This paper contains a discussion of the spectrum of the lowest-lying charm baryons and review the experimental status of the masses of charm baryons and briefly comment on theoretical attempts to understand their spectroscopy. Lifetime measurements and lifetime hierarchies suggested by the interplay of various theoretical mechanisms contributing to the decay and semileptonic decays of charm baryons are discussed. It also treats exclusive nonleptonic charm baryon decays, where there are more data to be compared to theoretical modeling, and contains a summary and an outlook on future charm baryon experiments
We review the experimental and theoretical status of baryons containing one heavy quark. The charm and bottom baryon states are classified and their mass spectra are listed. The appropriate theoretical framework for the description of heavy baryons is the Heavy Quark Effective Theory, whose general ideas and methods are introduced and illustrated in specific examples. We present simple covariant expressions for the spin wave functions of heavy baryons including p-wave baryons. The covariant spin wave functions are used to determine the Heavy Quark Symmetry structure of flavour-changing current-induced transitions between heavy baryons as well as one-pion and one-photon transitions between heavy baryons of the same flavour. We discuss 1/mQ corrections to the current-induced transitions as well as the structure of heavy to light baryon transitions. Whenever possible we attempt to present numbers to compare with experiment by making use of further model-dependent assumptions as e.g. the constituent picture for light quarks. We highlight recent advances in the theoretical understanding of the inclusive decays of hadrons containing one heavy quark including polarization. For exclusive semileptonic decays we discuss rates, angular decay distributions and polarization effects. We provide an update of the experimental and theoretical status of lifetimes of heavy baryons and of exclusive nonleptonic two body decays of charm baryons. (orig.)
Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob
2012-01-01
In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a serie...
A brief review on the theoretical and experimental situation of baryon spectroscopy is first given. Then, the radial structure of baryons, related to the ground state form factors and the baryonic compressibility, is discussed. An experiment has been performed at Saturne laboratory (France) in which for the first time a compression of the nucleon is observed, exciting the P11 (1440 MeV) resonance (Roper resonance) by α-particles. The analysis of the data indicates that this excitation covers a large fraction of the available monopole strength in the nucleon. The derived compressibility is discussed as well as the consequence for other fields, as nuclear medium effects on baryon properties, high density phenomena in nuclear collisions as well as colour transparency. In the last point the spin-flip structure of the P11 (1440 MeV) resonance is discussed. The possibility to determine isoscalar spin-flip strength by polarized deuteron scattering is contrasted with first preliminary results from photon-induced reactions studied at Mainz which indicate a non-negligible M1 excitation of the Roper resonance. (author) 10 figs., 31 refs
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested
Kaplunovsky, Vadim; Sonnenschein, Jacob
2012-01-01
In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2...
Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob
2012-11-01
In the large N c limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti- ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.
Baryonic and Non-Baryonic Dark Matter
Carr, Bernard
2000-01-01
Cosmological nucleosynthesis calculations imply that there should be both non-baryonic and baryonic dark matter. Recent data suggest that some of the non-baryonic dark matter must be "hot" (i.e. massive neutrinos) and there may also be evidence for "cold" dark matter (i.e. WIMPs). If the baryonic dark matter resides in galactic halos, it is likely to be in the form of compact objects (i.e. MACHOs) and these would probably be the remnants of a first generation of pregalactic or protogalactic P...
Fukushima, Kenji
2014-01-01
We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.
Experiments on strangeness production in nucleus-nucleus collisions at SIS energies address fundamental aspects of modern nuclear physics: the determination of the nuclear equation-of-state at high baryon densities and the properties of hadrons in dense nuclear matter. Experimental data and theoretical results will be reviewed. Future experiments at the FAIR accelerator aim at the exploration of the QCD phase diagram at highest baryon densities. The proposal for the Compressed Baryonic Matter (CBM) experiment will be presented. (author)
Spectroscopy of beautiful baryons
Caloi, R.; Gentile, S.; Mignani, R. (Rome Univ. (Italy). Ist. di Fisica)
1980-09-20
By assuming a non-relativistic quark model, an estimate of the masses of the low-lying (non-strange and non-charmed) beautiful baryons is given. Electromagnetic mass splittings of the same baryons are also discussed in some detail.
Three body calculations for studying the baryons are performed in a non-relativistic treatment with three quarks interacting via Bhaduri's potential. From the resulting wave functions, it is analysed under which conditions can a diquark structure occurs. Several photos showing quark distributions inside the baryons are presented and discussed in details
Dipion decays of heavy baryons
Compared with the charmed baryons, the bottom baryons are not known very well both experimentally and theoretically. In this paper, we investigate the dipion strong decays of the P-wave and D-wave excited bottom baryons in the framework of the QPC model. We also extend the same analysis to the charmed baryons
Torsten Leddig
2012-11-01
From inclusive measurements, it is known that about 7% of all mesons decay into final states with baryons. In these decays, some striking features become visible compared to mesonic decays. The largest branching fractions come with quite moderate multiplicities of 3–4 hadrons. We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.
Photoproduction of hermaphrodite baryons
We show that photoexcitation of the lightest hermaphrodite baryons is strongly suppressed from proton targets but allowed from neutrons, a result that is reminiscent of a quark model selection rule due to Moorhouse. This is consistent with suggestions that the P11 (1710) is the lightest q3G baryon and eliminates the possibility of considerable mixing of q3G into the nucleon and delta's Fock space wavefunctions. (orig.)
Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small ΩB. However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then Ω should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman α clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with ΩB = 1 cosmological nucleosynthesis
Quark cluster model of baryon-baryon interaction
The quark cluster model of the baryon-baryon interaction is reviewed. The emphasis is on the foundation of the approach and the main features of the model. The origins of the short-range repulsion in the nuclear force and other baryonic interactions are discussed. (author)
Supersymmetric Baryonic Branes
Gomis, J P; Simón, J; Townsend, P K; Gomis, Joaquim; Ramallo, Alfonso V.; Simon, Joan; Townsend, Paul K.
1999-01-01
We derive an energy bound for a `baryonic' D5-brane probe in the $adS_5\\times S^5$ background near the horizon of $N$ D3-branes. Configurations saturating the bound are shown to be 1/4 supersymmetric $S^5$-wrapped D5-branes with $N$ singularities at arbitrary positions. Previous results for $N$ coincident singularities are recovered as a special case. We derive a similar energy bound for a `baryonic' M5-brane probe in the background of $N$ M5-branes. Configurations saturating the bound are again 1/4 supersymmetric and, in the $adS_7\\times S^4$ near-horizon limit, provide a worldvolume realization of the `baryon string' vertex of the (2,0)-supersymmetric six-dimensional conformal field theory on coincident M5-branes. For the full M5-background we find a worldvolume realization of the Hannany-Witten effect in M-theory.
Measurements of inclusive Λ + anti Λ production for 1.0 less than or equal to p less than or equal to 10.0 GeV/c and p + anti p production for 0.4 less than or equal to p less than or equal to 2.0 GeV/c show significant baryon production in e+e- annihilation at E/sub cm/ = 29 GeV. Λ + anti Λ production represents 0.2 Λ's or anti Λ's per PEP event while the observed p + anti p production implies all baryon-antibaryon pair production is occurring at least as often as 0.6 per event, depending on the yet to be measured p + anti p production at high momentum. Comparisons are made with the first theoretical attempts to account for baryon production at these energies
Charmed Bottom Baryon Spectroscopy
Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-01
The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.
Photoproduction of hermaphrodite baryons
It is shown that photoexcitation of the lightest hermaphrodite baryons is strongly suppressed from proton targets but allowed from neutrons, a result that is reminiscent of a quark model selection rule due to Moorhouse (Phys. Rev. Lett.; 16:772 (1966)). This is consistent with suggestions that the P11(1710) is the lightest q3G baryon and eliminates the possibility that the Roper resonance is dominantly an hermaphrodite state. Magnetic moments do not constrain the possibility of considerable mixing of q3G into the nucleon and delta's Fock space wavefunctions. (author)
Using state of the art lattice techniques we investigate the static baryon potential. We employ the multi-hit procedure for the time links and a variational approach to determine the ground state with sufficient accuracy that, for distances up to ∼ 1.2 fm, we can distinguish the Y- and Δ- Ansaetze for the baryonic Wilson area law. Our analysis shows that the Δ-Ansatz is favoured. This result is also supported by the gauge-invariant nucleon wave function which we measure for the first time
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Electroproduction of light quark baryons
The status of electromagnetic excitation of light quark (u, d) baryon states is reviewed and confronted with results of calculations within the framework of microscopic models of the baryon structure and the photon-baryon coupling. Prospects for a qualitative improvement of our knowledge in this sector using photon and electron beams at the new, intermediate energy continuous wave electron machines are discussed
Babu, K S; Al-Binni, U; Banerjee, S; Baxter, D V; Berezhiani, Z; Bergevin, M; Bhattacharya, S; Brice, S; Brock, R; Burgess, T W; Castellanos, L; Chattopadhyay, S; Chen, M-C; Church, E; Coppola, C E; Cowen, D F; Cowsik, R; Crabtree, J A; Davoudiasl, H; Dermisek, R; Dolgov, A; Dutta, B; Dvali, G; Ferguson, P; Perez, P Fileviez; Gabriel, T; Gal, A; Gallmeier, F; Ganezer, K S; Gogoladze, I; Golubeva, E S; Graves, V B; Greene, G; Handler, T; Hartfiel, B; Hawari, A; Heilbronn, L; Hill, J; Jaffe, D; Johnson, C; Jung, C K; Kamyshkov, Y; Kerbikov, B; Kopeliovich, B Z; Kopeliovich, V B; Korsch, W; Lachenmaier, T; Langacker, P; Liu, C-Y; Marciano, W J; Mocko, M; Mohapatra, R N; Mokhov, N; Muhrer, G; Mumm, P; Nath, P; Obayashi, Y; Okun, L; Pati, J C; Pattie, R W; Phillips, D G; Quigg, C; Raaf, J L; Raby, S; Ramberg, E; Ray, A; Roy, A; Ruggles, A; Sarkar, U; Saunders, A; Serebrov, A; Shafi, Q; Shimizu, H; Shiozawa, M; Shrock, R; Sikdar, A K; Snow, W M; Soha, A; Spanier, S; Stavenga, G C; Striganov, S; Svoboda, R; Tang, Z; Tavartkiladze, Z; Townsend, L; Tulin, S; Vainshtein, A; Van Kooten, R; Wagner, C E M; Wang, Z; Wehring, B; Wilson, R J; Wise, M; Yokoyama, M; Young, A R
2013-01-01
This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.
By formal manipulation of the QCD functional integral we arrive at a relativistic low energy effective theory of non-local color singlet mesons and baryons, which at tree level sums up ladders of effective glue exchange between constituent quarks. (orig.)
Problems in baryon spectroscopy
Capstick, S. [Florida State Univ., Tallahassee, FL (United States)
1994-04-01
Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.
Paolis, F.; Ingrosso, G.; Jetzer, Ph.; Roncadelli, M.
1997-01-01
Reasons supporting the idea that most of the dark matter in galaxies and clusters of galaxies is baryonic are discussed. Moreover, it is argued that most of the dark matter in galactic halos should be in the form of MACHOs and cold molecular clouds.
Photoproduction of charmed baryons
The results of a search for the photoproduction of charmed baryons in the broad-band neutral beam at Fermi National Accelerator Laboratory are reported. The lowest lying charmed baryon (Λ/sub c/+) is observed through its decay to p-anti K0. The cross section times branching ratio of γ + C → Λ/sub c/+ + X, γ + C → p + anti K0 is measured to be sigma B = 3 nanobarns/nucleon. The total error on this measurement is estimated to be -20% to +40%. The mass of the Λ/sub c/+ is found to be 2.284 +- 0.001 GeV/c2, in good agreement with the Mark II result from SPEAR. Upper limits (90% confidence level) are set on sigma B for the modes Λ0π, Λ0πππ, pKπ
Buccella, F.; Farrar, G.R.; Rutgers - the State Univ., New Brunswick, NJ; Pugliese, A.
1985-04-04
The MIT bag model is used to calculate masses of (R-)baryons, composed of three quarks and a gluino. If the gluino mass is small, the lightest of these, a flavor singlet, could be long-lived or even absolutely stable. The next lighest, the R-nucleons, probably have only weak decays, while all others are likely to decay strongly. This physical picture is not ruled out experimentally. (orig.).
Buccella, F.; Farrar, G.R.; Pugliese, A.
1985-04-04
The MIT bag model is used to calculate masses of (R-)baryons, composed of three quarks and a gluino. If the gluino mass is small, the lightest of these, a flavor singlet, could be long-lived or even absolutely stable. The next lighest, the R-nucleons, probably have only weak decays, while all others are likely to decay strongly. This physical picture is not ruled out experimentally.
The MIT bag model is used to calculate masses of (R-)baryons, composed of three quarks and a gluino. If the gluino mass is small, the lightest of these, a flavor singlet, could be long-lived or even absolutely stable. The next lighest, the R-nucleons, probably have only weak decays, while all others are likely to decay strongly. This physical picture is not ruled out experimentally. (orig.)
CP Violating Baryon Oscillations
McKeen, David; Nelson, Ann E.
2015-01-01
We analyze neutron-antineutron oscillation in detail, developing a Hamiltonian describing the system in the presence of electromagnetic fields. While magnetic fields can couple states of different spin, we show that, because of Fermi statistics, this coupling of different spin states does not involve baryon-number--changing transitions and, therefore, a two-state analysis ignoring spin is sufficient even in the presence of electromagnetic fields. We also enumerate the conditions necessary for...
Reconstructing baryon oscillations
Noh, Yookyung; White, Martin; Padmanabhan, Nikhil
2009-01-01
The baryon acoustic oscillation (BAO) method for constraining the expansion history is adversely affected by non-linear structure formation, which washes out the correlation function peak created at decoupling. To increase the constraining power of low z BAO experiments, it has been proposed that one use the observed distribution of galaxies to "reconstruct'' the acoustic peak. Recently Padmanabhan, White and Cohn provided an analytic formalism for understanding how reconstruction works withi...
Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT
I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.
Baryon spectroscopy in lattice QCD
Derek B. Leinweber; Wolodymyr Melnitchouk; David Richards; Anthony G. Williams; James Zanotti
2004-04-01
We review recent developments in the study of excited baryon spectroscopy in lattice QCD. After introducing the basic methods used to extract masses from correlation functions, we discuss various interpolating fields and lattice actions commonly used in the literature. We present a survey of results of recent calculations of excited baryons in quenched QCD, and outline possible future directions in the study of baryon spectra.
Chiral dynamics and baryon resonances
Hyodo, Tetsuo
2010-01-01
The structure of baryon resonance in coupled-channel meson-baryon scattering is studied from the viewpoint of chiral dynamics. The meson-baryon scattering amplitude can be successfully described together with the properties of the resonance in the scattering, by implementing the unitarity condition for the amplitude whose low energy structure is constrained by chiral theorem. Recently, there have been a major progress in the study of the structure of the resonance in chiral dynamics. We revie...
Nawa, K; Suganuma, H; Kojo, Toru; Nawa, Kanabu; Suganuma, Hideo
2006-01-01
We study the baryon in holographic QCD with $D4/D8/\\bar{D8}$ multi-$D$ brane system. In holographic QCD, the baryon appears as a topologically non-trivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton as Brane-induced Skyrmion. Some review of $D4/D8/\\bar{D8}$ holographic QCD is presented from the viewpoints of recent hadron physics and phenomenologies. Four-dimensional effective theory with pions and $\\rho$ mesons is uniquely derived from the non-abelian Dirac-Born-Infeld (DBI) action of $D8$ brane with $D4$ supergravity background, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and $\\rho$-meson fields, we derive the energy functional and the Euler-Lagrange equation of Brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the pion profile $F(r)$ and the $\\rho$-meson profile $G(r)$ of the Brane-induced Skyrmion, an...
Dynamically generated baryon resonances
Lutz, M F M
2005-01-01
Identifying a zero-range exchange of vector mesons as the driving force for the s-wave scattering of pseudo-scalar mesons off the baryon ground states, a rich spectrum of molecules is formed. We argue that chiral symmetry and large-$N_c$ considerations determine that part of the interaction which generates the spectrum. We suggest the existence of strongly bound crypto-exotic baryons, which contain a charm-anti-charm pair. Such states are narrow since they can decay only via OZI-violating processes. A narrow nucleon resonance is found at mass 3.52 GeV. It is a coupled-channel bound state of the $(\\eta_c N), (\\bar D \\Sigma_c)$ system, which decays dominantly into the $(\\eta' N)$ channel. Furthermore two isospin singlet hyperon states at mass 3.23 GeV and 3.58 GeV are observed as a consequence of coupled-channel interactions of the $(\\bar D_s \\Lambda_c), (\\bar D \\Xi_c)$ and $(\\eta_c \\Lambda),(\\bar D \\Xi_c')$ states. Most striking is the small width of about 1 MeV of the lower state. The upper state may be signi...
Baryon Production in the String Fragmentation Picture
Eden, Patrik; Gustafson, Gosta
1996-01-01
An improved version of the ``pop-corn'' model for baryon production in quark and gluon jets is presented. With a reduced number of parameters the model reproduces well both production rates for different baryon species and baryon momentum distributions. Predictions are presented for a set of baryon-antibaryon correlations.
Decay and spectra of baryons especially beauty baryons
Kalman, C. S.
1996-06-01
Masses and decays of the baryons are considered. The entire spectroscopy of baryons containing u,d,s,c and b quarks is calculated using the five quark masses and only four additional parameters describing the potential between the baryons. This potential is taken to be a short-range Coulomb potential together with a long-range linear potential modified by a harmonic-oscillator potential. Decays are studied using the quark pair creation model of Le Yaouanc et. al. The pair strength γ is replaced by kγ . This and the meson radius are the only parameters used in the calculation of the decays. Overall, we have a useful model, employing a small number of parameters, yet capable of yielding a description of the baryons in good accord with experimental data.
Baryon asymmetry in inflationary universe
The problem of the baryon asymmetry in inflationary universe is discussed. It is shown that the baryon asymmetry in inflationary universe under certain constrainsts on masses of superheavy bosons can be larger than that in the standard scenario. An important property of the model considered is that the final baryon asymmetry does not depend on initial conditions in the early universe in contrast to what occUrs in the standard scenario based on (B-L) conserving grand unified theories. The new scenario is realized in the framework of the SU(5) Coleman-Weinberg theory with the symmetry breaking
Baryon mapping of quark systems
Sambataro, M
1995-01-01
We discuss a mapping procedure from a space of colorless three-quark clusters into a space of elementary baryons and illustrate it in the context of a three-color extension of the Lipkin model recently developed. Special attention is addressed to the problem of the formation of unphysical states in the mapped space. A correspondence is established between quark and baryon spaces and the baryon image of a generic quark operator is defined both in its Hermitian and non-Hermitian forms. Its spectrum (identical in the two cases) is found to consist of a physical part containing the same eigenvalues of the quark operator in the cluster space and an unphysical part consisting only of zero eigenvalues. A physical subspace of the baryon space is also defined where the latter eigenvalues are suppressed. The procedure discussed is quite general and applications of it can be thought also in the correspondence between systems of 2n fermions and n bosons.
Baryon Instability in SUSY Models
Nath, Pran; Arnowitt, R.
1996-01-01
Comment: 14 pages, latex, 1 fig, to be published in proceedings of the International Workshop on " Future Prospects of Baryon Instability Search in p-Decay and n-nbar Oscillation Experiments", Oak Ridge, Tennessee, March 28-30,1996
Excitations of strange bottom baryons
Woloshyn, R M
2016-01-01
The ground state and first excited state masses of Omega(b) and Omega(bb) baryons are calculated in lattice QCD using dynamical 2+1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations.
Baryonic Operators for Lattice Simulations
Edwards, R; Fleming, G; Heller, U M; Morningstar, C J; Richards, D; Sato, I; Wallace, S
2004-01-01
The construction of baryonic operators for determining the N* excitation spectrum is discussed. The operators are designed with one eye towards maximizing overlaps with the low-lying states of interest, and the other eye towards minimizing the number of sources needed in computing the required quark propagators. Issues related to spin identification are outlined. Although we focus on tri-quark baryon operators, the construction method is applicable to both mesons and penta-quark operators.
Anomalous Dimensions of Conformal Baryons
Pica, Claudio
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.
Galaxy Cluster Baryon Fractions Revisited
Gonzalez, Anthony H; Zabludoff, Ann I; Zaritsky, Dennis
2013-01-01
We measure the baryons contained in both the stellar and hot gas components for twelve galaxy clusters and groups at z~0.1 with M=1-5e14 Msun. This paper improves upon our previous work through the addition of XMM data, enabling measurements of the total mass and masses of each major baryonic component --- ICM, intracluster stars, and stars in galaxies --- for each system. We recover a relation for the stellar mass versus halo mass consistent with our previous result. We confirm that the partitioning of baryons between the stellar and hot gas components is a strong function of M500; the fractions of total mass in stars and X-ray gas within r500 scale as M500^-0.45 and M500^0.26, respectively. We also confirm that the combination of the BCG and intracluster stars is an increasingly important contributor to the stellar baryon budget in lower halo masses. We find a weak, but statistically significant, dependence of the total baryon fraction upon halo mass, scaling as M500^0.16. For M500>2e14, the total baryon fr...
Baryons and baryonic matter in four-fermion interaction models
In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon number. In contrast
Galaxy cluster baryon fractions revisited
Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611-2055 (United States); Sivanandam, Suresh; Zabludoff, Ann I.; Zaritsky, Dennis [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)
2013-11-20
We measure the baryons contained in both the stellar and hot-gas components for 12 galaxy clusters and groups at z ∼ 0.1 with M = 1-5 × 10{sup 14} M {sub ☉}. This paper improves upon our previous work through the addition of XMM-Newton X-ray data, enabling measurements of the total mass and masses of each major baryonic component—intracluster medium, intracluster stars, and stars in galaxies—for each system. We recover a mean relation for the stellar mass versus halo mass, M{sub ⋆}∝M{sub 500}{sup −0.52±0.04}, that is 1σ shallower than in our previous result. We confirm that the partitioning of baryons between the stellar and hot-gas components is a strong function of M {sub 500}; the fractions of total mass in stars and X-ray gas within a sphere of radius r {sub 500} scale as f{sub ⋆}∝M{sub 500}{sup −0.45±0.04} and f{sub gas}∝M{sub 500}{sup 0.26±0.03}, respectively. We also confirm that the combination of the brightest cluster galaxy and intracluster stars is an increasingly important contributor to the stellar baryon budget in lower halo masses. Studies that fail to fully account for intracluster stars typically underestimate the normalization of the stellar baryon fraction versus M {sub 500} relation by ∼25%. Our derived stellar baryon fractions are also higher, and the trend with halo mass weaker, than those derived from recent halo occupation distribution and abundance matching analyses. One difference from our previous work is the weak, but statistically significant, dependence here of the total baryon fraction upon halo mass: f{sub bary}∝M{sub 500}{sup 0.16±0.04}. For M {sub 500} ≳ 2 × 10{sup 14}, the total baryon fractions within r {sub 500} are on average 18% below the universal value from the seven year Wilkinson Microwave Anisotropy Probe (WMAP) analysis, or 7% below for the cosmological parameters from the Planck analysis. In the latter case, the difference between the universal value and cluster baryon fractions is
Baryon Transition in Holographic QCD
Li, Siwen
2015-01-01
We propose a mechanism of holographic baryon transition in the Sakai-Sugimoto (SS) model: baryons in this model can jump to different states under the mediated effect of gravitons (or glueballs by holography). We consider a time-dependent gravitational perturbation from M5-brane solution of D=11 supergravity and by employing the relations between 11D M-theory and IIA string theory, we get its 10 dimensional counterpart in the SS model. Such a perturbation is received by the D4-branes wrapped on the $S^{4}$ part of the 10D background, namely the baryon vertex. Technically, baryons in the SS model are described by BPST instanton ansatz and their dynamics can be analyzed using the quantum mechanical system in the instanton's moduli space. In this way, different baryonic states are marked by quantum numbers of moduli space quantum mechanics. By holographic spirit, the gravitational perturbation enters the Hamiltonian as a time-dependent perturbation and it is this time-dependent perturbative Hamiltonian produces ...
Decuplet baryon masses in covariant baryon chiral perturbation theory
Ren, Xiu-Lei; Geng, Li-Sheng; Meng, Jie
2013-01-01
We present an analysis of the lowest-lying decuplet baryon masses in the covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. In order to determine the $14$ low-energy constants, we perform a simultaneous fit of the $n_f=2+1$ lattice QCD data from the PACS-CS, QCDSF-UKQCD, and HSC Collaborations, taking finite-volume corrections into account self-consistently. We show that up to next-to-next-to-next-to-leading order on...
Kalashnikova, Yu S
1996-01-01
The QCD-motivated constituent string model is extended to consider the baryon. The system of three quarks propagating in the confining background field is studied in the Wilson loop approach, and the effective action is obtained. The resulting Lagrangian at large interquark distances corresponds to the Mercedes Benz string configuration. Assuming the quarks to be heavy enough to allow the adiabatic separation of quark and string junction motion and using the hyperspherical expansion for the quark subsystem we write out and solve the classical equation of motion for the junction. We quantize the motion of the junction and demonstrate that the account of these modes leads to the effective "swelling" of the baryon in comparison with the standard potential picture. We discuss the effects of the finite gluonic correlation length which do not affect the excited states but appear to be substantial for the baryonic ground state, reducing the "swelling" considerably and leaving room to the short range Coulomb force in...
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
Petschauer, Stefan; Kaiser, Norbert; Meißner, Ulf-G; Weise, Wolfram
2016-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the Lambda-nucleon in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the ...
The question of baryon conservation
A modern version of the law of baryon conservation might read: the net number of baryons (ΣB-ΣB-bar) does not change spontaneously or in any known interactions. For a long time it was believed that protons are absolutely stable, and neutrons sufficiently strongly bound by nuclei were also considered absolutely stable. Then a few years ago the grand unified theories were proposed in which strong, weak and electromagnetic interactions are combined, leading to the possibility that protons decay. Their lifetime is predictable in some of these theories. An experiment by the Irvine-Michigan-Brookhaven Collaboration to detect proton decays is described. (UK)
Deforming baryons into confining strings
Hartnoll, S A; Hartnoll, Sean A.; Portugues, Ruben
2004-01-01
We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in ${\\mathcal{N}}=1$ gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G_2 holonomy M theory background. The interpretation of these solutions as deformed baryons/confining strings is not as straightforward.
Heavy Baryons and Exotics Spectrum
Karliner, Marek; Tornqvist, Nils A
2011-01-01
We discuss several highly accurate theoretical predictions for masses of baryons containing the b quark which have been recently confirmed by experimental data. Several predictions are given for additional properties of heavy baryons. We also discuss the two charged exotic resonances Z_b with quantum numbers of a (b bbar u ddbar) tetraquark, very recently reported by Belle in the channel [Upsilon(nS) \\pi^+, n=1,2,3]. Among possible implications are deeply bound I=0 counterparts of the Z_b-s and existence of a Sigma_b^+ Sigma_b^- dibaryon, a "beauteron".
Decuplet baryons in hot medium
Azizi, K
2016-01-01
The thermal properties of the light decuplet baryons are investigated in the framework of the thermal QCD sum rules. In particular, the behavior of the mass and residue of the $\\Delta$, $\\Sigma^{*}$, $\\Xi^{*}$ and $\\Omega$ baryons with respect to temperature are analyzed taking into account the additional operators coming up in the Wilson expansion at finite temperature. It is found that the mass and residue of these particles remain overall unaffected up to $T\\simeq150~MeV$ but, after this point, they start to diminish, considerably.
Baryonic spectroscopy and its immediate future
The quark model is reviewed briefly for baryons and the various versions of SU(6) symmetry which were proposed and used in connection with baryon spectroscopy are reviewed. A series of basic questions are reviewed which experimental work in this field should aim to settle, as a minimal program. One also heralds the beginning of a new baryon spectroscopy associated with psi physics
Baryon Resonance Analysis from SAID
Arndt, R A; Paris, M W; Strakovsky, I I; Workman, R L
2009-01-01
We discuss the analysis of data from piN elastic scattering and single pion photo- and electroproduction. The main focus is a study of low-lying non-strange baryon resonances. Here we concentrate on some difficulties associated with resonance identification, in particular the Roper and higher P11 states.
Magnetic monopoles and baryon decay
The scattering of a non-relativistic quark from a GUT monopole is affected by the anomalous magnetic moment of the quark. In order that monopole catalysis of baryon decay can occur, it must be assumed that the anomalous magnetic moment decreases sufficiently rapidly below the QCD scale. (author)
Alternative large Nc baryons and holography
In gauge theories in the limit of a large number Nc of colors baryons are usually described as heavy solitonic objects with mass of order Nc. We discuss an alternative large Nc description both directly in the field theory as well as using holography. In this alternative large Nc limit at least some of the baryons behave like mesons, that is they stay light even at large Nc and their interactions vanish in that limit. For Nc=3 these alternative large Nc baryons are equivalent to the standard baryons. In the holographic description it is manifest that the Regge slopes of mesons and alternative baryons are degenerate.
Alternative large Nc baryons and holography
Hoyos-Badajoz, Carlos
2009-01-01
In gauge theories in the limit of a large number Nc of colors, baryons are usually described as heavy solitonic objects with mass of order Nc. We discuss an alternative large Nc description both directly in the field theory as well as using holography. In this alternative large Nc limit at least some of the baryons behave like mesons, that is they stay light even at large Nc and their interactions vanish in that limit. For Nc=3 these alternative large Nc baryons are equivalent to the standard baryons. In the holographic description it is manifest that the Regge slopes of mesons and alternative baryons are degenerate.
Heavy baryon production and decay
The branching ratio B(Λc→pK-π+) normalizes the production and decay of charmed and bottom baryons. At present, this crucial branching ratio is extracted dominantly from bar B→baryons analyses. This paper questions several of the underlying assumptions and predicts sizable bar B→D(*)N bar N'X transitions, which were traditionally neglected. It predicts B(Λc→pK-π+) to be larger (0.07±0.02) than the world average. Some consequences are briefly mentioned. Several techniques to measure B(Λc→pK-π+) are outlined with existing or soon available data samples. By equating two recent CLEO results, an appendix obtains B(D0→K-π+)=0.035±0.002, which is somewhat smaller than the current world average. copyright 1998 The American Physical Society
Bergstrom, L.
2001-01-01
The need for dark matter is briefly reviewed. A wealth of observational information points to the existence of a non-baryonic component. To the theoretically favoured candidates today belong axions, supersymmetric particles, and to some extent massive neutrinos. The theoretical foundation and experimental situation for each of these is reviewed. In particular, indirect detection methods of supersymmetric dark matter are described. Present experiments are just reaching the required sensitivity...
Baryons and Mesons with Beauty
Goldstein, Gary R.; Wali, Kameshwar C.
2007-01-01
Recent experimental findings of several mesons and baryons with "beauty" and "charm" as flavors remind us of the days when strangeness was discovered, and how its inclusion led to SU(3)-flavor symmetry with enormous success in the classification of the "proliferated" states into SU(3) multiplets. One of the key elements was the successful application of the first order perturbation in symmetry breaking, albeit what then appeared to be huge mass differences, and the prediction of new states th...
Transport coefficients of heavy baryons
Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.
2016-08-01
We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.
The QCD-motivated constituent string model is extended to consider the baryon. The system of three quarks propagating in a confining background field is studied in the Wilson loop approach, and the effective action is obtained. The resulting Lagrangian at large interquark distances corresponds to the Mercedes Benz string configuration. Under the assumption that quarks are sufficiently heavy to allow the adiabatic separation of quark and string-junction motions, the use of hyperspherical expansion for the quark subsystem makes it possible to write and solve the classical equation of motion for the junction. The motion of the junction is quantized, and it is shown that the effective ''swelling'' of the baryon in relation to the standard potential picture occurs as the result of taking these modes into account. Effects associated with a finite gluon-correlation length, which do not affect excited states, but which appear to be substantial for the baryon ground state, reducing the ''swelling'' considerably and leaving room to the short-range Coulomb force in the three-quark system, are discussed
Faddeev study of heavy baryon spectroscopy
Garcilazo, H; Vijande, J
2007-01-01
We investigate the structure of heavy baryons containing a charm or a bottom quark. We employ a constituent quark model successful in the description of the baryon-baryon interaction which is consistent with the light baryon spectra. We solve exactly the three-quark problem by means of the Faddeev method in momentum space. Heavy baryon spectrum shows a manifest compromise between perturbative and nonperturbative contributions. The flavor dependence of the one-gluon exchange is analyzed. We assign quantum numbers to some already observed resonances and we predict the first radial and orbital excitations of all states with $J=1/2$ or 3/2. We combine our results with heavy quark symmetry and lowest-order SU(3) symmetry breaking to predict the masses and quantum numbers of six still non-measured ground-state beauty baryons.
The Heavy Baryon Physics by means LEP
This report describes the experimental research about the heavy baryons which were obtained in the last decade at LEP. The most important among them concern the lifetimes of beauty baryons. The methods of theoretical description of heavy hadrons together with the LEP experimental apparatus are also discussed. Heavy baryon studies are shown in a broader perspective of other LEP results: the test of the standard model and the latest measurements concerning the beauty mesons. (author)
Baryon Asymmetry, Inflation and Squeezed States
Bambah, Bindu A.; Chaitanya, K. V. S. Shiv; Mukku, C.
2006-01-01
We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and anti-particle modes gives rise to baryon asymmetry.
Hadronic molecules in the heavy baryon spectrum
We study possible baryon molecules in the non-strange heavy baryon spectrum. We include configurations with a heavy-meson and a light baryon. We find several structures, in particular we can understand the Λc(2940) as a D*N molecule with JP = 3/2− quantum numbers. We also find D(*)Δ candidates for the recently discovered Xc(3250) resonance
Baryons with Two Heavy Quarks as Solitons
Bander, Myron; Subbaraman, Anand
1994-01-01
Using the chiral soliton model and heavy quark symmetry we study baryons containing two heavy quarks. If there exists a stable (under strong interactions) meson consisting of two heavy quarks and two light ones, then we find that there always exists a state of this meson bound to a chiral soliton and to a chiral anti-soliton, corresponding to a two heavy quark baryon and a baryon containing two heavy anti-quarks and five light quarks, or a ``heptaquark".
CP violation with beautiful baryons
Dunietz, I. (European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.)
1992-10-01
CP violation can be studied in modes of charmed or bottom baryons when a decay process is compared with its charge-conjugated partner. It can show up as a rate asymmetry and in a study of other decay parameters. Neither tagging nor time-dependences are required to observe CP violation with modes of baryons, in contrast to the conventional B{sup 0} modes. Numerous modes of bottom baryons have the potential to show large CP-violating effects within the Standard Model. Those effects can be substantial for modes with a D{sup 0}, which is seen in a final state that can also be fed from {anti D}{sup 0}. For instance, a comparison of the {Lambda}{sub b}{yields}{Lambda}D{sub CP}{sup 0} with the anti {Lambda}{sub b}{yields} anti {Lambda}D{sub CP}{sup 0} process can show sizeable CP violation. Here D{sub CP}{sup 0} denotes CP eigenstates of D{sup 0}, which occur at a few percent. Six related processes, such as {Lambda}{sub b}{yields}{Lambda}D{sup 0}, {Lambda}{sub b}{yields}{Lambda}{anti D}{sup 0}, {Lambda}{sub b}{yields}{Lambda}D{sub CP}{sup 0}, and their charge-conjugated counterparts, can extract {phi}, which is the most problematic angle of the unitarity triangle and which is conventionally probed with the B{sub s}{yields}{rho}{sup 0} K{sub S} asymmetry. Here D{sup 0} and anti D{sup 0} are identified by their charged kaon or lepton.
Doubly Heavy Tetraquarks and Baryons
Karliner Marek
2014-04-01
Full Text Available During the last three years strong experimental evidence from B and charm factories has been accumulating for the existence of exotic hadronic quarkonia, narrow resonances which cannot be made from a quark and an antiquark. Their masses and decay modes show that they contain a heavy quark-antiquark pair, but their quantum numbers are such that they must also contain a light quark-antiquark pair. The theoretical challenge has been to determine the nature of these resonances. The main possibilities are that they are either "genuine tetraquarks", i.e. two quarks and two antiquarks within one confinement volume, or "hadronic molecules" of two heavy-light mesons. In the last few months there as been more and more evidence in favor of the latter. I discuss the experimental data and its interpretation and provide fairly precise predictions for masses and quantum numbers of the additional exotic states which are naturally expected in the molecular picture but have yet to be observed. In addition, I provide arguments in favor of the existence of an even more exotic state – a hypothetical deuteron-like bound state of two heavy baryons. I also consider “baryon-like" states QQ' q¯q¯′$\\bar q\\bar q\\prime $, which if found will be direct evidence not just for near-threshold binding of two heavy mesons, but for genuine tetraquarks with novel color networks. I stress the importance of experimental search for doubly-heavy baryons in this context.
Quarks, baryons and chiral symmetry
Hosaka, Atsushi
2001-01-01
This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w
Bergström, L
1999-01-01
The need for dark matter is briefly reviewed. A wealth of observational information points to the existence of a non-baryonic component. To the theoretically favoured candidates today belong axions, supersymmetric particles, and to some extent massive neutrinos. The theoretical foundation and experimental situation for each of these is reviewed. In particular, indirect detection methods of supersymmetric dark matter are described. Present experiments are just reaching the required sensitivity to discover or rule out some of these candidates, and major improvements are planned over the next few years.
The need for dark matter is briefly reviewed. A wealth of observational information points to the existence of a non-baryonic component. To the theoretically favoured candidates today belong axions, supersymmetric particles, and to some extent massive neutrinos. The theoretical foundation and experimental situation for each of these is reviewed. In particular, indirect detection methods of supersymmetric dark matter are described. Present experiments are just reaching the required sensitivity to discover or rule out some of these candidates, and major improvements are planned over the next few years
Beautiful Baryons from Lattice QCD
Alexandrou, C.; Borrelli, A; Güsken, S.; Jegerlehner, F.; K. Schilling; Siegert, G.; Sommer, R
1994-01-01
We perform a lattice study of heavy baryons, containing one ($\\Lambda_b$) or two $b$-quarks ($\\Xi_b$). Using the quenched approximation we obtain for the mass of $\\Lambda_b$ $$ M_{\\Lambda_b}= 5.728 \\pm 0.144 \\pm 0.018 {\\rm GeV}.$$ The mass splitting between the $\\Lambda_b$ and the B-meson is found to increase by about 20\\% if the light quark mass is varied from the chiral limit to the strange quark mass.
Baryon Form Factors at Threshold
Baldini Ferroli, Rinaldo [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Rome (Italy); INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Pacetti, Simone [INFN and Dipartimento di Fisica, Universita di Perugia, Perugia (Italy)
2012-04-15
An extensive study of the e{sup +}e{sup -}{yields}pp{sup Macron }BABAR cross section data is presented. Two unexpected outcomes have been found: the modulus of the proton form factor is normalized to one at threshold, i.e.: |G{sup p}(4M{sub p}{sup 2})|=1, as a pointlike fermion, and the resummation factor in the Sommerfeld formula is not needed. Other e{sup +}e{sup -} {yields} baryon-antibaryon cross sections show a similar behavior near threshold.
The good, the bad, and the baryon
We describe the incorporation of baryons into an effective theory of QCD at low energies. The baryon is not a Skyrmion, rather it consists of three valence quarks bound by effective gluon exchanges, enveloped in a meson cloud, which may possibly take the form of a chiral soliton. Some of the physical implications of these results are also discussed. (orig.)
Baryon spectroscopy and the omega minus
In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the Ω-. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks
Octet-baryon masses in finite space
Ren, Xiu-Lei; Geng, Lisheng; Meng, Jie
2012-01-01
We report on a recent study of finite-volume effects on the lowest-lying octet baryon masses using the covariant baryon chiral perturbation theory up to next-to-leading order by analysing the latest $n_f = 2 + 1$ lattice QCD results from the NPLQCD Collaboration.
Heavy baryons in the relativistic quark model
In the framework of the relativistic quasipotential quark model the mass spectrum of baryons with two heavy quarks is calculated. The quasipotentials for interactions of two quarks and of a quark with a scalar and axial vector diquark are evaluated. The bound state masses of baryons with JP=1/2+, 3/2+ are computed. (orig.)
Domain walls. II. Baryon-number generation
Domain walls present in the early universe due to a spontaneous breakdown of charge conjugation can leave behind net baryon number. SU/sub R/(2) instantons provide baryon nonconservation and the proton is effectively stable. Density perturbations (on scales large enough for galaxy formation) and monopole suppression can occur if walls dominate the energy density. Mechanisms for wall removal are discussed
Exploring the simplest purely baryonic decay processes
Geng, C Q; Rodrigues, Eduardo
2016-01-01
We propose to search for purely baryonic decay processes at the LHCb experiment. In particular, we concentrate on the decay $\\Lambda_b^0\\to p\\bar pn$, which is the simplest purely baryonic decay mode, with solely spin-1/2 baryons involved. We predict its decay branching ratio to be ${\\cal B}(\\Lambda_b^0\\to p\\bar pn)=(2.0^{+0.3}_{-0.2})\\times 10^{-6}$, which is sufficiently large to make the decay mode accessible to LHCb. Though not considered in general, purely baryonic decays could shed light on the puzzle of the baryon number asymmetry in the universe by means of a better understanding of the baryonic nature of our matter world. As such, they constitute a yet unexplored class of decay processes worth investigating. Our study can be extended to the purely baryonic decays of $\\Lambda_b^0\\to p\\bar p \\Lambda$, $\\Lambda_b^0\\to \\Lambda \\bar p\\Lambda$ and $\\Lambda_b^0\\to \\Lambda\\bar \\Lambda\\Lambda$, as well as other similar anti-triplet $b$-baryon decays, such as $\\Xi_b^{0,-}$.
Frishman, Y. (Weizmann Inst. of Science, Rehovoth (Israel). Dept. of Physics); Zakrzewski, W.J. (Durham Univ. (UK). Dept. of Mathematical Siences)
1989-12-18
We find multi-baryon states in two-dimensional quantum chromodynamics. We show that to bind two baryons the model must involve at least seven flavours. All calculations are performed in the strong coupling limit and the semiclassical approximation is employed in the derivation of the results. We briefly comment on the properties of the derived states. (orig.).
Baryonic masses based on the NJL model
We employ the Nambu-Jona-Lasinio model to determine the vacuum pressure on the quarks in a baryon and hence their density inside. Then we estimate the baryonic masses by implementing the local density approximation for the mean-field quark energies obtained in a uniform and isotropic system. We obtain a fair agreement with the experimental masses. (orig.)
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Electromagnetic structure of octet baryons
A numerical simulation of quenched QCD on a 24x12x12x24 lattice at β=5.9 is used to calculate the electric and magnetic form factors of the baryon octet. General forms of the baryon interpolating fields are considered. Magnetic moments, electric radii, magnetic radii, and magnetic transition moments are extracted from the form factors. The electric properties are found to be consistent with a quark-model picture involving spin-dependent forces. The lattice results for the magnetic properties show a mass and spin dependence of the effective quark moments which is not accounted for in conventional quark models. Lattice calculations underestimate the magnitude of electric radii, magnetic radii, and magnetic moments compared to experimental measurements. The finite volume of the periodic lattice may be responsible for the discrepancies. The pattern of electromagnetic radii in the lattice results are seen to be generally reproduced in the model results that are considered. The only exception is that of Ξ- which proves to be a sensitive probe of the quark dynamics. Lattice calculations indicate a positive value for the normalized square magnetic radius in Ξ- which contrasts Skyrme model results. Ratios of the magnetic moments allow a more detailed comparison with the experimental measurements. The lattice calculations are seen to better reproduce the experimental ratios than the model calculations
Froggatt, C D
2005-01-01
It is proposed that dark matter could consist of compressed collections of atoms (or metallic matter) encapsulated into, for example, 20 cm big pieces of a different phase. The idea is based on the assumption that there exists at least one other phase of the vacuum degenerate with the usual one. Apart from the degeneracy of the phases we only assume Standard Model physics. The other phase has a Higgs VEV appreciably smaller than in the usual electroweak vacuum. The balls making up the dark matter are very difficult to observe directly, but inside dense stars may expand eating up the star and cause huge explosions (gamma ray bursts). The ratio of dark matter to ordinary baryonic matter is estimated to be of the order of the ratio of the binding energy per nucleon in helium to the difference between the binding energies per nucleon in heavy nuclei and in helium. Thus we predict approximately five times as much dark matter as ordinary baryonic matter!
Strange decays of nonstrange baryons
The strong decays of excited nonstrange baryons into the final states ΛK, ΣK, and for the first time into Λ(1405)K, Λ(1520)K, Σ(1385)K, ΛK*, and ΣK*, are examined in a relativized quark pair creation model. The wave functions and parameters of the model are fixed by previous calculations of Nπ and Nππ, etc., decays. The results show that it should be possible to discover several new negative parity excited baryons and confirm the discovery of several others by analyzing these final states in kaon production experiments. They also establish clear predictions for the relative strengths of certain states to decay to Λ(1405)K and Λ(1520)K, which can be tested to determine if a three-quark model of the Λ(1405)K is valid. The authors results compare favorably with the results of partial wave analyses of the limited existing data for the ΛK and ΣK channels. They do not find large ΣK decay amplitudes for a substantial group of predicted and weakly established negative-parity states, in contrast to the only previous work to consider decays of these states into the strange final states ΛK and ΣK
Net-Baryon Physics: Basic Mechanisms
Alvarez-Muñiz, J; Dias de Deus, J; Santo, M C Espirito; Milhano, J G; Pimenta, M
2007-01-01
It is well known that, in nuclear collisions, a sizable fraction of the available energy is carried away by baryons. As the baryon number is conserved, the net-baryon $B-\\bar{B}$ retains information on the energy-momentum carried by the incoming nuclei. A simple but consistent model for net-baryon production in high energy hadron-hadron, hadron-nucleus and nucleus-nucleus collisions is presented. The basic ingredients of the model are valence string formation based on standard PDFs with QCD evolution and string fragmentation via the Schwinger mechanism. The results of the model are presented and compared with both data and existing models. These results show that a good description of the main features of net-baryon data is possible on the framework of a simplistic model, with the advantage of making the fundamental production mechanisms manifest.
Pion mean fields and heavy baryons
Yang, Ghil-Seok; Polyakov, Maxim V; Praszałowicz, Michał
2016-01-01
We show that the masses of the lowest-lying heavy baryons can be very well described in a pion mean-field approach. We consider a heavy baryon as a system consisting of the $N_c-1$ light quarks that induce the pion mean field, and a heavy quark as a static color source under the influence of this mean field. In this approach we derive a number of \\textit{model-independent} relations and calculate the heavy baryon masses using those of the lowest-lying light baryons as input. The results are in remarkable agreement with the experimental data. In addition, the mass of the $\\Omega_b^*$ baryon is predicted.
Baryon Mass in medium with Holographic QCD
Seo, Yunseok
2008-01-01
We study the baryon vertex (BV) in the presence of medium using DBI action and the force balance condition between BV and the probe branes. We note that a stable BV configuration exists only in some of the confining backgrounds. For the system of finite density, the issue is whether there is a canonical definition for the baryon mass in the medium. In this work, we define it as the energy of the deformed BV satisfying the force balance condition (FBC) with the probe brane. With FBC, lengths of the strings attached to the BV tend to be zero while the compact branes are enlongated to mimic the string. We attribute the deformation energy of the probe brane to the baryon-baryon interaction. We show that for a system with heavy quarks the baryon mass drops monotonically as a function of density while it has minimum in case of light quark system.
Measurements of the b baryon lifetime
Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, L.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cassel, D.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martin, E. B.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Settles, R.; Seywerd, H.; Stierlin, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Gambino, D.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, L. M.; Perrodo, P.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1995-02-01
Using about 1.5 million hadronic Z decays recorded with the ALEPH detector, the lifetime of the b baryons has been measured using two independent data samples. From a maximum likelihood fit to the impact parameter distribution of leptons in 519 Λℓ - combinations containing a b baryon sample of 290 decays, the measured b baryon lifetime is τb-baryon = 1.05 -0.11+0.12(stat)±0.09(syst) ps. The lifetime of the Λb0 baryon from a maximum likelihood fit to the proper time distribution of 58 Λc+ℓ - candidates containing a Λb0 sample of 44 decays, is τΛb0 = 1.02 -0.18+0.23(stat) ± 0.06(syst) ps.
Strangeness in the baryon ground states
Semke, A
2012-01-01
We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.
Dense detector for baryon decay
Our studies indicate that the dense detector represents a potentially powerful means to search for baryon decay and to study this process, if it occurs. The detector has good angular resolution and particle identification properties for both showering and non-showering events. Its energy resolution is particularly good for muons, but pion, electron and photon energies can also be measured with resolutions of at least 25 percent (standard deviation). The dense detector has strong logistical advantages over other proposed schemes. These advantages imply not only a lower cost but also faster construction and higher reliability. A particular advantage is that the dense detector can be prototyped in order to optimize its characteristics prior to the construction of a large module. Subsequent modules can also be added easily, while the initial detector continues operation
Lifetime of Doubly Charmed Baryons
XU Xue-Fen; CHANG Chao-Hsi; LI Tong; LI Xue-Qian; WANG Yu-Ming
2008-01-01
In this work, we evaluate the lifetimes of the doubly charmed baryons cc+, cc++, and Ωcc+. We carefully calculate the non-spectator contributions at the quark level, where the Cabibbo-suppressed diagrams are also included. The hadronic matrix elements are evaluated in the simple non-relativistic harmonic oscillator model. Our numerical results are generally consistent with that obtained by other authors who used the diquark model. However, all the theoretical predictions on the lifetimes are one order larger than the upper limit set by the recent SELEX measurement. This discrepancy would be clarified by the future experiment. If more accurate experiment still confirms the value of the SELEX collaboration, there must be some unknown mechanism to be explored.
Diquark model of the baryon spectrum
The presence of a coherent diquark structure within baryons has been suggested, both as a computational tool for simplifying some types of baryon calculations, and as an explanation for scaling violations in deep inelastic scattering. In this paper we consider the implications of the diquark hypothesis for baryons spectroscopy. Treating the diquark as an s-wave bound state of two quarks reduces the problem of three-body quark excitations within baryons to that of a two-body quark-diquark interaction. The spin-dependent excitation levels of the quark-diquark system can then be calculated in perturbative QCD, using a non-relativistic one-gluon-exchange approximation. The spectrum generated by this model differs from the conventional symmetric quark model spectrum in several crucial respects. Firstly, spin-orbit mass splitting between baryons is easily accommodated in the diquark picture, unlike the conventional model, where it must be cancelled ad hoc in order to obtain a reasonable fit to the mass spectrum. Secondly, the QCD parameters needed to fit the baryon spectrum in the diquark model are essentially the same as those used in the meson spectrum. This allows us to give a unified description of spin-dependent forces in mesons and baryons, which has not been possible in the symmetric quark model. We conclude with a qualitative discussion of spin-independent (multiple gluon exchange) forces in the diquark model, using effective confining potentials of the form, V(r) approx. r/sup n/. 28 references
Holographic heavy ion collisions with baryon charge
Casalderrey-Solana, Jorge; van der Schee, Wilke; Triana, Miquel
2016-01-01
We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15\\%. %The rapidity profile of the charge is wider than the profile of the local energy density. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.
Holographic monopole catalysis of baryon decay
We study how monopole catalysis of baryon decay is realized in holographic QCD. Physics of monopole catalysis becomes much simpler in holographic description as it occurs due to the violation of the Bianchi identity for the 5D gauge symmetry when magnetic monopole is present. In holographic QCD we find a unified picture of the baryon number violation under magnetic monopole or electroweak sphaleron, giving a new mechanism of baryon number violation. We also embed our set-up in the string theory model by Sakai and Sugimoto. (author)
Baryon octet interactions in the Skyrme model
We calculate baryon-baryon interactions in the SU(3) octet using the Skyrme model. We employ an exact diagonalization procedure for the symmetry-breaking term in the solution of the single-baryon B=1 problem, and a product ansatz for the B=2 solutions. Qualitatively, the results resemble those obtained for the NN potentials using the product ansatz with no additional dynamical features. In particular, the central potentials for the ΛN and ΣN systems do not exhibit attraction. (orig.)
Chiral Dynamics of Baryons from String Theory
Hong, D K; Yee, H U; Yi, P; Hong, Deog Ki; Rho, Mannque; Yee, Ho-Ung; Yi, Piljin
2007-01-01
We study baryons in an AdS/CFT model of QCD by Sakai and Sugimoto, realized as small instantons with fundamental string hairs. We introduce an effective field theory of the baryons in the five-dimensional setting, and show that the instanton interpretation implies a particular magnetic coupling. Dimensional reduction to four dimensions reproduces the usual chiral effective action, and in particular we estimate the axial coupling $g_A$ between baryons and pions and the magnetic dipole moments, both of which are proportional to $N_c$. We extrapolate to finite $N_c$ and discuss subleading corrections.
Calculation of baryon sum rules and SU(4) mass formulae for mesons and baryons
Light cone coordinates and field-field anticommutators for the free quark model on the light cone are introduced and light cone charges and light cone currents for the free quark model as well as sum rules for the meson and quark states are derived. The derivation of sum rules for the baryons is attempted. It is seen that it is possible formally to derive the same sum rules for the baryons and for the quarks. The baryon sums were derived through the symmetry properties of the baryon fields. Explicit assumptions about the spatial distribution of the three quarks in the baryons were not utilized. The meson-baryon Σ-terms, Zweig's rules in the SU (4) and a number of properties of the M-matrix are discussed. (BJ)
A Program for Baryon Generation and Its Applications to Baryon Fragmentation in DIS
Eden, Patrik
1996-01-01
In an earlier paper, we discuss the ``popcorn'' model for baryon production in quark and gluon jets, and present an improved model (which we call Modified Popcorn Scenarium, MOPS). In this paper we give a manual to the MC program based on MOPS, and also discuss the application of the model to baryon fragmentation, i.e. fragmentation of strings originally contaning a diquark. Model predictions for baryon production in DIS are compared with data.
Neutron-antineutron Oscillation and Baryonic Majoron: Low Scale Spontaneous Baryon Violation
Berezhiani, Zurab
2015-01-01
We discuss a possibility that baryon number $B$ is spontaneously broken at low scales, of the order of MeV or even smaller, so that the neutron-antineutron oscillation can be induced at the experimentally accessible level. An associated Goldstone particle, baryonic majoron, can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to $B-L$ symmetry, baryo-majoron can be identified with the ordinary majoron associated with t...
Virtual decuplet effects on octet baryon masses in covariant baryon chiral perturbation theory
Ren, Xiu-Lei; Geng, Lisheng; Meng, Jie; Toki, Hiroshi
2013-01-01
We extend a previous analysis of the lowest-lying octet baryon masses in covariant baryon chiral perturbation theory (ChPT) by explicitly taking into account the contribution of the virtual decuplet baryons. Up to next-to-next-to-next-to-leading order (N$^3$LO), the effects of these heavier degrees of freedom are systematically studied. Their effects on the light-quark mass dependence of the octet baryon masses are shown to be relatively small and can be absorbed by the available low-energy c...
Finite-volume effects on octet-baryon masses in covariant baryon chiral perturbation theory
Geng, Li-Sheng; Ren, Xiu-Lei; Martin-Camalich, J.; Weise, W.
2011-01-01
We study finite-volume effects on the masses of the ground-state octet baryons using covariant baryon chiral perturbation theory (ChPT) up to next-to-leading order by analyzing the latest $n_f=2+1$ lattice Quantum ChromoDynamics (LQCD) results from the NPLQCD collaboration. Contributions of virtual decuplet baryons are taken into account using the "consistent" coupling scheme. We compare our results with those obtained from heavy baryon ChPT and show that, although both approaches can describ...
Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma.
Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn
2015-11-13
Five dimensional black hole solutions that describe the QCD crossover transition seen in (2+1)-flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV≤T≤300 MeV and baryon chemical potentials 0≤μ(B)≤400 MeV. Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan. PMID:26613433
Net-Baryon Physics: Basic Mechanisms
How does the fraction of energy carried by the net-baryon, B - anti-B , evolve as a function of the centre-of-mass collisional energy per nucleon, sqrt(s)? In order to answer this question we explore the net-baryon mechanism and it is propose a simple but consistent model for net-baryon production in high energy hadron-hadron, hadron-nucleus and nucleus-nucleus collisions. The model basic ingredients are: valence string formation based on standard PDFs with QCD evolution; and string fragmentation via the Schwinger mechanism. Our model shows that a good description of the main features of net-baryon data is possible in the framework of a simplistic model, with the advantage of making the fundamental production mechanisms manifest. We compare results both with data and existing models. (authors)
Calculation of baryon masses in quantum chromodynamics
The polarization operator of quark currents with the baryon quantum numbers is considered in quantum chromodynamics. The non-zero mean vacuum of the field operator products are taken into account. The sum rules are obtained assuming that in the virtuality region approximately 1 GeV, among the mean vacuum values violating the chiral invariance, the most important is . Saturating these sum rules by the lowest baryonic states one is able to calculate the masses of the isobar Δ and nucleon N, Msub(Δ) 1.4 GeV, Msub(N) = 1 GeV, up to 15 % through the known value . The mass splitting in the baryonic decuplet Msub(Σ*) - Msub(Δ) = 125 MeV is calculated in the first order in the current strange quark mass msub(s) = 150 MeV. Certain results for that baryonic resonances have been obtained
A holographic model for the baryon octet
Fang, Zhen
2016-01-01
By adopting the nonlinear realization of chiral symmetry, a holographic model for the baryon octet is proposed. The mass spectra of the baryon octet and their low-lying excited states are calculated, which show good consistency with experiments. The couplings of pion to nucleons are derived in two gauges and are shown to be equivalent with each other. It also shows that only derivative couplings of pion to nucleons appear in this holographic model. The coupling constant is then calculated.
Meson and baryon spectroscopy on the lattice
David Richards
2010-12-01
Recent progress at understanding the excited state spectrum of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum, and the program of anisotropic clover lattice generation designed for hadron spectroscopy. I present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.
Static-static-light baryonic potentials
Najjar, Johannes; Bali, Gunnar
2009-01-01
We determine doubly heavy baryonic potentials as a function of the distance between the two static sources, coupled to a light relativistic quark, for different quantum numbers. We use the variational method to compute the ground state and the first two excitations. These can be used as an input to nonrelativistic models or to NRQCD calculations of properties of doubly heavy baryons. We compare our findings with a factorization model. We employ all-to-all propagator methods, improved by an ad...
Anomaly-induced charges in baryons
Eto, Minoru; Hashimoto, Koji; Iida, Hideaki; Ishii, Takaaki; Maezawa, Yu
2011-01-01
We show that quantum chiral anomaly of QCD in magnetic backgrounds induces a novel structure of electric charge inside baryons. To illustrate the anomaly effect, we employ the Skyrme model for baryons, with the anomaly-induced gauged Wess-Zumino term (\\pi_0 + (multi-pion)) E_i B_i. Due to this term, the Skyrmions giving a local pion condensation ((\\pi_0 + (multi-pion)) \
Baryon Oscillations in the Large Scale Structure
Cooray, Asantha
2001-01-01
We study the possibility for an observational detection of oscillations due to baryons in the matter power spectrum and suggest a new cosmological test using the angular power spectrum of halos. The "standard rulers" of the proposed test involve overall shape of the matter power spectrum and baryon oscillation peaks in projection, as a function of redshift. Since oscillations are erased at non-linear scales, traces at redshifts greater than 1 are generally preferred. Given the decrease in num...
String junction as a baryonic constituent
Kalashnikova, Yu S
1995-01-01
We extend the model for QCD string with quarks to consider the Mercedes Benz string configuration describing the three-quark baryon. Under the assumption of adiabatic separation of quark and string junction motion we formulate and solve the classical equation of motion for the junction.We dare to quantize the motion of the junction, and discuss the impact of these modes on the baryon spectra.
Precombination Cloud Collapse and Baryonic Dark Matter
Hogan, Craig J.
1993-01-01
A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.
Baryonic matter perturbations in decaying vacuum cosmology
Marttens, R.F. vom; Zimdahl, W. [Departamento de Física, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitória, Espírito Santo (Brazil); Hipólito-Ricaldi, W.S., E-mail: rodrigovonmarttens@gmail.com, E-mail: wiliam.ricaldi@ufes.br, E-mail: winfried.zimdahl@pq.cnpq.br [Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, CEUNES, Rodovia BR 101 Norte, km. 60, CEP 29932-540, São Mateus, Espírito Santo (Brazil)
2014-08-01
We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbative level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.
Study of the baryon-baryon interaction in nucleon-nucleon and pion-deuteron scattering
After the definition of the Hamiltonian in general form by meson production and absorption the transition to operators pursued, which connect only spaces with definite meson numbers. In this approximation first the self-energy of a single baryon was calculated in its full energy and momentum dependence. Then the formal expressions for the T matrices of nucleon-nucleon and pion-deuteron scattering were derived. The essential components of these expressions are the baryon-baryon T matrix ant transition amplitudes from pion-deuteron channels to baryon-baryon states. The central chapter dealt with the calculation of the baryon-baryon interaction for the general form of the vertices, with the solution of the binding problem and the baryon-baryon T matrix. Finally followed the results on the nucleon-nucleon and pion-deuteron scattering. For this first the transition amplitudes from pion-deuteron states to intermediate baryon-baryon states and the Born graphs of the pion-deuteron scattering had to be calculated. After some remarks to the transition from partial-wave decomposed T matrices to scattering observables an extensive representation of the total, partial, and differential cross sections and a series of spin observables (analyzing powers and spin correlations) for the elastic proton-proton, neutron-proton, and pion-deuteron scattering as well for the fusion reaction pp→πd and the breakup reaction πd→pp follows. Thereby the energies reached from the nucleon-nucleon respectively pion-deuteron threshold up to 100 MeV above the delta resonance
Baryon spectroscopy at ELPH and LEPS2
Ishikawa, Takatsugu
2014-09-01
Baryon spectroscopy is an important testing ground for understanding low energy QCD. Meson photoproduction is complementary to π induced reactions for studying excited baryons. Among the meson photo-produced reactions, the neutron target, kaon photo-produced, and multi-meson photo-produced reactions are important to reveal the properties of baryon resonances. The photoproduction experiments at ELPH and the planned experiments at LEPS2 will be discussed. The nucleon and Δ resonances are studied with an electromagnetic calorimeter FOREST at ELPH, Tohoku University by using various photoproduction reactions. A narrow resonance observed at W-75 MeV in η photoproduction on the neutron is of great interest. It would be attributed to a member of anti-decuplet pentaquark baryons with hidden strangeness since no signature corresponding to this bump has been observed so far in the proton channel. Multi-meson/kaon photoproduction is a good tool to study highly excited baryons. The results obtained at ELPH and planned experiments at LEPS2 will be presented.
Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P
2012-01-01
We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are calculated using atomic hydrogen (HI) emission line data from the Arecibo Legacy Fast ALFA (ALFALFA) survey. By using the technique of abundance matching, we combine the measured baryonic function (BMF) of galaxies with the dark matter halo mass function in a LCDM universe, in order to determine the galactic baryon fraction as a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon...
Compressed Baryonic Matter: from Nuclei to Pulsars
Xu, Renxin
2013-01-01
Our world is wonderful because of the negligible baryonic part although unknown dark matter and dark energy dominate the Universe. Those nuclei in the daily life are forbidden to fuse by compression due to the Coulomb repulse, nevertheless, it is usually unexpected in extraterrestrial extreme-environments: the gravity in a core of massive evolved star is so strong that all the other forces (including the Coulomb one) could be neglected. Compressed baryonic matter is then produced after supernova, manifesting itself as pulsar-like stars observed. The study of this compressed baryonic matter can not only be meaningful in fundamental physics (e.g., the elementary color interaction at low-energy scale, testing gravity theories, detecting nano-Hertz background gravitational waves), but has also profound implications in engineering applications (including time standard and navigation), and additionally, is focused by Chinese advanced telescopes, either terrestrial or in space. Historically, in 1930s, L. Landau spec...
Spectroscopy of charmed baryons from lattice QCD
Padmanath, M; Mathur, Nilmani; Peardon, Michael
2014-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) $\\otimes$ O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Spectroscopy of charmed baryons from lattice QCD
Padmanath, M. [Univ. of Graz (Austria). Inst. of Physics; Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Institute of Fundamental Research, Bombay (India); Peardon, Michael [Trinity College, Dublin (Ireland)
2015-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Dark Matter and the Baryon Asymmetry
Farrar, G R; Farrar, Glennys R.; Zaharijas, Gabrijela
2006-01-01
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the Big Bang. If dark matter particles carry baryon number $B_X$, and $\\sigma^{\\rm annih}_{\\bar{X}} < \\sigma^{\\rm annih}_{X} $, the $\\bar{X}$'s freeze out at a higher temperature and have a larger relic density than $X$'s. If $m_X \\lsi 4.5 B_X $GeV and the annihilation cross sections differ by $\\mathcal{O}$(10%) or more, this type of scenario naturally explains the observed $\\Omega_{DM} \\approx 5 \\Omega_b$. Two concrete examples are given, one of which can be excluded on observational grounds.
Ellis, Gabathuler and Karliner [Phys. Lett. B 217 (1989) 173] have recently proposed on theoretical grounds that the Okubo-Zweig-Iizuka (OZI) rule does not apply to baryonic vertices because baryons contain a significant number of strange quark-antiquark pairs, and they claim some phenomological support for this proposal. In the light of this, the excellent data on backward meson production is critically re-examined. We find some evidence for OZI-evading couplings for the case of the φ, and put bounds on any OZI-violating couplings of the f2' (1525). The violations found do not follow the pattern predicted by Ellis et al. and are also so small as to make their significance questionable. We also re-examine the data on the related question of Z* (exotic baryon) exchange. (orig.)
Dark Matter Assimilation into the Baryon Asymmetry
D'Eramo, Francesco; Thaler, Jesse
2011-01-01
Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called "assimilation", which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter.
Spectroscopy of charmed baryons from lattice QCD
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Staggered Heavy Baryon Chiral Perturbation Theory
Bailey, Jon A
2007-01-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms the order of the cubed pion mass, which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms the order of the squared lattice spacing. The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in d...
Rotational Spectra of the Baryons and Mesons
Akers, D
2003-01-01
An investigation of the rotational spectra of baryons and mesons is conducted. Diakonov, Petrov and Polyakov claimed that all light baryons are rotational excitations. A study of the history of particle physics indicates that the ideas of rotational spectra can be originally attributed to a constituent-quark (CQ) model as proposed by Mac Gregor. Later research advanced spin-orbit splitting in a deformed model as suggested by Bhaduri and others. In the present work, we show from current data that the rotational spectra of baryons and mesons are in agreement with the original claims of Mac Gregor: namely, the values for the rotational energies Erot of particles merge with those of nuclear rotational bands in light nuclei. It is also shown that particles of different isotopic spins are separated in mass by a 70 MeV quantum, which is related to the SU(3) decuplet mass spacing as originally proposed by Gell-Mann.
Baryon production from embedded metastable strings
Karouby, Johanna
2013-01-01
We quantify the baryon anti-baryon production generated by a metastable cosmic string, similar to the embedded pion string. More precisely, we study skyrmion production mediated by instantons generated by a pion-like metastable string in contact with a thermal bath, and interpret these Skyrmions as baryons. As shown in a previous work, the core of such a metastable string can melt due to quantum tunneling in the charged field direction. The specific configuration of our string containing 4 scalar fields out of equilibrium in contact with a thermal bath is shown to yield skyrmion production with partial or integer winding number. In this work, we describe and quantify this skyrmion production per unit length of the string. We also evaluate the skyrmion-anti skyrmions production by a dense string network by invoking similarity with the Skyrmion production in a phase transition.
Physical properties of the chiral quantum baryon
It is presented an account to understand the quantum chiral baryon, which a stable chiral soliton with baryon number one obtained after first quantization by collective coordinates. Starting from the exact series solution to the non-linear sigma model with the hedge-hog configuration, the values of several physical quantities (mass, axial weak coupling, gyromagnetic ratios and radii) as a function of the order of Pade approximants used as approximanted representations of the solution, are calculated. It turns out that consistent results may be obtained, but a better approximation should be developed. (author)
Strange anti-baryons---QGP versus HC
We study quark-gluon plasma (QGP) and hadronic gas (HG) models of the central fireball presumed to be the source of abundantly produced strange (anti-)baryons in S→W collisions at 200 GeV A. We consider how multi-strange (anti-)baryon multiplicities depend on strangeness conservation and compare the HG and QGP fireball scenarios. We argue that the total particle multiplicity emerging from the central rapidity region as well as the variation of production rates with changes in the beam energy allows to distinguish between the two reaction scenarios
Heavy baryons in the large Nc limit
Albertus, C; Fernando, I P; Goity, J L
2015-01-01
It is shown that in the large Nc limit heavy baryon masses can be estimated quantitatively in a 1/Nc expansion using the Hartree approximation. The results are compared with available lattice calculations for different values of the ratio between the square root of the string tension and the heavy quark mass tension independent of Nc. Using a potential adjusted to agree with the one obtained in lattice QCD, a variational analysis of the ground state spin averaged baryon mass is performed using Gaussian Hartree wave functions. Relativistic corrections through the quark kinetic energy are included. The results provide good estimates for the first sub-leading in 1/Nc corrections.
Properties of doubly and triply heavy baryons
We calculate the mass and residue of the doubly/triply heavy spin-1/2 and spin- 3/2 baryons containing two/three heavy b or c quarks in the framework of QCD sum rules. We use the most general interpolating currents in symmetric and anti-symmetric forms with respect to the exchange of heavy quarks, to calculate the two-point correlation functions describing the baryons under consideration. A comparison of the obtained results with the existing experimental data as well as predictions of other theoretical approaches is also made
Infrared enhancement in single-baryon systems
Lv, Songlin
2016-01-01
The pion-baryon triangle diagram is inspected for the special kinematic region in which the squared momentum transfer is close to $4m_\\pi^2$. The pion propagators can have very small energies, as opposed to $\\sim m_\\pi$ in the physical region, which allows the nucleon propagator to be near its mass shell. This observation leads us to conclude that in this particular domain the triangle diagram is augmented by $\\mathcal{O}(m_N/m_\\pi)$ compared with the standard counting of chiral perturbation theory, hence an infrared enhancement in the single-baryon sector.
A measurement of the b baryon lifetime
Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Pacheco, A.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Atwood, W. B.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Bossi, F.; Boudreau, J.; Burnett, T. H.; Drevermann, H.; Forty, R. W.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lançon, E.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Mattison, T.; Meinhard, H.; Menary, S.; Meyer, T.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Roth, A.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; Bencheikh, A. M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Pietrzyk, B.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Altoon, B.; Boyle, O.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geiges, R.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wolf, B.; Aubert, J.-J.; Benchouk, C.; Bernard, V.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Papalexiou, S.; Payre, P.; Qian, Z.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Bauer, C.; Blum, W.; Brown, D.; Cowan, G.; Dehning, B.; Dietl, H.; Dydak, F.; Fernandez-Bosman, M.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Takashima, M.; Thomas, J.; Wolf, G.; Bertin, V.; Boucrot, J.; Callot, O.; Chen, X.; Cordier, A.; Davier, M.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Zomer, F.; Abbaneo, D.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lemaire, M. C.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Reeves, P.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Grupen, C.; Mirabito, L.; Rivera, F.; Schäfer, U.; Ganis, G.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Whitney, M. H.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Aleph Collaboration
1992-12-01
In 451 000 hadronic Z 0 decays, recorded with the ALEPH detector at LEP, the yields of Λℓ - and Λℓ + combinations are measured. Semileptonic decays of b baryons result in a signal of 122± 18 (stat.) -23+22 (syst.) Λℓ - combinations. From a fit to the impact parameter distributions of the leptons in the Λℓ - sample, the lifetime of b baryons is measured to be 1.12 -0.29+0.32 (stat.) ±0.16 (syst.) ps.
Heavy flavor baryons in hypercentral model
Bhavin Patel; Ajay Kumar Rai; P C Vinodkumar
2008-05-01
Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three-body problem. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index . The ground state masses of the heavy flavor, $J^{P} = \\dfrac{1}{2}^{+}$ and $\\dfrac{3}{2}^{+}$ baryons are computed for different power indices, starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index = 1.0.
Beautiful and other heavy baryons revisited
Martin, A.; Richard, J.M.
1987-02-19
We discuss the mass range for the beautiful baryons ..lambda../sub b/, ..sigma../sub b/ and ..sigma../sub b//sup */ allowed by rigorous inequalities which are derived in the framework of potential models but have probably a broader domain of validity. We obtain at the same time lower bounds on the masses of other baryons. We also compare the numerical prediction of several explicit models. There are convergent indications towards a mass of about 5.6 GeV for the ..lambda../sub b/.
Two-baryon forces from skyrmions
Background material on solitons and, especially, skyrmions is provided and the applications of the latter to the derivation of the nucleon-nucleon force is reviewed with attention to the product Ansatz, additional terms in the Lagrangian, baryon resonance admixtures, dilatons, and exact two-or three-dimensional solutions for the B=2 system in order to find the sources of attraction in the central and spin-orbit potentials. We discuss extensions to two-baryon systems with nonzero strangeness and address applications to the behavior of the nucleon in nuclei achieved from skyrmions. (author)
Dynamically generated hidden-charm baryon resonances
Lutz, M F M
2006-01-01
Identifying a zero-range exchange of vector mesons as the driving force for the s-wave scattering of pseudo-scalar mesons off the baryon ground states, a rich spectrum of hadronic nuclei is formed. We argue that chiral symmetry and large-$N_c$ considerations determine that part of the interaction which generates the spectrum. We suggest the existence of strongly bound crypto-exotic baryons, which contain a charm-anti-charm pair. Such states are narrow since they can decay only via OZI-violating processes.
Octet baryon masses and sigma terms in covariant baryon chiral perturbation theory
Ren, Xiu-Lei; Geng, Li-Sheng; Meng, Jie
2015-01-01
We report on a recent study of the ground-state octet baryon masses and sigma terms in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. To take into account lattice QCD artifacts, the finite-volume corrections and finite lattice spacing discretization effects are carefully examined. We performed a simultaneous fit of all the $n_f = 2+1$ lattice octet baryon masses and found that the various lattice simulations are ...
Lowest-lying octet baryon masses in covariant baryon chiral perturbation theory
Ren, Xiu-Lei; Geng, Lisheng; Meng, Jie; Toki, Hiroshi
2013-01-01
We report on a systematic study of the ground-state octet baryon masses in the covariant baryon chiral perturbation theory with the extended-on-mass-shell renormalization scheme up to next-to-next-to-next-to-leading order, taking into account the contributions of the virtual decuplet baryons. A reasonable description of the lattice results is achieved by fitting simultaneously all the publicly available $n_f = 2+1$ lattice QCD data. It confirms that the various lattice simulations are consist...
Measurement of inclusive baryon production in B meson decays
Using the ARGUS detector at the e+e- storage ring DORIS II at DESY, we have studied B meson decays into baryons p and Λ. From the simultaneous analysis of p and Λ yields, panti p and Λanti p correlations, and various lepton-baryon and lepton-baryon-antibaryon correlations the inclusive branching ratio is found to be BR (B→baryons)=(6.8±0.5±0.3)%. (orig.)
Baryon superfluidity and neutrino emissivity of neutron stars
Takatsuka, T.; Tamagaki, R.
2004-01-01
For neutron stars with hyperon-mixed core, neutrino emissivity is studied under the equation of state, obtained by introducing repulsive three-body force universal for all baryons so as to assure the maximum mass compatible with the observation. By paying attention to the density-dependence of critical temperatures of baryon superfluids, which reflect the nature of baryon-baryon interaction and control neutron star cooling, we show what neutrino emission processes are efficient in the regions...
Octet baryon magnetic moments in light cone QCD sum rules
Aliev, T M; Özpineci, A
2002-01-01
Octet baryon magnetic moments are calculated in framework of the light cone QCD sum rules. The analysis is carried for the general form of the interpolating currents for octet baryons. A comparison of our results on the magnetic moments of octet baryons with the predictions of other approaches and experimental data is presented.
Semileptonic heavy-to-light decays of baryons
The results about semileptonic decays of baryons with only heavy quark into light baryons are reported. These processes are considered in the framework of the quark confinement model. Weak form factors, decay rates and differential distributions of semileptonic heavy-to-light baryon decays are calculated. The limit mQ→∞ is examined. 23 refs.; 14 figs.; 1 tab
Knippschild, Bastian
2012-03-05
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m{sub ud}{sup MS}(2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point
Neutron-antineutron Oscillation and Baryonic Majoron: Low Scale Spontaneous Baryon Violation
Berezhiani, Zurab
2015-01-01
We discuss a possibility that baryon number $B$ is spontaneously broken at low scales, of the order of MeV or even smaller, so that the neutron-antineutron oscillation can be induced at the experimentally accessible level. An associated Goldstone particle, baryonic majoron, can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to $B-L$ symmetry, baryo-majoron can be identified with the ordinary majoron associated with the spontaneous breaking of lepton number, with interesting implications for neutrinoless $2\\beta$ becay with the majoron emission, etc. We also discuss a hypothesis suggesting that baryon number maybe spontaneously broken by the QCD itself via the six-quark condensates.
Twisted baryon loop effects in DTU
Within the framwork of DTU we propose a simple model for mesons, baryons and baryonium which allows use to calculate the effects of inserting non-planar antiBB loops in all possible ways into meson and baryonium propagators. We study the renormalization of the leading non-zero isospin trajectories and the mixing of qantiq and qqantiqantiq states
Baryon number violation and particle collider experiments
Baryon number non-conservation, due to non-perturbative effects (sphalerons) in the standard model, may have been important in the early Universe. In this paper the possibility is discussed that similar effects could show up at future particle collider experiments. (author). 16 refs.; 3 figs
Beauty baryon decays: a theoretical overview
I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → pℓμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λℓ+ℓ−
Heavy-baryon weak form factors
It has recently been shown that hadrons containing a single heavy quark exhibit a new flavor-spin symmetry of QCD. We exploit this symmetry to obtain model-independent absolutely normalized predictions for some heavy-baryon weak form factors at zero recoil as well as relations between such form factos at nonzero recoil. (orig.)
On gauged Baryon and Lepton numbers
The observation that Baryon number and Lepton number are conserved in nature provides strong motivation for associating gauge symmetries to these conserved numbers. This endeavor requires that the gauge group of electroweak interactions be extended from SU(2)L X U(1)Y to SU(2)L X U(1)R X U(1)Lepton where U(1)R couples only to the right-handed quarks and leptons. If it furthur postulated that right-handed currents exist on par with the left-handed ones, then the full electroweak symmetry is SU(2)L X SU(2)R X U(1)Baryon X U(1)Lepton. The SU(2)L X SU(2)R X U(1)Baryon X U(1)Lepton model is described in some detail. The triangle anomalies of the three families of quarks and leptons in the model are cancelled invoking leptoquark matter which is new fermionic matter that carries baryon as well as lepton numbers. In addition to the standard neutral boson (Z degree), the theory predicts two neutral gauge bosons with mass lower bounds of 120 GeV and 210 GeV which makes these particles prospective candidates for production at LEP, the TEVATRON and the SSC
Charmed baryons in bootstrap quark model
Gerasyuta, S. M.; Ivanov, D.V.
2001-01-01
In the framework of dispersion relation technique the relativistic three-quark equations including heavy quarks are found. The approximate solutions of the relativistic three-particles equations based on the extraction of leading singularities of amplitudes are obtained. The mass values of S-wave multiplets of charmed baryons are calculated.
The baryonic self similarity of dark matter
Alard, C., E-mail: alard@iap.fr [Institut d' Astrophysique de Paris, 98bis boulevard Arago, F-75014 Paris (France)
2014-06-20
The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M {sup 1/4}. These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.
Baryons in the unquenched quark model
Bijker, R; Lopez-Ruiz, M A; Santopinto, E
2016-01-01
In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a $^{3}P_{0}$ quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and $\\beta$ decays of octet baryons.
Excited mass spectra of Σ+c baryon
Baryons are strongly interacting fermions made up of three quarks. Recently, many of single charm baryons are discovered by different colliders like CLEO, Belle, BABAR, etc. Among different phenomenological Quark models, we practise on Hypercentral Constituent Quark Model (hCQM) with coulomb plus power potential. The methodology of single charmed Baryon Σ+c is derived in the paper. Our predictions for charmed baryon masses are matched with other theoretical prediction as well as known experimental data. The obtained results are used for constructing the heavy baryon Regge trajectories in the (nr, M2)
Heavy baryons in the large Nc limit
Albertus, C.; Ruiz Arriola, E.; Fernando, I. P.; Goity, J. L.
2015-11-01
It is shown that in the large Nc limit heavy baryon masses can be estimated quantitatively in a 1 /Nc expansion using the Hartree approximation. The results are compared with available lattice calculations for different values of the ratio between the square root of the string tension and the heavy quark mass √{ σ} /mQ. These estimates implement important 1 /Nc corrections and assume a string tension independent of Nc. Using a potential adjusted to agree with the one obtained in lattice QCD, a variational analysis of the ground state spin averaged baryon mass is performed using Gaussian Hartree wave functions. Relativistic corrections through the quark kinetic energy are included. The results provide good estimates for the first sub-leading in 1 /Nc corrections.
The Compressed Baryonic Matter experiment at FAIR
Senger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)
2011-07-15
The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at high densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure both bulk observables with large acceptance and rare diagnostic probes such as charmed particles and vector mesons decaying into lepton pairs. The layout and the physics performance of the proposed CBM experimental facility will be discussed.
Large-distance properties of holographic baryons
Employing the asymptotic instanton solution in an arbitrary background of a set of holographic QCD models, we show that baryon form factors have a precise large-distance behavior regardless of the background. The dependence coincides with that obtained from general chiral soliton models and large-NC chiral perturbation theory. The nonlinear terms in the equations of motion are necessary to recover the correct results. We also show that the holographic currents have the right structure at low energy if the solutions of the full equation of motion, instead of the linearized ones, are used. The indication is that in this holographic approach, the linearized approximation used in the meson sector is not appropriate for the solitonic description of the baryons
Two Baryons with Twisted Boundary Conditions
Briceno, Raul [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davoudi, Zohreh [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States); Luu, Thomas [Lawrence Livermore National Laboratory, Livermore, CA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States)
2014-04-01
The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.
Baryon Dynamics, Dark Matter Substructure, and Galaxies
Weinberg, D H; Davé, R; Katz, N; Colombi, Stephane; Dav\\'e, Romeel; Katz, Neal; Weinberg, David H.
2006-01-01
By comparing a collisionless cosmological N-body simulation (DM) to an SPH simulation with the same initial conditions, we investigate the correspondence between the dark matter subhalos produced by collisionless dynamics and the galaxies produced by dissipative gas dynamics in a dark matter background. When galaxies in the SPH simulation become satellites in larger groups, they retain local dark matter concentrations (SPH subhalos) whose mass is typically five times their baryonic mass. The more massive subhalos of the SPH simulation have corresponding subhalos of similar mass and position in the DM simulation; at lower masses, there is fairly good correspondence, but some DM subhalos are in different spatial positions and some suffer tidal stripping or disruption. The halo occupation statistics of DM subhalos -- the mean number of subhalos, pairs, and triples as a function of host halo mass -- are very similar to those of SPH subhalos and SPH galaxies. Gravity of the dissipative baryon component amplifies t...
Strong decays of nonstrange q3 baryons
We study strong decays of nonstrange baryons by making use of the algebraic approach to hadron structure. Within this framework we derive closed expressions for decay widths in an elementary-meson emission model and use these to analyze the experimental data for N*→N+π, N*→Δ+π, N*→N+η, Δ*→N+π, Δ*→Δ+π, and Δ*→Δ+η decays. copyright 1997 The American Physical Society
Heavy baryon spectroscopy with relativistic kinematics
We present a comparative Faddeev study of heavy baryon spectroscopy with nonrelativistic and relativistic kinematics. We show results for different standard hyperfine interactions with both kinematics in an attempt to learn about the light quark dynamics. We highlight the properties of particular states accessible in nowadays laboratories that would help in discriminating between different dynamical models. The advance in the knowledge of light quark dynamics is a key tool for the understanding of the existence of exotic hadrons.
Baryon production in e+e- annihilation
The phenomenology of baryon production in high energy e+e-annihilation is described. Much can be understood in terms of mass effects. Comparisons with the rates for different flavours and spins, with momentum and transverse momentum spectra and with particle correlations are used to confront models. Diquark models give good descriptions, except for the on/off Υ(1s) rates. Areas for experimental and theoretical development are indicated. (author)
Determining properties of baryon resonances in nuclei
Meson-nucleus and photon-nucleus interactions are important sources of information about the medium modifications of baryon resonances in nuclei. Indications of how large the medium effects are for resonances above the Δ33(1232) are provided by it combined analysis of photonuclear and pion cross sections in the GeV range of energies. Tile existing data indicate a possible 10-20% renormalization of the pion coupling to higher-lying resonances in nuclei
Primordial Deuterium Abundance and Cosmic Baryon Density
Hogan, Craig J.
1994-01-01
The comparison of cosmic abundances of the light elements with the density of baryonic stars and gas in the universe today provides a critical test of big bang theory and a powerful probe of the nature of dark matter. A new technique allows determination of cosmic deuterium abundances in quasar absorption clouds at large redshift, allowing a new test of big bang homogeneity in diverse, very distant systems. The first results of these studies are summarized, along with their implications. The ...
Quark Orbital Angular Momentum in the Baryon
Song, Xiaotong
2000-01-01
Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor $\\kappa$ and the chiral splitting probability $a$ is shown...
Baryon Ratios in Quark-Gluon Plasma
MAZhong-Biao; MIAOHong; GAOChong-Shou
2003-01-01
A way to calculate ratios of baryon produced from quark gluon plasma in relativistic heavy ion collisions is presented. It is assumed that at the beginning of the hadronlzation there are diquarks and anti-diquarks in the quark matter. The number of three-quark states is distributed between the corresponding multiplets, and hadronic decays are taken into account. The results are shown at last.
Understanding the baryon and meson spectra
Pennington, Michael R. [JLAB
2013-10-01
A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.
Baryon form factors: Model-independent results
Baryon form factors can be analyzed in a largely model-independent fashion in terms of two complementary approaches. These are chiral perturbation theory and dispersion relations. I review the status of dispersive calculations of the nucleon electromagnetic form factors in the light of new data. Then, I present the leading one-loop chiral perturbation theory analysis of the hyperon and the strange nucleon form factors. Open problems and challenges are also discussed
Universal fitting formulae for baryon oscillation surveys
Blake, Chris; Parkinson, David; Glazebrook, Karl; Bassett, Bruce A.; Kunz, Martin; Nichol, Robert C.
2006-01-01
The next generation of galaxy surveys will attempt to measure the baryon oscillations in the clustering power spectrum with high accuracy. These oscillations encode a preferred scale which may be used as a standard ruler to constrain cosmological parameters and dark energy models. In this paper we present simple analytical fitting formulae for the accuracy with which the preferred scale may be determined in the tangential and radial directions by future spectroscopic and photometric galaxy re...
Optimal Redshift Weighting For Baryon Acoustic Oscillations
Zhu, Fangzhou; Padmanabhan, Nikhil; White, Martin
2014-01-01
Future baryon acoustic oscillation (BAO) surveys will survey very large volumes, covering wide ranges in redshift. We derive a set of redshift weights to compress the information in the redshift direction to a small number of modes. We suggest that such a compression preserves almost all of the signal for most cosmologies, while giving high signal-to-noise measurements for each combination. We present some toy models and simple worked examples. As an intermediate step, we give a precise meani...
Charming Mesons with Baryons and Nuclei
Tolos, Laura
2013-11-01
The properties of charmed mesons in nuclear matter and nuclei are reviewed. Different frameworks are discussed paying a special attention to unitarized coupled-channel approaches which incorporate heavy-quark spin symmetry. Several charmed baryon states with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2+ and 3/2+ baryons. These states are compared to experimental data. Moreover, the properties of open-charm mesons in matter are analyzed. The in-medium solution accounts for Pauli blocking effects, and for the meson self-energies in a self-consistent manner. The behavior in the nuclear medium of the rich spectrum of dynamically-generated baryon states is studied as well as their influence in the self-energy and, hence, the spectral function of open charm. The possible experimental signatures of the in-medium properties of open charm are finally addressed, such as the formation of charmed nuclei, in connection with the future FAIR facility.
Charming mesons with baryons and nuclei
Tolos, Laura
2013-01-01
The properties of charmed mesons in nuclear matter and nuclei are reviewed. Different frameworks are discussed paying a special attention to unitarized coupled-channel approaches which incorporate heavy-quark spin symmetry. Several charmed baryon states with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with $1/2^+$ and $3/2^+$ baryons. These states are compared to experimental data. Moreover, the properties of open-charm mesons in matter are analyzed. The in-medium solution accounts for Pauli blocking effects, and for the meson self-energies in a self-consistent manner. The behavior in the nuclear medium of the rich spectrum of dynamically-generated baryon states is studied as well as their influence in the self-energy and, hence, the spectral function of open charm. The possible experimental signatures of the in-medium properties of open charm are finally addressed, such as the formation of charmed nuclei, in connection with the future F...
Staggered heavy baryon chiral perturbation theory
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
Baryons, Neutrinos, Feedback and Weak Gravitational Lensing
Harnois-Déraps, Joachim; Viola, Massimo; Heymans, Catherine
2014-01-01
(Abridged) The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OWL hydrodynamical simulations. It is specifically calibrated for $z<1.5$, where it models the simulations to an accuracy that is better than $2\\%$ for scales $k<10 h\\mbox{Mpc}^{-1}$ and better than ...
Theoretical perspective for baryon number violation
In this talk I describe the theoretical predictions for proton decay and other baryon number violating processes, emphasizing that there are many models and theories involving baryon number violation and that it is an experimental problem to distinguish between them. I first review the the theoretical predictions for the unification mass M/sub X/ and for the weak angle sin2theta/sub W/. It will be seen that the class of models involving an Su3 x SU2 x U1 invariant desert between M/sub W/ and M/sub X/ are strongly favored. I then turn to baryon number violation. The proton lifetime and branching ratio predictions for the SU5 and other 3-2-1 desert models are reviewed, with emphasis on distinguishing between models and on the implications of the small value of the QCD parameter lambda/sub anti MS/ that seems to be favored by the data. I then discuss the consequences of low energy supersymmetry for proton decay, nuclear effects, and models with low mass scales. Finally, I mention possible implications of the anomalously large flux of cosmic ray antiprotons that has recently been reported
Proton spin and baryon octet axial couplings
Peripheral spin structure of the nucelon generated by the soft mesonic radiative corrections is studied within the light-cone perturbation theory. Starting with the tree-level SU(6) symmetry, we find a good description of the axial-vector couplings in β-decay of hyperons. We study the proton helicity flow from the baryonic core to the angular momentum of the pionic cloud. It is found that in the relativistic light-cone approach the spin-flip pattern is different from that in the coventional non-relativistic models. The axial-vector current matrix elements are shown to receive large corrections from beyond the conventional static limit. The important virtue of using the light-cone vertex functions of the meson-baryon Fock components of the proton is that the local gauge invariance and the energy-momentum sum rule are satisfied automatically. We infer the radius of the light-cone form factor from an analysis of the experimental data on the fragmentation of high-energy protons into nucleons and hyperons-the process dominated by stripping off the mesons of the meson-baryon Fock states. (orig.)
The Molecular Baryon Cycle of M82
Chisholm, John
2016-01-01
Baryons cycle into galaxies from the inter-galactic medium, are converted into stars, and a fraction of the baryons are ejected out of galaxies by stellar feedback. Here we present new high resolution (3.9"; 68 pc) CO(2-1) and CO(3-2) images that probe these three stages of the baryon cycle in the nearby starburst M 82. We combine these new observations with previous CO(1-0) and [Fe II] images to study the physical conditions within the molecular gas. Using a Bayesian analysis and the radiative transfer code RADEX, we model molecular Hydrogen temperatures and densities, as well as CO column densities. Besides the disc, we concentrate on two regions within the galaxy: an expanding super-bubble and the base of a molecular streamer. Shock diagnostics, kinematics, and optical extinction suggest that the streamer is an inflowing filament, with a molecular gas mass inflow rate of 3.5 M$_\\odot$ yr$^{-1}$. We measure the molecular gas mass outflow rate of the expanding super-bubble to be 17 M$_\\odot$ yr$^{-1}$, 5 tim...
Lifetime and production rate of beauty baryons from Z decays
Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Buys, A; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; De Boeck, H; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fürstenau, H; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Günther, M; Guy, J; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köhne, J H; Köne, B; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Królikowski, J; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; López, J M; López-Fernandez, A; López-Aguera, M A; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, M; McNulty, M; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ostankov, A P; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stäck, H; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Torassa, E; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Überschär, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wormser, G; Woschnagg, K; Yip, K; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G
1995-01-01
The production and decay of beauty baryons (b-baryons) have been studied using 1.7 \\times 10^6 Z hadronic decays collected by the DELPHI detector at LEP. Three different techniques were used to identify the b-baryons. The first method used pairs of a \\Lambda and a lepton to tag the b-baryon decay. The second method associated fully reconstructed \\Lambda_c baryons with leptons. The third analysis reconstructed the b-baryon decay points by forming secondary vertices from identified protons and muons of opposite sign. Using these methods the following production rates were measured: \\begin{eqnarray*} f(\\qb \\ra \\Bb) \\times \\BR(\\Bb \\ra \\mLs \\ell\\bar{\
Fragmentation Functions for Heavy Baryons in the Recombination Model
彭茹
2011-01-01
Using the shower parton distributions determined by the recombination model, we predict the fragmentation functions for heavy baryons. Then we obtain the completed fragmentation functions of heavy quarks (c and b) splitting into their hadrons (mesons and baryons containing one heavy valence quark). The calculated process shows that the fragmentation functions for mesons and baryons are not independent if the hadronization of the shower partons is taken into account.%Using the shower parton distributions determined by the recombination model,we predict the fragmentation functions for heavy baryons.Then we obtain the completed fragmentation functions of heavy quarks(c and b)splitting into their hadrons(mesons and baryons containing one heavy valence quark).The calculated process shows that the fragmentation functions for mesons and baryons are not independent if the hadronization of the shower partons is taken into account.
High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions
Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A
2010-01-19
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.
Multi baryons with flavors in the Skyrme model
We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order ο(1/mQ). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)
Detecting baryon acoustic oscillations by 3d weak lensing
Grassi, Alessandra; Schaefer, Bjoern Malte
2013-01-01
We investigate the possibility of detecting baryon acoustic oscillation features in the cosmic matter distribution by 3d weak lensing. Baryon oscillations are inaccessible even to weak lensing tomography because of wide line-of-sight weighting functions and require a specialized approach via 3d shear estimates. We quantify the uncertainty of estimating the matter spectrum amplitude at the baryon oscillations wave vectors by a Fisher-matrix approach with a fixed cosmology and show in this way ...
Quark-Pauli effects in three octet-baryons
Nakamoto, C
2016-01-01
To sustain a neutron star with about two times the solar mass, multi baryons including hyperons are expected to produce repulsive effects in the interior of its high baryon-density region. To examine possible quark-Pauli repulsion among the baryons, we solve the eigenvalue problem of the quark antisymmetrizer for three octet-baryons that are described by most compact spatial configurations. We find that the Pauli blocking effect is weak in the $\\Lambda nn$ system, while it is strong in the $\\Sigma^-nn$ system. The appearance of the $\\Sigma^-$ hyperon is suppressed in the neutron star interior but no quark-Pauli repulsion effectively works for the $\\Lambda$ hyperon.
One-loop corrections to the baryon axial vector current
M A Hernández-Ruíz
2012-10-01
The symmetry breaking corrections to the pion–baryon couplings vanish to first order in $1/N_{c}$, where $N_{c}$ is the number of colours. Loop graphs with octet and decuplet intermediate states cancel to various orders in $N_{c}$ as a consequence of the large-$N_{c}$ spin-flavour symmetry of QCD baryons. The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation theory in the large Nc limit. $1/N_{c}$ corrections in the case of $g_{A}$ in QCD are presented here.
Spectroscopy of singly, doubly, and triply bottom baryons
Wei, Ke-Wei; Liu, Na; Wang, Qian-Qian; Guo, Xin-Heng
2016-01-01
Recently, many singly bottom baryons have been established experimentally, but no doubly or triply bottom baryon has been observed. Under the Regge phenomenology, the mass of a ground state unobserved doubly or triply bottom baryon is expressed as a function of masses of the well established light baryons and singly bottom baryons. (For example, we write the mass of $\\Omega_{bbb}$ as a function of the masses of well established light baryons ($\\Sigma^{*}$, $\\Xi^{*}$, $\\Omega$) and singly bottom baryons ($\\Sigma_b^{*}$, $\\Xi_b^{*}$), and give its value to be 14788$\\pm$80 MeV.) After that, we calculate the values of Regge slopes and Regge intercepts for singly, doubly, and triply bottom baryons. (Regge intercepts and slopes, which are usually regarded as fundamental constants of hadron dynamics, are useful for many spectral and nonspectral purposes.) Then, masses of the orbitally excited singly, doubly, and triply bottom baryons are estimated. The isospin splitting is also determined, $M_{\\Xi_{bb}^{-}}-M_{\\Xi_{...
Hypermagnetic Fields and Baryon Asymmetry from Pseudoscalar Inflation
Anber, Mohamed M
2015-01-01
We show that maximally helical hypermagnetic fields produced during pseudoscalar inflation can generate the observed baryon asymmetry of the universe via the B+L anomaly in the Standard Model. We find that most of the parameter space of pseudoscalar inflation that explains the cosmological data leads to baryon overproduction, hence the models of natural inflation are severely constrained. We also point out a connection between the baryon number and topology of the relic magnetic fields. Both the magnitude and sign of magnetic helicity can be detected in future diffuse gamma ray data. This will be a smoking gun evidence for a link between inflation and the baryon asymmetry of the Universe.
Interrelations between baryon trajectories and new mass formulas for baryon octet
In the framework of the dual analytic model the interrelations between Regge slopes and intercepts for baryon octet are obtained. The relations agree well with experiment and lead to new mass formulas for octets 1/2sup(+), 1/2sup(-) and their angular excitations
Octet baryon masses and sigma terms in covariant baryon chiral perturbation theory
Ren, Xiu-Lei; Meng, Jie
2015-01-01
We report on a recent study of the ground-state octet baryon masses and sigma terms in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. To take into account lattice QCD artifacts, the finite-volume corrections and finite lattice spacing discretization effects are carefully examined. We performed a simultaneous fit of all the $n_f = 2+1$ lattice octet baryon masses and found that the various lattice simulations are consistent with each other. Although the finite lattice spacing discretization effects up to $\\mathcal{O}(a^2)$ can be safely ignored, but the finite volume corrections cannot even for configurations with $M_\\phi L>4$. As an application, we predicted the octet baryon sigma terms using the Feynman-Hellmann theorem. In particular, the pion- and strangeness-nucleon sigma terms are found to be $\\sigma_{\\pi N} = 55(1)(4)$ MeV and $\\sigma_{sN} = 27(27)(4)$ MeV, respectively.
Extended-soft-core Baryon-Baryon Model ESC08 I. Nucleon-Nucleon Scattering
Nagels, M M; Yamamoto, Y
2014-01-01
The Nijmegen extended-sft-core ESC08c model for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons ($N, \\Lambda, \\Sigma$, and $\\Xi$) is presented. In this first of a series of papers, the NN results are reported in detail. In the spirit of the Yukawa-approach to the nuclear force problem, the interactions are studied from the meson-exchange picture viewpoint, using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. The extended-soft-core (ESC) meson-exchange interactions consist of local- and non-local-potentials due to ((i) One-boson-exchanges (OBE, which are the members of nonets of pseudoscalar , vector, scalar, and axial-vector mesons, (ii) diffractive (i.e. multiple-gluon) exchanges, (iii) two pseudoscalar exchange (PS-PS), and (iv) meson-pair-exchange (MPE). The OBE- and MPE-vertices are regulated by gaussian form factors producing potentials with a soft beha...
BARYON LOADED RELATIVISTIC BLAST WAVES IN SUPERNOVAE
We provide a new analytic blast wave solution which generalizes the Blandford-McKee solution to arbitrary ejecta masses and Lorentz factors. Until recently relativistic supernovae have been discovered only through their association with long-duration gamma-ray bursts (GRBs). The blast waves of such explosions are well described by the Blandford-McKee (in the ultra-relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows, as the ejecta mass is negligible in comparison to the swept-up mass. The recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, opens up the possibility of highly baryon loaded, mildly relativistic outflows which remains in nearly free-expansion phase during the radio afterglow. In this work, we consider a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating adiabatically due to its collision with the pre-explosion circumstellar wind profile of the progenitor. We compute the synchrotron emission from relativistic electrons in the shock amplified magnetic field. This models the radio emission from the circumstellar interaction of a CEDEX. We show that this model explains the observed radio evolution of the prototypical SN 2009bb and demonstrate that SN 2009bb had a highly baryon loaded, mildly relativistic outflow. We discuss the effect of baryon loading on the dynamics and observational manifestations of a CEDEX. In particular, our predicted angular size of SN 2009bb is consistent with very long baseline interferometric (VLBI) upper limits on day 85, but is presently resolvable on VLBI angular scales, since the relativistic ejecta is still in the nearly free-expansion phase.
Dynamical twisted mass fermions and baryon spectroscopy
The aim of this work is an ab initio computation of the baryon masses starting from quantum chromodynamics (QCD). This theory describes the interaction between quarks and gluons and has been established at high energy thanks to one of its fundamental properties: the asymptotic freedom. This property predicts that the running coupling constant tends to zero at high energy and thus that perturbative expansions in the coupling constant are justified in this regime. On the contrary the low energy dynamics can only be understood in terms of a non perturbative approach. To date, the only known method that allows the computation of observables in this regime together with a control of its systematic effects is called lattice QCD. It consists in formulating the theory on an Euclidean space-time and to evaluating numerically suitable functional integrals. First chapter is an introduction to the QCD in the continuum and on a discrete space time. The chapter 2 describes the formalism of maximally twisted fermions used in the European Twisted Mass (ETM) collaboration. The chapter 3 deals with the techniques needed to build hadronic correlator starting from gauge configuration. We then discuss how we determine hadron masses and their statistical errors. The numerical estimation of functional integral is explained in chapter 4. It is stressed that it requires sophisticated algorithm and massive parallel computing on Blue-Gene type architecture. Gauge configuration production is an important part of the work realized during my Ph.D. Chapter 5 is a critical review on chiral perturbation theory in the baryon sector. The two last chapter are devoted to the analysis in the light and strange baryon sector. Systematics and chiral extrapolation are extensively discussed. (author)
Time delay plots of unflavoured baryons
Kelkar, N. G.; Nowakowski, M.; Khemchandani, K. P.; Jain, S. R.
2004-01-01
We explore the usefulness of the existing relations between the S-matrix and time delay in characterizing baryon resonances in pion-nucleon scattering. We draw attention to the fact that the existence of a positive maximum in time delay is a necessary criterion for the existence of a resonance and should be used as a constraint in conventional analyses which locate resonances from poles of the S-matrix and Argand diagrams. The usefulness of the time delay plots of resonances is demonstrated through a detailed analysis of the time delay in several partial waves of πN elastic scattering.
Cosmology with X-ray Cluster Baryons
Linder, Eric V.
2007-04-10
X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g., Chandra X-ray Observatory, XMM-Newton) and next generation (e.g., Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1percent and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)0.03.
Notes on anomalies, baryons, and Seiberg duality
Corley, Steven
2003-01-01
We consider an N=1 SU(N_c) SUSY gauge theory with N_f \\geq N_c matter multiplets transforming in the fundamental and antifundamental representations of the gauge group. Using the Konishi anomaly and a non-anomalous conservation law, we derive a system of partial differential equations that determine the low energy effective superpotential as a function of the mesonic and baryonic vacuum expectation values. We apply the formalism to the cases of N_f = N_c and N_f = N_c +1 where the equations a...
Non-Baryonic Dark Matter in Cosmology
Del Popolo, A
2014-01-01
This paper is a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the $\\Lambda$CDM model, with particular emphasis on the small scale problems of the paradigm.
ABJM Baryon Stability and Myers effect
Lozano, Yolanda; Sfetsos, Konstadinos; Siampos, Konstadinos
2011-01-01
We consider magnetically charged baryon vertex like configurations in AdS^4 X CP^3 with a reduced number of quarks l. We show that these configurations are solutions to the classical equations of motion and are stable beyond a critical value of l. Given that the magnetic flux dissolves D0-brane charge it is possible to give a microscopical description in terms of D0-branes expanding into fuzzy CP^n spaces by Myers dielectric effect. Using this description we are able to explore the region of finite 't Hooft coupling.
Baryon instability search in large detectors
Nucleon decay appears as a consequence of models trying to explain the baryon-antibaryon asymmetry. This has motivated 15 years ago many underground experiments devoted to the search of proton and neutron decay. A very large number of decay channels have been investigated and no evidence has been found yielding lower limits on lifetime which rule out the minimal SU(5) Grand Unified Theory predictions and put severe constraints on more complicated models. Next generation experiments like Super-Kamiokande, which is starting to take data now, ICARUS, whose a 600 ton prototype is under construction, will be sensitive to more complicated models predicting larger lifetimes. (author)
STRANGE BARYONIC MATTER AND KAON CONDENSATION
Gazda, Daniel; Friedman, E.; Gal, A.; Mareš, Jiří
2011-01-01
Roč. 26, 3-4 (2011), s. 567-569. ISSN 0217-751X. [11th International Workshop on Meson Production, Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : (K)over-bar-nuclear bound states * strange baryonic matter * kaon condensation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011
SU(3) flavour breaking and baryon structure
Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Shanahan, P.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: QCDSF/UKQCD Collaboration
2013-11-15
We present results from the QCDSF/UKQCD collaboration for hyperon electromagnetic form factors and axial charges obtained from simulations using N{sub f}=2+1 flavours of O(a)-improved Wilson fermions. We also consider matrix elements relevant for hyperon semileptonic decays. We find flavour-breaking effects in hyperon magnetic moments which are consistent with experiment, while our results for the connected quark spin content indicates that quarks contribute more to the spin of the {Xi} baryon than they do to the proton.
Electromagnetic moments of quasi-stable baryons
Ledwig, T.; Martin-Camalich, J.; Pascalutsa, V.; Vanderhaeghen, M.
2011-01-01
We address electromagnetic properties of quasi-stable baryons in the context of chiral extrapolations of lattice QCD results. For particles near their decay threshold we show that the application of a small external magnetic field changes the particle's energy in a non-analytic way. Conventional electromagnetic moments are only well-defined when the background field B satisfies |eB|/(2M_*|M_*-M-m|) where M_* is the mass of the resonance and M, m the masses of the decay products. An applicatio...
Quasinuclear states in baryon-antibaryon systems
A review of modern state of physics of quasinuclear baryon-antibarion systems (''baryonium'') is presented. The comparison between the theory predictions and recent experimental data is carried out. Discrete γ - spectrum from the anti pp annihilation, annihilation and elastic widths for N anti N resonances from experiments with hydrogen and deuterium targets, proton form factor and e+e- annihilation in the vicinity of N anti N threshold are considered. The most important future experiments on antiproton annihilation in nuclear targers are discussed. Experiments which may reveal the existences of 2B anti B and 2B anti 2B systems are predicted
Non-Baryonic Dark Matter in Cosmology
Del Popolo, A.
2013-01-01
This paper is a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the $\\Lambda$CDM model, with particular emphasis on the small scale problems of the paradigm.
High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions
Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Detmold, William [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Huey-Wen [Univ. of Washington, Seattle, WA (United States); Luu, Thomas C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Orginos, Kostas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States); Torok, Aaron M. [Indiana Univ., Bloomington, IN (United States). Dept. of Physics; Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)
2010-03-01
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting
Baryon magnetic moments in the effective quark Lagrangian approach
Simonov, YA; Tjon, JA; Weda, J; Simonov, Yu A.
2002-01-01
An effective quark Lagrangian is derived from first principles through bilocal gluon field correlators. It is used to write down equations for baryons, containing both perturbative and nonperturbative fields. As a result one obtains magnetic moments of octet and decuplet baryons without the introduc
Evidence for chiral logarithms in the baryon spectrum
Walker-Loud, Andre
2011-01-01
Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...
An Attempt to Study Pentaquark Baryons in String Theory
Sugamoto, Akio
2004-01-01
An attempt to study recently observed Pentaquark baryons is performed in the dual string theory of QCD. Mass formulae for Pentaquark baryons are naively estimated in the Maldacena's prototype model for supersymmetric QCD and a more realistic model for the ordinary QCD.
SU(4) breaking for semileptonic decays of charmed baryons
Buccella, F.; Sciarrino, A.; Sorba, P.
1978-08-01
The effects of SU(4) breaking are studied in connection with the semileptonic decays and magnetic moments of the baryons with charm + 1. Substantial suppression factors are predicted for the decay in which the final baryon belongs to the decimet. The consequences of a vanishing magnetic moment for the charmed quark are studied in detail.
SU(4) breaking for semileptonic decays of charmed baryons
The effects of SU(4) breaking are studied in connection with the semileptonic decays and magnetic moments of the baryons with charm + 1. Substantial suppression factors are predicted for the decay in which the final baryon belongs to the decimet. The consequences of a vanishing magnetic moment for the charmed quark are studied in detail
Electromagnetic form factors of octet baryons in QCD
The electromagnetic form factors of octet baryons are estimated within light cone QCD sum rules method, using the most general form of the interpolating current for baryons. A comparison of our predictions on the magnetic dipole and electric form factors with the results of other approaches is performed
Diquark Structure in Heavy Quark Baryons in a Geometric Model
Paria, Lina; Abbas, Afsar
1996-01-01
Using a geometric model for the study of the structure of hadrons, we study baryons having one, two and three heavy quarks. The study reveals diquark structure in baryons with one and two heavy quarks but not with three heavy identical quarks.
Unifying Nucleon and Quark Dynamics at Finite Baryon Number Density
Meyer, J.; Schwenzer, K.; Pirner, H. -J.
1999-01-01
We present a model of baryonic matter which contains free constituent quarks in addition to bound constituent quarks in nucleons. In addition to the common linear sigma-model we include the exchange of vector-mesons. The percentage of free quarks increases with baryon density but the nucleons resist a restoration of chiral symmetry.
Soliton solutions of Chiral Born-Infeld Theory and baryons
Pavlovsky, Oleg V.
2003-01-01
Finite-energy topological spherically symmetrical solutions of Chiral Born-Infeld Theory are studied. Properties of these solution are obtained, and a possible physical interpretation is also given. We compute static properties of baryons (mass,main radius, magnetic main radius, axial coupling constant) whose solutions can be interpreted as the baryons of QCD.
Electroproduction of Baryon Resonances and Strangeness Suppression
Santopinto, E; Tecocoatzi, H Garcia
2016-01-01
We describe the electroproduction ratios of baryon-meson states from nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: Lambda K , Sigma K, p pion, and n pion. These predictions are in agreement with the new Jlab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial test of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we computed the so called strangeness suppression factor, lambda s, that is the suppression of strange quark-antiquarks compared to nonstrange pairs, and we found that our finding with this simple extension of the qua...
Baryon masses with dynamical twisted mass fermions
Alexandrou, C; Koutsou, G; Baron, R; Guichon, P; Brinet, M; Carbonell, J; Drach, V; Liu, Z; Pène, O; Urbach, C
2007-01-01
We present results on the mass of the nucleon and the $\\Delta$ using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of 690-300 MeV on lattices of size 2.1 fm and 2.7 fm. We check for cutoff effects by evaluating these baryon masses on lattices of spatial size 2.1 fm with lattice spacings $a(\\beta=3.9)=0.0855(6)$ fm and $a(\\beta=4.05)=0.0666(6)$ fm, determined from the pion sector and find them to be within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. The nucleon mass at the physical point provides a determination of the lattice spacing. Using heavy baryon chiral perturbation theory at ${\\cal O}(p^3)$ we find $a(\\beta=3.9)=0.0879(12)$ fm, with a systematic error due to the chiral extrapolation estimated to be about the same as the statistical error. This value of the lattice spacing is in good agreement with the value determined from the pion se...
Universal fitting formulae for baryon oscillation surveys
Blake, Chris; Parkinson, David; Bassett, Bruce; Glazebrook, Karl; Kunz, Martin; Nichol, Robert C.
2006-01-01
The next generation of galaxy surveys will attempt to measure the baryon oscillations in the clustering power spectrum with high accuracy. These oscillations encode a preferred scale which may be used as a standard ruler to constrain cosmological parameters and dark energy models. In this paper we present simple analytical fitting formulae for the accuracy with which the preferred scale may be determined in the tangential and radial directions by future spectroscopic and photometric galaxy redshift surveys. We express these accuracies as a function of survey parameters such as the central redshift, volume, galaxy number density and (where applicable) photometric redshift error. These fitting formulae should greatly increase the efficiency of optimizing future surveys, which requires analysis of a potentially vast number of survey configurations and cosmological models. The formulae are calibrated using a grid of Monte Carlo simulations, which are analysed by dividing out the overall shape of the power spectrum before fitting a simple decaying sinusoid to the oscillations. The fitting formulae reproduce the simulation results with a fractional scatter of 7 per cent (10 per cent) in the tangential (radial) directions over a wide range of input parameters. We also indicate how sparse-sampling strategies may enhance the effective survey area if the sampling scale is much smaller than the projected baryon oscillation scale.
A model for net-baryon rapidity distribution
Alvarez-Muñiz, J; Dias de Deus, J; Santo, M C Espírito; Milhano, J G; Pimenta, M
2009-01-01
In nuclear collisions, a sizable fraction of the available energy is carried away by baryons. As the baryon number is conserved, the net-baryon $B-\\bar{B}$ retains information on the energy-momentum carried by the incoming nuclei. A simple and consistent model for net-baryon production in high energy proton-proton and nucleus-nucleus collisions is presented. The basic ingredients of the model are valence string formation based on standard PDFs with QCD evolution and string fragmentation via the Schwinger mechanism. The results of the model are presented and compared with data at different centre-of-mass energies and centralities, as well as with existing models. These results show that a good description of the main features of net-baryon data is possible in the framework of a simplistic model, with the advantage of making the fundamental production mechanisms manifest.
A model for net-baryon rapidity distribution
In nuclear collisions, a sizable fraction of the available energy is carried away by baryons. As baryon number is conserved, the net-baryon B- anti B retains information on the energy-momentum carried by the incoming nuclei. A simple and consistent model for net-baryon production in high energy proton-proton and nucleus-nucleus collisions is presented. The basic ingredients of the model are valence string formation based on standard PDFs with QCD evolution and string fragmentation via the Schwinger mechanism. The results of the model are presented and compared with data at different centre-of-mass energies and centralities, as well as with existing models. These results show that a good description of the main features of the net-baryon data is possible in the framework of a simplistic model, with the advantage of making the fundamental production mechanisms manifest. (orig.)
Magnetic moments of charm baryons in chiral perturbation theory
Magnetic moments of the charm baryons of the sextet and of the 3*-plet are re-evaluated in the framework of Heavy Hadron Chiral Perturbation Theory (HHCPT). NRQM and broken SU(4) unitary symmetry model are used to obtain tree-level magnetic moments. Calculations of a unitary symmetry part of one-loop contributions to magnetic moments of the charm baryons are performed in detail in terms of the SU(4) couplings of charm baryons to Goldstone bosons. The relations between the magnetic moments of the sextet 1/2 baryons with the one-loop corrections are shown to coincide with the NRQM relations. The correspondence between HHCPT results and those of NRQM and unitary symmetry model is discussed. It is shown that one-loop corrections can effectively be absorbed into the tree-level formulae for the magnetic moments of the charm baryons in the broken SU(4) unitary symmetry model and partially in the NRQM. (author)
The recent quark-model baryon-baryon interaction by the Kyoto-Niigata group is applied to the triton, hypertriton, 2αΛ and 2Λα systems, in which a new three-cluster Faddeev formalism, using the 2-cluster resonating-group method (RGM) kernel, is developed for the exact treatment of the Pauli forbidden states between cluster. (author)
Phenomenological sizes of confinement regions in baryons
Standard order of magnitude estimates from QCD indicate that the radius of the quark-gluon core in the nucleon is Λ-1QCD > or approx. 1 fm. However, in work with the chiral bag model, we have found that the effective confinement size for low energy reactions can be as small as ≅ 1/2 fm or smaller. This shrinking of the effective confinement size has been attributed to the pressure of the pion cloud surrounding the quark core. The concept of confinement size is evidently subtle in light-quark systems, due to the chiral vacuum structure. This is indicated by the 'Cheshire Cat' phenomenon, in which physical observables tend to be insensitive to the bag radius R. We suggest that when strange quarks are present, a qualitative change occurs in the Cheshire Cat picture; in particular, we propose that strangeness provides an obstruction to this picture. We present a phenomenological indication that when strange quarks are present, the bag radius R is frozen at a value substantially larger than 0.5 fm by as much as a factor of two. Roughly speaking, the Cheshire Cat picture emerges from a near cancellation between repulsive quark kinetic and attractive pion-cloud energies in the case of the nucleon. In the Λ and Σ particles, however, replacement of one up or down quark by a strange quark removes ≅ 1/Nc of the attraction from the coupling of the quarks to the pion cloud. This upsets the balance needed for the Cheshire Cat phenomenon and makes larger strange baryons more favorable energetically than the 0.5 fm ones appropriate for pure u- and d-systems. We find that magnetic moments of strange baryons favor a bag radius R ≅ 1.1 fm. We find that the excited states of the Λ-hyperons favor similarly large bag radii. Somewhat less convincingly, we argue that - due to perturbative effects - the bag radius appropriate to the Δ(1232) lies intermediate between that of the nucleon and of the strange baryons. (orig.)
Baryon-baryon interactions described by the WKB-RGM quark-model potential
We investigate the baryon-baryon interactions predicted by the Kyoto-Niigata quark model, by using phase-shift equivalent local potentials obtained in the WKB-RGM method. The effect of flavor symmetry breaking is discussed by comparing the 1S0 potentials among the NN, ΣN(I=3/2), ΣΣ(I=2), ΞΣ(I=3/2) and ΞΞ(I=1) systems, which possess the simple flavor SU3 symmetry (22). It is characterized by the detailed balance between the reduction of the short-range repulsion, generated from the color-magnetic term, and the reduction of the medium-range attraction, generated from scalar-meson exchange. A special role of the Bryan-Scott term in the model fss2 is emphasized. (author)
Quark-Model Baryon-Baryon Interaction and its Applications to Hypernuclei
Fujiwara, Y; Suzuki, Y; Kohno, M; Miyagawa, K
2004-01-01
The quark-model baryon-baryon interaction fss2, proposed by the Kyoto-Niigata group, is a unified model for the complete baryon octet (B_8=N, Lambda, Sigma and Xi), which is formulated in a framework of the (3q)-(3q) resonating-group method (RGM) using the spin-flavor SU_6 quark-model wave functions and effective meson-exchange potentials at the quark level. Model parameters are determined to reproduce properties of the nucleon-nucleon system and the low-energy cross section data for the hyperon-nucleon scattering. Due to the several improvements including the introduction of vector-meson exchange potentials, fss2 has achieved very accurate description of the NN and YN interactions, comparable to various one-boson exchange potentials. We review the essential features of fss2 and our previous model FSS, and their predictions to few-body systems in confrontation with the available experimental data. Some characteristic features of the B_8 B_8 interactions with the higher strangeness, S=-2, -3, -4, predicted by ...
Mirage in Temporal Correlation functions for Baryon-Baryon Interactions in Lattice QCD
Iritani, Takumi; Aoki, Sinya; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2016-01-01
Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for the system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons ($\\Xi\\Xi$ and $NN$), and three and four baryons ($^3{\\rm He}$ and $^4{\\rm He})$ as well, employing (2+1)-flavor lattice QCD at $m_{\\pi}=0.51$ GeV on four lattice volumes with $L=$ 2.9, 3.6, 4.3 and 5.8 fm. Caution is given for drawing conclusion on the bound $NN$, $3N$ and $4N$ systems only based on the temporal correlation functions.
Cluster outskirts and the missing baryons
Eckert, D.
2016-06-01
Galaxy clusters are located at the crossroads of intergalactic filaments and are still forming through the continuous merging and accretion of smaller structures from the surrounding cosmic web. Deep, wide-field X-ray studies of the outskirts of the most massive clusters bring us valuable insight into the processes leading to the growth of cosmic structures. In addition, cluster outskirts are privileged sites to search for the missing baryons, which are thought to reside within the filaments of the cosmic web. I will present the XMM cluster outskirts project, a VLP that aims at mapping the outskirts of 13 nearby clusters. Based on the results obtained with this program, I will then explore ideas to exploit the capabilities of XMM during the next decade.
Soft RPV Through the Baryon Portal
Krnjaic, Gordan
2013-01-01
Supersymmetric (SUSY) models with R-parity generically predict sparticle decays with invisible neutralinos, which yield distinctive missing energy events at colliders. Since most LHC searches are designed with this expectation, the putative bounds on sparticle masses become considerably weaker if R-parity is violated so that squarks and gluinos decay to jets with large QCD backgrounds. Here we introduce a scenario in which baryonic R-parity violation (RPV) arises effectively from soft SUSY-breaking interactions, but leptonic RPV remains accidentally forbidden to evade constraints from proton decay and FCNCs. The model features a global R-symmetry that initially forbids RPV interactions, a hidden R-breaking sector, and a heavy mediator that communicates this breaking to the visible sector. After R-symmetry breaking, the mediator is integrated out and an effective RPV A-term arises at tree level; RPV couplings between quarks and squarks arise only at loop level and receive additional suppression. Although this ...
On light baryons and their excitations
Eichmann, Gernot; Sanchis-Alepuz, Helios
2016-01-01
We study ground states and excitations of light octet and decuplet baryons within the framework of Dyson-Schwinger and Faddeev equations. We improve upon similar approaches by explicitly taking into account the momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. We perform calculations in both the three-body Faddeev framework and the quark-diquark approximation in order to assess the impact of the latter on the spectrum. Our results indicate that both approaches agree well with each other. The resulting spectra furthermore agree one-to-one with experiment, provided well-known deficiencies of the rainbow-ladder approximation are compensated for. We also discuss the mass evolution of the Roper and the excited Delta with varying pion mass and analyse the internal structure in terms of their partial wave decompositions.
Color From Geometry (strings, Fivebrane, Baryon, Fourbrane)
Guijosa, A
1999-01-01
This thesis explores some aspects of the recently uncovered connection between gauge theories and gravity, known as the AdS /CFT, or bulk-boundary, correspondence. This is a remarkable statement of equivalence between string or M-theory on certain backgrounds and field theories living on the boundaries of the corresponding spacetimes. Under the duality between four-dimensional N = 4 wrapped D5-brane. We examine the structure and energetics of this system from the vantage point of the fivebrane worldvolume action, making use of the Born-Infeld string approach. We construct supersymmetric fivebrane embeddings N D3-branes provides a detailed description of the creation of strings as the fivebrane is dragged across the threebranes. We also study baryon configurations in large N non- supersymmetric gauge theories...
First observation of doubly charmed baryons
M. A. Moinester et al.
2003-09-25
The SELEX experiment (E781) at Fermilab has observed two statistically compelling high mass states near 3.6 GeV/c{sup 2}, decaying to {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +} and {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +}{pi}{sup +}. These final states are Cabibbo-allowed decay modes of doubly charmed baryons {Xi}{sub cc}{sup +} and {Xi}{sub cc}{sup ++}, respectively. The masses are in the range expected from theoretical considerations, but the spectroscopy is surprising. SELEX also has weaker preliminary evidence for a state near 3.8 GeV/c{sup 2}, a high mass state decaying to {Lambda}{sub c}{sup +} K{sup -} {pi}{sup +}{pi}{sup +}, possibly an excited {Xi}{sub cc}{sup ++} (ccu*). Data are presented and discussed.
How do galaxies get their baryons?
Conselice, Christopher J
2011-01-01
Understanding how galaxies obtain baryons, their stars and gas, over cosmic time is traditionally approached in two different ways - theoretically and observationally. In general, observational approaches to galaxy formation include measuring basic galaxy properties, such as luminosities, stellar masses, rotation speeds, star formation rates and how these features evolve through time. Theoretically, cosmologically based models collate the physical effects driving galaxy assembly - mergers of galaxies, accretion of gas, star formation, and feedback, amongst others, to form predictions which are matched to galaxy observables. An alternative approach is to examine directly, in an observational way, the processes driving galaxy assembly, including the effects of feedback. This is a new `third way' towards understanding how galaxies are forming from gas accretion and mergers, and directly probes these effects instead of relying on simulations designed to reproduce observations. This empirical approach towards unde...
'Nonbaryonic' dark matter as baryonic colour superconductor
We discuss a novel cold dark matter candidate which is formed from the ordinary quarks during the QCD phase transition when the axion domain wall undergoes an unchecked collapse due to the tension in the wall. If a large number of quarks is trapped inside the bulk of a closed axion domain wall, the collapse stops due to the internal Fermi pressure. In this case the system in the bulk, may reach the critical density when it undergoes a phase transition to a colour superconducting phase with the ground state being the quark condensate, similar to BCS theory. If this happens, the new state of matter representing the diquark condensate with a large baryon number B ∼ 1032 becomes a stable soliton-like configuration. Consequently, it may serve as a novel cold dark matter candidate
Baryon number violation in high energy collisions
We study the phenomenology of baryon number violation induced by electroweak instantons. We find that if the naive-instanton amplitudes were valid for arbitrarily high energies, the event rate at the SSC would be a few per hour, with a typical event consisting of 3 'primary' antileptons and 7 'primary' antiquark jets, accompanied by ≅ 85 electroweak gauge bosons, having a sharp threshold in the total sub-energy at about 17 TeV. We describe how to establish their electroweak-instanton-induced origin. The naive instanton approximation is known to overestimate the rate for these processes, so this work focusses attention on the need for more accurate calculations, and for a calculational method which is appropriate when the energy of the initial particles is above the sphaleron energy. (orig.)
Baryon Loaded Relativistic Blastwaves in Supernovae
Chakraborti, Sayan
2010-01-01
We provide a new analytic blastwave solution which generalizes the Blandford-McKee solution to arbitrary ejecta masses and Lorentz factors. Until recently relativistic supernovae have been discovered only through their association with long duration Gamma Ray Bursts (GRB). The blastwaves of such explosions are well described by the Blandford-McKee (in the ultra relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows, as the ejecta mass is negligible in comparison to the swept up mass. The recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, opens up the possibility of highly baryon loaded mildly relativistic outflows which remains in nearly free expansion phase during the radio afterglow. In this work, we consider a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating due to its collision with the pre-explosion circumstellar wind of the progenitor. We compute the synchrotron emission from ...
Baryon operators of higher twist in QCD
In hard QCD processes the effects of higher twist contributions correspond to corrections which are suppressed by powers of the hard scale and are therefore relevant if high accuracy is required. The scale dependence of a physical observable is governed by the renormalization of the higher-twist operators. In the case of baryon operators the anomalous dimensions of the operators of twist 3 have been studied numerously and an almost complete understanding has been achieved. However, starting with twist 4 non-quasipartonic operators (i.e. operators whose twist is larger than their number of parton fields) enter the game and the number of independent operators increases significantly. Making heavy use of conformal symmetry, which prescribes the one-loop renormalization to a certain extent, we see that the construction of an advantageous operator basis is possible and the full spectrum of anomalous dimensions can be obtained
Shedding light on baryonic dark matter
Silk, Joseph
1991-01-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.
Baryon transition form factors at the pole
Tiator, L; Workman, R L; Hadžimehmedović, M; Osmanović, H; Omerović, R; Stahov, J; Švarc, A
2016-01-01
Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.
Leptogenesis and gravity: baryon asymmetry without decays
McDonald, J I
2016-01-01
A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.
Light baryon spectrum using improved interpolating operators
S. Basak, R. G. Edwards, G. T. Fleming, J. Juge, A. Lichtl, C. Morningstar D. G. Richards, I. Sato, S. J. Wallace
2006-06-26
Energies for excited light baryons are computed in quenched QCD with a pion mass of 490 MeV. Operators used in the simulations include local operators and the simplest nonlocal operators that have nontrivial orbital structures. All operators are designed with the use of Clebsch-Gordan coefficients of the octahedral group so that they transform irreducibly under the group rotations. Matrices of correlation functions are computed for each irreducible representation, and then the variational method is applied to separate mass eigenstates. We obtained 17 states for isospin 1/2 and 11 states for isospin 3/2 in various spin-parity channels including J{sup P}=5/2{sup {+-}}. The pattern of the lowest-lying energies from each irrep is discussed. We use anisotropic lattices of volume 24{sup 3} x 64 with temporal lattice spacing a{sub t}{sup -1}=6.05 GeV with renormalized anisotropy xi=3.0.
Quantum Operator Design for Lattice Baryon Spectroscopy
Lichtl, Adam
2007-09-06
A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.
Universal fitting formulae for baryon oscillation surveys
Blake, C; Bassett, B; Glazebrook, K; Kunz, M; Nichol, R C; Blake, Chris; Parkinson, David; Bassett, Bruce; Glazebrook, Karl; Kunz, Martin; Nichol, Robert C.
2006-01-01
The next generation of galaxy surveys will attempt to measure the baryon oscillations in the clustering power spectrum with high accuracy. These oscillations encode a preferred scale which may be used as a standard ruler to constrain cosmological parameters and dark energy models. In this paper we present simple analytical fitting formulae for the accuracy with which the preferred scale may be determined in the tangential and radial directions by future spectroscopic and photometric galaxy redshift surveys. We express these accuracies as a function of survey parameters such as the central redshift, volume, galaxy number density and (where applicable) photometric redshift error. These fitting formulae should greatly increase the efficiency of optimizing future surveys, which requires analysis of a potentially vast number of survey configurations and cosmological models. The formulae are calibrated using a grid of Monte Carlo simulations, which are analyzed by dividing out the overall shape of the power spectru...
Isospin breaking in octet baryon mass splittings
Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). Juelich Supercomputer Centre; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics
2012-06-15
Using an SU(3) flavour symmetry breaking expansion in the quark mass, we determine the QCD component of the nucleon, Sigma and Xi mass splittings of the baryon octet due to up-down (and strange) quark mass differences in terms of the kaon mass splitting. Provided the average quark mass is kept constant, the expansion coefficients in our procedure can be determined from computationally cheaper simulations with mass degenerate sea quarks and partially quenched valence quarks. Both the linear and quadratic terms in the SU(3) flavour symmetry breaking expansion are considered; it is found that the quadratic terms only change the result by a few percent, indicating that the expansion is highly convergent.
Isospin breaking in octet baryon mass splittings
Using an SU(3) flavour symmetry breaking expansion in the quark mass, we determine the QCD component of the nucleon, Sigma and Xi mass splittings of the baryon octet due to up-down (and strange) quark mass differences in terms of the kaon mass splitting. Provided the average quark mass is kept constant, the expansion coefficients in our procedure can be determined from computationally cheaper simulations with mass degenerate sea quarks and partially quenched valence quarks. Both the linear and quadratic terms in the SU(3) flavour symmetry breaking expansion are considered; it is found that the quadratic terms only change the result by a few percent, indicating that the expansion is highly convergent.
Synthesis of baryons from unconfined quarks
The cosmic temperature at which primordial quarks condense into baryons is calculated for a number of cases within a field theory of partially confined quarks that enjoys temporary asymptotic freedom. It is assumed that the mass of a quark in a dense quark anti-quark medium is a monotonic function of the medium, that is, that the so-called Archimedes effect is valid. It is shown that, within such models, unbound quark lifetimes are larger than the age of the universe at the time of the transition and that the Archimedes effect implies that the change of the medium from free to bound quarks is a phase transition. 1 figure, 1 table
Hong, D K; Yee, H U; Hong, Deog Ki; Inami, Takeo; Yee, Ho-Ung
2007-01-01
We construct a holographic model for baryons in the context of AdS/QCD and study the spin-1/2 nucleon spectra and its couplings to mesons, taking fully account of the effects from the chiral symmetry breaking. A pair of 5D spinors is introduced to represent both left and right chiralities. Our model contains two adjustable parameters, the infrared cutoff and the Yukawa coupling of bulk spinors to bulk scalars, corresponding to the order parameter of chiral symmetry. Taking the lowest-lying nucleon mass as an input, we calculate the mass spectrum of excited nucleons and the nucleon couplings to pions. The excited nucleons show a parity-doubling pattern with smaller pion-nucleon couplings.
Observation of excited $\\Lambda^0_b$ baryons
Aaij, R; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A
2012-01-01
Using $pp$ collision data corresponding to 1.0~fb^{-1} integrated luminosity collected by the LHCb detector, two narrow states are observed in the $\\Lambda_b^0\\pi^+\\pi^-$ spectrum with masses $5911.95\\pm 0.12(\\mbox{stat})\\pm 0.03(\\mbox{syst})\\pm 0.66(\\Lambda_b^0\\mbox{ mass})$ MeV/$c^2$ and $5919.76\\pm 0.07(\\mbox{stat})\\pm 0.02(\\mbox{syst})\\pm 0.66(\\Lambda_b^0\\mbox{ mass})$ MeV/$c^2$. The significances of the observations are 4.9 and 10.1 standard deviations, respectively. These states are interpreted as the orbitally-excited $\\Lambda_b^0$ baryons, $\\Lambda_b^{*0}(5912)$ and $\\Lambda_b^{*0}(5920)$.