WorldWideScience

Sample records for basal hepatic glucose

  1. Indomethacin stimulates basal glucose production in humans without changes in concentrations of glucoregulatory hormones

    NARCIS (Netherlands)

    Corssmit, E. P.; Romijn, J. A.; Endert, E.; Sauerwein, H. P.

    1993-01-01

    1. To investigate whether indomethacin affects basal glucose production, we measured hepatic glucose production in six healthy postabsorptive subjects on two occasions: once after administration of indomethacin (150 mg orally) and once after administration of placebo. 2. Glucose production was

  2. Pulsatile hyperglucagonemia fails to increase hepatic glucose production in normal man

    International Nuclear Information System (INIS)

    Paolisso, G.; Scheen, A.J.; Luyckx, A.S.; Lefebvre, P.J.

    1987-01-01

    To study the metabolic effects of pulsatile glucagon administration, six male volunteers were submitted to a 260-min glucose-controlled glucose intravenous infusion using the Biostator. The endogenous secretion of the pancreatic hormones was inhibited by somatostatin, basal insulin secretion was replaced by a continuous insulin infusion, and glucagon was infused intravenously in two conditions at random: either continuously or intermittently. Blood glucose levels and glucose infusion rate were monitored continuously by the Biostator, and classical methodology using a D-[3- 3 H]glucose infusion allowed the authors to study glucose turnover. While basal plasma glucagon levels were similar in both conditions, they plateaued at 189 +/- 38 pg ml -1 during continuous infusion and varied between 95 and 501 pg x ml -1 during pulsatile infusion. When compared with continuous administration, pulsatile glucagon infusion 1) initially induced a similar increase in endogenous (hepatic) glucose production and blood glucose, 2) did not prevent the so-called evanescent effect of glucagon on blood glucose, and 3) after 3 h tended to reduce rather than increase hepatic glucose production. In conclusion, in vivo pulsatile hyperglucanemia in normal man fails to increase hepatic glucose production

  3. Subthalamic nucleus stimulation does not influence basal glucose metabolism or insulin sensitivity in patients with Parkinson's disease.

    Science.gov (United States)

    Lammers, Nicolette M; Sondermeijer, Brigitte M; Twickler, Th B Marcel; de Bie, Rob M; Ackermans, Mariëtte T; Fliers, Eric; Schuurman, P Richard; La Fleur, Susanne E; Serlie, Mireille J

    2014-01-01

    Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry, alters basal endogenous glucose production (EGP) or insulin sensitivity in patients with Parkinson's disease (PD). We studied 8 patients with PD treated with DBS STN, in the basal state and during a hyperinsulinemic euglycemic clamp using a stable glucose isotope, in the stimulated and non-stimulated condition. We measured EGP, hepatic insulin sensitivity, peripheral insulin sensitivity (Rd), resting energy expenditure (REE), glucoregulatory hormones, and Parkinson symptoms, using the Unified Parkinson's Disease Rating Scale (UPDRS). Basal plasma glucose and EGP did not differ between the stimulated and non-stimulated condition. Hepatic insulin sensitivity was similar in both conditions and there were no significant differences in Rd and plasma glucoregulatory hormones between DBS on and DBS off. UPDRS was significantly higher in the non-stimulated condition. DBS of the STN in patients with PD does not influence basal EGP or insulin sensitivity. These results suggest that acute modulation of the motor basal ganglia circuitry does not affect glucose metabolism in humans.

  4. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs

    Science.gov (United States)

    Ramnanan, Christopher J.; Saraswathi, Viswanathan; Smith, Marta S.; Donahue, E. Patrick; Farmer, Ben; Farmer, Tiffany D.; Neal, Doss; Williams, Philip E.; Lautz, Margaret; Mari, Andrea; Cherrington, Alan D.; Edgerton, Dale S.

    2011-01-01

    In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP. PMID:21865644

  5. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    Science.gov (United States)

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects.

  6. Superior Glycemic Control with a Glucose-Responsive Insulin Analog: Hepatic and Nonhepatic Impacts.

    Science.gov (United States)

    Moore, Mary Courtney; Kelley, David E; Camacho, Raul C; Zafian, Peter; Ye, Tian; Lin, Songnian; Kaarsholm, Niels C; Nargund, Ravi; Kelly, Terri M; Van Heek, Margaret; Previs, Stephen F; Moyes, Christopher; Smith, Marta S; Farmer, Ben; Williams, Phil; Cherrington, Alan D

    2018-03-14

    We evaluated the hepatic and nonhepatic responses to glucose-responsive insulin (GRI). Eight dogs received GRI or regular human insulin (HI) in random order. A primed, continuous intravenous infusion of [3- 3 H]glucose began at -120 min. Basal sampling (-30 to 0 min) was followed by 2 study periods (150 min each), P1 and P2. At 0 min, somatostatin and GRI (36±3 pmol/kg/min) or HI (1.8 pmol/kg/min) were infused IV; basal glucagon was replaced intraportally. Glucose was infused intravenously to clamp plasma glucose at 80 mg/dL (P1) and 240 mg/dL (P2). Whole body insulin clearance (WBIC) and insulin concentrations were not different in P1 vs P2 with HI, but WBIC was 23% higher and arterial insulin 16% lower in P1 vs P2 with GRI. Net hepatic glucose output was similar between treatments in P1. In P2, both treatments induced net hepatic glucose uptake (2.1±0.5 [HI] vs 3.3±0.4 [GRI] mg/kg/min). Nonhepatic glucose uptake (nonHGU, mg/kg/min) in P1 and P2, respectively, differed between treatments (2.6±0.3 and 7.4±0.6 with HI; 2.0±0.2 and 8.1±0.8 with GRI). Thus, glycemia impacted GRI but not HI clearance, with resultant differential effects on HGU and nonHGU. GRI holds promise for decreasing hypoglycemia risk while enhancing glucose uptake under hyperglycemic conditions. © 2018 by the American Diabetes Association.

  7. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance.

    Science.gov (United States)

    Haus, Jacob M; Solomon, Thomas P J; Marchetti, Christine M; Edmison, John M; González, Frank; Kirwan, John P

    2010-01-01

    The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans. Obese men and women (n = 23) with impaired glucose tolerance were randomly assigned to either exercise training with a eucaloric (EU; approximately 1800 kcal; n = 11) or hypocaloric (HYPO; approximately 1300 kcal; n = 12) diet for 12 wk. Hepatic glucose production (HGP; milligrams per kilogram fat-free mass(-1) per minute(-1)) and hepatic insulin resistance were determined using a two-stage sequential hyperinsulinemic (40 mU/m(2) . min(-1)) euglycemic (5.0 mm) clamp with [3-(3)H]glucose. Measures were obtained at basal, during insulin infusion (INS; 120 min), and insulin plus intralipid/heparin infusion (INS/FFA; 300 min). At baseline, basal HGP was similar between groups; hyperinsulinemia alone did not completely suppress HGP, whereas INS/FFA exhibited less suppression than INS (EU, 4.6 +/- 0.8, 2.0 +/- 0.5, and 2.6 +/- 0.4; HYPO, 3.8 +/- 0.5, 1.2 +/- 0.3, and 2.3 +/- 0.4, respectively). After the intervention the HYPO group lost more body weight (P HYPO: -50 +/- 20%, before vs. after, P = 0.02). In contrast, the ability of insulin to overcome FFA-induced hepatic insulin resistance and HGP was improved only in the HYPO group (EU: -15 +/- 24% vs. HYPO: -58 +/- 19%, P = 0.02). Both lifestyle interventions are effective in reducing hepatic insulin resistance under basal and hyperinsulinemic conditions. However, the reversal of FFA-induced hepatic insulin resistance is best achieved with a combined exercise/caloric-restriction intervention.

  8. Hepatic glucose utilization in hepatic steatosis and obesity

    OpenAIRE

    Keramida, Georgia; Hunter, James; Peters, Adrien?Michael

    2016-01-01

    Hepatic steatosis is associated with obesity and insulin resistance. Whether hepatic glucose utilization rate (glucose phosphorylation rate; MRglu) is increased in steatosis and/or obesity is uncertain. Our aim was to determine the separate relationships of steatosis and obesity with MRglu. Sixty patients referred for routine PET/CT had dynamic PET imaging over the abdomen for 30?min post-injection of F-18-fluorodeoxyglucose (FDG), followed by Patlak?Rutland graphical analysis of the liver us...

  9. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    OpenAIRE

    Lam, Tony K.T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  10. Interaction Between the Central and Peripheral Effects of Insulin in Controlling Hepatic Glucose Metabolism in the Conscious Dog

    Science.gov (United States)

    Ramnanan, Christopher J.; Kraft, Guillaume; Smith, Marta S.; Farmer, Ben; Neal, Doss; Williams, Phillip E.; Lautz, Margaret; Farmer, Tiffany; Donahue, E. Patrick; Cherrington, Alan D.; Edgerton, Dale S.

    2013-01-01

    The importance of hypothalamic insulin action to the regulation of hepatic glucose metabolism in the presence of a normal liver/brain insulin ratio (3:1) is unknown. Thus, we assessed the role of central insulin action in the response of the liver to normal physiologic hyperinsulinemia over 4 h. Using a pancreatic clamp, hepatic portal vein insulin delivery was increased three- or eightfold in the conscious dog. Insulin action was studied in the presence or absence of intracerebroventricularly mediated blockade of hypothalamic insulin action. Euglycemia was maintained, and glucagon was clamped at basal. Both the molecular and metabolic aspects of insulin action were assessed. Blockade of hypothalamic insulin signaling did not alter the insulin-mediated suppression of hepatic gluconeogenic gene transcription but blunted the induction of glucokinase gene transcription and completely blocked the inhibition of glycogen synthase kinase-3β gene transcription. Thus, central and peripheral insulin action combined to control some, but not other, hepatic enzyme programs. Nevertheless, inhibition of hypothalamic insulin action did not alter the effects of the hormone on hepatic glucose flux (production or uptake). These data indicate that brain insulin action is not a determinant of the rapid (<4 h) inhibition of hepatic glucose metabolism caused by normal physiologic hyperinsulinemia in this large animal model. PMID:23011594

  11. Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake.

    Science.gov (United States)

    Karim, Sumera; Liaskou, Evaggelia; Fear, Janine; Garg, Abhilok; Reynolds, Gary; Claridge, Lee; Adams, David H; Newsome, Philip N; Lalor, Patricia F

    2014-12-15

    Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease. Copyright © 2014 the American Physiological Society.

  12. A variant in the G6PC2/ABCB11 locus is associated with increased fasting plasma glucose, increased basal hepatic glucose production and increased insulin release after oral and intravenous glucose loads

    DEFF Research Database (Denmark)

    Rose, C S; Grarup, N; Krarup, N T

    2009-01-01

    An association between elevated fasting plasma glucose and the common rs560887 G allele in the G6PC2/ABCB11 locus has been reported. In Danes we aimed to examine rs560887 in relation to plasma glucose and serum insulin responses following oral and i.v. glucose loads and in relation to hepatic...... glucose production during a hyperinsulinaemic-euglycaemic clamp. Furthermore, we examined rs560887 for association with impaired fasting glycaemia (IFG), impaired glucose tolerance (IGT), type 2 diabetes and components of the metabolic syndrome....

  13. Impaired basal glucose effectiveness but unaltered fasting glucose release and gluconeogenesis during short-term hypercortisolemia in healthy subjects

    DEFF Research Database (Denmark)

    Nielsen, Michael F; Caumo, Andrea; Chandramouli, Visvanathan

    2004-01-01

    Excess cortisol has been demonstrated to impair hepatic and extrahepatic insulin action. To determine whether glucose effectiveness and, in terms of endogenous glucose release (EGR), gluconeogenesis, also are altered by hypercortisolemia, eight healthy subjects were studied after overnight infusion...... resistance. Postabsorptive glucose production (P = 0.64) and the fractional....... Hepatic GE was lower during cortisol than during saline infusion (2.39 +/- 0.24 vs. 3.82 +/- 0.51 ml.kg-1.min-1; P

  14. MicroRNA-451 Negatively Regulates Hepatic Glucose Production and Glucose Homeostasis by Targeting Glycerol Kinase-Mediated Gluconeogenesis.

    Science.gov (United States)

    Zhuo, Shu; Yang, Mengmei; Zhao, Yanan; Chen, Xiaofang; Zhang, Feifei; Li, Na; Yao, Pengle; Zhu, Tengfei; Mei, Hong; Wang, Shanshan; Li, Yu; Chen, Shiting; Le, Yingying

    2016-11-01

    MicroRNAs (miRNAs) are a new class of regulatory molecules implicated in type 2 diabetes, which is characterized by insulin resistance and hepatic glucose overproduction. We show that miRNA-451 (miR-451) is elevated in the liver tissues of dietary and genetic mouse models of diabetes. Through an adenovirus-mediated gain- and loss-of-function study, we found that miR-451 negatively regulates hepatic gluconeogenesis and blood glucose levels in normal mice and identified glycerol kinase (Gyk) as a direct target of miR-451. We demonstrate that miR-451 and Gyk regulate hepatic glucose production, the glycerol gluconeogenesis axis, and the AKT-FOXO1-PEPCK/G6Pase pathway in an opposite manner; Gyk could reverse the effect of miR-451 on hepatic gluconeogenesis and AKT-FOXO1-PEPCK/G6Pase pathway. Moreover, overexpression of miR-451 or knockdown of Gyk in diabetic mice significantly inhibited hepatic gluconeogenesis, alleviated hyperglycemia, and improved glucose tolerance. Further studies showed that miR-451 is upregulated by glucose and insulin in hepatocytes; the elevation of hepatic miR-451 in diabetic mice may contribute to inhibiting Gyk expression. This study provides the first evidence that miR-451 and Gyk regulate the AKT-FOXO1-PEPCK/G6Pase pathway and play critical roles in hepatic gluconeogenesis and glucose homeostasis and identifies miR-451 and Gyk as potential therapeutic targets against hyperglycemia in diabetes. © 2016 by the American Diabetes Association.

  15. The GLP-1 Analogue Exenatide Improves Hepatic and Muscle Insulin Sensitivity in Diabetic Rats: Tracer Studies in the Basal State and during Hyperinsulinemic-Euglycemic Clamp

    Directory of Open Access Journals (Sweden)

    Hui Wu

    2014-01-01

    Full Text Available Objective. Glucagon-like peptide-1 (GLP-1 analogues (e.g., exenatide increase insulin secretion in diabetes but less is known about their effects on glucose production or insulin-stimulated glucose uptake in peripheral tissues. Methods. Four groups of Sprague-Dawley rats were studied: nondiabetic (control, C; nondiabetic + exenatide (C + E; diabetic (D; diabetic + exenatide (D + E with diabetes induced by streptozotocin and high fat diet. Infusion of 3-3H-glucose and U-13C-glycerol was used to measure basal rates of appearance (Ra of glucose and glycerol and gluconeogenesis from glycerol (GNG. During hyperinsulinemic-euglycemic clamp, glucose uptake into gastrocnemius muscles was measured with 2-deoxy-D-14C-glucose. Results. In the diabetic rats, exenatide reduced the basal Ra of glucose (P<0.01 and glycerol (P<0.01 and GNG (P<0.001. During the clamp, Ra of glucose was also reduced, whereas the rate of disappearance of glucose increased and there was increased glucose uptake into muscle (P<0.01 during the clamp. In the nondiabetic rats, exenatide had no effect. Conclusion. In addition to its known effects on insulin secretion, administration of the GLP-1 analogue, exenatide, is associated with increased inhibition of gluconeogenesis and improved glucose uptake into muscle in diabetic rats, implying improved hepatic and peripheral insulin sensitivity.

  16. Histidine Augments the Suppression of Hepatic Glucose Production by Central Insulin Action

    OpenAIRE

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime

    2013-01-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA le...

  17. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.

    Science.gov (United States)

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D; Kapatos, Gregory; Zhang, Kezhong

    2017-07-15

    Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. Copyright © 2017 American Society for Microbiology.

  18. Diminished hepatic insulin removal in obesity

    International Nuclear Information System (INIS)

    Cano, I.; Salvador, J.; Rodriguez, R.; Arraiza, M.C.; Goena, M.; Barberia, J.J.; Moncada, E.

    1986-01-01

    Peripheral insulin and C-peptide levels during oral glucose load were measured in 20 obese and 23 normal weight nondiabetic subjects. The fasting C-peptide to insulin molar ratios (Cp/I), as well as the relation between incremental areas of the two polypeptides (ACp-AI)/ACp, were used as relative measures of the hepatic insulin extraction (HIE). The insulin and C-peptide basal levels as well as incremental areas under plasma curves were higher in the obese subjects (P<0.001). HIE was lower in obeses than in controls assessed in the fasting state (P<0.05), as well as after glucose load (P<0.001). Nevertheless, obeses and controls with similar insulin fasting levels showed identical hepatic insulin extraction in fasting or after glucose load. HIE was independent of obesity degree, but was related to insulin basal levels (r=-0.60, P<0.01). This study suggests the hypothesis that the decreased hepatic insulin extraction in obeses is a result of the chronically increased insulin delivery to the liver and is not a consequence of obesity, although a contributory role cannot be ruled out

  19. Diminished hepatic insulin removal in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Cano, I; Salvador, J; Rodriguez, R; Arraiza, M C; Goena, M; Barberia, J J; Moncada, E

    1986-01-01

    Peripheral insulin and C-peptide levels during oral glucose load were measured in 20 obese and 23 normal weight nondiabetic subjects. The fasting C-peptide to insulin molar ratios (Cp/I), as well as the relation between incremental areas of the two polypeptides (ACp-AI)/ACp, were used as relative measures of the hepatic insulin extraction (HIE). The insulin and C-peptide basal levels as well as incremental areas under plasma curves were higher in the obese subjects (P<0.001). HIE was lower in obeses than in controls assessed in the fasting state (P<0.05), as well as after glucose load (P<0.001). Nevertheless, obeses and controls with similar insulin fasting levels showed identical hepatic insulin extraction in fasting or after glucose load. HIE was independent of obesity degree, but was related to insulin basal levels (r=-0.60, P<0.01). This study suggests the hypothesis that the decreased hepatic insulin extraction in obeses is a result of the chronically increased insulin delivery to the liver and is not a consequence of obesity, although a contributory role cannot be ruled out.

  20. Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis

    International Nuclear Information System (INIS)

    Goodman, M.N.; Masuoka, L.K.; deRopp, J.S.; Jones, A.D.

    1989-01-01

    Deuterium labelled glucose has been used to study the pathway of hepatic glycogen synthesis during the fasted-refed transition in rats. Deuterium enrichment of liver glycogen was determined using nuclear magnetic resonance as well as mass spectroscopy. Sixty minutes after oral administration of deuterated glucose to fasted rats, the portal vein blood was fully enriched with deuterated glucose. Despite this, less than half of the glucose molecules incorporated into liver glycogen contained deuterium. The loss of deuterium label from glucose is consistent with hepatic glycogen synthesis by an indirect pathway requiring prior metabolism of glucose. The use of deuterium labelled glucose may prove to be a useful probe to study hepatic glycogen metabolism. Its use may also find application in the study of liver glycogen metabolism in humans by a noninvasive means

  1. Clofibrate improves glucose tolerance in fat-fed rats but decreases hepatic glucose consumption capacity

    NARCIS (Netherlands)

    Gustafson, LA; Kuipers, F; Wiegman, C; Sauerwein, HP; Romijn, JA; Meijer, AJ

    2002-01-01

    Background/Aims: High-fat (HF) diets cause glucose intolerance. Fibrates improve glucose tolerance. We have tried to obtain information on possible hepatic mechanisms contributing to this effect. Methods: Rats were fed a HF diet, isocaloric with the control diet, for 3 weeks without or with

  2. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice.

    Science.gov (United States)

    Lerat, Hervé; Imache, Mohamed Rabah; Polyte, Jacqueline; Gaudin, Aurore; Mercey, Marion; Donati, Flora; Baudesson, Camille; Higgs, Martin R; Picard, Alexandre; Magnan, Christophe; Foufelle, Fabienne; Pawlotsky, Jean-Michel

    2017-08-04

    Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex

    OpenAIRE

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2015-01-01

    Purpose Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused ...

  4. Control of Hepatic Glucose Metabolism by Islet and Brain

    Science.gov (United States)

    Rojas, Jennifer M.; Schwartz, Michael W.

    2014-01-01

    Dysregulation of hepatic glucose uptake (HGU) and inability of insulin to suppress hepatic glucose production (HGP), both contribute to hyperglycemia in patients with type 2 diabetes (T2D). Growing evidence suggests that insulin can inhibit HGP not only through a direct effect on the liver, but also via a mechanism involving the brain. Yet the notion that insulin action in the brain plays a physiological role in the control of HGP continues to be controversial. Although studies in dogs suggest that the direct hepatic effect of insulin is sufficient to explain day-to-day control of HGP, a surprising outcome has been revealed by recent studies in mice investigating whether the direct hepatic action of insulin is necessary for normal HGP: when hepatic insulin signaling pathway was genetically disrupted, HGP was maintained normally even in the absence of direct input from insulin. Here we present evidence that points to a potentially important role of the brain in the physiological control of both HGU and HGP in response to input from insulin as well as other hormones and nutrients. PMID:25200294

  5. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.

    Science.gov (United States)

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2016-01-01

    Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.

  6. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Xuemei Shi

    2017-11-01

    Conclusions: We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity.

  7. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    Science.gov (United States)

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Metformin attenuates olanzapine-induced hepatic, but not peripheral insulin resistance.

    Science.gov (United States)

    Remington, Gary J; Teo, Celine; Wilson, Virginia; Chintoh, Araba; Guenette, Melanie; Ahsan, Zohra; Giacca, Adria; Hahn, Margaret K

    2015-11-01

    Antipsychotics (APs) are linked to diabetes, even without weight gain. Whether anti-diabetic drugs are efficacious in reversing the direct effects of APs on glucose pathways is largely undetermined. We tested two metformin (Met) doses to prevent impairments seen following a dose of olanzapine (Ola) (3 mg/kg); glucokinetics were measured using the hyperinsulinemic-euglycemic clamp (HIEC). Met (150 mg/kg; n=13, or 400 mg/kg; n=11) or vehicle (Veh) (n=11) was administered through gavage preceding an overnight fast, followed by a second dose prior to the HIEC. Eleven additional animals were gavaged with Veh and received a Veh injection during the HIEC (Veh/Veh); all others received Ola. Basal glucose was similar across treatment groups. The Met 400 group had significantly greater glucose appearance (Ra) in the basal period (i.e., before Ola, or hyperinsulinemia) vs other groups. During hyperinsulinemia, glucose infusion rate (GINF) to maintain euglycemia (reflective of whole-body insulin sensitivity) was higher in Veh/Veh vs other groups. Met 150/Ola animals demonstrated increased GINF relative to Veh/Ola during early time points of the HIEC. Glucose utilization during hyperinsulinemia, relative to basal conditions, was significantly higher in Veh/Veh vs other groups. The change in hepatic glucose production (HGP) from basal to hyperinsulinemia demonstrated significantly greater decreases in Veh/Veh and Met 150/Ola groups vs Veh/Ola. Given the increase in basal Ra with Met 400, we measured serum lactate (substrate for HGP), finding increased levels in Met 400 vs Veh and Met 150. In conclusion, Met attenuates hepatic insulin resistance observed with acute Ola administration, but fails to improve peripheral insulin resistance. Use of supra-therapeutic doses of Met may mask metabolic benefits by increasing lactate. © 2015 Society for Endocrinology.

  9. Deletion of hepatic carbohydrate response element binding protein (ChREBP impairs glucose homeostasis and hepatic insulin sensitivity in mice

    Directory of Open Access Journals (Sweden)

    Tara Jois

    2017-11-01

    Conclusions: Overall, hepatic ChREBP is protective in regards to hepatic insulin sensitivity and whole body glucose homeostasis. Hepatic ChREBP action can influence other peripheral tissues and is likely essential in coordinating the body's response to different feeding states.

  10. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling.

    Science.gov (United States)

    Softic, Samir; Gupta, Manoj K; Wang, Guo-Xiao; Fujisaka, Shiho; O'Neill, Brian T; Rao, Tata Nageswara; Willoughby, Jennifer; Harbison, Carole; Fitzgerald, Kevin; Ilkayeva, Olga; Newgard, Christopher B; Cohen, David E; Kahn, C Ronald

    2017-11-01

    Overconsumption of high-fat diet (HFD) and sugar-sweetened beverages are risk factors for developing obesity, insulin resistance, and fatty liver disease. Here we have dissected mechanisms underlying this association using mice fed either chow or HFD with or without fructose- or glucose-supplemented water. In chow-fed mice, there was no major physiological difference between fructose and glucose supplementation. On the other hand, mice on HFD supplemented with fructose developed more pronounced obesity, glucose intolerance, and hepatomegaly as compared to glucose-supplemented HFD mice, despite similar caloric intake. Fructose and glucose supplementation also had distinct effects on expression of the lipogenic transcription factors ChREBP and SREBP1c. While both sugars increased ChREBP-β, fructose supplementation uniquely increased SREBP1c and downstream fatty acid synthesis genes, resulting in reduced liver insulin signaling. In contrast, glucose enhanced total ChREBP expression and triglyceride synthesis but was associated with improved hepatic insulin signaling. Metabolomic and RNA sequence analysis confirmed dichotomous effects of fructose and glucose supplementation on liver metabolism in spite of inducing similar hepatic lipid accumulation. Ketohexokinase, the first enzyme of fructose metabolism, was increased in fructose-fed mice and in obese humans with steatohepatitis. Knockdown of ketohexokinase in liver improved hepatic steatosis and glucose tolerance in fructose-supplemented mice. Thus, fructose is a component of dietary sugar that is distinctively associated with poor metabolic outcomes, whereas increased glucose intake may be protective.

  11. Activation of Basal Gluconeogenesis by Coactivator p300 Maintains Hepatic Glycogen Storage

    Science.gov (United States)

    Cao, Jia; Meng, Shumei; Ma, Anlin; Radovick, Sally; Wondisford, Fredric E.

    2013-01-01

    Because hepatic glycogenolysis maintains euglycemia during early fasting, proper hepatic glycogen synthesis in the fed/postprandial states is critical. It has been known for decades that gluconeogenesis is essential for hepatic glycogen synthesis; however, the molecular mechanism remains unknown. In this report, we show that depletion of hepatic p300 reduces glycogen synthesis, decreases hepatic glycogen storage, and leads to relative hypoglycemia. We previously reported that insulin suppressed gluconeogenesis by phosphorylating cAMP response element binding protein-binding protein (CBP) at S436 and disassembling the cAMP response element-binding protein-CBP complex. However, p300, which is closely related to CBP, lacks the corresponding S436 phosphorylation site found on CBP. In a phosphorylation-competent p300G422S knock-in mouse model, we found that mutant mice exhibited reduced hepatic glycogen content and produced significantly less glycogen in a tracer incorporation assay in the postprandial state. Our study demonstrates the important and unique role of p300 in glycogen synthesis through maintaining basal gluconeogenesis. PMID:23770612

  12. Histidine augments the suppression of hepatic glucose production by central insulin action.

    Science.gov (United States)

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-Ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2013-07-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA levels and augmented HGP suppression by insulin. This suppression of hepatic gluconeogenesis by histidine was abolished by hepatic STAT3 deficiency or hepatic Kupffer cell depletion. Inhibition of HGP by histidine was also blocked by ICV administration of a histamine H1 receptor antagonist. Therefore, histidine activates hepatic STAT3 and suppresses HGP via central histamine action. Hepatic STAT3 phosphorylation after histidine ICV administration was attenuated in histamine H1 receptor knockout (Hrh1KO) mice but not in neuron-specific insulin receptor knockout (NIRKO) mice. Conversely, hepatic STAT3 phosphorylation after insulin ICV administration was attenuated in NIRKO but not in Hrh1KO mice. These findings suggest that central histidine action is independent of central insulin action, while both have additive effects on HGP suppression. Our results indicate that central histidine/histamine-mediated suppression of HGP is a potential target for the treatment of type 2 diabetes.

  13. MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity.

    Science.gov (United States)

    Vaitheesvaran, B; LeRoith, D; Kurland, I J

    2010-10-01

    Recent work has shown that there can be significant differences when glucose disposal is assessed for high-fat induced insulin resistance by static clamp methods vs dynamic assessment during a stable isotope i.p. glucose tolerance test. MKR mice, though lean, have severe insulin resistance and decreased muscle fatty acid oxidation. Our goal was to assess dynamic vs static glucose disposal in MKR mice, and to correlate glucose disposal and muscle-adipose-liver flux interactions with metabolic flexibility (indirect calorimetry) and muscle characteristics. Stable isotope flux phenotyping was performed using [6,6-(2)H(2)]glucose, [U-(13)C(6)]glucose and [2-(13)C]glycerol. Muscle triacylglycerol (TAG) and diacylglycerol (DAG) content was assessed by thin layer chromatography, and histological determination of fibre type and cytochrome c activity performed. Metabolic flexibility was assessed by indirect calorimetry. Indirect calorimetry showed that MKR mice used more glucose than FVB/N mice during fasting (respiratory exchange ratio [RER] 0.88 vs 0.77, respectively). Compared with FVB/N mice, MKR mice had faster dynamic glucose disposal, despite increased whole-muscle DAG and TAG, and similar hepatic glucose production with higher fasting insulin and unchanged basal glucose. Fed MKR muscle had more glycogen, and increased levels of GLUT1 and GLUT4 than FVB/N muscle. Histology indicated that MKR soleus had mildly decreased cytochrome c activity overall and more type II (glycolytic) fibres compared with that in FVB/N mice. MKR muscle adapts to using glucose, with more type II fibres present in red muscle. Fasting RER is elevated and glucose disposal during an i.p. glucose tolerance test is accelerated despite increased muscle DAG and TAG. Metabolic inflexibility may result from the compensatory use of fuel that can be best utilised for energy requirements; static vs dynamic glucose disposal assessments may measure complementary aspects of metabolic flexibility and insulin

  14. Combined functional CT/FDG-PET: demonstrates reduced hepatic phosphorylation of glucose in advanced colorectal cancer

    International Nuclear Information System (INIS)

    Miles, K.A.; Keith, C.J.; Griffiths, M.R.; Fuentes, M.; Bunce, I.

    2002-01-01

    Full text: This study describes a technique to quantify hepatic glucose phosphorylation using combined data from functional CT and FDG-PET and assesses the differences in phosphorylation between patients with either early or advanced colorectal cancer. Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Patients with PET evidence of extrahepatic tumour were considered to have advanced disease. The net influx constant (Ki) for FDG was determined from the liver SUV. CT measurements of hepatic perfusion were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). Hepatic glucose phosphorylation can be determined by combining functional CT measurements of perfusion with PET measurements of FDG and is significantly reduced in patients with more advanced malignancy. Reduced hepatic glucose phosphorylation may be an important mechanism in the development of cancer cachexia. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  15. Combined functional CT/FDG-PET: demonstrates reduced hepatic phosphorylation of glucose in advanced colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Miles, K A [Southernex Imaging Group, QLD (Australia); Queensland University of Technology, QLD (Australia); Keith, C J [Southernex Imaging Group, QLD (Australia); Wesley Research Institute, QLD (Australia); Griffiths, M R [Queensland University of Technology, QLD (Australia); Fuentes, M [Southernex Imaging Group, QLD (Australia); Bunce, I [Wesley Research Institute, QLD (Australia)

    2002-07-01

    Full text: This study describes a technique to quantify hepatic glucose phosphorylation using combined data from functional CT and FDG-PET and assesses the differences in phosphorylation between patients with either early or advanced colorectal cancer. Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Patients with PET evidence of extrahepatic tumour were considered to have advanced disease. The net influx constant (Ki) for FDG was determined from the liver SUV. CT measurements of hepatic perfusion were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). Hepatic glucose phosphorylation can be determined by combining functional CT measurements of perfusion with PET measurements of FDG and is significantly reduced in patients with more advanced malignancy. Reduced hepatic glucose phosphorylation may be an important mechanism in the development of cancer cachexia. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc.

  16. Hyperintense basal ganglia lesions on T1-weighted MR images in asymptomatic patients with hepatic dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Saatci, I. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey); Cila, A. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey); Dincer, F.F. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey)

    1995-12-31

    Cranial MRI findings in four patients who had hepatic dysfunction, including one with sole hepatic form of Wilson`s disease, were reported. The MR examinations revealed bilateral, symmetric hyperintensity in the globus pallidus, subthalamic nuclei and mesencephalon on T1-weighted images with no corresponding abnormality on T2-weighted sequences. The basal ganglia were normal on CT examinations in all patients. None of the patients had the clinical findings of hepatic encephalopathy. The MR findings in our patients did not correlate with the degree or duration of hepatic dysfunction. (orig.)

  17. Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools

    International Nuclear Information System (INIS)

    Ritchie, D.G.

    1990-01-01

    Cytokines, derived from a wide variety of cell types, are now believed to initiate many of the physiological responses accompanying the inflammatory phase that follows either Gram-negative septicemia or thermal injury. Because hypoglycemia (after endotoxic challenge) and hyperglycemia (after thermal injury) represent well-characterized responses to these injuries, we sought to determine whether hepatic glycogen metabolism could be altered by specific cytokines. Cultured adult rat hepatocytes were prelabeled with [ 14 C]glucose for 24 h, a procedure that resulted in the labeling of hepatic glycogen pools that subsequently could be depleted (with concomitant [ 14 C]glucose release) by either glucagon or norepinephrine. After the addition of a highly concentrated human monocyte-conditioned medium (MCM) or various cytokines to these prelabeled cells, [ 14 C]glucose release was stimulated by MCM and recombinant human interleukin 6 (IL-6) but was not stimulated by other cytokines tested. Furthermore, only antisera to IL-6 were capable of reducing the glucose-releasing factor activity found in MCM. These data therefore suggest a novel glucoregulatory role for IL-6

  18. Ubiquitin-Specific Protease 2 Regulates Hepatic Gluconeogenesis and Diurnal Glucose Metabolism Through 11β-Hydroxysteroid Dehydrogenase 1

    Science.gov (United States)

    Molusky, Matthew M.; Li, Siming; Ma, Di; Yu, Lei; Lin, Jiandie D.

    2012-01-01

    Hepatic gluconeogenesis is important for maintaining steady blood glucose levels during starvation and through light/dark cycles. The regulatory network that transduces hormonal and circadian signals serves to integrate these physiological cues and adjust glucose synthesis and secretion by the liver. In this study, we identified ubiquitin-specific protease 2 (USP2) as an inducible regulator of hepatic gluconeogenesis that responds to nutritional status and clock. Adenoviral-mediated expression of USP2 in the liver promotes hepatic glucose production and exacerbates glucose intolerance in diet-induced obese mice. In contrast, in vivo RNA interference (RNAi) knockdown of this factor improves systemic glycemic control. USP2 is a target gene of peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), a coactivator that integrates clock and energy metabolism, and is required for maintaining diurnal glucose homeostasis during restricted feeding. At the mechanistic level, USP2 regulates hepatic glucose metabolism through its induction of 11β-hydroxysteroid dehydrogenase 1 (HSD1) and glucocorticoid signaling in the liver. Pharmacological inhibition and liver-specific RNAi knockdown of HSD1 significantly impair the stimulation of hepatic gluconeogenesis by USP2. Together, these studies delineate a novel pathway that links hormonal and circadian signals to gluconeogenesis and glucose homeostasis. PMID:22447855

  19. Obesity-driven prepartal hepatic lipid accumulation in dairy cows is associated with increased CD36 and SREBP-1 expression.

    Science.gov (United States)

    Prodanović, Radiša; Korićanac, Goran; Vujanac, Ivan; Djordjević, Ana; Pantelić, Marija; Romić, Snježana; Stanimirović, Zoran; Kirovski, Danijela

    2016-08-01

    We investigated the hypothesis that obesity in dairy cows enhanced expression of proteins involved in hepatic fatty acid uptake and metabolism. Sixteen Holstein-Friesian close-up cows were divided into 2 equal groups based on their body condition score (BCS) as optimal (3.25≤BCS≤3.5) and high (4.0≤BCS≤4.25). Intravenous glucose tolerance test (GTT) and liver biopsies were carried out at day 10 before calving. Blood samples were collected before (basal) and after glucose infusion, and glucose, insulin and non-esterified fatty acid (NEFA) levels were determined at each sample point. In addition, β-hydroxybutyrate and triglycerides levels were measured in the basal samples. The liver biopsies were analyzed for total lipid content and protein expression of insulin receptor beta (IRβ), fatty acid translocase (FAT/CD36) and sterol regulatory element-binding protein-1 (SREBP-1). Basal glucose and insulin were higher in high-BCS cows, which coincided with higher circulating triglycerides and hepatic lipid content. Clearance rate and AUC for NEFA during GTT were higher in optimal-BCS cows. The development of insulin resistance and fatty liver in obese cows was paralleled by increased hepatic expression of the IRβ, CD36 and SREBP-1. These results suggest that increased expression of hepatic CD36 and SREBP-1 is relevant in the obesity-driven lipid accumulation in the liver of dairy cows during late gestation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism.

    Science.gov (United States)

    Li, Jian; Yu, Haiyang; Wang, Sijian; Wang, Wei; Chen, Qian; Ma, Yanmin; Zhang, Yi; Wang, Tao

    2018-01-01

    Imbalanced hepatic glucose homeostasis is one of the critical pathologic events in the development of metabolic syndromes (MSs). Therefore, regulation of imbalanced hepatic glucose homeostasis is important in drug development for MS treatment. In this review, we discuss the major targets that regulate hepatic glucose homeostasis in human physiologic and pathophysiologic processes, involving hepatic glucose uptake, glycolysis and glycogen synthesis, and summarize their changes in MSs. Recent literature suggests the necessity of multitarget drugs in the management of MS disorder for regulation of imbalanced glucose homeostasis in both experimental models and MS patients. Here, we highlight the potential bioactive compounds from natural products with medicinal or health care values, and focus on polypharmacologic and multitarget natural products with effects on various signaling pathways in hepatic glucose metabolism. This review shows the advantage and feasibility of discovering multicompound-multitarget drugs from natural products, and providing a new perspective of ways on drug and functional food development for MSs.

  1. Genetic ablation or chemical inhibition of phosphatidylcholine transfer protein attenuates diet-induced hepatic glucose production.

    Science.gov (United States)

    Shishova, Ekaterina Y; Stoll, Janis M; Ersoy, Baran A; Shrestha, Sudeep; Scapa, Erez F; Li, Yingxia; Niepel, Michele W; Su, Ya; Jelicks, Linda A; Stahl, Gregory L; Glicksman, Marcie A; Gutierrez-Juarez, Roger; Cuny, Gregory D; Cohen, David E

    2011-08-01

    Phosphatidylcholine transfer protein (PC-TP, synonym StARD2) is a highly specific intracellular lipid binding protein that is enriched in liver. Coding region polymorphisms in both humans and mice appear to confer protection against measures of insulin resistance. The current study was designed to test the hypotheses that Pctp-/- mice are protected against diet-induced increases in hepatic glucose production and that small molecule inhibition of PC-TP recapitulates this phenotype. Pctp-/- and wildtype mice were subjected to high-fat feeding and rates of hepatic glucose production and glucose clearance were quantified by hyperinsulinemic euglycemic clamp studies and pyruvate tolerance tests. These studies revealed that high-fat diet-induced increases in hepatic glucose production were markedly attenuated in Pctp-/- mice. Small molecule inhibitors of PC-TP were synthesized and their potencies, as well as mechanism of inhibition, were characterized in vitro. An optimized inhibitor was administered to high-fat-fed mice and used to explore effects on insulin signaling in cell culture systems. Small molecule inhibitors bound PC-TP, displaced phosphatidylcholines from the lipid binding site, and increased the thermal stability of the protein. Administration of the optimized inhibitor to wildtype mice attenuated hepatic glucose production associated with high-fat feeding, but had no activity in Pctp-/- mice. Indicative of a mechanism for reducing glucose intolerance that is distinct from commonly utilized insulin-sensitizing agents, the inhibitor promoted insulin-independent phosphorylation of key insulin signaling molecules. These findings suggest PC-TP inhibition as a novel therapeutic strategy in the management of hepatic insulin resistance. Copyright © 2011 American Association for the Study of Liver Diseases.

  2. Autonomic regulation of hepatic glucose production.

    Science.gov (United States)

    Bisschop, Peter H; Fliers, Eric; Kalsbeek, Andries

    2015-01-01

    Glucose produced by the liver is a major energy source for the brain. Considering its critical dependence on glucose, it seems only natural that the brain is capable of monitoring and controlling glucose homeostasis. In addition to neuroendocrine pathways, the brain uses the autonomic nervous system to communicate with peripheral organs. Within the brain, the hypothalamus is the key region to integrate signals on energy status, including signals from lipid, glucose, and hormone sensing cells, with afferent neural signals from the internal and external milieu. In turn, the hypothalamus regulates metabolism in peripheral organs, including the liver, not only via the anterior pituitary gland but also via multiple neuropeptidergic pathways in the hypothalamus that have been identified as regulators of hepatic glucose metabolism. These pathways comprise preautonomic neurons projecting to nuclei in the brain stem and spinal cord, which relay signals from the hypothalamus to the liver via the autonomic nervous system. The neuroendocrine and neuronal outputs of the hypothalamus are not separate entities. They appear to act as a single integrated regulatory system, far more subtle, and complex than when each is viewed in isolation. Consequently, hypothalamic regulation should be viewed as a summation of both neuroendocrine and neural influences. As a result, our endocrine-based understanding of diseases such as diabetes and obesity should be expanded by integration of neural inputs into our concept of the pathophysiological process. © 2014 American Physiological Society.

  3. Combining functional CT and FDG PET allows the calculation of FDG extraction fraction and hepatic glucose phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, M R [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Miles, K A [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Southern X-ray Clinics, Brisbane [Australia; Keith, C J [Wesley Research Institute, QLD (Australia)

    2002-09-01

    Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and

  4. Combining functional CT and FDG PET allows the calculation of FDG extraction fraction and hepatic glucose phosphorylation

    International Nuclear Information System (INIS)

    Griffiths, M.R.; Miles, K.A.; Keith, C.J.

    2002-01-01

    Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and

  5. Hepatic glucose output in humans measured with labeled glucose to reduce negative errors

    International Nuclear Information System (INIS)

    Levy, J.C.; Brown, G.; Matthews, D.R.; Turner, R.C.

    1989-01-01

    Steele and others have suggested that minimizing changes in glucose specific activity when estimating hepatic glucose output (HGO) during glucose infusions could reduce non-steady-state errors. This approach was assessed in nondiabetic and type II diabetic subjects during constant low dose [27 mumol.kg ideal body wt (IBW)-1.min-1] glucose infusion followed by a 12 mmol/l hyperglycemic clamp. Eight subjects had paired tests with and without labeled infusions. Labeled infusion was used to compare HGO in 11 nondiabetic and 15 diabetic subjects. Whereas unlabeled infusions produced negative values for endogenous glucose output, labeled infusions largely eliminated this error and reduced the dependence of the Steele model on the pool fraction in the paired tests. By use of labeled infusions, 11 nondiabetic subjects suppressed HGO from 10.2 +/- 0.6 (SE) fasting to 0.8 +/- 0.9 mumol.kg IBW-1.min-1 after 90 min of glucose infusion and to -1.9 +/- 0.5 mumol.kg IBW-1.min-1 after 90 min of a 12 mmol/l glucose clamp, but 15 diabetic subjects suppressed only partially from 13.0 +/- 0.9 fasting to 5.7 +/- 1.2 at the end of the glucose infusion and 5.6 +/- 1.0 mumol.kg IBW-1.min-1 in the clamp (P = 0.02, 0.002, and less than 0.001, respectively)

  6. Glucose abnormalities in Asian patients with chronic hepatitis C.

    Science.gov (United States)

    Bo, Qingyan; Orsenigo, Roberto; Wang, Junyi; Griffel, Louis; Brass, Clifford

    2015-01-01

    Many studies have demonstrated a potential association between type 2 diabetes (T2D) and hepatitis C virus infection in Western countries, while similar evidence is limited in Asia. We compared the prevalence of glucose abnormalities (impaired fasting glucose [IFG] and T2D) and their risk factors between Asian and non-Asian chronic hepatitis C (CHC) patients, and evaluated whether glucose abnormalities impacted the viral responses to peginterferon plus ribavirin treatment (current standard of care in most Asian countries). This study retrospectively analyzed data of 1,887 CHC patients from three Phase II/III studies with alisporivir (DEB025) as treatment for CHC. The chi-square test was used to compare the prevalence of IFG/T2D between Asian and non-Asian CHC patients, and logistic regression was used to adjust for sex, age, and cirrhosis status. Risk factors for IFG/T2D were evaluated using univariate and multivariate analysis. Our results indicated that the prevalence of IFG/T2D was high in both Asian and non-Asian CHC patients (23.0% vs 20.9%), and no significant difference was found between these two populations (adjusted odds ratio: 1.3, 95% confidence interval: 0.97, 1.7; P=0.08). Age, sex, and cirrhosis status were risk factors for IFG/T2D in both populations, while body mass index was positively associated with IFG/T2D in non-Asian but not in Asian participants. No significant differences in sustained virological response rates were seen between patients with normal fasting glucose and patients with IFG/T2D for both populations. These results demonstrate that the prevalence of glucose abnormalities in Asian CHC patients was similar to that in non-Asians, and glucose abnormalities had no impact on viral response to peginterferon plus ribavirin.

  7. Insulin-like peptide 5 is a microbially regulated peptide that promotes hepatic glucose production

    DEFF Research Database (Denmark)

    Lee, Ying Shiuan; De Vadder, Filipe; Tremaroli, Valentina

    2016-01-01

    expression in the brain was higher in CONV-R versus GF mice. We also observed that colonic Insl5 expression was suppressed by increasing the energy supply in GF mice by colonization or high-fat feeding. We did not observe any differences in food intake, gut transit or oral glucose tolerance between Insl5......-/- and wild-type mice. However, we showed impaired intraperitoneal glucose tolerance in Insl5-/- mice. We also observed improved insulin tolerance and reduced hepatic glucose production in Insl5-/- mice. CONCLUSIONS: We have shown that colonic Insl5 expression is regulated by the gut microbiota and energy...... availability. We propose that INSL5 is a hormone that could play a role in promoting hepatic glucose production during periods of energy deprivation....

  8. Involvement of KLF11 in hepatic glucose metabolism in mice via suppressing of PEPCK-C expression.

    Directory of Open Access Journals (Sweden)

    Huabing Zhang

    Full Text Available Abnormal hepatic gluconeogenesis is related to hyperglycemia in mammals with insulin resistance. Despite the strong evidences linking Krüppel-like factor 11 (KLF11 gene mutations to development of Type 2 diabetes, the precise physiological functions of KLF11 in vivo remain largely unknown.In current investigation, we showed that KLF11 is involved in modulating hepatic glucose metabolism in mice. Overexpression of KLF11 in primary mouse hepatocytes could inhibit the expression of gluconeogenic genes, including phosphoenolpyruvate carboxykinase (cytosolic isoform, PEPCK-C and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, subsequently decreasing the cellular glucose output. Diabetic mice with overexpression of KLF11 gene in livers significantly ameliorated hyperglycemia and glucose intolerance; in contrast, the knockdown of KLF11 expression in db/m and C57BL/6J mice livers impaired glucose tolerance.Our data strongly indicated the involvement of KLF11 in hepatic glucose homeostasis via modulating the expression of PEPCK-C.

  9. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. The role of hepatic mitochondria in the regulation of glucose metabolism in BHE rats

    International Nuclear Information System (INIS)

    Kim, M.J.C.

    1988-01-01

    The interacting effects of dietary fat source and thyroxine treatment on the hepatic mitochondrial function and glucose metabolism were studied. In the first study, three different sources of dietary fatty acids and thyroxine treatment were used to investigate the hepatic mitochondrial thermotropic behavior in two strains of rat. The NIDDM BHE and Sprague-Dawley rats were used. Feeding coconut oil increased serum T 4 levels and T 4 treatment increased serum T 3 levels in the BHE rats. In the mitochondria from BHE rats fed coconut oil and treated with T 4 , the transition temperature disappeared due to a decoupling of succinate supported respiration. This was not observed in the Sprague-Dawley rats. In the second study, two different sources of dietary fat and T 4 treatment were used to investigate hepatic mitochondrial function. Coconut oil feeding increased Ca ++ Mg ++ ATPase and Mg ++ ATPase. T 4 treatment had potentiated this effect. T 4 increased the malate-aspartate shuttle and α-glycerophosphate shuttle activities. In the third study, the glucose turnover rate from D-[ 14 C-U]/[6- 3 H]-glucose and gluconeogeneis from L-[ 14 C-U]-alanine was examined. Dietary fat or T 4 did not affect the glucose mass. T 4 increased the irreversible fractional glucose turnover rate

  11. Prevalence of hepatitis B virus subgenotypes and basal core promoter, precore variants in patients with acute hepatitis B in central Vietnam.

    Science.gov (United States)

    Hayashi, Kazuhiko; Katano, Yoshiaki; Chuong, Tran Xuan; Takeda, Yasushi; Ishigami, Masatoshi; Itoh, Akihiro; Hirooka, Yoshiki; Nakano, Isao; Huy, Tran Van; Minh, Nguyen Ngoc; Diem, Tran thi Minh; An, Dong thi Hoai; Phiet, Pham Hoang; Goto, Hidemi

    2009-01-01

    Hepatitis B virus (HBV) has been classified into 8 genotypes that have different geographic distributions. The clinical outcomes of acute hepatitis are dependent on genotype. The aim of this study was to investigate the distribution of HBV subgenotypes and basal core promoter (BCP)/precore (PC) regions in acute hepatitis patients in Central Vietnam to clarify the distributions and the clinical and virological differences. 27 patients with acute hepatitis B were studied. HBV subgenotypes and BCP/PC variants were determined by direct sequencing of the preS, BCP/PC regions, respectively. HBV subgenotypes B4/Ba (n = 22) and C1/Cs (n = 5) were detected. Of the 27 patients, 3 developed fulminant hepatic failure, and all were infected with B4/Ba. Three patients had a BCP mutation, and 10 patients had a PC mutation in subgenotype B4/Ba. Three patients with C1/Cs had a BCP mutation. Two of 3 patients who progressed to fulminant hepatic failure had T1762, A1764, and A1896 simultaneously. None of the patients with acute, self-limited hepatitis carried these triple mutations. The prevalent HBV subgenotypes in patients with acute hepatitis B in Central Vietnam were B4/Ba and C1/Cs. BCP/PC variants have an association with the development of fulminant hepatic failure in subgenotype B4/Ba. Copyright 2009 S. Karger AG, Basel.

  12. Stable-label intravenous glucose tolerance test minimal model

    International Nuclear Information System (INIS)

    Avogaro, A.; Bristow, J.D.; Bier, D.M.; Cobelli, C.; Toffolo, G.

    1989-01-01

    The minimal model approach to estimating insulin sensitivity (Sl) and glucose effectiveness in promoting its own disposition at basal insulin (SG) is a powerful tool that has been underutilized given its potential applications. In part, this has been due to its inability to separate insulin and glucose effects on peripheral uptake from their effects on hepatic glucose inflow. Prior enhancements, with radiotracer labeling of the dosage, permit this separation but are unsuitable for use in pregnancy and childhood. In this study, we labeled the intravenous glucose tolerance test (IVGTT) dosage with [6,6- 2 H 2 ]glucose, [2- 2 H]glucose, or both stable isotopically labeled glucose tracers and modeled glucose kinetics in six postabsorptive, nonobese adults. As previously found with the radiotracer model, the tracer-estimated S*l derived from the stable-label IVGTT was greater than Sl in each case except one, and the tracer-estimated SG* was less than SG in each instance. More importantly, however, the stable-label IVGTT estimated each parameter with an average precision of +/- 5% (range 3-9%) compared to average precisions of +/- 74% (range 7-309%) for SG and +/- 22% (range 3-72%) for Sl. In addition, because of the different metabolic fates of the two deuterated tracers, there were minor differences in basal insulin-derived measures of glucose effectiveness, but these differences were negligible for parameters describing insulin-stimulated processes. In conclusion, the stable-label IVGTT is a simple, highly precise means of assessing insulin sensitivity and glucose effectiveness at basal insulin that can be used to measure these parameters in individuals of all ages, including children and pregnant women

  13. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity.

    Science.gov (United States)

    Ozcan, Lale; Wong, Catherine C L; Li, Gang; Xu, Tao; Pajvani, Utpal; Park, Sung Kyu Robin; Wronska, Anetta; Chen, Bi-Xing; Marks, Andrew R; Fukamizu, Akiyoshi; Backs, Johannes; Singer, Harold A; Yates, John R; Accili, Domenico; Tabas, Ira

    2012-05-02

    Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here, we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary hepatocytes and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice.

    Science.gov (United States)

    Park, Hee-Sook; Hur, Haeng Jeon; Kim, Soon-Hee; Park, Su-Jin; Hong, Moon Ju; Sung, Mi Jeong; Kwon, Dae Young; Kim, Myung-Sunny

    2016-09-01

    Natural compounds that regulate peroxisome proliferator-activated receptor alpha (PPARα) have been reported to have beneficial effects in obesity-mediated metabolic disorders. In this study, we demonstrated that biochanin A (BA), an agonist of PPAR-α, improved hepatic steatosis and insulin resistance by regulating hepatic lipid and glucose metabolism. C57BL/6 mice were fed a normal chow diet, a high-fat diet (HFD), and an HFD supplemented with 0.05% BA for 12 weeks. Histological and biochemical examinations indicated that BA prevented obesity-induced hepatic steatosis and insulin resistance in HFD-fed mice. BA stimulated the transcriptional activation of PPAR-α in vitro and increased the expression of PPAR-α and its regulatory proteins in the liver. CE-TOF/MS analyses indicated that BA administration promoted the recovery of metabolites involved in phosphatidylcholine synthesis, lipogenesis, and beta-oxidation in the livers of obese mice. BA also suppressed the levels of gluconeogenesis-related metabolites and the expression of the associated enzymes, glucose 6-phosphatase and pyruvate kinase. Taken together, these results showed that BA ameliorated metabolic disorders such as hepatic steatosis and insulin resistance by modulating lipid and glucose metabolism in diet-induced obesity. Thus, BA may be a potential therapeutic agent for the prevention of obesity-mediated hepatic steatosis and insulin resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hepatic glucose-6-phosphatase-α deficiency leads to metabolic reprogramming in glycogen storage disease type Ia.

    Science.gov (United States)

    Cho, Jun-Ho; Kim, Goo-Young; Mansfield, Brian C; Chou, Janice Y

    2018-04-15

    Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in endogenous glucose production. This autosomal recessive disorder is characterized by impaired glucose homeostasis and long-term complications of hepatocellular adenoma/carcinoma (HCA/HCC). We have shown that hepatic G6Pase-α deficiency-mediated steatosis leads to defective autophagy that is frequently associated with carcinogenesis. We now show that hepatic G6Pase-α deficiency also leads to enhancement of hepatic glycolysis and hexose monophosphate shunt (HMS) that can contribute to hepatocarcinogenesis. The enhanced hepatic glycolysis is reflected by increased lactate accumulation, increased expression of many glycolytic enzymes, and elevated expression of c-Myc that stimulates glycolysis. The increased HMS is reflected by increased glucose-6-phosphate dehydrogenase activity and elevated production of NADPH and the reduced glutathione. We have previously shown that restoration of hepatic G6Pase-α expression in G6Pase-α-deficient liver corrects metabolic abnormalities, normalizes autophagy, and prevents HCA/HCC development in GSD-Ia. We now show that restoration of hepatic G6Pase-α expression normalizes both glycolysis and HMS in GSD-Ia. Moreover, the HCA/HCC lesions in L-G6pc-/- mice exhibit elevated levels of hexokinase 2 (HK2) and the M2 isoform of pyruvate kinase (PKM2) which play an important role in aerobic glycolysis and cancer cell proliferation. Taken together, hepatic G6Pase-α deficiency causes metabolic reprogramming, leading to enhanced glycolysis and elevated HMS that along with impaired autophagy can contribute to HCA/HCC development in GSD-Ia. Published by Elsevier Inc.

  16. Direct vs. indirect pathway of hepatic glycogen synthesis as a function of glucose infusion rate

    International Nuclear Information System (INIS)

    Bagby, G.J.; Lang, C.H.; Johnson, J.L.; Blakesly, H.L.; Spitzer, J.J.

    1986-01-01

    This study was initiated to determine the influence of the rate of exogenous glucose administration on liver glycogen synthesis by the direct (glucose uptake and incorporation into glycogen) vs the indirect pathway (glucose degradation to 3-carbon intermediates, e.g., lactate, prior to incorporation into glycogen). Catheterized rats were fasted 2 days prior to receiving a 3 hr infusion of glucose at rates of 0 to 230 μmol/min/kg containing tracer [6- 3 H]- and [U- 14 C]-glucose. Plasma glucose (r = 0.80), insulin (r = 0.90) and lactate (r = 0.84) were correlated with glucose infusion rate. The rate of liver glycogen deposition (0.46 +/- 0.03 μmol/min/g) did not differ between a glucose infusion rate of 20 and 230 μmol/min/kg. At the lowest and highest glucose infusion rates hepatic glycogenesis accounted for 87 +/- 6 and 9 +/- 1% of the total glucose load, respectively. The percent contribution of the direct pathways to glycogen deposition ([ 3 H] specific activity in hepatic glycogen/[ 3 H] specific activity in plasma glucose) increased from 16 +/- 3 to 83 +/- 5% from lowest to highest glucose infusion rates (prevailing plasma glucose concentrations: 9 +/- 1 and 21 +/- 2 mM, respectively). The results indicate that the relative contribution of the direct and indirect pathways of glucogen synthesis are dependent upon the glucose load or plasma glucose concentration

  17. Bisphenol A impairs hepatic glucose sensing in C57BL/6 male mice.

    Directory of Open Access Journals (Sweden)

    Leigh Perreault

    Full Text Available AIMS/HYPOTHESIS: Glucose sensing (eg. glucokinase activity becomes impaired in the development of type 2 diabetes, the etiology of which is unclear. Estrogen can stimulate glucokinase activity, whereas the pervasive environmental pollutant bisphenol A (BPA can inhibit estrogen action, hence we aimed to determine the effect of BPA on glucokinase activity directly. METHODS: To evaluate a potential acute effect on hepatic glucokinase activity, BPA in water (n = 5 vs. water alone (n = 5 was administered at the EPA's purported "safe dose" (50 µg/kg by gavage to lean 6-month old male C57BL/6 mice. Two hours later, animals were euthanized and hepatic glucokinase activity measured over glucose levels from 1-20 mmol/l in liver homogenate. To determine the effect of chronic BPA exposure on hepatic glucokinase activity, lean 6-month old male C57BL/6 mice were provided with water (n = 15 or water with 1.75 mM BPA (∼50 µg/kg/day; n = 14 for 2 weeks. Following the 2-week exposure, animals were euthanized and glucokinase activity measured as above. RESULTS: Hepatic glucokinase activity was signficantly suppressed after 2 hours in animals given an oral BPA bolus compared to those who received only water (p = 0.002-0.029 at glucose 5-20 mmol/l; overall treatment effect p<0.001. Exposure to BPA over 2 weeks also suppressed hepatic glucokinase activity in exposed vs. unexposed mice (overall treatment effect, p = 0.003. In both experiments, the Hill coefficient was higher and Vmax lower in mice treated with BPA. CONCLUSIONS/INTERPRETATION: Both acute and chronic exposure to BPA significantly impair hepatic glucokinase activity and function. These findings identify a potential mechanism for how BPA may increase risk for diabetes.

  18. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2017-07-01

    Full Text Available The liver has a large capacity for mitochondrial fatty acid β-oxidation, which is critical for systemic metabolic adaptations such as gluconeogenesis and ketogenesis. To understand the role of hepatic fatty acid oxidation in response to a chronic high-fat diet (HFD, we generated mice with a liver-specific deficiency of mitochondrial long-chain fatty acid β-oxidation (Cpt2L−/− mice. Paradoxically, Cpt2L−/− mice were resistant to HFD-induced obesity and glucose intolerance with an absence of liver damage, although they exhibited serum dyslipidemia, hepatic oxidative stress, and systemic carnitine deficiency. Feeding an HFD induced hepatokines in mice, with a loss of hepatic fatty acid oxidation that enhanced systemic energy expenditure and suppressed adiposity. Additionally, the suppression in hepatic gluconeogenesis was sufficient to improve HFD-induced glucose intolerance. These data show that inhibiting hepatic fatty acid oxidation results in a systemic hormetic response that protects mice from HFD-induced obesity and glucose intolerance.

  19. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Nicolai J. Wewer Albrechtsen

    2017-11-01

    Full Text Available Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61 appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in vivo. We conclude that glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.

  20. Proximity to Delivery Alters Insulin Sensitivity and Glucose Metabolism in Pregnant Mice.

    Science.gov (United States)

    Musial, Barbara; Fernandez-Twinn, Denise S; Vaughan, Owen R; Ozanne, Susan E; Voshol, Peter; Sferruzzi-Perri, Amanda N; Fowden, Abigail L

    2016-04-01

    In late pregnancy, maternal insulin resistance occurs to support fetal growth, but little is known about insulin-glucose dynamics close to delivery. This study measured insulin sensitivity in mice in late pregnancy at day 16 (D16) and near term at D19. Nonpregnant (NP) and pregnant mice were assessed for metabolite and hormone concentrations, body composition by DEXA, tissue insulin signaling protein abundance by Western blotting, glucose tolerance and utilization, and insulin sensitivity using acute insulin administration and hyperinsulinemic-euglycemic clamps with [(3)H]glucose infusion. Whole-body insulin resistance occurred in D16 pregnant dams in association with basal hyperinsulinemia, insulin-resistant endogenous glucose production, and downregulation of several proteins in hepatic and skeletal muscle insulin signaling pathways relative to NP and D19 values. Insulin resistance was less pronounced at D19, with restoration of NP insulin concentrations, improved hepatic insulin sensitivity, and increased abundance of hepatic insulin signaling proteins. At D16, insulin resistance at whole-body, tissue, and molecular levels will favor fetal glucose acquisition, while improved D19 hepatic insulin sensitivity will conserve glucose for maternal use in anticipation of lactation. Tissue sensitivity to insulin, therefore, alters differentially with proximity to delivery in pregnant mice, with implications for human and other species. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. The Effect of Phloroglucinol, A Component of Ecklonia cava Extract, on Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Ji-Young Yoon

    2017-04-01

    Full Text Available Phloroglucinol is a phenolic compound that is one of the major compounds in Ecklonia cava (brown alga. It has many pharmacological activities, but its anti-diabetic effect is not yet fully explored. In this study, we investigated the effect of phloroglucinol on the control of blood glucose levels and the regulation of hepatic glucose production. Phloroglucinol significantly improved glucose tolerance in male C57BL/6J mice fed a high fat diet (HFD and inhibited glucose production in mouse primary hepatocytes. The expression of phosphoenol pyruvate carboxykinase (PEPCK and glucose-6-phosphatase mRNA and protein (G6Pase, enzymes involved in gluconeogenesis, were inhibited in liver tissue from phloroglucinol-treated mice and in phloroglucinol-treated HepG2 cells. In addition, phloroglucinol treatment increased phosphorylated AMP-activated protein kinase (AMPKα in HepG2 cells. Treatment with compound C, an AMPKα inhibitor, inhibited the increase of phosphorylated AMPKα and the decrease of PEPCK and G6Pase expression caused by phloroglucinol treatment. We conclude that phloroglucinol may inhibit hepatic gluconeogenesis via modulating the AMPKα signaling pathway, and thus lower blood glucose levels.

  2. Glucose abnormalities in Asian patients with chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    Bo Q

    2015-11-01

    Full Text Available Qingyan Bo,1 Roberto Orsenigo,2 Junyi Wang,1 Louis Griffel,3 Clifford Brass3 1Beijing Novartis Pharma Co. Ltd., Shanghai, People’s Republic of China; 2Novartis Pharma AG, Basel, Switzerland; 3Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA Abstract: Many studies have demonstrated a potential association between type 2 diabetes (T2D and hepatitis C virus infection in Western countries, while similar evidence is limited in Asia. We compared the prevalence of glucose abnormalities (impaired fasting glucose [IFG] and T2D and their risk factors between Asian and non-Asian chronic hepatitis C (CHC patients, and evaluated whether glucose abnormalities impacted the viral responses to peginterferon plus ribavirin treatment (current standard of care in most Asian countries. This study retrospectively analyzed data of 1,887 CHC patients from three Phase II/III studies with alisporivir (DEB025 as treatment for CHC. The chi-square test was used to compare the prevalence of IFG/T2D between Asian and non-Asian CHC patients, and logistic regression was used to adjust for sex, age, and cirrhosis status. Risk factors for IFG/T2D were evaluated using univariate and multivariate analysis. Our results indicated that the prevalence of IFG/T2D was high in both Asian and non-Asian CHC patients (23.0% vs 20.9%, and no significant difference was found between these two populations (adjusted odds ratio: 1.3, 95% confidence interval: 0.97, 1.7; P=0.08. Age, sex, and cirrhosis status were risk factors for IFG/T2D in both populations, while body mass index was positively associated with IFG/T2D in non-Asian but not in Asian participants. No significant differences in sustained virological response rates were seen between patients with normal fasting glucose and patients with IFG/T2D for both populations. These results demonstrate that the prevalence of glucose abnormalities in Asian CHC patients was similar to that in non-Asians, and glucose abnormalities had

  3. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance.

    Science.gov (United States)

    Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S; Zhao, Liang; Hartung, Thomas; Scafidi, Susanna; Riddle, Ryan C; Wolfgang, Michael J

    2017-07-18

    The liver has a large capacity for mitochondrial fatty acid β-oxidation, which is critical for systemic metabolic adaptations such as gluconeogenesis and ketogenesis. To understand the role of hepatic fatty acid oxidation in response to a chronic high-fat diet (HFD), we generated mice with a liver-specific deficiency of mitochondrial long-chain fatty acid β-oxidation (Cpt2 L-/- mice). Paradoxically, Cpt2 L-/- mice were resistant to HFD-induced obesity and glucose intolerance with an absence of liver damage, although they exhibited serum dyslipidemia, hepatic oxidative stress, and systemic carnitine deficiency. Feeding an HFD induced hepatokines in mice, with a loss of hepatic fatty acid oxidation that enhanced systemic energy expenditure and suppressed adiposity. Additionally, the suppression in hepatic gluconeogenesis was sufficient to improve HFD-induced glucose intolerance. These data show that inhibiting hepatic fatty acid oxidation results in a systemic hormetic response that protects mice from HFD-induced obesity and glucose intolerance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Tissue inhibitor of matrix metalloproteinase-1 is required for high-fat diet-induced glucose intolerance and hepatic steatosis in mice

    DEFF Research Database (Denmark)

    Fjære, Even; Andersen, Charlotte; Myrmel, Lene Secher

    2015-01-01

    -induced glucose intolerance and hepatic steatosis using the Timp1 null mice. METHODS: Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or intermediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid content of the liver, energy intake, energy...... and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation....... CONCLUSION: Collectively, our results indicate that TIMP-1 contributes to the development of diet-induced hepatic steatosis and glucose intolerance and may be a potential therapeutic target....

  5. A randomized clinical trial comparing the effect of basal insulin and inhaled mealtime insulin on glucose variability and oxidative stress

    NARCIS (Netherlands)

    Siegelaar, S. E.; Kulik, W.; van Lenthe, H.; Mukherjee, R.; Hoekstra, J. B. L.; DeVries, J. H.

    2009-01-01

    To assess the effect of three times daily mealtime inhaled insulin therapy compared with once daily basal insulin glargine therapy on 72-h glucose profiles, glucose variability and oxidative stress in type 2 diabetes patients. In an inpatient crossover study, 40 subjects with type 2 diabetes were

  6. Inhibitory Effects of Ecklonia cava Extract on High Glucose-Induced Hepatic Stellate Cell Activation

    Directory of Open Access Journals (Sweden)

    Akiko Kojima-Yuasa

    2011-12-01

    Full Text Available Nonalcoholic steatohepatitis (NASH is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs, key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis.

  7. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice*

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M.; Piganelli, Jon D.; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H. Henry

    2015-01-01

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. PMID:25944898

  8. Hepatic glycogen in humans. I. Direct formation after oral and intravenous glucose or after a 24-h fast

    International Nuclear Information System (INIS)

    Radziuk, J.

    1989-01-01

    The formation of hepatic glycogen by the direct pathway is assessed in humans after a 12-h fast and oral loading (100 g) or intravenous infusion (90 g) and after a 24-h fast and the same oral glucose load. The methodology used is based on the double tracer method. [3- 3 H]glucose is infused at a constant rate for the determination of the metabolic clearance of glucose. [1- 14 C]glucose is administered with the glucose load. One hour after absorption or the intravenous glucose infusion is terminated, a glucagon infusion is initiated to mobilize the glycogen labeled with [1- 14 C]glucose and formed during the absorptive period. At this time a third tracer, [6- 3 H]glucose, is administered to measure glucose clearance. It was found that after the 12-h fast and oral glucose loading 7.2 +/- 1.1 g of hepatic glycogen appears to be formed directly from glucose compared with 8.4 +/- 1.0 g after the same load and a 24-h fast and 8.5 +/- 0.4 g after a 12-h fast and an equivalent intravenous glucose infusion. When the amount of label ([ 14 C]glucose) mobilized that was not corrected for metabolic recycling was calculated, the data suggested that the amount of glycogen formed by gluconeogenic pathways was probably at least equal to that formed by direct uptake. It was also approximately 60% greater after a 24-h fast. It can be concluded that the amount of hepatic glycogen formed directly from glucose during glucose loading is not significantly altered by the route of entry or the extension of the fasting period to 24 h. The data suggest, however, that gluconeogenetic formation of glycogen increases with fasting

  9. Continued glucose output after re-feeding contributes to glucose intolerance in hyperthyroidism.

    OpenAIRE

    Holness, M J; Sugden, M C

    1987-01-01

    The effects of hyperthyroidism to elicit glucose intolerance after glucose administration were decreased under conditions where hepatic glucose output was suppressed. It is concluded that continued hepatic glucose output contributes to abnormal glucose tolerance in hyperthyroidism.

  10. Duodenal mucosal protein kinase C-δ regulates glucose production in rats.

    Science.gov (United States)

    Kokorovic, Andrea; Cheung, Grace W C; Breen, Danna M; Chari, Madhu; Lam, Carol K L; Lam, Tony K T

    2011-11-01

    Activation of protein kinase C (PKC) enzymes in liver and brain alters hepatic glucose metabolism, but little is known about their role in glucose regulation in the gastrointestinal tract. We investigated whether activation of PKC-δ in the duodenum is sufficient and necessary for duodenal nutrient sensing and regulates hepatic glucose production through a neuronal network in rats. In rats, we inhibited duodenal PKC and evaluated whether nutrient-sensing mechanisms, activated by refeeding, have disruptions in glucose regulation. We then performed gain- and loss-of-function pharmacologic and molecular experiments to target duodenal PKC-δ; we evaluated the impact on glucose production regulation during the pancreatic clamping, while basal levels of insulin were maintained. PKC-δ was detected in the mucosal layer of the duodenum; intraduodenal infusion of PKC inhibitors disrupted glucose homeostasis during refeeding, indicating that duodenal activation of PKC-δ is necessary and sufficient to regulate glucose homeostasis. Intraduodenal infusion of the PKC activator 1-oleoyl-2-acetyl-sn-glycerol (OAG) specifically activated duodenal mucosal PKC-δ and a gut-brain-liver neuronal pathway to reduce glucose production. Molecular and pharmacologic inhibition of duodenal mucosal PKC-δ negated the ability of duodenal OAG and lipids to reduce glucose production. In the duodenal mucosa, PKC-δ regulates glucose homeostasis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Hepatitis C virus eradication by direct antiviral agents improves glucose tolerance and reduces post-load insulin resistance in nondiabetic patients with genotype 1.

    Science.gov (United States)

    Salomone, Federico; Catania, Maurizio; Montineri, Arturo; Bertino, Gaetano; Godos, Justyna; Rizzo, Leonardo; Magrì, Giovanni; Li Volti, Giovanni

    2017-12-19

    Genotype 1 chronic hepatitis C is associated with an impairment of glucose homoeostasis, especially in the advanced stages of the disease. Glucose tolerance is an independent predictor of liver-related mortality in patients with cirrhosis because of chronic hepatitis C. However, no study has demonstrated so far weather hepatitis C virus clearance affects glucose tolerance. To this aim, we performed a prospective study assessing the effects of direct antiviral agents treatment in nondiabetic cirrhotic patients with genotypes 1a/1b and impaired glucose tolerance based on a 75-g oral glucose tolerance test. Impaired glucose tolerance was diagnosed by a 2-hour plasma glucose between 140 and 199 mg/dL. Insulin resistance was estimated by the oral glucose insulin sensitivity index, an oral glucose tolerance test-derived measure. After meeting the inclusion criteria, the study population included 32 outpatients (26/6 genotypes 1b/1a; age 62 ± 7.4 years; 18 males) with compensated Child-A cirrhosis. All patients achieved a sustained virological response following direct antiviral agents treatment. After viral eradication, we did not observe change in fasting plasma glucose (103.5 ± 7.1 vs 102.8 ± 7.2 mg/dL, P = .15) but 2-hour plasma glucose was reduced (165.2 ± 22.7 vs 138.5 ± 21.3 mg/dL, P Hepatitis C virus eradication led also to a significant reduction in HbA1c (6.1 ± 0.2% vs 5.7 ± 0.3%, P resistance as assessed by the oral glucose insulin sensitivity index (6.92 ± 1.56 vs 9.52 ± 1.39 mg/kg/min, P  .5). Our results indicate that hepatitis C virus eradication may early improve glucose tolerance in patients with hepatitis C virus-related cirrhosis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Relative contribution of glycogenolysis and gluconeogenesis to basal, glucagon- and nerve stimulation-dependent glucose output in the perfused liver from fed and fasted rats

    NARCIS (Netherlands)

    Beuers, U.; JUNGERMANN, K.

    1990-01-01

    The relative contribution to basal, glucagon- and nerve stimulation-enhanced glucose output of glycogenolysis (glucose output in the presence of the gluconeogenic inhibitor mercaptopicolinate) and gluconeogenesis (difference in glucose output in the absence and presence of the inhibitor) was

  13. SREBP-1c regulates glucose-stimulated hepatic clusterin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gukhan [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Geun Hyang; Oh, Gyun-Sik; Yoon, Jin [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Hae Won [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Min-Seon [Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Seung-Whan, E-mail: swkim7@amc.seoul.kr [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} This is the first report to show nutrient-regulated clusterin expression. {yields} Clusterin expression in hepatocytes was increased by high glucose concentration. {yields} SREBP-1c is directly involved in the transcriptional activation of clusterin by glucose. {yields} This glucose-stimulated activation process is mediated through tandem E-box motifs. -- Abstract: Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.

  14. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice.

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M; Piganelli, Jon D; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H Henry

    2015-06-19

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Subthalamic nucleus stimulation does not influence basal glucose metabolism or insulin sensitivity in patients with Parkinson's disease

    NARCIS (Netherlands)

    Lammers, Nicolette M.; Sondermeijer, Brigitte M.; Twickler, Th B. Marcel; de Bie, Rob M.; Ackermans, Mariëtte T.; Fliers, Eric; Schuurman, P. Richard; la Fleur, Susanne E.; Serlie, Mireille J.

    2014-01-01

    Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry,

  16. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons

    Science.gov (United States)

    Shi, Xuemei; Zhou, Fuguo; Li, Xiaojie; Chang, Benny; Li, Depei; Wang, Yi; Tong, Qingchun; Xu, Yong; Fukuda, Makoto; Zhao, Jean J.; Li, Defa; Burrin, Douglas G.; Chan, Lawrence; Guan, Xinfu

    2013-01-01

    Glucagon-like peptides (GLP-1/2) are co-produced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We show that mice lacking GLP-2 receptor (GLP-2R) in POMC neurons display glucose intolerance and hepatic insulin resistance. GLP-2R activation in POMC neurons is required for GLP-2 to enhance insulin-mediated suppression of hepatic glucose production (HGP) and gluconeogenesis. GLP-2 directly modulates excitability of POMC neurons in GLP-2R- and PI3K-dependent manners. GLP-2 initiates GLP-2R-p85α interaction and facilitates PI3K-Akt-dependent FoxO1 nuclear exclusion in POMC neurons. Central GLP-2 suppresses basal HGP and enhances insulin sensitivity, which are abolished in POMC-p110α KO mice. Thus, CNS GLP-2 plays a key physiological role in the control of hepatic glucose production through activating PI3K-dependent modulation of membrane excitability and nuclear transcription of POMC neurons in the brain. PMID:23823479

  17. Lack of skeletal muscle IL-6 influences hepatic glucose metabolism in mice during prolonged exercise

    DEFF Research Database (Denmark)

    Bertholdt, Lærke; Gudiksen, Anders; Schwartz, Camilla Lindgren

    2017-01-01

    The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscle...... IL-6 on hepatic glucose regulation and substrate choice during prolonged exercise. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice (age, 12-14 wk) and littermate lox/lox (Control) mice were either rested (Rest) or completed a single bout of exercise for 10, 60, or 120 min, and the liver....... Furthermore, IL-6 MKO mice had higher hepatic pyruvate dehydrogenase (PDH)Ser232 and PDHSer300 phosphorylation than control mice at rest. In conclusion, hepatic gluconeogenic capacity in mice is increased during prolonged exercise independent of muscle IL-6. Furthermore, Skeletal muscle IL-6 influences...

  18. Application of the Oral Minimal Model to Korean Subjects with Normal Glucose Tolerance and Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Min Hyuk Lim

    2016-06-01

    Full Text Available BackgroundThe oral minimal model is a simple, useful tool for the assessment of β-cell function and insulin sensitivity across the spectrum of glucose tolerance, including normal glucose tolerance (NGT, prediabetes, and type 2 diabetes mellitus (T2DM in humans.MethodsPlasma glucose, insulin, and C-peptide levels were measured during a 180-minute, 75-g oral glucose tolerance test in 24 Korean subjects with NGT (n=10 and T2DM (n=14. The parameters in the computational model were estimated, and the indexes for insulin sensitivity and β-cell function were compared between the NGT and T2DM groups.ResultsThe insulin sensitivity index was lower in the T2DM group than the NGT group. The basal index of β-cell responsivity, basal hepatic insulin extraction ratio, and post-glucose challenge hepatic insulin extraction ratio were not different between the NGT and T2DM groups. The dynamic, static, and total β-cell responsivity indexes were significantly lower in the T2DM group than the NGT group. The dynamic, static, and total disposition indexes were also significantly lower in the T2DM group than the NGT group.ConclusionThe oral minimal model can be reproducibly applied to evaluate β-cell function and insulin sensitivity in Koreans.

  19. Activating transcription factor 3 is a target molecule linking hepatic steatosis to impaired glucose homeostasis.

    Science.gov (United States)

    Kim, Ji Yeon; Park, Keon Jae; Hwang, Joo-Yeon; Kim, Gyu Hee; Lee, DaeYeon; Lee, Yoo Jeong; Song, Eun Hyun; Yoo, Min-Gyu; Kim, Bong-Jo; Suh, Young Ho; Roh, Gu Seob; Gao, Bin; Kim, Won; Kim, Won-Ho

    2017-08-01

    Non-alcoholic fatty liver disease (NAFLD) contributes to impaired glucose tolerance, leading to type 2 diabetes (T2D); however, the precise mechanisms and target molecules that are involved remain unclear. Activating transcription factor 3 (ATF3) is associated with β-cell dysfunction that is induced by severe stress signals in T2D. We aimed to explore the exact functional role of ATF3 as a mechanistic link between hepatic steatosis and T2D development. Zucker diabetic fatty (ZDF) rats were utilized for animal experiments. An in vivo-jetPEI siRNA delivery system against ATF3 was used for loss-of-function experiments. We analyzed the baseline cross-sectional data derived from the biopsy-proven NAFLD registry (n=322). Human sera and liver tissues were obtained from 43 patients with biopsy-proven NAFLD and from seven healthy participants. ATF3 was highly expressed in the livers of ZDF rats and in human participants with NAFLD and/or T2D. Insulin resistance and hepatic steatosis were associated with increased ATF3 expression and decreased fatty acid oxidation via mitochondrial dysfunction and were attenuated by in vivo ATF3 silencing. Knockdown of ATF3 also ameliorated glucose intolerance, impaired insulin action, and inflammatory responses in ZDF rats. In patients with NAFLD and/or T2D, a significant positive correlation was observed between hepatic ATF3 expression and surrogate markers of T2D, mitochondrial dysfunction, and macrophage infiltration. Increased hepatic ATF3 expression is closely associated with hepatic steatosis and incident T2D; therefore, ATF3 may serve as a potential therapeutic target for NAFLD and hepatic steatosis-induced T2D. Hepatic activating transcription factor 3 (ATF3) may play an important role in oxidative stress-mediated hepatic steatosis and the development of type 2 diabetes (T2D) in a Zucker diabetic fatty (ZDF) rat model and in human patients with non-alcoholic fatty liver disease (NAFLD). Therefore, ATF3 may be a useful biomarker for

  20. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.

    Science.gov (United States)

    Trägårdh, Malene; Møller, Niels; Sørensen, Michael

    2015-09-01

    PET with the glucose analog (18)F-FDG is used to measure regional tissue metabolism of glucose. However, (18)F-FDG may have affinities different from those of glucose for plasma membrane transporters and intracellular enzymes; the lumped constant (LC) can be used to correct these differences kinetically. The aims of this study were to investigate the feasibility of measuring human hepatic glucose metabolism with dynamic (18)F-FDG PET/CT and to determine an operational LC for (18)F-FDG by comparison with (3)H-glucose measurements. Eight healthy human subjects were included. In all studies, (18)F-FDG and (3)H-glucose were mixed in saline and coadministered. A 60-min dynamic PET recording of the liver was performed for 180 min with blood sampling from catheters in a hepatic vein and a radial artery (concentrations of (18)F-FDG and (3)H-glucose in blood). Hepatic blood flow was determined by indocyanine green infusion. First, 3 subjects underwent studies comparing bolus administration and constant-infusion administration of tracers during hyperinsulinemic-euglycemic clamping. Next, 5 subjects underwent studies comparing fasting and hyperinsulinemic-euglycemic clamping with tracer infusions. Splanchnic extraction fractions of (18)F-FDG (E*) and (3)H-glucose (E) were calculated from concentrations in blood, and the LC was calculated as ln(1 - E*)/ln(1 - E). Volumes of interest were drawn in the liver tissue, and hepatic metabolic clearance of (18)F-FDG (mL of blood/100 mL of liver tissue/min) was estimated. For bolus versus infusion, E* values were always negative when (18)F-FDG was administered as a bolus and were always positive when it was administered as an infusion. For fasting versus clamping, E* values were positive in 4 of 5 studies during fasting and were always positive during clamping. Negative extraction fractions were ascribed to the tracer distribution in the large volume of distribution in the prehepatic splanchnic bed. The LC ranged from 0.43 to 2

  1. The PPARα/γ Agonist, Tesaglitazar, Improves Insulin Mediated Switching of Tissue Glucose and Free Fatty Acid Utilization In Vivo in the Obese Zucker Rat

    Directory of Open Access Journals (Sweden)

    Kristina Wallenius

    2013-01-01

    Full Text Available Metabolic flexibility was assessed in male Zucker rats: lean controls, obese controls, and obese rats treated with the dual peroxisome proliferator activated receptor (PPAR agonist, tesaglitazar, 3 μmol/kg/day for 3 weeks. Whole body glucose disposal rate ( and hepatic glucose output (HGO were assessed under basal fasting and hyperinsulinemic isoglycemic clamp conditions using [3,3H]glucose. Indices of tissue specific glucose utilization ( were measured at basal, physiological, and supraphysiological levels of insulinemia using 2-deoxy-D-[2,6-3H]glucose. Finally, whole body and tissue specific FFA and glucose utilization and metabolic fate were evaluated under basal and hyperinsulinemic conditions using a combination of [U-13C]glucose, 2-deoxy-D-[U-14C]glucose, [U-14C]palmitate, and [9,10-3H]-(R-bromopalmitate. Tesaglitazar improved whole body insulin action by greater suppression of HGO and stimulation of compared to obese controls. This involved increased insulin stimulation of in fat and skeletal muscle as well as increased glycogen synthesis. Tesaglitazar dramatically improved insulin mediated suppression of plasma FFA level, whole body turnover (, and muscle, liver, and fat utilization. At basal insulin levels, tesaglitazar failed to lower HGO or compared to obese controls. In conclusion, the results demonstrate that tesaglitazar has a remarkable ability to improve insulin mediated control of glucose and FFA fluxes in obese Zucker rats.

  2. Fermented Moringa oleifera Decreases Hepatic Adiposity and Ameliorates Glucose Intolerance in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Joung, Hyunchae; Kim, Bobae; Park, Hyunjoon; Lee, Kyuyeon; Kim, Hee-Hoon; Sim, Ho-Cheol; Do, Hyun-Jin; Hyun, Chang-Kee; Do, Myoung-Sool

    2017-05-01

    Metabolic diseases, such as glucose intolerance and nonalcoholic fatty-liver disease (NAFLD), are primary risk factors for life-threatening conditions such as diabetes, heart attack, stroke, and hepatic cancer. Extracts from the tropical tree Moringa oleifera show antidiabetic, antioxidant, anti-inflammatory, and anticancer effects. Fermentation can further improve the safety and nutritional value of certain foods. We investigated the efficacy of fermented M. oleifera extract (FM) against high-fat diet (HFD)-induced glucose intolerance and hepatic lipid accumulation and investigated the underlying mechanisms by analyzing expression of proteins and genes involved in glucose and lipid regulation. C57BL/6 mice were fed with normal chow diet (ND) or HFD supplemented with distilled water (DW, control), nonfermented M. oleifera extract (NFM), or FM for 10 weeks. Although body weights were similar among HFD-fed treatment groups, liver weight was decreased, and glucose tolerance test (GTT) results improved in the FM group compared with DW and NFM groups. Hepatic lipid accumulation was also lower in the FM group, and expressions of genes involved in liver lipid metabolism were upregulated. In addition, HFD-induced endoplasmic reticulum (ER) stress, oxidative stress, and lipotoxicity in quadriceps muscles were decreased by FM. Finally, proinflammatory cytokine mRNA expression was decreased by FM in the liver, epididymal adipose tissue, and quadriceps of HFD-fed mice. FMs may decrease glucose intolerance and NAFLD under HFD-induced obesity by decreasing ER stress, oxidative stress, and inflammation.

  3. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity.

    Science.gov (United States)

    Shi, Xuemei; Chacko, Shaji; Li, Feng; Li, Depei; Burrin, Douglas; Chan, Lawrence; Guan, Xinfu

    2017-11-01

    Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected excitatory hM3Dq-mCherry AAV into their brainstem NTS. We characterized the metabolic impact of PPG neuron activation on glucose homeostasis and insulin sensitivity using stable isotopic tracers coupled with hyperinsulinemic euglycemic clamp. We showed that after ip injection of clozapine N-oxide, Gcg-Cre lean mice transduced with hM3Dq in the brainstem NTS downregulated basal endogenous glucose production and enhanced glucose tolerance following ip glucose tolerance test. Moreover, acute activation of PPG neurons NTS enhanced whole-body insulin sensitivity as indicated by increased glucose infusion rate as well as augmented insulin-suppression of endogenous glucose production and gluconeogenesis. In contrast, insulin-stimulation of glucose disposal was not altered significantly. We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats

    Science.gov (United States)

    Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui

    2017-12-01

    Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.

  5. Sexual dimorphism in hepatic, adipose tissue and peripheral tissue insulin sensitivity in obese humans

    Directory of Open Access Journals (Sweden)

    Kasper W. ter Horst

    2015-11-01

    Full Text Available Glucose and lipid metabolism differ between men and women, and women tend to have better whole-body or muscle insulin sensitivity. This may be explained, in part, by differences in sex hormones and adipose tissue distribution. Few studies have investigated gender differences in hepatic, adipose tissue and whole-body insulin sensitivity between severely obese men and women. In this study, we aimed to determine the differences in glucose metabolism between severely obese men and women using tissue-specific measurements of insulin sensitivity. Insulin sensitivity was compared between age and body mass index (BMI-matched obese men and women by a two-step euglycemic hyperinsulinemic clamp with infusion of [6,6-2H2]glucose. Basal endogenous glucose production and insulin sensitivity of the liver, adipose tissue and peripheral tissues were assessed. Liver fat content was assessed by proton magnetic resonance spectroscopy in a subset of included subjects. We included 46 obese men and women (age, 48±2 vs 46±2 years, p=0.591; BMI, 41±1 vs 41±1 kg/m2, p=0.832. There was no difference in basal endogenous glucose production (14.4±1.0 vs 15.3±0.5 µmol•kg fat-free mass-1•min-1, p=0.410, adipose tissue insulin sensitivity (insulin-mediated suppression of free fatty acids, 71.6±3.6 vs 76.1±2.6%, p=0.314 or peripheral insulin sensitivity (insulin-stimulated rate of disappearance of glucose, 26.2±2.1 vs 22.7±1.7 µmol•kg-1•min-1, p=0.211. Obese men were characterized by lower hepatic insulin sensitivity (insulin-mediated suppression of endogenous glucose production, 61.7±4.1 vs 72.8±2.5% in men vs women, resp., p=0.028. Finally, these observations could not be explained by differences in liver fat content (men vs women, 16.5±3.1 vs 16.0±2.5%, p=0.913, n=27.We conclude that obese men have lower hepatic, but comparable adipose tissue and peripheral tissue, insulin sensitivity compared to similarly obese women. Hepatic insulin resistance may

  6. Singing can improve speech function in aphasics associated with intact right basal ganglia and preserve right temporal glucose metabolism: Implications for singing therapy indication.

    Science.gov (United States)

    Akanuma, Kyoko; Meguro, Kenichi; Satoh, Masayuki; Tashiro, Manabu; Itoh, Masatoshi

    2016-01-01

    Clinically, we know that some aphasic patients can sing well despite their speech disturbances. Herein, we report 10 patients with non-fluent aphasia, of which half of the patients improved their speech function after singing training. We studied ten patients with non-fluent aphasia complaining of difficulty finding words. All had lesions in the left basal ganglia or temporal lobe. They selected the melodies they knew well, but which they could not sing. We made a new lyric with a familiar melody using words they could not name. The singing training using these new lyrics was performed for 30 minutes once a week for 10 weeks. Before and after the training, their speech functions were assessed by language tests. At baseline, 6 of them received positron emission tomography to evaluate glucose metabolism. Five patients exhibited improvements after intervention; all but one exhibited intact right basal ganglia and left temporal lobes, but all exhibited left basal ganglia lesions. Among them, three subjects exhibited preserved glucose metabolism in the right temporal lobe. We considered that patients who exhibit intact right basal ganglia and left temporal lobes, together with preserved right hemispheric glucose metabolism, might be an indication of the effectiveness of singing therapy.

  7. Hepatic Glucose Production Increases in Response to Metformin Treatment in the Glycogen-depleted State

    DEFF Research Database (Denmark)

    Christensen, Mette Marie Hougaard; Højlund, Kurt; Hother-Nielsen, Ole

    with two reduced-function alleles) were fasted for 42 h twice. In one of the periods, before the fasting, the volunteers were titrated to steady-state with 1 g metformin twice daily for seven days. Parameters of whole-body glucose metabolism were assessed using [3-3^H] glucose, indirect calorimetry......Metformin is believed to reduce glucose levels primarily by inhibiting hepatic glucose production, but at the same time do not cause hypoglycemia. Recent data indicate that metformin antagonizes the major glucose counterregulatory hormone, glucagon suggesting that other mechanisms protect against...... hypoglycemia. Here, we examined the effect of metformin on whole-body glucose metabolism after a glycogen-depleting 40 h fast and the role of reduced-function alleles in OCT1. In a randomized cross-over trial, 34 healthy volunteers with known OCT1 genotypes (12 with two wild-type alleles, 13 with one and 9...

  8. Effect of abomasal glucose infusion on splanchnic and whole-body glucose metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism.......Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism....

  9. The glucose-galactose paradox in neonatal murine hepatic glycogen synthesis

    International Nuclear Information System (INIS)

    Kunst, C.; Kliegman, R.; Trindade, C.

    1989-01-01

    In adults glucose incorporation to glycogen is indirect after recycling from lactate. In neonates galactose entry to glycogen exceeds that for glucose, but the pathway is unknown. The pathway of hexose incorporation to glycogen was studied in 5-7-day-old rats and 6-h-old rats injected intraperitoneally (IP) with either double-labeled [6-3H]glucose (nonrecycling), [U-14C]glucose (recycling), or [6-3H]glucose and [U-14C]galactose in saline. In another group of pups, 1 g/kg of glucose or galactose was administered in addition to tracers to determine glycemia and net glycogen synthesis between 15 and 180 min after injection. Blood glucose increased from 3.4 +/- 0.4 to 8.5 +/- 1.5 mM in 5-7-day-old pups in response to IP glucose; there was no glycemic response to galactose, although galactose levels increased from 0.5 to 6.3 mM at 15 min. Hepatic glycogen increased after IP glucose from 14 +/- 2 at 15 min to 30 +/- 3 at 120 min (P less than 0.01), whereas after IP galactose glycogen was 44 +/- 6 mumol/g at 120 min (P less than 0.05). After IP glucose, 3H and 14C disintegration per minute in glycogen increased slowly with 14C exceeding 3H at 120 and 180 min. In contrast IP [14C]galactose resulted in a much greater peak of 14C incorporation into glycogen. The ratio of 3H to 14C in glycogen relative to the injectate after IP glucose decreased from 0.69 +/- 0.12 to 0.36 +/- 0.03 (P less than 0.01) between 15 to 180 min, whereas the ratio after galactose was 0.20 +/- 0.007 to 0.15 +/- 0.02 at these times. The 6-h-old pups also demonstrated augmented incorporation of [14C]galactose in glycogen relative to [3H-14C]glucose. In contrast to 5-7-day-old pups there was no evidence of glucose recycling in 6-h-old pups. In conclusion galactose entry into glycogen exceeds that for glucose and is not dependent on recycling

  10. Effects of an oral insulin nanoparticle administration on hepatic glucose metabolism assessed by 13C and 2H isotopomer analysis

    NARCIS (Netherlands)

    Reis, C.P.; Neufeld, R.; Veiga, F.; Figueiredo, I.V.; Jones, J.; Soares, A.F.; Nunes, P.M.; Damg\\'e, C.; Carvalho, R.A.

    2012-01-01

    The purpose of this study was to evaluate hepatic glucose metabolism of diabetic induced rats after a daily oral load of insulin nanoparticles over 2 weeks. After the 2-week treatment, an oral glucose tolerance test was performed with [U-��C] glucose and �H2O. Plasma glucose �H and ��C enrichments

  11. The relative importance of kinetic mechanisms and variable enzyme abundances for the regulation of hepatic glucose metabolism--insights from mathematical modeling.

    Science.gov (United States)

    Bulik, Sascha; Holzhütter, Hermann-Georg; Berndt, Nikolaus

    2016-03-02

    Adaptation of the cellular metabolism to varying external conditions is brought about by regulated changes in the activity of enzymes and transporters. Hormone-dependent reversible enzyme phosphorylation and concentration changes of reactants and allosteric effectors are the major types of rapid kinetic enzyme regulation, whereas on longer time scales changes in protein abundance may also become operative. Here, we used a comprehensive mathematical model of the hepatic glucose metabolism of rat hepatocytes to decipher the relative importance of different regulatory modes and their mutual interdependencies in the hepatic control of plasma glucose homeostasis. Model simulations reveal significant differences in the capability of liver metabolism to counteract variations of plasma glucose in different physiological settings (starvation, ad libitum nutrient supply, diabetes). Changes in enzyme abundances adjust the metabolic output to the anticipated physiological demand but may turn into a regulatory disadvantage if sudden unexpected changes of the external conditions occur. Allosteric and hormonal control of enzyme activities allow the liver to assume a broad range of metabolic states and may even fully reverse flux changes resulting from changes of enzyme abundances alone. Metabolic control analysis reveals that control of the hepatic glucose metabolism is mainly exerted by enzymes alone, which are differently controlled by alterations in enzyme abundance, reversible phosphorylation, and allosteric effects. In hepatic glucose metabolism, regulation of enzyme activities by changes of reactants, allosteric effects, and reversible phosphorylation is equally important as changes in protein abundance of key regulatory enzymes.

  12. Basal cerebral glucose distribution in long-term post-traumatic stress disorder.

    Science.gov (United States)

    Molina, Mario Enrique; Isoardi, Roberto; Prado, Marcela Nathalie; Bentolila, Silvia

    2010-03-01

    The purpose of this investigation was to study basal cerebral glucose absorption patterns associated to long-term post-traumatic stress disorder. Fluorodeoxyglucose positron emission tomography (FDG-PET) and statistic parametric mapping (SPM) were used to compare regional cerebral glucose absorption between 15 war veterans (Hispanic men, aged 39-41 (M = 39.5, SD = 0.84)) diagnosed with post-traumatic stress disorder (PTSD) based on DSM-IV criteria, and a matching control group of six asymptomatic veterans. This study was conducted 20 years after the traumatic events. PTSD patients presented relatively diminished activity (P<0.005) in: cingulate gyri, precuneus, insula, hippocampus; frontal, pre-frontal and post-central regions; lingual, calcarine, occipital medial and superior gyri, and verbal and paraverbal areas. Relativeley augmented activity (P<0.005) was observed in PTSD patients in: fusiform, temporal superior, medial, and inferior gyri; occipital medial, inferior and lingual gyri; precuneus, and cerebellum. The amygdala and the thalamus showed normal metabolic activity. Various brain regions that showed diminished activity (limbic, frontal and prefrontal cortex, multimodal parieto-occipital areas and verbal and paraverbal areas) have evolved lately, and sub-serve highly complex cognitive and behavioural functions. Metabolic activity patterns are comparable to those observed in personality disorders of the borderline type.

  13. Glucose and fructose 6-phosphate cycle in humans

    International Nuclear Information System (INIS)

    Karlander, S.; Roovete, A.; Vranic, M.; Efendic, S.

    1986-01-01

    We have determined the rate of glucose cycling by comparing turnovers of [2- 3 H]- and [6- 3 H]glucose under basal conditions and during a glucose infusion. Moreover, the activity of the fructose 6-phosphate cycle was assessed by comparing [3- 3 H]- and [6- 3 H]glucose. The study included eight lean subjects with normal glucose tolerance. They participated in two randomly performed investigations. In one experiment [2- 3 H]- and [6- 3 H]glucose were given simultaneously, while in the other only [3- 3 H]glucose was given. The basal rate of glucose cycling was 0.32 +/- 0.08 mg X kg-1 X min-1 or 17% of basal glucose production (P less than 0.005). During glucose infusion the activity of endogenous glucose cycling did not change but since glucose production was suppressed it amounted to 130% of glucose production. The basal fructose 6-phosphate cycle could be detected only in three subjects and was suppressed during glucose infusion. In conclusion, the glucose cycle is active in healthy humans both in basal conditions and during moderate hyperglycemia. In some subjects, the fructose 6-phosphate cycle also appears to be active. Thus it is preferable to use [6- 3 H]glucose rather than [3- 3 H]glucose when measuring glucose production and particularly when assessing glucose cycle

  14. A novel method for sensitive, low-cost and portable detection of hepatitis B surface antigen using a personal glucose meter.

    Science.gov (United States)

    Taebi, Saeed; Keyhanfar, Mehrnaz; Noorbakhsh, Abdollah

    2018-04-12

    Hepatitis B virus (HBV) infection is the major public health problem leading cause of death worldwide. The most important diagnostic marker for this infection is hepatitis B surface antigen (HBsAg). In this study, a novel, inexpensive, portable and sensitive ELISA method was designed and investigated for diagnosis of HBsAg based on the functionalized Fe 3 O 4 and Al 2 O 3 nanoparticles, with the strategy for detecting the concentration of glucose using a cheap and accessible personal glucose meter (PGM). The ELISA system was constructed using hepatitis B antibody against HBsAg immobilized on streptavidin coated magnetic iron oxide particles (S-Fe 3 O 4 ) as the capture antibody (Ab 1 ). In addition, another hepatitis B antibody against different epitope of HBsAg (Ab 2 ) and glucoamylase both were immobilized on Al 2 O 3 nanoparticles. After formation of the sandwich immune complex between Ab 1 and Ab 2 immobilized on S-Fe 3 O 4 and Al 2 O 3 NPs, respectively, through HBsAg, starch was converted into glucose using glucoamylase. Then, the glucose concentration was measured using PGM. The concentration of HBsAg was calculated based on the linear relation between the concentrations of HBsAg and glucose. Under optimal conditions, this assay showed detection limit values of 0.3 to 0.4 ng ml -1 for "ay" and "ad" subtypes of HBsAg, respectively. The results indicate that the designed assay is comparable to the commercial kits in terms of sensitivity, on-site, specificity, cost, simplicity, portability and reproducibility. The presented method can be used in disadvantaged areas of the world and blood transfusion centers. To the best of our knowledge, this is the first report of using PGMs for HBSAg detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Lixisenatide as add-on therapy to basal insulin

    Directory of Open Access Journals (Sweden)

    Brown DX

    2013-12-01

    Full Text Available Dominique Xavier Brown, Emma Louise Butler, Marc Evans Diabetes Department, University Hospital Llandough, Cardiff, UK Abstract: Many patients with type 2 diabetes mellitus do not achieve target glycosylated hemoglobin A1c levels despite optimally titrated basal insulin and satisfactory fasting plasma glucose levels. Current evidence suggests that HbA1c levels are dictated by both basal glucose and postprandial glucose levels. This has led to a consensus that postprandial glucose excursions contribute to poor glycemic control in these patients. Lixisenatide is a once-daily, prandial glucagon-like peptide 1 (GLP-1 receptor agonist with a four-fold affinity for the GLP-1 receptor compared with native GLP-1. Importantly, lixisenatide causes a significant delay in gastric emptying time, an important determinant of the once-daily dosing regimen. An exendin-4 mimetic with six lysine residues removed at the C-terminal, lixisenatide has pronounced postprandial glucose-lowering effects, making it a novel incretin agent for use in combination with optimally titrated basal insulin. Lixisenatide exerts profound effects on postprandial glucose through established mechanisms of glucose-dependent insulin secretion and glucagon suppression in combination with delayed gastric emptying. This review discusses the likely place that lixisenatide will occupy in clinical practice, given its profound effects on postprandial glucose and potential to reduce glycemic variability. Keywords: lixisenatide, add-on therapy, insulin, GLP-1 receptor agonist, postprandial glucose, pharmacodynamics

  16. Effect of basal ganglia calcification on its glucose metabolism and dopaminergic function in idiopathic hypoparathyroidism.

    Science.gov (United States)

    Modi, Sagar; Arora, Geetanjali; Bal, Chandra Shekhar; Sreenivas, Vishnubhatla; Kailash, Suparna; Sagar, Rajesh; Goswami, Ravinder

    2015-10-01

    The functional significance of basal ganglia calcification (BGC) in idiopathic hypoparathyroidism (IH) is not clear. To assess the effect of BGC on glucose metabolism and dopaminergic function in IH. (18) F-FDG and (99m) Tc-TRODAT-1 nuclear imaging were performed in 35 IH patients with (n = 26) and without (n = 9) BGC. Controls were subjects without hypoparathyroidism or BGC (nine for (18) F-FDG and 12 for (99m) Tc-TRODAT-1). Relationship of the glucose metabolism and dopaminergic function was assessed with the neuropsychological and biochemical abnormalities. (18) F-FDG uptake in IH patients with calcification at caudate and striatum was less than that of IH patients without calcification (1·06 ± 0·13 vs 1·24 ± 0·09, P = <0·0001 and 1·06 ± 0·09 vs 1·14 ± 0·08, P = 0·03, respectively). (18) F-FDG uptake did not correlate with neuropsychological dysfunctions. (18) F-FDG uptake in IH without BGC was significantly lower than that of controls. The mean (99m) Tc-TRODAT-1 uptake at basal ganglia was comparable between IH with and without BGC and between IH without BGC and controls. Serum calcium-phosphorus ratio maintained by the patients correlated with (18) F-FDG uptake at striatum (r = 0·57, P = 0·001). For every 0·1 unit reduction in calcium-phosphorus ratio, (18) F-FDG uptake decreased by 2·5 ± 0·68% (P = 0·001). BGC was associated with modest reduction (15%) in (18) F-FDG uptake at basal ganglia in IH but did not affect dopaminergic function. (18) F-FDG uptake did not correlate with neuropsychological dysfunctions. Interestingly, chronic hypocalcaemia-hyperphosphataemia also contributed to reduction in (18) F-FDG uptake which was independent of BGC. © 2014 John Wiley & Sons Ltd.

  17. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats.

    Science.gov (United States)

    Yi, Chun-Xia; Sun, Ning; Ackermans, Mariette T; Alkemade, Anneke; Foppen, Ewout; Shi, Jing; Serlie, Mireille J; Buijs, Ruud M; Fliers, Eric; Kalsbeek, Andries

    2010-07-01

    The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. Intracerebroventricular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production.

  18. Hepatic Branch Vagus Nerve Plays a Critical Role in the Recovery of Post-Ischemic Glucose Intolerance and Mediates a Neuroprotective Effect by Hypothalamic Orexin-A

    Science.gov (United States)

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A. PMID:24759941

  19. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    Directory of Open Access Journals (Sweden)

    Shinichi Harada

    Full Text Available Orexin-A (a neuropeptide in the hypothalamus plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve with orexin-1 receptor and c-Fos (activated neural cells marker. These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  20. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Xuan Xia

    2011-02-01

    Full Text Available Berberine (BBR is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French. It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK and Glucose-6-phosphatase (G6Pase, were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1, sterol regulatory element-binding protein 1c (SREBP1 and carbohydrate responsive element-binding protein (ChREBP were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway.

  1. Hepatic encephalopathy. Imaging Findings

    International Nuclear Information System (INIS)

    Carrillo, Maria Claudia; Bermudez Munoz, Sonia; J Morillo, Anibal

    2007-01-01

    Hepatic encephalopathy occurs in patients with chronic hepatic insufficiency and can produce abnormalities in the central nervous system, which can be observed in MRI studies. Traditionally, these imaging findings include symmetrical hyper intensities in T1-weighted sequences in the basal ganglia (mainly globus pallidus), involving also the substantia nigra, mesencephalic tegmentum, frontal and occipital cortex. These areas appear of normal intensity in T2-weighted imaging sequences. Other entities that can lead to similar findings include manganese intoxication and type-1 neurofibromatosis. Currently, with the advent of MR spectroscopy, abnormalities in patients with clinical and subclinical hepatic encephalopathy have been described. After hepatic transplantation, hyper intensities of the basal ganglia and the MR spectroscopic findings may disappear within 3 months to 1 year, suggesting a functional, more than a structural damage. This article will demonstrate the MR findings of patients with hepatic encephalopathy due to chronic hepatic insufficiency.

  2. Pathways of hepatic glycogen formation in humans following ingestion of a glucose load in the fed state

    International Nuclear Information System (INIS)

    Magnusson, I.; Chandramouli, V.; Schumann, W.C.; Kumaran, K.; Wahren, J.; Landau, B.R.

    1989-01-01

    The relative contributions of the direct and the indirect pathways to hepatic glycogen formation following a glucose load given to humans four hours after a substantial breakfast have been examined. Glucose loads labeled with [6-( 14 )C]glucose were given to six healthy volunteers along with diflunisal (1 g) or acetaminophen (1.5 g), drugs excreted in urine as glucuronides. Distribution of 14 C in the glucose unit of the glucuronide was taken as a measure of the extent to which glucose was deposited directly in liver glycogen (ie, glucose----glucose-6-phosphate----glycogen) rather than indirectly (ie, glucose----C3-compound----glucose-6-phosphate----glycogen). The maximum contribution to glycogen formation by the direct pathway was estimated to be 77% +/- 4%, which is somewhat higher than previous estimates in humans fasted overnight (65% +/- 1%, P less than 0.05). Thus, the indirect pathway of liver glycogen formation following a glucose load is operative in both the overnight fasted and the fed state, although its contribution may be somewhat less in the fed state

  3. Characterization of basal hepatic bile flow and the effects of intravenous cholecystokinin on the liver, sphincter, and gallbladder in patients with sphincter of Oddi spasm

    International Nuclear Information System (INIS)

    Krishnamurthy, Gerbail T.; Krishnamurthy, Shakuntala; Watson, Randy D.

    2004-01-01

    The major objectives of this project were to establish the pattern of basal hepatic bile flow and the effects of intravenous administration of cholecystokinin on the liver, sphincter of Oddi, and gallbladder, and to identify reliable parameters for the diagnosis of sphincter of Oddi spasm (SOS). Eight women with clinically suspected sphincter of Oddi spasm (SOS group), ten control subjects (control group), and ten patients who had recently received an opioid (opioid group) were selected for quantitative cholescintigraphy with cholecystokinin. Each patient was studied with 111-185 MBq (3-5 mCi) technetium-99m mebrofenin after 6-8 h of fasting. Hepatic phase images were obtained for 60 min, followed by gallbladder phase images for 30 min. During the gallbladder phase, 10 ng/kg octapeptide of cholecystokinin (CCK-8) was infused over 3 min through an infusion pump. Hepatic extraction fraction, excretion half-time, basal hepatic bile flow into the gallbladder, gallbladder ejection fraction, and post-CCK-8 paradoxical filling (>30% of basal counts) were identified. Seven of the patients with SOS were treated with antispasmodics (calcium channel blockers), and one underwent endoscopic sphincterotomy. Mean (±SD) hepatic bile entry into the gallbladder (versus GI tract) was widely variable: it was lower in SOS patients (32%±31%) than in controls (61%±36%) and the opioid group (61%±25%), but the difference was not statistically significant. Hepatic extraction fraction, excretion half-time, and pattern of bile flow through both intrahepatic and extrahepatic ducts were normal in all three groups. Gallbladder mean ejection fraction was 9%±4% in the opioid group; this was significantly lower (P<0.0001) than the values in the control group (54%±18%) and the SOS group (48%±29%). Almost all of the bile emptied from the gallbladder refluxed into intrahepatic ducts; it reentered the gallbladder after cessation of CCK-8 infusion (paradoxical gallbladder filling) in all eight

  4. Characterization of basal hepatic bile flow and the effects of intravenous cholecystokinin on the liver, sphincter, and gallbladder in patients with sphincter of Oddi spasm

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, Gerbail T.; Krishnamurthy, Shakuntala [Department of Nuclear Medicine, Tuality Community Hospital, 335 SE 8th Avenue, OR 97123, Hillsboro (United States); Watson, Randy D. [Department of Gastroenterology, Tuality Community Hospital, Hillsboro, OR (United States)

    2004-01-01

    The major objectives of this project were to establish the pattern of basal hepatic bile flow and the effects of intravenous administration of cholecystokinin on the liver, sphincter of Oddi, and gallbladder, and to identify reliable parameters for the diagnosis of sphincter of Oddi spasm (SOS). Eight women with clinically suspected sphincter of Oddi spasm (SOS group), ten control subjects (control group), and ten patients who had recently received an opioid (opioid group) were selected for quantitative cholescintigraphy with cholecystokinin. Each patient was studied with 111-185 MBq (3-5 mCi) technetium-99m mebrofenin after 6-8 h of fasting. Hepatic phase images were obtained for 60 min, followed by gallbladder phase images for 30 min. During the gallbladder phase, 10 ng/kg octapeptide of cholecystokinin (CCK-8) was infused over 3 min through an infusion pump. Hepatic extraction fraction, excretion half-time, basal hepatic bile flow into the gallbladder, gallbladder ejection fraction, and post-CCK-8 paradoxical filling (>30% of basal counts) were identified. Seven of the patients with SOS were treated with antispasmodics (calcium channel blockers), and one underwent endoscopic sphincterotomy. Mean ({+-}SD) hepatic bile entry into the gallbladder (versus GI tract) was widely variable: it was lower in SOS patients (32%{+-}31%) than in controls (61%{+-}36%) and the opioid group (61%{+-}25%), but the difference was not statistically significant. Hepatic extraction fraction, excretion half-time, and pattern of bile flow through both intrahepatic and extrahepatic ducts were normal in all three groups. Gallbladder mean ejection fraction was 9%{+-}4% in the opioid group; this was significantly lower (P<0.0001) than the values in the control group (54%{+-}18%) and the SOS group (48%{+-}29%). Almost all of the bile emptied from the gallbladder refluxed into intrahepatic ducts; it reentered the gallbladder after cessation of CCK-8 infusion (paradoxical gallbladder filling

  5. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons.

    Science.gov (United States)

    Shi, Xuemei; Zhou, Fuguo; Li, Xiaojie; Chang, Benny; Li, Depei; Wang, Yi; Tong, Qingchun; Xu, Yong; Fukuda, Makoto; Zhao, Jean J; Li, Defa; Burrin, Douglas G; Chan, Lawrence; Guan, Xinfu

    2013-07-02

    Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We show that mice lacking GLP-2 receptor (GLP-2R) in POMC neurons display glucose intolerance and hepatic insulin resistance. GLP-2R activation in POMC neurons is required for GLP-2 to enhance insulin-mediated suppression of hepatic glucose production (HGP) and gluconeogenesis. GLP-2 directly modulates excitability of POMC neurons in GLP-2R- and PI3K-dependent manners. GLP-2 initiates GLP-2R-p85α interaction and facilitates PI3K-Akt-dependent FoxO1 nuclear exclusion in POMC neurons. Central GLP-2 suppresses basal HGP and enhances insulin sensitivity, which are abolished in POMC-p110α KO mice. Thus, CNS GLP-2 plays a key physiological role in the control of HGP through activating PI3K-dependent modulation of membrane excitability and nuclear transcription of POMC neurons in the brain. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Characterization of basal hepatic bile flow and the effects of intravenous cholecystokinin on the liver, sphincter, and gallbladder in patients with sphincter of Oddi spasm.

    Science.gov (United States)

    Krishnamurthy, Gerbail T; Krishnamurthy, Shakuntala; Watson, Randy D

    2004-01-01

    The major objectives of this project were to establish the pattern of basal hepatic bile flow and the effects of intravenous administration of cholecystokinin on the liver, sphincter of Oddi, and gallbladder, and to identify reliable parameters for the diagnosis of sphincter of Oddi spasm (SOS). Eight women with clinically suspected sphincter of Oddi spasm (SOS group), ten control subjects (control group), and ten patients who had recently received an opioid (opioid group) were selected for quantitative cholescintigraphy with cholecystokinin. Each patient was studied with 111-185 MBq (3-5 mCi) technetium-99m mebrofenin after 6-8 h of fasting. Hepatic phase images were obtained for 60 min, followed by gallbladder phase images for 30 min. During the gallbladder phase, 10 ng/kg octapeptide of cholecystokinin (CCK-8) was infused over 3 min through an infusion pump. Hepatic extraction fraction, excretion half-time, basal hepatic bile flow into the gallbladder, gallbladder ejection fraction, and post-CCK-8 paradoxical filling (>30% of basal counts) were identified. Seven of the patients with SOS were treated with antispasmodics (calcium channel blockers), and one underwent endoscopic sphincterotomy. Mean (+/-SD) hepatic bile entry into the gallbladder (versus GI tract) was widely variable: it was lower in SOS patients (32%+/-31%) than in controls (61%+/-36%) and the opioid group (61%+/-25%), but the difference was not statistically significant. Hepatic extraction fraction, excretion half-time, and pattern of bile flow through both intrahepatic and extrahepatic ducts were normal in all three groups. Gallbladder mean ejection fraction was 9%+/-4% in the opioid group; this was significantly lower (Pgallbladder refluxed into intrahepatic ducts; it reentered the gallbladder after cessation of CCK-8 infusion (paradoxical gallbladder filling) in all eight patients with SOS, but in none of the patients in the other two groups. Mean paradoxical filling was 204% (+/-193%) in the

  7. E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia.

    Science.gov (United States)

    Dhurandhar, Emily J; Krishnapuram, Rashmi; Hegde, Vijay; Dubuisson, Olga; Tao, Rongya; Dong, X Charlie; Ye, Jianping; Dhurandhar, Nikhil V

    2012-01-01

    Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure). Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (pE4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD).

  8. 3,5 Diiodo-L-Thyronine (T2 Does Not Prevent Hepatic Steatosis or Insulin Resistance in Fat-Fed Sprague Dawley Rats.

    Directory of Open Access Journals (Sweden)

    Daniel F Vatner

    Full Text Available Thyroid hormone mimetics are alluring potential therapies for diseases like dyslipidemia, nonalcoholic fatty liver disease (NAFLD, and insulin resistance. Though diiodothyronines are thought inactive, pharmacologic treatment with 3,5- Diiodo-L-Thyronine (T2 reportedly reduces hepatic lipid content and improves glucose tolerance in fat-fed male rats. To test this, male Sprague Dawley rats fed a safflower-oil based high-fat diet were treated with T2 (0.25 mg/kg-d or vehicle. Neither 10 nor 30 days of T2 treatment had an effect on weight, adiposity, plasma fatty acids, or hepatic steatosis. Insulin action was quantified in vivo by a hyperinsulinemic-euglycemic clamp. T2 did not alter fasting plasma glucose or insulin concentration. Basal endogenous glucose production (EGP rate was unchanged. During the clamp, there was no difference in insulin stimulated whole body glucose disposal. Insulin suppressed EGP by 60% ± 10 in T2-treated rats as compared with 47% ± 4 suppression in the vehicle group (p = 0.32. This was associated with an improvement in hepatic insulin signaling; insulin stimulated Akt phosphorylation was ~2.5 fold greater in the T2-treated group as compared with the vehicle-treated group (p = 0.003. There was no change in expression of genes thought to mediate the effect of T2 on hepatic metabolism, including genes that regulate hepatic lipid oxidation (ppara, carnitine palmitoyltransferase 1a, genes that regulate hepatic fatty acid synthesis (srebp1c, acetyl coa carboxylase, fatty acid synthase, and genes involved in glycolysis and gluconeogenesis (L-pyruvate kinase, glucose 6 phosphatase. Therefore, in contrast with previous reports, in Sprague Dawley rats fed an unsaturated fat diet, T2 administration failed to improve NAFLD or whole body insulin sensitivity. Though there was a modest improvement in hepatic insulin signaling, this was not associated with significant differences in hepatic insulin action. Further study will be

  9. Quantification, Variability, and Reproducibility of Basal Skeletal Muscle Glucose Uptake in Healthy Humans Using 18F-FDG PET/CT.

    Science.gov (United States)

    Gheysens, Olivier; Postnov, Andrey; Deroose, Christophe M; Vandermeulen, Corinne; de Hoon, Jan; Declercq, Ruben; Dennie, Justin; Mixson, Lori; De Lepeleire, Inge; Van Laere, Koen; Klimas, Michael; Chakravarthy, Manu V

    2015-10-01

    The quantification and variability of skeletal muscle glucose utilization (SMGU) in healthy subjects under basal (low insulin) conditions are poorly known. This information is essential early in clinical drug development to effectively interrogate novel pharmacologic interventions that modulate glucose uptake. The aim of this study was to determine test-retest characteristics and variability of SMGU within and between healthy subjects under basal conditions. Furthermore, different kinetic modeling strategies were evaluated to find the best-fitting model to assess SMGU studied by 18F-FDG. Six healthy male volunteers underwent 2 dynamic 18F-FDG PET/CT scans with an interval of 24 h. Subjects were admitted to the clinical unit to minimize variability in daily activities and food intake and restrict physical activity. 18F-FDG PET/CT scans of gluteal and quadriceps muscle area were obtained with arterial input. Regions of interest were drawn over the muscle area to obtain time-activity curves and standardized uptake values (SUVs) between 60 and 90 min. Spectral analysis of the data and kinetic modeling was performed using 2-tissue-irreversible (2T3K), 2-tissue-reversible, and 3-tissue-sequential-irreversible (3T5KS) models. Reproducibility was assessed by intraclass correlation coefficients (ICCs) and within-subject coefficient of variation (WSCV). SUVs in gluteal and quadriceps areas were 0.56±0.09 and 0.64±0.07. ICCs (with 90% confidence intervals in parentheses) were 0.88 (0.64-0.96) and 0.96 (0.82-0.99), respectively, for gluteal and quadriceps muscles, and WSCV for gluteal and quadriceps muscles was 2.2% and 3.6%, respectively. The rate of glucose uptake into muscle was 0.0016±0.0004 mL/mL⋅min, with an ICC of 0.94 (0.93-0.95) and WSCV of 6.6% for the 3T5KS model, whereas an ICC of 0.98 (0.92-1.00) and WSCV of 2.8% was obtained for the 2T3K model. 3T5KS demonstrated the best fit to the measured experimental points. Minimal variability in skeletal muscle glucose

  10. Nuclear factor erythroid 2-related factor 2 deletion impairs glucose tolerance and exacerbates hyperglycemia in type 1 diabetic mice.

    Science.gov (United States)

    Aleksunes, Lauren M; Reisman, Scott A; Yeager, Ronnie L; Goedken, Michael J; Klaassen, Curtis D

    2010-04-01

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) induces a battery of cytoprotective genes after oxidative stress. Nrf2 aids in liver regeneration by altering insulin signaling; however, whether Nrf2 participates in hepatic glucose homeostasis is unknown. Compared with wild-type mice, mice lacking Nrf2 (Nrf2-null) have lower basal serum insulin and prolonged hyperglycemia in response to an intraperitoneal glucose challenge. In the present study, blood glucose, serum insulin, urine flow rate, and hepatic expression of glucose-related genes were quantified in male diabetic wild-type and Nrf2-null mice. Type 1 diabetes was induced with a single intraperitoneal dose (200 mg/kg) of streptozotocin (STZ). Histopathology and serum insulin levels confirmed depleted pancreatic beta-cells in STZ-treated mice of both genotypes. Five days after STZ, Nrf2-null mice had higher blood glucose levels than wild-type mice. Nine days after STZ, polyuria occurred in both genotypes with more urine output from Nrf2-null mice (11-fold) than wild-type mice (7-fold). Moreover, STZ-treated Nrf2-null mice had higher levels of serum beta-hydroxybutyrate, triglycerides, and fatty acids 10 days after STZ compared with wild-type mice. STZ reduced hepatic glycogen in both genotypes, with less observed in Nrf2-null mice. Increased urine output and blood glucose in STZ-treated Nrf2-null mice corresponded with enhanced gluconeogenesis (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase)- and reduced glycolysis (pyruvate kinase)-related mRNA expression in their livers. Furthermore, the Nrf2 activator oltipraz lowered blood glucose in wild-type but not Nrf2-null mice administered STZ. Collectively, these data indicate that the absence of Nrf2 worsens hyperglycemia in type I diabetic mice and Nrf2 may represent a therapeutic target for reducing circulating glucose levels.

  11. Regional differences in adipocyte lactate production from glucose

    International Nuclear Information System (INIS)

    Newby, F.D.; Sykes, M.N.; DiGirolamo, M.

    1988-01-01

    Having shown that lactate is an important product of glucose metabolism by rat epididymal adipocytes, the authors investigated possible regional differences in adipocyte lactate production and the role of the animals' nutritional state and stage of development. [U- 14 C]glucose metabolism, lactate production, and response to insulin were measured in fat cells isolated from four adipose regions from young lean and older fatter rats, killed either in the fed state or after fasting for 48 h. In the absence of insulin, mesenteric fat cells from either age group metabolized significantly more glucose per cell and converted more glucose to lactate than cells from other depots, regardless of nutritional state. Adipocytes from fasted lean rats showed a significant increase in the relative glucose conversion to lactate in all depots when compared with cells from fed lean rats. Fasting of older fatter rats, however, had limited effects on the relative adipocyte glucose conversion to lactate since lactate production was already high. Mesenteric fat cells had the lowest relative response to insulin, possibly due to the high basal rate of glucose metabolism. These findings indicate that differences exist among adipose regions in the rates of glucose metabolism, lactate production and response to insulin. The anatomical location of the mesenteric adipose depot, coupled with a high metabolic rate and blood perfusion, suggests that mesenteric adipocytes may provide a unique and more direct contribution of metabolic substrates for hepatic metabolism than adipocytes from other depots

  12. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates

    International Nuclear Information System (INIS)

    Finegood, D.T.; Bergman, R.N.; Vranic, M.

    1987-01-01

    Tracer methodology has been applied extensively to the estimation of endogenous glucose production (Ra) during euglycemic glucose clamps. The accuracy of this approach has been questioned due to the observation of significantly negative estimates for Ra when insulin levels are high. We performed hyperinsulinemic (300 microU/ml)-euglycemic glucose clamps for 180 min in normal dogs and compared the standard approach, an unlabeled exogenous glucose infusate (cold GINF protocol, n = 12), to a new approach in which a tracer (D-[3- 3 H]glucose) was added to the exogenous glucose used for clamping (hot GINF protocol, n = 10). Plasma glucose, insulin and glucagon concentrations, and glucose infusion rates were similar for the two protocols. Plasma glucose specific activity was 20 +/- 1% of basal (at 120-180 min) in the cold GINF studies, and 44 +/- 3 to 187 +/- 5% of basal in the hot GINF studies. With the one-compartment, fixed pool volume model of Steele, Ra for the cold GINF studies was -2.4 +/- 0.7 mg X min-1 X kg-1 at 25 min and remained significantly negative until 110 min (P less than .05). For the hot GINF studies, Ra was never significantly less than zero (P greater than .05) and was greater than in the cold GINF studies at 20-90 min (P less than .05). There was substantially less between-(78%) and within- (40%) experiment variation for the hot GINF studies compared with the cold GINF studies. An alternate approach (regression method) to the application of the one-compartment model, which allows for a variable and estimable effective distribution volume, yielded Ra estimates that were suppressed 60-100% from basal

  13. Tetrahydrobiopterin Has a Glucose-Lowering Effect by Suppressing Hepatic Gluconeogenesis in an Endothelial Nitric Oxide Synthase–Dependent Manner in Diabetic Mice

    Science.gov (United States)

    Abudukadier, Abulizi; Fujita, Yoshihito; Obara, Akio; Ohashi, Akiko; Fukushima, Toru; Sato, Yuichi; Ogura, Masahito; Nakamura, Yasuhiko; Fujimoto, Shimpei; Hosokawa, Masaya; Hasegawa, Hiroyuki; Inagaki, Nobuya

    2013-01-01

    Endothelial nitric oxide synthase (eNOS) dysfunction induces insulin resistance and glucose intolerance. Tetrahydrobiopterin (BH4) is an essential cofactor of eNOS that regulates eNOS activity. In the diabetic state, BH4 is oxidized to 7,8-dihydrobiopterin, which leads to eNOS dysfunction owing to eNOS uncoupling. The current study investigates the effects of BH4 on glucose metabolism and insulin sensitivity in diabetic mice. Single administration of BH4 lowered fasting blood glucose levels in wild-type mice with streptozotocin (STZ)-induced diabetes and alleviated eNOS dysfunction by increasing eNOS dimerization in the liver of these mice. Liver has a critical role in glucose-lowering effects of BH4 through suppression of hepatic gluconeogenesis. BH4 activated AMP kinase (AMPK), and the suppressing effect of BH4 on gluconeogenesis was AMPK-dependent. In addition, the glucose-lowering effect and activation of AMPK by BH4 did not appear in mice with STZ-induced diabetes lacking eNOS. Consecutive administration of BH4 in ob/ob mice ameliorated glucose intolerance and insulin resistance. Taken together, BH4 suppresses hepatic gluconeogenesis in an eNOS-dependent manner, and BH4 has a glucose-lowering effect as well as an insulin-sensitizing effect in diabetic mice. BH4 has potential in the treatment of type 2 diabetes. PMID:23649519

  14. The Action of Antidiabetic Plants of the Canadian James Bay Cree Traditional Pharmacopeia on Key Enzymes of Hepatic Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Abir Nachar

    2013-01-01

    Full Text Available We determined the capacity of putative antidiabetic plants used by the Eastern James Bay Cree (Canada to modulate key enzymes of gluconeogenesis and glycogen synthesis and key regulating kinases. Glucose-6-phosphatase (G6Pase and glycogen synthase (GS activities were assessed in cultured hepatocytes treated with crude extracts of seventeen plant species. Phosphorylation of AMP-dependent protein kinase (AMPK, Akt, and Glycogen synthase kinase-3 (GSK-3 were probed by Western blot. Seven of the seventeen plant extracts significantly decreased G6Pase activity, Abies balsamea and Picea glauca, exerting an effect similar to insulin. This action involved both Akt and AMPK phosphorylation. On the other hand, several plant extracts activated GS, Larix laricina and A. balsamea, far exceeding the action of insulin. We also found a significant correlation between GS stimulation and GSK-3 phosphorylation induced by plant extract treatments. In summary, three Cree plants stand out for marked effects on hepatic glucose homeostasis. P. glauca affects glucose production whereas L. laricina rather acts on glucose storage. However, A. balsamea has the most promising profile, simultaneously and powerfully reducing G6Pase and stimulating GS. Our studies thus confirm that the reduction of hepatic glucose production likely contributes to the therapeutic potential of several antidiabetic Cree traditional medicines.

  15. Intracellular mechanism of action of sympathetic hepatic nerves on glucose and lactate balance in perfused rat liver

    NARCIS (Netherlands)

    Ballé, C.; Beuers, U.; ENGELHARDT, R.; JUNGERMANN, K.

    1987-01-01

    In rat liver perfused in situ stimulation of the nerve plexus around the hepatic artery and the portal vein caused an increase in glucose output and a shift from lactate uptake to output. The effects of nerve stimulation on some key enzymes, metabolites and effectors of carbohydrate metabolism were

  16. Inverse association between liver fat content and hepatic glucose uptake in patients with type 2 diabetes mellitus

    NARCIS (Netherlands)

    Borra, Ronald; Lautamaki, Riikka; Parkkola, Riitta; Komu, Markku; Sijens, Paul E.; Hallsten, Kirstl; Bergman, Jorgen; Iozzo, Patricia; Nuutila, Pirjo

    2008-01-01

    The objective of this research was to study (1) the mutual relationship between liver fat content (LFC) and hepatic glucose uptake (HGU) in patients with type 2 diabetes mellitus and (2) the relationship between changes in LFC and HGU uptake induced by rosiglitazone in these patients. Liver fat was

  17. Human monoclonal antibodies against glucagon receptor improve glucose homeostasis by suppression of hepatic glucose output in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Wook-Dong Kim

    Full Text Available AIM: Glucagon is an essential regulator of hepatic glucose production (HGP, which provides an alternative therapeutic target for managing type 2 diabetes with glucagon antagonists. We studied the effect of a novel human monoclonal antibody against glucagon receptor (GCGR, NPB112, on glucose homeostasis in diet-induced obese (DIO mice. METHODS: The glucose-lowering efficacy and safety of NPB112 were investigated in DIO mice with human GCGR for 11 weeks, and a hyperinsulinemic-euglycemic clamp study was conducted to measure HGP. RESULTS: Single intraperitoneal injection of NPB112 with 5 mg/kg effectively decreased blood glucose levels in DIO mice for 5 days. A significant reduction in blood glucose was observed in DIO mice treated with NPB112 at a dose ≥5 mg/kg for 6 weeks, and its glucose-lowering effect was dose-dependent. Long-term administration of NPB112 also caused a mild 29% elevation in glucagon level, which was returned to the normal range after discontinuation of treatment. The clamp study showed that DIO mice injected with NPB112 at 5 mg/kg were more insulin sensitive than control mice, indicating amelioration of insulin resistance by treatment with NPB112. DIO mice treated with NPB112 showed a significant improvement in the ability of insulin to suppress HGP, showing a 33% suppression (from 8.3 mg/kg/min to 5.6 mg/kg/min compared to the 2% suppression (from 9.8 mg/kg/min to 9.6 mg/kg/min in control mice. In addition, no hypoglycemia or adverse effect was observed during the treatment. CONCLUSIONS: A novel human monoclonal GCGR antibody, NPB112, effectively lowered the glucose level in diabetic animal models with mild and reversible hyperglucagonemia. Suppression of excess HGP with NPB112 may be a promising therapeutic modality for the treatment of type 2 diabetes.

  18. Evidence for dual control mechanism regulating hepatic glucose output in nondiabetic men

    International Nuclear Information System (INIS)

    Clore, J.N.; Glickman, P.S.; Helm, S.T.; Nestler, J.E.; Blackard, W.G.

    1991-01-01

    The authors previously reported a fall in hepatic glucose output (HGO) during sleep accompanied by reductions in glucose utilization (Rd) and free fatty acids (FFAs). This study was undertaken to determine the potential role of changes in Rd and FFA on HGO in nondiabetic men. To determine if the fall in HGO during sleep could be reversed by FFA elevation, seven nondiabetic men underwent [3-3H]glucose infusions from 2200 to 0800, with heparin (90 mU.kg-1.min-1) added at 0200. Glucose appearance (Ra) fell from 11.7 ± 1.1 at 2430 to 8.9 ± 0.8 mumol.kg-1.min-1 (P less than 0.05) at 0200. The fall in Ra was associated with decreases in FFA (0.57 ± 0.10 to 0.48 ± 0.07 mM) and glycerol (0.08 ± 0.01 to 0.06 ± 0.01 mM). Infusion of heparin significantly increased FFA and glycerol (1.09 ± 0.21 and 0.11 ± 0.01 mM, respectively, P less than 0.01) and resulted in a significant fall in plasma alanine, suggesting that gluconeogenesis had been increased. However, rates of glucose turnover were indistinguishable from overnight studies without heparin. In additional studies (n = 6), intralipid and heparin-induced FFA elevation (from 0.61 ± 0.07 to 0.95 ± 0.05 mM, P less than 0.01) stimulated gluconeogenesis ([U-14C]alanine to glucose) twofold (188 ± 22% increase compared to 114 ± 6% in saline control studies, P less than 0.01). However, despite increasing gluconeogenesis, overall HGO did not change (10.6 ± 0.5 vs. 10.7 ± 0.6 mumol.kg-1.min-1) during lipid infusion

  19. Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis.

    Directory of Open Access Journals (Sweden)

    Xiwen Xiong

    Full Text Available Forkhead transcription factors FoxO1/3/4 have pleiotrophic functions including anti-oxidative stress and metabolism. With regard to glucose metabolism, most studies have been focused on FoxO1. To further investigate their hepatic functions, we generated liver-specific FoxO1/3/4 knockout mice (LTKO and examined their collective impacts on glucose homeostasis under physiological and pathological conditions. As compared to wild-type mice, LTKO mice had lower blood glucose levels under both fasting and non-fasting conditions and they manifested better glucose and pyruvate tolerance on regular chow diet. After challenged by a high-fat diet, wild-type mice developed type 2 diabetes, but LTKO mice remained euglycemic and insulin-sensitive. To understand the underlying mechanisms, we examined the roles of SIRT6 (Sirtuin 6 and Gck (glucokinase in the FoxO-mediated glucose metabolism. Interestingly, ectopic expression of SIRT6 in the liver only reduced gluconeogenesis in wild-type but not LTKO mice whereas knockdown of Gck caused glucose intolerance in both wild-type and LTKO mice. The data suggest that both decreased gluconeogenesis and increased glycolysis may contribute to the overall glucose phenotype in the LTKO mice. Collectively, FoxO1/3/4 transcription factors play important roles in hepatic glucose homeostasis.

  20. Prediction of net hepatic release of glucose using a “hybrid” mechanistic model in ruminants applied to positive energy balance

    OpenAIRE

    Bahloul, Lahlou; Ortigues, Isabelle; Vernet, Jean; Lapierre, Helène; Noziere, Pierre; Sauvant, Daniel

    2013-01-01

    Ruminants depend on hepatic gluconeogenesis to meet most of their metabolic demand for glucose which relies on availability of precursors from diet supply and animal requirements (Loncke et al., 2010). Several mechanistic models of the metabolic fate of nutrients across the liver exist that have been parameterized for dairy cows. They cannot be directly used to predict hepatic gluconeogenesis in all types of ruminants in different physiological status. A hybrid mechanistic model of nutrient f...

  1. Effects of taurine on plasma glucose concentration and active glucose transport in the small intestine.

    Science.gov (United States)

    Tsuchiya, Yo; Kawamata, Koichi

    2017-11-01

    Taurine lowers blood glucose levels and improves hyperglycemia. However, its effects on glucose transport in the small intestine have not been investigated. Here, we elucidated the effect of taurine on glucose absorption in the small intestine. In the oral glucose tolerance test, addition of 10 mmol/L taurine suppressed the increase in hepatic portal glucose concentrations. To investigate whether the suppressive effect of taurine occurs via down-regulation of active glucose transport in the small intestine, we performed an assay using the everted sac of the rat jejunum. Addition of taurine to the mucosal side of the jejunum suppressed active glucose transport via sodium-glucose cotransporter 1 (SGLT1). After elimination of chloride ions from the mucosal solution, taurine did not show suppressive effects on active glucose transport. These results suggest that taurine suppressed the increase in hepatic portal glucose concentrations via suppression of SGLT1 activity in the rat jejunum, depending on chloride ions. © 2017 Japanese Society of Animal Science.

  2. Suppression of Endogenous Glucose Production by Isoleucine and Valine and Impact of Diet Composition

    Directory of Open Access Journals (Sweden)

    Isabel Arrieta-Cruz

    2016-02-01

    Full Text Available Leucine has been shown to acutely inhibit hepatic glucose production in rodents by a mechanism requiring its metabolism to acetyl-CoA in the mediobasal hypothalamus (MBH. In the early stages, all branched-chain amino acids (BCAA are metabolized by a shared set of enzymes to produce a ketoacid, which is later metabolized to acetyl-CoA. Consequently, isoleucine and valine may also modulate glucose metabolism. To examine this possibility we performed intrahypothalamic infusions of isoleucine or valine in rats and assessed whole body glucose kinetics under basal conditions and during euglycemic pancreatic clamps. Furthermore, because high fat diet (HFD consumption is known to interfere with central glucoregulation, we also asked whether the action of BCAAs was affected by HFD. We fed rats a lard-rich diet for a short interval and examined their response to central leucine. The results showed that both isoleucine and valine individually lowered blood glucose by decreasing liver glucose production. Furthermore, the action of the BCAA leucine was markedly attenuated by HFD feeding. We conclude that all three BCAAs centrally modulate glucose metabolism in the liver and that their action is disrupted by HFD-induced insulin resistance.

  3. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    International Nuclear Information System (INIS)

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S.

    1990-01-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with [2-3H]glucose and HGP with [6-3H]glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). [2-3H]- minus [6-3H]glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP

  4. Rare Sugar Syrup Containing d-Allulose but Not High-Fructose Corn Syrup Maintains Glucose Tolerance and Insulin Sensitivity Partly via Hepatic Glucokinase Translocation in Wistar Rats.

    Science.gov (United States)

    Shintani, Tomoya; Yamada, Takako; Hayashi, Noriko; Iida, Tetsuo; Nagata, Yasuo; Ozaki, Nobuaki; Toyoda, Yukiyasu

    2017-04-05

    Ingestion of high-fructose corn syrup (HFCS) is associated with the risk of both diabetes and obesity. Rare sugar syrup (RSS) has been developed by alkaline isomerization of HFCS and has anti-obesity and anti-diabetic effects. However, the influence of RSS on glucose metabolism has not been explored. We investigated whether long-term administration of RSS maintains glucose tolerance and whether the underlying mechanism involves hepatic glucokinase translocation. Wistar rats were administered water, RSS, or HFCS in drinking water for 10 weeks and then evaluated for glucose tolerance, insulin tolerance, liver glycogen content, and subcellular distribution of liver glucokinase. RSS significantly suppressed body weight gain and abdominal fat mass (p glucose tolerance test revealed significantly higher blood glucose levels in the HFCS group compared to the water group, whereas the RSS group had significantly lower blood glucose levels from 90 to 180 min (p water group (p glucose loading, the nuclear export of glucokinase was significantly increased in the RSS group compared to the water group. These results imply that RSS maintains glucose tolerance and insulin sensitivity, at least partly, by enhancing nuclear export of hepatic glucokinase.

  5. The impact of obesity, sex, and diet on hepatic glucose production in cats.

    Science.gov (United States)

    Kley, Saskia; Hoenig, Margarethe; Glushka, John; Jin, Eunsook S; Burgess, Shawn C; Waldron, Mark; Jordan, Erin T; Prestegard, James H; Ferguson, Duncan C; Wu, Shaoxiong; Olson, Darin E

    2009-04-01

    Obesity is a risk factor for type 2 diabetes in cats. The risk of developing diabetes is severalfold greater for male cats than for females, even after having been neutered early in life. The purpose of this study was to investigate the role of different metabolic pathways in the regulation of endogenous glucose production (EGP) during the fasted state considering these risk factors. A triple tracer protocol using (2)H(2)O, [U-(13)C(3)]propionate, and [3,4-(13)C(2)]glucose was applied in overnight-fasted cats (12 lean and 12 obese; equal sex distribution) fed three different diets. Compared with lean cats, obese cats had higher insulin (P mass index, and girth correlated negatively with EGP (P lean cats and are still capable of maintaining fasting euglycemia, despite the well-documented existence of peripheral insulin resistance in obese cats. Our data further suggest that sex-related differences exist in the regulation of hepatic glucose metabolism in obese cats, suggesting that pyruvate cycling acts as a controlling mechanism to modulate EGP. Increased pyruvate cycling could therefore be an important factor in modulating the diabetes risk in female cats.

  6. Chapter 10: Glucose control: insulin therapy*

    African Journals Online (AJOL)

    Insulin and its analogues lower blood glucose by stimulating peripheral glucose uptake, especially by skeletal muscle and fat, and by inhibiting hepatic glucose production. Insulin inhibits ... control on 2 or 3 oral glucose lowering drugs.

  7. E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Emily J Dhurandhar

    Full Text Available Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure. Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (p<0.0001, and apoB secretion 1.5 fold(p<0.003. Response of key signaling molecules to E4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD.

  8. Evidence That in Uncontrolled Diabetes, Hyperglucagonemia Is Required for Ketosis but Not for Increased Hepatic Glucose Production or Hyperglycemia.

    Science.gov (United States)

    Meek, Thomas H; Dorfman, Mauricio D; Matsen, Miles E; Fischer, Jonathan D; Cubelo, Alexis; Kumar, Monica R; Taborsky, Gerald J; Morton, Gregory J

    2015-07-01

    Several lines of evidence implicate excess glucagon secretion in the elevated rates of hepatic glucose production (HGP), hyperglycemia, and ketosis characteristic of uncontrolled insulin-deficient diabetes (uDM), but whether hyperglucagonemia is required for hyperglycemia in this setting is unknown. To address this question, adult male Wistar rats received either streptozotocin (STZ) to induce uDM (STZ-DM) or vehicle and remained nondiabetic. Four days later, animals received daily subcutaneous injections of either the synthetic GLP-1 receptor agonist liraglutide in a dose-escalating regimen to reverse hyperglucagonemia or its vehicle for 10 days. As expected, plasma glucagon levels were elevated in STZ-DM rats, and although liraglutide treatment lowered glucagon levels to those of nondiabetic controls, it failed to attenuate diabetic hyperglycemia, elevated rates of glucose appearance (Ra), or increased hepatic gluconeogenic gene expression. In contrast, it markedly reduced levels of both plasma ketone bodies and hepatic expression of the rate-limiting enzyme involved in ketone body production. To independently confirm this finding, in a separate study, treatment of STZ-DM rats with a glucagon-neutralizing antibody was sufficient to potently lower plasma ketone bodies but failed to normalize elevated levels of either blood glucose or Ra. These data suggest that in rats with uDM, hyperglucagonemia is required for ketosis but not for increased HGP or hyperglycemia. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Hepatic Expression of Adenovirus 36 E4ORF1 Improves Glycemic Control and Promotes Glucose Metabolism Through AKT Activation.

    Science.gov (United States)

    McMurphy, Travis B; Huang, Wei; Xiao, Run; Liu, Xianglan; Dhurandhar, Nikhil V; Cao, Lei

    2017-02-01

    Considering that impaired proximal insulin signaling is linked with diabetes, approaches that enhance glucose disposal independent of insulin signaling are attractive. In vitro data indicate that the E4ORF1 peptide derived from human adenovirus 36 (Ad36) interacts with cells from adipose tissue, skeletal muscle, and liver to enhance glucose disposal, independent of proximal insulin signaling. Adipocyte-specific expression of Ad36E4ORF1 improves hyperglycemia in mice. To determine the hepatic interaction of Ad36E4ORF1 in enhancing glycemic control, we expressed E4ORF1 of Ad36 or Ad5 or fluorescent tag alone by using recombinant adeno-associated viral vector in the liver of three mouse models. In db/db or diet-induced obesity (DIO) mice, hepatic expression of Ad36E4ORF1 but not Ad5E4ORF1 robustly improved glycemic control. In normoglycemic wild-type mice, hepatic expression of Ad36E4ORF1 lowered nonfasting blood glucose at a high dose of expression. Of note, Ad36E4ORF1 significantly reduced insulin levels in db/db and DIO mice. The improvement in glycemic control was observed without stimulation of the proximal insulin signaling pathway. Collectively, these data indicate that Ad36E4ORF1 is not a typical sensitizer, mimetic, or secretagogue of insulin. Instead, it may have insulin-sparing action, which seems to reduce the need for insulin and, hence, to reduce insulin levels. © 2017 by the American Diabetes Association.

  10. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice.

    Science.gov (United States)

    Shih, Chun-Ching; Shlau, Min-Tzong; Lin, Cheng-Hsiu; Wu, Jin-Bin

    2014-03-01

    Momordica charantia Linn. (Cucurbitaceae) fruit is commonly known as bitter melon. C57BL/6J mice were firstly divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% high-fat (HF) diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and still on HF diet and was given orally M. charantia extract (MCE) or rosiglitazone (Rosi) or not for 4 weeks. M. charantia decreased the weights of visceral fat and caused glucose lowering. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. MCE significantly increases the hepatic protein contents of AMPK phosphorylation by 126.2-297.3% and reduces expression of phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Most importantly, MCE decreased expression of hepatic 11beta hydroxysteroid dehydroxygenase (11beta-HSD1) gene, which contributed in attenuating diabetic state. Furthermore, MCE lowered serum triglycerides (TGs) by inhibition of hepatic fatty acid synthesis by dampening sterol response element binding protein 1c and fatty acid synthase mRNA leading to reduction in TGs synthesis. This study demonstrates M. charantia ameliorates diabetic and hyperlipidemic state in HF-fed mice occurred by regulation of hepatic PEPCK, 11beta-HSD1 and AMPK phosphorylation. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice.

    Science.gov (United States)

    Xiao, Chun; Wu, Qingping; Zhang, Jumei; Xie, Yizhen; Cai, Wen; Tan, Jianbin

    2017-01-20

    Ganoderma lucidum (Lin Zhi) has been used to treat diabetes in Chinese folk for centuries. Our laboratory previously demonstrated that Ganoderma lucidum polysaccharides (GLPs) had hypoglycemic effects in diabetic mice. Our aim was to identify the main bioactives in GLPs and corresponding mechanism of action. Four polysaccharide-enriched fraction were isolated from GLPs and the antidiabetic activities were evaluated by type 2 diabetic mice. Fasting serum glucose (FSG), fasting serum insulin (FSI) and epididymal fat/BW ratio were measured at the end of the experiment. In liver, the mRNA levels of hepatic glucose regulatory enzymes were determined by quantitative polymerase chain reaction (qPCR) and the protein levels of phospho-AMP-activated protein kinase (p-AMPK)/AMPK were determined by western blotting test. In epididymal fat tissue, the mRNA and protein levels GLUT4, resistin, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC1) were determined by qPCR and immuno-histochemistry. The structure of polysaccharide F31 was obtained from GPC, FTIR NMR and GC-MS spectroscopy, RESULTS: F31 significantly decreased FSG (P<0.05), FSI and epididymal fat/BW ratio (P<0.01). In liver, F31 decreased the mRNA levels of hepatic glucose regulatory enzymes, and up-regulated the ratio of phospho-AMP-activated protein kinase (p-AMPK)/AMPK. In epididymal fat tissue, F31 increased the mRNA levels of GLUT4 but decreased fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1) and resistin. Immuno-histochemistry results revealed F31 increased the protein levels of GLUT4 and decreased resistin. Data suggested that the main bioactives in GLPs was F31, which was determined to be a β-heteropolysaccharide with the weight-average molecular weight of 15.9kDa. The possible action mechanism of F31 may be associated with down-regulation of the hepatic glucose regulated enzyme mRNA levels via AMPK activation, improvement of insulin resistance and decrease of epididymal fat/BW ratio. These

  12. A review of metabolism of labeled glucoses for use in measuring glucose recycling

    International Nuclear Information System (INIS)

    Russell, R.W.; Young, J.W.

    1990-01-01

    The fate of tritium from each carbon of D-glucose and the metabolism of L-glucose and 2-deoxy-D-glucose are known. Differences in metabolism of labeled glucoses can be used to quantify physical and chemical recycling of glucose. Only physical recycling is measured by [1- 3 H]-L-glucose, whereas [U- 14 C]-D-glucose measures total recycling. The difference between [1- 3 H]-L-glucose and [U- 14 C]-D-glucose, therefore, is chemical recycling. Recycling from extracellular binding sites and hepatic glucose 6-phosphate can be measured by difference between [1,2- 3 H]-2-deoxy-D-glucose and [1- 3 H]-L-glucose, and the difference in irreversible loss of the two will measure extrahepatic uptake of D-glucose. Recycling via Cori-alanine cycle plus CO 2 is the difference in irreversible loss measured by using [6- 3 H]-glucose and [U- 14 C]-D-glucose. Recycling via the hexose monophosphate pathway can be determined by difference in irreversible loss between [1- 3 H]-D-glucose and [6- 3 H]-D-glucose. Recycling via CO 2 and glycerol must be measured directly with [U- 14 C]glucose, bicarbonate, and glycerol. Recycling via hepatic glycogen can be estimated by subtracting all other measured chemical recycling from total chemical recycling. This review describes means to quantify glucose recycling in vivo, enabling studies of mechanisms for conservation and utilization of glucose. 54 references

  13. Autonomic regulation of hepatic glucose production

    NARCIS (Netherlands)

    Bisschop, Peter H.; Fliers, Eric; Kalsbeek, Andries

    2015-01-01

    Glucose produced by the liver is a major energy source for the brain. Considering its critical dependence on glucose, it seems only natural that the brain is capable of monitoring and controlling glucose homeostasis. In addition to neuroendocrine pathways, the brain uses the autonomic nervous system

  14. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for glucokinase regulatory protein (GCKR.

    Directory of Open Access Journals (Sweden)

    Zhao Yang Wang

    Full Text Available Glucokinase (GCK plays an important role in the regulation of carbohydrate metabolism. In the liver, phosphorylation of glucose to glucose-6-phosphate by GCK is the first step for both glycolysis and glycogen synthesis. However, some vertebrate species are deficient in GCK activity in the liver, despite containing GCK genes that appear to be compatible with function in their genomes. Glucokinase regulatory protein (GCKR is the most important post-transcriptional regulator of GCK in the liver; it participates in the modulation of GCK activity and location depending upon changes in glucose levels. In experimental models, loss of GCKR has been shown to associate with reduced hepatic GCK protein levels and activity.GCKR genes and GCKR-like sequences were identified in the genomes of all vertebrate species with available genome sequences. The coding sequences of GCKR and GCKR-like genes were identified and aligned; base changes likely to disrupt coding potential or splicing were also identified.GCKR genes could not be found in the genomes of 9 vertebrate species, including all birds. In addition, in multiple mammalian genomes, whereas GCKR-like gene sequences could be identified, these genes could not predict a functional protein. Vertebrate species that were previously reported to be deficient in hepatic GCK activity were found to have deleted (birds and lizard or mutated (mammals GCKR genes. Our results suggest that mutation of the GCKR gene leads to hepatic GCK deficiency due to the loss of the stabilizing effect of GCKR.

  15. Murine remote preconditioning increases glucose uptake and suppresses gluconeogenesis in hepatocytes via a brain-liver neurocircuit, leading to counteracting glucose intolerance.

    Science.gov (United States)

    Kurabayashi, Atsushi; Tanaka, Chiharu; Matsumoto, Waka; Naganuma, Seiji; Furihata, Mutsuo; Inoue, Keiji; Kakinuma, Yoshihiko

    2018-05-01

    Our previous study revealed that cyclic hindlimb ischaemia-reperfusion (IR) activates cardiac acetylcholine (ACh) synthesis through the cholinergic nervous system and cell-derived ACh accelerates glucose uptake. However, the mechanisms regulating glucose metabolism in vivo remain unknown. We investigated the effects and mechanisms of IR in mice under pathophysiological conditions. Using IR-subjected male C57BL/6J mice, the effects of IR on blood sugar (BS), glucose uptake, central parasympathetic nervous system (PNS) activity, hepatic gluconeogenic enzyme expression and those of ACh on hepatocellular glucose uptake were assessed. IR decreased BS levels by 20% and increased c-fos immunoreactivity in the center of the PNS (the solitary tract and the dorsal motor vagal nucleus). IR specifically downregulated hepatic gluconeogenic enzyme expression and activities (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) and accelerated hepatic glucose uptake. Transection of a hepatic vagus nerve branch decreased this uptake and reversed BS decrease. Suppressed gluconeogenic enzyme expression was reversed by intra-cerebroventricular administration of a choline acetyltransferase inhibitor. Moreover, IR significantly attenuated hyperglycaemia in murine model of type I and II diabetes mellitus. IR provides another insight into a therapeutic modality for diabetes mellitus due to regulating gluconeogenesis and glucose-uptake and advocates an adjunctive mode rectifying disturbed glucose metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of Acute Negative and Positive Energy Balance on Basal Very-Low Density Lipoprotein Triglyceride Metabolism in Women

    Science.gov (United States)

    Bellou, Elena; Maraki, Maria; Magkos, Faidon; Botonaki, Helena; Panagiotakos, Demosthenes B.; Kavouras, Stavros A.; Sidossis, Labros S.

    2013-01-01

    Background Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG) concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known. Objective The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women. Design Ten healthy women (age: 22.0±2.9 years, BMI: 21.2±1.3 kg/m2) underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i) isocaloric feeding (control) ii) hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii) hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition. Results Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037), owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023) and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016). Hypercaloric feeding increased plasma glucose concentration (P = 0.042) but had no effect on VLDL-TG concentration and kinetics compared to the control trial. Conclusion Acute dietary energy deficit (∼3MJ) leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ) does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women. PMID:23533676

  17. Effect of acute negative and positive energy balance on basal very-low density lipoprotein triglyceride metabolism in women.

    Directory of Open Access Journals (Sweden)

    Elena Bellou

    Full Text Available BACKGROUND: Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known. OBJECTIVE: The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women. DESIGN: Ten healthy women (AGE: 22.0±2.9 years, BMI: 21.2±1.3 kg/m(2 underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i isocaloric feeding (control ii hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition. RESULTS: Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037, owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023 and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016. Hypercaloric feeding increased plasma glucose concentration (P = 0.042 but had no effect on VLDL-TG concentration and kinetics compared to the control trial. CONCLUSION: Acute dietary energy deficit (∼3MJ leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women.

  18. Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss.

    Science.gov (United States)

    Zachut, M; Honig, H; Striem, S; Zick, Y; Boura-Halfon, S; Moallem, U

    2013-09-01

    The periparturient period in dairy cows is associated with alterations in insulin action in peripheral tissues; however, the molecular mechanism underlying this process is not completely understood. The objective was to examine the response to a glucose tolerance test (GTT) and to analyze insulin signaling in liver and adipose tissues in pre- and postpartum dairy cows. Liver and adipose tissue biopsies were taken before and after GTT, at 17d prepartum and again at 3 to 5d postpartum from 8 high-yielding Israeli Holstein dairy cows. Glucose clearance rate after GTT was similar pre- and postpartum. Basal insulin concentrations and the insulin response to GTT were approximately 4-fold higher prepartum than postpartum. In accordance, phosphorylation of the hepatic insulin receptor after GTT was higher prepartum than postpartum. Across periods, a positive correlation was observed between the basal and peak plasma insulin and phosphorylated insulin receptor after GTT in the liver. Hepatic phosphorylation of protein kinase B after GTT was elevated pre- and postpartum. Conversely, in adipose tissue, phosphorylation of protein kinase B after GTT pre- and postpartum was increased only in 4 out of 8 cows that lost less body weight postpartum. Our results demonstrate that hepatic insulin signaling is regulated by plasma insulin concentrations as part of the homeorhetic adjustments toward calving, and do not support a model of hepatic insulin resistance in periparturient cows. Nevertheless, we suggest that specific insulin resistance in adipose tissue occurs pre- and postpartum only in cows prone to high weight loss. The different responses among these cows imply that genetic background may affect insulin responsiveness in adipose tissue pre- and postpartum. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Estimation of liver glucose metabolism after refeeding

    International Nuclear Information System (INIS)

    Rognstad, R.

    1987-01-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a 14 C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the 14 C yield from H 14 CO 3 - in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding

  20. Branched chain enriched amino acid versus glucose treatment of hepatic encephalopathy. A double-blind study of 65 patients with cirrhosis

    DEFF Research Database (Denmark)

    Vilstrup, Hendrik; Gluud, C; Hardt, F

    1990-01-01

    We studied the effects of infusion of a branched chain enriched amino acid mixture versus glucose on acute hepatic encephalopathy in patients with cirrhosis. Sixty-five patients were randomly treated with 1 g/kg per day of an amino acid mixture with 40% branched chain contents (32 patients...

  1. Glucose homeostasis in children with falciparum malaria: precursor supply limits gluconeogenesis and glucose production

    NARCIS (Netherlands)

    Dekker, E.; Hellerstein, M. K.; Romijn, J. A.; Neese, R. A.; Peshu, N.; Endert, E.; Marsh, K.; Sauerwein, H. P.

    1997-01-01

    To evaluate glucose kinetics in children with falciparum malaria, basal glucose production and gluconeogenesis and an estimate of the flux of the gluconeogenic precursors were measured in Kenyan children with uncomplicated falciparum malaria before (n = 11) and during infusion of alanine (1.5

  2. Insulin secretion and incretin hormones after oral glucose in non-obese subjects with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Rask, E; Olsson, T; Söderberg, S

    2004-01-01

    of glucose, insulin, C-peptide, GLP-1, and GIP. Insulin secretion (TIS) and insulin sensitivity (OGIS) were assessed using models describing the relationship between glucose, insulin and C-peptide data. These models allowed estimation also of the hepatic extraction of insulin. The age (54.2 +/- 9.7 [mean......Subjects with impaired glucose tolerance (IGT) are usually overweight and exhibit insulin resistance with a defective compensation of insulin secretion. In this study, we sought to establish the interrelation between insulin secretion and insulin sensitivity after oral glucose in non-obese subjects...... over the whole 180-minute period was higher in IGT (26.2 +/- 2.4 v 20.0 +/- 2.0 nmol/L; P =.035). Hepatic insulin extraction correlated linearly with OGIS (r = 0.71; P

  3. Increased basal glucose production in type 1 Gaucher's disease

    NARCIS (Netherlands)

    Corssmit, E. P.; Hollak, C. E.; Endert, E.; van Oers, M. H.; Sauerwein, H. P.; Romijn, J. A.

    1995-01-01

    To evaluate the metabolic effects of Gaucher's disease, glucose metabolism and parameters of fat metabolism were studied by indirect calorimetry and primed continuous infusion of [3-3H]glucose in seven clinically stable untreated patients with type 1 Gaucher's disease and in seven healthy matched

  4. Clinical features of male patients with alcoholic liver cirrhosis or hepatitis B cirrhosis complicated by abnormal glucose metabolism

    Directory of Open Access Journals (Sweden)

    CHEN Qidan

    2016-02-01

    Full Text Available ObjectiveTo investigate the clinical features of male patients with alcoholic liver cirrhosis (ALC or hepatitis B cirrhosis (HBC complicated by abnormal glucose metabolism. MethodsA total of 287 patients with liver cirrhosis who were admitted to Guangzhou Panyu Central Hospital from January 2008 to September 2013 were selected. Among these patients, 74 had ALC and were all male, including 54 with abnormal glucose metabolism; the other 213 had HBC, including 97 with abnormal glucose metabolism (69 male patients and 28 female patients. A controlled study was performed for the clinical data of ALC and HBC patients with abnormal glucose metabolism, to investigate the association of patients′ clinical manifestations with the indices for laboratory examination, insulin resistance index, incidence rate of abnormal glucose metabolism, and Child-Pugh class. The t-test was applied for comparison of continuous data between groups, the chi-square test was applied for comparison of categorical data between groups, and the Spearman rank correlation was applied for correlation analysis. ResultsCompared with HBC patients, ALC patients had significantly higher incidence rates of abnormal glucose metabolism (730% vs 32.4%, hepatogenous diabetes (35.1% vs 14.6%, fasting hypoglycemia (27.0% vs 10.3%, and impaired glucose tolerance (31.1% vs 14.1% (χ2=4.371, 3.274, 4.784, and 1.633, all P<0.05. The Spearman correlation analysis showed that in ALC and HBC patients, the incidence rate of abnormal glucose metabolism was positively correlated with Child-Pugh class (rs=0.41, P<005. Compared with the HBC patients with abnormal glucose metabolism, the ALC patients with abnormal glucose metabolism had a significantly higher incidence rate of Child-Pugh class A (χ2=7.520, P=0.001, and a significantly lower incidence rate of Child-Pugh class C (χ2=6.542, P=0.003. There were significant differences in the incidence rates of dim complexion, telangiectasia of the

  5. Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2016-12-01

    Full Text Available An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32 were allocated to two equal treatment groups: Fed basal diet (control or fed basal diet with additional 200 mg/kg niacin supplementation (niacin. The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p0.05. However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05. In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.

  6. Effects of fasting on insulin action and glucose kinetics in lean and obese men and women.

    Science.gov (United States)

    Bergman, Bryan C; Cornier, Marc-Andre; Horton, Tracy J; Bessesen, Daniel H

    2007-10-01

    The development of insulin resistance in the obese individual could impair the ability to appropriately adjust metabolism to perturbations in energy balance. We investigated a 12- vs. 48-h fast on hepatic glucose production (R(a)), peripheral glucose uptake (R(d)), and skeletal muscle insulin signaling in lean and obese subjects. Healthy lean [n = 14; age = 28.0 +/- 1.4 yr; body mass index (BMI) = 22.8 +/- 0.42] and nondiabetic obese (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5) subjects were studied following a 12- and 48-h fast during 2 h of rest and a 3-h 40 mUxm(-2)xmin(-1) hyperinsulinemic-euglycemic clamp (HEC). Basal glucose R(a) decreased significantly from the 12- to 48-h fast (lean 1.96 +/- 0.23 to 1.63 +/- 0.15; obese 1.23 +/- 0.07 to 1.07 +/- 0.07 mgxkg(-1)xmin(-1); P = 0.004) and was equally suppressed during the HEC after both fasts. The increase in glucose R(d) during the HEC after the 12-h fast was significantly decreased in lean and obese subjects after the 48-h fast (lean 9.03 +/- 1.17 to 4.16 +/- 0.34, obese 6.10 +/- 0.77 to 3.56 +/- 0.30 mgxkg FFM(-1)xmin(-1); P lean than obese subjects. We conclude that 1) 48 h of fasting produces a marked decline in peripheral insulin action, while suppression of hepatic glucose production is maintained in lean and obese men and women; and 2) the magnitude of this decline is greater in lean vs. obese subjects.

  7. Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis.

    Science.gov (United States)

    Gray, Lawrence R; Sultana, Mst Rasheda; Rauckhorst, Adam J; Oonthonpan, Lalita; Tompkins, Sean C; Sharma, Arpit; Fu, Xiaorong; Miao, Ren; Pewa, Alvin D; Brown, Kathryn S; Lane, Erin E; Dohlman, Ashley; Zepeda-Orozco, Diana; Xie, Jianxin; Rutter, Jared; Norris, Andrew W; Cox, James E; Burgess, Shawn C; Potthoff, Matthew J; Taylor, Eric B

    2015-10-06

    Gluconeogenesis is critical for maintenance of euglycemia during fasting. Elevated gluconeogenesis during type 2 diabetes (T2D) contributes to chronic hyperglycemia. Pyruvate is a major gluconeogenic substrate and requires import into the mitochondrial matrix for channeling into gluconeogenesis. Here, we demonstrate that the mitochondrial pyruvate carrier (MPC) comprising the Mpc1 and Mpc2 proteins is required for efficient regulation of hepatic gluconeogenesis. Liver-specific deletion of Mpc1 abolished hepatic MPC activity and markedly decreased pyruvate-driven gluconeogenesis and TCA cycle flux. Loss of MPC activity induced adaptive utilization of glutamine and increased urea cycle activity. Diet-induced obesity increased hepatic MPC expression and activity. Constitutive Mpc1 deletion attenuated the development of hyperglycemia induced by a high-fat diet. Acute, virally mediated Mpc1 deletion after diet-induced obesity decreased hyperglycemia and improved glucose tolerance. We conclude that the MPC is required for efficient regulation of gluconeogenesis and that the MPC contributes to the elevated gluconeogenesis and hyperglycemia in T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. An Adaptive Nonlinear Basal-Bolus Calculator for Patients With Type 1 Diabetes

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Aradóttir, Tinna Björk; Nørgaard, Kirsten

    2017-01-01

    size. Following meal announcements, the meal compartment and the meal time constant are estimated, otherwise insulin sensitivity is estimated. Results : We compare the performance of a conventional linear bolus calculator with the proposed bolus calculator. The proposed basal-bolus calculator......Background : Bolus calculators help patients with type 1 diabetes to mitigate the effect of meals on their blood glucose by administering a large amount of insulin at mealtime. Intraindividual changes in patients physiology and nonlinearity in insulin-glucose dynamics pose a challenge...... glucose monitor (CGM). The basal rate is determined by calculating the steady state of the model and is adjusted once a day before breakfast. The bolus size is determined by optimizing the postprandial glucose values based on an estimate of the insulin sensitivity and states, as well as the announced meal...

  9. Hepatic Aryl hydrocarbon Receptor Nuclear Translocator (ARNT regulates metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Christopher H Scott

    Full Text Available Aryl hydrocarbon Receptor Nuclear Translocator (ARNT and its partners hypoxia-inducible factors (HIF-1α and HIF-2α are candidate factors for the well-known link between the liver, metabolic dysfunction and elevation in circulating lipids and glucose. Methods: Hepatocyte-specific ARNT-null (LARNT, HIF-1α-null (LHIF1α and HIF-2α-null (LHIF2α mice were created.LARNT mice had increased fasting glucose, impaired glucose tolerance, increased glucose production, raised post-prandial serum triglycerides (TG and markedly lower hepatic ATP versus littermate controls. There was increased expression of G6Pase, Chrebp, Fas and Scd-1 mRNAs in LARNT animals. Surprisingly, LHIF1α and LHIF2α mice exhibited no alterations in any metabolic parameter assessed.These results provide convincing evidence that reduced hepatic ARNT can contribute to inappropriate hepatic glucose production and post-prandial dyslipidaemia. Hepatic ARNT may be a novel therapeutic target for improving post-prandial hypertriglyceridemia and glucose homeostasis.

  10. Changes in Fasting Plasma Glucose Levels with Ribavirin and Pegylated Interferon Treatment in Normal and Impaired Glucose Tolerant Patients with Chronic Hepatitis C

    Science.gov (United States)

    Sarasombath, Ongkarn; Suwantarat, Nuntra; Tice, Alan D

    2012-01-01

    Background Patients with Hepatitis C Virus (HCV) infection have increased rates of glucose intolerance, and studies have shown the improvement of fasting plasma glucose (FPG) levels after clearance of HCV infection with standard ribavirin plus pegylated interferon treatment. The purpose of this study was to examine glycemic changes with standard HCV treatment in patients with impaired fasting glucose (IFG) and normal fasting glucose (NFG). Methods A retrospective study of FPG changes in HCV patients with IFG and NFG treated with standard HCV therapy was conducted. Baseline characteristics and viral responses were assessed; FPG levels before treatment, at the end of treatment, and more than one-month post treatment were compared. Results The mean FPG levels increased by 8.68 mg/dl at the end of treatment in the NFG group but decreased by 9.0 mg/dl in the IFG group, a statistically significant difference (P=0.019). The change in FPG levels remained significantly different after adjusting for weight change (P=0.009) and weight changes and initial weight (P=0.039). FPG change from baseline at more than one month after treatment were similar in both groups (P=0.145). The change in FPG levels was not associated with sustained viral response. Conclusions In HCV-infected patients, standard ribavirin plus pegylated interferon treatment reduced FPG levels in patients with IFG and increased FPG levels in NFG individuals; independent of initial weight, weight change, or viral response. Standard HCV treatment modulates fasting plasma glucose levels which supports the need for a prospective study to determine the clinical significance of this finding. PMID:22737650

  11. Glucose turnover during insulin-induced hypoglycemia in liver-denervated rats

    DEFF Research Database (Denmark)

    Mikines, K J; Sonne, B; Richter, Erik

    1985-01-01

    The role of hepatic autonomic nerves in glucose production during hypoglycemia was studied. Selective, surgical denervation of the liver was performed in rats, which reduced hepatic norepinephrine concentrations by 96%. Hypoglycemia was induced by 250 mU of insulin intra-arterially in anesthetized...... as well as in chronically catheterized, awake rats. Half of the anesthetized denervated or sham-operated rats had previously been adrenodemedullated. Glucose turnover was measured by primed, constant intravenous infusion of [3-3H]glucose. Before as well as during hypoglycemia the arterial glucose...

  12. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming.

    Science.gov (United States)

    Choi, Kevin; Weber, Jean-Michel

    2016-03-15

    This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise. Copyright © 2016 the American Physiological Society.

  13. Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I.

    Directory of Open Access Journals (Sweden)

    Marc U Baumann

    Full Text Available Glucose transport to the fetus across the placenta takes place via glucose transporters in the opposing faces of the barrier layer, the microvillous and basal membranes of the syncytiotrophoblast. While basal membrane content of the GLUT1 glucose transporter appears to be the rate-limiting step in transplacental transport, the factors regulating transporter expression and activity are largely unknown. In view of the many studies showing an association between IGF-I and fetal growth, we investigated the effects of IGF-I on placental glucose transport and GLUT1 transporter expression. Treatment of BeWo choriocarcinoma cells with IGF-I increased cellular GLUT1 protein. There was increased basolateral (but not microvillous uptake of glucose and increased transepithelial transport of glucose across the BeWo monolayer. Primary syncytial cells treated with IGF-I also demonstrated an increase in GLUT1 protein. Term placental explants treated with IGF-I showed an increase in syncytial basal membrane GLUT1 but microvillous membrane GLUT1 was not affected. The placental dual perfusion model was used to assess the effects of fetally perfused IGF-I on transplacental glucose transport and syncytial GLUT1 content. In control perfusions there was a decrease in transplacental glucose transport over the course of the perfusion, whereas in tissues perfused with IGF-I through the fetal circulation there was no change. Syncytial basal membranes from IGF-I perfused tissues showed an increase in GLUT1 content. These results demonstrate that IGF-I, whether acting via microvillous or basal membrane receptors, increases the basal membrane content of GLUT1 and up-regulates basal membrane transport of glucose, leading to increased transepithelial glucose transport. These observations provide a partial explanation for the mechanism by which IGF-I controls nutrient supply in the regulation of fetal growth.

  14. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis.

    Science.gov (United States)

    Mehta, Minal B; Shewale, Swapnil V; Sequeira, Raymond N; Millar, John S; Hand, Nicholas J; Rader, Daniel J

    2017-06-23

    Maintenance of whole-body glucose homeostasis is critical to glycemic function. Genetic variants mapping to chromosome 8p23.1 in genome-wide association studies have been linked to glycemic traits in humans. The gene of known function closest to the mapped region, PPP1R3B (protein phosphatase 1 regulatory subunit 3B), encodes a protein (G L ) that regulates glycogen metabolism in the liver. We therefore sought to test the hypothesis that hepatic PPP1R3B is associated with glycemic traits. We generated mice with either liver-specific deletion ( Ppp1r3b Δ hep ) or liver-specific overexpression of Ppp1r3b The Ppp1r3b deletion significantly reduced glycogen synthase protein abundance, and the remaining protein was predominantly phosphorylated and inactive. As a consequence, glucose incorporation into hepatic glycogen was significantly impaired, total hepatic glycogen content was substantially decreased, and mice lacking hepatic Ppp1r3b had lower fasting plasma glucose than controls. The concomitant loss of liver glycogen impaired whole-body glucose homeostasis and increased hepatic expression of glycolytic enzymes in Ppp1r3b Δ hep mice relative to controls in the postprandial state. Eight hours of fasting significantly increased the expression of two critical gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, above the levels in control livers. Conversely, the liver-specific overexpression of Ppp1r3b enhanced hepatic glycogen storage above that of controls and, as a result, delayed the onset of fasting-induced hypoglycemia. Moreover, mice overexpressing hepatic Ppp1r3b upon long-term fasting (12-36 h) were protected from blood ketone-body accumulation, unlike control and Ppp1r3b Δ hep mice. These findings indicate a major role for Ppp1r3b in regulating hepatic glycogen stores and whole-body glucose/energy homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    Science.gov (United States)

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Underestimation of glucose turnover corrected with high-performance liquid chromatography purification of [6-3H]glucose

    International Nuclear Information System (INIS)

    Schwenk, W.F.; Butler, P.C.; Haymond, M.W.; Rizza, R.A.

    1990-01-01

    We have recently reported that during infusion of commercially available [6-3H]glucose, a radioactive nonglucose contaminant may accumulate in plasma causing errors in the measurement of glucose turnover. To determine whether purification of this tracer by HPLC (high-performance liquid chromatography) before infusion would eliminate the contaminant in plasma and remove the underestimation of glucose turnover reported during hyperinsulinemia, four normal subjects each underwent two 5-h euglycemic clamps during infusion of insulin (1 mU.kg-1.min-1). Glucose turnover was measured with either commercially available [6-3H]glucose or with HPLC-purified [6-3H]glucose. HPLC analysis of samples from the clamps done with commercially available [6-3H]glucose showed that 9.7% of the infused tracer and 26% of the plasma glucose 3H radioactivity were contaminants. In contrast, no contaminant was observed in the plasma during infusion of HPLC-purified [6-3H]glucose. During the last hour of the clamp, mean glucose turnover using commercially available [6-3H]glucose was less (P less than 0.01) than the mean glucose infusion rate (7.6 +/- 0.3 vs. 10.5 +/- 0.3 mg.kg-1.min-1) yielding apparent negative (P less than 0.001) hepatic glucose release. In contrast, when HPLC-purified [6-3H]glucose was employed, glucose turnover equaled the glucose infusion rate (10.4 +/- 0.9 vs. 10.2 +/- 0.9 mg.kg-1.min-1) and hepatic glucose release was no longer negative. We conclude that removal of a tritiated nonglucose contaminant in [6-3H]glucose by HPLC yields correct estimations of glucose turnover at steady state

  17. Magnetic bead/capture DNA/glucose-loaded nanoliposomes for amplifying the glucometer signal in the rapid screening of hepatitis C virus RNA.

    Science.gov (United States)

    Tu, Haijian; Lin, Kun; Lun, Yongzhi; Yu, Liuming

    2018-06-01

    A digital detection strategy based on a portable personal glucometer (PGM) was developed for the simple, rapid, and sensitive detection of hepatitis C virus (HCV) RNA, involving the release of glucose-loaded nanoliposomes due to coupling-site-specific cleavage by the endonuclease BamHI. The glucose-loaded nanoliposomes were synthesized using a reversed-phase evaporation method and provided an amplified signal at the PGM in the presence of HCV RNA. Initially, a 21-mer oligonucleotide complementary to HCV RNA was covalently conjugated to a magnetic bead through the amino group at the 5' end of the oligonucleotide, and then bound to a glucose-loaded liposome by typical carbodiimide coupling at its 3' end. In the presence of the target HCV RNA, the target hybridized with the oligonucleotide to form double-stranded DNA. The symmetrical duplex sequence 5'-GGATCC-3' between guanines was then catalytically cleaved by BamHI, which detached the glucose-loaded liposome from the magnetic bead. Following magnetic separation of the bead, the detached glucose-loaded liposome was lysed using Triton X-100 to release the glucose molecules within it, which were then detected as an amplified signal at the digital PGM. Under optimal conditions, the PGM signal increased with increasing HCV RNA, and displayed a strongly linear dependence on the level of HCV RNA for concentrations ranging from 10 pM to 1.0 μM. The detection limit (LOD) of the system was 1.9 pM. Good reproducibility and favorable specificity were achieved in the analysis of the target HCV RNA. Human serum samples containing HCV RNA were analyzed using this strategy, and the developed sensing platform was observed to yield satisfactory results based on a comparison with the corresponding results from a Cobas ® Amplicor HCV Test Analyzer. Graphical abstract A digital detection strategy utilizing a personal glucometer was developed for the detection of hepatitis C virus RNA. The strategy involved the use of the

  18. NFIL3 is a negative regulator of hepatic gluconeogenesis.

    Science.gov (United States)

    Kang, Geon; Han, Hye-Sook; Koo, Seung-Hoi

    2017-12-01

    Nuclear factor interleukin-3 regulated (NFIL3) has been known as an important transcriptional regulator of the development and the differentiation of immune cells. Although expression of NFIL3 is regulated by nutritional cues in the liver, the role of NFIL3 in the glucose metabolism has not been extensively studied. Thus, we wanted to explore the potential role of NFIL3 in the control of hepatic glucose metabolism. Mouse primary hepatocytes were cultured to perform western blot analysis, Q-PCR and chromatin immunoprecipitation assay. 293T cells were cultured to perform luciferase assay. Male C57BL/6 mice (fed a normal chow diet or high fat diet for 27weeks) as well as ob/ob mice were used for experiments with adenoviral delivery. We observed that NFIL3 reduced glucose production in hepatocytes by reducing expression of gluconeogenic gene transcription. The repression by NFIL3 required its basic leucine zipper DNA binding domain, and it competed with CREB onto the binding of cAMP response element in the gluconeogenic promoters. The protein levels of hepatic NFIL3 were decreased in the mouse models of genetic- and diet-induced obesity and insulin resistance, and ectopic expression of NFIL3 in the livers of insulin resistant mice ameliorated hyperglycemia and glucose intolerance, with concomitant reduction in expression of hepatic gluconeogenic genes. Finally, we witnessed that knockdown of NFIL3 in the livers of normal chow-fed mice promoted elevations in the glucose levels and expression of hepatic gluconeogenic genes. In this study, we showed that NFIL3 functions as an important regulator of glucose homeostasis in the liver by limiting CREB-mediated hepatic gluconeogenesis. Thus, enhancement of hepatic NFIL3 activity in insulin resistant state could be potentially beneficial in relieving glycemic symptoms in the metabolic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.

    Science.gov (United States)

    Monetti, Mara; Levin, Malin C; Watt, Matthew J; Sajan, Mini P; Marmor, Stephen; Hubbard, Brian K; Stevens, Robert D; Bain, James R; Newgard, Christopher B; Farese, Robert V; Hevener, Andrea L; Farese, Robert V

    2007-07-01

    Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.

  20. Glucokinase, the pancreatic glucose sensor, is not the gut glucose sensor

    DEFF Research Database (Denmark)

    Murphy, R; Tura, A; Clark, P M

    2008-01-01

    AIMS/HYPOTHESIS: The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotrophic peptide (GIP) are released from intestinal endocrine cells in response to luminal glucose. Glucokinase is present in these cells and has been proposed as a glucose sensor. The physiological...... role of glucokinase can be tested using individuals with heterozygous glucokinase gene (GCK) mutations. If glucokinase is the gut glucose sensor, GLP-1 and GIP secretion during a 75 g OGTT would be lower in GCK mutation carriers compared with controls. METHODS: We compared GLP-1 and GIP concentrations...... measured at five time-points during a 75 g OGTT in 49 participants having GCK mutations with those of 28 familial controls. Mathematical modelling of glucose, insulin and C-peptide was used to estimate basal insulin secretion rate (BSR), total insulin secretion (TIS), beta cell glucose sensitivity...

  1. EFFECTS OF GLUCOSE-INFUSION ON HORMONE-SECRETION AND HEPATIC GLUCOSE-PRODUCTION DURING HEAVY EXERCISE

    NARCIS (Netherlands)

    WIERSMA, MML; VISSING, J; STEFFENS, AB; GALBO, H

    1993-01-01

    Blood-borne metabolic feedback vs. neural feedforward regulation of glucose homeostasis during exercise was investigated by infusing glucose and [H-3]glucose for glucose appearance determination intravenously in rats running for 20 min at 28 m/min [almost-equal-to 85% of maximal 02 consumption

  2. The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men

    DEFF Research Database (Denmark)

    Pilgaard, K; Jensen, C; Schou, J

    2009-01-01

    h glucose, insulin and glucagon profiles; OGTT; mixed meal test; IVGTT; hyperglycaemic clamp with co-infusion of glucagon-like peptide (GLP)-1 or glucose-dependent insulinotropic polypeptide (GIP); and a euglycaemic-hyperinsulinaemic clamp combined with glucose tracer infusion to study hepatic...... and peripheral insulin action. RESULTS: Carriers of the T allele were characterised by reduced 24 h insulin concentrations (p ...-phase insulinotropic action of GLP-1 (p = 0.03) and GIP (p = 0.07) during a 7 mmol/l hyperglycaemic clamp. Secretion of GLP-1 and GIP during the mixed meal test was normal. Despite elevated hepatic glucose production, carriers of the T allele had significantly reduced 24 h glucagon concentrations (p

  3. Erythrocytes 125I-Insulin Binding Studies in Viral Hepatitis and Schistosomiasis Patients

    International Nuclear Information System (INIS)

    Ahmed, A.M.

    2003-01-01

    The present study aims to evaluate the alterations of insulin binding sites in human erythrocytes in patients with chronic viral B and C hepatitis and in schistosomiasis. Fifty men with ages ranged from 20-45 years were diagnosed into five groups; hepatitis B virus, hepatitis C virus, mixed hepatitis B and C, schistosomiasis and normal healthy volunteers as a control group. Biochemical analyses as erythrocyte insulin radioreceptor, plasma insulin estimation, fasting and post prandial blood glucose levels and liver function tests were performed. The results revealed significant decrease in insulin binding sites/cell in patients with hepatitis C virus, mixed B and C viruses and in schistosomiasis compared to the control group. There were significant increase in fasting plasma glucose levels in groups of hepatitis C virus mixed B and C viruses, while there were highly significant increase in post prandial plasma glucose levels in patients with mixed B and C viruses and in schistosomiasis groups compared to the normal control. Also, fasting plasma insulin levels were significantly elevated in groups of hepatitis C mixed B and C viruses and in schistosomiasis group. The obtained results revealed the importance of laboratory follow up of glucose and insulin levels in patients with chronic liver diseases

  4. Altered effective connectivity network of the basal ganglia in low-grade hepatic encephalopathy: a resting-state fMRI study with Granger causality analysis.

    Directory of Open Access Journals (Sweden)

    Rongfeng Qi

    Full Text Available BACKGROUND: The basal ganglia often show abnormal metabolism and intracranial hemodynamics in cirrhotic patients with hepatic encephalopathy (HE. Little is known about how the basal ganglia affect other brain system and is affected by other brain regions in HE. The purpose of this study was to investigate whether the effective connectivity network associated with the basal ganglia is disturbed in HE patients by using resting-state functional magnetic resonance imaging (rs-fMRI. METHODOLOGY/PRINCIPAL FINDINGS: Thirty five low-grade HE patients and thirty five age- and gender- matched healthy controls participated in the rs-fMRI scans. The effective connectivity networks associated with the globus pallidus, the primarily affected region within basal ganglia in HE, were characterized by using the Granger causality analysis and compared between HE patients and healthy controls. Pearson correlation analysis was performed between the abnormal effective connectivity and venous blood ammonia levels and neuropsychological performances of all HE patients. Compared with the healthy controls, patients with low-grade HE demonstrated mutually decreased influence between the globus pallidus and the anterior cingulate cortex (ACC, cuneus, bi-directionally increased influence between the globus pallidus and the precuneus, and either decreased or increased influence from and to the globus pallidus in many other frontal, temporal, parietal gyri, and cerebellum. Pearson correlation analyses revealed that the blood ammonia levels in HE patients negatively correlated with effective connectivity from the globus pallidus to ACC, and positively correlated with that from the globus pallidus to precuneus; and the number connectivity test scores in patients negatively correlated with the effective connectivity from the globus pallidus to ACC, and from superior frontal gyrus to globus pallidus. CONCLUSIONS/SIGNIFICANCE: Low-grade HE patients had disrupted effective

  5. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using 18F-FDG

    International Nuclear Information System (INIS)

    Kim, J.H.; Son, Y.D.; Kim, H.K.; Oh, C.H.; Kim, J.M.; Kim, Y.B.; Lee, C.

    2018-01-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using 18 F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using 18 F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  6. Roles of Protein Arginine Methyltransferases in the Control of Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Hye-Sook Han

    2014-12-01

    Full Text Available Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.

  7. Insulin sensitivity of hepatic glucose and lipid metabolism in animal models of hepatic steatosis

    NARCIS (Netherlands)

    Grefhorst, Aldo

    2006-01-01

    De lever is betrokken bij de regulatie van zowel het koolhydraat als het vet metabolisme. De lever slaat glucose op als glycogeen, scheidt glucose uit, kan glucose maken uit bijvoorbeeld melkzuur en aminozuren (‘gluconeogenese’), zet glucose om in vet (‘de novo lipogenese’), verbrandt vetzuren in de

  8. Changes in hepatic glucose and lipid metabolism-related parameters in domestic pigeon (Columba livia) during incubation and chick rearing.

    Science.gov (United States)

    Wan, X P; Xie, P; Bu, Z; Zou, X T

    2018-04-01

    This study aimed to evaluate the hepatic glucose and lipid metabolism-related parameters of adult male and female White King pigeons (Columba livia) during incubation and chick rearing. At day 4 (I4), 10 (I10) and 17 (I17) of incubation and day 1 (R1), 7 (R7), 15 (R15) and 25 (R25) of chick rearing, livers were sampled from six pigeons for each sex. Glycogen and fat contents, activities of glycolytic enzymes (hexokinase, HK; 6-phosphofructokinase, 6-PFK), and genes expressions of key enzymes involved in glycolysis (pyruvate kinase, PK; glucokinase, GK), gluconeogenesis (phosphoenolpyruvate carboxykinase cytosolic, PCK1; fructose-1,6-bisphosphatase, FBP1; glucose-6-phosphatase, G6Pase), fatty acid synthesis (fatty acid synthase, FAS; acetyl-CoA carboxylase, ACC) and fatty acid β-oxidation (carnitine palmitoyltransferase 1, CPT1; acyl-CoA 1, ACO) were measured. In male and female pigeon livers, glycogen content and HK activity dramatically increased after I17 and after R1, respectively; expressions of FBP1 and G6Pase genes were maximized at R15; activity of 6-PFK and expressions of PK and CPT1 genes were highest at R7; fat content and expressions of FAS and ACC genes steeply increased from I10 to R1. In females, hepatic expressions of GK and PCK1 genes were greatest at R7 and I17, respectively; however, in males, both of them were maximized at R15. Hepatic expression of ACO gene was significantly enhanced at R1 compared to I17 and R7 in males, whereas it was notably up-regulated at I17 and R7 in females. Furthermore, expressions of PCK1, GK, FAS and ACC genes were in significant relation to fat content in the livers of female pigeons, while fat content in male pigeons was highly correlated with expression of PCK1, ACC, CPT1 and ACO genes. In conclusion, regulations of glucose and lipid metabolic processes were enhanced in parent pigeon livers from terminal phases of incubation to mid phase of chick rearing with sexual effects. © 2017 Blackwell Verlag GmbH.

  9. Perception of Diabetic Patients Regarding Basal Bolus Insulin Injections and Outcome of its Use

    International Nuclear Information System (INIS)

    Shahid, M.; Sarfraz, A.; Mahar, S. A.; Alam, M.; Shaikh, S.; Shahid, N.

    2016-01-01

    Objective: To assess the perceptions regarding basal bolus insulin injections and the changes in blood glucose levels and glycosylated hemoglobin (HbA1c) before and after 3 months of such treatment in diabetic patients. Study Design: Quasi-experimental study. Place and Duration of Study: Department of Endocrinology, Liaquat National Hospital, Karachi, from December 2014 to March 2015. Methodology: A total of 222 diabetic patients started on basal bolus insulin injection were enrolled and asked to answer 17 questions. Those with complications of diabetes were excluded. Fasting blood glucose (FBS), random blood glucose (RBS) and HbA1c levels were checked initially, and after 3 months of getting basal bolus insulin. Paired t-test and chi-square test were used for determining p-value with significance at p < 0.05. Results: Majority (n=217, 97.7 percentage) of the patients were previously taking other insulins. Before starting this treatment, the mean FBS was 260.5 ± 52.2 mg/dl, RBS was 385.5 percentage 47.61 mg/dl and HbA1c was 12.76 percentage 1.92 percentage. After 3 months of treatment, FBS improved to 117.9 ± 14.2 mg/dl, RBS was 156.7 ± 17.09 mg/dl and HbA1c was 7.72 ± 4.41 percentage (p < 0.001). Two hundred and sixteen (97.3 percentage) patients believed that basal bolus insulin was started as their diabetes worsened; 15 (70.70 percentage) thought that their blood glucose control would improve with the use of this form of insulin. One hundred and ninety four (87.4 percentage) had fear of needle injections. Perceptions regarding hypoglycemia with this form of insulin were observed in 157 (70.7 percentage). One hundred and twenty seven (84.1 percentage) of the females and 51 (71.8 percentage) of the males thought that the basal bolus insulin regimen was too expensive (p=0.032). Conclusion: There were many misconceptions in patients who were started on basal bolus insulin. Marked improvement in blood glucose levels and HbA1c were observed after the use of this

  10. [Predictors of mean blood glucose control and its variability in diabetic hospitalized patients].

    Science.gov (United States)

    Sáenz-Abad, Daniel; Gimeno-Orna, José Antonio; Sierra-Bergua, Beatriz; Pérez-Calvo, Juan Ignacio

    2015-01-01

    This study was intended to assess the effectiveness and predictors factors of inpatient blood glucose control in diabetic patients admitted to medical departments. A retrospective, analytical cohort study was conducted on patients discharged from internal medicine with a diagnosis related to diabetes. Variables collected included demographic characteristics, clinical data and laboratory parameters related to blood glucose control (HbA1c, basal plasma glucose, point-of-care capillary glucose). The cumulative probability of receiving scheduled insulin regimens was evaluated using Kaplan-Meier analysis. Multivariate regression models were used to select predictors of mean inpatient glucose (MHG) and glucose variability (standard deviation [GV]). The study sample consisted of 228 patients (mean age 78.4 (SD 10.1) years, 51% women). Of these, 96 patients (42.1%) were treated with sliding-scale regular insulin only. Median time to start of scheduled insulin therapy was 4 (95% CI, 2-6) days. Blood glucose control measures were: MIG 181.4 (SD 41.7) mg/dL, GV 56.3 (SD 22.6). The best model to predict MIG (R(2): .376; P<.0001) included HbA1c (b=4.96; P=.011), baseline plasma glucose (b=.056; P=.084), mean capillary blood glucose in the first 24hours (b=.154; P<.0001), home treatment (versus oral agents) with basal insulin only (b=13.1; P=.016) or more complex (pre-mixed insulin or basal-bolus) regimens (b=19.1; P=.004), corticoid therapy (b=14.9; P=.002), and fasting on admission (b=10.4; P=.098). Predictors of inpatient blood glucose control which should be considered in the design of DM management protocols include home treatment, HbA1c, basal plasma glucose, mean blood glucose in the first 24hours, fasting, and corticoid therapy. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  11. Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice.

    Science.gov (United States)

    Penhoat, Armelle; Fayard, Laetitia; Stefanutti, Anne; Mithieux, Gilles; Rajas, Fabienne

    2014-01-01

    Similar to the liver and kidneys, the intestine has been strongly suggested to be a gluconeogenic organ. However, the precise contribution of the intestine to endogenous glucose production (EGP) remains to be determined. To define the quantitative role of intestinal gluconeogenesis during long-term fasting, we compared changes in blood glucose during prolonged fasting in mice with a liver-deletion of the glucose-6 phosphatase catalytic (G6PC) subunit (LKO) and in mice with a combined deletion of G6PC in both the liver and the intestine (ILKO). The LKO and ILKO mice were studied after 6h and 40 h of fasting by measuring metabolic and hormonal plasmatic parameters, as well as the expression of gluconeogenic enzymes in the liver, kidneys and intestine. After a transient hypoglycemic episode (approximately 60 mg/dL) because of their incapacity to mobilize liver glycogen, the LKO mice progressively re-increased their plasma glucose to reach a glycemia comparable to that of wild-type mice (90 mg/dL) from 30 h of fasting. This increase was associated with a rapid induction of renal and intestinal gluconeogenic gene expression, driven by glucagon, glucocorticoids and acidosis. The ILKO mice exhibited a similar induction of renal gluconeogenesis. However, these mice failed to re-increase their glycemia and maintained a plasma glucose level of only 60 mg/dL throughout the 48 h-fasting period. These data indicate that intestinal glucose production is essential to maintain glucose homeostasis in the absence of hepatic glucose production during fasting. These data provide a definitive quantitative estimate of the capacity of intestinal gluconeogenesis to sustain EGP during long-term fasting. © 2013.

  12. 13C Mrs Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Science.gov (United States)

    Miller, Corin O.; Cao, Jin; Zhu, He; Chen, Li M.; Wilson, George; Kennan, Richard; Gore, John C.

    2017-06-01

    Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs) using 13C MRS. Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz) NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys) were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal), along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion) half way through the study on the second study session. Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e. monotonic increases in the 13C-glycogen NMR signal) was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen synthesis

  13. Estimation of gluconeogenesis and glucose utilization in carbohydate deficient growing rats

    International Nuclear Information System (INIS)

    Hill, F.W.; Egtesadi, S.; Rucker, R.B.

    1986-01-01

    A carbohydrate deficient diet based on food grade oleic acid and soybean oil and a minimally adequate level of casein protein was supplemented with graded levels of glucose (0, 4, 10, 65%), and casein protein (12% basal level plus 4, 6, 20%). Weanling rats were fed the respective diets for 28 days. Under anesthesia in fed state, the right jugular vein and left carotid artery were cannulated. NaH 14 CO 3 and 3 H-glucose labelled on C 6 were injected into aorta via carotid and blood samples taken from vena cava via jugular over a period of 30 minutes. Rate of increase of blood 14 C-glucose was the indicator of gluconeogenesis (GLNG). Disappearance of blood 3 H-glucose was the measure of glucose flux. Relative rate of GLNG was very high in basal unsupplemented rats, and glucose flux was very low. Rats growing rapidly with minimum supplementation (4% glucose or 6% casein) showed the lowest relative rate of GLNG and maximum glucose flux, of the order of 10 mg min -1 kg -1 . GLNG increased with higher levels of glucose and casein, but flux did not increase. The fed state glucose flux extrapolated to 24 hour basis was approximately 2X greater than the dietary intake of glucose and its equivalent of glucogenic precursors in rats fed the basal diet and low levels of supplements. Adjustment for lower flux in post absorptive state, based on flux in fasted rats, reduced the differences between observed flux and intake

  14. Regional brain glucose metabolism and blood flow in streptozocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Jakobsen, J.; Nedergaard, M.; Aarslew-Jensen, M.; Diemer, N.H.

    1990-01-01

    Brain regional glucose metabolism and regional blood flow were measured from autoradiographs by the uptake of [ 3 H]-2-deoxy-D-glucose and [ 14 C]iodoantipyrine in streptozocin-induced diabetic (STZ-D) rats. After 2 days of diabetes, glucose metabolism in the neocortex, basal ganglia, and white matter increased by 34, 37, and 8%, respectively, whereas blood flow was unchanged. After 4 mo, glucose metabolism in the same three regions was decreased by 32, 43, and 60%. This reduction was paralleled by a statistically nonsignificant reduction in blood flow in neocortex and basal ganglia. It is suggested that the decrease of brain glucose metabolism in STZ-D reflects increased ketone body oxidation and reduction of electrochemical work

  15. Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose

    International Nuclear Information System (INIS)

    Kalderon, B.; Korman, S.H.; Gutman, A.; Lapidot, A.

    1989-01-01

    A stable isotope procedure to estimate hepatic glucose carbon recycling and thereby elucidate the mechanism by which glucose is produced in patients lacking glucose 6-phosphatase is described. A total of 10 studies was performed in children with glycogen storage disease type I (GSD-I) and type III (GSD-III) and control subjects. A primed dose-constant nasogastric infusion of D-[U- 13 C]glucose or an infusion diluted with nonlabeled glucose solution was administered following different periods of fasting. Hepatic glucose carbon recycling was estimated from 13 C NMR spectra. The values obtained for GSD-I patients coincided with the standard [U- 13 C]glucose dilution curve. These results indicate that the plasma glucose of GSD-I subjects comprises only a mixture of 99% 13 C-enriched D-[U- 13 C]glucose and unlabeled glucose but lacks any recycled glucose. Significantly different glucose carbon recycling values were obtained for two GSD-III patients in comparison to GSD-I patients. The results eliminate a mechanism for glucose production in GSD-I children involving gluconeogenesis. However, glucose release by amylo-1,6-glucosidase activity would result in endogenous glucose production of non- 13 C-labeled and nonrecycled glucose carbon, as was found in this study. In GSD-III patients gluconeogenesis is suggested as the major route for endogenous glucose synthesis. The contribution of the triose-phosphate pathway in these patients has been determined

  16. Effect of extradural blockage upon glucose and urea kinetics in surgical patients

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.H.; Galler, L.; Holdaway, I.M.; Holdaway, C.M.

    1987-09-01

    We have determined the metabolic effects induced by the use of extradural blockage with 0.5 per cent bupivacaine hydrochloride in a group of surgical patients. Turnover rates of glucose and urea were determined isotopically using radioisotopes and studies were performed both in the basal state and during total parenteral nutrition. In the basal state, extradural blockade resulted in a decrease in the turnover rates of both glucose and urea. In addition, when extradural blockade was instituted while the patients were receiving total parenteral nutrition, there was also a significant fall in glucose turnover. We conclude that the use of extradural blockade is effective as a means of conserving bodily resources in surgical patients both in the basal state and during total parenteral nutrition.

  17. Effect of extradural blockage upon glucose and urea kinetics in surgical patients

    International Nuclear Information System (INIS)

    Shaw, J.H.; Galler, L.; Holdaway, I.M.; Holdaway, C.M.

    1987-01-01

    We have determined the metabolic effects induced by the use of extradural blockage with 0.5 per cent bupivacaine hydrochloride in a group of surgical patients. Turnover rates of glucose and urea were determined isotopically using radioisotopes and studies were performed both in the basal state and during total parenteral nutrition. In the basal state, extradural blockade resulted in a decrease in the turnover rates of both glucose and urea. In addition, when extradural blockade was instituted while the patients were receiving total parenteral nutrition, there was also a significant fall in glucose turnover. We conclude that the use of extradural blockade is effective as a means of conserving bodily resources in surgical patients both in the basal state and during total parenteral nutrition

  18. Correction of Diabetic Hyperglycemia and Amelioration of Metabolic Anomalies by Minicircle DNA Mediated Glucose-Dependent Hepatic Insulin Production.

    Directory of Open Access Journals (Sweden)

    Tausif Alam

    Full Text Available Type 1 diabetes mellitus (T1DM is caused by immune destruction of insulin-producing pancreatic β-cells. Commonly used insulin injection therapy does not provide a dynamic blood glucose control to prevent long-term systemic T1DM-associated damages. Donor shortage and the limited long-term success of islet transplants have stimulated the development of novel therapies for T1DM. Gene therapy-based glucose-regulated hepatic insulin production is a promising strategy to treat T1DM. We have developed gene constructs which cause glucose-concentration-dependent human insulin production in liver cells. A novel set of human insulin expression constructs containing a combination of elements to improve gene transcription, mRNA processing, and translation efficiency were generated as minicircle DNA preparations that lack bacterial and viral DNA. Hepatocytes transduced with the new constructs, ex vivo, produced large amounts of glucose-inducible human insulin. In vivo, insulin minicircle DNA (TA1m treated streptozotocin (STZ-diabetic rats demonstrated euglycemia when fasted or fed, ad libitum. Weight loss due to uncontrolled hyperglycemia was reversed in insulin gene treated diabetic rats to normal rate of weight gain, lasting ∼1 month. Intraperitoneal glucose tolerance test (IPGT demonstrated in vivo glucose-responsive changes in insulin levels to correct hyperglycemia within 45 minutes. A single TA1m treatment raised serum albumin levels in diabetic rats to normal and significantly reduced hypertriglyceridemia and hypercholesterolemia. Elevated serum levels of aspartate transaminase, alanine aminotransferase, and alkaline phosphatase were restored to normal or greatly reduced in treated rats, indicating normalization of liver function. Non-viral insulin minicircle DNA-based TA1m mediated glucose-dependent insulin production in liver may represent a safe and promising approach to treat T1DM.

  19. Control of Hepatic Gluconeogenesis by the Promyelocytic Leukemia Zinc Finger Protein

    Science.gov (United States)

    Chen, Siyu; Qian, Jinchun; Shi, Xiaoli; Gao, Tingting; Liang, Tingming

    2014-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein is involved in major biological processes including energy metabolism, although its role remains unknown. In this study, we demonstrated that hepatic PLZF expression was induced in fasted or diabetic mice. PLZF promoted gluconeogenic gene expression and hepatic glucose output, leading to hyperglycemia. In contrast, hepatic PLZF knockdown improved glucose homeostasis in db/db mice. Mechanistically, peroxisome proliferator-activated receptor γ coactivator 1α and the glucocorticoid receptor synergistically activated PLZF expression. We conclude that PLZF is a critical regulator of hepatic gluconeogenesis. PLZF manipulation may benefit the treatment of metabolic diseases associated with gluconeogenesis. PMID:25333514

  20. Modeling error and apparent isotope discrimination confound estimation of endogenous glucose production during euglycemic glucose clamps

    International Nuclear Information System (INIS)

    Finegood, D.T.; Bergman, R.N.; Vranic, M.

    1988-01-01

    We previously demonstrated that conventional tracer methods applied to euglycemic-hyperinsulinemic glucose clamps result in substantially negative estimates for the rate of endogenous glucose production, particularly during the first half of 180-min clamps. We also showed that addition of tracer to the exogenous glucose infusate resulted in nonnegative endogenous glucose production (Ra) estimates. In this study, we investigated the underlying cause of negative estimates of Ra from conventional clamp/tracer methods and the reason for the difference in estimates when tracer is added to the exogenous glucose infusate. We performed euglycemic-hyperinsulinemic (300-microU/ml) clamps in normal dogs without (cold GINF protocol, n = 6) or with (hot GINF protocol, n = 6) tracer (D-[3-3H]glucose) added to the exogenous glucose infusate. In the hot GINF protocol, sufficient tracer was added to the exogenous glucose infusate such that arterial plasma specific activity (SAa) did not change from basal through the clamp period (P greater than .05). In the cold GINF studies, plasma SAa fell 81 +/- 2% from the basal level by the 3rd h of clamping. We observed a significant, transient, positive venous-arterial difference in specific activity (SAv-SAa difference) during the cold GINF studies. The SAv-SAa difference reached a peak of 27 +/- 6% at 30 min and diminished to a plateau of 7 +/- 1% between 70 and 180 min. We also observed a positive but constant SAv-SAa difference (4.6 +/- 0.2% between 10 and 180 min) during the hot GINF studies

  1. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using {sup 18}F-FDG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H. [Research Institute for Advanced Industrial Technology, Korea University, Sejong (Korea, Republic of); Son, Y.D.; Kim, H.K.; Oh, C.H., E-mail: ohch@korea.ac.kr [College of Health Science, Gachon University, Incheon, (Korea, Republic of); Kim, J.M. [College of Science and Technology, Korea University, Sejong (Korea, Republic of); Kim, Y.B. [Gachon University School of Medicine, Incheon (Korea, Republic of); Lee, C. [Bioimaging Research Team, Korea Basic Science Institute, Cheongju (Korea, Republic of)

    2018-02-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using {sup 18}F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using {sup 18}F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  2. Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery

    International Nuclear Information System (INIS)

    Wasserman, D.H.; Williams, P.E.; Lacy, D.B.; Green, D.R.; Cherrington, A.D.

    1988-01-01

    These studies were performed to assess the importance of intrahepatic mechanisms to gluconeogenesis in the dog during 150 min of treadmill exercise and 90 min of recovery. Sampling catheters were implanted in an artery and portal and hepatic veins 16 days before experimentation. Infusions of [U- 14 C]alanine, [3- 3 H]glucose, and indocyanine green were used to assess gluconeogenesis. During exercise, a decline in arterial and portal vein plasma alanine and in hepatic blood flow led to a decrease in hepatic alanine delivery. During recovery, hepatic blood flow was restored to basal, causing an increase in hepatic alanine delivery beyond exercise rates but still below resting rates. Hepatic fractional alanine extraction increased from 0.26 +/- 0.02 at rest to 0.64 +/- 0.03 during exercise and remained elevated during recovery. Net hepatic alanine uptake was 2.5 +/- 0.2 mumol.kg-1.min-1 at rest and remained unchanged during exercise but was increased during recovery. The conversion rate of [ 14 C]alanine to glucose had increased by 248 +/- 38% by 150 min of exercise and had increased further during recovery. The efficiency with which alanine was channeled into glucose in the liver was accelerated to a rate of 338 +/- 55% above basal by 150 min of exercise but declined slightly during recovery. In conclusion, 1) gluconeogenesis from alanine is accelerated during exercise, due to an increase in the hepatic fractional extraction of the amino acid and through intrahepatic mechanisms that more efficiently channel it into glucose

  3. Enhanced hepatic insulin signaling in the livers of high altitude native rats under basal conditions and in the livers of low altitude native rats under insulin stimulation: a mechanistic study.

    Science.gov (United States)

    Al Dera, Hussain; Eleawa, Samy M; Al-Hashem, Fahaid H; Mahzari, Moeber M; Hoja, Ibrahim; Al Khateeb, Mahmoud

    2017-07-01

    This study was designed to investigate the role of the liver in lowering fasting blood glucose levels (FBG) in rats native to high (HA) and low altitude (LA) areas. As compared with LA natives, besides the improved insulin and glucose tolerance, HA native rats had lower FBG, at least mediated by inhibition of hepatic gluconeogenesis and activation of glycogen synthesis. An effect that is mediated by the enhancement of hepatic insulin signaling mediated by the decreased phosphorylation of TSC induced inhibition of mTOR function. Such effect was independent of activation of AMPK nor stabilization of HIF1α, but most probably due to oxidative stress induced REDD1 expression. However, under insulin stimulation, and in spite of the less activated mTOR function in HA native rats, LA native rats had higher glycogen content and reduced levels of gluconeogenic enzymes with a more enhanced insulin signaling, mainly due to higher levels of p-IRS1 (tyr612).

  4. Is Insulin Action in the Brain Relevant in Regulating Blood Glucose in Humans?

    Science.gov (United States)

    Dash, Satya; Xiao, Changting; Morgantini, Cecilia; Koulajian, Khajag; Lewis, Gary F

    2015-07-01

    In addition to its direct action on the liver to lower hepatic glucose production, insulin action in the central nervous system (CNS) also lowers hepatic glucose production in rodents after 4 hours. Although CNS insulin action (CNSIA) modulates hepatic glycogen synthesis in dogs, it has no net effect on hepatic glucose output over a 4-hour period. The role of CNSIA in regulating plasma glucose has recently been examined in humans and is the focus of this review. Intransal insulin (INI) administration increases CNS insulin concentration. Hence, INI can address whether CNSIA regulates plasma glucose concentration in humans. We and three other groups have sought to answer this question, with differing conclusions. Here we will review the critical aspects of each study, including its design, which may explain these discordant conclusions. The early glucose-lowering effect of INI is likely due to spillover of insulin into the systemic circulation. In the presence of simultaneous portal and CNS hyperinsulinemia, portal insulin action is dominant. INI administration does lower plasma glucose independent of peripheral insulin concentration (between ∼3 and 6 h after administration), suggesting that CNSIA may play a role in glucose homeostasis in the late postprandial period when its action is likely greatest and portal insulin concentration is at baseline. The potential physiological role and purpose of this pathway are discussed in this review. Because the effects of INI are attenuated in patients with type 2 diabetes and obesity, this is unlikely to be of therapeutic utility.

  5. Kinetics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate

    International Nuclear Information System (INIS)

    Veenhuizen, J.J.; Russell, R.W.; Young, J.W.

    1988-01-01

    Effects of injecting phlorizin subcutaneously and/or feeding propionate on metabolism of glucose, propionate and CO2 were determined for four steers used in a 4 x 4 Latin square design. Isotope dilution techniques were used to determine a four-pool kinetic solution for the flux of carbon among plasma glucose, rumen propionate, blood CO2 and rumen CO2. Injecting 1 g of phlorizin twice daily for 19 d resulted in 7.1 mol glucose C/d being excreted in urine. The basal glucose production of 13.4 mol C/d was increased to 17.9 mol C/d with phlorizin. There was no change in glucose oxidation or propionate production. The percentage of plasma glucose derived from propionate was unaffected by phlorizin, but 54 +/- 0.4% of total propionate was converted to plasma glucose during phlorizin treatment versus 40 +/- 0.6% during the basal treatment. When propionate was fed (18.3 mol C/d) glucose production increased to 21.2 mol C/d from the basal value of 13.4 mol C/d, and propionate oxidation to CO2 increased to 14.9 mol C/d from the basal value of 4.1 mol C/d. Glucose derived from propionate was 43 +/- 5% for the basal treatment and 67 +/- 3% during propionate feeding. The percentage of propionate converted to plasma glucose and blood and rumen CO2 was not affected by feeding propionate. An increased need for glucose, because of glucose excretion during phlorizin treatment, caused an increased utilization of propionate for gluconeogenesis, but an increased availability of propionate caused an increase in glucose production without affecting the relative distribution of carbon from propionate

  6. Response to glucose and lipid infusions in sepsis: a kinetic analysis

    International Nuclear Information System (INIS)

    Shaw, J.H.; Wolfe, R.R.

    1985-01-01

    The kinetics and oxidation of glucose and free fatty acid (FFA) metabolism were assessed in control and Escherichia coli septicemic dogs by using primed, constant infusions of U- 14 C-glucose and 1,2, 13 C-palmitic acid. In the controls, the infusion of glucose suppressed endogenous glucose production completely, whereas, in the septic dogs, only a 30% suppression of glucose production occurred. The ability of the septic dogs to oxidize endogenous or exogenous glucose was decreased significantly. The basal rate of appearance of FFA was significantly higher in the septic dogs, but their ability to oxidize FFA was comparable to that of the control dogs; therefore, the basal rate of FFA oxidation was higher in the septic dogs. These studies indicate that septic dogs have a decreased capacity to oxidize glucose, but that they retain their ability to oxidize long-chain fatty acids. Because the rate of lipolysis was increased in sepsis, lipid was the predominate energy substrate in this septic model

  7. Insulin sensitivity of hepatic glucose and lipid metabolism in animal models of hepatic steatosis

    OpenAIRE

    Grefhorst, Aldo

    2006-01-01

    De lever is betrokken bij de regulatie van zowel het koolhydraat als het vet metabolisme. De lever slaat glucose op als glycogeen, scheidt glucose uit, kan glucose maken uit bijvoorbeeld melkzuur en aminozuren (‘gluconeogenese’), zet glucose om in vet (‘de novo lipogenese’), verbrandt vetzuren in de beta-oxidatie (levert energie voor de gluconeogenese) en scheidt triglycerides uit in de circulatie in ‘very low density lipoprotein’ (VLDL) deeltjes. Insuline remt de glucoseproductie door de lev...

  8. Integrated model of insulin and glucose kinetics describing both hepatic glucose and pancreatic insulin regulation

    DEFF Research Database (Denmark)

    Erlandsen, Mogens; Martinussen, Christoffer; Gravholt, Claus Højbjerg

    2018-01-01

    AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter-individual varia......AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter......-individual variations and not intra-individual variations in the parameters. Here we present an integrated whole-body model of glucose and insulin kinetics which extends the well-known two-compartment glucose minimal model. The population-based estimation technique allow for quantification of both random inter......- and intra-individual variation in selected parameters using simultaneous data series on glucose and insulin. Methods We extend the two-compartment glucose model into a whole-body model for both glucose and insulin using a simple model for the pancreas compartment which includes feedback of glucose on both...

  9. Dopamine agents for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Junker, Anders Ellekær; Als-Nielsen, Bodil; Gluud, Christian

    2014-01-01

    BACKGROUND: Patients with hepatic encephalopathy may present with extrapyramidal symptoms and changes in basal ganglia. These changes are similar to those seen in patients with Parkinson's disease. Dopamine agents (such as bromocriptine and levodopa, used for patients with Parkinson's disease) have...... therefore been assessed as a potential treatment for patients with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of dopamine agents versus placebo or no intervention for patients with hepatic encephalopathy. SEARCH METHODS: Trials were identified through the Cochrane...... hepatic encephalopathy that were published during 1979 to 1982 were included. Three trials assessed levodopa, and two trials assessed bromocriptine. The mean daily dose was 4 grams for levodopa and 15 grams for bromocriptine. The median duration of treatment was 14 days (range seven to 56 days). None...

  10. Dynamics of Nampt/visfatin and high molecular weight adiponectin in response to oral glucose load in obese and lean women.

    Science.gov (United States)

    Unlütürk, Uğur; Harmanci, Ayla; Yildiz, Bülent Okan; Bayraktar, Miyase

    2010-04-01

    High molecular weight adiponectin (HMWA) is the active circulating form of adiponectin. Nampt/visfatin is the enzyme secreted from adipocytes in an active form and is one of the putative regulators of insulin secretion. To investigate the dynamics of total adiponectin (TA), HMWA and Nampt/visfatin in obese and lean women during oral glucose tolerance test (OGTT). We studied normal glucose-tolerant (NGT), age-matched, 30 obese and 30 lean women. All subjects underwent a standard 75 g, 2-h OGTT, and area under the curve (AUC) during OGTT for glucose, insulin, Nampt/visfatin, TA and HMWA was calculated. Body fat mass was assessed by bioimpedance analysis. Results Obese women had significantly higher basal and AUC values for insulin and Nampt/visfatin, whereas basal and AUC-HMWA were significantly lower in this group. Alternatively, obese and lean groups had similar basal and AUC values for glucose and TA. Basal insulin levels were negatively correlated with HMWA levels, but not with basal Nampt/visfatin. AUC-insulin was correlated positively with AUC-visfatin, and negatively with AUC-HMWA. Total and truncal body fat mass showed positive correlation with basal and AUC-visfatin, and negative correlation with basal and AUC-HMWA. In the NGT state, obese women have higher Nampt/visfatin and lower HMWA levels, both basally and in response to oral glucose challenge. The dynamics of Nampt/visfatin and HMWA during OGTT appear to be linked with insulin and adiposity. Counter-regulatory adaptations in HMWA and Nampt/visfatin might have an impact on suggested adipoinsular axis, contributing to maintenance of normal glucose tolerance.

  11. Effects of hydroalcoholic extract of Rhus coriaria seed on glucose and insulin related biomarkers, lipid profile, and hepatic enzymes in nicotinamide-streptozotocin-induced type II diabetic male mice.

    Science.gov (United States)

    Ahangarpour, Akram; Heidari, Hamid; Junghani, Majid Salehizade; Absari, Reza; Khoogar, Mehdi; Ghaedi, Ehsan

    2017-10-01

    Type 2 diabetes often leads to dislipidemia and abnormal activity of hepatic enzymes. The purpose of this study was to evaluate the antidiabetic and hypolipidemic properties of Rhus coriaria ( R. coriaria ) seed extrac on nicotinamide-streptozotocin induced type 2 diabetic mice. In this experimental study, 56 male Naval Medical Research Institute mice (30-35 g) were randomly separated into seven groups: control, diabetic group, diabetic mice treated with glibenclamide (0.25 mg/kg, as standard antidiabetic drug) or R. coriaria seed extract in doses of 200 and 300 mg/kg, and control groups received these two doses of extract orally for 28 days. Induction of diabetes was done by intraperitoneal injection of nicotinamide and streptozotocin. Ultimately, body weight of mice, blood levels of glucose, insulin, hepatic enzymes, leptin, and lipid profile were assayed. After induction of type 2 diabetes, level of glucose, cholesterol, low density lipoprotein, serum glutamic oxaloacetic transaminase, and serum glutamic pyruvic transaminase increased and level of insulin and high density lipoprotein decreased remarkably. Administration of both doses of extract decreased level of glucose and cholesterol significantly in diabetic mice. LDL level decreased in treated group with dose of 300 mg/kg of the extract. Although usage of the extract improved level of other lipid profiles, insulin and hepatic enzymes, changes weren't significant. This study showed R. coriaria seeds administration has a favorable effect in controlling some blood parameters in type 2 diabetes. Therefore it may be beneficial in the treatment of diabetes.

  12. Extrahepatic portal vein obstruction with parkinsonism and symmetric hyperintense basal ganglia on T1 weighted MRI

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Sita

    2006-01-01

    Full Text Available Abnormal high signal in the globus pallidus on T1 weighted magnetic resonance imaging (MRI of the brain has been well described in patients with chronic liver disease. It may be related to liver dysfunction or portal-systemic shunting. We report a case of extra hepatic portal vein obstruction with portal hypertension and esophageal varices that presented with extra pyramidal features. T1 weighted MRI brain scans showed increased symmetrical signal intensities in the basal ganglia. Normal hepatic function in this patient emphasizes the role of portal- systemic communications in the development of these hyperintensities, which may be due to deposition of paramagnetic substances like manganese in the basal ganglia.

  13. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Hypothalamic growth hormone receptor (GHR controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb expressing neurons

    Directory of Open Access Journals (Sweden)

    Gillian Cady

    2017-05-01

    Full Text Available Objective: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR are active in the central nervous system (CNS and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR. The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. Keywords: Growth hormone receptor, Hypothalamus, Leptin receptor, Glucose production, Liver

  15. Insulin hypersecretion together with high luteinizing hormone concentration augments androgen secretion in oral glucose tolerance test in women with polycystic ovarian disease.

    Science.gov (United States)

    Anttila, L; Koskinen, P; Jaatinen, T A; Erkkola, R; Irjala, K; Ruutiainen, K

    1993-08-01

    Female hyperandrogenism is often associated with hyperinsulinaemia and insulin resistance. We evaluated the hormone responses in an oral glucose tolerance test to investigate the interactions of gonadotrophins, insulin, C-peptide and androgens in women with polycystic ovarian disease (PCOD). In 28 patients with ultrasonographically diagnosed PCOD, hyperinsulinaemia and insulin resistance were mainly associated with obesity. Both basal and cumulative sum of insulin to C-peptide ratios were high in obese subjects, suggesting decreasing hepatic removal of insulin caused by obesity. Nevertheless, in some lean PCOD women, despite normal fasting insulin concentrations, insulin hypersecretion existed. The mean concentration of testosterone decreased significantly during the oral glucose tolerance test both in PCOD and control women, and of androstenedione in the PCOD patients only. However, an increase in androgen responses was found in a subgroup of PCOD patients, who had both elevated luteinizing hormone (LH) concentrations and hyperinsulinaemic response to oral glucose. In the remaining PCOD patients an inverse correlation between LH and insulin was found. The patients with hyperinsulinaemia together with LH hypersecretion may represent a subgroup of PCOD with deranged regulation of androgen secretion.

  16. Physiologic and Metabolic Benefits of Formulated Diets and Mangifera indica in Fluoride Toxicity.

    Science.gov (United States)

    Karn, Sanjay S; Narasimhacharya, A V R L

    2015-06-01

    Fluorosis is a major health problem affecting normal physiological and metabolic functions in people living in endemic fluoride areas. The present work was aimed at investigating the role of basal, high carbohydrate low protein (HCLP) and high protein low carbohydrate (HPLC) diets and Mangifera indica fruit powder as a food supplement in fluoride-induced metabolic toxicity. Exposure to fluoride resulted in elevation of plasma glucose levels, ACP, ALP, SGPT, SGOT, and hepatic G-6-Pase activities, plasma and hepatic lipid profiles with decreased plasma protein, HDL-C, hepatic glycogen content and hexokinase activity in basal, HCLP and HPLC diet fed albino rats. However among the three diets tested, HPLC diet was found to be relatively, a better metabolic regulator. All the three formulated diets (basal, HCLP and HPLC) supplemented with mango fruit powder (5 and 10 g), decreased plasma glucose content, ACP, ALP, SGPT, SGOT and hepatic G-6-Pase activities and plasma as well as hepatic lipid profiles. These diets also elevated the hepatic glycogen content and hexokinase activities. These effects however, were prominent with the HPLC diet supplemented with mango fruit powder and, among the two doses of mango fruit powder, the higher dose (10 g) yielded more promising results. It is surmised that the micronutrients and phytochemicals present in the diets and the mango fruit could be responsible for attenuation of fluoride-induced metabolic toxicity.

  17. The acute effect of metformin on glucose production in the conscious dog is primarily attributable to inhibition of glycogenolysis.

    Science.gov (United States)

    Chu, C A; Wiernsperger, N; Muscato, N; Knauf, M; Neal, D W; Cherrington, A D

    2000-12-01

    Although metformin has been used worldwide to treat type 2 diabetes for several decades, its mechanism of action on glucose homeostasis remains controversial. To further assess the effect of metformin on glucose metabolism, 10 42-hour-fasted conscious dogs were studied in the absence ([Con] n = 5) and presence ([Met] n = 5) of a portal infusion of metformin (0.15 mg x kg(-1) x min(-1)) over 300 minutes. Hepatic glucose production was measured by both arteriovenous-difference and tracer methods. All dogs were maintained on a pancreatic clamp and in a euglycemic state to ensure that any changes in glucose metabolism would result directly from the effects of metformin. The arterial metformin level was 21 +/- 3 microg/mL during the test period. Net hepatic glucose output (NHGO) decreased in Met dogs from 1.9 +/- 0.2 to 0.7 +/- 0.1 mg x kg(-1) x min(-1) (P metformin on glucose metabolism was an inhibition of hepatic glucose production and not a stimulation of glucose utilization; and (2) the inhibition of glucose production was attributable to a decrease in hepatic glycogenolysis and not to an alteration in gluconeogenic flux.

  18. Effect of adrenaline on glucose kinetics during exercise in adrenalectomised humans

    DEFF Research Database (Denmark)

    Howlett, K.; Galbo, Henrik; Lorentsen, J.

    1999-01-01

    for 45 min at 68 +/- 1 % maximum pulmonary O2 uptake (VO2,max), followed by 15 min at 84 +/- 2 % VO2, max without (-ADR) or with (+ADR) adrenaline infusion, which elevated plasma adrenaline levels (45 min, 4.49 +/- 0.69 nmol l-1; 60 min, 12.41 +/- 1.80 nmol l-1; means +/- s.e.m.). Glucose kinetics were...... measured using [3-3H]glucose. 3. Euglycaemia was maintained during exercise in CON and -ADR, whilst in +ADR plasma glucose was elevated. The exercise-induced increase in hepatic glucose production was similar in +ADR and -ADR; however, adrenaline infusion augmented the rise in hepatic glucose production...... early in exercise. Glucose uptake increased during exercise in +ADR and -ADR, but was lower and metabolic clearance rate was reduced in +ADR. 4. During exercise noradrenaline and glucagon concentrations increased, and insulin and cortisol concentrations decreased, but plasma levels were similar between...

  19. Hepatic and cerebral energy metabolism after neonatal canine alimentation.

    Science.gov (United States)

    Kliegman, R M; Miettinen, E L; Morton, S K

    1983-04-01

    Intrahepatic and intracerebral metabolic responses to neonatal fasting or enteric carbohydrate alimentation were investigated among newborn dogs. Pups were either fasted or given an intravenous glucose infusion (alimented) before an enteric feeding of physiologic quantities of either glucose or galactose. These pups were also compared to another group which was completely starved throughout the study period. Gastrointestinal carbohydrate feeding resulted in enhanced hepatic glycogen content among pups after a prior state of fasting. Though there were no differences of glycogen content between glucose or galactose feeding in this previously fasted group, combined intravenous glucose and enteric galactose administration produced the greatest effect on hepatic glycogen synthesis. Intrahepatic fructose 1, 6-diphosphate and phosphoenolpyruvate levels were increased among previously fasted pups fed enteric monosaccharides compared to completely starved control pups, whereas intrahepatic phosphoenolpyruvate and pyruvate levels were elevated after combined intravenous and enteric carbohydrate administration. Of greater interest was the observation that hepatic levels of ATP were significantly elevated among all groups given exogenous carbohydrates compared to the completely starved control group. In contrast to the augmented hepatic glycogen and ATP levels, there were no alterations of cerebral glycogen or ATP after alimentation. Nevertheless, cerebral pyruvate and/or phosphoenolpyruvate concentrations were elevated after enteric or combined intravenous and enteric alimentation compared to the totally starved control pups.

  20. High passage MIN6 cells have impaired insulin secretion with impaired glucose and lipid oxidation.

    Directory of Open Access Journals (Sweden)

    Kim Cheng

    Full Text Available Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS. HP MIN6 cells had no first phase and impaired second phase GSIS indicative of global functional impairment. This was coupled with a markedly reduced ATP content at basal and glucose stimulated states. Glucose uptake and oxidation were higher at basal glucose but ATP content failed to increase with glucose. HP MIN6 cells had decreased basal lipid oxidation. This was accompanied by reduced expressions of Glut1, Gck, Pfk, Srebp1c, Ucp2, Sirt3, Nampt. MIN6 cells represent an important model of beta cells which, as passage numbers increased lost first phase but retained partial second phase GSIS, similar to patients early in type 2 diabetes onset. We believe a number of gene expression changes occurred to produce this defect, with emphasis on Sirt3 and Nampt, two genes that have been implicated in maintenance of glucose homeostasis.

  1. Effects of β-hydroxy β-methyl butyrate supplementation to sows in late gestation on absorption and hepatic metabolism of glucose and amino acids during transition

    DEFF Research Database (Denmark)

    Flummer, Christine; Lyby, H; Storli, K S

    2012-01-01

    A multicatheter sow model was established to study the effects of dietary β-hydroxy β-methyl butyrate (HMB) supplementation on net portal flux (NPF) and net hepatic flux (NHF) of HMB, glucose, and the AA Ala, Gly, Ile, Leu, Phe, Tyr, and Val. Eight second parity sows were fitted with permanent...... the experiment, and 4 HMB sows were fed the control diet supplemented with 15 mg Ca(HMB)2/kg BW mixed in one third of the morning meal from day –10 until parturition. Net portal flux of HMB was affected by treatment (Trt; P HMB sows at 6.9 mmol/h 30 min after the morning meal...... and then decreased towards preprandial level (0.0 mmol/h) 3.5 h after the meal, revealing that dietary HMB was rapidly absorbed from the intestine. The NHF of HMB tended to be affected by Trt (P = 0.06) showing a small hepatic uptake of HMB (1.1 mmol/h) in HMB sows. Net portal flux of glucose and all measured AA...

  2. Central effects of humanin on hepatic triglyceride secretion.

    Science.gov (United States)

    Gong, Zhenwei; Su, Kai; Cui, Lingguang; Tas, Emir; Zhang, Ting; Dong, H Henry; Yakar, Shoshana; Muzumdar, Radhika H

    2015-08-01

    Humanin (HN) is an endogenous mitochondria-associated peptide that has been shown to protect against various Alzheimer's disease-associated insults, myocardial ischemia-reperfusion injury, and reactive oxygen species-induced cell death. We have shown previously that HN improves whole body glucose homeostasis by improving insulin sensitivity and increasing glucose-stimulated insulin secretion (GSIS) from the β-cells. Here, we report that intraperitoneal treatment with one of HN analogs, HNG, decreases body weight gain, visceral fat, and hepatic triglyceride (TG) accumulation in high-fat diet-fed mice. The decrease in hepatic TG accumulation is due to increased activity of hepatic microsomal triglyceride transfer protein (MTTP) and increased hepatic TG secretion. Both intravenous (iv) and intracerebroventricular (icv) infusion of HNG acutely increase TG secretion from the liver. Vagotomy blocks the effect on both iv and icv HNG on TG secretion, suggesting that the effects of HNG on hepatic TG flux are centrally mediated. Our data suggest that HN is a new player in central regulation of peripheral lipid metabolism. Copyright © 2015 the American Physiological Society.

  3. Effect of sepsis on VLDL kinetics: responses in basal state and during glucose infusion

    International Nuclear Information System (INIS)

    Wolfe, R.R.; Shaw, J.H.; Durkot, M.J.

    1985-01-01

    The effect of gram-negative sepsis on the kinetics and oxidation of very low-density lipoprotein (VLDL) fatty acids was assessed in conscious dogs in the normal state and 24 h after infusion of live Escherichia coli. VLDL, labeled with [2- 3 H]glycerol and [1- 14 C]palmitic acid, was used to trace VLDL kinetics and oxidation, and [1- 13 C]palmitic acid bound to albumin was infused simultaneously to quantify kinetics and oxidation of free fatty acid (FFA) in plasma. Sepsis caused a fivefold increase in the rate of VLDL production (RaVLDL). In the control dogs, the direct oxidation of VLDL-fatty acids was not an important contributor to their overall energy metabolism, but in dogs with sepsis, 17% of the total rate of CO2 production could be accounted for by VLDL-fatty acid oxidation. When glucose was infused into dogs with insulin and glucagon levels clamped at basal levels (by means of infusion of somatostatin and replacement of the hormones), RaVLDL increased significantly in the control dogs, but it did not increase further in dogs with sepsis. The authors conclude that the increase in triglyceride concentration in fasting dogs with gram-negative sepsis is the result of an increase in VLDL production and that the fatty acids in VLDL can serve as an important source of energy in sepsis

  4. 13C MRS Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Corin O. Miller

    2017-06-01

    Full Text Available Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well-known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs using 13C MRS.Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal, along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion half way through the study on the second study session.Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e., monotonic increases in the 13C-glycogen NMR signal was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen

  5. Computed tomography of granulomatous basal meningitis caused by pneumococcus

    Energy Technology Data Exchange (ETDEWEB)

    Sonobe, Makoto; Takahashi, Shinichiro (Mito National Hospital, Ibaraki (Japan)); Ohara, Kazuo

    1983-07-01

    A case of 3-month-old female with ''granulomatous basal meningitis'' caused by pneumococcus was described. She suffered from high fever, vomiting, convulsion and loss of consciousness on January 28th, 1982. On admission the protein content of the spinal fluid was 280 mg/100 ml, the glucose 4 mg/100 ml and the cell count was 1206/3(L : 845, N : 361). Her symptoms and signs were deteriorated in spite of antibiotics and anticonvulsants. CT scan on the 10th day showed the enhanced basal cistern. She died on the 11th day but autopsy was not carried out. In this case, pneumococcus was cultured in CSF. This seemed to be the first case of ''granulomatous basal meningitis'' due to purulent meningitis in Japan.

  6. Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus. Role of hepatic and extrahepatic tissues

    International Nuclear Information System (INIS)

    Firth, R.G.; Bell, P.M.; Marsh, H.M.; Hansen, I.; Rizza, R.A.

    1986-01-01

    Patients with noninsulin-dependent diabetes mellitus (NIDDM) have both preprandial and postprandial hyperglycemia. To determine the mechanism responsible for the postprandial hyperglycemia, insulin secretion, insulin action, and the pattern of carbohydrate metabolism after glucose ingestion were assessed in patients with NIDDM and in matched nondiabetic subjects using the dual isotope and forearm catheterization techniques. Prior to meal ingestion, hepatic glucose release was increased (P less than 0.001) in the diabetic patients measured using [2- 3 H] or [3- 3 H] glucose. After meal ingestion, patients with NIDDM had excessive rates of systemic glucose entry (1,316 +/- 56 vs. 1,018 +/- 65 mg/kg X 7 h, P less than 0.01), primarily owing to a failure to suppress adequately endogenous glucose release (680 +/- 50 vs. 470 +/- 32 mg/kg X 7 h, P less than 0.01) from its high preprandial level. Despite impaired suppression of endogenous glucose production during a hyperinsulinemic glucose clamp (P less than 0.001) and decreased postprandial C-peptide response (P less than 0.05) in NIDDM, percent suppression of hepatic glucose release after oral glucose was comparable in the diabetic and nondiabetic subjects (45 +/- 3 vs. 39 +/- 2%). Although new glucose formation from meal-derived three-carbon precursors (53 +/- 3 vs. 40 +/- 7 mg/kg X 7 h, P less than 0.05) was greater in the diabetic patients, it accounted for only a minor part of this excessive postprandial hepatic glucose release. Postprandial hyperglycemia was exacerbated by the lack of an appropriate increase in glucose uptake whether measured isotopically or by forearm glucose uptake. Thus excessive hepatic glucose release and impaired glucose uptake are involved in the pathogenesis of postprandial hyperglycemia in patients with NIDDM

  7. Comparison of Insulin Detemir and Insulin Glargine for Hospitalized Patients on a Basal-Bolus Protocol

    Directory of Open Access Journals (Sweden)

    Sondra Davis

    2017-04-01

    Full Text Available BACKGROUND: The primary purpose of this study is to determine whether insulin detemir is equivalent to insulin glargine in controlling hyperglycemia for the adult hospitalized patient on a basal-bolus treatment regimen. METHODS: A retrospective study was conducted at two acute care hospitals within the same health system. Patients from both facilities who were initiated on a basal-bolus subcutaneous insulin regimen were included in the study. The basal-bolus regimen consisted of three components: basal, bolus, and corrective insulin with only the data from the first seven days analyzed. Once the basal-bolus protocol was initiated, all previous glycemic agents were discontinued. The target glycemic goal of the study was 100–180 mg/dL. RESULTS: In both groups, 50% of the patients had achieved the target glycemic control goal (100–180 mg/dL by day 2 (p = 0.3. However, on the seventh or last day of basal-bolus treatment, whichever came first, 36.36% of patients receiving insulin detemir (n = 88 achieved the blood glucose reading goal compared to 52.00% in patients receiving insulin glargine (n = 100 (p = 0.03. This corresponded to an adjusted odds ratio of 2.12 (1.08 to 4.15, p = 0.03. The adjusting variables were provider type, whether the patient was hospitalized within 30 days prior and diagnosis of stroke. The mean blood glucose readings for the insulin glargine and the insulin detemir groups while on basal-bolus therapy were 200 mg/dL and 215 mg/dL, respectively (p = 0.05. The total number of blood glucose readings less than 70 mg/dL and less than 45 mg/dL was very low and there were no differences in number of episodes with hypoglycemia between the two groups. CONCLUSION: There was not a statistical difference between the two groups at 2 days, however there was on the seventh day or the last day of basal-bolus treatment. There were nonsignificant hypoglycemia events between basal insulin groups and the results for the last or seventh day

  8. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism

    DEFF Research Database (Denmark)

    Galindo, C; Larsen, Mogens; Ouellet, D R

    2015-01-01

    -OH-butyrate (BHBA) in postpartum dairy cows according to a generalized randomized incomplete block design with repeated measures in time. At calving, cows were blocked according to parity (second and third or greater) and were allocated to 2 treatments: abomasal infusion of water (n=4) or abomasal infusion of free...... AA with casein profile (AA-CN; n=5) in addition to the same basal diet. The AA-CN infusion started with half the maximal dose at 1 d in milk (DIM) and then steadily decreased from 791 to 226 g/d from DIM 2 to 29 to cover the estimated essential AA deficit. On DIM 5, 15, and 29, D[6,6-(2)H2]-glucose...... (23.7 mmol/h) was infused into a jugular vein for 5h, and 6 blood samples were taken from arterial, portal, hepatic, and mammary sources at 45-min intervals, starting 1h after the initiation of the D[6,6-(2)H2]glucose infusion. Trans-organ fluxes were calculated as veno-arterial differences times...

  9. Retinol-Binding Protein 4 in Young Men With Low Versus Normal Birth Weight

    DEFF Research Database (Denmark)

    Ribel-Madsen, Rasmus; Brøns, Charlotte; Friedrichsen, Martin

    2011-01-01

    = 15.4 µg/ml (9.5; 21.3), P index (D(i)) (ß = -2.4% (-4.5%; -0.2%), P = 0.04) and increased basal hepatic glucose production rate (HGP) (ß = 0.02 mg kg(-1) min(-1) (0.002; 0.04), P = 0.03), but not associated...... with peripheral glucose disposal rate or hepatic insulin resistance index. RBP4 levels were not influenced by overfeeding or related to peripheral and hepatic insulin resistance provoked by the dietary intervention. In conclusion, plasma RBP4 in young men associates with components of the metabolic syndrome...... = 20) or normal (n = 26) birth weight underwent a 5-day high-fat high-calorie (HFHC) dietary intervention. In vivo glucose metabolism was assessed by euglycemic-hyperinsulinemic clamp, glucose tracer and intravenous glucose tolerance test techniques. Body composition was measured by a dual-energy x...

  10. Glucose enhancement of memory is modulated by trait anxiety in healthy adolescent males.

    Science.gov (United States)

    Smith, Michael A; Hii, Hilary L; Foster, Jonathan K; van Eekelen, J A M

    2011-01-01

    Glucose administration is associated with memory enhancement in healthy young individuals under conditions of divided attention at encoding. While the specific neurocognitive mechanisms underlying this 'glucose memory facilitation effect' are currently uncertain, it is thought that individual differences in glucoregulatory efficiency may alter an individual's sensitivity to the glucose memory facilitation effect. In the present study, we sought to investigate whether basal hypothalamic-pituitary-adrenal axis function (itself a modulator of glucoregulatory efficiency), baseline self-reported stress and trait anxiety influence the glucose memory facilitation effect. Adolescent males (age range = 14-17 years) were administered glucose and placebo prior to completing a verbal episodic memory task on two separate testing days in a counter-balanced, within-subjects design. Glucose ingestion improved verbal episodic memory performance when memory recall was tested (i) within an hour of glucose ingestion and encoding, and (ii) one week subsequent to glucose ingestion and encoding. Basal hypothalamic-pituitary-adrenal axis function did not appear to influence the glucose memory facilitation effect; however, glucose ingestion only improved memory in participants reporting relatively higher trait anxiety. These findings suggest that the glucose memory facilitation effect may be mediated by biological mechanisms associated with trait anxiety.

  11. INFLUENCE OF PREGNANCY AND LACTATION ON GLUCOSE METABOLISM OF NUBIAN GOATS

    Directory of Open Access Journals (Sweden)

    J. Chávez

    2009-06-01

    Full Text Available Two in vivo metabolic challenges were conducted to assess the changes in glucose metabolism during three intervals prepartum (-6, -4, -2 weeks and three postpartum (+2, +4, +6 weeks in six multiparous pregnant Nubian goats. Challenges consisted of intravenous administration of 1 glucose (62.5 g/goat and 2 L-epinephrine (0.7 mg/kg body weight. Blood samples were collected via jugular cannula from 30 min pre-injection (basal concentrations to four hours post-injection. Response variables for glucose challenge were glucose concentration at zero time (to glucose disappearance rate (t½, insulin and NEFA concentrations; for the epinephrine challenge glucose, NEFA and insulin integrated responses were determined through the four hours of sampling. Data were analyzed according to a repeated-measures design. Dry matter intakes (1.8±0.07 kg/d were not different throughout the study (P>0.1. Average milk production (649±69 g/d was not different among periods (P>0.1. Basal glucose and insulin concentrations were not different (P>0.1 between pregnancy and lactation, with means (± standard error of 77.9±3.7mg/dl, and 0.264±.034ng/dl, respectively. Basal NEFA concentrations were greater (P0.1 and for t½ of 31±15 min (P>0.1. Insulin responses were similar for all periods (63.3±8.2 ngml-1min (P>0.1. The epinephrine challenge resulted in similar changes in glucose and insulin integrated responses throughout the periods evaluated (P>0.1, with corresponding means for glucose of 3886.5±318 mgml-1min, and 21.6±7.7 ngml-1min, but elicited a significant (P

  12. Studies of insulin resistance in congenital generalized lipodystrophy

    DEFF Research Database (Denmark)

    Søvik, O; Vestergaard, H; Trygstad, O

    1996-01-01

    suppressed lipid oxidation in the controls. It is concluded that patients with congenital generalized lipodystrophy may present severe insulin resistance with regard to hepatic glucose production as well as muscle glycogen synthesis and lipid oxidation. The results suggest a postreceptor defect in the action......, immunoreactive protein and mRNA levels. The patients had fasting hyperinsulinaemia, and the rate of total glucose disposal was severely impaired, primarily due to a decreased non-oxidative glucose metabolism. In the patient studied with muscle biopsy, the expected activation of glycogen synthase by insulin did...... not occur. In both patients there was severely increased hepatic glucose output in the basal state, suggesting a failure of insulin to suppress hepatic gluconeogenesis. During insulin infusion a substantially elevated rate of lipid oxidation remained in the patients, in contrast to the almost completely...

  13. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.

    Science.gov (United States)

    Lee, Ji-Min; Seo, Woo-Young; Han, Hye-Sook; Oh, Kyoung-Jin; Lee, Yong-Soo; Kim, Don-Kyu; Choi, Seri; Choi, Byeong Hun; Harris, Robert A; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2016-01-01

    The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB β-deficient (PKBβ(-/-)) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4-mediated transcriptional activity via direct competition with PGC-1α. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Hepatic Insulin Resistance and Altered Gluconeogenic Pathway in Premature Baboons.

    Science.gov (United States)

    McGill-Vargas, Lisa; Gastaldelli, Amalia; Liang, Hanyu; Anzueto Guerra, Diana; Johnson-Pais, Teresa; Seidner, Steven; McCurnin, Donald; Muscogiuri, Giovanna; DeFronzo, Ralph; Musi, Nicolas; Blanco, Cynthia

    2017-05-01

    Premature infants have altered glucose regulation early in life and increased risk for diabetes in adulthood. Although prematurity leads to an increased risk of diabetes and metabolic syndrome in adult life, the role of hepatic glucose regulation and adaptation to an early extrauterine environment in preterm infants remain unknown. The purpose of this study was to investigate developmental differences in glucose metabolism, hepatic protein content, and gene expression of key insulin-signaling/gluconeogenic molecules. Fetal baboons were delivered at 67%, 75%, and term gestational age and euthanized at birth. Neonatal baboons were delivered prematurely (67% gestation), survived for two weeks, and compared with similar postnatal term animals and underwent serial hyperinsulinemic-euglycemic clamp studies. Premature baboons had decreased endogenous glucose production (EGP) compared with term animals. Consistent with these results, the gluconeogenic molecule, phosphoenolpyruvate carboxykinase messenger RNA, was decreased in preterm baboons compared with terms. Hepatic insulin signaling was altered by preterm birth as evidenced by decreased insulin receptor-β, p85 subunit of phosphoinositide 3-kinase, phosphorylated insulin receptor substrate 1, and Akt-1 under insulin-stimulated conditions. Furthermore, preterm baboons failed to have the normal increase in glycogen synthase kinase-α from fetal to postnatal life. The blunted responses in hepatic insulin signaling may contribute to the hyperglycemia of prematurity, while impaired EGP leads to hypoglycemia of prematurity. Copyright © 2017 Endocrine Society.

  15. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis.

    Science.gov (United States)

    Rex, A; Bert, B; Fink, H; Voigt, J-P

    2009-10-19

    Neuronal activity is tightly coupled with brain energy metabolism; and glucose is an important energy substrate for neurons. The present in vivo microdialysis study was aimed at investigating changes in extracellular glucose concentrations in the rat ventral hippocampus due to exposure to the elevated plus maze. Determination of basal hippocampal glucose and lactate/pyruvate ratio in male Wistar rats was conducted in the home cage using in vivo microdialysis. Rats were exposed to the elevated plus maze, a rodent model of anxiety-related behaviour, or to unspecific stress induced by white noise (95dB) as a control condition. Basal hippocampal levels of glucose, as determined by zero-net-flux, and the basal lactate/pyruvate ratio were 1.49+/-0.05mmol/l and 13.8+/-1.1, respectively. In rats without manipulation, glucose levels remained constant throughout the experiment (120min). By contrast, exposure to the elevated plus maze led to a temporary decline in hippocampal glucose (-33.2+/-4.4%) which returned to baseline level in the home cage. White noise caused only a non-significant decrease in extracellular glucose level (-9.3+/-3.5%). In all groups, the lactate/pyruvate ratio remained unchanged by the experimental procedures. Our microdialysis study demonstrates that exposure to the elevated plus maze induces a transient decrease in extracellular hippocampal glucose concentration. In contrast, an unspecific stimulus did not change hippocampal glucose. The latter suggests that only specific behavioural stimuli increase hippocampal glucose utilization in the ventral hippocampus.

  16. Yin Yang 1 Promotes Hepatic Gluconeogenesis Through Upregulation of Glucocorticoid Receptor

    Science.gov (United States)

    Lu, Yan; Xiong, Xuelian; Wang, Xiaolin; Zhang, Zhijian; Li, Jin; Shi, Guojun; Yang, Jian; Zhang, Huijie; Ning, Guang; Li, Xiaoying

    2013-01-01

    Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state of insulin resistance. Overexpression of YY1 in livers augmented gluconeogenesis, raising fasting blood glucose levels in C57BL/6 mice, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated hyperglycemia in wild-type and diabetic db/db mice. At the molecular level, we further demonstrated that the major mechanism of YY1 in the regulation of hepatic glucose production is to modulate the expression of glucocorticoid receptor. Therefore, our study uncovered for the first time that YY1 participates in the regulation of hepatic gluconeogenesis, which implies that YY1 might serve as a potential therapeutic target for hyperglycemia in diabetes. PMID:23193188

  17. Assessment of the antidiabetic potential of selected medicinal plants using in vitro bioassays of muscle glucose transport and liver glucose production

    DEFF Research Database (Denmark)

    Beidokhti, M N; Sanchez Villavicencio, M L; Eid, H M

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is the most common type of diabetes mellitus. It is caused by decreased insulin sensitivity in target organs like liver, muscle and adipose tissue, and/or a deficiency in insulin secretion. In T2DM, increased hepatic glucose output and decreased glucose uptake by s...

  18. The influence of GLP-1 on glucose-stimulated insulin secretion

    DEFF Research Database (Denmark)

    Kjems, Lise L; Holst, Jens Juul; Vølund, Aage

    2003-01-01

    . However, the dose-response relationship between GLP-1 and basal and glucose-stimulated prehepatic insulin secretion rate (ISR) is currently not known. Seven patients with type 2 diabetes and seven matched nondiabetic control subjects were studied. ISR was determined during a graded glucose infusion of 2...

  19. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism

    DEFF Research Database (Denmark)

    Perry, Rachel J; Borders, Candace B; Cline, Gary W

    2016-01-01

    /tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-(13)C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats. In contrast, when propionate was infused simultaneously...... at doses previously used as a tracer, it increased VPyr-Cyc/VMito by 20-30-fold, increased hepatic TCA metabolite concentrations 2-3-fold, and increased endogenous glucose production rates by 20-100%. The physiologic stimuli, glucagon and epinephrine, both increased hepatic glucose production, but only...... tracer to assess hepatic glycolytic, gluconeogenic, and mitochondrial metabolism in vivo....

  20. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK

    Directory of Open Access Journals (Sweden)

    Santiago Vernia

    2016-03-01

    Full Text Available The cJun NH2-terminal kinase (JNK-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21 is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.

  1. Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress.

    Science.gov (United States)

    Veličković, Nataša; Teofilović, Ana; Ilić, Dragana; Djordjevic, Ana; Vojnović Milutinović, Danijela; Petrović, Snježana; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-29

    High-fructose consumption and chronic stress are both associated with metabolic inflammation and insulin resistance. Recently, disturbed activity of energy sensor AMP-activated protein kinase (AMPK) was recognized as mediator between nutrient-induced stress and inflammation. Thus, we analyzed the effects of high-fructose diet, alone or in combination with chronic stress, on glucose homeostasis, inflammation and expression of energy sensing proteins in the rat liver. In male Wistar rats exposed to 9-week 20% fructose diet and/or 4-week chronic unpredictable stress we measured plasma and hepatic corticosterone level, indicators of glucose homeostasis and lipid metabolism, hepatic inflammation (pro- and anti-inflammatory cytokine levels, Toll-like receptor 4, NLRP3, activation of NFκB, JNK and ERK pathways) and levels of energy-sensing proteins AMPK, SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). High-fructose diet led to glucose intolerance, activation of NFκB and JNK pathways and increased intrahepatic IL-1β, TNFα and inhibitory phosphorylation of insulin receptor substrate 1 on Ser 307 . It also decreased phospho-AMPK/AMPK ratio and increased SIRT1 expression. Stress alone increased plasma and hepatic corticosterone but did not influence glucose tolerance, nor hepatic inflammatory or energy-sensing proteins. After the combined treatment, hepatic corticosterone was increased, glucose tolerance remained preserved, while hepatic inflammation was partially prevented despite decreased AMPK activity. High-fructose diet resulted in glucose intolerance, hepatic inflammation, decreased AMPK activity and reduced insulin sensitivity. Chronic stress alone did not exert such effects, but when applied together with high-fructose diet it could partially prevent fructose-induced inflammation, presumably due to increased hepatic glucocorticoids.

  2. Relationship of Glucose Variability With Glycated Hemoglobin and Daily Mean Glucose: A Post Hoc Analysis of Data From 5 Phase 3 Studies.

    Science.gov (United States)

    Luo, Junxiang; Qu, Yongming; Zhang, Qianyi; Chang, Annette M; Jacober, Scott J

    2018-03-01

    The association of glucose variability (GV) with other glycemic measures is emerging as a topic of interest. The aim of this analysis is to study the correlation between GV and measures of glycemic control, such as glycated hemoglobin (HbA1c) and daily mean glucose (DMG). Data from 5 phase 3 trials were pooled into 3 analysis groups: type 2 diabetes (T2D) treated with basal insulin only, T2D treated with basal-bolus therapy, and type 1 diabetes (T1D). A generalized boosted model was used post hoc to assess the relationship of the following variables with glycemic control parameters (HbA1c and DMG): within-day GV, between-day GV (calculated using self-monitored blood glucose and fasting blood glucose [FBG]), hypoglycemia rate, and certain baseline characteristics. Within-day GV (calculated using standard deviation [SD]) was found to have a significant influence on endpoints HbA1c and DMG in all 3 patient groups. Between-day GV from FBG (calculated using SD), within-day GV (calculated using coefficient of variation), and hypoglycemia rate were found to significantly influence the endpoint HbA1c in the T2D basal-only group. Lower within-day GV was significantly associated with improvement in DMG and HbA1c. This finding suggests that GV could be a marker in the early phases of new antihyperglycemic therapy development for predicting clinical outcomes in terms of HbA1c and DMG.

  3. Ascorbic acid prevents vascular dysfunction induced by oral glucose load in healthy subjects.

    Science.gov (United States)

    De Marchi, Sergio; Prior, Manlio; Rigoni, Anna; Zecchetto, Sara; Rulfo, Fanny; Arosio, Enrico

    2012-01-01

    To examine the effects of oral glucose load on forearm circulatory regulation before and after ascorbic acid administration in healthy subjects. Microcirculation study with laser Doppler was performed at the hand in basal conditions, after ischemia and after acetylcholine and nitroprusside; strain gauge plethysmography was performed at basal and after ischemia. The tests were repeated in the same sequence 2 hour after oral administration of glucose (75 g). The subjects were randomised for administration of ascorbic acid (1 g bid) or placebo (sodium bicarbonate 1 g bid) for 10 days. After that, the tests were repeated before and after a new oral glucose load. Blood pressure and heart rate were monitored. Macrocirculatory flux, pressure values and heart rate were unvaried throughout the study. The glucose load caused a reduction in the hyperemic peak flow with laser Doppler and plethysmography; it reduced flux recovery time and hyperemic curve area after ischemia; acetylcholine elicited a minor increase in flux with laser Doppler. The response to nitroprusside was unvaried after glucose load as compared to basal conditions. Treatment with ascorbic acid prevented the decrease in hyperemia after glucose, detected with laser Doppler and plethysmography. Ascorbic acid prevented the decreased response to acetylcholine after glucose, the response to nitroprusside was unaffected by ascorbic acid. Results after placebo were unvaried. Oral glucose load impairs endothelium dependent dilation and hyperaemia at microcirculation, probably via oxidative stress; ascorbic acid can prevent it. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  4. The relationship between gluconeogenic substrate supply and glucose production in humans

    International Nuclear Information System (INIS)

    Jahoor, F.; Peters, E.J.; Wolfe, R.R.

    1990-01-01

    The relationship between gluconeogenic precursor supply and glucose production has been investigated in 14-h and 86-h fasted humans. In protocols 1 and 2 [6,6-2H]glucose and [15N2]urea were infused to measure glucose and urea production rates (Ra) in response to infusions of glycerol and alanine. In protocol 3 first [15N]alanine, [3-13C]lactate, and [6,6-2H]glucose were infused before and during administration of dichloroacetate (DCA) to determine the response of glucose Ra to decreased fluxes of pyruvate, alanine, and lactate, then alanine was infused with DCA and glucose Ra measured. After a 14-h fast, neither alanine nor glycerol increased glucose Ra. Basal glucose Ra decreased by one-third after 86 h of fasting, yet glycerol and alanine infusions had no effect on glucose Ra. Glycerol always reduced urea Ra (P less than 0.05), suggesting that glycerol competitively inhibited gluconeogenesis from amino acids. DCA decreased the fluxes of pyruvate, alanine (P less than 0.01), and glucose Ra (P less than 0.01), which was prevented by alanine infusion. These findings suggest that (1) the reduction in glucose Ra after an 86-h fast is not because of a shortage of gluconeogenic substrate; (2) nonetheless, the importance of precursor supply to maintain basal glucose Ra is confirmed by the response to DCA; (3) an excess of one gluconeogenic substrate inhibits gluconeogenesis from others

  5. Impact of low dose prenatal ethanol exposure on glucose homeostasis in Sprague-Dawley rats aged up to eight months.

    Directory of Open Access Journals (Sweden)

    Megan E Probyn

    Full Text Available Excessive exposure to alcohol prenatally has a myriad of detrimental effects on the health and well-being of the offspring. It is unknown whether chronic low-moderate exposure of alcohol prenatally has similar and lasting effects on the adult offspring's health. Using our recently developed Sprague-Dawley rat model of 6% chronic prenatal ethanol exposure, this study aimed to determine if this modest level of exposure adversely affects glucose homeostasis in male and female offspring aged up to eight months. Plasma glucose concentrations were measured in late fetal and postnatal life. The pancreas of 30 day old offspring was analysed for β-cell mass. Glucose handling and insulin action was measured at four months using an intraperitoneal glucose tolerance test and insulin challenge, respectively. Body composition and metabolic gene expression were measured at eight months. Despite normoglycaemia in ethanol consuming dams, ethanol-exposed fetuses were hypoglycaemic at embryonic day 20. Ethanol-exposed offspring were normoglycaemic and normoinsulinaemic under basal fasting conditions and had normal pancreatic β-cell mass at postnatal day 30. However, during a glucose tolerance test, male ethanol-exposed offspring were hyperinsulinaemic with increased first phase insulin secretion. Female ethanol-exposed offspring displayed enhanced glucose clearance during an insulin challenge. Body composition and hepatic, muscle and adipose tissue metabolic gene expression levels at eight months were not altered by prenatal ethanol exposure. Low-moderate chronic prenatal ethanol exposure has subtle, sex specific effects on glucose homeostasis in the young adult rat. As aging is associated with glucose dysregulation, further studies will clarify the long lasting effects of prenatal ethanol exposure.

  6. Optimal glucose management in the perioperative period.

    Science.gov (United States)

    Evans, Charity H; Lee, Jane; Ruhlman, Melissa K

    2015-04-01

    Hyperglycemia is a common finding in surgical patients during the perioperative period. Factors contributing to poor glycemic control include counterregulatory hormones, hepatic insulin resistance, decreased insulin-stimulated glucose uptake, use of dextrose-containing intravenous fluids, and enteral and parenteral nutrition. Hyperglycemia in the perioperative period is associated with increased morbidity, decreased survival, and increased resource utilization. Optimal glucose management in the perioperative period contributes to reduced morbidity and mortality. To readily identify hyperglycemia, blood glucose monitoring should be instituted for all hospitalized patients. Published by Elsevier Inc.

  7. Effect of prandial treatment timing adjustment, based on continuous glucose monitoring, in patients with type 2 diabetes uncontrolled with once-daily basal insulin: A randomized, phase IV study.

    Science.gov (United States)

    Ilany, Jacob; Bhandari, Hamad; Nabriski, Dan; Toledano, Yoel; Konvalina, Noa; Cohen, Ohad

    2018-05-01

    To evaluate the glycaemic control achieved by prandial once-daily insulin glulisine injection timing adjustment, based on a continuous glucose monitoring sensor, in comparison to once-daily insulin glulisine injection before breakfast in patients with type 2 diabetes who are uncontrolled with once-daily basal insulin glargine. This was a 24-week open-label, randomized, controlled, multicentre trial. At the end of an 8-week period of basal insulin optimization, patients with HbA1c ≥ 7.5% and FPG sensor) or arm B (sensor) to receive 16-week intensified prandial glulisine treatment. Patients in arm A received pre-breakfast glulisine, and patients in arm B received glulisine before the meal with the highest glucose elevation based on sensor data. The primary outcome was mean HbA1c at week 24 and secondary outcomes included rates of hypoglycaemic events and insulin dosage. A total of 121 patients were randomized to arm A (n = 61) or arm B (n = 60). There was no difference in mean HbA1c at week 24 between arms A and B (8.5% ± 1.2% vs 8.4% ± 1.0%; P = .66). The prandial insulin glulisine dosage for arm A and arm B was 9.3 and 10.1 units, respectively (P = .39). The frequency of hypoglycaemic events did not differ between study arms (36.1% vs 51.7%; P = .08). Using a CGM sensor to identify the meal with the highest glucose excursion and adjusting the timing of prandial insulin treatment did not show any advantage in terms of glycaemic control or safety in our patients. © 2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  8. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate.

    Directory of Open Access Journals (Sweden)

    Maxi Meissner

    Full Text Available AIMS/HYPOTHESIS: Bile acid sequestrants (BAS reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore, in vivo glucose metabolism was assessed in db/db mice on and off BAS using tracer methodology. METHODS: Lean and diabetic db/db mice were treated with 2% (wt/wt in diet Colesevelam HCl (BAS for 2 weeks. Parameters of in vivo glucose metabolism were assessed by infusing [U-(13C]-glucose, [2-(13C]-glycerol, [1-(2H]-galactose and paracetamol for 6 hours, followed by mass isotopologue distribution analysis, and related to metabolic parameters as well as gene expression patterns. RESULTS: Compared to lean mice, db/db mice displayed an almost 3-fold lower metabolic clearance rate of glucose (p = 0.0001, a ∼300% increased glucokinase flux (p = 0.001 and a ∼200% increased total hepatic glucose production rate (p = 0.0002. BAS treatment increased glucose metabolic clearance rate by ∼37% but had no effects on glucokinase flux nor total hepatic or endogenous glucose production. Strikingly, BAS-treated db/db mice displayed reduced long-chain acylcarnitine content in skeletal muscle (p = 0.0317 but not in liver (p = 0.189. Unexpectedly, BAS treatment increased hepatic FGF21 mRNA expression 2-fold in lean mice (p = 0.030 and 3-fold in db/db mice (p = 0.002. CONCLUSIONS/INTERPRETATION: BAS induced plasma glucose lowering in db/db mice by increasing metabolic clearance rate of glucose in peripheral tissues, which coincided with decreased skeletal muscle long-chain acylcarnitine content.

  9. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    International Nuclear Information System (INIS)

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.; Taskinen, M.R.

    1988-01-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R a was matched by a comparable decrease in glucose utilization (R d ), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level was comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R a is counterbalanced by equal inhibition of R d ; (2) basal R a and R d are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance

  10. Rho, a Fraction From Rhodiola crenulate, Ameliorates Hepatic Steatosis in Mice Models

    Directory of Open Access Journals (Sweden)

    Qin Yi

    2018-03-01

    Full Text Available The prevalence of non-alcoholic fatty liver disease (NAFLD, which is developed from hepatic steatosis, is increasing worldwide. However, no specific drugs for NAFLD have been approved yet. To observe the effects of Rho, a fraction from Rhodiola crenulate, on non-alcoholic hepatic steatosis, three mouse models with characteristics of NAFLD were used including high-fat diet (HFD-induced obesity (DIO mice, KKAy mice, and HFD combined with tetracycline stimulated Model-T mice. Hepatic lipid accumulation was determined via histopathological analysis and/or hepatic TG determination. The responses to insulin were evaluated by insulin tolerance test (ITT, glucose tolerance test (GTT, and hyperinsulinemic-euglycemic clamp, respectively. The pathways involved in hepatic lipid metabolism were observed via western-blot. Furthermore, the liver microcirculation was observed by inverted microscopy. The HPLC analysis indicated that the main components of Rho were flavan polymers. The results of histopathological analysis showed that Rho could ameliorate hepatic steatosis in DIO, KKAy, and Model-T hepatic steatosis mouse models, respectively. After Rho treatment in DIO mice, insulin resistance was improved with increasing glucose infusion rate (GIR in hyperinsulinemic-euglycemic clamp, and decreasing areas under the blood glucose-time curve (AUC in both ITT and GTT; the pathways involved in fatty acid uptake and de novo lipogenesis were both down-regulated, respectively. However, the pathways involved in beta-oxidation and VLDL-export on hepatic steatosis were not changed significantly. The liver microcirculation disturbances were also improved by Rho in DIO mice. These results suggest that Rho is a lead nature product for hepatic steatosis treatment. The mechanism is related to enhancing insulin sensitivity, suppressing fatty acid uptake and inhibiting de novo lipogenesis in liver.

  11. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, T. H.; van der Sluijs, F. H.; Wiegman, C. H.; Baller, J. F.; Gustafson, L. A.; Burger, H. J.; Herling, A. W.; Kuipers, F.; Meijer, A. J.; Reijngoud, D. J.

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  13. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats - A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, TH; van der Sluijs, FH; Wiegman, CH; Baller, JFW; Gustafson, LA; Burger, HJ; Herling, AW; Kuipers, F; Meijer, AJ; Reijngoud, DJ

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  14. Free fatty acids increase hepatic glycogen content in obese males

    NARCIS (Netherlands)

    Allick, G.; Sprangers, F.; Weverling, G. J.; Ackermans, M. T.; Meijer, A. J.; Romijn, J. A.; Endert, E.; Bisschop, P. H.; Sauerwein, H. P.

    2004-01-01

    Obesity is associated with increased hepatic glycogen content. In vivo and in vitro data suggest that plasma free fatty acids (FFA) may cause this increase. In this study we investigated the effect of physiological plasma FFA levels on hepatic glycogen metabolism by studying intrahepatic glucose

  15. Changes in glucose-induced plasma active glucagon-like peptide-1 levels by co-administration of sodium–glucose cotransporter inhibitors with dipeptidyl peptidase-4 inhibitors in rodents

    Directory of Open Access Journals (Sweden)

    Takahiro Oguma

    2016-12-01

    Full Text Available We investigated whether structurally different sodium–glucose cotransporter (SGLT 2 inhibitors, when co-administered with dipeptidyl peptidase-4 (DPP4 inhibitors, could enhance glucagon-like peptide-1 (GLP-1 secretion during oral glucose tolerance tests (OGTTs in rodents. Three different SGLT inhibitors—1-(β-d-Glucopyranosyl-4-chloro-3-[5-(6-fluoro-2-pyridyl-2-thienylmethyl]benzene (GTB, TA-1887, and canagliflozin—were examined to assess the effect of chemical structure. Oral treatment with GTB plus a DPP4 inhibitor enhanced glucose-induced plasma active GLP-1 (aGLP-1 elevation and suppressed glucose excursions in both normal and diabetic rodents. In DPP4-deficient rats, GTB enhanced glucose-induced aGLP-1 elevation without affecting the basal level, whereas metformin, previously reported to enhance GLP-1 secretion, increased both the basal level and glucose-induced elevation. Oral treatment with canagliflozin and TA-1887 also enhanced glucose-induced aGLP-1 elevation when co-administered with either teneligliptin or sitagliptin. These data suggest that structurally different SGLT2 inhibitors enhance plasma aGLP-1 elevation and suppress glucose excursions during OGTT when co-administered with DPP4 inhibitors, regardless of the difference in chemical structure. Combination treatment with DPP4 inhibitors and SGLT2 inhibitors having moderate SGLT1 inhibitory activity may be a promising therapeutic option for improving glycemic control in patients with type 2 diabetes mellitus.

  16. Roles of the Gut in Glucose Homeostasis

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Gribble, Fiona; Horowitz, Michael

    2016-01-01

    The gastrointestinal tract plays a major role in the regulation of postprandial glucose profiles. Gastric emptying is a highly regulated process, which normally ensures a limited and fairly constant delivery of nutrients and glucose to the proximal gut. The subsequent digestion and absorption...... of nutrients are associated with the release of a set of hormones that feeds back to regulate subsequent gastric emptying and regulates the release of insulin, resulting in downregulation of hepatic glucose production and deposition of glucose in insulin-sensitive tissues. These remarkable mechanisms normally...... keep postprandial glucose excursions low, regardless of the load of glucose ingested. When the regulation of emptying is perturbed (e.g., pyloroplasty, gastric sleeve or gastric bypass operation), postprandial glycemia may reach high levels, sometimes followed by profound hypoglycemia. This article...

  17. Effects of aging on basal fat oxidation in obese humans

    DEFF Research Database (Denmark)

    Solomon, Thomas; Marchetti, Christine M; Krishnan, Raj K

    2008-01-01

    )max) were measured in 10 older (age, 60 +/- 4 years; mean +/- SEM) and 10 younger (age, 35 +/- 4 years) body mass index-matched, obese, normal glucose-tolerant individuals. Fasting blood samples were also collected. Older subjects had slightly elevated fat mass (32.2 +/- 7.1 vs 36.5 +/- 6.7 kg, P......Basal fat oxidation decreases with age. In obesity, it is not known whether this age-related process occurs independently of changes in body composition and insulin sensitivity. Therefore, body composition, resting energy expenditure, basal substrate oxidation, and maximal oxygen consumption (VO(2...... is responsible for reduced basal fat oxidation and maximal oxidative capacity in older obese individuals, independent of changes in insulin resistance, body mass, and abdominal fat. This indicates that age, in addition to obesity, is an independent risk factor for weight gain and for the metabolic complications...

  18. Glucose production during exercise in humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L

    1999-01-01

    at 50.4 +/- 1.5(SE)% maximal O(2) consumption, followed by 30 min at 69.0 +/- 2.2% maximal O(2) consumption. The splanchnic blood flow was estimated by continuous infusion of indocyanine green, and net splanchnic glucose output was calculated as the product of splanchnic blood flow and a-hv blood...... glucose concentration differences. Glucose appearance rate was determined by a primed, continuous infusion of [3-(3)H]glucose and was calculated by using formulas for a modified single compartment in non-steady state. Glucose production was similar whether determined by the a-hv balance technique......The present study compared the arteriohepatic venous (a-hv) balance technique and the tracer-dilution method for estimation of hepatic glucose production during both moderate and heavy exercise in humans. Eight healthy young men (aged 25 yr; range, 23-30 yr) performed semisupine cycling for 40 min...

  19. Development of the insulin secretion mechanism in fetal and neonatal rat pancreatic B-cells: response to glucose, K+, theophylline, and carbamylcholine

    Directory of Open Access Journals (Sweden)

    A.C. Mendonça

    1998-06-01

    Full Text Available We studied the development of the insulin secretion mechanism in the pancreas of fetal (19- and 21-day-old, neonatal (3-day-old, and adult (90-day-old rats in response to stimulation with 8.3 or 16.7 mM glucose, 30 mM K+, 5 mM theophylline (Theo and 200 µM carbamylcholine (Cch. No effect of glucose or high K+ was observed on the pancreas from 19-day-old fetuses, whereas Theo and Cch significantly increased insulin secretion at this age (82 and 127% above basal levels, respectively. High K+ also failed to alter the insulin secretion in the pancreas from 21-day-old fetuses, whereas 8.3 mM and 16.7 mM glucose significantly stimulated insulin release by 41 and 54% above basal levels, respectively. Similar results were obtained with Theo and Cch. A more marked effect of glucose on insulin secretion was observed in the pancreas of 3-day-old rats, reaching 84 and 179% above basal levels with 8.3 mM and 16.7 mM glucose, respectively. At this age, both Theo and Cch increased insulin secretion to close to two-times basal levels. In islets from adult rats, 8.3 mM and 16.7 mM glucose, Theo, and Cch increased the insulin release by 104, 193, 318 and 396% above basal levels, respectively. These data indicate that pancreatic B-cells from 19-day-old fetuses were already sensitive to stimuli that use either cAMP or IP3 and DAG as second messengers, but insensitive to stimuli such as glucose and high K+ that induce membrane depolarization. The greater effect of glucose on insulin secretion during the neonatal period indicates that this period is crucial for the maturation of the glucose-sensing mechanism in B-cells.

  20. Does overnight normalization of plasma glucose by insulin infusion affect assessment of glucose metabolism in Type 2 diabetes?

    DEFF Research Database (Denmark)

    Staehr, P; Højlund, Kurt; Hother-Nielsen, O

    2003-01-01

    AIMS: In order to perform euglycaemic clamp studies in Type 2 diabetic patients, plasma glucose must be reduced to normal levels. This can be done either (i) acutely during the clamp study using high-dose insulin infusion, or (ii) slowly overnight preceding the clamp study using a low-dose insulin...... infusion. We assessed whether the choice of either of these methods to obtain euglycaemia biases subsequent assessment of glucose metabolism and insulin action. METHODS: We studied seven obese Type 2 diabetic patients twice: once with (+ ON) and once without (- ON) prior overnight insulin infusion. Glucose...... turnover rates were quantified by adjusted primed-constant 3-3H-glucose infusions, and insulin action was assessed in 4-h euglycaemic, hyperinsulinaemic (40 mU m-2 min-1) clamp studies using labelled glucose infusates (Hot-GINF). RESULTS: Basal plasma glucose levels (mean +/- sd) were 5.5 +/- 0.5 and 10...

  1. Hypoglycemia in type 2 diabetes patients treated with insulin: the advantages of continuous glucose monitoring

    Directory of Open Access Journals (Sweden)

    Vadim Valer'evich Klimontov

    2014-03-01

    Full Text Available Aims.  To determine the incidence and risk factors for hypoglycemia in elderly insulin-treated type 2 diabetes mellitus (T2DM patients by means of continuous glucose monitoring (CGM. Materials and Methods.  We observed seventy-six hospitalized patients with T2DM, aged 65 to 79 years. Treatment with basal insulin (n=36, premixed insulin (n=12 or basal-bolus insulin regimen (n=28 was followed by metformin (n=44, glimepiride (n=14 and dipeptidyl peptidase-4 inhibitors (n=14. 2-days CGM with retrospective data analysis was performed in all patients. During CGM, three fasting and three 2-h postprandial finger-prick glucose values were obtained daily with portable glucose meter. Results.  Hypoglycemia (identified as blood glucose

  2. Interactions of obesity and glucose-stimulated insulin secretion in familial hypertriglyceridemia.

    Science.gov (United States)

    Maruhama, Y; Abe, R; Okuguchi, F; Oikawa, S; Ohneda, A; Goto, Y

    1978-06-01

    Plasma lipids and lipoproteins, glucose tolerance, plasma insulin response to glucose load, and liver function were examined in 81 relatives of 12 index cases with primary endogenous hypertriglyceridemia, hyperinsulinemia, and hepatic steatosis, as well as in 90 nonrelatives, including the spouses, as controls. Insulin hypersecretion (with or without glucose intolerance), endogenous hypertriglyceridemia, and abnormal liver function suggesting hepatic steatosis were shown to exist in the relatives mostly in combined fashion. Correlation analysis and stepwise multiple regression analysis revealed that the combined disorder developed on the basis of obesity. The incidence of diabetes mellitus was significantly high in the relatives (14.8 per cent) as compared with the normal Japanese population (3.5 per cent). Although the vertical transmission of the combined disorder was noted in almost all pedigrees, the frequency distribution analysis of insulin response, glucose tolerance, and plasma triglyceride showed the histograms of these variables similarly skewed to the right as compared with those of the controls, with no apparent bimodality. In view of the hitherto suggested role of insulin in triglyceride metabolism, it is concluded that hyperinsulinemia coupled with obesity seems to be the basic trait of this form of familial hypertriglyceridemia and hepatic steatosis, though the mode of transmission remains to be elucidated.

  3. Glucose and urea kinetics in patients with early and advanced gastrointestinal cancer: the response to glucose infusion, parenteral feeding, and surgical resection

    International Nuclear Information System (INIS)

    Shaw, J.H.; Wolfe, R.R.

    1987-01-01

    We isotopically determined rates of glucose turnover, urea turnover, and glucose oxidation in normal volunteers (n = 16), patients with early gastrointestinal (EGI) cancer (n = 6), and patients with advanced gastrointestinal (AGI) cancer (n = 10). Studies were performed in the basal state, during glucose infusion (4 mg/kg/min), and during total parenteral feeding (patients with AGI cancer only). Patients with early stages of the disease were also studied 2 to 3 months after resection of the cancer. Basal rates of glucose turnover were similar in volunteers and in patients with EGI cancer (13.9 +/- 0.3 mumol/kg/min and 13.3 +/- 0.2 mumol/kg/min, respectively) but were significantly higher in patients with AGI cancer (17.6 +/- 1.4 mumol/kg/min). Glucose infusion resulted in significantly less suppression of endogenous production in both patient groups than that seen in the volunteers (76% +/- 6% for EGI group, 69% +/- 7% for AGI group, and 94% +/- 4% for volunteers). The rate of glucose oxidation increased progressively in proportion to the tumor bulk. In the volunteers the percent of VCO2 from glucose oxidation was 23.9% +/- 0.7%, and in EGI and AGI groups the values were 32.8% +/- 2.0% and 43.0% +/- 3.0%, respectively. After curative resection of the cancer, glucose utilization decreased significantly (p less than 0.05). The rate of urea turnover was significantly higher in the AGI group (8.4 +/- 1.0 mumol/kg/min) in comparison with the volunteer group value of 5.9 +/- 0.6 mumol/kg/min (p less than 0.03). Glucose infusion resulted in a significant suppression of urea turnover in the volunteers (p less than 0.02), but in the AGI group glucose infusion did not induce a statistically significant decrease

  4. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver.

    Science.gov (United States)

    Theurey, Pierre; Tubbs, Emily; Vial, Guillaume; Jacquemetton, Julien; Bendridi, Nadia; Chauvin, Marie-Agnès; Alam, Muhammad Rizwan; Le Romancer, Muriel; Vidal, Hubert; Rieusset, Jennifer

    2016-04-01

    Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  5. Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus).

    Science.gov (United States)

    Kamine, Akari; Shimozuru, Michito; Shibata, Haruki; Tsubota, Toshio

    2012-02-01

    The metabolic mechanisms to circannual changes in body mass of bears have yet to be elucidated. We hypothesized that the Japanese black bear (Ursus thibetanus japonicus) has a metabolic mechanism that efficiently converts carbohydrates into body fat by altering insulin sensitivity during the hyperphagic stage before hibernation. To test this hypothesis, we investigated the changes in blood biochemical values and glucose and insulin responses to intravenous glucose tolerance tests (IVGTT) during the active season (August, early and late November). Four, adult, female bears (5-17 years old) were anesthetized with 6 mg/kg TZ (tiletamine HCl and zolazepam HCl) in combination with 0.1 mg/kg acepromazine maleate. The bears were injected intravenously with glucose (0.5 g/kg of body mass), and blood samples were obtained before, at, and intermittently after glucose injection. The basal triglycerides concentration decreased significantly with increase in body mass from August to November. Basal levels of plasma glucose and serum insulin concentrations were not significantly different among groups. The results of IVGTT demonstrated the increased peripheral insulin sensitivity and glucose tolerance in early November. In contrast, peripheral insulin resistance was indicated by the exaggerated insulin response in late November. Our findings suggest that bears shift their glucose and lipid metabolism from the stage of normal activity to the hyperphagic stage in which they show lipogenic-predominant metabolism and accelerate glucose uptake by increasing the peripheral insulin sensitivity.

  6. Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Yihan Zhang

    2016-01-01

    Full Text Available Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R after high (25 mM or low (5.5 mM glucose culture. Cell viability, reactive oxygen species (ROS, and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2 and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.

  7. Anorexia and impaired glucose metabolism in mice with hypothalamic ablation of Glut4 neurons.

    Science.gov (United States)

    Ren, Hongxia; Lu, Taylor Y; McGraw, Timothy E; Accili, Domenico

    2015-02-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2016-06-01

    Full Text Available The liver is critical for maintaining systemic energy balance during starvation. To understand the role of hepatic fatty acid β-oxidation on this process, we generated mice with a liver-specific knockout of carnitine palmitoyltransferase 2 (Cpt2L−/−, an obligate step in mitochondrial long-chain fatty acid β-oxidation. Fasting induced hepatic steatosis and serum dyslipidemia with an absence of circulating ketones, while blood glucose remained normal. Systemic energy homeostasis was largely maintained in fasting Cpt2L−/− mice by adaptations in hepatic and systemic oxidative gene expression mediated in part by Pparα target genes including procatabolic hepatokines Fgf21, Gdf15, and Igfbp1. Feeding a ketogenic diet to Cpt2L−/− mice resulted in severe hepatomegaly, liver damage, and death with a complete absence of adipose triglyceride stores. These data show that hepatic fatty acid oxidation is not required for survival during acute food deprivation but essential for constraining adipocyte lipolysis and regulating systemic catabolism when glucose is limiting.

  9. Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons.

    Science.gov (United States)

    Cady, Gillian; Landeryou, Taylor; Garratt, Michael; Kopchick, John J; Qi, Nathan; Garcia-Galiano, David; Elias, Carol F; Myers, Martin G; Miller, Richard A; Sandoval, Darleen A; Sadagurski, Marianna

    2017-05-01

    The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (Lepr EYFPΔGHR ). The mice were generated by crossing the Lepr cre on the cre-inducible ROSA26-EYFP mice to GHR L/L mice. Parameters of body composition and glucose homeostasis were evaluated. Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in Lepr EYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in Lepr EYFPΔGHR mice. These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding.

  10. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC-1alpha

    National Research Council Canada - National Science Library

    Puigserver, Pere

    2007-01-01

    ... hepatic glucose production. This investigation has a define scope to specifically test how these proteins control the acetylation status of PGC-1alpha and what is the functional effect in blood glucose levels...

  11. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.

    Science.gov (United States)

    Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T

    2012-04-01

    The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis

    Science.gov (United States)

    Oh, Kyoung-Jin; Han, Hye-Sook; Kim, Min-Jung; Koo, Seung-Hoi

    2013-01-01

    Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme genes in the gluconeogenesis such as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 phosphatase catalytic subunit (G6Pase). Conversely, gluconeogenic transcription is repressed by pancreatic insulin under feeding conditions, which effectively inhibits transcriptional activator complexes by either promoting post-translational modifications or activating transcriptional inhibitors in the liver, resulting in the reduction of hepatic glucose output. The transcriptional regulatory machineries have been highlighted as targets for type 2 diabetes drugs to control glycemia, so understanding of the complex regulatory mechanisms for transcription circuits for hepatic gluconeogenesis is critical in the potential development of therapeutic tools for the treatment of this disease. In this review, the current understanding regarding the roles of two key transcriptional activators, CREB and FoxO1, in the regulation of hepatic gluconeogenic program is discussed. [BMB Reports 2013; 46(12): 567-574] PMID:24238363

  13. Effects of SH-reagents of different molecular size upon glucose metabolism in isolated rat fat cells

    International Nuclear Information System (INIS)

    Kather, H.; Simon, B.

    1975-01-01

    To study the role of membrane SH-groups in glucose transport of isolated rat fat cells we compared the effects of a small organic mercurial reagent p-CMB with those of a large p-CMB-derivative - p-CMB-Dextran, MW approximately 10,000 -. It could be shown that both compounds were of almost identical reactivity on fat cell homogenate metabolism. When applied to intact fat cells uncoupled p-CMB showed an 1) insulin-like enhancement of 14 C incorporation from (U- 14 C) glucose into CO 2 and triglyceride, 2) inhibition of the insulin-stimulatory effect on these parameters and 3) inhibition of basal glucose uptake dependent on the concentrations used. Identical concentrations of p-CMB-Dextran, however, failed to influence basal glucose uptake as well as the insulin mediated increase in glucose metabolism. (orig.) [de

  14. Effects of SH-reagents of different molecular size upon glucose metabolism in isolated rat fat cells

    Energy Technology Data Exchange (ETDEWEB)

    Kather, H; Simon, B [Heidelberg Univ. (F.R. Germany). Klinisches Inst. fuer Herzinfarktforschung

    1975-09-01

    To study the role of membrane SH-groups in glucose transport of isolated rat fat cells we compared the effects of a small organic mercurial reagent p-CMB with those of a large p-CMB-derivative - p-CMB-Dextran, MW approximately 10,000 -. It could be shown that both compounds were of almost identical reactivity on fat cell homogenate metabolism. When applied to intact fat cells uncoupled p-CMB showed an 1) insulin-like enhancement of /sup 14/C incorporation from (U-/sup 14/C) glucose into CO/sub 2/ and triglyceride, 2) inhibition of the insulin-stimulatory effect on these parameters and 3) inhibition of basal glucose uptake dependent on the concentrations used. Identical concentrations of p-CMB-Dextran, however, failed to influence basal glucose uptake as well as the insulin mediated increase in glucose metabolism.

  15. One-Hour Postload Hyperglycemia Confers Higher Risk of Hepatic Steatosis to HbA1c-Defined Prediabetic Subjects.

    Science.gov (United States)

    Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Pedace, Elisabetta; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2016-11-01

    Individuals with glycated hemoglobin (HbA1c)-defined prediabetes (HbA1c value of 5.7-6.4%) and 1-hour plasma glucose ≥155 mg/dL during an oral glucose tolerance test have an increased risk of developing type 2 diabetes. To evaluate the degree to which HbA1c-defined prediabetes and 1-hour postload glucose ≥155 mg/dL individually and jointly associate with hepatic steatosis and related biomarkers. A cross-sectional analysis was performed on 1108 White individuals. Ambulatory care. Anthropometric and metabolic characteristics including hepatic steatosis assessed by ultrasonography. Compared with the normal group (HbA1c prediabetic and diabetic individuals exhibit higher values of fasting, 1-hour, and 2-hour postload glucose; fasting and 2-hour postload insulin; triglycerides; uric acid; homeostasis model of assessment for insulin resistance; liver insulin resistance index; liver enzymes; and inflammatory biomarkers; and lower levels of high-density lipoprotein cholesterol and IGF-1. Prediabetic and diabetic subjects have increased risk of hepatic steatosis (1.5- and 2.46-fold, respectively). Stratifying participants according to HbA1c and 1-hour postload glucose, we found that individuals with HbA1c-defined prediabetes and 1-hour postload glucose ≥155 mg/dL have significantly higher risk of hepatic steatosis as compared with individuals with HbA1c-defined prediabetes but 1-hour postload glucose prediabetes and 1-hour postload glucose ≥155 mg/dL exhibit higher values of liver enzymes; fasting, 1-hour, and 2-hour postload glucose; insulin; triglycerides; uric acid; and inflammatory biomarkers; and lower levels of high-density lipoprotein and IGF-1. These data suggest that a value of 1-hour postload glucose ≥155 mg/dL may be helpful to identify a subset of individuals within HbA1c-defined glycemic categories at higher risk of hepatic steatosis.

  16. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada); Faure, Robert [Département de Pédiatrie, Université Laval and Centre de recherche du CHUQ (Centre Mère-Enfant), Québec, Qc, Canada G1V 4G2 (Canada); Marceau, Normand, E-mail: normand.marceau@crhdq.ulaval.ca [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada)

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  17. Cerebral glucose metabolism in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W R.W.; Beckman, J H; Calne, D B; Adam, M J; Harrop, R; Rogers, J G; Ruth, T J; Sayre, C I; Pate, B D [British Columbia Univ., Vancouver (Canada). TRIUMF Facility

    1984-02-01

    Local cerebral glucose utilization was measured in patients with predominantly unilateral Parkinson's disease using sup(18)F-2-fluoro-deoxyglucose and positron emission tomography. Preliminary results indicate the presence of asymmetric metabolic rates in the inferior basal ganglia. The structure comprising the largest portion of basal ganglia at this level is globus pallidus. These findings are consistent with metabolic studies on animals with unilateral nigrostriatal lesions in which pallidal hypermetabolism on the lesioned side has been demonstrated. Increased pallidal activity is likely secondary to a loss of inhibitory dopaminergic input to the striatum from substantia nigra.

  18. Cerebral glucose metabolism in Parkinson's disease

    International Nuclear Information System (INIS)

    Martin, W.R.W.; Beckman, J.H.; Calne, D.B.; Adam, M.J.; Harrop, R.; Rogers, J.G.; Ruth, T.J.; Sayre, C.I.; Pate, B.D.

    1984-01-01

    Local cerebral glucose utilization was measured in patients with predominantly unilateral Parkinson's disease using sup(18)F-2-fluoro-deoxyglucose and positron emission tomography. Preliminary results indicate the presence of asymmetric metabolic rates in the inferior basal ganglia. The structure comprising the largest portion of basal ganglia at this level is globus pallidus. These findings are consistent with metabolic studies on animals with unilateral nigrostriatal lesions in which pallidal hypermetabolism on the lesioned side has been demonstrated. Increased pallidal activity is likely secondary to a loss of inhibitory dopaminergic input to the striatum from substantia nigra

  19. Neutralization of glucagon by antiserum as a tool in glucagon physiology. Lack of depression of basal blood glucose after antiserum treatment in rats

    DEFF Research Database (Denmark)

    Holst, J J; Galbo, H; Richter, Erik

    1978-01-01

    to more than one-third of the total glucagon content in the rat pancreas. That rapid, extensive, and lasting neutralization of glucagon had taken place after antiserum treatment was indicated by the following findings: When examined more than 1 h after the injection and after 60 min of exercise......-stimulated glucagon production, all rats had excess free antibodies in plasma. The concentration of free glucagon was lowered to one-third of the concentration in control rats; at 37 degrees C plasma samples could bind 25% of additional 300 pmol/liter of glucagon in 10 s, and 69% in 120 s; the glycemic response...... was lowered beyond detection limit. The data indicate that the absolute concentration of glucagon in plasma is of minor importance for the maintenance of basal blood glucose in the rat....

  20. Insulin appearance of subcutaneously infused insulin: influence of the basal rate pulse interval of the infusion pump.

    Science.gov (United States)

    Birch, K; Hildebrandt, P; Jensen, B M; Kühl, C; Brange, J

    1985-05-01

    To compare the metabolic control and the pharmacokinetics of infused insulin using an insulin pump (Auto-Syringe AS 6C) which provides the basal rate in pulses every 2-10 min with a pump (Medix Syringe Driver 209) providing the basal rate in pulses every 15-60 min, 6 C-peptide negative diabetic patients received, in random order, identical, but individual, insulin treatment during one 4-day period using the Auto-Syringe pump and another 4-day period using the Medix pump. On the fourth day of each period, blood glucose and plasma-free insulin were estimated every 30 min for 7 hr and every 5 min for the next hour. Plasma-free insulin was significantly higher on 3 time points out of the 26 possible when using the Medix pump, but this was not reflected in the blood glucose concentrations which were similar in the 2 periods. The results indicate that, from a metabolic and pharmacokinetic point of view, insulin pumps working with larger intervals between the basal rate pulses are just as good as the more technically advanced and hence often more expensive pumps which provide the basal rate in more and smaller pulses.

  1. Notes from the field: deaths from acute hepatitis B virus infection associated with assisted blood glucose monitoring in an assisted-living facility--North Carolina, August-October 2010.

    Science.gov (United States)

    2011-02-18

    Sharing of blood glucose monitoring equipment in assisted-living facilities has resulted in at least 16 outbreaks of hepatitis B virus (HBV) infection in the United States since 2004. On October 12, 2010, the North Carolina Division of Public Health (NCDPH) and the Wayne County Health Department were notified by a local hospital of four residents of a single assisted-living facility with suspected acute HBV infection. NCDPH requested HBV testing of all persons who had resided in the facility during January 1-October 13, 2010, and defined an outbreak-associated case as either 1) positive hepatitis B surface antigen and core immunoglobulin M (IgM) results or 2) clinical evidence of acute hepatitis (jaundice or serum aminotransferase levels twice the upper limit of normal) with onset ≥6 weeks after admission to the facility. Records were reviewed for potential health-care-associated exposures and HBV-related risk factors. Infection control practices were assessed through observations and interviews with facility staff.

  2. Increased VLDL-triglyceride secretion precedes impaired control of endogenous glucose production in obese, normoglycemic men.

    Science.gov (United States)

    Sørensen, Lars P; Søndergaard, Esben; Nellemann, Birgitte; Christiansen, Jens S; Gormsen, Lars C; Nielsen, Søren

    2011-09-01

    To assess basal and insulin-mediated VLDL-triglyceride (TG) kinetics and the relationship between VLDL-TG secretion and hepatic insulin resistance assessed by endogenous glucose production (EGP) in obese and lean men. A total of 12 normoglycemic, obese (waist-to-hip ratio >0.9, BMI >30 kg/m(2)) and 12 lean (BMI 20-25 kg/m(2)) age-matched men were included. Ex vivo-labeled [1-(14)C]VLDL-TGs and [3-(3)H]glucose were infused postabsorptively and during a hyperinsulinemic-euglycemic clamp to determine VLDL-TG kinetics and EGP. Body composition was determined by dual X-ray absorptiometry and computed tomography scanning. Energy expenditure and substrate oxidation rates were measured by indirect calorimetry. Basal VLDL-TG secretion rates were increased in obese compared with lean men (1.25 ± 0.34 vs. 0.86 ± 0.34 μmol/kg fat-free mass [FFM]/min; P = 0.011), whereas there was no difference in clearance rates (150 ± 56 vs. 162 ± 77 mL/min; P = NS), resulting in greater VLDL-TG concentrations (0.74 ± 0.40 vs. 0.38 ± 0.20 mmol/L; P = 0.011). The absolute insulin-mediated suppression of VLDL-TG secretion was similar in the groups. However, the percentage reduction (-36 ± 18 vs. -54 ± 10%; P = 0.008) and achieved VLDL-TG secretion rates (0.76 ± 0.20 vs. 0.41 ± 0.19 μmol/kg FFM/min; P lean men (-17 ± 18 vs. 7 ± 20%; P = 0.007), resulting in less percentage reduction of VLDL-TG concentrations in obese men (-22 ± 20 vs. -56 ± 11%; P < 0.001). Insulin-suppressed EGP was similar (0.4 [0.0-0.8] vs. 0.1 [0.0-1.2] mg/kg FFM/min (median [range]); P = NS), and the percentage reduction was equivalent (-80% [57-98] vs. -98% [49-100], P = NS). Insulin-mediated glucose disposal was significantly reduced in obese men. Basal VLDL-TG secretion rates are increased in normoglycemic but insulin-resistant, obese men, resulting in hypertriglyceridemia. Insulin-mediated suppression of EGP is preserved in obese men, whereas suppression of VLDL-TG secretion is less pronounced in obese

  3. [HOMA-IR in patients with chronic hepatitis C].

    Science.gov (United States)

    Botshorishvili, T; Vashakidze, E

    2012-02-01

    The aim of investigation was to study the frequency of IR in type of viral hepatitis C, correlation with the degree of hepatic lesion and liver cirrhosis. 130 patients were investigated: 20 with acute hepatitis C; 38 with chronic hepatitis C; 72 with cirrhosis: among them 10 with Stage A, 14 with Stage B and 48 with Stage C. Also we used 30 healthy people as the controls. The study demonstrates significant changes of insulin, glucose, HOMA-IR type of viral hepatitis C, correlation with the degree of hepatic lesion and liver cirrhosis. In patients with liver cirrhosis levels of HOMA-IR is higher than in patients with chronic hepatitis C. In patients with acute hepatitis C levels of HOMA-IR was normal as in the control group. The results showed that various types of chronic viral hepatitis C and stages of cirrhosis set to increase HOMA-IR versus the controls., which were the most prominent in cases of severe hepatic lesion, which indicates that insulin resistance is a frequent companion of CHC.

  4. Hepatic and visceral adipose tissue 11βHSD1 expressions are markers of body weight loss after bariatric surgery.

    Science.gov (United States)

    Pardina, Eva; Baena-Fustegueras, Juan Antonio; Fort, José Manuel; Ferrer, Roser; Rossell, Joana; Esteve, Montserrat; Peinado-Onsurbe, Julia; Grasa, Mar

    2015-09-01

    Cortisolemia and 11βHSD1 in liver and adipose tissue are altered in obesity. However, their participation in the development of obesity remains unclear. This study analyzed these parameters in the transition from morbid to type 1 obesity after bariatric surgery. A group of 34 patients with morbid obesity and 22 nonobese subjects were recruited. Initial hypothalamus-pituitary-adrenal (HPA) basal activity and 11βHSD1 mRNA expression in liver, subcutaneous (SAT), and visceral adipose tissue (VAT) were evaluated. A year after bariatric surgery (weight loss of 48 kg), these parameters were reappraised in plasma, SAT, and liver. Body weight loss was accompanied by a downshift in basal HPA activity and 11βHSD1 expression in SAT. In patients with morbid obesity, 11βHSD1 expression correlated positively with BMI in VAT and negatively in liver at 6 and 12 months after surgery. In SAT, a correlation was observed with body weight only when patients showed type 1 obesity. Insulin, glucose, and HOMA correlated positively with all the HPA indicators and 11βHSD1 expression in SAT. Body weight loss after bariatric surgery is accompanied by a downshift in basal HPA activity. Hepatic and VAT 11βHSD1 expressions in morbid obesity are predictors of body weight loss. © 2015 The Obesity Society.

  5. Discovery and structure-activity relationships study of thieno[2,3-b]pyridine analogues as hepatic gluconeogenesis inhibitors.

    Science.gov (United States)

    Ma, Fei; Liu, Jian; Zhou, Tingting; Lei, Min; Chen, Jing; Wang, Xiachang; Zhang, Yinan; Shen, Xu; Hu, Lihong

    2018-05-25

    Type 2 diabetes mellitus (T2DM) is a chronic, complex and multifactorial metabolic disorder, and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. This study discovered a new class of thieno[2,3-b]pyridine derivatives as hepatic gluconeogenesis inhibitors. First, a hit compound (DMT: IC 50  = 33.8 μM) characterized by a thienopyridine core was identified in a cell-based screening of our privileged small molecule library. Structure activity relationships (SARs) study showed that replaced the CF 3 in the thienopyridine core could improve the potency and led to the discovery of 8e (IC 50  = 16.8 μM) and 9d (IC 50  = 12.3 μM) with potent inhibition of hepatic glucose production and good drug-like properties. Furthermore, the mechanism of 8e for the inhibition of hepatic glucose production was also identified, which could be effective through the reductive expression of the mRNA transcription level of gluconeogenic genes, including glucose-6-phosphatase (G6Pase) and hepatic phosphoenolpyruvate carboxykinase (PEPCK). Additionally, 8e could also reduce the fasting blood glucose and improve the oral glucose tolerance and pyruvate tolerance in db/db mice. The optimization of this class of derivatives had provided us a start point to develop new anti-hepatic gluconeogenesis agents. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-03-01

    Full Text Available Objective: Recently, we have shown that Bezafibrate (BEZ, the pan-PPAR (peroxisome proliferator-activated receptor activator, ameliorated diabetes in insulin deficient streptozotocin treated diabetic mice. In order to study whether BEZ can also improve glucose metabolism in a mouse model for fatty liver and type 2 diabetes, the drug was applied to TallyHo mice. Methods: TallyHo mice were divided into an early (ED and late (LD diabetes progression group and both groups were treated with 0.5% BEZ (BEZ group or standard diet (SD group for 8 weeks. We analyzed plasma parameters, pancreatic beta-cell morphology, and mass as well as glucose metabolism of the BEZ-treated and control mice. Furthermore, liver fat content and composition as well as hepatic gluconeogenesis and mitochondrial mass were determined. Results: Plasma lipid and glucose levels were markedly reduced upon BEZ treatment, which was accompanied by elevated insulin sensitivity index as well as glucose tolerance, respectively. BEZ increased islet area in the pancreas. Furthermore, BEZ treatment improved energy expenditure and metabolic flexibility. In the liver, BEZ ameliorated steatosis, modified lipid composition and increased mitochondrial mass, which was accompanied by reduced hepatic gluconeogenesis. Conclusions: Our data showed that BEZ ameliorates diabetes probably via reduced steatosis, enhanced hepatic mitochondrial mass, improved metabolic flexibility and elevated hepatic insulin sensitivity in TallyHo mice, suggesting that BEZ treatment could be beneficial for patients with NAFLD and impaired glucose metabolism. Keywords: Bezafibrate, Glucose metabolism, Insulin resistance, Lipid metabolism, NAFLD

  7. ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis.

    Science.gov (United States)

    Tsai, Wen-Wei; Matsumura, Shigenobu; Liu, Weiyi; Phillips, Naomi G; Sonntag, Tim; Hao, Ergeng; Lee, Soon; Hai, Tsonwin; Montminy, Marc

    2015-03-03

    Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways.

  8. An availability of brain magnetic resonance imaging (MRI) in the early diagnosis of latent hepatic encephalopathy

    International Nuclear Information System (INIS)

    Kuwahara, Noaki; Tanabe, Masako; Fujiwara, Akiko; Minato, Takeshi; Sasaki, Hiromasa; Higashi, Toshihiro; Tsuji, Takao.

    1996-01-01

    Brain MRI was carried out in patients with chronic liver diseases. No abnormal findings were recognized in patients with chronic viral hepatitis, while 59.2% of cirrhotics showed a symmetrically strong signal in basal ganglia on T1 weighted image in MRI. This finding significantly related with lowered Fischer's ratio of serum amino acid, increased levels of serum phenylalanine, tyrosine and hyaluronic acid, prolonged prothrombin time and decreased platelet counts in the peripheral blood. Overt hepatic encephalopathy was observed in 6 of 34 patients with the strong signal in MRI during follow-up period, while none of patients without that finding developed hepatic encephalopathy. These results have indicated that the strong signal in basal ganglia on MRI appears in cirrhotic patients with severe liver dysfunction, and it is an useful index in the early diagnosis of latent hepatic encephalopathy. An improvement of this MRI finding was not observed by long-term oral administration of branched-chain amino acid. (author)

  9. An availability of brain magnetic resonance imaging (MRI) in the early diagnosis of latent hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Noaki; Tanabe, Masako; Fujiwara, Akiko; Minato, Takeshi; Sasaki, Hiromasa [Hiroshima Posts and Telecommunications Hospital (Japan); Higashi, Toshihiro; Tsuji, Takao

    1996-03-01

    Brain MRI was carried out in patients with chronic liver diseases. No abnormal findings were recognized in patients with chronic viral hepatitis, while 59.2% of cirrhotics showed a symmetrically strong signal in basal ganglia on T1 weighted image in MRI. This finding significantly related with lowered Fischer`s ratio of serum amino acid, increased levels of serum phenylalanine, tyrosine and hyaluronic acid, prolonged prothrombin time and decreased platelet counts in the peripheral blood. Overt hepatic encephalopathy was observed in 6 of 34 patients with the strong signal in MRI during follow-up period, while none of patients without that finding developed hepatic encephalopathy. These results have indicated that the strong signal in basal ganglia on MRI appears in cirrhotic patients with severe liver dysfunction, and it is an useful index in the early diagnosis of latent hepatic encephalopathy. An improvement of this MRI finding was not observed by long-term oral administration of branched-chain amino acid. (author).

  10. Regulation of energy substrate utilization and hepatic insulin sensitivity by phosphatidylcholine transfer protein/StarD2.

    Science.gov (United States)

    Scapa, Erez F; Pocai, Alessandro; Wu, Michele K; Gutierrez-Juarez, Roger; Glenz, Lauren; Kanno, Keishi; Li, Hua; Biddinger, Sudha; Jelicks, Linda A; Rossetti, Luciano; Cohen, David E

    2008-07-01

    Phosphatidylcholine transfer protein (PC-TP, also known as StarD2) is a highly specific intracellular lipid binding protein with accentuated expression in oxidative tissues. Here we show that decreased plasma concentrations of glucose and free fatty acids in fasting PC-TP-deficient (Pctp(-/-)) mice are attributable to increased hepatic insulin sensitivity. In hyperinsulinemic-euglycemic clamp studies, Pctp(-/-) mice exhibited profound reductions in hepatic glucose production, gluconeogenesis, glycogenolysis, and glucose cycling. These changes were explained in part by the lack of PC-TP expression in liver per se and in part by marked alterations in body fat composition. Reduced respiratory quotients in Pctp(-/-) mice were indicative of preferential fatty acid utilization for energy production in oxidative tissues. In the setting of decreased hepatic fatty acid synthesis, increased clearance rates of dietary triglycerides and increased hepatic triglyceride production rates reflected higher turnover in Pctp(-/-) mice. Collectively, these data support a key biological role for PC-TP in the regulation of energy substrate utilization.

  11. The regulation of glucose transport in the heart of control and diabetic rats: With special emphasis on the glucose transporter

    International Nuclear Information System (INIS)

    Pleta, M. de Leoz.

    1989-01-01

    Glucose transport regulation with insulin and high perfusion pressure in the perfused rat hearts from control and diabetic rat hearts was investigated. [ 3 H]-cytochalasin B binding assay was used to study the distribution of glucose transporters within the subcellular membranes fractionated by linear sucrose density gradient centrifugation. In the present study, insulin increased glucose uptake in the perfused heart of control and diabetic animals. This coincided with an increase of glucose transporters on the plasma membrane. The increase in glucose transporters on the plasma membrane could not be accounted for by a decrease of glucose transporters from the microsomal membranes. High perfusion pressure did not change the number of glucose transporters on the plasma membrane compared to basal in the control and diabetic animals, though it increased glucose uptake above that observed for insulin in the control. Instead, high perfusion pressure altered the distribution of glucose transporters within the subcellular membranes in reverse to that with insulin, increasing an intermediate membrane pool believed to reside between the plasma membrane and microsomal membranes as well as the intracellular membrane pool

  12. Transmission of hepatitis B virus among persons undergoing blood glucose monitoring in long-term-care facilities--Mississippi, North Carolina, and Los Angeles County, California, 2003-2004.

    Science.gov (United States)

    2005-03-11

    Regular monitoring of blood glucose levels is an important component of routine diabetes care. Capillary blood is typically sampled with the use of a fingerstick device and tested with a portable glucometer. Because of outbreaks of hepatitis B virus (HBV) infections associated with glucose monitoring, CDC and the Food and Drug Administration (FDA) have recommended since 1990 that fingerstick devices be restricted to individual use. This report describes three recent outbreaks of HBV infection among residents in long-term-care (LTC) facilities that were attributed to shared devices and other breaks in infection-control practices related to blood glucose monitoring. Findings from these investigations and previous reports suggest that recommendations concerning standard precautions and the reuse of fingerstick devices have not been adhered to or enforced consistently in LTC settings. The findings underscore the need for education, training, adherence to standard precautions, and specific infection-control recommendations targeting diabetes-care procedures in LTC settings.

  13. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia: a role for HIF in glucose metabolism

    Science.gov (United States)

    McClain, Donald A.; Abuelgasim, Khadega A.; Nouraie, Mehdi; Salomon-Andonie, Juan; Niu, Xiaomei; Miasnikova, Galina; Polyakova, Lydia A.; Sergueeva, Adelina; Okhotin, Daniel J.; Cherqaoui, Rabia; Okhotin, David; Cox, James E.; Swierczek, Sabina; Song, Jihyun; Simon, M.Celeste; Huang, Jingyu; Simcox, Judith A.; Yoon, Donghoon; Prchal, Josef T.; Gordeuk, Victor R.

    2012-01-01

    In Chuvash polycythemia, a homozygous 598C>T mutation in the von Hippel-Lindau gene (VHL) leads to an R200W substitution in VHL protein, impaired degradation of α-subunits of hypoxia inducible factor (HIF)-1 and HIF-2, and augmented hypoxic responses during normoxia. Chronic hypoxia of high altitude is associated with decreased serum glucose and insulin concentrations. Other investigators reported that HIF-1 promotes cellular glucose uptake by increased expression of GLUT1 and increased glycolysis by increased expression of enzymes such as PDK. On the other hand, inactivation of Vhl in murine liver leads to hypoglycemia associated with a HIF-2-related decrease in the expression of the gluconeogenic enzymes genes Pepck, G6pc, and Glut2. We therefore hypothesized that glucose concentrations are decreased in individuals with Chuvash polycythemia. We found that 88 Chuvash VHLR200W homozygotes had lower random glucose and glycosylated hemoglobin A1c levels than 52 Chuvash subjects with wildtype VHL alleles. Serum metabolomics revealed higher glycerol and citrate levels in the VHLR200W homozygotes. We expanded these observations in VHLR200W homozygote mice and found that they had lower fasting glucose values and lower glucose excursions than wild-type control mice but no change in fasting insulin concentrations. Hepatic expression of Glut2 and G6pc but not Pdk2 was decreased and skeletal muscle expression of Glut1, Pdk1 and Pdk4 was increased. These results suggest that both decreased hepatic gluconeogenesis and increased skeletal uptake and glycolysis contribute to the decreased glucose concentrations. Further study is needed to determine whether pharmacologically manipulating HIF expression might be beneficial for treatment of diabetic patients. PMID:23015148

  14. Stimulation of splanchnic glucose production during exercise in humans contains a glucagon-independent component

    DEFF Research Database (Denmark)

    Coker, R H; Simonsen, L; Bülow, J

    2001-01-01

    To determine the importance of basal glucagon to the stimulation of net splanchnic glucose output (NSGO) during exercise, seven healthy males performed cycle exercise during a pancreatic islet cell clamp. In one group (BG), glucagon was replaced at basal levels and insulin was adjusted to achieve...

  15. Predictive models of glucose control: roles for glucose-sensing neurones

    Science.gov (United States)

    Kosse, C.; Gonzalez, A.; Burdakov, D.

    2018-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the ‘fast’ senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they

  16. Predictive models of glucose control: roles for glucose-sensing neurones.

    Science.gov (United States)

    Kosse, C; Gonzalez, A; Burdakov, D

    2015-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the 'fast' senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they stimulate

  17. Glucose enhancement of memory is modulated by trait anxiety in healthy adolescent males

    OpenAIRE

    Smith, Michael; Hii, Hilary; Foster, Jonathan; van Eekelen, Anke

    2011-01-01

    Glucose administration is associated with memory enhancement in healthy young individuals under conditions of divided attention at encoding. While the specific neurocognitive mechanisms underlying this ‘glucose memory facilitation effect’ are currently uncertain, it is thought that individual differences in glucoregulatory efficiency may alter an individual’s sensitivity to the glucose memory facilitation effect. In the present study, we sought to investigate whether basal hypothalamic–pituit...

  18. Glucagon-like-peptide-1 secretion from canine L-cells is increased by glucose-dependent-insulinotropic peptide but unaffected by glucose

    DEFF Research Database (Denmark)

    Damholt, A B; Buchan, A M; Kofod, Hans

    1998-01-01

    dependently stimulated the release of GLP-1 and resulted in a 2-fold increase at 100 nM GIP. This effect was fully inhibited by 10 nM somatostatin. However, neither basal or GIP stimulated GLP-1 secretion were affected by ambient glucose concentrations from 5-25 mM. The receptor-independent secretagogues beta...... but not by staurosporine. These results indicate that glucose does not directly stimulate canine L-cells. It is more probable that glucose releases GIP from the upper intestine that in turn stimulates GLP-1 secretion. The ability of GIP to stimulate GLP-1 secretion is probably mediated through activation of protein kinase...

  19. Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats.

    Science.gov (United States)

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M; Lam, Tony K T; Gutiérrez-Juárez, Roger

    2013-04-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our results showed that increasing the availability of proline in rats either centrally (MBH) or systemically acutely lowered blood glucose. Pancreatic clamp studies revealed that this hypoglycemic effect was due to a decrease of hepatic glucose production secondary to an inhibition of glycogenolysis, gluconeogenesis, and glucose-6-phosphatase flux. The effect of proline was mimicked by glutamate, an intermediary of proline metabolism. Interestingly, proline's action was markedly blunted by pharmacological inhibition of hypothalamic lactate dehydrogenase (LDH) suggesting that metabolic flux through LDH was required. Furthermore, short hairpin RNA-mediated knockdown of hypothalamic LDH-A, an astrocytic component of the ANLS, also blunted the glucoregulatory action of proline. Thus our studies suggest not only a new role for proline in the regulation of hepatic glucose production but also indicate that hypothalamic astrocytes are involved in the regulatory mechanism as well.

  20. Atypical Mechanism of Glucose Modulation by Colesevelam in Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Oliseyenum M. Nwose

    2013-01-01

    Full Text Available Colesevelam's glucose-lowering mechanism of action is not completely understood. Clinical trials of colesevelam suggest that its mechanism, and often adverse effects, differ from those of other oral antidiabetes drugs. Colesevelam does not affect insulin sensitivity (unlike thiazolidinediones, insulin secretion (unlike sulfonylureas and meglitinides, or early insulin response or glucagon (unlike dipeptidyl peptidase-4 inhibitors. Colesevelam may have some effect on glucose absorption, but likely via a different mechanism than α-glucosidase inhibitors. Colesevelam and metformin have similarities regarding hepatic glucose production, but divergent effects on gluconeogenesis versus glycogenolysis, suggesting differing mechanisms of drug action for improving glycemic control. Colesevelam is thought to be a portal glucagon-like peptide-1 (GLP-1 secretagogue with primarily hepatic effects. Bile acid binding by colesevelam leads to TGR5 activation, increased secretion of GLP-1 or other incretins, and inhibition of hepatic glycogenolysis. Colesevelam's mechanism of action appears to be atypical of other antidiabetes medications, making it a potentially suitable component of many combination regimens in the treatment of type 2 diabetes.

  1. Long-term feeding of red algae (Gelidium amansii ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model

    Directory of Open Access Journals (Sweden)

    Hshuan-Chen Liu

    2017-07-01

    Full Text Available This study was designed to investigate the effect of Gelidium amansii (GA on carbohydrate and lipid metabolism in rats with high fructose (HF diet (57.1% w/w. Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1 control diet group (Con; (2 HF diet group (HF; and (3 HF with GA diet group (HF + 5% GA. The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model.

  2. USP7 Attenuates Hepatic Gluconeogenesis Through Modulation of FoxO1 Gene Promoter Occupancy

    Science.gov (United States)

    Hall, Jessica A.; Tabata, Mitsuhisa; Rodgers, Joseph T.

    2014-01-01

    Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in the regulation of FoxO1 transcriptional activity are the modifying/demodifying enzymes that lead to posttranslational modification. Here, we demonstrate the functional interaction and regulation of FoxO1 by herpesvirus-associated ubiquitin-specific protease 7 (USP7; also known as herpesvirus-associated ubiquitin-specific protease, HAUSP), a deubiquitinating enzyme. We show that USP7-mediated mono-deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the intimate regulation of deubiquitination and glucose metabolic control with important implication in diseases such as diabetes. PMID:24694308

  3. Empagliflozin: a new sodium-glucose co-transporter 2 (SGLT2 inhibitor for the treatment of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Joshua J Neumiller

    2014-06-01

    Full Text Available Type 2 diabetes is increasing in prevalence worldwide, and hyperglycemia is often poorly controlled despite a number of therapeutic options. Unlike previously available agents, sodium-glucose co-transporter 2 (SGLT2 inhibitors offer an insulin-independent mechanism for improving blood glucose levels, since they promote urinary glucose excretion (UGE by inhibiting glucose reabsorption in the kidney. In addition to glucose control, SGLT2 inhibitors are associated with weight loss and blood pressure reductions, and do not increase the risk of hypoglycemia. Empagliflozin is a selective inhibitor of SGLT2, providing dose-dependent UGE increases in healthy volunteers, with up to 90 g of glucose excreted per day. It can be administered orally, and studies of people with renal or hepatic impairment indicated empagliflozin needed no dose adjustment based on pharmacokinetics. In Phase II trials in patients with type 2 diabetes, empagliflozin provided improvements in glycosylated hemoglobin (HbA1c and other measures of glycemic control when given as monotherapy or add-on to metformin, as well as reductions in weight and systolic blood pressure. As add-on to basal insulin, empagliflozin not only improved HbA1c levels but also reduced insulin doses. Across studies, empagliflozin was generally well tolerated with a similar rate of hypoglycemia to placebo; however, patients had a slightly increased frequency of genital infections, but not urinary tract infections, versus placebo. Phase III studies have also reported a good safety profile along with significant improvements in HbA1c, weight and blood pressure, with no increased risk of hypoglycemia versus placebo. Based on available data, it appears that empagliflozin may be a useful option in a range of patients; however, clinical decisions will be better informed by the results of ongoing studies, in particular, a large cardiovascular outcome study (EMPA-REG OUTCOME™.

  4. Field trial on glucose-induced insulin and metabolite responses in Estonian Holstein and Estonian Red dairy cows in two herds

    Directory of Open Access Journals (Sweden)

    Kaart Tanel

    2010-01-01

    Full Text Available Abstract Background Insulin secretion and tissue sensitivity to insulin is considered to be one of the factors controlling lipid metabolism post partum. The objective of this study was to compare glucose-induced blood insulin and metabolite responses in Estonian Holstein (EH, n = 14 and Estonian Red (ER, n = 14 cows. Methods The study was carried out using the glucose tolerance test (GTT performed at 31 ± 1.9 days post partum during negative energy balance. Blood samples were obtained at -15, -5, 5, 10, 20, 30, 40, 50 and 60 min relative to infusion of 0.15 g/kg BW glucose and analysed for glucose, insulin, triglycerides (TG, non-esterified fatty acids (NEFA, cholesterol and β-hydroxybutyrate (BHB. Applying the MIXED Procedure with the SAS System the basal concentration of cholesterol, and basal concentration and concentrations at post-infusion time points for other metabolites, area under the curve (AUC for glucose and insulin, clearance rate (CR for glucose, and maximum increase from basal concentration for glucose and insulin were compared between breeds. Results There was a breed effect on blood NEFA (P P P P P P th min nadir (P th min postinfusion (P Conclusion Our results imply that glucose-induced changes in insulin concentration and metabolite responses to insulin differ between EH and ER dairy cows.

  5. AJS1669, a novel small-molecule muscle glycogen synthase activator, improves glucose metabolism and reduces body fat mass in mice

    Science.gov (United States)

    Nakano, Kazuhiro; Takeshita, Sen; Kawasaki, Noriko; Miyanaga, Wataru; Okamatsu, Yoriko; Dohi, Mizuki; Nakagawa, Tadakiyo

    2017-01-01

    Impaired glycogen synthesis and turnover are common in insulin resistance and type 2 diabetes. As glycogen synthase (GS) is a key enzyme involved in the synthetic process, it presents a promising therapeutic target for the treatment of type 2 diabetes. In the present study, we identified a novel, potent and orally available GS activator AJS1669 {sodium 2-[[5-[[4-(4,5-difluoro-2-methylsulfanyl-phenyl) phenoxy] methyl]furan-2-carbonyl]-(2-furylmethyl)amino] acetate}. In vitro, we performed a glycogen synthase 1 (GYS1) activation assay for screening GS activators and identified that the activity of AJS1669 was further potentiated in the presence of glucose-6-phosphate (G6P). In vivo, we used ob/ob mice to evaluate the novel anti-diabetic effects of AJS1669 by measuring basal blood glucose levels, glucose tolerance and body fat mass index. Repeated administration of AJS1669 over 4 weeks reduced blood glucose and hemoglobin A1c (HbA1c) levels in ob/ob mice. AJS1669 also improved glucose tolerance in a dose-dependent manner, and decreased body fat mass. The mRNA levels of genes involved in mitochondrial fatty acid oxidation and mitochondrial biogenesis were elevated in skeletal muscle tissue following AJS1669 treatment. Hepatic tissue of treated mice also exhibited elevated expression of genes associated with fatty acid oxidation. In contrast to ob/ob mice, in C57Bl/6 mice AJS1669 administration did not alter body weight or reduce glucose levels. These results demonstrate that pharmacological agents that activate GYS1, the main GS subtype found in skeletal muscle, have potential for use as novel treatments for diabetes that improve glucose metabolism in skeletal muscle. PMID:28290602

  6. Early Glucose Derangement Detected by Continuous Glucose Monitoring and Progression of Liver Fibrosis in Nonalcoholic Fatty Liver Disease: An Independent Predictive Factor?

    Science.gov (United States)

    Schiaffini, Riccardo; Liccardo, Daniela; Alisi, Anna; Benevento, Danila; Cappa, Marco; Cianfarani, Stefano; Nobili, Valerio

    2016-01-01

    Glucose derangement has been reported to increase oxidative stress, one of the most important factors underlying the progression of hepatic fibrosis in adults with nonalcoholic fatty liver disease (NAFLD). To date, careful evaluation of the glucose profile in pediatric NAFLD has not been performed. A total of 30 severely obese children (15 males; mean age 12.87 ± 2.19 years) with biopsy-proven NAFLD were enrolled in this study from September to December 2013. All patients underwent anthropometric and laboratory evaluation, including the oral glucose tolerance test (OGTT) and continuous glucose monitoring (CGM). Our study reveals some differences between OGTT and CGM in detecting NAFLD children with impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). OGTT showed 2 (6.67%) patients with IFG and 1 (3.34%) with IGT, while CGM showed 5 (16.67%) patients with IFG and 6 (20%) with IGT. The daily blood glucose profile positively correlated with the baseline blood glucose (r = 0.39, p = 0.04) and the homeostatic model assessment (r = 0.56, p = 0.05). A positive correlation between hyperglycemia and liver fibrosis was found (r = 0.65, p < 0.05). Mean glucose values (F3-F4 group: 163.2 ± 35.92 mg/dl vs. F1 group: 136.58 ± 46.83 mg/dl and F2 group: 154.12 ± 22.51 mg/dl) and the difference between the minimum and maximum blood glucose levels (F3-F4 group: 110.21 ± 25.26 mg/dl vs. F1 group: 91.67 ± 15.97 mg/dl and F2 group: 92 ± 15.48 mg/dl) were significantly (p < 0.05) higher in the F3-F4 group compared to the F1 and F2 groups. Glucose profile derangement as detected by CGM is associated with the severity of hepatic fibrosis in children with NAFLD. © 2015 S. Karger AG, Basel.

  7. Eradicating hepatitis C virus ameliorates insulin resistance without change in adipose depots.

    Science.gov (United States)

    Milner, K-L; Jenkins, A B; Trenell, M; Tid-Ang, J; Samocha-Bonet, D; Weltman, M; Xu, A; George, J; Chisholm, D J

    2014-05-01

    Chronic hepatitis C (CHC) is associated with lipid-related changes and insulin resistance; the latter predicts response to antiviral therapy, liver disease progression and the risk of diabetes. We sought to determine whether insulin sensitivity improves following CHC viral eradication after antiviral therapy and whether this is accompanied by changes in fat depots or adipokine levels. We compared 8 normoglycaemic men with CHC (genotype 1 or 3) before and at least 6 months post viral eradication and 15 hepatitis C antibody negative controls using an intravenous glucose tolerance test and two-step hyperinsulinaemic-euglycaemic clamp with [6,6-(2) H2 ] glucose to assess peripheral and hepatic insulin sensitivity. Magnetic resonance imaging and spectroscopy quantified abdominal fat compartments, liver and intramyocellular lipid. Peripheral insulin sensitivity improved (glucose infusion rate during high-dose insulin increased from 10.1 ± 1.6 to 12 ± 2.1 mg/kg/min/, P = 0.025), with no change in hepatic insulin response following successful viral eradication, without any accompanying change in muscle, liver or abdominal fat depots. There was corresponding improvement in incremental glycaemic response to intravenous glucose (pretreatment: 62.1 ± 8.3 vs post-treatment: 56.1 ± 8.5 mm, P = 0.008). Insulin sensitivity after viral clearance was comparable to matched controls without CHC. Post therapy, liver enzyme levels decreased but, interestingly, levels of glucagon, fatty acid-binding protein and lipocalin-2 remained elevated. Eradication of the hepatitis C virus improves insulin sensitivity without alteration in fat depots, adipokine or glucagon levels, consistent with a direct link of the virus with insulin resistance. © 2013 John Wiley & Sons Ltd.

  8. Hepatic glycogen in humans. II. Gluconeogenetic formation after oral and intravenous glucose

    International Nuclear Information System (INIS)

    Radziuk, J.

    1989-01-01

    The amount of glycogen that is formed by gluconeogenetic pathways during glucose loading was quantitated in human subjects. Oral glucose loading was compared with its intravenous administration. Overnight-fasted subjects received a constant infusion or [3- 3 H]glucose and a marker for gluconeogenesis, [U- 14 C]lactate or sodium [ 14 C]bicarbonate [ 14 C]bicarbonate. An unlabeled glucose load was then administered. Postabsorptively, or after glucose infusion was terminated, a third tracer ([6- 3 H]glucose) infusion was initiated along with a three-step glucagon infusion. Without correcting for background stimulation of [ 14 C]glucose production or for dilution of 14 C with citric acid cycle carbon in the oxaloacetate pool, the amount of glycogen mobilized by the glucagon infusion that was produced by gluconeogenesis during oral glucose loading was 2.9 +/- 0.7 g calculated from [U- 14 C]-lactate incorporation and 7.4 +/- 1.3 g calculated using [ 14 C]bicarbonate as a gluconeogenetic marker. During intravenous glucose administration the latter measurement also yielded 7.2 +/- 1.1 g. When the two corrections above are applied, the respective quantities became 5.3 +/- 1.7 g for [U- 14 C]lactate as tracer and 14.7 +/- 4.3 and 13.9 +/- 3.6 g for oral and intravenous glucose with [ 14 C]bicarbonate as tracer (P less than 0.05, vs. [ 14 C]-lactate as tracer). When [2- 14 C]acetate was infused, the same amount of label was incorporated into mobilized glycogen regardless of which route of glucose administration was used. Comparison with previous data also suggests that 14 CO 2 is a potentially useful marker for the gluconeogenetic process in vivo

  9. Bile Acid Sequestration Reduces Plasma Glucose Levels in db/db Mice by Increasing Its Metabolic Clearance Rate

    NARCIS (Netherlands)

    Meissner, M.; Herrema, H.J.; Dijk, van Th.; Gerding, A.; Havinga, R.; Boer, T.; Müller, M.R.; Reijngoud, D.J.; Groen, A.K.; Kuipers, F.

    2011-01-01

    Aims/Hypothesis: Bile acid sequestrants (BAS) reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels.

  10. Vismodegib (ERIVEDGE°) In basal cell carcinoma: too many unknowns.

    Science.gov (United States)

    2015-01-01

    Basal cell carcinomas are the most common skin cancers. They are usually localised and carry a good prognosis. There is no standard treatment for the rare patients with metastatic basal cell carcinoma or very extensive basal cell carcinoma for whom surgery or radiotherapy is inappropriate. Vismodegib, a cytotoxic drug, is claimed to prevent tumour growth by inhibiting a pathway involved in tissue repair and embryogenesis. It has been authorised in the European Union for patients with metastatic or locally advanced and extensive basal cell carcinoma. Clinical evaluation of vismodegib is based on a non-comparative clinical trial involving 104 patients, providing only weak evidence. Twenty-one months after the start of the trial, 7 patients with metastases (21%) and 6 patients with advanced basal cell carcinoma (10%) had died. Given the lack of a placebo group, there is no way of knowing whether vismodegib had any effect, positive or negative, on survival. There were no complete responses among patients with metastases, but about one-third of them had partial responses. Among the 63 patients with locally advanced basal cell carcinoma, there were 14 complete responses and 16 partial responses. The recurrence rate in patients with complete responses was not reported. Similar results were reported in two other uncontrolled trials available in mid-2014. Vismodegib has frequent and sometimes serious adverse effects, including muscle spasms, fatigue and severe hyponatraemia. Cases of severe weight loss, alopecia, ocular disorders, other cancers (including squamous cell carcinoma) and anaemia have also been reported. More data are needed on possible hepatic and cardiovascular adverse effects. A potent teratogenic effect was seen in experimental animals. As vismodegib enters semen, contraception is mandatory for both men (condoms) and women. In practice, vismodegib has frequent and varied adverse effects, some of which are serious, while its benefits are poorly documented

  11. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2

    DEFF Research Database (Denmark)

    Hogan, Meghan F; Ravnskjaer, Kim; Matsumura, Shigenobu

    2015-01-01

    and dephosphorylation of the cAMP regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where...... increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite...... accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis....

  12. Combined influence of basal media and fibroblast growth factor on the expansion and differentiation capabilities of adipose-derived stem cells.

    Science.gov (United States)

    Ahearne, Mark; Lysaght, Joanne; Lynch, Amy P

    2014-01-01

    Interest in adipose-derived stem cells (ASCs) has increased in recent years due to their multi-linage differentiation capabilities. While much work has been done to optimize the differentiation media, few studies have focused on examining the influence of different expansion media on cell behavior. In this study, three basal media (low glucose Dulbecco's modified Eagle's medium (DMEM), high glucose DMEM and DMEM-F12) supplemented with or without fibroblast growth factor 2 (FGF) were examined to assess their suitability for expanding ASCs. Flow cytometry, colony-forming unit assays (CFU-Fs) and differentiation assays were utilized to study cell behavior. High glucose media CFU-Fs produced fewest colonies while the addition of FGF increased colony size. By passage 2, the majority of cells were positive for CD44, 45, 73, 90 and 105 and negative for CD14, 31 and 45, indicating a mesenchymal phenotype. A sub-population of CD34 positive cells was present among passage 2 cells; however, by passage 4 the cells were negative for CD34. FGF has a negative effective on passage 4 ASC adipogenesis and high glucose media plus FGF-enhanced osteogenic capacity of passage 4 ASCs. FGF supplemented basal media were most suitable for chondrogenesis. High glucose media plus FGF appeared to be the most beneficial for priming ASCs to induce a keratocyte phenotype. These findings demonstrate the reciprocal effect FGF and basal media have on ASCs. This research has implications for those interested regenerating bone, cartilage, cornea or adipose tissues.

  13. Comparison of 3H-galactose and 3H-glucose as precursors of hepatic glycogen in control-fed rats

    International Nuclear Information System (INIS)

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr.

    1989-01-01

    Labeling of hepatic glycogen derived from 3H-galactose and 3H-glucose was compared shortly after intravenous injection in control-fed rats. The rats were allowed to accumulate 5-8% glycogen prior to receiving label. Fifteen minutes to 2 hours after labeling, liver was excised and processed for routine light (LM) and electron microscopic (EM) radioautography (RAG) or biochemical analysis. After injection of 3H-galactose, LM-RAGs revealed that the percentage of heavily labeled hepatocytes increased from 37% after 15 minutes to 68% after 1 hour but showed no further increase after 2 hours. alpha-Amylase treatment removed most glycogen and incorporated label; thus few silver grains were observed, indicating little incorporation of label except into glycogen. EM-RAGs demonstrated that most label occurred where glycogen was located. Biochemical analysis showed initially a high blood level of label that rapidly plateaued at a reduced level by 5 minutes. Concomitantly, glycogen labeling determined by liquid scintillation counting reflected the increases observed in the RAGs. After injection of 3H-glucose, LM-RAGs revealed that only 12% of the hepatocytes were heavily labeled at 1 hour and 20% at 2 hours. In tissue treated with alpha-amylase, glycogen was depleted and label was close to background level at each interval observed. EM-RAGs showed most grains associated with glycogen deposits. Biochemically, blood levels of label persisted at a high level for 30 minutes and tissue levels increased slowly over the 2-hour period. This study shows that incorporation from 3H-galactose was more rapid than incorporation of 3H-glucose; however, label derived from both carbohydrates appeared to be incorporated mainly into glycogen

  14. High environmental temperature increases glucose requirement in the developing chicken embryo.

    Directory of Open Access Journals (Sweden)

    Roos Molenaar

    Full Text Available Environmental conditions during the perinatal period influence metabolic and developmental processes in mammals and avian species, which could impact pre- and postnatal survival and development. The current study investigated the effect of eggshell temperature (EST on glucose metabolism in broiler chicken embryos. Broiler eggs were incubated at a high (38.9°C or normal (37.8°C EST from day 10.5 of incubation onward and were injected with a bolus of [U-(13C]glucose in the chorio-allantoic fluid at day 17.5 of incubation. After [U-(13C]glucose administration, (13C enrichment was determined in intermediate pools and end-products of glucose metabolism. Oxidation of labeled glucose occurred for approximately 3 days after injection. Glucose oxidation was higher in the high than in the normal EST treatment from day 17.6 until 17.8 of incubation. The overall recovery of (13CO2 tended to be 4.7% higher in the high than in the normal EST treatment. An increase in EST (38.9°C vs 37.8°C increased (13C enrichment in plasma lactate at day 17.8 of incubation and (13C in hepatic glycogen at day 18.8 of incubation. Furthermore, high compared to normal EST resulted in a lower yolk-free body mass at day 20.9 (-2.74 g and 21.7 (-3.81 g of incubation, a lower hepatic glycogen concentration at day 18.2 (-4.37 mg/g and 18.8 (-4.59 mg/g of incubation, and a higher plasma uric acid concentration (+2.8 mg/mL/+43% at day 21.6 of incubation. These results indicate that the glucose oxidation pattern is relatively slow, but the intensity increased consistently with an increase in developmental stage of the embryo. High environmental temperatures in the perinatal period of chicken embryos increased glucose oxidation and decreased hepatic glycogen prior to the hatching process. This may limit glucose availability for successful hatching and could impact body development, probably by increased gluconeogenesis from glucogenic amino acids to allow anaerobic glycolysis.

  15. Use of HOMA-IR in hepatitis C.

    Science.gov (United States)

    Eslam, M; Kawaguchi, T; Del Campo, J A; Sata, M; Khattab, M Abo-Elneen; Romero-Gomez, M

    2011-10-01

    Chronic infection with hepatitis C virus (HCV) can induce insulin resistance (IR) in a genotype-dependent manner and contributes to steatosis, progression of fibrosis and resistance to interferon plus ribavirin therapy. Our understanding of HCV-induced IR has improved considerably over the years, but certain aspects concerning its evaluation still remain elusive to clinical researchers. One of the most important issues is elucidating the ideal method for assessment of IR in the setting of hepatitis C. The hyperinsulinaemic euglycaemic clamp is the gold standard method for determining insulin sensitivity, but is impractical as it is labour intensive and time-consuming. To date, all human studies except for four where IR was evaluated in the HCV setting, an estimation of IR has been used rather than direct measurements of insulin-mediated glucose uptake. The most commonly used estimation in the HCV population is the homeostasis model assessment of insulin resistance (HOMA-IR) which is calculated from a single measurement of fasting insulin and glucose. In this article, we review the use and reporting of HOMA in the literature and provide guidance on its appropriate as well as inappropriate use in the hepatitis setting. © 2011 Blackwell Publishing Ltd.

  16. Improved hepatic lipid composition following short-term exercise in nonalcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Haus, Jacob M; Solomon, Thomas; Kelly, Karen R

    2013-01-01

    measures included hepatic triglyceride content, and a lipid saturation index and polyunsaturated lipid index (PUI) of the liver, obtained by 1H magnetic resonance spectroscopy (N = 14). Insulin sensitivity was estimated from an oral glucose tolerance test (OGTT), and mononuclear cells were isolated...... to assess reactive oxygen species production during the OGTT. Circulating glucose, insulin, and high molecular weight (HMW) adiponectin were determined from plasma. Main Outcome: Short-term aerobic exercise training improved hepatic lipid composition in patients with NAFLD. Results: Exercise training...... resulted in an increase in liver PUI (P Index: P

  17. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism

    DEFF Research Database (Denmark)

    Vestergaard, H

    1999-01-01

    been reported to increase the basal concentration of muscle GS mRNA in NIDDM patients to a level similar to that seen in control subjects although insulin-stimulated glucose disposal rates remain reduced in NIDDM patients. In the insulin resistant states examined so far, basal and insulin-stimulated......When whole body insulin-stimulated glucose disposal rate is measured in man applying the euglycaemic, hyperinsulinaemic clamp technique it has been shown that approximately 75% of glucose is taken up by skeletal muscle. After the initial transport step, glucose is rapidly phosphorylated to glucose...... critical roles in glucose oxidation/glycolysis and glucose storage, respectively. Glucose transporters and glycogen synthase activities are directly and acutely stimulated by insulin whereas the activities of hexokinases and phosphofructokinase may primarily be allosterically regulated. The aim...

  18. Diabetes mellitus, insulin resistance and hepatitis C virus infection: A contemporary review.

    Science.gov (United States)

    Desbois, Anne-Claire; Cacoub, Patrice

    2017-03-07

    To summarise the literature data on hepatitis C virus (HCV)-infected patients concerning the prevalence of glucose abnormalities and associated risk. We conducted a PubMed search and selected all studies found with the key words "HCV" or "hepatitis C virus" and "diabetes" or "insulin resistance". We included only comparative studies written in English or in French, published from January 2000 to April 2015. We collected the literature data on HCV-infected patients concerning the prevalence of glucose abnormalities [diabetes mellitus (DM) and insulin resistance (IR)] and associated risk [ i.e ., severe liver fibrosis, response to antivirals, and the occurrence of hepatocellular carcinoma (HCC)]. HCV infection is significantly associated with DM/IR compared with healthy volunteers and patients with hepatitis B virus infection. Glucose abnormalities were associated with advanced liver fibrosis, lack of sustained virologic response to interferon alfa-based treatment and with a higher risk of HCC development. As new antiviral therapies may offer a cure for HCV infection, such data should be taken into account, from a therapeutic and preventive point of view, for liver and non-liver consequences of HCV disease. The efficacy of antidiabetic treatment in improving the response to antiviral treatment and in decreasing the risk of HCC has been reported by some studies but not by others. Thus, the effects of glucose abnormalities correction in reducing liver events need further studies. Glucose abnormalities are strongly associated with HCV infection and show a negative impact on the main liver related outcomes.

  19. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake.

    Directory of Open Access Journals (Sweden)

    Lídia Cedó

    Full Text Available Human hepatic lipase (hHL is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT. In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL-mediated free fatty acid (FFA lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.

  20. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake.

    Science.gov (United States)

    Cedó, Lídia; Santos, David; Roglans, Núria; Julve, Josep; Pallarès, Victor; Rivas-Urbina, Andrea; Llorente-Cortes, Vicenta; Laguna, Joan Carles; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles

    2017-01-01

    Human hepatic lipase (hHL) is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL) is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT). In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL)-mediated free fatty acid (FFA) lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.

  1. PCAF Improves Glucose Homeostasis by Suppressing the Gluconeogenic Activity of PGC-1α

    Directory of Open Access Journals (Sweden)

    Cheng Sun

    2014-12-01

    Full Text Available PGC-1α plays a central role in hepatic gluconeogenesis and has been implicated in the onset of type 2 diabetes. Acetylation is an important posttranslational modification for regulating the transcriptional activity of PGC-1α. Here, we show that PCAF is a pivotal acetyltransferase for acetylating PGC-1α in both fasted and diabetic states. PCAF acetylates two lysine residues K328 and K450 in PGC-1α, which subsequently triggers its proteasomal degradation and suppresses its transcriptional activity. Adenoviral-mediated expression of PCAF in the obese mouse liver greatly represses gluconeogenic enzyme activation and glucose production and improves glucose homeostasis and insulin sensitivity. Moreover, liver-specific knockdown of PCAF stimulates PGC-1α activity, resulting in an increase in blood glucose and hepatic glucose output. Our results suggest that PCAF might be a potential pharmacological target for developing agents against metabolic disorders associated with hyperglycemia, such as obesity and diabetes.

  2. Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2.

    Science.gov (United States)

    Li, Yujie; Wang, Laicheng; Zhou, Lingyan; Song, Yongfeng; Ma, Shizhan; Yu, Chunxiao; Zhao, Jiajun; Xu, Chao; Gao, Ling

    2017-05-05

    Epidemiological evidence indicates that thyroid stimulating hormone (TSH) is positively correlated with abnormal glucose levels. We previously reported that TSH has direct effects on gluconeogenesis. However, the underlying molecular mechanism remains unclear. In this study, we observed increased fasting blood glucose and glucose production in a mouse model of subclinical hypothyroidism (only elevated TSH levels). TSH acts via the classical cAMP/PKA pathway and CRTC2 regulates glucose homeostasis. Thus, we explore whether CRTC2 is involved in the process of TSH-induced gluconeogenesis. We show that TSH increases CRTC2 expression via the TSHR/cAMP/PKA pathway, which in turn upregulates hepatic gluconeogenic genes. Furthermore, TSH stimulates CRTC2 dephosphorylation and upregulates p-CREB (Ser133) in HepG2 cells. Silencing CRTC2 and CREB decreases the effect of TSH on PEPCK-luciferase, the rate-limiting enzyme of gluconeogenesis. Finally, the deletion of TSHR reduces the levels of the CRTC2:CREB complex in mouse livers. This study demonstrates that TSH activates CRTC2 via the TSHR/cAMP/PKA pathway, leading to the formation of a CRTC2:CREB complex and increases hepatic gluconeogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparison of association of diabetes mellitus in hepatitis C virus infection and hepatitis B virus infection

    International Nuclear Information System (INIS)

    Khan, I.A.; Bukhari, M.H.; Khokhar, M.S.

    2013-01-01

    Background: While patients with liver disease are known to have a higher prevalence of glucose intolerance, preliminary studies suggest that hepatitis C virus (HCV) infection may be an additional risk factor for the development of diabetes mellitus (DM). Objective: The presented study was aimed to study and determine a relationship between the relative proportions of Diabetes Mellitus in patients suffering from HCV infection. Study Design: This cross sectional study. Study Settings: Patients were registered from outdoor as well as indoor departments of different teaching hospitals (Services hospital Lahore and medical departments in Jinnah hospital, Mayo hospital, Sir Ganga Ram hospital) in Lahore, Pakistan. Methods: This cross sectional study was comprised of age and sex matched 258 patients of viral hepatitis B infection and viral hepatitis C infection, conducted at Hepatitis Clinic Services Hospital, affiliated with Post Graduate Medical Institute, Lahore. Diagnosis of HBV was made with evidence of hepatitis B surface antigen, HCV infection was diagnosed if patient was sero positive for anti HCV (ELISA methods) and HCV - RNA (By PCR). Diabetes Mellitus was diagnosed after fulfilling the American Diabetic Association Criteria, from November, 2000 to September, 2002. Results: A total of 318 patients were registered, out of which 258 cases fulfilled the inclusion criteria, 164 hepatitis C infected and 94 hepatitis B infected cases, 16.46% hepatitis C infected cases were diagnosed as diabetics while 4.25% hepatitis B infected cases were diagnosed as diabetics. Conclusion: This study concludes that there is high Association and relationship of Diabetes Mellitus with Hepatitis C virus infection as compared with Hepatitis B virus infection. (author)

  4. On the relationship between glucose absorption and glucose‐stimulated secretion of GLP‐1, neurotensin, and PYY from different intestinal segments in the rat

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Christiansen, Charlotte Bayer; Saltiel, Monika Yosifova

    2017-01-01

    luminal glucose (20%, w/v) increased GLP‐1 and NT secretion five to eightfold compared to basal secretion. Compared to the USI, basal and stimulated GLP‐1 secretion from the colon was 8–10 times lower and no NT secretion was detected. Luminal glucose stimulated secretion of PYY four to fivefold from......Ingested glucose powerfully stimulates the secretion of appetite‐ and metabolism‐regulating peptide hormones from the gut – including glucagon‐like peptide‐1 (GLP‐1), neurotensin (NT), and polypeptide YY (PYY). However, the regional origin of these secretions after glucose stimulation is not well...

  5. High-fat feeding increases hepatic vitamin C synthesis and its circulatory mobilization in mice

    DEFF Research Database (Denmark)

    Christensen, Britt Tranberg; Hansen, Axel Jacob Kornerup; Lykkesfeldt, Jens

    2014-01-01

    , glucose and vitC concentrations. Hepatic vitC concentration and gulonolactone oxidase (GLO) capacity, as a measure of vitC de novo biosynthesis, were analyzed in liver homogenates. RESULTS: HF diet significantly increased plasma concentrations of vitC compared with a control diet low in fat (P ... to modulate their vitC homeostasis during high-fat (HF) feeding. METHODS: Twenty-five male 5-week-old C57BL/6 mice were fed high- or low-fat diets for 14 weeks. An oral glucose tolerance test (OGTT) was performed after 12 weeks of intervention. Terminal fasting plasma samples were analyzed for insulin.......05). Hepatic de novo biosynthesis of vitC was upregulated (P glucose and insulin concentrations...

  6. Effects of glucose ingestion on hepatic hemodynamics in patients with liver disease by per-rectal portal scintigraphy using 99mTcO4- (direct intramural administration of radioisotope method)

    International Nuclear Information System (INIS)

    Tetsuka, Isando; Ohe, Takashi; Harada, Takashi

    1992-01-01

    Effect of glucose (225 ml, 300 kcal) ingestion on hepatic hemodynamics was studied in ten patients with liver cirrhosis and eight patients with non cirrhotic liver disease by per-rectal portal scintigraphy using 99m TcO 4 - (direct intramural administration of radioisotope method). Initial portal blood flow index (IP) and collateral index (CI) were calculated from the time activity curve of heart and liver. The value of IP was not significantly changed between before and after glucose ingestion in cases of liver cirrhosis (before: 0.0160±0.0016, after: 0.0204±0.0106). In cases of non cirrhotic liver disease, the value of IP was significantly increased after glucose ingestion (before: 0.0381±0.0145, after: 0.0544±0.0194, p<0.02). These findings suggested increase in portal blood flow via inferior mesenteric vein to the cardiac blood flow. The value of CI before glucose ingestion was significantly increased in cases of liver cirrhosis (0.751±0.156) compared with that in cases of non cirrhotic liver disease (0.517±0.122), but no significant difference in values after glucose ingestion was found between these two groups. (author)

  7. IDegLira Improves Both Fasting and Postprandial Glucose Control as Demonstrated Using Continuous Glucose Monitoring and a Standardized Meal Test

    DEFF Research Database (Denmark)

    Holst, Jens J; Buse, John B; Rodbard, Helena W

    2016-01-01

    OBJECTIVE: IDegLira is a novel, fixed-ratio combination of the long-acting basal insulin, insulin degludec, and the long-acting glucagon-like peptide-1 analog liraglutide. We studied the effect of IDegLira versus its components on postprandial glucose (PPG) in type 2 diabetes. METHODS: In this su...

  8. Reversible cortical blindness in a case of hepatic encephalopathy

    Directory of Open Access Journals (Sweden)

    Amlan Kanti Biswas

    2016-01-01

    Full Text Available Hepatic encephalopathy is a frequent and often fatal manifestation of chronic liver disease. The pathogenesis of hepatic encephalopathy is believed to be multifactorial including impaired blood-brain barrier function, imbalance between the excitatory and inhibitory neurotransmitters in cortex, accumulation of various toxic and false neurotransmitters, and lack of nutrients like oxygen and glucose. Signs and symptoms of hepatic encephalopathy varies and commonly ranges from personality changes, disturbed consciousness, sleep pattern alternation, intellectual deterioration, speech disturbances, asterixis to frank coma and even death. Reversible or transient cortical blindness is rare manifestation of hepatic encephalopathy. It may even precede the phase of altered consciousness in such patients. Very few similar cases have been reported worldwide. Hence, we would like to report a case of transient cortical blindness in a patient of hepatic encephalopathy.

  9. Vaccinium bracteatum Thunb. Leaves' polysaccharide alleviates hepatic gluconeogenesis via the downregulation of miR-137.

    Science.gov (United States)

    Qian, Hai-Feng; Li, Yan; Wang, Li

    2017-11-01

    Vaccinium bracteatum Thunb.(VBT) is a traditional Chinese herb that recorded has an effect of hypoglycemic. We previous discovered a dose-dependent anti-diabetic function of VBT. leaves' polysaccharide (VBTLP), but little is known about its underlying molecular mechanism. Therefore, we hypothesized that VBTLP would decrease hepatic gluconeogenesis to improve glucose metabolism in mice. To test this hypothesis, glucose tolerance test was performed to evaluate the effect of VBTLP on mice hepatic gluconeogenesis. Western blot and RT-PCR were performed to measure both in vivo and in vitro gene regulation under VBTLP treatment. Online bioinformatic analysis was performed to discover a target candidate, miR-137 of LKB1 and AMPK under VBTLP treatment, and the luciferase assay was conducted to validate it. Here we found that VBT. leaves' polysaccharide (VBTLP) decreased hepatic gluconeogenesis via activation of LKB1/AMPK axis in vivo and in vitro. Mechanistic studies reveal that miR-137 regulates hepatic glucose homeostasis by directly targeting AMPK and LKB1. Furthermore, we shown that VBTLP decreased hepatic miR-137 level, which might contribute to activation of LKB1/AMPK and downregulation of gluconeogenesis. Taken together, our study shown that the mechanisms might involve in VBTLP hypoglycemic effect, alleviates hepatic gluconeogenesis via the downregulation of miR-137. Our findings provide guidance in developing novel, safe and effective therapies for T2DM. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Activity of the basal ganglia in Parkinson's disease estimated by PET

    International Nuclear Information System (INIS)

    Ohye, Chihiro

    1995-01-01

    Positron emission tomographic (PET) studies on the local cerebral blood flow, oxygen metabolic rate, glucose metabolic rate in the basal ganglia of Parkinson's disease are reviewed. PET has demonstrated that blood flow was decreased in the cerebral cortex, especially the frontal region, of Parkinson's disease and that specific change in blood flow or metabolic rate in the basal ganglia was detected only in patients with hemi-parkinsonism. In authors' study on PET using 18 FDG in patients with tremor type and rigid type Parkinson's disease, changes in blood flow and metabolic rate were minimal at the basal ganglia level in tremor type patients, but cortical blood flow was decreased and metabolic rate was more elevated in the basal ganglia in rigid type patients. These findings were correlated with depth micro-recordings obtained by stereotactic pallidotomy. PET studies have also revealed that activity in the nerve terminal was decreased with decreasing dopamine and that dopamine (mainly D 2 ) activity was remarkably increased. PET studies with specific tracers are promising in providing more accurate information about functional state of living human brain with minimal invasion to patients. (N.K.)

  11. TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis*

    Science.gov (United States)

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T.; Rane, Sushil G.

    2017-01-01

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. PMID:28069811

  12. Theories about evolutionary origins of human hepatitis B virus in primates and humans

    Directory of Open Access Journals (Sweden)

    Breno Frederico de Carvalho Dominguez Souza

    2014-09-01

    Conclusion: Some hypotheses about the evolutionary origins of human hepatitis B virus have been debated since the ‘90s. One theory suggested a New World origin because of the phylogenetic co-segregation between some New World human hepatitis B virus genotypes F and H and woolly monkey human hepatitis B virus in basal sister-relationship to the Old World non-human primates and human hepatitis B virus variants. Another theory suggests an Old World origin of human hepatitis B virus, and that it would have been spread following prehistoric human migrations over 100,000 years ago. A third theory suggests a co-speciation of human hepatitis B virus in non-human primate hosts because of the proximity between the phylogeny of Old and New World non-human primate and their human hepatitis B virus variants. The importance of further research, related to the subject in South American wild fauna, is paramount and highly relevant for understanding the origin of human hepatitis B virus.

  13. In vivo hepatic glycogen metabolism in the baboon

    International Nuclear Information System (INIS)

    Jehenson, P.; Canioni, P.; Hantraye, P.; Gueron, M.; Syrota, A.

    1988-01-01

    This paper describes hepatic glycogen synthesis from glucose studied in the baboon by C-13 MR spectroscopy at 2 T. Glycogen synthesis was followed for 3 hours on natural abundance spectra during glucose infusion. (1-C-13)-glucose (3g) was then injected. It produced a ten times larger rate of increase of glycogen-C 1 , which is much lower than expected, suggesting that glycogen synthesis mainly occurred from unlabeled gluconeogenic substrates. Signal-to-noise ratio was 50 for glycogen-C 1 on 2-minute H-1 decoupled spectra. Labeling of C 1 but also C 2 , C 5 and C 6 of glycogen indicated a 15% contribution of indirect pathways to its synthesis from glucose

  14. Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model.

    Science.gov (United States)

    Liu, Hshuan-Chen; Chang, Chun-Ju; Yang, Tsung-Han; Chiang, Meng-Tsan

    2017-07-01

    This study was designed to investigate the effect of Gelidium amansii (GA) on carbohydrate and lipid metabolism in rats with high fructose (HF) diet (57.1% w/w). Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1) control diet group (Con); (2) HF diet group (HF); and (3) HF with GA diet group (HF + 5% GA). The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC) and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model. Copyright © 2016. Published by Elsevier B.V.

  15. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease

    OpenAIRE

    Sunny, Nishanth E.; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J.; Nautiyal, Manisha; Mathew, Justin T.; Williams, Caroline M.; Cusi, Kenneth

    2015-01-01

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperin...

  16. The effect of altitude hypoxia on glucose homeostasis in men

    DEFF Research Database (Denmark)

    Larsen, J J; Hansen, J M; Olsen, Niels Vidiendal

    1997-01-01

    1. Exposure to altitude hypoxia elicits changes in glucose homeostasis with increases in glucose and insulin concentrations within the first few days at altitude. Both increased and unchanged hepatic glucose production (HGP) have previously been reported in response to acute altitude hypoxia...... (noradrenaline and adrenaline) and day 7 (adrenaline), but not at sea level. 4. In conclusion, insulin action decreases markedly in response to two days of altitude hypoxia, but improves with more prolonged exposure. HGP is always unchanged. The changes in insulin action may in part be explained by the changes...

  17. Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue

    DEFF Research Database (Denmark)

    Stallknecht, B; Larsen, J J; Mikines, K J

    2000-01-01

    Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men...... (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration......-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis...

  18. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion.

    Science.gov (United States)

    Zheng, Hongzhi; Fu, Jingqi; Xue, Peng; Zhao, Rui; Dong, Jian; Liu, Dianxin; Yamamoto, Masayuki; Tong, Qingchun; Teng, Weiping; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E; Pi, Jingbo

    2015-04-01

    The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.

  19. The pancreas in {beta}-thalassemia major: MR imaging features and correlation with iron stores and glucose disturbunces

    Energy Technology Data Exchange (ETDEWEB)

    Papakonstantinou, Olympia [University Hospital of Heraklion, Medical School of Crete, Department of Radiology, Heraklion, Crete (Greece); Attikon Hospital, 2nd Department of Radiology, Athens (Greece); Ladis, Vasilios; Kostaridou, Stavroula; Berdousi, Helen; Kattamis, Christos [Thalassemia Unit, University of Athens, ' ' Aghia Sophia' ' Children' s Hospital, Athens (Greece); Maris, Thomas; Gourtsoyiannis, Nicholas [University Hospital of Heraklion, Medical School of Crete, Department of Radiology, Heraklion, Crete (Greece)

    2007-06-15

    The study aims at describing the MR features of pancreas in beta-thalassemia major, investigating the relations between MR findings and glucose disturbances and between hepatic and pancreatic siderosis. Signal intensity ratios of the pancreas and liver to right paraspinous muscle (P/M, L/M) were retrospectively assessed on abdominal MR imaging studies of 31 transfusion-dependent patients with beta-thalassemia major undergoing quantification of hepatic siderosis and 10 healthy controls, using T1- (120/4/90), intermediate in and out of phase - (120/2.7, 4/20), and T2*-(120/15/20) weighted GRE sequences. Using the signal drop of the liver and pancreas on opposed phase images, we recorded serum ferritin and results of oral glucose tolerance test (OGTT). Decreased L/M and P/M on at least the T2* sequence were noticed in 31/31 and 30/31 patients, respectively, but no correlation between P/M and L/M was found. Patients with pathologic OGTT displayed a higher degree of hepatic siderosis (p < 0.04) and signal drop of pancreas on opposed phase imaging (p < 0.025), implying fatty replacement of pancreas. P/M was neither correlated with glucose disturbances nor serum ferritin. Iron deposition in the pancreas cannot be predicted by the degree of hepatic siderosis in beta-thalassemia major. Fatty replacement of the pancreas is common and may be associated with glucose disturbances. (orig.)

  20. The pancreas in β-thalassemia major: MR imaging features and correlation with iron stores and glucose disturbunces

    International Nuclear Information System (INIS)

    Papakonstantinou, Olympia; Ladis, Vasilios; Kostaridou, Stavroula; Berdousi, Helen; Kattamis, Christos; Maris, Thomas; Gourtsoyiannis, Nicholas

    2007-01-01

    The study aims at describing the MR features of pancreas in beta-thalassemia major, investigating the relations between MR findings and glucose disturbances and between hepatic and pancreatic siderosis. Signal intensity ratios of the pancreas and liver to right paraspinous muscle (P/M, L/M) were retrospectively assessed on abdominal MR imaging studies of 31 transfusion-dependent patients with beta-thalassemia major undergoing quantification of hepatic siderosis and 10 healthy controls, using T1- (120/4/90), intermediate in and out of phase - (120/2.7, 4/20), and T2*-(120/15/20) weighted GRE sequences. Using the signal drop of the liver and pancreas on opposed phase images, we recorded serum ferritin and results of oral glucose tolerance test (OGTT). Decreased L/M and P/M on at least the T2* sequence were noticed in 31/31 and 30/31 patients, respectively, but no correlation between P/M and L/M was found. Patients with pathologic OGTT displayed a higher degree of hepatic siderosis (p < 0.04) and signal drop of pancreas on opposed phase imaging (p < 0.025), implying fatty replacement of pancreas. P/M was neither correlated with glucose disturbances nor serum ferritin. Iron deposition in the pancreas cannot be predicted by the degree of hepatic siderosis in beta-thalassemia major. Fatty replacement of the pancreas is common and may be associated with glucose disturbances. (orig.)

  1. Glucose effectiveness is a critical pathogenic factor leading to glucose intolerance and type 2 diabetes: An ignored hypothesis.

    Science.gov (United States)

    Alford, F P; Henriksen, J E; Rantzau, C; Beck-Nielsen, H

    2018-02-16

    Although the ability of glucose to mediate its own in vivo metabolism is long documented, the quantitative measurement of whole body glucose-mediated glucose disposal at basal insulin levels (glucose effectiveness [GE]), followed the introduction of the Minimal Model intravenous glucose tolerance test technique. A literature review, combined with our own studies, of the role of GE in glucose metabolism in normal and "at risk" individuals, was undertaken to determine GE's contribution to glucose homeostasis. GE accounts for ~45% to 65% of glucose disposal in man. A negative association between GE and insulin meditated glucose disposal (Si), is present in normal subjects without a family history of type 2 diabetes mellitus but is absent in normoglycaemic "at risk" relatives with a positive family history of diabetes mellitus. Intracellular GE disposal is mediated by mass action of glucose through the skeletal muscle membrane via facilitated Glut 4 transporters. However, GE is frequently forgotten as a significant contributor to the development of glucose intolerance in "at risk" individuals. Only limited studies have examined the role of a lower GE in such normoglycemic subjects with preexisting mild insulin resistance and β-cell dysfunction. These studies demonstrate that in "at risk" individuals, an initial low GE is a key contributor and predictor of future glucose intolerance, whereas an initial raised GE is protective against future glucose intolerance. In "at risk" individuals, a low GE and genetically determined vulnerable β-cell function are more critical determinants of future glucose intolerance than their preexisting insulin-resistant state. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function.

    Science.gov (United States)

    Muscogiuri, Giovanna; Salmon, Adam B; Aguayo-Mazzucato, Cristina; Li, Mengyao; Balas, Bogdan; Guardado-Mendoza, Rodolfo; Giaccari, Andrea; Reddick, Robert L; Reyna, Sara M; Weir, Gordon; Defronzo, Ralph A; Van Remmen, Holly; Musi, Nicolas

    2013-12-01

    Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow-fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction.

  3. Clinical Observations of Abnormal Glucose Tolerance in Hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Ja; Lee, Hong Kyu [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1969-09-15

    Plasma glucose levels before and after oral glucose administration have been compared in g group of 76 thyrotoxic subjects and a group of 8 normal control subjects in order to study the effect of glucose loading in thyrotoxicosis. Following were the results: 1) The mean fasting plasma glucose level was elevated in thyrotoxic group (95.5 mg%) compared to normal control group (88 mg%). 2) The peak of glucose tolerance curve is at 30 minutes after glucose administration in both groups, but its mean value was 44 mg% higher in thyrotoxic group than in control group. 3) The plasma glucose levels returned towards the fasting level in the later stage of the test more rapidly in thyrotoxic group than in control group. 4) 69.6% of oral glucose tolerance tests were impaired in the thyrotoxic group, and the occurrence of abnormal glucose tolerance could be related to the degree of thyrotoxicity, sex and age. 5) The mechanisms of the impaired glucose tolerance in thyrotoxicosis are thought to be related to an increased rate of glucose absorption from gastrointestinal tract, abnormal liver function with decreased hepatic glycogenesis, increased glucose oxidation, decreased pancreatic release of insulin, and genetic relationship between diabetes and thyrotoxicosis.

  4. Effect of in vivo injection of cholera and pertussis toxin on glucose transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Han, X; Petersen, L N

    1997-01-01

    Cholera toxin (CTX) and pertussis toxin (PTX) were examined for their ability to inhibit glucose transport in perfused skeletal muscle. Twenty-five hours after an intravenous injection of CTX, basal transport was decreased approximately 30%, and insulin- and contraction-stimulated transport...... in GLUT-1 protein content was found. In contrast, GLUT-4 mRNA was unchanged, but transcripts for GLUT-1 were increased > or = 150% in all three muscles from CTX-treated rats. The findings suggest that CTX via increased cAMP impairs basal as well as insulin- and contraction-stimulated muscle glucose...

  5. Glycemic variability is an independent predictive factor for development of hepatic fibrosis in nonalcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Motoi Hashiba

    Full Text Available Patients with nonalcoholic fatty liver disease (NAFLD and nonalcoholic steatohepatitis (NASH often have metabolic disorders including insulin resistance and type 2 diabetes mellitus (T2DM. We clarified the predictive factors in glucose metabolism for progression of hepatic fibrosis in patients with NAFLD by the 75-g oral glucose tolerance test (75gOGTT and a continuous glucose monitoring system (CGMS. One hundred sixty-nine patients (68 female and 101 male patients with biopsy-proven NAFLD with performance with 75gOGTT were enrolled and divided into four groups according to the stage of hepatic fibrosis (F0-3. The proportion of patients with T2DM significantly gradually increased, HbA1c and the homeostasis model assessment of insulin resistance were significantly elevated, and 1,5-anhydroglucitol (1,5-AG was remarkably decreased with the progression of fibrosis. In the 75gOGTT, both plasma glucose and insulin secretion were remarkably increased with the progression of fibrosis. The only factor significantly associated with advanced fibrosis was 1,5-AG (P = 0.008 as determined by multivariate logistic regression analysis. We next evaluated the changes in blood glucose during 24 hours by monitoring with the CGMS to confirm the relationship between glycemic variability and progression of fibrosis. Variability of median glucose, standard deviation of median glucose (P = 0.0022, maximum blood glucose (P = 0.0019, and ΔMin-max blood glucose (P = 0.0029 were remarkably higher in severe fibrosis than in mild fibrosis.Hyperinsulinemia and hyperglycemia, especially glycemic variability, are important predictive factors in glucose impairment for the progression of hepatic fibrosis in NAFLD.

  6. Hepatitis B virus enhances cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 Kda.

    Science.gov (United States)

    Zhang, Xiaoxue; Zhang, Rui; Yang, HuiOu; Xiang, Qian; Jiang, Qing; He, Qi; Zhang, Ting; Chen, Chen; Zhu, Huifen; Wang, Qiang; Ning, Qin; Li, Yiwu; Lei, Ping; Shen, Guanxin

    2016-07-25

    Cisplatin is a classical platinum-based chemotherapeutic drug used in the treatment of many cancer types, including hepatocellular carcinoma (HCC). The application of cisplatin is significantly limited by its toxicity, which may be affected by various biological factors. Persistence of Hepatitis B virus (HBV) infection leads to HCC development and may be associated with higher incidence of severe hepatitis during chemotherapy. However, whether HBV alters the susceptibility of hepatocytes to cisplatin remains poorly understood. Here, we demonstrate that HBV transfection enhanced cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 KDa (Grp78), a major stress-induced chaperone that localizes to the endoplasmic reticulum. Silencing Grp78 gene increased the susceptibility of HepG2 to cisplatin by activating caspase-3. Grp78 expression was down-regulated by HBV infection both in vitro and in liver tissues of patients. We compared the cisplatin sensitivity of hepatoma cells either expressing (HepG2.2.15 cells) or not expressing the entire Hepatitis B Virus genome (HepG2). HepG2.2.15 cells showed increased sensitivity to cisplatin and a higher apoptosis rate. Overexpression of Grp78 counteracted the increase of sensitivity of HepG2.215 cells to cisplatin. Furthermore, we found that HBV disrupted Grp78 synthesis in response to cisplatin stimulation, which may trigger severe and prolonged endoplasmic reticulum (ER) stress that can induce cellular apoptosis. Our findings provide new information into the effect of HBV in the modulation of Grp78 expression, and, consequently on cisplatin-induced hepatotoxicity during viral infection. Copyright © 2016. Published by Elsevier Ireland Ltd.

  7. Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice.

    Science.gov (United States)

    Cokorinos, Emily C; Delmore, Jake; Reyes, Allan R; Albuquerque, Bina; Kjøbsted, Rasmus; Jørgensen, Nicolas O; Tran, Jean-Luc; Jatkar, Aditi; Cialdea, Katherine; Esquejo, Ryan M; Meissen, John; Calabrese, Matthew F; Cordes, Jason; Moccia, Robert; Tess, David; Salatto, Christopher T; Coskran, Timothy M; Opsahl, Alan C; Flynn, Declan; Blatnik, Matthew; Li, Wenlin; Kindt, Erick; Foretz, Marc; Viollet, Benoit; Ward, Jessica; Kurumbail, Ravi G; Kalgutkar, Amit S; Wojtaszewski, Jørgen F P; Cameron, Kimberly O; Miller, Russell A

    2017-05-02

    The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK β1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Impairments of hepatic gluconeogenesis and ketogenesis in PPARα-deficient neonatal mice.

    Science.gov (United States)

    Cotter, David G; Ercal, Baris; d'Avignon, D André; Dietzen, Dennis J; Crawford, Peter A

    2014-07-15

    Peroxisome proliferator activated receptor-α (PPARα) is a master transcriptional regulator of hepatic metabolism and mediates the adaptive response to fasting. Here, we demonstrate the roles for PPARα in hepatic metabolic adaptations to birth. Like fasting, nutrient supply is abruptly altered at birth when a transplacental source of carbohydrates is replaced by a high-fat, low-carbohydrate milk diet. PPARα-knockout (KO) neonatal mice exhibit relative hypoglycemia due to impaired conversion of glycerol to glucose. Although hepatic expression of fatty acyl-CoA dehydrogenases is imparied in PPARα neonates, these animals exhibit normal blood acylcarnitine profiles. Furthermore, quantitative metabolic fate mapping of the medium-chain fatty acid [(13)C]octanoate in neonatal mouse livers revealed normal contribution of this fatty acid to the hepatic TCA cycle. Interestingly, octanoate-derived carbon labeled glucose uniquely in livers of PPARα-KO neonates. Relative hypoketonemia in newborn PPARα-KO animals could be mechanistically linked to a 50% decrease in de novo hepatic ketogenesis from labeled octanoate. Decreased ketogenesis was associated with diminished mRNA and protein abundance of the fate-committing ketogenic enzyme mitochondrial 3-hydroxymethylglutaryl-CoA synthase (HMGCS2) and decreased protein abundance of the ketogenic enzyme β-hydroxybutyrate dehydrogenase 1 (BDH1). Finally, hepatic triglyceride and free fatty acid concentrations were increased 6.9- and 2.7-fold, respectively, in suckling PPARα-KO neonates. Together, these findings indicate a primary defect of gluconeogenesis from glycerol and an important role for PPARα-dependent ketogenesis in the disposal of hepatic fatty acids during the neonatal period. Copyright © 2014 the American Physiological Society.

  9. Quantification of tumour {sup 18}F-FDG uptake: Normalise to blood glucose or scale to liver uptake?

    Energy Technology Data Exchange (ETDEWEB)

    Keramida, Georgia [Brighton and Sussex Medical School, Clinical Imaging Sciences Centre, Brighton (United Kingdom); Brighton and Sussex University Hospitals NHS Trust, Department of Nuclear Medicine, Brighton (United Kingdom); University of Sussex, Clinical Imaging Sciences Centre, Brighton (United Kingdom); Dizdarevic, Sabina; Peters, A.M. [Brighton and Sussex Medical School, Clinical Imaging Sciences Centre, Brighton (United Kingdom); Brighton and Sussex University Hospitals NHS Trust, Department of Nuclear Medicine, Brighton (United Kingdom); Bush, Janice [Brighton and Sussex Medical School, Clinical Imaging Sciences Centre, Brighton (United Kingdom)

    2015-09-15

    To compare normalisation to blood glucose (BG) with scaling to hepatic uptake for quantification of tumour {sup 18}F-FDG uptake using the brain as a surrogate for tumours. Standardised uptake value (SUV) was measured over the liver, cerebellum, basal ganglia, and frontal cortex in 304 patients undergoing {sup 18}F-FDG PET/CT. The relationship between brain FDG clearance and SUV was theoretically defined. Brain SUV decreased exponentially with BG, with similar constants between cerebellum, basal ganglia, and frontal cortex (0.099-0.119 mmol/l{sup -1}) and similar to values for tumours estimated from the literature. Liver SUV, however, correlated positively with BG. Brain-to-liver SUV ratio therefore showed an inverse correlation with BG, well-fitted with a hyperbolic function (R = 0.83), as theoretically predicted. Brain SUV normalised to BG (nSUV) displayed a nonlinear correlation with BG (R = 0.55); however, as theoretically predicted, brain nSUV/liver SUV showed almost no correlation with BG. Correction of brain SUV using BG raised to an exponential power of 0.099 mmol/l{sup -1} also eliminated the correlation between brain SUV and BG. Brain SUV continues to correlate with BG after normalisation to BG. Likewise, liver SUV is unsuitable as a reference for tumour FDG uptake. Brain SUV divided by liver SUV, however, shows minimal dependence on BG. (orig.)

  10. TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis.

    Science.gov (United States)

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T; Rane, Sushil G

    2017-02-24

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. TCPTP Regulates Insulin Signalling in AgRP Neurons to Coordinate Glucose Metabolism with Feeding.

    Science.gov (United States)

    Dodd, Garron T; Lee-Young, Robert S; Brüning, Jens C; Tiganis, Tony

    2018-04-30

    Insulin regulates glucose metabolism by eliciting effects on peripheral tissues as well as the brain. Insulin receptor (IR) signalling inhibits AgRP-expressing neurons in the hypothalamus to contribute to the suppression of hepatic glucose production (HGP) by insulin, whereas AgRP neuronal activation attenuates brown adipose tissue (BAT) glucose uptake. The tyrosine phosphatase TCPTP suppresses IR signalling in AgRP neurons. Hypothalamic TCPTP is induced by fasting and degraded after feeding. Here we assessed the influence of TCPTP in AgRP neurons in the control of glucose metabolism. TCPTP deletion in AgRP neurons ( Agrp -Cre; Ptpn2 fl/fl ) enhanced insulin sensitivity as assessed by the increased glucose infusion rates and reduced HGP during hyperinsulinemic-euglycemic clamps, accompanied by increased [ 14 C]-2-deoxy-D-glucose uptake in BAT and browned white adipose tissue. TCPTP deficiency in AgRP neurons promoted the intracerebroventricular insulin-induced repression of hepatic gluconeogenesis in otherwise unresponsive food-restricted mice yet had no effect in fed/satiated mice where hypothalamic TCPTP levels are reduced. The improvement in glucose homeostasis in Agrp -Cre; Ptpn2 fl/fl mice was corrected by IR heterozygosity ( Agrp -Cre; Ptpn2 fl/fl ; Insr fl/+ ), causally linking the effects on glucose metabolism with the IR signalling in AgRP neurons. Our findings demonstrate that TCPTP controls IR signalling in AgRP neurons to coordinate HGP and brown/beige adipocyte glucose uptake in response to feeding/fasting. © 2018 by the American Diabetes Association.

  12. Basal Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Basal cell carcinoma Overview Basal cell carcinoma: This skin cancer ... that has received years of sun exposure. Basal cell carcinoma: Overview Basal cell carcinoma (BCC) is the ...

  13. Quantitative comparison of pathways of hepatic glycogen repletion in fed and fasted humans

    International Nuclear Information System (INIS)

    Shulman, G.I.; Cline, G.; Schumann, W.C.; Chandramouli, V.; Kumaran, K.; Landau, B.R.

    1990-01-01

    The effect of fasting vs. refeeding on hepatic glycogen repletion by the direct pathway, i.e., glucose----glucose 6-phosphate (G-6-P)----glycogen, was determined. Acetaminophen was administered during an infusion of glucose labeled with [1-13C]- and [6-14C]glucose into four healthy volunteers after an overnight fast and into the same subjects 4 h after breakfast. 13C enrichments in C-1 and C-6 of glucose formed from urinary acetaminophen glucuronide compared with enrichments in C-1 and C-6 of plasma glucose provided an estimate of glycogen formation by the direct pathway. The specific activity of glucose from the glucuronide compared with the specific activity of the plasma glucose, along with the percentages of 14C in C-1 and C-6 of the glucose from the glucuronide, also provided an estimate of the amount of glycogen formed by the direct pathway. The estimates were similar. Those from [6-14C]glucose would have been higher than from [1-13C]glucose if the pentose cycle contribution to overall glucose utilization had been significant. After an overnight fast, during the last hour of infusion, 49 +/- 3% of the glycogen formed was formed via the direct pathway. After breakfast, at similar plasma glucose and insulin concentrations, the percentage increased to 69 +/- 7% (P less than 0.02). Thus the contributions of the pathways to hepatic glycogen formation depend on the dietary state of the individual. For a dietary regimen in which individuals consume multiple meals per day containing at least a moderate amount of carbohydrates most glycogen synthesis occurs by the direct pathway

  14. Comparison of liraglutide plus basal insulin and basal-bolus insulin therapy (BBIT) for glycemic control, body weight stability, and treatment satisfaction in patients treated using BBIT for type 2 diabetes without severe insulin deficiency: A randomized prospective pilot study.

    Science.gov (United States)

    Yamamoto, Saki; Hayashi, Toshiyuki; Ohara, Makoto; Goto, Satoshi; Sato, Jun; Nagaike, Hiroe; Fukase, Ayako; Sato, Nobuko; Hiromura, Munenori; Tomoyasu, Masako; Nakanishi, Noriko; Lee, Soushou; Osamura, Anna; Yamamoto, Takeshi; Fukui, Tomoyasu; Hirano, Tsutomu

    2018-03-26

    We examined whether 0.9 mg/day liraglutide plus basal insulin (Lira-basal) is superior to basal-bolus insulin therapy (BBIT) for type 2 diabetes (T2DM) without severe insulin deficiency as determined by glucagon stimulation. Fifty patients receiving BBIT were enrolled in this 24-week, prospective, randomized, open-labeled study. After excluding subjects with fasting C-peptide immunoreactivity (CPR) basal (n = 12) or continued BBIT (n = 13). Primary endpoint was change in HbA1c. Secondary endpoints were changes in body weight (BW), 7-point self-monitored blood glucose (SMBG), and Diabetes Treatment Satisfaction Questionnaire status (DTSQs) scores. The Lira-basal group demonstrated reduced HbA1c, whereas the BBIT group showed no change. BW was reduced in the Lira-basal group but increased in the BBIT group. The Lira-basal group also exhibited significantly reduced pre-breakfast and pre-lunch SMBG. DTSQs scores improved in the Lira-basal group but not the BBIT group. Plasma lipids, liver function, and kidney function were not significantly changed in either group. Lira-basal therapy is superior to BBIT for T2DM without severe insulin deficiency. This study was registered with UMIN Clinical Trials Registry (UMIN000028313). Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Basal blood parameters of horses subjected to aerobic activity fed with lipidic concentrated

    Directory of Open Access Journals (Sweden)

    Kátia de Oliveira

    2012-02-01

    Full Text Available The feeding diets were evaluated containing low and high levels of soybean oil for horses athletes subjected to two protocols of aerobic training on the response of basal blood biochemical parameters. Four horses were used in latin square design with treatments in a 2 x 2 factorial arrangement. Treatments consisted levels of 5 and 15% oil concentrates and two aerobic training, 40' and 60' minutes. Plasmatic parameters were monitored, triglyceride (TG, total cholesterol (TC, glucose (GLU and lactate (LAC, during basal metabolism. The TG, TC, GLU and LAC from horses at rest were not affected (P> 0.05 neither of diet and physical activity, 0.21, 3.79, 4.18, 0.93 mmol L-1, respectively. It can be concluded that offer concentrate with high content of soybean oil to athletic horses in aerobic activities can be performed without altering the blood biochemical profile of basal metabolism.

  16. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Richard J. Naftalin

    2016-04-01

    Full Text Available A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD, non-alcoholic steatohepatitis, (NASH and type 2 diabetes mellitus, (T2DM demonstrates how when glucagon-like peptide-1, (GLP-1 is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU. When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic

  17. Human hepatic carbohydrate metabolism. Dynamic observation using 13C MRS without proton decoupling

    International Nuclear Information System (INIS)

    Ikehira, H.; Obata, T.; Koga, M.; Yoshida, K.

    1997-01-01

    Purpose: Dynamic natural-abundance 13 C MR spectroscopy (MRS) studies without proton decoupling were performed in the human liver using commercial 1.5 T MR equipment. Material and methods: A single tuned custom-made circular surface coil with an OD of 20 cm operating at 16.04 MHz was used for the 13 C study. Seventy-five grams of glucose dissolved in water was administered for the natural-abundance 13 C-MRS dynamic study which lasted for approximately 40 to 60 min. Data acquisition was broken into 20-min and 1.7-min blocks. Localized proton shimming with a whole-body coil was performed with sufficient volume to include the observing area of the surface coil; the line width of the water signal was less than 20 Hz. Results and Conclusion: The glucose and glycogen spectra were clearly visible at 80 to 120 ppm after oral administration of the glucose solution. These data demonstrate that dynamic hepatic carbohydrate metabolism can be observed with commercially available MR equipment. Given that the human hepatic glycogen pool reaches maximum level within less than 10 min, this technique should provide a direct diagnosis of hepatic carbohydrate metabolic disorders. (orig.)

  18. Glycogen metabolism protects against metabolic insult to preserve carotid body function during glucose deprivation.

    Science.gov (United States)

    Holmes, Andrew P; Turner, Philip J; Carter, Paul; Leadbeater, Wendy; Ray, Clare J; Hauton, David; Buckler, Keith J; Kumar, Prem

    2014-10-15

    The view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.1 ± 1.2 min, before irreversible failure following a brief period of excitation. Graded increases in the basal discharge induced by reducing the superfusate PO2 led to proportional decreases in the time to the pre-failure excitation during glucose deprivation which was dependent on a complete run-down in glycolysis and a fall in cellular energy status. A similar ability to withstand prolonged glucose deprivation was observed in isolated type I cells. Electron micrographs and immunofluorescence staining of rat CB sections revealed the presence of glycogen granules and the glycogen conversion enzymes glycogen synthase I and glycogen phosphorylase BB, dispersed throughout the type I cell cytoplasm. Furthermore, pharmacological attenuation of glycogenolysis and functional depletion of glycogen both significantly reduced the time to glycolytic run-down by ∼33 and 65%, respectively. These findings suggest that type I cell glycogen metabolism allows for the continuation of glycolysis and the maintenance of CB sensory neuronal output in periods of restricted glucose delivery and this may act as a key protective mechanism for the organ during hypoglycaemia. The ability, or otherwise, to preserve energetic status may thus account for variation in the reported capacity of the CB to sense physiological glucose concentrations and may even underlie its function during pathological states associated with augmented CB discharge. © 2014 The Authors. The Journal of Physiology © 2014

  19. Protectin DX suppresses hepatic gluconeogenesis through AMPK-HO-1-mediated inhibition of ER stress.

    Science.gov (United States)

    Jung, Tae Woo; Kim, Hyung-Chun; Abd El-Aty, A M; Jeong, Ji Hoon

    2017-06-01

    Several studies have shown that protectins, which are ω-3 fatty acid-derived proresolution mediators, may improve insulin resistance. Recently, protectin DX (PDX) was documented to attenuate insulin resistance by stimulating IL-6 expression in skeletal muscle, thereby regulating hepatic gluconeogenesis. These findings made us investigate the direct effects of PDX on hepatic glucose metabolism in the context of diabetes. In the current study, we show that PDX regulates hepatic gluconeogenesis in a manner distinct from its indirect glucoregulatory activity via IL-6. We found that PDX stimulated AMP-activated protein kinase (AMPK) phosphorylation, thereby inducing heme oxygenase 1 (HO-1) expression. This induction blocked hepatic gluconeogenesis by suppressing endoplasmic reticulum (ER) stress in hepatocytes under hyperlipidemic conditions. These effects were significantly dampened by silencing AMPK or HO-1 expression with small interfering RNA (siRNA). We also demonstrated that administration of PDX to high fat diet (HFD)-fed mice resulted in increased hepatic AMPK phosphorylation and HO-1 expression, whereas hepatic ER stress was substantially attenuated. Furthermore, PDX treatment suppressed the expression of gluconeogenic genes, thereby decreasing blood glucose levels in HFD-fed mice. In conclusion, our findings suggest that PDX inhibits hepatic gluconeogenesis via AMPK-HO-1-dependent suppression of ER stress. Thus, PDX may be an effective therapeutic target for the treatment of insulin resistance and type 2 diabetes through the regulation of hepatic gluconeogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Obesity-induced hepatic hypoperfusion primes for hepatic dysfunction after resuscitated hemorrhagic shock.

    Science.gov (United States)

    Matheson, Paul J; Hurt, Ryan T; Franklin, Glen A; McClain, Craig J; Garrison, R Neal

    2009-10-01

    Obese patients (BMI>35) after blunt trauma are at increased risk compared to non-obese for organ dysfunction, prolonged hospital stay, infection, prolonged mechanical ventilation, and mortality. Obesity and non-alcoholic fatty liver disease (NAFLD) produce a low grade systemic inflammatory response syndrome (SIRS) with compromised hepatic blood flow, which increases with body mass index. We hypothesized that obesity further aggravates liver dysfunction by reduced hepatic perfusion following resuscitated hemorrhagic shock (HEM). Age-matched Zucker rats (Obese, 314-519 g & Lean, 211-280 g) were randomly assigned to 4 groups (n = 10-12/group): (1) Lean-Sham; (2) Lean, HEM, and resuscitation (HEM/RES); (3) Obese-Sham; and (4) Obese-HEM/RES. HEM was 40% of mean arterial pressure (MAP) for 60 min; RES was return of shed blood/5 min and 2 volumes of saline/25 min. Hepatic blood flow (HBF) using galactose clearance, liver enzymes and complete metabolic panel were measured over 4 h after completion of RES. Obese rats had increased MAP, heart rate, and fasting blood glucose and BUN concentrations compared to lean controls, required less blood withdrawal (mL/g) to maintain 40% MAP, and RES did not restore BL MAP. Obese rats had decreased HBF at BL and during HEM/RES, which persisted 4 h post RES. ALT and BUN were increased compared to Lean-HEM/RES at 4 h post-RES. These data suggest that obesity significantly contributes to trauma outcomes through compromised vascular control or through fat-induced sinusoidal compression to impair hepatic blood flow after HEM/RES resulting in a greater hepatic injury. The pro-inflammatory state of NAFLD seen in obesity appears to prime the liver for hepatic ischemia after resuscitated hemorrhagic shock, perhaps intensified by insidious and ongoing hepatic hypoperfusion established prior to the traumatic injury or shock.

  1. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine.

    Science.gov (United States)

    Stumvoll, M; Chintalapudi, U; Perriello, G; Welle, S; Gutierrez, O; Gerich, J

    1995-11-01

    Despite ample evidence that the kidney can both produce and use appreciable amounts of glucose, the human kidney is generally regarded as playing a minor role in glucose homeostasis. This view is based on measurements of arteriorenal vein glucose concentrations indicating little or no net release of glucose. However, inferences from net balance measurements do not take into consideration the simultaneous release and uptake of glucose by the kidney. Therefore, to assess the contribution of release and uptake of glucose by the human kidney to overall entry and removal of plasma glucose, we used a combination of balance and isotope techniques to measure renal glucose net balance, fractional extraction, uptake and release as well as overall plasma glucose appearance and disposal in 10 normal volunteers under basal postabsorptive conditions and during a 3-h epinephrine infusion. In the basal postabsorptive state, there was small but significant net output of glucose by the kidney (66 +/- 22 mumol.min-1, P = 0.016). However, since renal glucose fractional extraction averaged 2.9 +/- 0.3%, there was considerable renal glucose uptake (2.3 +/- 0.2 mumol.kg-1.min-1) which accounted for 20.2 +/- 1.7% of systemic glucose disposal (11.4 +/- 0.5 mumol.kg-1.min-1). Renal glucose release (3.2 +/- 0.2 mumol.kg-1.min-1) accounted for 27.8 +/- 2.1% of systemic glucose appearance (11.4 +/- 0.5 mumol.kg-1.min-1). Epinephrine infusion, which increased plasma epinephrine to levels observed during hypoglycemia (3722 +/- 453 pmol/liter) increased renal glucose release nearly twofold (5.2 +/- 0.5 vs 2.8 +/- 0.1 mol.kg-1.min-1, P = 0.01) so that at the end of the infusion, renal glucose release accounted for 40.3 +/- 5.5% of systemic glucose appearance and essentially all of the increase in systemic glucose appearance. These observations suggest an important role for the human kidney in glucose homeostasis.

  2. Glucose phosphorylation is not rate limiting for accumulation of glycogen from glucose in perfused livers from fasted rats

    International Nuclear Information System (INIS)

    Youn, J.H.; Ader, M.; Bergman, R.N.

    1989-01-01

    Incorporation of Glc and Fru into glycogen was measured in perfused livers from 24-h fasted rats using [6-3H]Glc and [U-14C]Fru. For the initial 20 min, livers were perfused with low Glc (2 mM) to deplete hepatic glycogen and were perfused for the following 30 min with various combinations of Glc and Fru. With constant Fru (2 mM), increasing perfusate Glc increased the relative contribution of Glc carbons to glycogen (7.2 +/- 0.4, 34.9 +/- 2.8, and 59.1 +/- 2.7% at 2, 10, and 20 mM Glc, respectively; n = 5 for each). During perfusion with substrate levels seen during refeeding (10 mM Glc, 1.8 mumol/g/min gluconeogenic flux from 2 mM Fru), Fru provided 54.7 +/- 2.7% of the carbons for glycogen, while Glc provided only 34.9 +/- 2.8%, consistent with in vivo estimations. However, the estimated rate of Glc phosphorylation was at least 1.10 +/- 0.11 mumol/g/min, which exceeded by at least 4-fold the glycogen accumulation rate (0.28 +/- 0.04 mumol of glucose/g/min). The total rate of glucose 6-phosphate supply via Glc phosphorylation and gluconeogenesis (2.9 mumol/g/min) exceeded reported in vivo rates of glycogen accumulation during refeeding. Thus, in perfused livers of 24-h fasted rats there is an apparent redundancy in glucose 6-phosphate supply. These results suggest that the rate-limiting step for hepatic glycogen accumulation during refeeding is located between glucose 6-phosphate and glycogen, rather than at the step of Glc phosphorylation or in the gluconeogenic pathway

  3. Hepatic and extrahepatic responses to insulin in NIDDM and nondiabetic humans. Assessment in absence of artifact introduced by tritiated nonglucose contaminants

    International Nuclear Information System (INIS)

    Butler, P.C.; Kryshak, E.J.; Schwenk, W.F.; Haymond, M.W.; Rizza, R.A.

    1990-01-01

    It is well established that patients with non-insulin-dependent diabetes mellitus (NIDDM) are resistant to insulin. However, the contribution of hepatic and extrahepatic tissues to insulin resistance remains controversial. The uncertainty may be at least in part due to errors introduced by the unknowing use in previous studies of impure isotopes to measure glucose turnover. To determine hepatic and extrahepatic responses to insulin in the absence of these errors, steady-state glucose turnover was measured simultaneously with [6-3H]- and [6-14C]glucose during sequential 5- and 4-h infusions of insulin at rates of 0.4 and 10 mU.kg-1.min-1 in diabetic and nondiabetic subjects. At low insulin concentrations, [6-3H]- and [6-14C]glucose gave similar estimates of glucose turnover. Hepatic glucose release was equal to but not below zero in the nondiabetic subjects, but persistent glucose release (P less than 0.001) and decreased glucose uptake (P less than 0.001) was observed in the diabetic patients. At high insulin concentrations, both isotopes underestimated glucose turnover during the 1st h after initiation of the high-dose insulin infusion. More time (P less than 0.05) was required to reachieve steady state in NIDDM than nondiabetic subjects. At steady state, [6-3H]- but not [6-14C]glucose systematically underestimated (P less than 0.05) glucose turnover in both groups due to the presence of a tritiated nonglucose contaminant. The percentage of radioactivity in plasma due to tritiated contaminants was linearly related to turnover

  4. Glucose-6-phosphatase deficiency

    Directory of Open Access Journals (Sweden)

    Labrune Philippe

    2011-05-01

    Full Text Available Abstract Glucose-6-phosphatase deficiency (G6P deficiency, or glycogen storage disease type I (GSDI, is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea. Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty, generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency. GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib. Mutations in the genes G6PC (17q21 and SLC37A4 (11q23 respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most

  5. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Science.gov (United States)

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  6. Ficus Deltoidea Enhance Glucose Uptake Activity in Cultured Muscle Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis; Amin Ismail; Muhajir Hamid

    2015-01-01

    Ficus deltoidea or locally known as Mas cotek is one of the common medicinal plants used in Malaysia. Our previous studies showed that this plant have blood glucose lowering effect. Glucose uptake into muscle and adipocytes cells is one of the known mechanisms of blood glucose lowering effect. This study was performed to evaluate the effect of Ficus deltoidea on glucose uptake activity into muscle cells. The cells were incubated with Ficus deltoidea extracts either alone or combination with insulin. Amount of glucose uptake by L6 myotubes was determined using glucose tracer, 2-deoxy-(1- 3 H 1 )-glucose. The results showed that Ficus deltoidea extracts at particular doses enhanced basal or insulin-mediated glucose uptake into muscle cells significantly. Hot aqueous extract enhanced glucose uptake at the low concentration (10 μg/ ml) whereas methanolic extract enhanced glucose uptake at low and high concentrations. Methanolic extract also mimicked insulin activity during enhancing glucose uptake into L^ muscle cells. Glucose uptake activity of Ficus deltoidea could be attributed by the phenolic compound presence in the plant. This study had shown that Ficus deltoidea has the ability to enhance glucose uptake into muscle cells which is partly contributed the antidiabetic activity of this plant. (author)

  7. Role of liver nerves and adrenal medulla in glucose turnover of running rats

    DEFF Research Database (Denmark)

    Sonne, B; Mikines, K J; Richter, Erik

    1985-01-01

    Sympathetic control of glucose turnover was studied in rats running 35 min at 21 m X min-1 on the level. The rats were surgically liver denervated, adrenodemedullated, or sham operated. Glucose turnover was measured by primed constant infusion of [3-3H]glucose. At rest, the three groups had...... identical turnover rates and concentrations of glucose in plasma. During running, glucose production always rose rapidly to steady levels. The increase was not influenced by liver denervation but was halved by adrenodemedullation. Similarly, hepatic glycogen depletion was identical in denervated and control...... rats but reduced after adrenodemedullation. Early in exercise, glucose uptake rose identically in all groups and, in adrenodemedullated rats, matched glucose production. Accordingly, plasma glucose concentration increased in liver-denervated and control rats but was constant in adrenodemedullated rats...

  8. Shared genetic effects between hepatic steatosis and fibrosis: A prospective twin study

    Science.gov (United States)

    Cui, Jeffrey; Chen, Chi-Hua; Lo, Min-Tzu; Schork, Nicholas; Bettencourt, Ricki; Gonzalez, Monica P; Bhatt, Archana; Hooker, Jonathan; Shaffer, Katherine; Nelson, Karen E; Long, Michelle T; Brenner, David A; Sirlin, Claude B; Loomba, Rohit

    2016-01-01

    Introduction Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic risk factors including hypertension and dyslipidemia, and may progress to liver fibrosis. Previous studies have shown that hepatic steatosis and fibrosis are heritable but whether they have a significant shared gene effect is unknown. This study aimed to examine the shared gene effects between hepatic steatosis, fibrosis, and their associations with metabolic risk factors. Methods This is a cross-sectional analysis of a prospective cohort of well-characterized, community-dwelling twins (45 monozygotic, 20 dizygotic twin pairs, 130 total subjects) from Southern California. Hepatic steatosis was assessed with MRI-proton density fat fraction (MRI-PDFF) and hepatic fibrosis was assessed with magnetic resonance elastography (MRE). A standard bivariate twin AE model was used to estimate the proportion of phenotypic variance between two phenotypes accounted for by additive genetic effects (A) and individual-specific environmental effects (E). Genetic correlations (rG) estimated from this model represent the degree to which the genetic determinants of two phenotypes overlap. Results The mean (±SD) age and BMI were 47.1 (±21.9) years and 26.9 (±6.5) kg/m2, respectively. 20% (26/130) of the cohort had hepatic steatosis (MRI-PDFF ≥5%) and 8.2% (10/122) had hepatic fibrosis (MRE ≥3Kpa). Blood pressure (systolic and diastolic), triglycerides, glucose, homeostatic model assessment of insulin resistance (HOMA-IR), insulin, hemoglobin A1c (HbA1c), and low high-density lipoprotein (HDL) had significant shared gene effects with hepatic steatosis. Triglycerides, glucose, HOMA-IR, insulin, HbA1c, and low HDL had significant shared gene effects with hepatic fibrosis. Hepatic steatosis and fibrosis had a highly significant shared gene effect of 0.756 (95% CI: 0.716–1, psteatosis pathogenesis may also be involved with fibrosis pathogenesis. PMID:27315352

  9. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport

    International Nuclear Information System (INIS)

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Daniele; Fagret, Daniel; Ghezzi, Catherine; Halimi, Serge; Demongeot, Jacques

    2007-01-01

    Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state that has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats using 125 I-6-deoxy-6-iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic-normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood was assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p < 0.01; muscle, p < 0.05; heart, p < 0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p < 0.001; muscle, p < 0.001; heart, p < 0.01) whereas no significant changes were observed in fructose-fed rats. This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging. (orig.)

  10. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport

    Science.gov (United States)

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Danièle; Halimi, Serge; Demongeot, Jacques; Fagret, Daniel; Ghezzi, Catherine

    2007-01-01

    Purpose Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state and it has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats with 125I-6-Deoxy-6-Iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Methods Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood were assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Results Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady-state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p<0.01; muscle, p<0.05; heart, p<0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p<0.001; muscle, p<0.001; heart, p<0.01) and whereas no significant changes were observed in fructose-fed rats. Conclusion This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging. PMID:17171359

  11. Basal and insulin-stimulated skeletal muscle sugar transport in endotoxic and bacteremic rats

    International Nuclear Information System (INIS)

    Westfall, M.V.; Sayeed, M.M.

    1988-01-01

    Membrane glucose transport with and without insulin was studied in soleus muscle from 5-h endotoxic rats (40 mg/kg Salmonella enteritidis lipopolysaccharide), and in soleus and epitrochlearis muscles from 12-h bacteremic (Escherichia coli, 4 X 10(10) CFU/kg) rats. Glucose transport was measured in muscles by evaluating the fractional efflux of 14 C-labeled 3-O-methylglucose ( 14 C-3-MG) after loading muscles with 14 C-3-MG. Basal 3-MG transport was elevated in soleus muscles from endotoxic as well as in soleus and epitrochlearis muscles from bacteremic rats compared with time-matched controls. Low insulin concentrations stimulated 14 C-3-MG transport more in bacteremic and endotoxic rat muscles than in controls. However, sugar transport in the presence of high insulin dose was attenuated in soleus and epitrochlearis muscles from bacteremic rats and soleus muscles from endotoxic rats compared with controls. Analysis of the dose-response relationship with ALLFIT revealed that the maximal transport response to insulin was significantly decreased in both models of septic shock. Sensitivity to insulin (EC50) was increased in endotoxic rat muscles, and a somewhat similar tendency was observed in bacteremic rat soleus muscles. Neural and humoral influences and/or changes in cellular metabolic energy may contribute to the increase in basal transport. Shifts in insulin-mediated transport may be due to alterations in insulin-receptor-effector coupling and/or the number of available glucose transporters

  12. Hepatic steatosis is associated with increased hepatic FDG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Keramida, Georgia, E-mail: G.Keramida@bsms.ac.uk [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Department of Nuclear Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom); Potts, Jon [Department of Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom); Bush, Janice [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Dizdarevic, Sabina; Peters, A. Michael [Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton (United Kingdom); Department of Nuclear Medicine, Brighton Sussex University Hospitals NHS Trust, Brighton (United Kingdom)

    2014-05-15

    Objective: The use of liver as a reference tissue for semi-quantification of tumour FDG uptake may not be valid in hepatic steatosis (HS). Previous studies on the relation between liver FDG uptake and HS have been contradictory probably because they ignored blood glucose (BG). Because hepatocyte and blood FDG concentrations equalize, liver FDG uptake parallels BG, which must therefore be considered when studying hepatic FDG uptake. We therefore re-examined the relation between HS and liver uptake taking BG into account. Methods: This was a retrospective study of 304 patients undergoing routine PET/CT with imaging 60 min post-FDG. Average standard uptake value (SUV{sub ave}), maximum SUV (SUV{sub max}) and CT density (index of HS) were measured in a liver ROI. Blood pool SUV was based on the left ventricular cavity (SUV{sub LV}). Correlations were assessed using least squares fitting of continuous data. Patients were also divided into BG subgroups (<4, 4–5, 5–6, 6–8, 8–10 and 10+ mmol/l). Results: SUV{sub ave}, SUV{sub max} and SUV{sub LV} displayed similar relations with BG. SUV{sub max}/SUV{sub LV}, but not SUV{sub ave}/SUV{sub LV}, correlated significantly with BG. SUV{sub max}, but not SUV{sub ave}, correlated inversely with CT density before and after adjusting for BG. SUV{sub max}/SUV{sub ave} correlated more strongly with CT density than SUV{sub max}. CT density correlated inversely with SUV{sub max}/SUV{sub LV} but positively with SUV{sub ave}/SUV{sub LV}. Conclusions: Hepatic SUV is more influenced by BG than by HS. Its relation with BG renders it unsuitable as a reference tissue. Nevertheless, hepatic fat does correlate positively with liver SUV, although this is seen only with SUV{sub max} because SUV{sub ave} is ‘diluted’ by hepatic fat.

  13. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans

    International Nuclear Information System (INIS)

    Baron, A.D.; Brechtel, G.; Wallace, P.; Edelman, S.V.

    1988-01-01

    In vivo glucose uptake can occur via two mechanisms, namely, insulin-mediated glucose uptake (IMGU) and non-insulin-mediated glucose uptake (NIMGU). Although the principal tissue sites for IMGU are skeletal muscle, the tissue sites for NIMGU at a given serum glucose concentration are not known. To examine this issue, rates of whole body glucose uptake (Rd) were measured at basal and during glucose clamp studies performed at euglycemia (approximately 90 mg/dl) and hyperglycemia (approximately 220 mg/dl) in six lean healthy men. Studies were performed during hyperinsulinemia (approximately 70 microU/ml) and during somatostatin-induced insulinopenia to measure IMGU and NIMGU, respectively. During each study, leg glucose balance (arteriovenous catheter technique) was also measured. With this approach, rates of whole body skeletal muscle IMGU and NIMGU can be estimated, and the difference between overall Rd and skeletal muscle glucose uptake represents non-skeletal muscle Rd. The results indicate that approximately 20% of basal Rd is into skeletal muscle. During insulinopenia approximately 86% of body NIMGU occurs in non-skeletal muscle tissues at euglycemia. When hyperglycemia was created, whole body NIMGU increased from 128 +/- 6 to 213 +/- 18 mg/min (P less than 0.01); NIMGU into non-skeletal muscle tissues was 134 +/- 11 and 111 +/- 6 mg/min at hyperglycemia and euglycemia, respectively, P = NS. Therefore, virtually all the hyperglycemia induced increment in NIMGU occurred in skeletal muscle. During hyperinsulinemia, IMGU in skeletal muscle represented 75 and 95% of body Rd, at euglycemia and hyperglycemia, respectively

  14. An Intestinal Farnesoid X Receptor–Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice

    Science.gov (United States)

    Xie, Cen; Shi, Jingmin; Gao, Xiaoxia; Sun, Dongxue; Sun, Lulu; Wang, Ting; Takahashi, Shogo; Anitha, Mallappa; Krausz, Kristopher W.; Patterson, Andrew D.

    2017-01-01

    Increasing evidence supports the view that intestinal farnesoid X receptor (FXR) is involved in glucose tolerance and that FXR signaling can be profoundly impacted by the gut microbiota. Selective manipulation of the gut microbiota–FXR signaling axis was reported to significantly impact glucose intolerance, but the precise molecular mechanism remains largely unknown. Here, caffeic acid phenethyl ester (CAPE), an over-the-counter dietary supplement and an inhibitor of bacterial bile salt hydrolase, increased levels of intestinal tauro-β-muricholic acid, which selectively suppresses intestinal FXR signaling. Intestinal FXR inhibition decreased ceramide levels by suppressing expression of genes involved in ceramide synthesis specifically in the intestinal ileum epithelial cells. The lower serum ceramides mediated decreased hepatic mitochondrial acetyl-CoA levels and pyruvate carboxylase (PC) activities and attenuated hepatic gluconeogenesis, independent of body weight change and hepatic insulin signaling in vivo; this was reversed by treatment of mice with ceramides or the FXR agonist GW4064. Ceramides substantially attenuated mitochondrial citrate synthase activities primarily through the induction of endoplasmic reticulum stress, which triggers increased hepatic mitochondrial acetyl-CoA levels and PC activities. These results reveal a mechanism by which the dietary supplement CAPE and intestinal FXR regulates hepatic gluconeogenesis and suggest that inhibiting intestinal FXR is a strategy for treating hyperglycemia. PMID:28223344

  15. Hexachlorobenzene impairs glucose metabolism in a rat model of porphyria cutanea tarda: a mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazzetti, Marta Blanca; Taira, Maria Cristina; Lelli, Sandra Marcela; Viale, Leonor Carmen San Martin de [Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428BGA, Ciudad Autonoma Buenos Aires (Argentina); Dascal, Eduardo; Basabe, Juan Carlos [Centro de Investigaciones Endocrinologicas (CEDIE). Hospital de Ninos, Dr. Ricardo Gutierrez, C1425EDF, Ciudad Autonoma Buenos Aires (Argentina)

    2004-01-01

    Hexachlobenzene (HCB), one of the most persistent environmental pollutants, induces porphyria cutanea tarda (PCT). The aim of this work was to analyze the effect of HCB on some aspects of glucose metabolism, particularly those related to its neosynthesis in vivo. For this purpose, a time-course study on gluconeogenic enzymes, pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G-6-Pase) and on pyruvate kinase (PK), a glycolytic enzyme, was carried out. Plasma glucose and insulin levels, hepatic glycogen, tryptophan contents, and the pancreatic insulin secretion pattern stimulated by glucose were investigated. Oxidative stress and heme pathway parameters were also evaluated. HCB treatment decreased PC, PEPCK, and G-6-Pase activities. The effect was observed at an early time point and grew as the treatment progressed. Loss of 60, 56, and 37%, respectively, was noted at the end of the treatment when a considerable amount of porphyrins had accumulated in the liver as a result of drastic blockage of uroporphyrinogen decarboxylase (URO-D) (95% inhibition). The plasma glucose level was reduced (one-third loss), while storage of hepatic glucose was stimulated in a time-dependent way by HCB treatment. A decay in the normal plasma insulin level was observed as fungicide intoxication progressed (twice to four times lower). However, normal insulin secretion of perifused pancreatic Langerhans islets stimulated by glucose during the 3rd and 6th weeks of treatment did not prove to be significantly affected. HCB promoted a time-dependent increase in urinary chemiluminiscence (fourfold) and hepatic malondialdehide (MDA) content (fivefold), while the liver tryptophan level was only raised at the longest intoxication times. These results would suggest that HCB treatment does not cause a primary alteration in the mechanism of pancreatic insulin secretion and that the changes induced by the fungicide on insulin levels would be an adaptative

  16. Brain MR imaging in patients with hepatic cirrhosis: relationship between high intensity signal in basal ganglia on T1-weighted images and elemental concentrations in brain

    International Nuclear Information System (INIS)

    Maeda, H.; Sato, M.; Yoshikawa, A.; Kimura, M.; Sonomura, T.; Terada, M.; Kishi, K.

    1997-01-01

    In patients with hepatic cirrhosis, the globus pallidus and putamen show high intensity on T1-weighted MRI. While the causes of this high signal have been thought to include paramagnetic substances, especially manganese, no evidence for this has been presented. Autopsy in four cases of hepatic cirrhosis permitted measurement of metal concentrations in brain and histopathological examination. In three cases the globus pallidus showed high intensity on T1-weighted images. Mean manganese concentrations in globus pallidus, putamen and frontal white matter were 3.03 ± 0.38, 2.12 ± 0.37, and 1.38 ± 0.24 (μg/g wet weight), respectively, being approximately four- to almost ten-fold the normal values. Copper concentrations in globus pallidus and putamen were also high, 50 % more than normal. Calcium, iron, zinc and magnesium concentrations were all normal. The fourth case showed no abnormal intensity in the basal ganglia and brain metal concentrations were all normal. Histopathologically, cases with showing high signal remarkable atrophy, necrosis, and deciduation of nerve cells and proliferation of glial cells and microglia in globus pallidus. These findings were similar to those in chronic manganese poisoning. On T1-weighted images, copper deposition shows no abnormal intensity. It is therefore inferred that deposition of highly concentrations of manganese may caused high signal on T1-weighted images and nerve cell death in the globus pallidus. (orig.). With 2 figs., 2 tabs

  17. Significance of glucagon for insulin secretion and hepatic glycogenolysis during exercise in rats

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H; Holst, J J

    1981-01-01

    The significance of glucagon and of the sympatho-adrenal system for insulin secretion and hepatic glycogen depletion during exercise was studied. Male rats were either adrenodemedullated and chemically sympathectomized with 6-hydroxydopamine (SX) or sham-treated (C). During light ether anesthesia......, cardiac blood for glucose analysis and a biopsy of the liver were obtained, and either antigen-stripped glucagon antibodies (A) or control gamma globulins (N) in saline were injected through the cardiac cannula. Subsequently, the rats swam in tepid water (33-34 degree C) for 100 minutes with a tail weight...... attached (2% of body weight). Then cardiac blood was drawn for analysis of glucose, insulin and glucagon, and a sample of the liver was collected. In both CA and CN rats, the blood glucose concentration tended to increase (p less than 0.1) during exercise, whereas hepatic glycogen depletion and the plasma...

  18. Enhanced glucose cycling and suppressed de novo synthesis of glucose-6-phosphate result in a net unchanged hepatic glucose output in ob/ob mice

    NARCIS (Netherlands)

    Bandsma, RHJ; Grefhorst, A; van Dijk, TH; van der Sluijs, FH; Hammer, A; Reijngoud, DJ; Kuipers, F

    2004-01-01

    Aims/hypothesis. Leptin-deficient ob/ob mice are hyperinsulinaemic and hyperglycaemic; however, the cause of hyperglycaemia remains largely unknown. Methods. Glucose metabolism in vivo in 9-h fasted ob/ob mice and lean littermates was studied by infusing [U-C-13]-glucose, [2-C-13]-glycerol,

  19. Differentiation of the insulin-sensitive glucose transporter in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Frost, S.C.; Baly, D.L.; Cushman, S.W.; Lane, M.D.; Simpson, I.A.

    1986-01-01

    3T3-L1 fibroblasts differentiate in culture to resemble adipocytes both morphologically and biochemically. Insulin-sensitive glucose transport, as measured by 2-deoxy-[1- 14 C]- glucose uptake in the undifferentiated cell is small (2X). In contrast, the rate of glucose transport in fully differentiated cells is elevated 15-fold over basal in the presence of insulin. To determine if this is due to an increase in the number of transporters/cell or accessibility to the transporters, the number of transporters was measured in subcellular fractions over differentiation using a 3 H-cytochalasin B binding assay. The increase in the rate of insulin-sensitive glucose transport directly parallels an increase in the number of transporters which reside in an insulin-responsive intracellular compartment. This observation was confirmed by identifying the transporters by immunoblotting using an antibody generated against the human erythrocyte transporter. The molecular weight of this transporter increases over differentiation from a single band of 40kDa to a heterogeneous triplet of 40, 44 and 48kDa. These data suggest that the transporter undergoes differential processing and that the functional, insulin-responsive transporter may be different from the insulin-insensitive (basal) transporter

  20. The transcription factor Prep1 controls hepatic insulin sensitivity and gluconeogenesis by targeting nuclear localization of FOXO1

    International Nuclear Information System (INIS)

    Kulebyakin, Konstantin; Penkov, Dmitry; Blasi, Francesco; Akopyan, Zhanna; Tkachuk, Vsevolod

    2016-01-01

    Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to search new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability. - Highlights: • A novel model of liver-specific Prep1 knockout is established. • Ablation of Prep1 in hepatocytes increases insulin sensitivity. • Prep1 controls hepatic insulin sensitivity by regulating localization of FOXO1. • Prep1 regulates

  1. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    International Nuclear Information System (INIS)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr.; Gillin, J.C.

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep

  2. Assessment of insulin resistance in fructose-fed rats with {sup 125}I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Daniele; Fagret, Daniel; Ghezzi, Catherine [INSERM, E340, 38000 Grenoble, (France); Univ Grenoble, 38000 Grenoble, (France); Halimi, Serge [CHRU Grenoble, Hopital Michallon, Service de Diabetologie, 38000 Grenoble, (France); Demongeot, Jacques [Univ Grenoble, 38000 Grenoble, (France); CNRS, UMR 5525, 38000 Grenoble, (France)

    2007-05-15

    Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state that has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats using {sup 125}I-6-deoxy-6-iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic-normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood was assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p < 0.01; muscle, p < 0.05; heart, p < 0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p < 0.001; muscle, p < 0.001; heart, p < 0.01) whereas no significant changes were observed in fructose-fed rats. This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging. (orig.)

  3. A Specific ChREBP and PPARα Cross-Talk Is Required for the Glucose-Mediated FGF21 Response

    Directory of Open Access Journals (Sweden)

    Alison Iroz

    2017-10-01

    Full Text Available While the physiological benefits of the fibroblast growth factor 21 (FGF21 hepatokine are documented in response to fasting, little information is available on Fgf21 regulation in a glucose-overload context. We report that peroxisome-proliferator-activated receptor α (PPARα, a nuclear receptor of the fasting response, is required with the carbohydrate-sensitive transcription factor carbohydrate-responsive element-binding protein (ChREBP to balance FGF21 glucose response. Microarray analysis indicated that only a few hepatic genes respond to fasting and glucose similarly to Fgf21. Glucose-challenged Chrebp−/− mice exhibit a marked reduction in FGF21 production, a decrease that was rescued by re-expression of an active ChREBP isoform in the liver of Chrebp−/− mice. Unexpectedly, carbohydrate challenge of hepatic Pparα knockout mice also demonstrated a PPARα-dependent glucose response for Fgf21 that was associated with an increased sucrose preference. This blunted response was due to decreased Fgf21 promoter accessibility and diminished ChREBP binding onto Fgf21 carbohydrate-responsive element (ChoRE in hepatocytes lacking PPARα. Our study reports that PPARα is required for the ChREBP-induced glucose response of FGF21.

  4. The Acute Effects of Low-Dose TNF-α on Glucose Metabolism and β-Cell Function in Humans

    DEFF Research Database (Denmark)

    Ibfelt, Tobias; Fischer, Christian Philip; Plomgaard, Peter

    2014-01-01

    , nondiabetic young men (n = 10) during a 4-hour basal period followed by an intravenous glucose tolerance test (IVGTT). TNF-α lowered insulin levels by 12% during the basal period (P levels increased markedly in both trials, but there was no difference between trials......Type 2 diabetes is characterized by increased insulin resistance and impaired insulin secretion. Type 2 diabetes is also associated with low-grade inflammation and increased levels of proinflammatory cytokines such as TNF-α. TNF-α has been shown to impair peripheral insulin signaling in vitro...... and in vivo. However, it is unclear whether TNF-α may also affect endogenous glucose production (EGP) during fasting and glucose-stimulated insulin secretion (GSIS) in vivo. We hypothesized that low-dose TNF- α would increase EGP and attenuate GSIS. Recombinant human TNF-α or placebo was infused in healthy...

  5. PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis.

    Science.gov (United States)

    Kim, Don-Kyu; Kim, Yong-Hoon; Hynx, Debby; Wang, Yanning; Yang, Keum-Jin; Ryu, Dongryeol; Kim, Kyung Seok; Yoo, Eun-Kyung; Kim, Jeong-Sun; Koo, Seung-Hoi; Lee, In-Kyu; Chae, Ho-Zoon; Park, Jongsun; Lee, Chul-Ho; Biddinger, Sudha B; Hemmings, Brian A; Choi, Hueng-Sik

    2014-12-01

    Insulin resistance, a major contributor to the pathogenesis of type 2 diabetes, leads to increased hepatic glucose production (HGP) owing to an impaired ability of insulin to suppress hepatic gluconeogenesis. Nuclear receptor oestrogen-related receptor γ (ERRγ) is a major transcriptional regulator of hepatic gluconeogenesis. In this study, we investigated insulin-dependent post-translational modifications (PTMs) altering the transcriptional activity of ERRγ for the regulation of hepatic gluconeogenesis. We examined insulin-dependent phosphorylation and subcellular localisation of ERRγ in cultured cells and in the liver of C57/BL6, leptin receptor-deficient (db/db), liver-specific insulin receptor knockout (LIRKO) and protein kinase B (PKB) β-deficient (Pkbβ (-/-)) mice. To demonstrate the role of ERRγ in the inhibitory action of insulin on hepatic gluconeogenesis, we carried out an insulin tolerance test in C57/BL6 mice expressing wild-type or phosphorylation-deficient mutant ERRγ. We demonstrated that insulin suppressed the transcriptional activity of ERRγ by promoting PKB/Akt-mediated phosphorylation of ERRγ at S179 and by eliciting translocation of ERRγ from the nucleus to the cytoplasm through interaction with 14-3-3, impairing its ability to promote hepatic gluconeogenesis. In addition, db/db, LIRKO and Pkbβ (-/-) mice displayed enhanced ERRγ transcriptional activity due to a block in PKBβ-mediated ERRγ phosphorylation during refeeding. Finally, the phosphorylation-deficient mutant ERRγ S179A was resistant to the inhibitory action of insulin on HGP. These results suggest that ERRγ is a major contributor to insulin action in maintaining hepatic glucose homeostasis.

  6. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  7. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice.

    Science.gov (United States)

    Claret, Marc; Smith, Mark A; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J; Colom, André; Valet, Philippe; Cani, Patrice D; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L; Giese, K Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L; Carling, David; Withers, Dominic J

    2011-03-01

    AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.

  8. Metabolic Fate of Fructose Ingested with and without Glucose in a Mixed Meal

    Directory of Open Access Journals (Sweden)

    Fanny Theytaz

    2014-07-01

    Full Text Available Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G or 13C-labelled fructose, lipids and protein, but without glucose (Fr, or protein and lipids alone (ProLip. After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4% and 13CO2 production (36.6% ± 1.9% were higher (p < 0.05 than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG. This trial was approved by clinicaltrial. gov. Identifier is NCT01792089.

  9. Insulin-stimulated conversion of D-[5-3H] glucose to 3HOH in the perifused isolated rat adipocyte

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Peavy, D.E.; Frechette, P.; Solomon, S.S.

    1986-01-01

    Characteristics of basal and insulin-stimulated glucose utilization by perifused adipocytes have been investigated by measuring the formation of 3 HOH from D-(5- 3 H) glucose. At a glucose concentration of 0.55 mmol/L, basal glucose utilization ranged from 0.5 to 1.0 nmol/min/10(6) cells. Perifused adipocytes showed a maximal response to insulin of a threefold to fourfold increase in the conversion of (5- 3 H) glucose to 3 HOH with a half-maximal response at an insulin concentration of 20 microU/mL. The response to insulin was blocked by phlorizin and cytochalasin B, competitive inhibitors of glucose transport, consistent with an effect of insulin on glucose transport. Insulin increased the Vmax for glucose metabolism but had no effect on the apparent affinity for glucose utilization. The characteristics of glucose utilization and the stimulation of glucose metabolism by insulin in the perifused adipocyte are therefore similar to characteristics previously observed with incubated adipocytes. Because insulin can readily be removed from the system, perifused adipocytes are especially suited for studying the termination of insulin action. The termination of insulin-stimulated glucose metabolism occurred at the same rate in the presence of tracer (1 nmol/L) (5- 3 H)-glucose alone as when 0.55 mmol/L glucose or 2 mmol/L pyruvate were added to the perifusion buffer. The halftime for this process in both cases was approximately 40 minutes. These data suggest that the presence of metabolizable substrate is not required for the termination of the insulin response, but the time course suggests that termination requires more than simply insulin-receptor dissociation

  10. Psidium guajava Linn. leaf extract affects hepatic glucose transporter-2 to attenuate early onset of insulin resistance consequent to high fructose intake: An experimental study

    Science.gov (United States)

    Mathur, R.; Dutta, Shagun; Velpandian, T.; Mathur, S.R.

    2015-01-01

    Background: Insulin resistance (IR) is amalgam of pathologies like altered glucos metabolism, dyslipidemia, impaired glucose tolerance, non-alcoholic fatty liver disease, and associated with type-II diabetes and cardiometabolic diseases. One of the reasons leading to its increased and early incidence is understood to be a high intake of processed fructose containing foods and beverages by individuals, especially, during critical developmental years. Objective: To investigate the preventive potential of aqueous extract of Psidium guajava leaves (PG) against metabolic pathologies, vis-à-vis, IR, dyslipidemia, hyperleptinemia and hypertension, due to excess fructose intake initiated during developmental years. Materials and Methods: Post-weaning (4 weeks old) male rats were provided fructose (15%) as drinking solution, ad libitum, for 8 weeks and assessed for food and water/fructose intake, body weight, fasting blood sugar, mean arterial pressure, lipid biochemistry, endocrinal (insulin, leptin), histopathological (fatty liver) and immunohistochemical (hepatic glucose transporter [GLUT2]) parameters. Parallel treatment groups were administered PG in doses of 250 and 500 mg/kg/d, po × 8 weeks and assessed for same parameters. Using extensive liquid chromatography-mass spectrometry protocols, PG was analyzed for the presence of phytoconstituents like Myrecetin, Luteolin, Kaempferol and Guavanoic acid and validated to contain Quercetin up to 9.9%w/w. Results: High fructose intake raised circulating levels of insulin and leptin and hepatic GLUT2 expression to promote IR, dyslipidemia, and hypertension that were favorably re-set with PG. Although PG is known for its beneficial role in diabetes mellitus, for the first time we report its potential in the management of lifelong pathologies arising from high fructose intake initiated during developmental years. PMID:25829790

  11. Growth, 14C-sucrose uptake, and metabolites of starch synthesis in apical and basal kernels of corn (Zea mays L.)

    International Nuclear Information System (INIS)

    Greenberg, J.M.

    1985-01-01

    Developing field-grown kernels of corn (Zea mays L. cv. Cornell 175) from the base and apex of the ear were sampled from seven to 70 days after pollination (DAP) an compared with respect to dry weight, ability to take up 14 C-sucrose from solution in vitro, and content of sucrose, glucose, starch, glucose-1-P (G1P), glucose-6-P (G6P), fructose-6-P (F6P), ADP-glucose (ADPG), and UDP-glucose (UDPG). ADPG and UDPG were analyzed by HPLC. All other metabolites were analyzed enzymatically. Simultaneous hand-pollination of all ovaries in an ear did not reduce the difference between apical and basal kernels in dry weight, indicating that the latter fertilization of apical kernels was not responsible for their lesser mature dry weight. Detached kernels took up 14 C-sucrose (0.3-400 mM) and glucose (5-100 mM) at rates linearly proportional to the sugar concentration. Glucose, fructose, and sorbitol did not inhibit uptake of 14 C-sucrose. Uptake was not stimulated by 5 mM CaCl 2 or the addition of buffers (pH 4.5-6.7) to the medium. Sulfhydryl reagents (PCMBS, NEM) and metabolic inhibitors (TNBS, DNP, NaF) did not reduce uptake. These observations suggest that sucrose is taken up by a non-saturable, non-energy-requiring mechanism. Sucrose uptake increased throughout development, especially at the stage when basal kernels began to accumulate more dry weight than apical kernels (10-20 DAP in freely pollinated ears; 25 DAP in synchronously pollinated ears). Hydrolysis of incorporated sucrose increased from 87% at 14 DAP to 99% by 57 DAP

  12. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Liu

    2015-12-01

    Full Text Available This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF diet (63.1%. Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1 normal group (normal; (2 HF group; (3 chitosan + HF group (HF + C. The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 105 Dalton and degree of deacetylation was about 89.8% significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF-α, Interleukin (IL-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC and triglyceride (TG contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C, very-low-density lipoprotein cholesterol (VLDL-C, the TC/high-density lipoprotein cholesterol (HDL-C ratio, and increased the HDL-C/(LDL-C + VLDL-C ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4 protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment

  13. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes

    DEFF Research Database (Denmark)

    Vozarova, Barbora; Stefan, Norbert; Lindsay, Robert S

    2002-01-01

    -sectionally associated with obesity and whole-body and hepatic insulin resistance and prospectively associated with a decline in hepatic insulin sensitivity and the development of type 2 diabetes. Our findings indicate that high ALT is a marker of risk for type 2 diabetes and suggest a potential role of the liver...... with prospective changes in liver or whole-body insulin sensitivity and/or insulin secretion and whether these elevated enzymes predict the development of type 2 diabetes in Pima Indians. We measured ALT, AST, and GGT in 451 nondiabetic (75-g oral glucose tolerance test) Pima Indians (aged 30 +/- 6 years, body fat...... 33 +/- 8%, ALT 45 +/- 29 units/l, AST 34 +/- 18 units/l, and GGT 56 +/- 40 units/l [mean +/- SD]) who were characterized for body composition (hydrodensitometry or dual-energy X-ray absorptiometry), whole-body insulin sensitivity (M), and hepatic insulin sensitivity (hepatic glucose output [HGO...

  14. Obese mice on a high-fat alternate-day fasting regimen lose weight and improve glucose tolerance.

    Science.gov (United States)

    Joslin, P M N; Bell, R K; Swoap, S J

    2017-10-01

    Alternate-day fasting (ADF) causes body weight (BW) loss in humans and rodents. However, it is not clear that ADF while maintaining a high-fat (HF) diet results in weight loss and the accompanying improvement in control of circulating glucose. We tested the hypotheses that a high-fat ADF protocol in obese mice would result in (i) BW loss, (ii) improved glucose control, (iii) fluctuating phenotypes on 'fasted' days when compared to 'fed' days and (iv) induction of torpor on 'fasted days'. We evaluated the physiological effects of ADF in diet-induced obese mice for BW, heart rate (HR), body temperature (T b ), glucose tolerance, insulin responsiveness, blood parameters (leptin, insulin, free fatty acids) and hepatic gene expression. Diet-induced obese male C57BL/6J mice lost one-third of their pre-diet BW while on an ADF diet for 10 weeks consisting of HF food. The ADF protocol improved glucose tolerance and insulin sensitivity, although mice on a fast day were less glucose tolerant than the same mice on a fed day. ADF mice on a fast day had low circulating insulin, but had an enhanced response to an insulin-assisted glucose tolerance test, suggesting the impaired glucose tolerance may be a result of insufficient insulin production. On fed days, ADF mice were the warmest, had a high HR and displayed hepatic gene expression and circulating leptin that closely mimicked that of mice fed an ad lib HF diet. ADF mice never entered torpor as assessed by HR and T b . However, on fast days, they were the coolest, had the slowest HR, and displayed hepatic gene expression and circulating leptin that closely mimicked that of Chow-Fed mice. Collectively, the ADF regimen with a HF diet in obese mice results in weight loss, improved blood glucose control, and daily fluctuations in selected physiological and biochemical parameters in the mouse. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  15. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    DEFF Research Database (Denmark)

    Wewer Albrechtsen, Nicolai J.; Kuhre, Rune E.; Hornburg, Daniel

    2017-01-01

    that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in......Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among...... which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated...

  16. Effect of fibre additions to flatbread flour mixes on glucose kinetics: a randomised controlled trial.

    Science.gov (United States)

    Boers, Hanny M; van Dijk, Theo H; Hiemstra, Harry; Hoogenraad, Anne-Roos; Mela, David J; Peters, Harry P F; Vonk, Roel J; Priebe, Marion G

    2017-11-01

    We previously found that guar gum (GG) and chickpea flour (CPF) added to flatbread wheat flour lowered postprandial blood glucose (PPG) and insulin responses dose dependently. However, rates of glucose influx cannot be determined from PPG, which integrates rates of influx, tissue disposal and hepatic glucose production. The objective was to quantify rates of glucose influx and related fluxes as contributors to changes in PPG with GG and CPF additions to wheat-based flatbreads. In a randomised cross-over design, twelve healthy males consumed each of three different 13C-enriched meals: control flatbreads (C), or C incorporating 15 % CPF with either 2 % (GG2) or 4 % (GG4) GG. A dual isotope technique was used to determine the time to reach 50 % absorption of exogenous glucose (T 50 %abs, primary objective), rate of appearance of exogenous glucose (RaE), rate of appearance of total glucose (RaT), endogenous glucose production (EGP) and rate of disappearance of total glucose (RdT). Additional exploratory outcomes included PPG, insulin, glucose-dependent insulinotropic peptide and glucagon-like peptide 1, which were additionally measured over 4 h. Compared with C, GG2 and GG4 had no significant effect on T 50 %abs. However, GG4 significantly reduced 4-h AUC values for RaE, RaT, RdT and EGP, by 11, 14, 14 and 64 %, respectively, whereas GG2 showed minor effects. Effect sizes over 2 and 4 h were similar except for significantly greater reduction in EGP for GG4 at 2 h. In conclusion, a soluble fibre mix added to flatbreads only slightly reduced rates of glucose influx, but more substantially affected rates of postprandial disposal and hepatic glucose production.

  17. Effect of exogenous leptin on serum levels of lipids, glucose, renal and hepatic variables in both genders of obese and streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Parichehr Hayatdavoudi

    2015-11-01

    Full Text Available Objective(s: Leptin exerts various effects on appetite and body weight. Disruption of the obesitygene is precedent to fatness. Insulin or glucose elevates leptin, but streptozotocin reduces it. However, controversial data exist for the effects of leptin on diabetes and leptin level in each gender. Leptin can damage the kidney function but little evidence exists for its hepatic effects. The aim of this study was to investigate the probable sex-dependent differences in blood sugar levels, lipid profile, and renal and hepatic biochemical factors in the obesity and streptozotocin-induced diabetic rats after leptin administration. Materials and Methods: Wistar rats of both sexes were randomly divided into two groups, namely obese and diabetic rats. Each group was further divided into male and female subgroups. Extra fat and carbohydrate was added to the diet to induce obesity. Furthermore, streptozotocin (55 mg/kg, IP was injected to induce diabetes. The treatment groups received leptin (0.1 mg/kg SC for 10 days, and then, blood samples were taken from the orbital sinus for laboratory evaluations. Results: Leptin resulted in a significant weight loss in both sexes (P

  18. Plasma Glucose Level Is Predictive of Serum Ammonia Level After Retrograde Occlusion of Portosystemic Shunts.

    Science.gov (United States)

    Ishikawa, Tsuyoshi; Aibe, Yuki; Matsuda, Takashi; Iwamoto, Takuya; Takami, Taro; Sakaida, Isao

    2017-09-01

    The purpose of this study was to evaluate predictors of reduction in ammonia levels by occlusion of portosystemic shunts (PSS) in patients with cirrhosis. Forty-eight patients with cirrhosis (21 women, 27 men; mean age, 67.8 years) with PSS underwent balloon-occluded retrograde transvenous obliteration (BRTO) at one institution between February 2008 and June 2014. The causes of cirrhosis were hepatitis B in one case, hepatitis C in 20 cases, alcohol in 15 cases, nonalcoholic steatohepatitis in eight cases, and other conditions in four cases. The Child-Pugh classes were A in 24 cases, B in 23 cases, and C in one case. The indication for BRTO was gastric varices in 40 cases and hepatic encephalopathy in eight cases. Testing was conducted before and 1 month after the procedure. Statistical analyses were performed to identify predictors of a clinically significant decline in ammonia levels after BRTO. Occlusion of PSS resulted in a clinically significant decrease in ammonia levels accompanied by increased portal venous flow and improved Child-Pugh score. Univariate analyses showed that a reduction in ammonia levels due to BRTO was significantly related to lower plasma glucose levels, higher RBC counts, and higher hemoglobin concentration before the treatment. Furthermore, multivariate logistic regression identified preoperative plasma glucose level as the strongest independent predictor of a significant ammonia reduction in response to BRTO. In addition, although BRTO resulted in significantly declined ammonia levels in patients with normal glucose tolerance before the procedure, ammonia levels were not significantly decreased after shunt occlusion in patients with diabetes mellitus or impaired glucose tolerance before BRTO, according to 75-g oral glucose tolerance test results. Preoperative plasma glucose level is a useful predictor of clinically significant ammonia reduction resulting from occlusion of PSS in patients with cirrhosis. Even if PSS are present, control

  19. Exenatide improves both hepatic and adipose tissue insulin resistance: A dynamic positron emission tomography study.

    Science.gov (United States)

    Gastaldelli, Amalia; Gaggini, Melania; Daniele, Giuseppe; Ciociaro, Demetrio; Cersosimo, Eugenio; Tripathy, Devjit; Triplitt, Curtis; Fox, Peter; Musi, Nicolas; DeFronzo, Ralph; Iozzo, Patricia

    2016-12-01

    Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1-RAs) act on multiple tissues, in addition to the pancreas. Recent studies suggest that GLP-1-RAs act on liver and adipose tissue to reduce insulin resistance (IR). Thus, we evaluated the acute effects of exenatide (EX) on hepatic (Hep-IR) and adipose (Adipo-IR) insulin resistance and glucose uptake. Fifteen male subjects (age = 56 ± 8 years; body mass index = 29 ± 1 kg/m 2 ; A1c = 5.7 ± 0.1%) were studied on two occasions, with a double-blind subcutaneous injection of EX (5 μg) or placebo (PLC) 30 minutes before a 75-g oral glucose tolerance test (OGTT). During OGTT, we measured hepatic (HGU) and adipose tissue (ATGU) glucose uptake with [ 18 F]2-fluoro-2-deoxy-D-glucose/positron emission tomography, lipolysis (RaGly) with [U- 2 H 5 ]-glycerol, oral glucose absorption (RaO) with [U- 13 C 6 ]-glucose, and hepatic glucose production (EGP) with [6,6- 2 H 2 ]-glucose. Adipo-IR and Hep-IR were calculated as (FFA 0-120min ) × (Ins 0-120min ) and (EGP 0-120min ) × (Ins 0-120min ), respectively. EX reduced RaO, resulting in reduced plasma glucose and insulin concentration from 0 to 120 minutes postglucose ingestion. EX decreased Hep-IR (197 ± 28 to 130 ± 37; P = 0.02) and increased HGU of orally administered glucose (23 ± 4 to 232 ± 89 [μmol/min/L]/[μmol/min/kg]; P = 0.003) despite lower insulin (23 ± 5 vs. 41 ± 5 mU/L; P < 0.02). EX enhanced insulin suppression of RaGly by decreasing Adipo-IR (23 ± 4 to 13 ± 3; P = 0.009). No significant effect of insulin was observed on ATGU (EX = 1.16 ± 0.15 vs. PLC = 1.36 ± 0.13 [μmol/min/L]/[μmol/min/kg]). Acute EX administration (1) improves Hep-IR, decreases EGP, and enhances HGU and (2) reduces Adipo-IR, improves the antilipolytic effect of insulin, and reduces plasma free fatty acid levels during OGTT. (Hepatology 2016;64:2028-2037). © 2016 by the American Association for the Study of Liver Diseases.

  20. Basal C-peptide Level as a Surrogate Marker of Subclinical Atherosclerosis in Type 2 Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Sung-Tae Kim

    2011-02-01

    Full Text Available BackgroundRecent studies have revealed that C-peptide induces smooth muscle cell proliferation and causes human atherosclerotic lesions in diabetic patients. The present study was designed to examine whether the basal C-peptide levels correlate with cardiovascular risk in type 2 diabetes mellitus (T2DM patients.MethodsData was obtained from 467 patients with T2DM from two institutions who were followed for four years. The medical findings of all patients were reviewed, and patients with creatinine >1.4 mg/dL, any inflammation or infection, hepatitis, or type 1 DM were excluded. The relationships between basal C-peptide and other clinical values were statistically analyzed.ResultsA simple correlation was found between basal C-peptide and components of metabolic syndrome (MS. Statistically basal C-peptide levels were significantly higher than the three different MS criteria used in the present study, the Adult Treatment Panel III (ATP III of the National Cholesterol Education Program's (NCEP's, World Health Organization (WHO, and the International Diabetes Federation (IDF criteria (NCEP-ATP III, P=0.001; IDF, P<0.001; WHO, P=0.029. The multiple regression analysis between intima-media thickness (IMT and clinical values showed that basal C-peptide significantly correlated with IMT (P=0.043, while the analysis between the 10-year coronary heart disease risk by the United Kingdom Prospective Diabetes Study risk engine and clinical values showed that basal C-peptide did not correlate with IMT (P=0.226.ConclusionBasal C-peptide is related to cardiovascular predictors (IMT of T2DM, suggesting that basal C-peptide does provide a further indication of cardiovascular disease.

  1. Control of Hepatic Glucose Metabolism by the Oral Hypoglycemic Sulfonylureas

    Science.gov (United States)

    1984-05-11

    diphosphate, 0.2 mM; 2,3 diphosphoglycerate , 0.1 mM; NADH, 0.2 mM; and 0.60 ml of deprotelnized sample. Pyruvate was measured by following the oxidation...J,; Rodgrlgues, L,M,; Whitton, P,A, and Hems, D,A, (1980) Control mechanisms in the acceleration of hepatic glycogen degradation during anoxia

  2. Effect of somatostatin on glucose homeostasis in conscious long-fasted dogs

    International Nuclear Information System (INIS)

    Stevenson, R.W.; Steiner, K.E.; Hendrick, G.K.; Cherrington, A.D.

    1987-01-01

    The effects of somatostatin plus intraportal insulin and glucagon replacement (pancreatic clamp) on carbohydrate metabolism were studied in conscious dogs fasted for 7 days so that gluconeogenesis was a major contributor to total glucose production. By use of [3- 3 H]glucose, glucose production (R a ) and utilization (R d ) and glucose clearance were assessed before and after implementation of the pancreatic clamp. After an initial control period, somatostatin (0.8 μg·kg -1 ·min -1 ) was infused with intraportal replacement amounts of glucagon and insulin. The insulin infusion rate was varied to maintain euglycemia and then kept constant for 250 min. Plasma glucagon was similar before and during somatostatin infusion, while plasma insulin was lower. Plasma glucose levels remained similar while R a and R d and the ratio of glucose clearance to plasma insulin were significantly increased. Net hepatic lactate uptake and [ 14 C]alanine plus [ 14 C]lactate conversion to [ 14 C]glucose increased. In conclusion, somatostatin alters glucose clearance in 7-day fasted dogs, resulting in changes in several indices of carbohydrate metabolism

  3. DMT efficiently inhibits hepatic gluconeogenesis by regulating the Gαq signaling pathway.

    Science.gov (United States)

    Zhou, Ting-Ting; Ma, Fei; Shi, Xiao-Fan; Xu, Xin; Du, Te; Guo, Xiao-Dan; Wang, Gai-Hong; Yu, Liang; Rukachaisirikul, Vatcharin; Hu, Li-Hong; Chen, Jing; Shen, Xu

    2017-08-01

    Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated pathogenesis and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. G protein-coupled receptors (GPCRs) are classified as distinct families by heterotrimeric G proteins, primarily including Gαs, Gαi and Gαq. Gαs-coupled GPCRs function potently in the regulation of hepatic gluconeogenesis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and Gαi-coupled GPCRs exhibit inhibitory effect on adenylyl cyclase and reduce intracellular cAMP level. However, little is known about the regulation of Gαq-coupled GPCRs in hepatic gluconeogenesis. Here, small-molecule 2-(2,4-dimethoxy-3-methylphenyl)-7-(thiophen-2-yl)-9-(trifluoromethyl)-2,3-dihydropyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4( 1H )-one (DMT) was determined to suppress hepatic glucose production and reduce mRNA levels of gluconeogenic genes. Treatment of DMT in db/db mice decreased fasting blood glucose and hemoglobin A1C (HbA1c) levels, while improved glucose tolerance and pyruvate tolerance. Mechanism study demonstrated that DMT-inhibited gluconeogenesis by regulating the Gαq/phospholipase C (PLC)/inositol-1,4,5-triphosphate receptor (IP3R)-mediated calcium (Ca 2+ )/calmodulin (CaM)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box protein O1 (FOXO1) signaling pathway. To our knowledge, DMT might be the first reported small molecule able to suppress hepatic gluconeogenesis by regulating Gαq signaling, and our current work has also highlighted the potential of DMT in the treatment of T2DM. © 2017 Society for Endocrinology.

  4. The effect of genetically engineered glucagon on glucose recovery after hypoglycaemia in man

    DEFF Research Database (Denmark)

    Hvidberg, A; Jørgensen, S; Hilsted, J

    1992-01-01

    To compare the effect on glucose recovery after insulin-induced hypoglycaemia of intramuscular genetically engineered glucagon, intramuscular glucagon from pancreatic extraction and intravenous glucose, we examined 10 healthy subjects during blockage of glucose counterregulation with somatostatin...... appearance rate were far more protracted after i.m. glucagon than after i.v. glucose. These results suggest that genetically engineered glucagon and glucagon from pancreatic extraction have a similar effect on hepatic glucose production rate. Due to the protracted effect of intramuscular glucagon, a combined......, propranolol and phentolamine. Each subject was studied on three separate occasions. Thirty min after a bolus injection of 0.075 iu soluble insulin per kilogram body weight the subjects received one of the following treatments: 1 mg glucagon from pancreatic extraction intramuscularly; 1 mg genetically...

  5. Vitamin C and E chronic supplementation differentially affect hepatic insulin signaling in rats.

    Science.gov (United States)

    Ali, Mennatallah A; Eid, Rania M H M; Hanafi, Mervat Y

    2018-02-01

    Vitamin C and vitamin E supplementations and their beneficial effects on type 2 diabetes mellitus (T2DM) have been subjected to countless controversial data. Hence, our aim is to investigate the hepatic molecular mechanisms of any diabetic predisposing risk of the chronic administration of different doses of vitamin E or vitamin C in rats. The rats were supplemented with different doses of vitamin C or vitamin E for eight months. Vitamin C and vitamin E increased fasting blood glucose, insulin, and homeostasis model assessment index for insulin resistance (HOMA). Vitamin C disrupted glucose tolerance by attenuating upstream hepatic insulin action through impairing the phosphorylation and activation of insulin receptor and its subsequent substrates; however, vitamin E showed its effect downstream insulin receptor in the insulin signaling pathway, reducing hepatic glucose transporter-2 (GLUT2) and phosphorylated protein kinase (p-Akt). Moreover, both vitamins showed their antioxidant capabilities [nuclear factor-erythroid-2-related factor 2 (Nrf2), total and reduced glutathione] and their negative effect on Wnt pathway [phosphorylated glycogen synthase kinase-3β (p-GSK-3β)], by altering the previously mentioned parameters, inevitably leading to severe reduction of reactive oxygen species (ROS) below the physiological levels. In conclusion, a detrimental effect of chronic antioxidant vitamins supplementation was detected; leading to insulin resistance and impaired glucose tolerance obviously through different mechanisms. Overall, these findings indicate that the conventional view that vitamins promote health benefits and delay chronic illnesses and aging should be modified or applied with caution. Copyright © 2017. Published by Elsevier Inc.

  6. Effect of 3-Day Bed Rest on the Basal Sympathetic Activity and Responsiveness of this System to Physiological Stimuli In Athletes and Sedentary Subjects

    Science.gov (United States)

    Smorawinski, Jerzy; Adrian, Jacek; Kaciuba-Uscilko, Hanna; Nazar, Krystyna; Greenleaf, John E.; Dalton, P. Bonnie (Technical Monitor)

    2002-01-01

    The aims of this study were: (1) to examine the effect of three days of bed rest (BR) on basal plasma epinephrine [E] and norepinephrine [NE] and the catecholamine responses to various physiological stimuli, and (2) to find out whether previous physical activity modifies effects of BR. In the first series, 29 young men (11 sedentary students, 8 endurance and 10 strength trained athletes) were submitted to oral glucose tolerance test in supine position and to active orthostatic test before and after 3 days of BR. Plasma [E] and [NE] were measured after overnight fast (basal condition), at 60, 120 and 180 min after glucose ingestion (70 a), and at the 8th min of unsupported standing. In the second series, other 22 subjects (12 sedentary students, 10 endurance and 10 strength trained athletes) were submitted to 2 min cold pressor test (CPT) and exercise. Plasma E and NE were determined in the supine position after overnight fast and at 60th and 120th s of hand cooling. Then, after breakfast followed by 2-3 hour sitting, the subjects performed cycle ergometer exercise with workload increasing until volitional exhaustion. Plasma [E] and [NE] were determined at the end of each load. Plasma catecholamines were determined made radioenzymatically. After BR, basal plasma [NE] was decreased in endurance and strength athletes (psedentary subjects. In neither group BR affected the basal [E]. Responses of both catecholamines to glucose load were diminished after BR in all three groups (pwork intensity after than before BR (p<0.05).

  7. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Kazumichi Nagasawa

    2013-08-01

    The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control and a low environmental temperature (5°C, cold exposure. Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism.

  8. Detection of serum leptin levels in patients with viral hepatitis and fatty liver

    International Nuclear Information System (INIS)

    Sun Shuhong; Sun Bingmei; Niu Airong; Lan Cuixia

    2007-01-01

    In order to find out the correlations between serum leptin levels and viral hepatitis, the serum leptin levels in 167 patients with viral chronic hepatitis, 87 patients with fatty liver, and 80 control subjects were determined by radioimmunoassay. The liver function (ALT, AST), glucose(Glu) and total cholesterol(TC) in these patients were also measured. Compared with controls and patients with fatty liver, the levels of serum leptin in patients with viral hepatitis were significantly increased (P 0.05). The increase of serum leptin levels in the patients with viral hepatitis was correlated positively with the severity of liver inflammation. Therefore, the leptin can be regarded as an indicator to reflect the severity of liver inflammation. (authors)

  9. PGC-1α functions as a co-suppressor of XBP1s to regulate glucose metabolism

    Directory of Open Access Journals (Sweden)

    Jaemin Lee

    2018-01-01

    Full Text Available Objective: Peroxisome proliferator-activated receptor γ (PPARγ coactivator-1α (PGC-1α promotes hepatic gluconeogenesis by activating HNF4α and FoxO1. PGC-1α expression in the liver is highly elevated in obese and diabetic conditions, leading to increased hepatic glucose production. We previously showed that the spliced form of X-box binding protein 1 (XBP1s suppresses FoxO1 activity and hepatic gluconeogenesis. The shared role of PGC-1α and XBP1s in regulating FoxO1 activity and gluconeogenesis led us to investigate the probable interaction between PGC-1α and XBP1s and its role in glucose metabolism. Methods: We investigated the biochemical interaction between PGC-1α and XBP1s and examined the role of their interaction in glucose homeostasis using animal models. Results: We show that PGC-1α interacts with XBP1s, which plays an anti-gluconeogenic role in the liver by suppressing FoxO1 activity. The physical interaction between PGC-1α and XBP1s leads to suppression of XBP1s activity rather than its activation. Upregulating PGC-1α expression in the liver of lean mice lessens XBP1s protein levels, and reducing PGC-1α levels in obese and diabetic mouse liver restores XBP1s protein induction. Conclusions: Our findings reveal a novel function of PGC-1α as a suppressor of XBP1s function, suggesting that hepatic PGC-1α promotes gluconeogenesis through multiple pathways as a co-activator for HNF4α and FoxO1 and also as a suppressor for anti-gluconeogenic transcription factor XBP1s. Keywords: PGC-1α, XBP1s, Glucose homeostasis, ER stress, UPR, Insulin resistance

  10. Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients

    Directory of Open Access Journals (Sweden)

    Cedric Simillion

    2017-10-01

    Full Text Available About one in 15 of the world’s population is chronically infected with either hepatitis virus B (HBV or C (HCV, with enormous public health consequences. The metabolic alterations caused by these infections have never been directly compared and contrasted. We investigated groups of HBV-positive, HCV-positive, and uninfected healthy controls using gas chromatography-mass spectrometry analyses of their plasma and urine. A robust regression analysis of the metabolite data was conducted to reveal correlations between metabolite pairs. Ten metabolite correlations appeared for HBV plasma and urine, with 18 for HCV plasma and urine, none of which were present in the controls. Metabolic perturbation networks were constructed, which permitted a differential view of the HBV- and HCV-infected liver. HBV hepatitis was consistent with enhanced glucose uptake, glycolysis, and pentose phosphate pathway metabolism, the latter using xylitol and producing threonic acid, which may also be imported by glucose transporters. HCV hepatitis was consistent with impaired glucose uptake, glycolysis, and pentose phosphate pathway metabolism, with the tricarboxylic acid pathway fueled by branched-chain amino acids feeding gluconeogenesis and the hepatocellular loss of glucose, which most probably contributed to hyperglycemia. It is concluded that robust regression analyses can uncover metabolic rewiring in disease states.

  11. Deletion of Lkb1 in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice

    Science.gov (United States)

    Claret, Marc; Smith, Mark A.; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J.; Colom, André; Valet, Philippe; Cani, Patrice D.; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L.; Giese, K. Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L.; Carling, David; Withers, Dominic J.

    2011-01-01

    OBJECTIVE AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca2+-calmodulin–dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte–stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons. PMID:21266325

  12. Hepatic p38α regulates gluconeogenesis by suppressing AMPK.

    Science.gov (United States)

    Jing, Yanyan; Liu, Wei; Cao, Hongchao; Zhang, Duo; Yao, Xuan; Zhang, Shengjie; Xia, Hongfeng; Li, Dan; Wang, Yu-cheng; Yan, Jun; Hui, Lijian; Ying, Hao

    2015-06-01

    It is proposed that p38 is involved in gluconeogenesis, however, the genetic evidence is lacking and precise mechanisms remain poorly understood. We sought to delineate the role of hepatic p38α in gluconeogenesis during fasting by applying a loss-of-function genetic approach. We examined fasting glucose levels, performed pyruvate tolerance test, imaged G6Pase promoter activity, as well as determined the expression of gluconeogenic genes in mice with a targeted deletion of p38α in liver. Results were confirmed both in vivo and in vitro by using an adenoviral dominant-negative form of p38α (p38α-AF) and the constitutively active mitogen-activated protein kinase 6, respectively. Adenoviral dominant-negative form of AMP-activated protein kinase α (DN-AMPKα) was employed to test our proposed model. Mice lacking hepatic p38α exhibited reduced fasting glucose level and impaired gluconeogenesis. Interestingly, hepatic deficiency of p38α did not result in an alteration in CREB phosphorylation, but led to an increase in AMPKα phosphorylation. Adenoviral DN-AMPKα could abolish the effect of p38α-AF on gluconeogenesis. Knockdown of up-steam transforming growth factor β-activated kinase 1 decreased the AMPKα phosphorylation induced by p38α-AF, suggesting a negative feedback loop. Consistently, inverse correlations between p38 and AMPKα phosphorylation were observed during fasting and in diabetic mouse models. Importantly, adenoviral p38α-AF treatment ameliorated hyperglycemia in diabetic mice. Our study provides evidence that hepatic p38α functions as a negative regulator of AMPK signaling in maintaining gluconeogenesis, dysregulation of this regulatory network contributes to unrestrained gluconeogenesis in diabetes, and hepatic p38α could be a drug target for hyperglycemia. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  13. Insulin resistance, adipokine profile and hepatic expression of SOCS-3 gene in chronic hepatitis C.

    Science.gov (United States)

    Wójcik, Kamila; Jabłonowska, Elżbieta; Omulecka, Aleksandra; Piekarska, Anna

    2014-08-14

    To analyze adipokine concentrations, insulin resistance and hepatic expression of suppressor of cytokine signaling 3 (SOCS-3) in patients with chronic hepatitis C genotype 1 with normal body weight, glucose and lipid profile. The study group consisted of 31 patients with chronic hepatitis C and 9 healthy subjects. Total levels of adiponectin, leptin, resistin, visfatin, omentin, osteopontin and insulin were measured using an ELISA kit. The hepatic expression of SOCS-3 was determined by the use of the reverse transcription polymerase chain reaction method. Homeostasis model assessment for insulin resistance (HOMA-IR) values were significantly higher in hepatitis C virus (HCV) infected patients without metabolic disorders compared to healthy controls (2.24 vs 0.59, P = 0.0003). Hepatic steatosis was observed in 32.2% of patients with HCV infection and was found in patients with increased HOMA-IR index (2.81 vs 1.99, P = 0.05) and reduced adiponectin level (5.96 vs 8.37, P = 0.04). Inflammatory activity (G ≥ 2) was related to increased osteopontin concentration (34.04 vs 23.35, P = 0.03). Advanced liver fibrosis (S ≥ 2) was associated with increased levels of omentin and osteopontin (436.94 vs 360.09, P = 0.03 and 32.84 vs 20.29, P = 0.03) and reduced resistin concentration (1.40 vs 1.74, P = 0.047). No correlations were reported between adipokine profile, HOMA-IR values and hepatic expression of the SOCS-3 gene. We speculated that no relationship between adipokines and HOMA-IR values may indicate that HCV can induce insulin resistance itself. Some adipokines appear to be biochemical markers of steatosis, inflammation and fibrosis in patients with chronic HCV infection. © 2014 Baishideng Publishing Group Inc. All rights reserved.

  14. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice.

    Science.gov (United States)

    Kong, Qin; Zhang, Haojun; Zhao, Tingting; Zhang, Weiku; Yan, Meihua; Dong, Xi; Li, Ping

    2016-12-01

    Tangshen formula (TSF), a well-prescribed traditional Chinese formula, has been used in the treatment of diabetic nephropathy. However, whether TSF ameliorates dyslipidemia and liver injury associated with diabetes remains unclear. In this study, we examined the effects of TSF on lipid profiles and hepatic steatosis in db/db mice. For this purpose, 8‑week-old db/db mice were treated with TSF or saline for 12 weeks via gavage and db/m mice were used as controls. Body weight and blood glucose levels were monitored weekly and bi-weekly, respectively. Blood samples were obtained for the analysis of lipids and enzymes related to hepatic function, and liver tissues were analyzed by histology, immunohistochemistry and molecular examination. The results revealed that TSF markedly reduced body weight, liver index [liver/body weight (LW/BW)] and improved lipid profiles, hepatic function and steatosis in db/db mice. TSF induced the phosphoralation of AMP-activated protein kinase and inhibited the activity of sterol regulatory element-binding protein 1 together with the inhibition of the expression of genes involved in de novo lipogenesis (DNL) and gluconeogenesis, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl CoA desaturase 1 (SCD1), glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase 1 (Pck1). Additionally, the silent mating type information regulation 2 homolog 1 (Sirt1)/peroxisome proliferator-activated receptor α (PPARα)/malonyl-CoA decarboxylase (MLYCD) cascade was potently activated by TSF in the liver and skeletal muscle of db/db mice, which led to enhanced fatty acid oxidation. These findings demonstrated that TSF attenuated hepatic fat accumulation and steatosis in db/db mice by inhibiting lipogenesis and augmenting fatty acid oxidation.

  15. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men.

    Science.gov (United States)

    Johnston, Richard D; Stephenson, Mary C; Crossland, Hannah; Cordon, Sally M; Palcidi, Elisa; Cox, Eleanor F; Taylor, Moira A; Aithal, Guruprasad P; Macdonald, Ian A

    2013-11-01

    Diets high in fructose have been proposed to contribute to nonalcoholic fatty liver disease. We compared the effects of high-fructose and matched glucose intake on hepatic triacylglycerol (TAG) concentration and other liver parameters. In a double-blind study, we randomly assigned 32 healthy but centrally overweight men to groups that received either a high-fructose or high-glucose diet (25% energy). These diets were provided during an initial isocaloric period of 2 weeks, followed by a 6-week washout period, and then again during a hypercaloric 2-week period. The primary outcome measure was hepatic level of TAG, with additional assessments of TAG levels in serum and soleus muscle, hepatic levels of adenosine triphosphate, and systemic and hepatic insulin resistance. During the isocaloric period of the study, both groups had stable body weights and concentrations of TAG in liver, serum, and soleus muscle. The high-fructose diet produced an increase of 22 ± 52 μmol/L in the serum level of uric acid, whereas the high-glucose diet led to a reduction of 23 ± 25 μmol/L (P fructose diet also produced an increase of 0.8 ± 0.9 in the homeostasis model assessment of insulin resistance, whereas the high-glucose diet produced an increase of only 0.1 ± 0.7 (P = .03). During the hypercaloric period, participants in the high-fructose and high-glucose groups had similar increases in weight (1.0 ± 1.4 vs 0.6 ± 1.0 kg; P = .29) and absolute concentration of TAG in liver (1.70% ± 2.6% vs 2.05% ± 2.9%; P = .73) and serum (0.36 ± 0.75 vs 0.33 ± 0.38 mmol/L; P = .91), and similar results in biochemical assays of liver function. Body weight changes were associated with changes in liver biochemistry and concentration of TAGs. In the isocaloric period, overweight men who were on a high-fructose or a high-glucose diet did not develop any significant changes in hepatic concentration of TAGs or serum levels of liver enzymes. However, in the hypercaloric period

  16. Combination therapy in type 2 diabetes mellitus: adding empagliflozin to basal insulin

    Directory of Open Access Journals (Sweden)

    Andrew Ahmann

    2015-11-01

    Full Text Available Type 2 diabetes mellitus (T2DM management is complex, with few patients successfully achieving recommended glycemic targets with monotherapy, most progressing to combination therapy, and many eventually requiring insulin. Sodium glucose cotransporter 2 (SGLT2 inhibitors are an emerging class of antidiabetes agents with an insulin-independent mechanism of action, making them suitable for use in combination with any other class of antidiabetes agents, including insulin. This review evaluates a 78-week, randomized, double-blind, placebo-controlled trial investigating the impact of empagliflozin, an SGLT2 inhibitor, as add-on to basal insulin in patients with inadequate glycemic control on basal insulin, with or without metformin and/or a sulfonylurea. Empagliflozin added on to basal insulin resulted in significant and sustained reductions in glycated hemoglobin (HbA1c levels compared with placebo. Empagliflozin has previously been shown to induce weight loss, and was associated with sustained weight loss in this study. This combination therapy was well tolerated, with similar levels of hypoglycemic adverse events in the empagliflozin and placebo groups over the 78-week treatment period. Urinary tract infections and genital infections, side effects associated with SGLT2 inhibitors, were reported more commonly in the empagliflozin group; however, such events led to treatment discontinuation in very few patients. These findings suggest that, with their complementary mechanisms of action, empagliflozin added on to basal insulin may be a useful treatment option in patients on basal insulin who need additional glycemic control without weight gain.

  17. Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons

    OpenAIRE

    Ren, Hongxia; Lu, Taylor Y.; McGraw, Timothy E.; Accili, Domenico

    2014-01-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin?mediated cell ablation to selectively remove basal hypothalamic Glut4 ...

  18. Intake of Lactobacillus reuteri Improves Incretin and Insulin Secretion in Glucose-Tolerant Humans

    DEFF Research Database (Denmark)

    Simon, Marie-Christine; Strassburger, Klaus; Nowotny, Bettina

    2015-01-01

    production. Muscle and hepatic lipid contents were assessed by (1)H-magnetic resonance spectroscopy, and immune status, cytokines, and endotoxin were measured with specific assays. RESULTS: In glucose-tolerant volunteers, daily administration of L. reuteri SD5865 increased glucose-stimulated GLP-1 and GLP-2....... reuteri SD5865 or placebo over 4 weeks. Oral glucose tolerance and isoglycemic glucose infusion tests were used to assess incretin effect and GLP-1 and GLP-2 secretion, and euglycemic-hyperinsulinemic clamps with [6,6-(2)H2]glucose were used to measure peripheral insulin sensitivity and endogenous glucose...... cytokines. CONCLUSIONS: Enrichment of gut microbiota with L. reuteri increases insulin secretion, possibly due to augmented incretin release, but does not directly affect insulin sensitivity or body fat distribution. This suggests that oral ingestion of one specific strain may serve as a novel therapeutic...

  19. ERK2-Mediated Phosphorylation of Transcriptional Coactivator Binding Protein PIMT/NCoA6IP at Ser298 Augments Hepatic Gluconeogenesis

    Science.gov (United States)

    Parsa, Kishore V. L.; Kain, Vasundhara; Behera, Soma; Suraj, Sashidhara Kaimal; Babu, Phanithi Prakash; Kar, Anand; Panda, Sunanda; Zhu, Yi-jun; Jia, Yuzhi; Thimmapaya, Bayar; Reddy, Janardan K.; Misra, Parimal

    2013-01-01

    PRIP-Interacting protein with methyl transferase domain (PIMT) serves as a molecular bridge between CREB-binding protein (CBP)/ E1A binding protein p300 (Ep300) -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1) and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser298 and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMTS298D) suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMTS298D but not PIMTS298A augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser298 phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser298 is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia. PMID:24358311

  20. Effects of ovariectomy and exercise training intensity on energy substrate and hepatic lipid metabolism, and spontaneous physical activity in mice.

    Science.gov (United States)

    Tuazon, Marc A; Campbell, Sara C; Klein, Dylan J; Shapses, Sue A; Anacker, Keith R; Anthony, Tracy G; Uzumcu, Mehmet; Henderson, Gregory C

    2018-06-01

    Menopause is associated with fatty liver, glucose dysregulation, increased body fat, and impaired bone quality. Previously, it was demonstrated that single sessions of high-intensity interval exercise (HIIE) are more effective than distance- and duration-matched continuous exercise (CE) on altering hepatic triglyceride (TG) metabolism and very-low density lipoprotein-TG (VLDL-TG) secretion. Six weeks training using these modalities was examined for effects on hepatic TG metabolism/secretion, glucose tolerance, body composition, and bone mineral density (BMD) in ovariectomized (OVX) and sham-operated (SHAM) mice. OVX and SHAM were assigned to distance- and duration-matched CE and HIIE, or sedentary control. Energy expenditure during exercise was confirmed to be identical between CE and HIIE and both similarly reduced post-exercise absolute carbohydrate oxidation and spontaneous physical activity (SPA). OVX vs. SHAM displayed impaired glucose tolerance and greater body fat despite lower hepatic TG, and these outcomes were not affected by training. Only HIIE increased hepatic AMPK in OVX and SHAM, but neither training type impacted VLDL-TG secretion. As expected, BMD was lower in OVX, and training did not affect long bones. The results reveal intensity-dependent effects on hepatic AMPK expression and general exercise effects on subsequent SPA and substrate oxidation that is independent of estrogen status. These findings support the notion that HIIE can impact aspects of liver physiology in females while the effects of exercise on whole body substrate selection appear to be independent of training intensity. However, neither exercise approach mitigated the impairment in glucose tolerance and elevated body fat occurring in OVX mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    Directory of Open Access Journals (Sweden)

    Shengxi Meng

    2013-01-01

    Full Text Available Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA, one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism.

  2. Dapper1 attenuates hepatic gluconeogenesis and lipogenesis by activating PI3K/Akt signaling.

    Science.gov (United States)

    Kuang, Jian-Ren; Zhang, Zhi-Hui; Leng, Wei-Ling; Lei, Xiao-Tian; Liang, Zi-Wen

    2017-05-15

    Studies have shown that hepatic insulin resistance, a disorder of glucose and lipid metabolism, plays a vital role in type 2 diabetes (T2D). To clarify the function of Dapper1 in glucose and lipid metabolism in the liver, we investigated the relationships between Dapper1 and adenosine triphosphate (ATP)- and Ca 2+ -mediated activation of PI3K/Akt. We observed a reduction in hepatic Dapper1 in db/db (mice that are homozygous for a spontaneous diabetes mutation) and HFD-induced diabetic mice with T2D. Hepatic overexpression of Dapper1 improved hyperglycemia, insulin resistance, and fatty liver. It also increased Akt (pAkt) signaling and repressed both gluconeogenesis and lipogenesis. Conversely, Ad-shDapper1-induced knockdown of hepatic Dapper1 promoted gluconeogenesis and lipogenesis. Furthermore, Dapper1 activated PI3K p110α/Akt in an insulin-independent manner by inducing ATP production and secretion in vitro. Blockade of P2 ATP receptors, the downstream phospholipase C (PLC), or the inositol triphosphate receptor (IP3R all reduced the Dapper1-induced increase in cytosolic free calcium and Dapper1-mediated PI3K/Akt activation, as did removal of calcium in the medium. In conclusion, Dapper1 attenuates hepatic gluconeogenesis and lipogenesis in T2D. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin.

    Science.gov (United States)

    Bergheim, Ina; Weber, Synia; Vos, Miriam; Krämer, Sigrid; Volynets, Valentina; Kaserouni, Seline; McClain, Craig J; Bischoff, Stephan C

    2008-06-01

    Consumption of refined carbohydrates in soft drinks has been postulated to be a key factor in the development of non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to test the effects of ad libitum access to different sugars consumed in drinking water on hepatic fat accumulation. For 8 weeks, C57BL/J6 mice had free access to solutions containing 30% glucose, fructose, sucrose, or water sweetened with artificial sweetener (AS) or plain water. Body weight, caloric intake, hepatic steatosis and lipid peroxidation were assessed. Total caloric intake and weight gain were highest in mice exposed to glucose. In contrast, hepatic lipid accumulation was significantly higher in mice consuming fructose compared to all other groups. Moreover, endotoxin levels in portal blood and lipid peroxidation as well as TNFalpha expression were significantly higher in fructose fed mice than in all other groups. Concomitant treatment of fructose fed mice with antibiotics (e.g., polymyxin B and neomycin) markedly reduced hepatic lipid accumulation in fructose fed mice. These data support the hypothesis that high fructose consumption may not only lead to liver damage through overfeeding but also may be directly pro-inflammatory by increasing intestinal translocation of endotoxin.

  4. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects

    DEFF Research Database (Denmark)

    Kjems, Lise L; Holst, Jens J; Vølund, Aage

    2003-01-01

    . However, the dose-response relationship between GLP-1 and basal and glucose-stimulated prehepatic insulin secretion rate (ISR) is currently not known. Seven patients with type 2 diabetes and seven matched nondiabetic control subjects were studied. ISR was determined during a graded glucose infusion of 2...

  5. Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH).

    Science.gov (United States)

    Shimazu, Takashi; Minokoshi, Yasuhiko

    2017-05-01

    The ventromedial hypothalamic nucleus (VMH) regulates glucose production in the liver as well as glucose uptake and utilization in peripheral tissues, including skeletal muscle and brown adipose tissue, via efferent sympathetic innervation and neuroendocrine mechanisms. The action of leptin on VMH neurons also increases glucose uptake in specific peripheral tissues through the sympathetic nervous system, with improved insulin sensitivity. On the other hand, subsets of VMH neurons, such as those that express steroidogenic factor 1 (SF1), sense changes in the ambient glucose concentration and are characterized as glucose-excited (GE) and glucose-inhibited (GI) neurons whose action potential frequency increases and decreases, respectively, as glucose levels rise. However, how these glucose-sensing (GE and GI) neurons in the VMH contribute to systemic glucoregulation remains poorly understood. In this review, we provide historical background and discuss recent advances related to glucoregulation by VMH neurons. In particular, the article describes the role of GE neurons in the control of peripheral glucose utilization and insulin sensitivity, which depend on mitochondrial uncoupling protein 2 of the neurons, as well as that of GI neurons in the control of hepatic glucose production through hypoglycemia-induced counterregulatory mechanisms.

  6. Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients

    DEFF Research Database (Denmark)

    Sonne, David P; Hare, Kristine J; Martens, Pernille

    2013-01-01

    -rich liquid meal (2,200 kJ). Basal and postprandial plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-2 (GLP-2), cholecystokinin (CCK), and gastrin were measured. Furthermore, gastric emptying and duodenal and serum......Preclinical studies suggest that gallbladder emptying, via bile acid-induced activation of the G protein-coupled receptor TGR5 in intestinal L cells, may play a significant role in the secretion of the incretin hormone glucagon-like peptide-1 (GLP-1) and, hence, postprandial glucose homeostasis. We...... examined the secretion of gut hormones in cholecystectomized subjects to test the hypothesis that gallbladder emptying potentiates postprandial release of GLP-1. Ten cholecystectomized subjects and 10 healthy, age-, gender-, and body mass index-matched control subjects received a standardized fat...

  7. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling.

    Science.gov (United States)

    Deng, Xiuling; Wang, Jiliang; Jiao, Li; Utaipan, Tanyarath; Tuma-Kellner, Sabine; Schmitz, Gerd; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2016-05-01

    PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. MRI and MR spectroscopy study on basal ganglia alterations in patients with liver cirrhosis

    International Nuclear Information System (INIS)

    Wu Haibo; Ma Lin; Cai Youquan; Li Tao; Li Dejun; Liang Li

    2007-01-01

    Objective: To study the signal changes and metabolic alterations in the basal ganglia (BG) by using magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) in patients with hepatic encephalopathy with and without parkinsonism. Methods: MRI and MRS in the basal ganglia were performed in 27 patients (22 males, 5 females, age ranging from 29 to 62 years) with liver cirrhosis and hepatic encephalopathy. 14 of the 27 patients were classified as having parkinsonian signs evaluated by Unified Parkinson's Disease Rating Scale (UPDRS) test. 18 age-matched healthy volunteers (13 males, 5 females, age ranging from 24 to 51 years) underwent MRI and MRS as a control group. Results: NAA/Cr levels (average numbers are 1.40±0.03, 1.35±0.03 respectively) showed no statistical difference between cirrhotic patients with hepatic encephalopathy and the control group (t=1.16, t=0.87, P>0.05). Values of signal hyperintensities (average numbers are 1.03±0.002, 1.04± 0.003 respectively) in globus pallidus and ratios of mI/Cr(average numbers are 0.63±0.01, 0.61± 0.02 respectively) and Cho/Cr (average numbers are 0.82±0.03, 0.80±0.02 respectively) showed no statistically significant differences between the control group and the 13 patients without parkinsonism (t=0.63, t=-0.52, t=-0.54, P>0.05), whereas values of signal hyperintensities (average numbers are 1.18±0.001, 1.04±0.003 respectively) in globus pallidus and ratios of mI/Cr (average numbers are 0.39±0.02, 0.63±0.01 respectively) and Cho/Cr(average numbers are 0.68±0.01, 0.82±0.03 respectively) shows statistically significant difference in patients without and with parkinsonism (t=-5.16, t=7.61, t=4.12, P<0.05). In patients with cirrhosis, the values of signal hyperintensities in globus pallidus were inversely correlated with the ratio for mI/Cr(r=-0.764, P<0.05) and Cho/Cr (r=-0.553, P<0.05), respectively. Conclusion: MRI and MRS may be useful tools in the evaluation of extrapyramidal

  9. Accretion of visceral fat and hepatic insulin resistance in pregnant rats.

    Science.gov (United States)

    Einstein, Francine H; Fishman, Sigal; Muzumdar, Radhika H; Yang, Xiao Man; Atzmon, Gil; Barzilai, Nir

    2008-02-01

    Insulin resistance (IR) is a hallmark of pregnancy. Because increased visceral fat (VF) is associated with IR in nonpregnant states, we reasoned that fat accretion might be important in the development of IR during pregnancy. To determine whether VF depots increase in pregnancy and whether VF contributes to IR, we studied three groups of 6-mo-old female Sprague-Dawley rats: 1) nonpregnant sham-operated rats (Nonpreg; n = 6), 2) pregnant sham-operated rats (Preg; n = 6), and 3) pregnant rats in which VF was surgically removed 1 mo before mating (PVF-; n = 6). VF doubled by day 19 of pregnancy (Nonpreg 5.1 +/- 0.3, Preg 10.0 +/- 1.0 g, P Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp in late gestation in chronically catheterized unstressed rats. Glucose IR (mg.kg(-1).min(-1)) was highest in Nonpreg (19.4 +/- 2.0), lowest in Preg (11.1 +/- 1.4), and intermediate in PVF- (14.7 +/- 0.6; P insulin sensitivity than Preg [hepatic glucose production (HGP): Nonpreg 4.5 +/- 1.3, Preg 9.3 +/- 0.5 mg.kg(-1).min(-1); P insulin sensitivity was similar to nonpregnant levels in PVF- (HGP 4.9 +/- 0.8 mg.kg(-1).min(-1)). Both pregnant groups had lower peripheral glucose uptake compared with Nonpreg. In parallel with hepatic insulin sensitivity, hepatic triglyceride content was increased in pregnancy (Nonpreg 1.9 +/- 0.4 vs. Preg 3.2 +/- 0.3 mg/g) and decreased with removal of VF (PVF- 1.3 +/- 0.4 mg/g; P insulin action in pregnancy.

  10. Ghrelin Alleviates MDMA-Induced Disturbance of Serum Glucose and Lipids Levels in the Rat

    Directory of Open Access Journals (Sweden)

    Ravieh Golchoobian

    2018-01-01

    Full Text Available Hepatotoxicity is one of the clinically adverse effects of ecstasy (3, 4-methylenedioxymethamphetamine; MDMA consumption. The detoxification tissue, liver, plays a central role in maintaining circulating levels of glucose and lipid. Hypoglycemia and hypotriglyceridemia have been reported due to ecstasy abuse. Ghrelin is a 28-amino-acid peptide secreted predominantly from the stomach. It has been demonstrated that ghrelin has hepatoprotective effects and is able to increase blood glucose concentration. In the current study, we explored the effect of hepatotoxic dose of MDMA and therapeutic use of exogenous ghrelin on the serum levels of glucose and lipids in four groups of rats. MDMA caused a severe and transient reduction in circulating levels of glucose and triglyceride and increased serum LDL. However, cholesterol and HDL levels remained unchanged. Meanwhile, altered hepatic architecture was observed with intracellular vacuolation that may indicate intracellular accumulation of lipid droplets. In addition, following ghrelin administration, the blood sugar levels improved and LDL levels returned to the baseline value, and ghrelin treatment did not improve triglycerides levels. These results showed that MDMA causes hypoglycemia, hypotriglyceridemia, and hyper LDL-cholesterolemia. To our knowledge, this is the first report showing ghrelin administration could improve hypoglycemia and normalize LDL levels induced by MDMA and partially restore hepatic architecture.

  11. Model of the Glucose-Insulin-Glucagon Dynamics after Subcutaneous Administration of a Glucagon Rescue Bolus in Healthy Humans

    OpenAIRE

    Wendt, Sabrina Lyngbye; Møller, Jan Kloppenborg; Haidar, Ahmad; Bysted, Britta V.; Knudsen, Carsten B.; Madsen, Henrik; Jørgensen, John Bagterp

    2016-01-01

    In healthy individuals, insulin and glucagon work in a complex fashion to maintain blood glucose levels within a narrow range. This regulation is distorted in patients with diabetes. The hepatic glucose response due to an elevated glucagon level depends on the current insulin concentration and thus endogenous glucose production (EGP) can not be modelled without knowledge of the concentration of both hormones in plasma. Furthermore, literature suggests an upper limit to EGP irrespective of glu...

  12. Effect of glucocorticoid therapy upon glucose metabolism in COPD patients with acute exacerbation

    International Nuclear Information System (INIS)

    Wu Sihai; Wei Zhenggan; Huang Ming'an; Yao Jianguo; Li Hongsheng

    2002-01-01

    Objective: To study the effect of glucocorticoids therapy upon glucose metabolism in COPD patients with acute exacerbation. Methods: Plasma glucose and insulin levels in COPD patients after intravenous administration of 10 mg dexamethasone daily for 5 days were determined oral with glucose tolerance test (OGTT) and insulin release test (IRT). Results: 1) The levels of basal plasma glucose and insulin were significantly higher in severe hypoxemic group than those in moderate hypoxemic group (p 2 (r = -0.5242, p < 0.05). 2) The levels of plasma glucose in intermediate and severe hypoxemic groups were remarkable higher (p < 0.05) than those in mild group. The two peak times of glucose curve were observed at one and two hour after oral glucose load. 3) After the administration of glucocorticoids, at half an hour and one hour plasma glucose levels were significantly higher than those before, the peak time of glucose levels appeared earlier and the insulin release levels were higher than they were before therapy (p < 0.05). Conclusion: COPD patients with acute exacerbation complicated with hypoxemia had problems of impaired glucose tolerance. The administration of glucocorticoids made the impairment worse

  13. Glucose-lowering effect of BTS 67 582.

    Science.gov (United States)

    Page, T; Bailey, C J

    1997-12-01

    1. The hypoglycaemic effect of BTS 67 582 (1,1-dimethyl-2(2-morpholinophenyl) guanidine fumarate) was studied in normal rats. 2. BTS 67 582 (100 mg kg(-1), p.o.) acutely lowered basal plasma glucose concentrations: onset within 1 h, maximum decrease of >40% at 2-3 h, and partial return to euglycaemia by 5 h. Plasma insulin concentrations were increased: onset within 30 min, maximum increase 3 fold at 1-2 h; returning to normal by 5 h. 3. BTS 67 582 (100 mg kg(-1)) increased (by 56%) the rate of disappearance of plasma glucose during an intravenous glucose tolerance test, accompanied by a 51% increase in insulin concentrations. 4. During hyperglycaemic clamp studies BTS 67 582 (100 mg kg(-1)) increased glucose utilization 3 fold. This was associated with a 3 fold increase in insulin concentrations, even in the presence of adrenaline at a dosage which inhibits glucose-induced insulin release. 5. When the insulin-releasing effect of BTS 67 582 (100 mg kg(-1)) was inhibited by infusion of somatostatin, there was no effect on glycaemia. 6. Insulin-dependent diabetic BB/S rats, which do not produce endogenous insulin, showed no effect of BTS 67 582 (100 mg kg(-1)) on plasma glucose concentrations in the presence or absence of exogenous insulin. 7. The results demonstrate an acute hypoglycaemic effect of BTS 67 582 which appears to result mainly from its potent insulin-releasing action.

  14. The transcription factor Prep1 controls hepatic insulin sensitivity and gluconeogenesis by targeting nuclear localization of FOXO1.

    Science.gov (United States)

    Kulebyakin, Konstantin; Penkov, Dmitry; Blasi, Francesco; Akopyan, Zhanna; Tkachuk, Vsevolod

    2016-12-02

    Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to search new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes

    International Nuclear Information System (INIS)

    Walton, Felecia S.; Harmon, Anne W.; Paul, David S.; Drobna, Zuzana; Patel, Yashomati M.; Styblo, Miroslav

    2004-01-01

    Chronic exposures to inorganic arsenic (iAs) have been associated with increased incidence of noninsulin (type-2)-dependent diabetes mellitus. Although mechanisms by which iAs induces diabetes have not been identified, the clinical symptoms of the disease indicate that iAs or its metabolites interfere with insulin-stimulated signal transduction pathway or with critical steps in glucose metabolism. We have examined effects of iAs and methylated arsenicals that contain trivalent or pentavalent arsenic on glucose uptake by 3T3-L1 adipocytes. Treatment with inorganic and methylated pentavalent arsenicals (up to 1 mM) had little or no effect on either basal or insulin-stimulated glucose uptake. In contrast, trivalent arsenicals, arsenite (iAs III ), methylarsine oxide (MAs III O), and iododimethylarsine (DMAs III O) inhibited insulin-stimulated glucose uptake in a concentration-dependent manner. Subtoxic concentrations of iAs III (20 μM), MAs III O (1 μM), or DMAs III I (2 μM) decreased insulin-stimulated glucose uptake by 35-45%. Basal glucose uptake was significantly inhibited only by cytotoxic concentrations of iAs III or MAs III O. Examination of the components of the insulin-stimulated signal transduction pathway showed that all trivalent arsenicals suppressed expression and possibly phosphorylation of protein kinase B (PKB/Akt). The concentration of an insulin-responsive glucose transporter (GLUT4) was significantly lower in the membrane region of 3T3-L1 adipocytes treated with trivalent arsenicals as compared with untreated cells. These results suggest that trivalent arsenicals inhibit insulin-stimulated glucose uptake by interfering with the PKB/Akt-dependent mobilization of GLUT4 transporters in adipocytes. This mechanism may be, in part, responsible for the development of type-2 diabetes in individuals chronically exposed to iAs

  16. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia.

    Science.gov (United States)

    Abi-Saab, Walid M; Maggs, David G; Jones, Tim; Jacob, Ralph; Srihari, Vinod; Thompson, James; Kerr, David; Leone, Paola; Krystal, John H; Spencer, Dennis D; During, Matthew J; Sherwin, Robert S

    2002-03-01

    Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.

  17. Decreased hepatic RBP4 secretion is correlated with reduced hepatic glucose production but is not associated with insulin resistance in patients with liver cirrhosis

    NARCIS (Netherlands)

    Bahr, Matthias J.; Boeker, Klaus H. W.; Manns, Michael P.; Tietge, Uwe J. F.

    Patients with liver cirrhosis have a high incidence of insulin resistance and diabetes. This study was designed to determine circulating levels and hepatic production of retinol-binding protein 4 (RBP4) in relation to parameters of hepatic and systemic metabolism in patients with liver cirrhosis.

  18. Microbial Regulation of Glucose Metabolism and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Silke Crommen

    2017-12-01

    Full Text Available Type 2 diabetes is a combined disease, resulting from a hyperglycemia and peripheral and hepatic insulin resistance. Recent data suggest that the gut microbiota is involved in diabetes development, altering metabolic processes including glucose and fatty acid metabolism. Thus, type 2 diabetes patients show a microbial dysbiosis, with reduced butyrate-producing bacteria and elevated potential pathogens compared to metabolically healthy individuals. Furthermore, probiotics are a known tool to modulate the microbiota, having a therapeutic potential. Current literature will be discussed to elucidate the complex interaction of gut microbiota, intestinal permeability and inflammation leading to peripheral and hepatic insulin resistance. Therefore, this review aims to generate a deeper understanding of the underlying mechanism of potential microbial strains, which can be used as probiotics.

  19. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens Juul

    2003-01-01

    (HI), 40 mU/m(2) x min], 3-(3)H-glucose, indirect calorimetry, and iv glucose tolerance test. Free fatty acid concentrations were similar during basal steady state but 3.7- to 13-fold higher during clamps. P-glucagon increased and the insulin/glucagon ratio decreased at both LI and HI during...... not in the nonoxidative) glucose metabolism in young healthy men. Moreover, insulin hypersecretion perfectly countered the free-fatty acid-induced insulin resistance. Future studies are needed to determine the role of a prolonged moderate lipid load in subjects at increased risk of developing diabetes....

  20. Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition.

    Science.gov (United States)

    Jaakson, H; Karis, P; Ling, K; Ilves-Luht, A; Samarütel, J; Henno, M; Jõudu, I; Waldmann, A; Reimann, E; Pärn, P; Bruckmaier, R M; Gross, J J; Kaart, T; Kass, M; Ots, M

    2018-01-01

    Glucose uptake in tissues is mediated by insulin receptor (INSR) and glucose transporter 4 (GLUT4). The aim of this study was to examine the effect of body condition during the dry period on adipose tissue mRNA and protein expression of INSR and GLUT4, and on the dynamics of glucose and insulin following the i.v. glucose tolerance test in Holstein cows 21 d before (d -21) and after (d 21) calving. Cows were grouped as body condition score (BCS) ≤3.0 (thin, T; n = 14), BCS = 3.25 to 3.5 (optimal, O; n = 14), and BCS ≥3.75 (overconditioned, OC; n = 14). Blood was analyzed for glucose, insulin, fatty acids, and β-hydroxybutyrate concentrations. Adipose tissue was analyzed for INSR and GLUT4 mRNA and protein concentrations. During the glucose tolerance test 0.15 g/kg of body weight glucose was infused; blood was collected at -5, 5, 10, 20, 30, 40, 50, and 60 min, and analyzed for glucose and insulin. On d -21 the area under the curve (AUC) of glucose was smallest in group T (1,512 ± 33.9 mg/dL × min) and largest in group OC (1,783 ± 33.9 mg/dL × min), and different between all groups. Basal insulin on d -21 was lowest in group T (13.9 ± 2.32 µU/mL), which was different from group OC (24.9 ± 2.32 µU/mL. On d -21 the smallest AUC 5-60 of insulin in group T (5,308 ± 1,214 µU/mL × min) differed from the largest AUC in group OC (10,867 ± 1,215 µU/mL × min). Time to reach basal concentration of insulin in group OC (113 ± 14.1 min) was longer compared with group T (45 ± 14.1). The INSR mRNA abundance on d 21 was higher compared with d -21 in groups T (d -21: 3.3 ± 0.44; d 21: 5.9 ± 0.44) and O (d -21: 3.7 ± 0.45; d 21: 4.7 ± 0.45). The extent of INSR protein expression on d -21 was highest in group T (7.3 ± 0.74 ng/mL), differing from group O (4.6 ± 0.73 ng/mL), which had the lowest expression. The amount of GLUT4 protein on d -21 was lowest in group OC (1.2 ± 0.14 ng/mL), different from group O (1.8 ± 0.14 ng/mL), which had the highest amount

  1. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie

    2016-04-21

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  2. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie; Steullet, Pascal; Kulak, Anita; Preitner, Frederic; Do, Kim Q.; Magistretti, Pierre J.

    2016-01-01

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  3. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC-1alpha

    National Research Council Canada - National Science Library

    Puigserver, Pere

    2008-01-01

    The main purpose of this proposal is to test the hypothesis that acetylation of PGC-1alpha by GCN5 and associated proteins, Pc3 and WDR18, is a key regulatory modification that controls hepatic glucose production...

  4. Common mutations of hepatitis B virus and their clinical significance

    Directory of Open Access Journals (Sweden)

    HU Airong

    2016-06-01

    Full Text Available Hepatitis B virus (HBV tends to mutate easily due to its special structure and life cycle. Mutation changes the biological behavior of HBV and its sensitivity to antiviral drugs and even affects therapeutic effect and accelerate disease progression. The point mutations are commonly see in the pre-S/S open reading frame (ORF, which may be associated with immune escape and occult HBV infection. The G1896A mutation is often observed in the pre-C/C-ORF and is associated with the development of HBeAg-negative chronic hepatitis B (CHB, hepatocellular carcinoma (HCC, and severe chronic hepatitis (liver failure. The mutations in P-ORF mainly occur in the reverse transcriptase (RT domain and are closely related to the resistance to nucleos(tide analogues. The A1762T and G1764A mutations occur in the basal core promoter (BCP, which overlaps with X-ORF, and may be associated with HBeAg-negative CHB, HCC, and severe chronic hepatitis (liver failure. Clarification of the association between these mutations and diseases helps to develop tailor-made diagnostic and therapeutic regimens for patients with HBV infection.

  5. A decrease in hepatic microRNA-9 expression impairs gluconeogenesis by targeting FOXO1 in obese mice.

    Science.gov (United States)

    Yan, Caifeng; Chen, Jinfeng; Li, Min; Xuan, Wenying; Su, Dongming; You, Hui; Huang, Yujie; Chen, Nuoqi; Liang, Xiubin

    2016-07-01

    MicroRNA-9 (miR-9) is involved in the regulation of pancreatic beta cell function. However, its role in gluconeogenesis is still unclear. Our objective was to investigate the role of miR-9 in hepatic glucose production (HGP). MiR-9 expression was measured in livers of high-fat diet (HFD) mice and ob/ob mice. The methylation status of the miR-9-3 promoter regions in hepatocytes was determined by the methylation-specific PCR procedure. The binding activity of DNA methyltransferase (DNMT)1, DNMT3a and DNMT3b on the miR-9-3 promoter was detected by chromatin immunoprecipitation (ChIP) and quantitative real-time PCR assays. HGP was evaluated in vitro and in vivo. Glucose tolerance, insulin tolerance and pyruvate tolerance tests were also performed. Reduced miR-9 expression and hypermethylation of the miR-9-3 promoter were observed in the livers of obese mice. Further study showed that the binding of DNMT1, but not of DNMT3a and DNMT3b, to the miR-9-3 promoter was increased in hepatocytes from ob/ob mice. Knockdown of DNMT1 alleviated the decrease in hepatic miR-9 expression in vivo and in vitro. Overexpression of hepatic miR-9 improved insulin sensitivity in obese mice and inhibited HGP. In addition, deletion of hepatic miR-9 led to an increase in random and fasting blood glucose levels in lean mice. Importantly, silenced forkhead box O1 (FOXO1) expression reversed the gluconeogenesis and glucose production in hepatocytes induced by miR-9 deletion. Our observations suggest that the decrease in miR-9 expression contributes to an inappropriately activated gluconeogenesis in obese mice.

  6. Glycemic control and adherence to basal insulin therapy in Taiwanese patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Chien, Ming-Nan; Chen, Yen-Ling; Hung, Yi-Jen; Wang, Shu-Yi; Lu, Wen-Tsung; Chen, Chih-Hung; Lin, Ching-Ling; Huang, Tze-Pao; Tsai, Ming-Han; Tseng, Wei-Kung; Wu, Ta-Jen; Ho, Cheng; Lin, Wen-Yu; Chen, Bill; Chuang, Lee-Ming

    2016-11-01

    The aim of the present study was to assess the glycemic control, adherence and treatment satisfaction in a real-world setting with basal insulin therapy in type 2 diabetes patients in Taiwan. This was a multicenter, prospective, observational registry. A total of 836 patients with type 2 diabetes taking oral antidiabetic drugs with glycated hemoglobin (HbA1c) >7% entered the study. Basal insulin was given for 24 weeks. All treatment choices and medical instructions were at the physician's discretion to reflect real-life practice. After 24-week treatment, 11.7% of patients reached set HbA1c goals without severe hypoglycemia (primary effectiveness end-point). HbA1c and fasting blood glucose were significantly decreased from (mean ± SD) 10.1 ± 1.9% to 8.7 ± 1.7% (-1.4 ± 2.1%, P 1) and from 230.6 ± 68.8 mg/dL to 159.1 ± 55.6 mg/dL (-67.4 ± 72.3 mg/dL, P 1), respectively. Patients received insulin therapy at a frequency of nearly one shot per day on average, whereas self-monitoring of blood glucose was carried out approximately four times a week. Hypoglycemia was reported by 11.4% of patients, and only 0.7% of patients experienced severe hypoglycemia. Slight changes in weight (0.7 ± 2.4 kg) and a low incidence of adverse drug reactions (0.4%) were also noted. The score of 7-point treatment satisfaction rated by patients was significantly improved by 1.9 ± 1.7 (P 1). Basal insulin therapy was associated with a decrease in HbA1c and fasting blood glucose, and an improved treatment satisfaction. Most patients complied with physicians' instructions. The treatment was generally well tolerated by patients with type 2 diabetes, but findings pointed out the need to reinforce the early and appropriate uptitration to achieve treatment targets. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  7. Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Brian T. O’Neill

    2015-05-01

    Full Text Available Insulin and insulin-like growth factor 1 (IGF-1 are major regulators of muscle protein and glucose homeostasis. To determine how these pathways interact, we generated mice with muscle-specific knockout of IGF-1 receptor (IGF1R and insulin receptor (IR. These MIGIRKO mice showed >60% decrease in muscle mass. Despite a complete lack of insulin/IGF-1 signaling in muscle, MIGIRKO mice displayed normal glucose and insulin tolerance. Indeed, MIGIRKO mice showed fasting hypoglycemia and increased basal glucose uptake. This was secondary to decreased TBC1D1 resulting in increased Glut4 and Glut1 membrane localization. Interestingly, overexpression of a dominant-negative IGF1R in muscle induced glucose intolerance in MIGIRKO animals. Thus, loss of insulin/IGF-1 signaling impairs muscle growth, but not whole-body glucose tolerance due to increased membrane localization of glucose transporters. Nonetheless, presence of a dominant-negative receptor, even in the absence of functional IR/IGF1R, induces glucose intolerance, indicating that interactions between these receptors and other proteins in muscle can impair glucose homeostasis.

  8. Glucose uptake of the muscle and adipose tissues in diabetes and obesity disease models. Evaluation of insulin and β3-adrenergic receptor agonist effects by 18F-FDG

    International Nuclear Information System (INIS)

    Ishino, Seigo; Sugita, Taku; Kondo, Yusuke

    2017-01-01

    One of the major causes of diabetes and obesity is abnormality in glucose metabolism and glucose uptake in the muscle and adipose tissue based on an insufficient action of insulin. Therefore, many of the drug discovery programs are based on the concept of stimulating glucose uptake in these tissues. Improvement of glucose metabolism has been assessed based on blood parameters, but these merely reflect the systemic reaction to the drug administered. We have conducted basic studies to investigate the usefulness of glucose uptake measurement in various muscle and adipose tissues in pharmacological tests using disease-model animals. A radiotracer for glucose, 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), was administered to Wistar fatty rats (type 2 diabetes model), DIO mouse (obese model), and the corresponding control animals, and the basal glucose uptake in the muscle and adipose (white and brown) tissues were compared using biodistribution method. Moreover, insulin and a β3 agonist (CL316, 243), which are known to stimulate glucose uptake in the muscle and adipose tissues, were administered to assess their effect. 18 F-FDG uptake in each tissue was measured as the radioactivity and the distribution was confirmed by autoradiography. In Wistar fatty rats, all the tissues measured showed a decrease in the basal level of glucose uptake when compared to Wistar lean rats. On the other hand, the same trend was observed only in the white adipose tissue in DIO mice, while brown adipose tissue showed increments in the basal glucose uptake in this model. Insulin administration stimulated glucose uptake in both Wistar lean and fatty rats, although the responses were inhibited in Wistar fatty rats. The same tendency was shown also in control mice, but clear increments in glucose uptake were not observed in the muscle and brown adipose tissue of DIO mice after insulin administration. β3 agonist administration showed the similar trend in Wistar lean and fatty rats as insulin

  9. Nevoid basal cell carcinoma syndrome

    Science.gov (United States)

    NBCC syndrome; Gorlin-Goltz syndrome; Basal cell nevus syndrome; BCNS; Basal cell cancer - nevoid basal cell carcinoma syndrome ... Nevoid basal cell carcinoma nevus syndrome is a rare genetic ... syndrome is known as PTCH ("patched"). The gene is passed down ...

  10. Endogenous Nutritive Support after Traumatic Brain Injury: Peripheral Lactate Production for Glucose Supply via Gluconeogenesis.

    Science.gov (United States)

    Glenn, Thomas C; Martin, Neil A; McArthur, David L; Hovda, David A; Vespa, Paul; Johnson, Matthew L; Horning, Michael A; Brooks, George A

    2015-06-01

    We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-(2)H2]glucose, i.e., D2-glucose, and [3-(13)C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7±2.2 days (range of days 2-10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain.

  11. Diagnosis of hepatic encephalopathy with magentic resonance imaging

    International Nuclear Information System (INIS)

    Inoue, Etsuo; Narumi, Yoshifumi; Kadota, Tsuyoshi; Fujita, Makoto; Kuriyama, Keiko; Kuroda, Chikazumi

    1993-01-01

    Cranial magnetic resonance (MR) images were examined in 16 patients with liver cirrhosis. The findings of MR imaging were correlated with portal-systemic collateral vessel shown on angiograms. In 9 of 16 patients, basal ganglia was hyperintense compared with white matter on T1-weighted images. These 9 patients had portal-systemic collateral vessel 10 mm or more in diameter that was suppied by superior mesenteric vein (SMV), and 4 of the 9 patients had portal-systemic encephalopathy on angiograms. In the remaining 7 patients, no hyperintense lesions were seen in basal ganglia relative to white matter on T1-weighted images; angiography revealed that 2 patients had portal-systemic collateral vessel that was supplied by SMV but was 5 mm or less in diameter, 3 had bood supplies from splenic vein, and 2 had no collateral vessel. There was no change in signal intensity on T2-weighted images. In conclusion, a large portal-systemic collateral vessel supplied by SMV may be shown as a high intensity lesion in basal ganglia, thus making it possible to diagnose hepatic encephalopathy even if there was no psychoneurologic symptoms or signs. (N.K.)

  12. Glucose Transporter 3 Potentiates Degranulation and Is Required for Platelet Activation.

    Science.gov (United States)

    Fidler, Trevor P; Middleton, Elizabeth A; Rowley, Jesse W; Boudreau, Luc H; Campbell, Robert A; Souvenir, Rhonda; Funari, Trevor; Tessandier, Nicolas; Boilard, Eric; Weyrich, Andrew S; Abel, E Dale

    2017-09-01

    On activation, platelets increase glucose uptake, glycolysis, and glucose oxidation and consume stored glycogen. This correlation between glucose metabolism and platelet function is not well understood and even less is known about the role of glucose metabolism on platelet function in vivo. For glucose to enter a cell, it must be transported through glucose transporters. Here we evaluate the contribution of GLUT3 (glucose transporter 3) to platelet function to better understand glucose metabolism in platelets. Platelet-specific knockout of GLUT3 was generated by crossing mice harboring GLUT3 floxed allele to a PF4 (platelet factor 4)-driven Cre recombinase. In platelets, GLUT3 is localized primarily on α-granule membranes and under basal conditions facilitates glucose uptake into α-granules to be used for glycolysis. After activation, platelets degranulate and GLUT3 translocates to the plasma membrane, which is responsible for activation-mediated increased glucose uptake. In vivo, loss of GLUT3 in platelets increased survival in a collagen/epinephrine model of pulmonary embolism, and in a K/BxN model of autoimmune inflammatory disease, platelet-specific GLUT3 knockout mice display decreased disease progression. Mechanistically, loss of GLUT3 decreased platelet degranulation, spreading, and clot retraction. Decreased α-granule degranulation is due in part to an impaired ability of GLUT3 to potentiate exocytosis. GLUT3-mediated glucose utilization and glycogenolysis in platelets promotes α-granule release, platelet activation, and postactivation functions. © 2017 American Heart Association, Inc.

  13. Hyperlipidaemia is associated with increased insulin-mediated glucose metabolism, reduced fatty acid metabolism and normal blood pressure in transgenic mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Koopmans, S.J.; Jong, M.C.; Que, I.; Dahlmans, V.E.H.; Pijl, H.; Radder, J.K.; Frölich, M.; Havekes, L.M.

    2001-01-01

    Aims/hypothesis. Insulin resistance for glucose metabolism is associated with hyperlipidaemia and high blood pressure. In this study we investigated the effect of primary hyperlipidaemia on basal and insulin-mediated glucose and on non-esterified fatty acid (NEFA) metabolism and mean arterial

  14. Renoprotective effects of metformin.

    Science.gov (United States)

    Nasri, Running Hamid

    2013-05-16

    Metformin as a biguanid drug entered to the market 50 years ago and now is generally recommended as the first-line treatment in type 2 diabetes, especially in overweight patients, however in recent years new indications for its use have emerged . It improves peripheral and liver sensitivity to insulin, reduces basal hepatic glucose production, increases insulin-stimulated uptake and utilization of glucose by peripheral tissues, decreases hunger and causes weight reduction.Recently, much attention has been made toward the possible kidney protective efficacy of metformin. Recent studies have proven that metformin, possesses antioxidant properties, too.

  15. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

    DEFF Research Database (Denmark)

    Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z

    2012-01-01

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL...... be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice......)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose...

  16. Brain glucose sensing, glucokinase and neural control of metabolism and islet function.

    Science.gov (United States)

    Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L

    2014-09-01

    It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel--emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. © 2014 John Wiley & Sons Ltd.

  17. Involvement of glucagon-like peptide-1 in the glucose-lowering effect of metformin

    DEFF Research Database (Denmark)

    Bahne, Emilie; Hansen, Morten; Brønden, Andreas

    2016-01-01

    Metformin is an oral antihyperglycaemic drug used in the first-line treatment of type 2 diabetes. Metformin's classic and most well-known blood glucose-lowering mechanisms include reduction of hepatic gluconeogenesis and increased peripheral insulin sensitivity. Interestingly, intravenously...... administered metformin is ineffective and recently, metformin was shown to increase plasma concentrations of the glucose-lowering gut incretin hormone glucagon-like peptide-1 (GLP-1), which may contribute to metformin's glucose-lowering effect in patients with type 2 diabetes. The mechanisms behind metformin......-induced increments in GLP-1 levels remain unknown, but it has been hypothesized that metformin stimulates GLP-1 secretion directly and/or indirectly and that metformin prolongs the half-life of GLP-1. Also, it has been suggested that metformin may potentiate the glucose-lowering effects of GLP-1 by increasing target...

  18. Molecular Characterization of the RNA-Binding Protein Quaking-a in Megalobrama amblycephala: Response to High-Carbohydrate Feeding and Glucose/Insulin/Glucagon Treatment

    Directory of Open Access Journals (Sweden)

    Hua-Juan Shi

    2018-04-01

    Full Text Available The RNA-binding protein quaking-a (Qkia was cloned from the liver of blunt snout bream Megalobrama amblycephala through the rapid amplification of cDNA ends method, with its potential role in glucose metabolism investigated. The full-length cDNA of qkia covered 1,718 bp, with an open reading frame of 1,572 bp, which encodes 383 AA. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (97–99% among most fish and other higher vertebrates. The mRNA of qkia was detected in all examined organs/tissues. Then, the plasma glucose levels and tissue qkia expressions were determined in fish intraperitoneally injected with glucose [1.67 g per kg body weight (BW], insulin (0.052 mg/kg BW, and glucagon (0.075 mg/kg BW respectively, as well as in fish fed two dietary carbohydrate levels (31 and 41% for 12 weeks. Glucose administration induced a remarkable increase of plasma glucose with the highest value being recorded at 1 h. Thereafter, it reduced to the basal value. After glucose administration, qkia expressions significantly decreased with the lowest value being recorded at 1 h in liver and muscle and 8 h in brain, respectively. Then they gradually returned to the basal value. The insulin injection induced a significant decrease of plasma glucose with the lowest value being recorded at 1 h, whereas the opposite was true after glucagon load (the highest value was gained at 4 h. Subsequently, glucose levels gradually returned to the basal value. After insulin administration, the qkia expressions significantly decreased with the lowest value being attained at 2 h in brain and muscle and 1 h in liver, respectively. However, glucagon significantly stimulated the expressions of qkia in tissues with the highest value being gained at 6 h. Moreover, high dietary carbohydrate levels remarkably increased plasma glucose levels, but down-regulated the transcriptions of qkia in tissues. These results indicated that the gene of blunt

  19. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Goalstone, Marc [Department of Medicine, University of Colorado, VA Medical Center, Denver, CO 80220 (United States); Kamath, Vasudeva [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States); Kowluru, Anjaneyulu, E-mail: akowluru@med.wayne.edu [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States)

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  20. Glucose activates prenyltransferases in pancreatic islet β-cells

    International Nuclear Information System (INIS)

    Goalstone, Marc; Kamath, Vasudeva; Kowluru, Anjaneyulu

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet β-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 β-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the α-subunits of FTase/GGTase-1, but not the β-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  1. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    Science.gov (United States)

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-03-11

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.

  2. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Andersen, Vibe H; Bak, Lasse K

    2017-01-01

    Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration...... and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity......-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate...

  3. Proximity Interactions among Basal Body Components in Trypanosoma brucei Identify Novel Regulators of Basal Body Biogenesis and Inheritance

    Directory of Open Access Journals (Sweden)

    Hung Quang Dang

    2017-01-01

    Full Text Available The basal body shares similar architecture with centrioles in animals and is involved in nucleating flagellar axonemal microtubules in flagellated eukaryotes. The early-branching Trypanosoma brucei possesses a motile flagellum nucleated from the basal body that consists of a mature basal body and an adjacent pro-basal body. Little is known about the basal body proteome and its roles in basal body biogenesis and flagellar axoneme assembly in T. brucei. Here, we report the identification of 14 conserved centriole/basal body protein homologs and 25 trypanosome-specific basal body proteins. These proteins localize to distinct subdomains of the basal body, and several of them form a ring-like structure surrounding the basal body barrel. Functional characterization of representative basal body proteins revealed distinct roles in basal body duplication/separation and flagellar axoneme assembly. Overall, this work identified novel proteins required for basal body duplication and separation and uncovered new functions of conserved basal body proteins in basal body duplication and separation, highlighting an unusual mechanism of basal body biogenesis and inheritance in this early divergent eukaryote.

  4. Glucose homeostasis in mice is transglutaminase 2 independent.

    Directory of Open Access Journals (Sweden)

    Siiri E Iismaa

    Full Text Available Transglutaminase type 2 (TG2 has been reported to be a candidate gene for maturity onset diabetes of the young (MODY because three different mutations that impair TG2 transamidase activity have been found in 3 families with MODY. TG2 null (TG2(-/- mice have been reported to be glucose intolerant and have impaired glucose-stimulated insulin secretion (GSIS. Here we rigorously evaluated the role of TG2 in glucose metabolism using independently generated murine models of genetic TG2 disruption, which show no compensatory enhanced expression of other TGs in pancreatic islets or other tissues. First, we subjected chow- or fat-fed congenic SV129 or C57BL/6 wild type (WT and TG2(-/- littermates, to oral glucose gavage. Blood glucose and serum insulin levels were similar for both genotypes. Pancreatic islets isolated from these animals and analysed in vitro for GSIS and cholinergic potentiation of GSIS, showed no significant difference between genotypes. Results from intraperitoneal glucose tolerance tests (GTTs and insulin tolerance tests (ITTs were similar for both genotypes. Second, we directly investigated the role of TG2 transamidase activity in insulin secretion using a coisogenic model that expresses a mutant form of TG2 (TG2(R579A, which is constitutively active for transamidase activity. Intraperitoneal GTTs and ITTs revealed no significant differences between WT and TG2(R579A/R579A mice. Given that neither deletion nor constitutive activation of TG2 transamidase activity altered basal responses, or responses to a glucose or insulin challenge, our data indicate that glucose homeostasis in mice is TG2 independent, and question a link between TG2 and diabetes.

  5. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-01-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system

  6. Effects of glucogenic and ketogenic feeding strategies on splanchnic glucose and amino acid metabolism in postpartum transition Holstein cows.

    Science.gov (United States)

    Larsen, M; Kristensen, N B

    2012-10-01

    Nine periparturient Holstein cows catheterized in major splanchnic vessels were used in a complete randomized design with repeated measurements to investigate effects of glucogenic and ketogenic feeding strategies on splanchnic metabolism of glucose and amino acids. At parturition, cows were assigned to 1 of 3 feeding strategies: a glucogenic diet (GLCG) based on sodium hydroxide treated wheat grain (56.5% of diet dry matter); a ketogenic diet (KETO) based on fodder beets (40.5% of diet dry matter); or an alfalfa-glucogenic strategy (ALF-GLCG) supplying 100% alfalfa (Medicago sativa L.) haylage at the day of parturition, followed by a 6-d linear shift to the GLCG diet. Samples were obtained 14 d before expected parturition as well as at 4, 15, and 29 d in milk (DIM). The net portal release of glucose was greatest with GLCG, reflecting the higher intake of ruminal escape starch with GLCG, as compared with a lower starch intake with KETO. Postpartum, the portal recovery of feed starch was greater (28 ± 3%, mean ± SEM) with KETO as compared with GLCG (15 ± 4%). At 4 DIM, the net hepatic release of glucose was greatest with KETO and least with ALF-GLCG, whereafter it increased as lactation progressed with ALF-GLCG and GLCG, but not with KETO. The high alfalfa haylage allowance at 4 DIM with the ALF-GLCG treatment induced the lowest net release of nutrients from the splanchnic tissues at 4 DIM. The hepatic removal of lactate as percent of total influx (mean ± SEM) increased from 27 ± 3% prepartum to 56 ± 3% at 4 DIM. The hepatic removal of lactate as percent of net portal release increased from 144 ± 10% prepartum to 329 ± 17% at 4 DIM with ALF-GLCG and KETO as compared with 242 ± 20% in GLCG. No clear evidence for an amino acid sparing effect in splanchnic tissues from increasing small intestinal glucose absorption was observed. In conclusion, the glucogenic feeding strategy induced the highest glucogenic status among the tested feeding strategies due to

  7. INFLUENCE OF PERI-ARTERIAL HEPATIC DENERVATION ON THE GLYCEMIC RESPONSE TO EXERCISE IN RATS

    NARCIS (Netherlands)

    LINDFELDT, J; BALKAN, B; VANDIJK, G; SCHEURINK, A; AHREN, B; STEFFENS, AB

    Exercise is known to increase hepatic glucose production. Previous studies have suggested that the sympathetic nerves only marginally contribute to this process. This study examined whether increased catecholamine response or increased adrenoceptor sensitivity might have affected previous results

  8. Galanin enhances systemic glucose metabolism through enteric Nitric Oxide Synthase-expressed neurons

    Directory of Open Access Journals (Sweden)

    Anne Abot

    2018-04-01

    Full Text Available Objective: Decreasing duodenal contraction is now considered as a major focus for the treatment of type 2 diabetes. Therefore, identifying bioactive molecules able to target the enteric nervous system, which controls the motility of intestinal smooth muscle cells, represents a new therapeutic avenue. For this reason, we chose to study the impact of oral galanin on this system in diabetic mice. Methods: Enteric neurotransmission, duodenal contraction, glucose absorption, modification of gut–brain axis, and glucose metabolism (glucose tolerance, insulinemia, glucose entry in tissue, hepatic glucose metabolism were assessed. Results: We show that galanin, a neuropeptide expressed in the small intestine, decreases duodenal contraction by stimulating nitric oxide release from enteric neurons. This is associated with modification of hypothalamic nitric oxide release that favors glucose uptake in metabolic tissues such as skeletal muscle, liver, and adipose tissue. Oral chronic gavage with galanin in diabetic mice increases insulin sensitivity, which is associated with an improvement of several metabolic parameters such as glucose tolerance, fasting blood glucose, and insulin. Conclusion: Here, we demonstrate that oral galanin administration improves glucose homeostasis via the enteric nervous system and could be considered a therapeutic potential for the treatment of T2D. Keywords: Galanin, Enteric nervous system, Diabetes

  9. Regulation of Hepatic Stellate Cells and Fibrogenesis by Fibroblast Growth Factors

    Directory of Open Access Journals (Sweden)

    Justin D. Schumacher

    2016-01-01

    Full Text Available Fibroblast growth factors (FGFs are a family of growth factors critically involved in developmental, physiological, and pathological processes, including embryogenesis, angiogenesis, wound healing, and endocrine functions. In the liver, several FGFs are produced basally by hepatocytes and hepatic stellate cells (HSCs. Upon insult to the liver, expression of FGFs in HSCs is greatly upregulated, stimulating hepatocyte regeneration and growth. Various FGF isoforms have also been shown to directly induce HSC proliferation and activation thereby enabling autocrine and paracrine regulation of HSC function. Regulation of HSCs by the endocrine FGFs, namely, FGF15/19 and FGF21, has also recently been identified. With the ability to modulate HSC proliferation and transdifferentiation, targeting FGF signaling pathways constitutes a promising new therapeutic strategy to treat hepatic fibrosis.

  10. Detection of serum leptin levels in patients with viral hepatitis C

    International Nuclear Information System (INIS)

    Sun Shuhong; Yu Hua; Niu Airong; Wu Yuqing

    2006-01-01

    To evaluate changes of serum leptin levels in patients with viral hepatitis C(HCV), serum leptin levels were determined by RIA in 65 patients with viral chronic hepatitis C and in 80 control subjects ,liver function (ALT, AST) , glucose (Glu) , and total cholesterol (TC) were evaluated too. Campared with controls, the levels of serum leptin were significantly increased in patients with HCV (P 0.05). The levels of serum leptin increased in patients with HCV, which correlates positively with the severity of liver inflammation, so that leptin can be regarded as an index which reflects the severity of liver inflammation. (authors)

  11. Chronic hepatitis C infection is associated with insulin resistance and lipid profiles.

    Science.gov (United States)

    Dai, Chia-Yen; Yeh, Ming-Lun; Huang, Chung-Feng; Hou, Chen-Hsiu; Hsieh, Ming-Yen; Huang, Jee-Fu; Lin, I-Ling; Lin, Zu-Yau; Chen, Shinn-Chern; Wang, Liang-Yen; Chuang, Wan-Long; Yu, Ming-Lung; Tung, Hung-Da

    2015-05-01

    Chronic hepatitis C virus (HCV) infection has been suggested to be associated with non-insulin-dependent diabetes mellitus and lipid profiles. This study aimed to investigate the possible relationships of insulin resistance (IR) and lipid profiles with chronic hepatitis C (CHC) patients in Taiwan. We enrolled 160 hospital-based CHC patients with liver biopsy and the 480 controlled individuals without CHC and chronic hepatitis B from communities without known history of non-insulin-dependent diabetes mellitus. Fasting plasma glucose, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), alanine aminotransferase, and serum insulin levels, and homeostasis model assessment (HOMA-IR) were tested. When comparing factors between CHC patients, and sex- and age-matched controls who had no HCV infection, patients with HCV infection had a significantly higher alanine aminotransferase level, fasting plasma glucose level, insulin level, and HOMA-IR (P C and LDL-C levels (all P  2.5]), a high body mass index, TGs, and HCV RNA level are independent factors significantly associated with high HOMA-IR in multivariate logistic analyses. Chronic HCV infection was associated with metabolic characteristics including IR and lipid profile. IR was also associated with virological characteristics. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  12. GdCl3 reduces hyperglycaemia through Akt/FoxO1-induced suppression of hepatic gluconeogenesis in Type 2 diabetic mice.

    Science.gov (United States)

    Wang, Qian; Wang, Ning; Dong, Mei; Chen, Fang; Li, Zhong; Chen, Yuanyuan

    2014-07-01

    GdCl3 (gadolinium chloride) has been shown to reduce blood glucose; however, the underlying mechanism remains unclear. Liver gluconeogenesis is an important pathway involved in the maintenance of glucose homoeostasis. The aim of the present study was to investigate the role of GdCl3 in hepatic gluconeogenesis and explore the precise molecular mechanism. Animals from a classical Type 2 diabetic mouse model, created by exposing C57BL/6J mice to a high-fat diet for 4 months, were treated with GdCl3 or saline. Body weight, blood glucose and insulin sensitivity were monitored. It was observed that GdCl3 significantly reduced blood glucose levels and improved insulin sensitivity. A pyruvate tolerance test showed further that GdCl3 suppressed gluconeogenesis in diabetic mice. In the livers of GdCl3-treated mice, the expression of Pepck (phosphoenolpyruvate carboxykinase) and G6pase (glucose-6-phosphatase), the key enzymes in gluconeogenesis, were dramatically reduced. Furthermore, experiments in hepatocarcinoma cells revealed that GdCl3 activated the Akt pathway to promote the phosphorylation of FoxO1 (forkhead box O1), leading to the suppression of gluconeogenesis by reducing the expression of PEPCK and G6Pase and resulting in decreased cellular production of glucose. Comparable results were observed in the livers of GdCl3-treated mice. In addition, we have shown that GdCl3 augmented the role of insulin to control hepatic glucose production. We conclude that GdCl3 reduces hyperglycaemia via the Akt/FoxO1-induced suppression of hepatic gluconeogenesis, both in Type 2 diabetic mice (in vivo) and in hepatocarcinoma cells (in vitro), suggesting that GdCl3 may be a potential therapeutic agent for diabetes.

  13. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis

    Science.gov (United States)

    2014-01-01

    The gut-brain axis plays a key role in the control of energy balance and glucose homeostasis. In response to luminal stimulation of macronutrients and microbiota-derived metabolites (secondary bile acids and short chain fatty acids), glucagon-like peptides (GLP-1 and -2) are cosecreted from endocrine L cells in the gut and coreleased from preproglucagonergic neurons in the brain stem. Glucagon-like peptides are proposed as key mediators for bariatric surgery-improved glycemic control and energy balance. Little is known about the GLP-2 receptor (Glp2r)-mediated physiological roles in the control of food intake and glucose homeostasis, yet Glp1r has been studied extensively. This review will highlight the physiological relevance of the central nervous system (CNS) Glp2r in the control of energy balance and glucose homeostasis and focuses on cellular mechanisms underlying the CNS Glp2r-mediated neural circuitry and intracellular PI3K signaling pathway. New evidence (obtained from Glp2r tissue-specific KO mice) indicates that the Glp2r in POMC neurons is essential for suppressing feeding behavior, gastrointestinal motility, and hepatic glucose production. Mice with Glp2r deletion selectively in POMC neurons exhibit hyperphagic behavior, accelerated gastric emptying, glucose intolerance, and hepatic insulin resistance. GLP-2 differentially modulates postsynaptic membrane excitability of hypothalamic POMC neurons in Glp2r- and PI3K-dependent manners. GLP-2 activates the PI3K-Akt-FoxO1 signaling pathway in POMC neurons by Glp2r-p85α interaction. Intracerebroventricular GLP-2 augments glucose tolerance, suppresses glucose production, and enhances insulin sensitivity, which require PI3K (p110α) activation in POMC neurons. Thus, the CNS Glp2r plays a physiological role in the control of food intake and glucose homeostasis. This review will also discuss key questions for future studies. PMID:24990862

  14. Glucose turnover, oxidation, and indices of recycling in severely traumatized patients

    Energy Technology Data Exchange (ETDEWEB)

    Jeevanandam, M.; Young, D.H.; Schiller, W.R. (St. Joseph' s Hospital Medical Center, Phoenix, AZ (USA))

    1990-05-01

    Hyperglycemia is often seen in trauma patients and its etiology is not clearly understood. We have determined parameters of glucose metabolism by using simultaneous primed-constant intravenous infusion of both (6-3H) glucose and (U-14C) glucose in ten severely traumatized hypermetabolic subjects during the early flow phase of injury and in six post-absorptive normal volunteers. The mean rate of glucose production (determined by means of (6-3H) glucose) was 3.96 +/- 0.40 mg/kg/min in trauma patients, which was significantly (p = 0.025) higher than the value of 2.75 +/- 0.13 observed in normal volunteers. Glucose turnover rates determined with (U-14C) glucose as tracer were lower in all subjects. The difference between the turnover rates determined by the two tracers represents an index of recycling of glucose through three-carbon fragments. This recycling index was similar in both groups of subjects in amount (0.24 +/- 0.07 vs. 0.26 +/- 0.08 mg glucose/kg/min) but different when expressed as percentage of total glucose turnover (5.6 +/- 1.4% vs. 9.8 +/- 1.7%; p = 0.05). The absolute rates of glucose clearance, oxidation, and recycling were similar in stressed trauma patients and unstressed controls although the rate of production was increased by 44% due to injury. Post-trauma hyperglycemia was mainly due to an increased hepatic output of glucose and not due to a decreased ability of the tissue to extract glucose from the plasma. Hyperglycemia may be the driving force in the metabolic effects of injury.

  15. Glucose turnover, oxidation, and indices of recycling in severely traumatized patients

    International Nuclear Information System (INIS)

    Jeevanandam, M.; Young, D.H.; Schiller, W.R.

    1990-01-01

    Hyperglycemia is often seen in trauma patients and its etiology is not clearly understood. We have determined parameters of glucose metabolism by using simultaneous primed-constant intravenous infusion of both [6-3H] glucose and [U-14C] glucose in ten severely traumatized hypermetabolic subjects during the early flow phase of injury and in six post-absorptive normal volunteers. The mean rate of glucose production (determined by means of [6-3H] glucose) was 3.96 +/- 0.40 mg/kg/min in trauma patients, which was significantly (p = 0.025) higher than the value of 2.75 +/- 0.13 observed in normal volunteers. Glucose turnover rates determined with [U-14C] glucose as tracer were lower in all subjects. The difference between the turnover rates determined by the two tracers represents an index of recycling of glucose through three-carbon fragments. This recycling index was similar in both groups of subjects in amount (0.24 +/- 0.07 vs. 0.26 +/- 0.08 mg glucose/kg/min) but different when expressed as percentage of total glucose turnover (5.6 +/- 1.4% vs. 9.8 +/- 1.7%; p = 0.05). The absolute rates of glucose clearance, oxidation, and recycling were similar in stressed trauma patients and unstressed controls although the rate of production was increased by 44% due to injury. Post-trauma hyperglycemia was mainly due to an increased hepatic output of glucose and not due to a decreased ability of the tissue to extract glucose from the plasma. Hyperglycemia may be the driving force in the metabolic effects of injury

  16. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion.

    Science.gov (United States)

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J S; Gray, Joshua P

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7mM) to stimulatory (8-16mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H(2)O(2)), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H(2)O(2) inhibit insulin secretion. Menadione, which produces H(2)O(2) via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H(2)O(2) production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H(2)O(2) formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H(2)O(2) and menadione on insulin secretion. Published by Elsevier Inc.

  17. Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice.

    Science.gov (United States)

    Feng, Bin; Meng, Ran; Huang, Bin; Shen, Shanmei; Bi, Yan; Zhu, Dalong

    2016-01-01

    Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30 mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling.

  18. MATLAB-implemented estimation procedure for model-based assessment of hepatic insulin degradation from standard intravenous glucose tolerance test data.

    Science.gov (United States)

    Di Nardo, Francesco; Mengoni, Michele; Morettini, Micaela

    2013-05-01

    Present study provides a novel MATLAB-based parameter estimation procedure for individual assessment of hepatic insulin degradation (HID) process from standard frequently-sampled intravenous glucose tolerance test (FSIGTT) data. Direct access to the source code, offered by MATLAB, enabled us to design an optimization procedure based on the alternating use of Gauss-Newton's and Levenberg-Marquardt's algorithms, which assures the full convergence of the process and the containment of computational time. Reliability was tested by direct comparison with the application, in eighteen non-diabetic subjects, of well-known kinetic analysis software package SAAM II, and by application on different data. Agreement between MATLAB and SAAM II was warranted by intraclass correlation coefficients ≥0.73; no significant differences between corresponding mean parameter estimates and prediction of HID rate; and consistent residual analysis. Moreover, MATLAB optimization procedure resulted in a significant 51% reduction of CV% for the worst-estimated parameter by SAAM II and in maintaining all model-parameter CV% MATLAB-based procedure was suggested as a suitable tool for the individual assessment of HID process. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Impaired fasting glucose and impaired glucose tolerance in children and adolescents with overweight/obesity.

    Science.gov (United States)

    Di Bonito, P; Pacifico, L; Chiesa, C; Valerio, G; Miraglia Del Giudice, E; Maffeis, C; Morandi, A; Invitti, C; Licenziati, M R; Loche, S; Tornese, G; Franco, F; Manco, M; Baroni, M G

    2017-04-01

    To investigate in a large sample of overweight/obese (OW/OB) children and adolescents the prevalence of prediabetic phenotypes such as impaired fasting glucose (IFG) and impaired glucose tolerance (IGT), and to assess their association with cardiometabolic risk (CMR) factors including hepatic steatosis (HS). Population data were obtained from the CARdiometabolic risk factors in children and adolescents in ITALY study. Between 2003 and 2013, 3088 youths (972 children and 2116 adolescents) received oral glucose tolerance test (OGTT) and were included in the study. In 798 individuals, abdominal ultrasound for identification of HS was available. The prevalence of IFG (3.2 vs. 3.3%) and IGT (4.6 vs. 5.0%) was similar between children and adolescents. Children with isolated IGT had a 2-11 fold increased risk of high LDL-C, non-HDL-C, Tg/HDL-C ratio, and low insulin sensitivity, when compared to those with normal glucose tolerance (NGT). No significant association of IFG with any CMR factor was found in children. Among adolescents, IGT subjects, and to a lesser extent those with IFG, showed a worse CMR profile compared to NGT subgroup. In the overall sample, IGT phenotype showed a twofold increased risk of HS compared to NGT subgroup. Our study shows an unexpected similar prevalence of IFG and IGT between children and adolescents with overweight/obesity. The IGT phenotype was associated with a worse CMR profile in both children and adolescents. Phenotyping prediabetes conditions by OGTT should be done as part of prediction and prevention of cardiometabolic diseases in OW/OB youth since early childhood.

  20. Axillary basal cell carcinoma in patients with Goltz-Gorlin syndrome: report of basal cell carcinoma in both axilla of a woman with basal cell nevus syndrome and literature review.

    Science.gov (United States)

    Cohen, Philip R

    2014-08-17

    Basal cell carcinoma of the axilla, an area that is not usually exposed to the sun, is rare. Individuals with basal cell nevus syndrome, a disorder associated with a mutation in the patch 1 (PTCH1) gene, develop numerous basal cell carcinomas. To describe a woman with basal cell nevus syndrome who developed a pigmented basal cell carcinoma in each of her axilla and to review the features of axillary basal cell carcinoma patients with Goltz-Gorlin syndrome. Pubmed was used to search the following terms: axillary basal cell carcinoma and basal cell nevus syndrome. The papers and their citations were evaluated. Basal cell nevus syndrome patients with basal cell carcinoma of the axilla were observed in two women; this represents 2.5% (2 of 79) of the patients with axillary basal cell carcinoma. Both women had pigmented tumors that were histologically nonaggressive. The cancers did not recur after curettage or excision. Basal cell carcinoma of the axilla has only been described in 79 individuals; two of the patients were women with pigmented tumors who had basal cell nevus syndrome. Similar to other patients with axillary basal cell carcinoma, the tumors were histologically nonaggressive and did not recur following treatment. Whether PTCH1 gene mutation predisposes basal cell nevus patients to develop axillary basal cell carcinomas remains to be determined.

  1. Evidence for a Role of Proline and Hypothalamic Astrocytes in the Regulation of Glucose Metabolism in Rats

    OpenAIRE

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M.; Lam, Tony K.T.; Gutiérrez-Juárez, Roger

    2013-01-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our result...

  2. Proton MR spectroscopic features of chronic hepatitis and liver cirrhosis

    International Nuclear Information System (INIS)

    Cho, Soon Gu; Chung, Won Kyun; Kim, Young Soo; Choi, Won; Shin, Seok Hwan; Kim, Hyung Jin; Suh, Chang Hae

    2000-01-01

    The purpose of this study was to evaluate change in the proton MR spectroscopic ( 1 H-MRS) features of the liver according to changes in the severity of the chronic hepatitis spectrum (normal-chronic hepatitis-liver cirrhosis), and to determine the possibility of replacing liver biopsy by 1 H-MRS. Sixty profiles of 1 H-MRS features from 15 normal volunteers, 30 cases of chronic hepatitis, and 15 of liver cirrhosis were evaluated. All cases of chronic hepatitis and liver cirrhosis were confirmed by biopsy, and histopathologic disease severity was categorized according to Ludwig's classification. Using the STEAM (STimulated Echo-Aquisition Mode) sequence, 1 H-MRS was performed. The ratios of peak areas of (glutamate + glutamine)/lipid, phosphomonoesters/lipid, (glycogen + glucose)/lipid, and (3.9-4.1 ppm unknown peak)/lipid and their mean and standard deviation were calculated in normal, chronic hepatitis stages I and II, and early and late liver cirrhosis groups and the results were compared between these groups. One-way variable analysis was applied to the statistics. Mean and standard deviation of phosphomonoesters/lipid in the normal, chronic hepatitis grades I and II, and early and late liver cirrhosis groups were 0.0146±0.0090, 0.0222±0.0170, 0.0341±0.0276, 0.0698±0.0360, and 0.0881±0.0276, respectively, and (glycogen + glucose)/lipid were 0.0403±0.0267, 0.0922±0.0377, 0.1230±0.0364, 0.1853±0.0667, 0.2325±0.1071, respectively. These results implied that the ratio of the above metabolites to lipid content increased according to increasing disease severity (p less than 0.05). For (glutamate + glutamine)/lipid however, the ratios for each group were 0.0204±0.0067, 0.0117±0.0078, 0.0409±0.0167, 0.0212±0.0103, and 0.0693±0.0371, respectively, and there was no correlation with disease severity. In the chronic hepatitis grades I and II, and early and late liver cirrhosis groups, the ratios for (3.9-4.1 ppm unknown peak)/lipid were 0.0302±0.0087, 0

  3. NRG1-Fc improves metabolic health via dual hepatic and central action.

    Science.gov (United States)

    Zhang, Peng; Kuang, Henry; He, Yanlin; Idiga, Sharon O; Li, Siming; Chen, Zhimin; Yang, Zhao; Cai, Xing; Zhang, Kezhong; Potthoff, Matthew J; Xu, Yong; Lin, Jiandie D

    2018-03-08

    Neuregulins (NRGs) are emerging as an important family of signaling ligands that regulate glucose and lipid homeostasis. NRG1 lowers blood glucose levels in obese mice, whereas the brown fat-enriched secreted factor NRG4 protects mice from high-fat diet-induced insulin resistance and hepatic steatosis. However, the therapeutic potential of NRGs remains elusive, given the poor plasma half-life of the native ligands. Here, we engineered a fusion protein using human NRG1 and the Fc domain of human IgG1 (NRG1-Fc) that exhibited extended half-life in circulation and improved potency in receptor signaling. We evaluated its efficacy in improving metabolic parameters and dissected the mechanisms of action. NRG1-Fc treatment triggered potent AKT activation in the liver, lowered blood glucose, improved insulin sensitivity, and suppressed food intake in obese mice. NRG1-Fc acted as a potent secretagogue for the metabolic hormone FGF21; however, the latter was largely dispensable for its metabolic effects. NRG1-Fc directly targeted the hypothalamic POMC neurons to promote membrane depolarization and increase firing rate. Together, NRG1-Fc exhibits improved pharmacokinetic properties and exerts metabolic benefits through dual inhibition of hepatic gluconeogenesis and caloric intake.

  4. Effect of Dietary Intake of Avocado Oil and Olive Oil on Biochemical Markers of Liver Function in Sucrose-Fed Rats

    Directory of Open Access Journals (Sweden)

    Octavio Carvajal-Zarrabal

    2014-01-01

    Full Text Available Metabolic changes, along with cardiovascular and hepatic factors, are associated with the development of diseases such as diabetes, dyslipidemia, and obesity. We evaluated the effect of avocado oil supplementation (centrifuged and solvent extracted, compared with olive oil, upon the hepatic function in sucrose-fed rats. Twenty-five rats were divided into five groups: control (basal diet, a sucrose-fed group (basal diet plus 30% sucrose solution, and three other groups (S-OO, S-AOC, and S-AOS, indicating basal diet plus 30% sucrose solution plus olive oil OO, avocado oil extracted by centrifugation AOC or using solvent AOS, resp.. Glucose, total cholesterol, triglycerides, total protein, albumin, globulin, direct bilirubin, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, alkaline phosphatase, cholinesterase, and α-amylase concentrations were determined and avocado oil effect on them was studied. In some cases the induced metabolic alteration significantly affected total protein and bilirubin levels and also had a highly significant effect on α-amylase levels. AOC and AOS exhibited effects similar to those of olive oil, according to the nonsignificant difference in fatty acid profile observed by other authors. Avocado oil consumption could be beneficial in the control of altered metabolic profile illnesses as it presents effects on hepatic function biochemical markers similar to olive oil.

  5. Effect of iodide on glucose oxidation and 32P incorporation into phospholipids stimulated by different agents in dog thyroid slices

    International Nuclear Information System (INIS)

    Tseng, F.Y.; Rani, C.S.; Field, J.B.

    1989-01-01

    Since iodide (I-) inhibits TSH stimulation of cAMP formation, which mediates most of the effects of the hormone, it has been assumed that this accounts for the inhibitory action of iodide on the thyroid. However, TSH stimulation of 32P incorporation into phospholipids and stimulation of thyroid metabolism by other agonists, such as carbachol, phorbol esters, and ionophore A23187, is not cAMP mediated. The present studies examined the effect of iodide on stimulation of glucose oxidation and 32P incorporation into phospholipids by TSH and other agonists to determine if the inhibition of cAMP formation was responsible for the action of iodide. Preincubation of dog thyroid slices for 1 h with iodide (10(-4) M) inhibited TSH-, (Bu)2cAMP-, carbachol-, methylene blue-, 12-O-tetradecanoyl phorbol-13-acetate-, ionophore A23187-, prostaglandin E1-, and cholera toxin-stimulated glucose oxidation. I- also inhibited the stimulation by TSH, 12-O-tetradecanoyl phorbol-13-acetate, carbachol, and ionophore A23187 of 32P incorporation into phospholipids. The inhibition was similar whether iodide was added 2 h before or simultaneously with the agonist. I- itself sometimes stimulated basal glucose oxidation, but had no effect on basal 32P incorporation into phospholipids. The effects of iodide on basal and agonist-stimulated thyroid metabolism were blocked by methimazole (10(-3) M). When dog thyroid slices were preloaded with 32PO4 or [1-14C]glucose, the iodide inhibition of agonist stimulation disappeared, suggesting that the effect of iodide involves the transport process. In conclusion, I- inhibited stimulation of glucose oxidation and 32P incorporation into phospholipids by all agonists, indicating that the effect is independent of the cAMP system and that iodide autoregulation does not only involve this system. Oxidation and organification of iodide are necessary for the inhibition

  6. Combination of diabetes risk factors and hepatic steatosis in Chinese: the Cardiometabolic Risk in Chinese (CRC Study.

    Directory of Open Access Journals (Sweden)

    Jun Liang

    Full Text Available Hepatic steatosis has been related to insulin resistance and increased diabetes risk. We assessed whether combination of diabetes risk factors, evaluated by the Finnish Diabetes Risk Score, was associated with risk of hepatic steatosis in an apparently healthy Chinese population.The study samples were from a community-based health examination survey in central China. In total 1,780 men and women (18-64 y were included in the final analyses. Hepatic steatosis was diagnosed by ultrasonography. We created combination of diabetes risk factors score on basis of age, Body Mass Index, waist circumference, physical activity at least 4 h a week, daily consumption of fruits, berries or vegetables, history of antihypertensive drug treatment, history of high blood glucose. The total risk score is a simple sum of the individual weights, and values range from 0 to 20.Hepatic steatosis was present 18% in the total population. In multivariate models, the odds ratios of hepatic steatosis were 1.20 (95%CI 1.15-1.25 in men and 1.25 (95%CI 1.14-1.37 in women by each unit increase in the combination of diabetes risk factors score, after adjustment for blood pressure, liver enzymes, plasma lipids, and fasting glucose. The area under the receiver operating characteristic curve for hepatic steatosis was 0.78 (95%CI 0.76-0.80, 0.76 in men (95%CI 0.74-0.78 and 0.83 (95%CI 0.79-0.87 in women.Our data suggest that combination of major diabetes risk factors was significantly related to risk of hepatic steatosis in Chinese adults.

  7. Resistance training enhances insulin suppression of endogenous glucose production in elderly women.

    Science.gov (United States)

    Honka, Miikka-Juhani; Bucci, Marco; Andersson, Jonathan; Huovinen, Ville; Guzzardi, Maria Angela; Sandboge, Samuel; Savisto, Nina; Salonen, Minna K; Badeau, Robert M; Parkkola, Riitta; Kullberg, Joel; Iozzo, Patricia; Eriksson, Johan G; Nuutila, Pirjo

    2016-03-15

    An altered prenatal environment during maternal obesity predisposes offspring to insulin resistance, obesity, and their consequent comorbidities, type 2 diabetes and cardiovascular disease. Telomere shortening and frailty are additional risk factors for these conditions. The aim of this study was to evaluate the effects of resistance training on hepatic metabolism and ectopic fat accumulation. Thirty-five frail elderly women, whose mothers' body mass index (BMI) was known, participated in a 4-mo resistance training program. Endogenous glucose production (EGP) and hepatic and visceral fat glucose uptake were measured during euglycemic hyperinsulinemia with [(18)F]fluorodeoxyglucose and positron emission tomography. Ectopic fat was measured using magnetic resonance spectroscopy and imaging. We found that the training intervention reduced EGP during insulin stimulation [from 5.4 (interquartile range 3.0, 7.0) to 3.9 (-0.4, 6.1) μmol·kg body wt(-1)·min(-1), P = 0.042] in the whole study group. Importantly, the reduction was higher among those whose EGP was more insulin resistant at baseline (higher than the median) [-5.6 (7.1) vs. 0.1 (5.4) μmol·kg body wt(-1)·min(-1), P = 0.015]. Furthermore, the decrease in EGP was associated with telomere elongation (r = -0.620, P = 0.001). The resistance training intervention did not change either hepatic or visceral fat glucose uptake or the amounts of ectopic fat. Maternal obesity did not influence the studied measures. In conclusion, resistance training improves suppression of EGP in elderly women. The finding of improved insulin sensitivity of EGP with associated telomere lengthening implies that elderly women can reduce their risk for type 2 diabetes and cardiovascular disease with resistance training. Copyright © 2016 the American Physiological Society.

  8. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis.

    Science.gov (United States)

    Gotoh, Saki; Negishi, Masahiko

    2015-09-22

    Statin therapy is known to increase blood glucose levels in humans. Statins utilize pregnane X receptor (PXR) and serum/glucocorticoid regulated kinase 2 (SGK2) to activate phosphoenolpyruvate carboxykinase 1 (PEPCK1) and glucose-6-phosphatase (G6Pase) genes, thereby increasing glucose production in human liver cells. Here, the novel statin/PXR/SGK2-mediated signaling pathway has now been characterized for hepatic gluconeogenesis. Statin-activated PXR scaffolds the protein phosphatase 2C (PP2C) and SGK2 to stimulate PP2C to dephosphorylate SGK2 at threonine 193. Non-phosphorylated SGK2 co-activates PXR-mediated trans-activation of promoters of gluconeogenic genes in human liver cells, thereby enhancing gluconeogenesis. This gluconeogenic statin-PXR-SGK2 signal is not present in mice, in which statin treatment suppresses hepatic gluconeogenesis. These findings provide the basis for statin-associated side effects such as an increased risk for Type 2 diabetes.

  9. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature.

    Science.gov (United States)

    Li, Wei; Maloney, Ronald E; Aw, Tak Yee

    2015-08-01

    We previously demonstrated that in normal glucose (5mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG-occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG-occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-08-01

    Full Text Available We previously demonstrated that in normal glucose (5 mM, methylglyoxal (MG, a model of carbonyl stress induced brain microvascular endothelial cell (IHEC dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC. Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia; moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation. Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes.

  11. Effect of HCV on fasting glucose, fasting insulin and peripheral insulin resistance in first 5 years of infection.

    Science.gov (United States)

    Ahmed, Naeema; Rashid, Amir; Naveed, Abdul Khaliq; Bashir, Qudsia

    2016-02-01

    To assess the effects of hepatitis C virus infection in the first 5 years on fasting glucose, fasting insulin and peripheral insulin resistance. The case-control study was conducted at the Army Medical College, Rawalpindi, from December 2011 to November 2012, and comprised subjects recruited from a government hospital in Rawalpindi. The subjects included known cases of hepatitis C virus infection for at least 5 years, and normal healthy controls. Fasting blood samples of all the subjects were collected and analysed for serum fasting insulin and serum fasting glucose levels. Homeostatic model assessment-Insulin resistance was calculated SPSS 11 was used for statistical analysis. Of the 30 subjects, 20(66.6%) were cases, while 10(33.3%) were controls. Serum fasting glucose mean level in cases was 89.55±9.53 compared to 84.40±9.80 in the controls (p=0.188). The mean serum fasting insulin in controls was 7.52±3.23 and 6.79±3.30 in cases (p=0.567). Homeostatic model assessment-Insulin resistance level in controls was 1.60±0.76 and In the cases it was 1.49±0.74 (p=0.695). Peripheral insulin resistance and development of type 2 diabetes as a complication of hepatitis C virus infection was not likely at least within the first five years of infection.

  12. Transcriptional coactivator NT-PGC-1α promotes gluconeogenic gene expression and enhances hepatic gluconeogenesis.

    Science.gov (United States)

    Chang, Ji Suk; Jun, Hee-Jin; Park, Minsung

    2016-10-01

    The transcriptional coactivator PGC-1α plays a central role in hepatic gluconeogenesis. We previously reported that alternative splicing of the PGC-1α gene produces an additional transcript encoding the truncated protein NT-PGC-1α NT-PGC-1α is co-expressed with PGC-1α and highly induced by fasting in the liver. NT-PGC-1α regulates tissue-specific metabolism, but its role in the liver has not been investigated. Thus, the objective of this study was to determine the role of hepatic NT-PGC-1α in the regulation of gluconeogenesis. Adenovirus-mediated expression of NT-PGC-1α in primary hepatocytes strongly stimulated the expression of key gluconeogenic enzyme genes (PEPCK and G6Pase), leading to increased glucose production. To further understand NT-PGC-1α function in hepatic gluconeogenesis in vivo, we took advantage of a previously reported FL-PGC-1α -/- mouse line that lacks full-length PGC-1α (FL-PGC-1α) but retains a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α 254 ). In FL-PGC-1α -/- mice, NT-PGC-1α 254 was induced by fasting in the liver and recruited to the promoters of PEPCK and G6Pase genes. The enrichment of NT-PGC-1α 254 at the promoters was closely associated with fasting-induced increase in PEPCK and G6Pase gene expression and efficient production of glucose from pyruvate during a pyruvate tolerance test in FL-PGC-1α -/- mice. Moreover, FL-PGC-1α -/- primary hepatocytes showed a significant increase in gluconeogenic gene expression and glucose production after treatment with dexamethasone and forskolin, suggesting that NT-PGC-1α 254 is sufficient to stimulate the gluconeogenic program in the absence of FL-PGC-1α Collectively, our findings highlight the role of hepatic NT-PGC-1α in stimulating gluconeogenic gene expression and glucose production. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. Genetic ablation of phosphatidylcholine transfer protein/StarD2 in ob/ob mice improves glucose tolerance without increasing energy expenditure.

    Science.gov (United States)

    Krisko, Tibor I; LeClair, Katherine B; Cohen, David E

    2017-03-01

    Phosphatidylcholine transfer protein (PC-TP; synonym StarD2) is highly expressed in liver and oxidative tissues. PC-TP promotes hepatic glucose production during fasting and aggravates glucose intolerance in high fat fed mice. However, because PC-TP also suppresses thermogenesis in brown adipose tissue (BAT), its direct contribution to obesity-associated diabetes in mice remains unclear. Here we examined the effects of genetic PC-TP ablation on glucose homeostasis in leptin-deficient ob/ob mice, which exhibit both diabetes and altered thermoregulation. Mice lacking both PC-TP and leptin (Pctp -/- ;ob/ob) were prepared by crossing Pctp -/- with ob/+ mice. Glucose homeostasis was assessed by standard assays, and energy expenditure was determined by indirect calorimetry using a comprehensive laboratory animal monitoring system, which also recorded physical activity and food intake. Body composition was determined by NMR and hepatic lipids by enzymatic assays. Core body temperature was measured using a rectal thermocouple probe. Pctp -/- ;ob/ob mice demonstrated improved glucose homeostasis, as evidenced by markedly improved glucose and pyruvate tolerance tests, without changes in insulin tolerance. However, there were no differences in EE at any ambient temperature. There were also no effects of PC-TP expression on physical activity, food intake or core body temperature. Improved glucose tolerance in Pctp -/- ;ob/ob mice in the absence of increases in energy expenditure or core body temperature indicates a direct pathogenic role for PC-TP in diabetes in leptin deficient mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Heart, Emma [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Palo, Meridith; Womack, Trayce [Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States); Smith, Peter J.S. [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Institute for Life Sciences, University of Southampton (United Kingdom); Gray, Joshua P., E-mail: Joshua.p.gray@uscga.edu [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States)

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling

  15. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    International Nuclear Information System (INIS)

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J.S.; Gray, Joshua P.

    2012-01-01

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H 2 O 2 ), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H 2 O 2 inhibit insulin secretion. Menadione, which produces H 2 O 2 via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H 2 O 2 production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H 2 O 2 formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H 2 O 2 and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H 2 O 2 production is proportional to applied glucose levels. ► Quinone-mediated redox cycling is dependent on glycolysis

  16. Ginsenoside Compound K suppresses the hepatic gluconeogenesis via activating adenosine-5'monophosphate kinase: A study in vitro and in vivo.

    Science.gov (United States)

    Wei, Shengnan; Li, Wei; Yu, Yang; Yao, Fan; A, Lixiang; Lan, Xiaoxin; Guan, Fengying; Zhang, Ming; Chen, Li

    2015-10-15

    Compound K (CK) is a final intestinal metabolite of protopanaxadiol-type ginsenoside. We have reported that CK presented anti-diabetic effect via diminishing the expressions of hepatic gluconeogenesis key enzyme. Here, we further explore the possible mechanism of CK on suppression hepatic gluconeogenesis via activation of adenosine-5'monophosphate kinase (AMPK) on type 2 diabetes mice in vivo and in HepG2 cells. Type 2 diabetes mice model was developed by high fat diet combined with STZ injection. 30mg/kg/d CK was orally administrated for 4weeks, the fasting blood glucose level and 2h OGTT were conducted, and the protein expression of AMPK, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) were examined. The mechanism of Compound K on hepatic gluconeogenesis was further explored in HepG2 hepatocytes. Glucose production, the protein expression of AMPK, PEPCK, G6pase and PGC-1α, hepatic nuclear factor 4α (HNF-4α) and forkhead transcription factor O1 (FOXO1) were determined after Compound K treatment at the presence of AMPK inhibitor Compound C. We observed that CK inhibited the expression of PEPCK and G6Pase in the liver and in HepG2 hepatocytes. Meanwhile, CK treatment remarkably increased the activation of AMPK, while decreasing the expressions of PGC-1α, HNF-4α and FOXO1. However, AMPK inhibitor Compound C could reverse these effects of CK on gluconeogenesis in part. The results indicated that the effect of CK on suppression hepatic gluconeogenesis might be via the activation the AMPK activity. Copyright © 2015. Published by Elsevier Inc.

  17. Protein source in a high-protein diet modulates reductions in insulin resistance and hepatic steatosis in fa/fa Zucker rats.

    Science.gov (United States)

    Wojcik, Jennifer L; Devassy, Jessay G; Wu, Yinghong; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2016-01-01

    High-protein diets are being promoted to reduce insulin resistance and hepatic steatosis in metabolic syndrome. Therefore, the effect of protein source in high-protein diets on reducing insulin resistance and hepatic steatosis was examined. Fa/fa Zucker rats were provided normal-protein (15% of energy) casein, high-protein (35% of energy) casein, high-protein soy, or high-protein mixed diets with animal and plant proteins. The high-protein mixed diet reduced area under the curve for insulin during glucose tolerance testing, fasting serum insulin and free fatty acid concentrations, homeostatic model assessment index, insulin to glucose ratio, and pancreatic islet cell area. The high-protein mixed and the high-protein soy diets reduced hepatic lipid concentrations, liver to body weight ratio, and hepatic steatosis rating. These improvements were observed despite no differences in body weight, feed intake, or adiposity among high-protein diet groups. The high-protein casein diet had minimal benefits. A high-protein mixed diet was the most effective for modulating reductions in insulin resistance and hepatic steatosis independent of weight loss, indicating that the source of protein within a high-protein diet is critical for the management of these metabolic syndrome parameters. © 2015 The Obesity Society.

  18. Glucose tracer, kinetics and turnover in monkeys and chickens infused with ethanol, 1,3-butanediol, or fructose

    International Nuclear Information System (INIS)

    Armstrong, M.K.

    1985-01-01

    Mixtures of (2- 3 H) and (U- 14 C) glucose were injected as single doses into fasted cynomolgus monkeys to assess glucose tracer kinetics and obtain rates of turnover. Data were treated by stochastic and compartmental analyses and results from both analyses closely agreed. However, (2- 3 H) data analyzed by the compartmental analysis required three pools to fit the glucose disappearance curve while (6- 3 H) data fit a two or three pool model equally well. Turnover rates averaged 4.9-4.0, and 3.0 mg/min x kg -1 body weight with (2- 3 H), 6- 3 H) and (U- 14 C) glucose tracers, respectively. The data heuristically suggest that the slow turnover pool that was necessary to fit (2- 3 H) glucose data is related to isotope discrimination. The effects of four treatment solutions on (6- 3 H) glucose metabolism in monkeys were examined. The solutions and their rates of infusion (umoles/min x kg -1 ) were: (1) ethanol, 110; (2) 1,3-butanediol, 110; (3) fructose, 30; and (4) ethanol pus fructose, 110 and 30, respectively. The glucose clearance rate was lowest during the ethanol plus fructose infusions. Ethanol infusions (222 or 444 umoles/min x kg -1 body weight) in chickens (1500 g) fasted 64 hours did not cause hypoglycemia although the high dose slightly decreased the rate of glucose turnover 15% (14.0 versus 12.0 mg/min x kg -1 ). It was further found that neither the hepatic cytosolic nor the mitochondrial redox state significantly changed in chickens infused with the high dose of ethanol. The unchanged hepatic metabolite ratios in chickens are consistent with their unusual resistance to ethanol-induced hypoglycemia

  19. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls

    Science.gov (United States)

    Fassah, Dilla Mareistia; Jeong, Jin Young

    2018-01-01

    Objective This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Methods Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Results Castration increased the mRNA (3.6 fold; pgluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition. PMID:29502393

  20. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L

    2001-01-01

    The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin-converti......The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin......-converting enzyme (ACE) blockade] or without (control) administration of the ACE inhibitor enalapril (10 mg iv). Splanchnic blood flow was estimated by indocyanine green, and splanchnic substrate exchange was determined by the arteriohepatic venous difference. Exercise led to an approximately 20-fold increase (P ...-blockade group vs. the control group, hormones, metabolites, VO(2), and RER followed the same pattern of changes in ACE-blockade and control groups during exercise. Splanchnic blood flow (at rest: 1.67 +/- 0.12, ACE blockade; 1.59 +/- 0.18 l/min, control) decreased during moderate exercise (0.78 +/- 0.07, ACE...

  1. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation

    Science.gov (United States)

    Reno, Candace M.; Puente, Erwin C.; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J.; Routh, Vanessa H.; Kahn, Barbara B.

    2017-01-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. PMID:27797912

  2. Simulation-Based Evaluation of Dose-Titration Algorithms for Rapid-Acting Insulin in Subjects with Type 2 Diabetes Mellitus Inadequately Controlled on Basal Insulin and Oral Antihyperglycemic Medications.

    Science.gov (United States)

    Ma, Xiaosu; Chien, Jenny Y; Johnson, Jennal; Malone, James; Sinha, Vikram

    2017-08-01

    The purpose of this prospective, model-based simulation approach was to evaluate the impact of various rapid-acting mealtime insulin dose-titration algorithms on glycemic control (hemoglobin A1c [HbA1c]). Seven stepwise, glucose-driven insulin dose-titration algorithms were evaluated with a model-based simulation approach by using insulin lispro. Pre-meal blood glucose readings were used to adjust insulin lispro doses. Two control dosing algorithms were included for comparison: no insulin lispro (basal insulin+metformin only) or insulin lispro with fixed doses without titration. Of the seven dosing algorithms assessed, daily adjustment of insulin lispro dose, when glucose targets were met at pre-breakfast, pre-lunch, and pre-dinner, sequentially, demonstrated greater HbA1c reduction at 24 weeks, compared with the other dosing algorithms. Hypoglycemic rates were comparable among the dosing algorithms except for higher rates with the insulin lispro fixed-dose scenario (no titration), as expected. The inferior HbA1c response for the "basal plus metformin only" arm supports the additional glycemic benefit with prandial insulin lispro. Our model-based simulations support a simplified dosing algorithm that does not include carbohydrate counting, but that includes glucose targets for daily dose adjustment to maintain glycemic control with a low risk of hypoglycemia.

  3. Effect of abomasal glucose infusion on plasma concentrations of gut peptides in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Relling, A E; Reynolds, C K

    2010-01-01

    Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic plasma concentrations of gut peptides. The experimental design was a randomi...

  4. Low Prevalence of Insulin Resistance among Iranian Patients with Chronic Hepatitis C Virus Infection: A Case-Control Study.

    Science.gov (United States)

    Eshraghian, Kavous; Lankarani, Kamran B; Fattahi, Mohammad Reza; Esmailnejad, Atefeh; Peymani, Payam

    2017-07-14

    Association between chronic hepatitis C virus (CHC) infection and type 2 diabetes mellitus has been challenging in recent decades. Despite of extensive research in this area, there is no general agreement on the direct effect of HCV infection on insulin resistance. The study was performed in 52 CHC patients (mean age = 39.48) and 52 and sex‑matched healthy Iranian controls, referred to the Hepatitis Clinic, Department of Gastroenterohepatology, Shiraz University of medical sciences, Shiraz, Iran, from 2012 to 2015. Fasting blood glucose level, fasting insulin level and insulin resistance defined as a homeostasis model assessment of insulin resistance (HOMA-IR) index were determined and compared between two groups. Insulin resistance was present in 26.9% of CHC patients and 34.62% of healthy controls. Mean HOMA index was 1.93 in patients and 2.18 in controls. There were no statistically significant differences between patient and control groups with regard to fasting insulin level, fasting blood glucose, HOMA index and insulin resistance. HOMA index and fasting insulin level were significantly higher in IR CHC patients relative to IR controls. Fasting blood glucose was also significantly higher in controls younger than 40 years. Results obtained in this study showed that chronic hepatitis C cannot be considered as a risk factor for insulin resistance and diabetes in Iranian population. However, regular screening for insulin resistance is recommended in CHC patients with age ≥ 40 years and fasting blood glucose ≥ 100 mg/dl. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats.

    Science.gov (United States)

    Hanke, Danielle; Zahradka, Peter; Mohankumar, Suresh K; Clark, Jaime L; Taylor, Carla G

    2013-01-01

    This study investigated the efficacy of the plant-based n-3 fatty acid, α-linolenic acid (ALA), a dietary precursor of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for modulating hepatic steatosis. Rats were fed high fat (55% energy) diets containing high oleic canola oil, canola oil, a canola/flax oil blend (C/F, 3:1), safflower oil, soybean oil, or lard. After 12 weeks, C/F and weight-matched (WM) groups had 20% less liver lipid. Body mass, liver weight, glucose and lipid metabolism, inflammation and molecular markers of fatty acid oxidation, synthesis, desaturation and elongation did not account for this effect. The C/F group had the highest total n-3 and EPA in hepatic phospholipids (PL), as well as one of the highest DHA and lowest arachidonic acid (n-6) concentrations. In conclusion, the C/F diet with the highest content of the plant-based n-3 ALA attenuated hepatic steatosis and altered the hepatic PL fatty acid profile. © 2013 Published by Elsevier Ltd.

  6. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic AA metabolism. The experimental design was a split plot, with cow as the whole...

  7. Vitamin C modulates cadmium-induced hepatic antioxidants' gene transcripts and toxicopathic changes in Nile tilapia, Oreochromis niloticus.

    Science.gov (United States)

    El-Sayed, Yasser S; El-Gazzar, Ahmed M; El-Nahas, Abeer F; Ashry, Khaled M

    2016-01-01

    Cadmium (Cd) is one of the naturally occurring heavy metals having adverse effects, while vitamin C (L-ascorbic acid) is an essential micronutrient for fish, which can attenuate tissue damage owing to its chain-breaking antioxidant and free radical scavenger properties. The adult Nile tilapia fish were exposed to Cd at 5 mg/l with and without vitamin C (500 mg/kg diet) for 45 days in addition to negative and positive controls fed with the basal diet and basal diet supplemented with vitamin C, respectively. Hepatic relative mRNA expression of genes involved in antioxidant function, metallothionein (MT), glutathione S-transferase (GST-α1), and glutathione peroxidase (GPx1), was assessed using real-time reverse transcription polymerase chain reaction (RT-PCR). Hepatic architecture was also histopathologically examined. Tilapia exposed to Cd exhibited upregulated antioxidants' gene transcript levels, GST-⍺1, GPx1, and MT by 6.10-, 4.60-, and 4.29-fold, respectively. Histopathologically, Cd caused severe hepatic changes of multifocal hepatocellular and pancreatic acinar necrosis, and lytic hepatocytes infiltrated with eosinophilic granular cells. Co-treatment of Cd-exposed fish with vitamin C overexpressed antioxidant enzyme-related genes, GST-⍺1 (16.26-fold) and GPx1 (18.68-fold), and maintained the expression of MT gene close to control (1.07-fold), averting the toxicopathic lesions induced by Cd. These results suggested that vitamin C has the potential to protect Nile tilapia from Cd hepatotoxicity via sustaining hepatic antioxidants' genes transcripts and normal histoarchitecture.

  8. Intra-islet glucagon secretion and action in the regulation of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Qinghua eWang

    2013-01-01

    Full Text Available Glucagon, a key hormone in the regulation of glucose homeostasis, acts as a counter-regulatory hormone to insulin by promoting hepatic glucose output. Under normal conditions, insulin and glucagon operate in concert to maintain the glucose level within a narrow physiological range. In diabetes, however, while insulin secretion or action is insufficient, the production and secretion of glucagon are excessive, contributing to the development of diabetic hyperglycemia. Within an islet, intra-islet insulin, in cooperation with intra-islet GABA, suppresses glucagon secretion via direct modulation of -cell intracellular signaling pathways involving Akt activation, GABA receptor phosphorylation and the receptor plasma membrane translocation, while intra-islet glucagon plays an important role in modulating β-cell function and insulin secretion. Defects in the insulin-glucagon fine-tuning machinery may result in β-cell glucose incompetence, leading to unsuppressed glucagon secretion and subsequent hyperglycemia, which often occur under extreme conditions of glucose influx or efflux. Therefore, deciphering the precise molecular mechanisms underlying glucagon secretion and action will facilitate our understanding of glucagon physiology, in particular, its role in regulating islet β-cell function, and hence the mechanisms behind body glucose homeostasis.

  9. Embryonic protein undernutrition by albumen removal programs the hepatic amino acid and glucose metabolism during the perinatal period in an avian model.

    Directory of Open Access Journals (Sweden)

    Els Willems

    Full Text Available Different animal models have been used to study the effects of prenatal protein undernutrition and the mechanisms by which these occur. In mammals, the maternal diet is manipulated, exerting both direct nutritional and indirect hormonal effects. Chicken embryos develop independent from the hen in the egg. Therefore, in the chicken, the direct effects of protein deficiency by albumen removal early during incubation can be examined. Prenatal protein undernutrition was established in layer-type eggs by the partial replacement of albumen by saline at embryonic day 1 (albumen-deprived group, compared to a mock-treated sham and a non-treated control group. At hatch, survival of the albumen-deprived group was lower compared to the control and sham group due to increased early mortality by the manipulation. No treatment differences in yolk-free body weight or yolk weight could be detected. The water content of the yolk was reduced, whereas the water content of the carcass was increased in the albumen-deprived group, compared to the control group, indicating less uptake of nutrients from the yolk. At embryonic day 16, 20 and at hatch, plasma triiodothyronine (T3, corticosterone, lactate or glucose concentrations and hepatic glycogen content were not affected by treatment. At embryonic day 20, the plasma thyroxine (T4 concentrations of the albumen-deprived embryos was reduced compared to the control group, indicating a decreased metabolic rate. Screening for differential protein expression in the liver at hatch using two-dimensional difference gel electrophoresis revealed not only changed abundance of proteins important for amino acid metabolism, but also of enzymes related to energy and glucose metabolism. Interestingly, GLUT1, a glucose transporter, and PCK2 and FBP1, two out of three regulatory enzymes of the gluconeogenesis were dysregulated. No parallel differences in gene expressions causing the differences in protein abundance could be detected

  10. Effects of a glucokinase activator on hepatic intermediary metabolism: study with 13C-isotopomer-based metabolomics

    OpenAIRE

    Nissim, Itzhak; Horyn, Oksana; Nissim, Ilana; Daikhin, Yevgeny; Wehrli, Suzanne L.; Yudkoff, Marc; Matschinsky, Franz M.

    2012-01-01

    GKAs (glucokinase activators) are promising agents for the therapy of Type 2 diabetes, but little is known about their effects on hepatic intermediary metabolism. We monitored the fate of 13C-labelled glucose in both a liver perfusion system and isolated hepatocytes. MS and NMR spectroscopy were deployed to measure isotopic enrichment. The results demonstrate that the stimulation of glycolysis by GKA led to numerous changes in hepatic metabolism: (i) augmented flux through the TCA (tricarboxy...

  11. Epigenetic regulation of the glucose transporter gene Slc2a1 by β-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice.

    Science.gov (United States)

    Tanegashima, Kosuke; Sato-Miyata, Yukiko; Funakoshi, Masabumi; Nishito, Yasumasa; Aigaki, Toshiro; Hara, Takahiko

    2017-01-01

    We carried out liquid chromatography-tandem mass spectrometry analysis of metabolites in mice. Those metabolome data showed that hepatic glucose content is reduced, but that brain glucose content is unaffected, during fasting, consistent with the priority given to brain glucose consumption during fasting. The molecular mechanisms for this preferential glucose supply to the brain are not fully understood. We also showed that the fasting-induced production of the ketone body β-hydroxybutyrate (β-OHB) enhances expression of the glucose transporter gene Slc2a1 (Glut1) via histone modification. Upon β-OHB treatment, Slc2a1 expression was up-regulated, with a concomitant increase in H3K9 acetylation at the critical cis-regulatory region of the Slc2a1 gene in brain microvascular endothelial cells and NB2a neuronal cells, shown by quantitative PCR analysis and chromatin immunoprecipitation assay. CRISPR/Cas9-mediated disruption of the Hdac2 gene increased Slc2a1 expression, suggesting that it is one of the responsible histone deacetylases (HDACs). These results confirm that β-OHB is a HDAC inhibitor and show that β-OHB plays an important role in fasting-induced epigenetic activation of a glucose transporter gene in the brain. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  12. Hipoinsulinemia em alcoolistas com hepatopatia mínima Hypoinsulinemia in alcoholics with minimal hepatopaty

    Directory of Open Access Journals (Sweden)

    M.M. das Neves

    2000-03-01

    Full Text Available OBJETIVO: Em alcoolistas portadores de lesões hepáticas mínimas avaliar os níveis de glicose e insulina séricas após estímulo com glicose intravenosa. MÉTODOS: Em oito etilistas, portadores de alterações hepáticas mínimas, caracteriza por biópsia hepática, e em 26 controles sadios não-alcoólicos, foram estudados os níveis glicêmicos e insulinêmicos (RIE nos tempos 1, 3, 5, e 10 minutos após estímulo com glicose intravenosa (0.5g/Kg de peso. RESULTADOS: As médias da insulina sérica dos tempos 1, 3 minutos e resposta integrada total (RIT-10min após estímulo foram menores no grupo alcoolista em relação ao controle (p The chronic pancreatitis (CP may evolve with low insulin levels and develop clinical picture of diabetes mellitus. Low seric levels of insulin and C peptide after stimulus has also been described in asymptomatic alcoholics even with normal glicemic curves. It is known that the chronic alcoholism is the main etiological factor of CP and hepatic diseases, and that the insulin produced by the pancreas is metabolized mainly by the liver. High levels of periferic insulin are described in hepatic cirrhosis due to decrease of hepatic metabolization alone or associated to increase of periferic resistence. AIM: In alcoholics with minimal hepatic lesions to evaluate the seric insulin and glucose levels after stimulus with intravenous glucose. METHODS: In 8 alcoholic patients with minimal hepatic lesions characterized by hepatic biopsy, and 26 non-alcoholics, healthy controls, it was studied the serum glucose and insulin levels in basal time, 1, 3, 5, and 10 minutes after stimulus with intravenous glucose (0.5 g/kg. RESULTS: The insulin means in time 1, 3 minutes and total integrated response after stimulus were lower (p < 0.05 in alcoholic group than in control, even with normal glucose curves. CONCLUSION: Alcoholics with minimal hepatic lesions showed low seric insulin levels after glucose stimulus, similar to former

  13. Mechanism of S100b release from rat cortical slices determined under basal and stimulated conditions.

    Science.gov (United States)

    Gürsoy, Murat; Büyükuysal, R Levent

    2010-03-01

    Incubation of rat cortical slices in a medium that was not containing oxygen and glucose (oxygen-glucose deprivation, OGD) caused a 200% increase in the release of S100B. However, when slices were transferred to a medium containing oxygen and glucose (reoxygenation conditions, or REO), S100B release reached 500% of its control value. Neither inhibition of nitric oxide (NO) synthase by L-NAME nor addition of the NO donors sodium nitroprussid (SNP) or hydroxylamine (HA) to the medium altered basal S100B release. Similarly, the presence of SNP, HA or NO precursor L: -arginine in the medium, or inhibition of NO synthase by L-NAME also failed to alter OGD- and REO-induced S100B outputs. Moreover, individual inhibition of PKC, PLA(2) or PLC all failed to attenuate the S100B release determined under control condition or enhanced by either OGD or REO. Blockade of calcium channels with verapamil, chelating the Ca(+2) ions with BAPTA or blockade of sodium channels with tetrodotoxin (TTX) did not alter OGD- and REO-induced S100B release. In contrast to the pharmacologic manipulations mentioned above, glutamate and alpha-ketoglutarate added at high concentrations to the medium prevented both OGD- and REO-induced S100B outputs. These results indicate that neither NO nor the activation of PKC, PLA(2) or PLC seem to be involved in basal or OGD- and REO-induced S100B outputs. Additionally, calcium and sodium currents that are sensitive to verapamil and TTX, respectively, are unlikely to contribute to the enhanced S100B release observed under these conditions.

  14. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors.

    Directory of Open Access Journals (Sweden)

    Paola Llanos

    Full Text Available Glucose-stimulated insulin secretion (GSIS from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]. Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC, which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.

  15. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use.

    Science.gov (United States)

    Blume, Elena; Reichert, José Miguel

    2015-06-01

    Soil organic matter (SOM) and microbial activity are key components of soil quality and sustainability. In the humid tropics of Costa Rica 3 pesticide regimes were studied-fungicide (low input); fungicide and herbicide (medium input); and fungicide, herbicide, and nematicide (high input)-under continuous banana cultivation for 5 yr (young) or 20 yr (old) in 3 microhabitats-nematicide ring around plants, litter pile of harvested banana, and bare area between litter pile and nematicide ring. Soil samples were incubated sequentially in the laboratory: unamended, amended with glucose, and amended with ground banana leaves. Soil organic matter varied with microhabitat, being greatest in the litter pile, where microbes had the greatest basal respiration with ground banana leaf, whereas microbes in the nematicide ring had the greatest respiration with glucose. These results suggest that soil microbes adapt to specific microhabitats. Young banana plantations had similar SOM compared with old plantations, but the former had greater basal microbial respiration in unamended and in glucose-amended soil and greater first-order mineralization rates in glucose-amended soil, thus indicating soil biological quality decline over time. High pesticide input did not decrease microbial activity or mineralization rate in surface soil. In conclusion, microbial activity in tropical volcanic soil is highly adaptable to organic and inorganic inputs. © 2015 SETAC.

  16. Insulin induces a positive relationship between the rates of ATP and glycogen changes in isolated rat liver in presence of glucose; a 31P and 13C NMR study.

    Science.gov (United States)

    Baillet-Blanco, Laurence; Beauvieux, Marie-Christine; Gin, Henri; Rigalleau, Vincent; Gallis, Jean-Louis

    2005-11-21

    There is an emerging theory suggesting that insulin, which is known to be the predominant postprandial anabolic hormone, is also a major regulator of mitochondrial oxidative phosphorylation in human skeletal muscle. However, little is known about its effects in the liver. Since there is a theoretical relationship between glycogen metabolism and energy status, a simultaneous and continuous investigation of hepatic ATP and glycogen content was performed in intact and isolated perfused liver by 31P and 13C nuclear magnetic resonance (NMR) The hepatic rates of ATP and glycogen changes were evaluated with different concentrations of insulin and glucose during continuous and short-term supply. Liver from rats fed ad libitum were perfused with Krebs-Henseleit Buffer (KHB)(controls) or KHB containing 6 mM glucose, 30 mM glucose, insulin alone, insulin + 6 mM glucose, insulin + 30 mM glucose. In the control, glycogenolysis occurred at a rate of -0.53 +/- 0.021 % x min(-1) and ATP content decreased at a rate of -0.28 +/- 0.029 % x min(-1). In the absence of insulin, there was a close proportional relationship between the glycogen flux and the glucose concentration, whereas ATP rates never varied. With insulin + glucose, both glycogen and ATP rates were strongly related to the glucose concentration; the magnitude of net glycogen flux was linearly correlated to the magnitude of net ATP flux: flux(glycogen) = 72.543(fluxATP) + 172.08, R2 = 0.98. Only the co-infusion of 30 mM glucose and insulin led to (i) a net glycogen synthesis, (ii) the maintenance of the hepatic ATP content, and a strong positive correlation between their net fluxes. This has never previously been reported. The specific effect of insulin on ATP change is likely related to a rapid stimulation of the hepatic mitochondrial oxidative phosphorylation. We propose that variations in the correlation between rates of ATP and glycogen changes could be a probe for insulin resistance due to the action of substrates

  17. Insulin induces a positive relationship between the rates of ATP and glycogen changes in isolated rat liver in presence of glucose; a 31P and 13C NMR study

    Directory of Open Access Journals (Sweden)

    Gin Henri

    2005-11-01

    Full Text Available Abstract Background There is an emerging theory suggesting that insulin, which is known to be the predominant postprandial anabolic hormone, is also a major regulator of mitochondrial oxidative phosphorylation in human skeletal muscle. However, little is known about its effects in the liver. Since there is a theoretical relationship between glycogen metabolism and energy status, a simultaneous and continuous investigation of hepatic ATP and glycogen content was performed in intact and isolated perfused liver by 31P and 13C nuclear magnetic resonance (NMR The hepatic rates of ATP and glycogen changes were evaluated with different concentrations of insulin and glucose during continuous and short-term supply. Results Liver from rats fed ad libitum were perfused with Krebs-Henseleit Buffer (KHB(controls or KHB containing 6 mM glucose, 30 mM glucose, insulin alone, insulin + 6 mM glucose, insulin + 30 mM glucose. In the control, glycogenolysis occurred at a rate of -0.53 ± 0.021 %·min-1 and ATP content decreased at a rate of -0.28 ± 0.029 %·min-1. In the absence of insulin, there was a close proportional relationship between the glycogen flux and the glucose concentration, whereas ATP rates never varied. With insulin + glucose, both glycogen and ATP rates were strongly related to the glucose concentration; the magnitude of net glycogen flux was linearly correlated to the magnitude of net ATP flux: fluxglycogen = 72.543(fluxATP + 172.08, R2 = 0.98. Conclusion Only the co-infusion of 30 mM glucose and insulin led to (i a net glycogen synthesis, (ii the maintenance of the hepatic ATP content, and a strong positive correlation between their net fluxes. This has never previously been reported. The specific effect of insulin on ATP change is likely related to a rapid stimulation of the hepatic mitochondrial oxidative phosphorylation. We propose that variations in the correlation between rates of ATP and glycogen changes could be a probe for insulin

  18. Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Damiano, Fabrizio; Siculella, Luisa; Zara, Vincenzo

    2014-06-01

    Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis. Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70% w/w) or in fat (20 and 35% w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel. Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases. The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.

  19. Enhanced glucose tolerance in pancreatic-derived factor (PANDER knockout C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Shari L. Moak

    2014-11-01

    Full Text Available Pancreatic-derived factor (PANDER; also known as FAM3B is a uniquely structured protein strongly expressed within and secreted from the endocrine pancreas. PANDER has been hypothesized to regulate fasting and fed glucose homeostasis, hepatic lipogenesis and insulin signaling, and to serve a potential role in the onset or progression of type 2 diabetes (T2D. Despite having potentially pivotal pleiotropic roles in glycemic regulation and T2D, there has been limited generation of stable animal models for the investigation of PANDER function, and there are no models on well-established genetic murine backgrounds for T2D. Our aim was to generate an enhanced murine model to further elucidate the biological function of PANDER. Therefore, a pure-bred PANDER knockout C57BL/6 (PANKO-C57 model was created and phenotypically characterized with respect to glycemic regulation and hepatic insulin signaling. The PANKO-C57 model exhibited an enhanced metabolic phenotype, particularly with regard to enhanced glucose tolerance. Male PANKO-C57 mice displayed decreased fasting plasma insulin and C-peptide levels, whereas leptin levels were increased as compared with matched C57BL/6J wild-type mice. Despite similar peripheral insulin sensitivity between both groups, hepatic insulin signaling was significantly increased during fasting conditions, as demonstrated by increased phosphorylation of hepatic PKB/Akt and AMPK, along with mature SREBP-1 expression. Insulin stimulation of PANKO-C57 mice resulted in increased hepatic triglyceride and glycogen content as compared with wild-type C57BL/6 mice. In summary, the PANKO-C57 mouse represents a suitable model for the investigation of PANDER in multiple metabolic states and provides an additional tool to elucidate the biological function and potential role in T2D.

  20. Counter-attack on viral hepatitis. [Hepatitis A; Hepatitis B

    Energy Technology Data Exchange (ETDEWEB)

    Prozesky, O W [Pretoria Univ. (South Africa). Dept. of Medical Virology; Jupp, P G; Joubert, J J; Taylor, M B; Grabow, W O.K.

    1985-07-01

    The most highly developed radioimmunoassay test system in medical virology is proving of exceptional value in research aimed at controlling and eventually eradicating the scourge of human hepatitis. The use of radioimmunoassay in detecting hepatitis A (HAV) and hepatitis B (HBV) viruses is discussed. The hepatitis A virus is an enterovirus which infects the gastrointestinal tract and is usually transmitted by contaminated food, milk or water. Hepatitis B spreads mainly by the parenteral rate. Bedbugs and ticks are considered as possible transmitters of HBV. Another important contribution of radioimmunoassay is the ability to monitor the immune response of persons at risk who are vaccinated against hepatitis B.