off between smoothing level and preservation of lesion contour details should be addressed by speckle reduction schemes. In this scenario, we propose a BUS despeckling method based on anisotropic diffusion guided by Log-Gabor filters (ADLG). Because we assume that different breast tissues have distinct textures, in our approach we perform a multichannel decomposition of the BUS image using Log-Gabor filters. Next, the conduction coefficient of anisotropic diffusion filtering is computed using texture responses instead of intensity values as stated originally. The proposed algorithm is validated using both synthetic and real breast data sets, with 900 and 50 images, respectively. The performance measures are compared with four existing speckle reduction schemes based on anisotropic diffusion: conventional anisotropic diffusion filtering (CADF), speckle-reducing anisotropic diffusion (SRAD), texture-oriented anisotropic diffusion (TOAD), and interference-based speckle filtering followed by anisotropic diffusion (ISFAD). The validity metrics are the Pratt's figure of merit, for synthetic images, and the mean radial distance (in pixels), for real sonographies. Figure of merit and mean radial distance indices should tend toward '1' and '0', respectively, to indicate adequate edge preservation. The results suggest that ADLG outperforms the four speckle removal filters compared with respect to simulated and real BUS images. For each method--ADLG, CADF, SRAD, TOAD and ISFAD--the figure of merit median values are 0.83, 0.40, 0.39, 0
Continuum mechanics of anisotropic materials
Cowin, Stephen C
2013-01-01
Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.
Superlens from complementary anisotropic metamaterials
Li, G. X.; Tam, H. L.; Wang, F. Y.; Cheah, K. W.
2007-12-01
Metamaterials with isotropic property have been shown to possess novel optical properties such as a negative refractive index that can be used to design a superlens. Recently, it was shown that metamaterials with anisotropic property can translate the high-frequency wave vector k values from evanescence to propagating. However, electromagnetic waves traveling in single-layer anisotropic metamaterial produce diverging waves of different spatial frequency. In this work, it is shown that, using bilayer metamaterials that have complementary anisotropic property, the diverging waves are recombined to produce a subwavelength image, i.e., a superlens device can be designed. The simulation further shows that the design can be achieved using a metal/oxide multilayer, and a resolution of 30 nm can be easily obtained in the optical frequency range.
Quantitative Permeability Prediction for Anisotropic Porous Media
Sheng, Q.; Thompson, K. E.
2012-12-01
Pore-scale modeling as a predictive tool has become an integral to both research and commercial simulation in recent years. Permeability is one of the most important of the many properties that can be simulated. Traditionally, permeability is determined using Darcy's law, based on the assumption that the pressure gradient is aligned with the principal flow direction. However, a wide variety of porous media exhibit anisotropic permeability due to particle orientation or laminated structure. In these types of materials, the direction of fluid flow is not aligned with the pressure gradient (except along the principal directions). Thus, it is desirable to predict the full permeability tensor for anisotropic materials using a first-principles pore-scale approach. In this work, we present a fast method to determine the full permeability tensor and the principal directions using a novel network modeling algorithm. We also test the ability of network modeling (which is an approximate method) to detect anisotropy in various structures. Both computational fluid dynamics (CFD) methods and network modeling have emerged as effective techniques to predict rock properties. CFD models are more rigorous but computationally expensive. Network modeling involves significant approximations but can be orders-of-magnitude more efficient computationally, which is important for both speed and the ability to model larger scales. This work uses network modeling, with simulations performed on two types of anisotropic materials: laminated packings (with layers of different sized particles) and oriented packings (containing particles with preferential orientation). Pore network models are created from the porous media data, and a novel method is used to determine the permeability tensor and principal flow direction using pore network modeling. The method is verified by comparing the calculated principal directions with the known anisotropy and also by comparing permeability with values from CFD
Dynamical analysis of anisotropic inflation
Karčiauskas, Mindaugas
2016-06-01
The inflaton coupling to a vector field via the f(φ)2F μνFμν term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation, and to circumvent the η-problem. In this work, I perform dynamical analysis of this system allowing for the most general Bianchi I initial conditions. I also confirm the stability of attractor fixed points along phase-space directions that had not been investigated before.
Latest developments in anisotropic hydrodynamics
Tinti, Leonardo
2015-01-01
We discuss the leading order of anisotropic hydrodynamics expansion. It has already been shown that in the (0+1) and (1+1)-dimensional cases it is consistent with the second order viscous hydrodynamics, and it provides a striking agreement with the exact solutions of the Boltzmann equation. Quite recently, a new set of equations has been proposed for the leading order of anisotropic hydrodynamics, which is consistent with the second order viscous hydrodynamics in the most general (3+1)-dimensional case, and does not require a next-to-leading treatment for describing pressure anisotropies in the transverse plane.
Anisotropic hydrodynamics: Motivation and methodology
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches
Gauge Field Optics with Anisotropic Media
Liu, Fu
2014-01-01
By considering gauge transformations on the macroscopic Maxwell's equations, a two dimensional gauge field, with its pseudo magnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that optical spin Hall effect and one-way edge states become possible simply by using anisotropic media with broadband response. The proposed gauge field also allows us to design an optical isolator based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.
Anisotropic perturbations due to dark energy
Battye, R A; Battye, Richard A.; Moss, Adam
2006-01-01
A variety of observational tests seem to suggest that the universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with $P/\\rho=-2/3$, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model.
Wireless energy transfer between anisotropic metamaterials shells
Diaz-Rubio, Ana; Sanchez-Dehesa, Jose
2013-01-01
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated.
Failure in imperfect anisotropic materials
Legarth, Brian Nyvang
2005-01-01
The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending on...
Magnetic relaxation in anisotropic magnets
Lindgård, Per-Anker
1971-01-01
The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse or...
A new noise erosion operator for anisotropic diffusion
蔡超; 丁名跃; 周成平; 张天序
2004-01-01
A noise erosion operator based on partial differential equation (PDE) is introduced, which has an excellent ability of noise removal and edge preservation for two-dimensional (2D) gradient data. The operator is applied to estimate a new diffusion coefficient. Experimental results demonstrate that anisotropic diffusion based on this new erosion operator can efficiently reduce noise and sharpen object boundaries.
Effects of nonuniform acceptance in anisotropic flow measurements
The applicability of anisotropic flow measurement techniques and their extension for detectors with nonuniform azimuthal acceptance are discussed. Considering anisotropic flow measurements with two and three (mixed harmonic) azimuthal correlations we introduce a set of observables based on the x and y components of the event flow vector. These observables provide independent measures of anisotropic flow and can be used to test the self-consistency of the analysis. Based on these observables we propose a technique that explicitly takes into account the effects of nonuniform detector acceptance. Within this approach the acceptance corrections, as well as parameters that define the method applicability, can be determined directly from experimental data. For practical purposes a brief summary of the method is provided at the end
In this paper a micromachining method for batch fabrication of in-plane atomic force microscope (AFM) probes that consist of a sharp silicon nitride tip on a monocrystalline silicon cantilever is presented. The tips are realized by conformal deposition of silicon nitride inside an anisotropically etched cavity inside a silicon wafer. The best measured radius of the sharp tips was 8 nm. Our fabrication method is fully compatible with silicon-on-insulator (SOI) micromachining, allowing a straightforward monolithic integration of the AFM probes with high-aspect-ratio monocrystalline silicon MEMS. The fabrication method allows for lateral cantilevers, which oscillate in the plane of the fabrication wafer. This allows for simple integration of micromechanical transducers, opening the way towards dedicated probes for high speed AFMs. To demonstrate the innovation potential of this method, three different probe designs were fabricated: a plane passive AFM probe, a probe with integrated electrostatic actuator, and a probe which allows scanning on vertical sidewalls. The passive probes were successfully tested in a commercial AFM set-up. Correct operation of the probes with integrated actuator was demonstrated by actuation under a laser vibrometer. (paper)
刘洋; 魏修成
2003-01-01
Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem, finite elementequations of elastic wave propagation in two-phase anisotropic media are derived in this paper. Numerical solutionof finite element equations is given. Finally, properties of elastic wave propagation are observed and analyzedthrough FEM modeling.
Testing anisotropic string compactifications in the lab
We derive type IIB vacua which are very promising to put string theory to experimental test. These are Calabi-Yau compactifications with a 4D fibration over a 2D base. The moduli are fixed in such a way to obtain a very anisotropic configuration where the size of the 2D base is exponentially larger than the size of the 4D fibre. These provide stringy realisations of the supersymmetric large extra dimensions scenario and extensions of the ADD scenario which are characterised by TeV-scale strings and two micron-sized extra dimensions. We also study the phenomenological properties of hidden Abelian gauge bosons which mix kinetically with the ordinary photon and get a mass via the Green-Schwarz mechanism. We show that anisotropic compactifications lead naturally to dark forces for an intermediate string scale or even to a hidden CMB for the extreme case of TeV-scale strings. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
3-D waveform tomography sensitivity kernels for anisotropic media
Djebbi, R.
2014-01-01
The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.
Innovative anisotropic phantoms for calibration of diffusion tensor imaging sequences.
Kłodowski, Krzysztof; Krzyżak, Artur Tadeusz
2016-05-01
The paper describes a novel type of anisotropic phantoms designed for b-matrix spatial distribution diffusion tensor imaging (BSD-DTI). Cubic plate anisotropic phantom, cylinder capillary phantom and water reference phantom are described as a complete set necessary for calibration, validation and normalization of BSD-DTI. An innovative design of the phantoms basing on enclosing the anisotropic cores in glass balls filled with liquid made for the first time possible BSD calibration with usage of echo planar imaging (EPI) sequence. Susceptibility artifacts prone to occur in EPI sequences were visibly reduced in the central region of the phantoms. The phantoms were designed for usage in a clinical scanner's head coil, but can be scaled for other coil or scanner types. The phantoms can be also used for a pre-calibration of imaging of other types of phantoms having more specific applications. PMID:26707852
The Derived Equivalent Circuit Model for Magnetized Anisotropic Graphene
Cao, Ying S; Ruehli, Albert E
2015-01-01
Due to the static magnetic field, the conductivity for graphene becomes a dispersive and anisotropic tensor, which complicates most modeling methodologies. In this paper, a novel equivalent circuit model is proposed for graphene with the magnetostatic bias based on the electric field integral equation (EFIE). To characterize the anisotropic property of the biased graphene, the resistive part of the unit circuit is replaced by a resistor in series with current control voltage sources (CCVSs). The CCVSs account for the off-diagonal parts of the surface conductivity tensor for the magnetized graphene. Furthermore, the definitions of the absorption cross section and the scattering cross section are revisited to make them feasible for derived circuit analysis. This proposed method is benchmarked with several numerical examples. This paper also provides a new equivalent circuit model to deal with dispersive and anisotropic materials.
Electric fields inside and outside an anisotropic dielectric sphere
Li Ying-Le; Wang Ming-Jun
2009-01-01
Analytical expressions of electric fields inside and outside an anisotropic dielectric sphere are presented by transforming an anisotropic medium into an isotropic one based on the multi-scale transformation of electromagnetic theory.The theoretical expressions are consistent with those in the literature. The inside electric field, the outside electric field and the angle between their directions are derived in detail. Numerical simulations show that the direction of the outside field influences the magnitude of the inside field, while the dielectric constant tensor greatly affects its direction.
Propagation of shock wave fronts in anisotrope layered media
Propagation of shock waves in layered anisotropic tectonic media is associated with their fronts transformation, scattering, bifurcation and focussing. To investigate these phenomena, a technique based on joint usage of ray theory and theory of stereomechanical impact is elaborated. It is used for computer simulation of dynamical interaction of shock waves with curvilinear interfaces between anisotropic elastic media. Issues are considered which are related to the shock waves fronts surfaces bifurcations and generation of caustics connected with stress concentration and formation of zones where the stresses tend to infinity
Conductivities in an anisotropic medium
Khimphun, Sunly; Park, Chanyong
2016-01-01
In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.
Anisotropic Inflation and Cosmological Observations
Emami, Razieh
2015-01-01
Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation the...
Stealths on Anisotropic Holographic Backgrounds
Ayón-Beato, Eloy; Juárez-Aubry, María Montserrat
2015-01-01
In this paper, we are interested in exploring the existence of stealth configurations on anisotropic backgrounds playing a prominent role in the non-relativistic version of the gauge/gravity correspondence. By stealth configuration, we mean a nontrivial scalar field nonminimally coupled to gravity whose energy-momentum tensor evaluated on the anisotropic background vanishes identically. In the case of a Lifshitz spacetime with a nontrivial dynamical exponent z, we spotlight the role played by the anisotropy to establish the holographic character of the stealth configurations, i.e. the scalar field is shown to only depend on the radial holographic direction. This configuration which turns out to be massless and without integration constants is possible for a unique value of the nonminimal coupling parameter. Then, using a simple conformal argument, we map this configuration into a stealth solution defined on the so-called hyperscaling violation metric which is conformally related to the Lifshitz spacetime. Thi...
Mirage technique in anisotropic solids
Quelin, X.; Perrin, B; Perrin, Bernard; Louis, G.
1994-01-01
Theoretical and experimental analysis of heat diffusion in an anisotropic medium are presented. The solution of the 3D thermal conduction equation in an orthorhombic medium is calculated by the mean of a Fourier transforms method. Experiments were performed on an orthorhombic polydiacetylene single crystal sample. The temperature field at the sample surface was determined using the photothermal probe beam deflection technique. Then the 3 coefficients of the thermal conductivity tensor have be...
Vertical Flow Lithography for Fabrication of 3D Anisotropic Particles.
Habasaki, Shohei; Lee, Won Chul; Yoshida, Shotaro; Takeuchi, Shoji
2015-12-22
A microfluidics-based method for the 3D fabrication of anisotropic particles is reported. The method uses a vertical microchannel where tunable light patterns solidify photocurable resins for stacking multiple layers of the resins, thus enabling an application of stereolithography concepts to conventional flow lithography. Multilayered, tapered, and angular compartmental microparticles are demonstrated. PMID:26551590
Properties and evolution of anisotropic structures in collisionless plasmas
Karimov, A R; Stenflo, L
2016-01-01
A new class of exact electrostatic solutions of the Vlasov-Maxwell equations based on the Jeans's theorem is proposed for studying the evolution and properties of two-dimensional anisotropic plasmas that are far from thermodynamic equilibrium. In particular, the free expansion of a slab of electron-ion plasma into vacuum is investigated.
Anisotropic metamaterial devices
Wei Xiang Jiang
2009-12-01
Full Text Available In the last few years, a rapid development has been achieved in a subject area, so called optical transformation, which is based on the property of metric invariance in Maxwell's equations. Optical transformation, also known as transformation optics, allows metamaterials to be tailor-made according to practical needs. In this paper, we have reviewed the recent progress on the parametric design of transformation devices, such as invisibility cloaks, electromagnetic (EM concentrator, EM-wave converter, etc. The technique of optical transformation can also be applied when the sources are included in the transformed space.
Relativistic and sub-relativistic solar energetic particles could cause an excess of ionization in the atmosphere, specifically in polar and sub-polar regions. This effect is observed mainly in upper troposphere and lower and middle stratosphere. The ionization effect could be strong at short time scales during major ground level enhancements (GLE)s. However, for the aims of recent atmospheric physics and atmospheric chemistry studies, namely the influence on the minor constituents and aerosols, it is important to derive the medium time scale ionization effect at various altitudes above the sea level. The ground level enhancement GLE 70 on December of 13, 2006 is the third strongest event of the previous solar cycle 23. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of a full Monte Carlo simulation of cosmic ray induced atmospheric cascade at several altitudes, namely 35km, 25km, 15km and 8km above the sea level. Here we adopt previously reported ion production rate profiles obtained with Monte Carlo simulation of atmospheric cascade performed with the CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron generators. A realistic winter atmospheric model is assumed. The 24‑h ionization effect is computed for the sub-polar and polar regions, where it is expected to be the maximal effect of the planetary distribution on the Earth. Key words: galactic and solar cosmic rays, ground level enhancement, ionization model, atmospheric physics, atmospheric chemistry
Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image
Li Yang
2015-06-01
Full Text Available Multiaspect Synthetic Aperture Radar (SAR can generate high resolution images and target scattering signatures in different azimuth angles from the coherent integration of all subaperture images. However, mixed anisotropic scatters limit the application of traditional imaging theory. Anisotropic scattering may introduce errors in polarimetric parameters by decreasing the reliability of terrain classification and detection of variability. Thus a method is proposed for estimating and removing anisotropic scattering in multiaspect polarimetric SAR images. The proposed algorithm is based on the maximum likelihood and likelihood-ratio tests for the two-class case, while considering the speckle effect, the mechanism of removing the anisotropic scattering, and the monotonicity of the Constant False Alarm Rate (CFAR detection function. We compare the polarimetric entropy before and after removing the anisotropic subapertures, and then validate the algorithm's potential in retrieving the target signature using a P-band quad-pol airborne SAR with circular trajectory.
Recent developments in anisotropic heterogeneous shell theory
Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G
2016-01-01
This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.
Multidisciplinary approach to cylindrical anisotropic metamaterials
Carbonell Olivares, Jorge; Torrent Martí, Daniel; Diaz Rubio, Ana; Sánchez-Dehesa Moreno-Cid, José
2011-01-01
Anisotropic characteristics of cylindrically corrugated microstructures are analyzed in terms of their acoustic and electromagnetic (EM) behavior paying special attention to their differences and similarities. A simple analytical model has been developed using effective medium theory to understand the anisotropic features of both types of waves in terms of radial and angular components of the wave propagation velocity. The anisotropic constituent parameters have been obtained by measuring the...
New charged anisotropic compact models
Kileba Matondo, D.; Maharaj, S. D.
2016-07-01
We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.
Model for Anisotropic Directed Percolation
Nguyen, V. Lien; Canessa, Enrique
1997-01-01
We propose a simulation model to study the properties of directed percolation in two-dimensional (2D) anisotropic random media. The degree of anisotropy in the model is given by the ratio $\\mu$ between the axes of a semi-ellipse enclosing the bonds that promote percolation in one direction. At percolation, this simple model shows that the average number of bonds per site in 2D is an invariant equal to 2.8 independently of $\\mu$. This result suggests that Sinai's theorem proposed originally fo...
Anisotropic spectra of acoustic turbulence
We found universal anizopropic spectra of acoustic turbulence with the linear dispersion law ω(k)=ck within the framework of generalized kinetic equation which takes into account the finite time of three-wave interactions. This anisotropic spectra can assume both scale-invariant and non-scale-invariant form. The implications for the evolution of the acoustic turbulence with nonisotropic pumping are discussed. The main result of the article is that the spectra of acoustic turbulence tend to become more isotropic. (c) 2000 The American Physical Society
Anisotropic and nonlinear optical waveguides
Someda, CG
1992-01-01
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an
BRDF Interpolation using Anisotropic Stencils
Vávra, Radomír; Filip, Jiří
Springfield: Society for Imaging Science and Technology , 2016 - (Imai, F.; Ortiz Segovia, M.; Urban, P.), MMRMA-356.1-MMRMA-356.6 ISSN 2470-1173. [IS&T International Symposium on Electronic Imaging 2016, Measuring, Modeling, and Reproducing Material Appearance 2016. San Francisco (US), 14.2.2016-18.2.2016] R&D Projects: GA ČR(CZ) GA14-02652S Institutional support: RVO:67985556 Keywords : BRDF * stencil * anisotropic * interpolation Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2016/RO/vavra-0457068.pdf
Anisotropic thermal conductivity in sheared polypropylene
Dai, Shao Cong; Tanner, Roger I. [The University of Sydney, Rheology Research Group, School of Aerospace, Mechanical and Mechatronic Engineering, Sydney, NSW (Australia)
2006-01-01
We discuss the anisotropy of the thermal conductivity tensor in polymer flow in this paper. Isotactic polypropylene (iPP) specimens were deformed by injection moulding at high shear rates and by steady shear at low shear rates, and were then quenched. The thermal conductivities parallel and perpendicular to the shear direction were measured using modulated differential scanning calorimetry (MDSC) in accordance with the ASTM E1952-01. The measured results showed that the thermal conductivity of the sheared polymer was anisotropic with an increase in the shear direction. The thermal conductivity can be regarded as varying either with the strain or the stress, as suggested by Van den Brule (1989). In addition to the Van den Brule mechanism, crystallization during flow also changes the thermal conductivity and this effect may often be dominant. Suggestions for procedures in processing computations, based on both effects, are given. (orig.)
Anisotropic Absorption of Pure Spin Currents.
Baker, A A; Figueroa, A I; Love, C J; Cavill, S A; Hesjedal, T; van der Laan, G
2016-01-29
Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α, in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co_{50}Fe_{50} layer leads to an anisotropic α in a polycrystalline Ni_{81}Fe_{19} layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices. PMID:26871353
Chen, Yu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sabin, Andrew [Geothermal Program Office, China Lake, CA (United States)
2016-03-31
Accurate imaging and characterization of fracture zones is crucial for geothermal energy exploration. Aligned fractures within fracture zones behave as anisotropic media for seismic-wave propagation. The anisotropic properties in fracture zones introduce extra difficulties for seismic imaging and waveform inversion. We have recently developed a new anisotropic elastic-waveform inversion method using a modified total-variation regularization scheme and a wave-energy-base preconditioning technique. Our new inversion method uses the parameterization of elasticity constants to describe anisotropic media, and hence it can properly handle arbitrary anisotropy. We apply our new inversion method to a seismic velocity model along a 2D-line seismic data acquired at Eleven-Mile Canyon located at the Southern Dixie Valley in Nevada for geothermal energy exploration. Our inversion results show that anisotropic elastic-waveform inversion has potential to reconstruct subsurface anisotropic elastic parameters for imaging and characterization of fracture zones.
Highly anisotropic and robust excitons in monolayer black phosphorus.
Wang, Xiaomu; Jones, Aaron M; Seyler, Kyle L; Tran, Vy; Jia, Yichen; Zhao, Huan; Wang, Han; Yang, Li; Xu, Xiaodong; Xia, Fengnian
2015-06-01
Semi-metallic graphene and semiconducting monolayer transition-metal dichalcogenides are the most intensively studied two-dimensional materials of recent years. Lately, black phosphorus has emerged as a promising new two-dimensional material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However, current progress is primarily limited to its thin-film form. Here, we reveal highly anisotropic and strongly bound excitons in monolayer black phosphorus using polarization-resolved photoluminescence measurements at room temperature. We show that, regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centres around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. Moreover, photoluminescence excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of ∼0.9 eV, consistent with theoretical results based on first principles. The experimental observation of highly anisotropic, bright excitons with large binding energy not only opens avenues for the future explorations of many-electron physics in this unusual two-dimensional material, but also suggests its promising future in optoelectronic devices. PMID:25915195
Characterization of highly anisotropic three-dimensionally nanostructured surfaces
Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example of metal slanted columnar thin films, which have been conformally coated with a thin passivating oxide layer by atomic layer deposition. Furthermore, the application of an effective medium approximation approach to in-situ growth monitoring of this anisotropic thin film functionalization process is presented. It was found that structural parameters determined with the presented optical model equivalents for slanted columnar thin films agree very well with scanning electron microscope image estimates. - Highlights: • Summary of optical model strategies for sculptured thin films with arbitrary geometries • Application of the rigorous anisotropic Bruggeman effective medium applications • In-situ growth monitoring of atomic layer deposition on biaxial metal slanted columnar thin film
2012-03-13
... COMMISSION General Electric-Hitachi Global Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment... considering the issuance of a license to General Electric-Hitachi Global Laser Enrichment LLC (GLE or the... the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/adams.html . From this site,...
Anisotropic weak Hardy spaces and interpolation theorems
2008-01-01
In this paper, the authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also given. As some applications of the above results, the authors prove some interpolation theorems and obtain the boundedness of the singular integral operators on these Hardy spaces.
Characterization of anisotropic acoustic metamaterial slabs
Park, Jun Hyeong; Lee, Hyung Jin; Kim, Yoon Young
2016-01-01
In an anisotropic acoustic metamaterial, the off-diagonal components of its effective mass density tensor should be considered in order to describe the anisotropic behavior produced by arbitrarily shaped inclusions. However, few studies have been carried out to characterize anisotropic acoustic metamaterials. In this paper, we propose a method that uses the non-diagonal effective mass density tensor to determine the behavior of anisotropic acoustic metamaterials. Our method accurately evaluates the effective properties of anisotropic acoustic metamaterials by separately dealing with slabs made of single and multiple unit cells along the thickness direction. To determine the effective properties, the reflection and transmission coefficients of an acoustic metamaterial slab are calculated, and then the wave vectors inside of the slab are determined using these coefficients. The effective material properties are finally determined by utilizing the spatial dispersion relation of the anisotropic acoustic metamaterial. Since the dispersion relation of an anisotropic acoustic metamaterial is explicitly used, its effective properties can be easily determined by only using a limited number of normal and oblique plane wave incidences into a metamaterial slab, unlike existing approaches requiring a large number of wave incidences. The validity of the proposed method is verified by conducting wave simulations for anisotropic acoustic metamaterial slabs with Z-shaped elastic inclusions of tilted principal material axes.
3D time-domain airborne EM modeling for an arbitrarily anisotropic earth
Yin, Changchun; Qi, Yanfu; Liu, Yunhe
2016-08-01
Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.
Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.
2016-01-01
Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.
Multidisciplinary approach to cylindrical anisotropic metamaterials
Anisotropic characteristics of cylindrically corrugated microstructures are analyzed in terms of their acoustic and electromagnetic (EM) behavior paying special attention to their differences and similarities. A simple analytical model has been developed using effective medium theory to understand the anisotropic features of both types of waves in terms of radial and angular components of the wave propagation velocity. The anisotropic constituent parameters have been obtained by measuring the resonances of cylindrical cavities, as well as from numerical simulations. This permits one to characterize propagation of acoustic and EM waves and to compare the fundamental anisotropic features generated by the corrugated effective medium. Anisotropic coefficients match closely in both physics fields but other relevant parameters show significant differences in the behavior of both types of waves. (paper)
Designing Anisotropic Inflation with Form Fields
Ito, Asuka
2015-01-01
We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.
Designing anisotropic inflation with form fields
Ito, Asuka; Soda, Jiro
2015-12-01
We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.
Effective orthorhombic anisotropic models for wavefield extrapolation
Ibanez-Jacome, W.
2014-07-18
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.
Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass
Zhou, Xiaoming; Hu, Gengkai
2011-06-01
A metamaterial slab of anisotropic mass with one diagonal component being infinity and the other being zero is demonstrated to behave as a superlens for acoustic imaging beyond the diffraction limit. The underlying mechanism for extraordinary transmission of evanescent waves is attributed to the zero mass effect. Microstructure design for such anisotropic lens is also presented. In contrast to the anisotropic superlens based on Fabry-Pérot resonant mechanism, the proposed lens operates without the limitation on lens thickness, thus more flexible in practical applications. Numerical modeling is performed to validate the proposed ideas.
Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy
Alkhalifah, Tariq Ali
2014-04-30
Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.
Warm anisotropic inflationary universe model
Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2014-02-15
This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)
Warm Anisotropic Inflationary Universe Model
Sharif, M
2014-01-01
This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.
Yagi, Kent
2015-01-01
Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum and quadrupole moment) are interrelated in a way that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis for future radio, X-ray and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to phase transitions. We here investigate whether pressure anisotropy affects the approximate universal relations and whether it prevents their use in future observations. We achieve this by numerically constructing slowly-rotating and tidally-deformed, anisotropic, compact stars in General Relativity to third order in spin. We find that anisotropy affects the universal relations only weakly; the relations become less universal by a factor of 1.5-3 relative to the isotropic case, but rem...
Gravitational Baryogenesis after Anisotropic Inflation
Fukushima, Mitsuhiro; Maeda, Kei-ichi
2016-01-01
The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.
Anisotropic invariance in minisuperspace models
Chagoya, Javier; Sabido, Miguel
2016-06-01
In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski–Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann–Robertson–Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.
Anisotropic microstructure near the sun
Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 R· [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ''background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 R· which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a 'Maltese Cross' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 R·, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 R· contributes to
Malferrari, L; Odorici, F; Veronese, G P; Rizzoli, R; Mascali, D; Celona, L; Gammino, S; Castro, G; Miracoli, R; Serafino, T
2012-02-01
The diffusion mechanism in magnetized plasmas is a largely debated issue. A short circuit model was proposed by Simon, assuming fluxes of lost particles along the axial (electrons) and radial (ions) directions which can be compensated, to preserve the quasi-neutrality, by currents flowing throughout the conducting plasma chamber walls. We hereby propose a new method to modify Simon's currents via electrons injected by a carbon nanotubes-based electron gun. We found this improves the source performances, increasing the output current for several charge states. The method is especially sensitive to the pumping frequency. Output currents for given charge states, at different auxiliary electron currents, will be reported in the paper and the influence of the frequency tuning on the compensation mechanism will be discussed. PMID:22380190
A new algorithm for anisotropic solutions
M Chaisi; S D Maharaj
2006-02-01
We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.
Anisotropic inflation in Gauss-Bonnet gravity
Lahiri, Sayantani
2016-01-01
We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.
Fabric dependence of quasi-waves in anisotropic porous media
Cardoso, Luis; Cowin, Stephen C.
2011-01-01
Assessment of bone loss and osteoporosis by ultrasound systems is based on the speed of sound and broadband ultrasound attenuation of a single wave. However, the existence of a second wave in cancellous bone has been reported and its existence is an unequivocal signature of poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as bone mineral density (BMD), a fabric-dependent anisotropic poroelastic wave propagation theory was recently developed ...
A thread-parallel algorithm for anisotropic mesh adaptation
Rokos, Georgios; Gorman, Gerard J.; Southern, James; Kelly, Paul H. J.
2013-01-01
Anisotropic mesh adaptation is a powerful way to directly minimise the computational cost of mesh based simulation. It is particularly important for multi-scale problems where the required number of floating-point operations can be reduced by orders of magnitude relative to more traditional static mesh approaches. Increasingly, finite element and finite volume codes are being optimised for modern multi-core architectures. Typically, decomposition methods implemented through the Message Passin...
Two-Dimensional Stress Intensity Factor Analysis of Cracks in Anisotropic Bimaterial
Chia-Huei Tu; Jia-Jyun Dong; Chao-Shi Chen; Chien-Chung Ke; Jyun-Yong Jhan; Hsien Jui Yu
2013-01-01
This paper presents a 2D numerical technique based on the boundary element method (BEM) for the analysis of linear elastic fracture mechanics (LEFM) problems on stress intensity factors (SIFs) involving anisotropic bimaterials. The most outstanding feature of this analysis is that it is a singledomain method, yet it is very accurate, efficient, and versatile (i.e., the material properties of the medium can be anisotropic as well as isotropic). A computer program using the BEM formula translat...
Ishikawa, K; Maeda, N.
2001-01-01
Physical properties of anisotropic compressible quantum Hall states and their implications to integer quantum Hall effect are studied based on a mean field theory on the von Neumann lattice. It is found that the Hall gas has unusual thermodynamic properties such as negative pressure and negative compressibility and unusual transport properties. Transport properties and density profile of Hall gas states at half fillings agree with those of anisotropic states discovered experimentally in highe...
2D Anisotropic Wavelet Entropy with an Application to Earthquakes in Chile
Orietta Nicolis
2015-06-01
Full Text Available We propose a wavelet-based approach to measure the Shannon entropy in the context of spatial point patterns. The method uses the fully anisotropic Morlet wavelet to estimate the energy distribution at different directions and scales. The spatial heterogeneity and complexity of spatial point patterns is then analyzed using the multiscale anisotropic wavelet entropy. The efficacy of the approach is shown through a simulation study. Finally, an application to the catalog of earthquake events in Chile is considered.
Dwivedi, Charu; Chaudhary, Abhishek; Gupta, Abhishek; Nandi, Chayan K
2015-03-11
The study presents dithiothreitol (DTT) functionalized anisotropic gold nanoparticles (GNP) based colorimetric sensor for detection of toxic lead ions in water. Our results demonstrate the selectivity and sensitivity of the developed sensor over various heavy metal ions with detection limit of ∼9 nM. The mechanism of sensing is explained on the basis of unique corona formation around the DTT functionalized anisotropic GNP. PMID:25719820
Variably saturated flow described with the anisotropic Lattice Boltzmann methods
Ginzburg, I.
2006-01-01
This paper addresses the numerical solution of highly nonlinear parabolic equations with Lattice Boltzmann techniques. They are first developed for generic advection and anisotropic dispersion equations (AADE). Collision configurations handle the anisotropic diffusion forms by using either anisotropic eigenvalue sets or anisotropic equilibrium functions. The coordinate transformation from the orthorhombic (rectangular) discretization grid to the cuboid computational grid is equivalen...