The Baryon Oscillation Spectroscopic Survey of SDSS-III
Dawson, Kyle S; Ahn, Christopher P; Anderson, Scott F; Aubourg, Eric; Bailey, Stephen; Barkhouser, Robert H; Bautista, Julian E; Beifiori, Alessandra; Berlind, Andreas A; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blake, Cullen H; Blanton, Michael R; Blomqvist, Michael; Bolton, Adam S; Borde, Arnaud; Bovy, Jo; Brandt, W N; Brewington, Howard; Brinkmann, Jon; Brown, Peter J; Brownstein, Joel R; Bundy, Kevin; Busca, N G; Carithers, William; Carnero, Aurelio R; Carr, Michael A; Chen, Yanmei; Comparat, Johan; Connolly, Natalia; Cope, Frances; Croft, Rupert A C; Cuesta, Antonio J; da Costa, Luiz N; Davenport, James R A; Delubac, Timothee; de Putter, Roland; Dhital, Saurav; Ealet, Anne; Ebelke, Garrett L; Eisenstein, Daniel J; Escoffier, S; Fan, Xiaohui; Ak, N Filiz; Finley, Hayley; Font-Ribera, Andreu; Genova-Santos, R; Gunn, James E; Guo, Hong; Haggard, Daryl; Hall, Patrick B; Hamilton, Jean-Christophe; Harris, Ben; Harris, David W; Ho, Shirley; Hogg, David W; Holder, Diana; Honscheid, Klaus; Huehnerhoff, Joe; Jordan, Beatrice; Jordan, Wendell P; Kauffmann, Guinevere; Kazin, Eyal A; Kirkby, David; Klaene, Mark A; Kneib, Jean-Paul; Goff, Jean-Marc Le; Lee, Khee-Gan; Long, Daniel C; Loomis, Craig P; Lundgren, Britt; Lupton, Robert H; Maia, Marcio A G; Makler, Martin; Malanushenko, Elena; Malanushenko, Viktor; Mandelbaum, Rachel; Manera, Marc; Maraston, Claudia; Margala, Daniel; Masters, Karen L; McBride, Cameron K; McDonald, Patrick; McGreer, Ian D; Mena, Olga; Miralda-Escude, Jordi; Montero-Dorta, Antonio D; Montesano, Francesco; Muna, Demitri; Myers, Adam D; Naugle, Tracy; Nichol, Robert C; Noterdaeme, Pasquier; Olmstead, Matthew D; Oravetz, Audrey; Oravetz, Daniel J; Owen, Russell; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K; Paris, Isabelle; Percival, Will J; Perez-Fournon, Ismael; Perez-Rafols, Ignasi; Petitjean, Patrick; Pfaffenberger, Robert; Pforr, Janine; Pieri, Matthew M; Prada, Francisco; Price-Whelan, Adrian M; Raddick, M Jordan; Rebolo, Rafael; Rich, James; Richards, Gordon T; Rockosi, Constance M; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubino-Martin, J A; Samushia, Lado; Sanchez, Ariel G; Sayres, Conor; Schmidt, Sarah J; Schneider, Donald P; Scoccola, C G; Seo, Hee-Jong; Shelden, Alaina; Sheldon, Erin; Shen, Yue; Shu, Yiping; Slosar, Anze; Smee, Stephen A; Snedden, Stephanie A; Stauffer, Fritz; Steele, Oliver; Strauss, Michael A; Suzuki, Nao; Swanson, Molly E C; Tal, Tomer; Tanaka, Masayuki; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Tremonti, Christy A; Magana, M Vargas; Verde, Licia; Viel, Matteo; Wake, David A; Watson, Mike; Weaver, Benjamin A; Weinberg, David H; Weiner, Benjamin J; West, Andrew A; White, Martin; Wood-Vasey, W M; Yeche, Christophe; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng
2012-01-01
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses luminous galaxies to measure BAO to redshifts z<0.7 and observations of neutral hydrogen in the Lyman alpha forest in quasar spectra to constrain BAO over the redshift range 2.15
THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III
Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schlegel, David J.; Bailey, Stephen [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Anderson, Scott F.; Bhardwaj, Vaishali [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Aubourg, Eric; Bautista, Julian E. [APC, University of Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite (France); Barkhouser, Robert H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Beifiori, Alessandra [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Berlind, Andreas A. [Department of Physics and Astronomy, Vanderbilt University, VU Station 1807, Nashville, TN 37235 (United States); Bizyaev, Dmitry; Brewington, Howard [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Blake, Cullen H. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Blomqvist, Michael [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Borde, Arnaud [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Brandt, W. N., E-mail: kdawson@astro.utah.edu [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); and others
2013-01-01
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg{sup 2} to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Ly{alpha} forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Ly{alpha} forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance d{sub A} to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Ly{alpha} forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D{sub A} (z) and H {sup -1}(z) parameters to an accuracy of 1.9% at z {approx} 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
The extended Baryon Oscillation Spectroscopic Survey: a cosmological forecast
Zhao, Gong-Bo; Wang, Yuting; Ross, Ashley J.; Shandera, Sarah; Percival, Will J.; Dawson, Kyle S.; Kneib, Jean-Paul; Myers, Adam D.; Brownstein, Joel R.; Comparat, Johan; Delubac, Timothée; Gao, Pengyuan; Hojjati, Alireza; Koyama, Kazuya; McBride, Cameron K.; Meza, Andrés; Newman, Jeffrey A.; Palanque-Delabrouille, Nathalie; Pogosian, Levon; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tao, Charling; Wang, Dandan; Yèche, Christophe; Zhang, Hanyu; Zhang, Yuecheng; Zhou, Xu; Zhu, Fangzhou; Zou, Hu
2016-04-01
We present a science forecast for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) survey. Focusing on discrete tracers, we forecast the expected accuracy of the baryonic acoustic oscillation (BAO), the redshift-space distortion (RSD) measurements, the fNL parameter quantifying the primordial non-Gaussianity, the dark energy and modified gravity parameters. We also use the line-of-sight clustering in the Lyman α forest to constrain the total neutrino mass. We find that eBOSS luminous red galaxies, emission line galaxies and clustering quasars can achieve a precision of 1, 2.2 and 1.6 per cent, respectively, for spherically averaged BAO distance measurements. Using the same samples, the constraint on fσ8 is expected to be 2.5, 3.3 and 2.8 per cent, respectively. For primordial non-Gaussianity, eBOSS alone can reach an accuracy of σ(fNL) ˜ 10-15. eBOSS can at most improve the dark energy figure of merit by a factor of 3 for the Chevallier-Polarski-Linder parametrization, and can well constrain three eigenmodes for the general equation-of-state parameter. eBOSS can also significantly improve constraints on modified gravity parameters by providing the RSD information, which is highly complementary to constraints obtained from weak lensing measurements. A principal component analysis shows that eBOSS can measure the eigenmodes of the effective Newton's constant to 2 per cent precision; this is a factor of 10 improvement over that achievable without eBOSS. Finally, we derive the eBOSS constraint (combined with Planck, Dark Energy Survey and BOSS) on the total neutrino mass, σ(Σmν) = 0.03 eV (68 per cent CL), which in principle makes it possible to distinguish between the two scenarios of neutrino mass hierarchies.
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey:Overview and Early Data
Dawson, Kyle S.; Kneib, Jean-Paul,; Percival, Will J.; Alam, Shadab; Albareti, Franco D.; Anderson, Scott F.; Armengaud, Eric; Aubourg, Eric; Bailey, Stephen; Bautista, Julian. E.; Andreas A. Berlind(Department of Physics and Astronomy, Vanderbilt University, VU Station 1807, Nashville, TN 37235, USA); Bershady, Matthew A.; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R.
2016-01-01
The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. Observations will be simultaneous with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. eBOSS will use four different tracers to measure the distance-redshift relation with baryon acoustic osci...
Ross, Ashley J.; Beutler, Florian; Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Seo, Hee-Jong; Vargas-Magana, Mariana; Cuesta, Antonio J.; Percival, Will J.; Burden, Angela; Sanchez, Ariel G.; Grieb, Jan Niklas; Reid, Beth; Brownstein, Joel R.; Dawson, Kyle S.; Eisenstein, Daniel J.
2016-01-01
We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 square degrees, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational ...
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Quasar Target Selection
Myers, Adam D.; Palanque-Delabrouille, Nathalie; Prakash, Abhishek; Pâris, Isabelle; Yeche, Christophe,; Dawson, Kyle S.; Bovy, Jo; Lang, Dustin; Schlegel, David J.; Newman, Jeffrey A.; Petitjean, Patrick; Kneib, Jean Paul; Laurent, Pierre; Percival, Will J.; Ross, Ashley J.
2015-01-01
As part of the Sloan Digital Sky Survey IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 sq. deg. First, a "CORE" quasar sample will combine optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color-cut. eBOSS CORE selection (to g < 22 OR r...
Ross, Ashley J; Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Seo, Hee-Jong; Vargas-Magana, Mariana; Cuesta, Antonio J; Percival, Will J; Burden, Angela; Sanchez, Ariel G; Grieb, Jan Niklas; Reid, Beth; Brownstein, Joel R; Dawson, Kyle S; Eisenstein, Daniel J; Ho, Shirley; Kitaura, Francisco-Shu; Nichol, Robert C; Olmstead, Matthew D; Prada, Francisco; Rodriguez-Torres, Sergio A; Saito, Shun; Salazar-Albornoz, Salvador; Schneider, Donald P; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Wang, Yuting; White, Martin; Zhao, Gong-bo
2016-01-01
We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 square degrees, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on baryon acoustic oscillation (BAO) scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overla...
Anderson, Lauren; de Putter, Roland; Mena Requejo, Olga
2012-01-01
We present measurements of galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains 264 283 massive galaxies covering 3275 square degrees with an effective redshift z = 0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance Lambda CDM cosmological model, this sample covers an effective volume of 2.2 Gpc(3), and represents the largest sample of...
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data
Dawson, Kyle S; Percival, Will J; Alam, Shadab; Albareti, Franco D; Anderson, Scott F; Armengaud, Eric; Aubourg, Eric; Bailey, Stephen; Bautista, Julian E; Berlind, Andreas A; Bershady, Matthew A; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brandt, W N; Brinkmann, Jon; Brownstein, Joel R; Burtin, Etienne; Busca, N G; Cai, Zheng; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Cope, Frances; Croft, Rupert A C; Cruz-Gonzalez, Irene; da Costa, Luiz N; Cousinou, Marie-Claude; Darling, Jeremy; de la Torre, Sylvain; Delubac, Timothee; Bourboux, Helion du Mas des; Dwelly, Tom; Ealet, Anne; Eisenstein, Daniel J; Eracleous, Michael; Escoffier, S; Fan, Xiaohui; Finoguenov, Alexis; Font-Ribera, Andreu; Frinchaboy, Peter; Gaulme, Patrick; Georgakakis, Antonis; Green, Paul; Guo, Hong; Guy, Julien; Ho, Shirley; Holder, Diana; Huehnerhoff, Joe; Hutchinson, Timothy; Jing, Yipeng; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark A; Laher, Russ R; Lang, Dustin; Laurent, Pierre; Goff, Jean-Marc Le; Li, Cheng; Liang, Yu; Lima, Marcos; Lin, Qiufan; Lin, Weipeng; Lin, Yen-Ting; Long, Daniel C; Lundgren, Britt; MacDonald, Nicholas; Maia, Marcio Antonio Geimba; Malanushenko, Elena; Malanushenko, Viktor; Mariappan, Vivek; McBride, Cameron K; McGreer, Ian D; Menard, Brice; Merloni, Andrea; Meza, Andres; Montero-Dorta, Antonio D; Muna, Demitri; Myers, Adam D; Nandra, Kirpal; Naugle, Tracy; Newman, Jeffrey A; Noterdaeme, Pasquier; Nugent, Peter; Ogando, Ricardo; Olmstead, Matthew D; Oravetz, Audrey; Oravetz, Daniel J; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K; Paris, Isabelle; Peacock, John A; Petitjean, Patrick; Pieri, Matthew M; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Raichoor, Anand; Reid, Beth; Rich, James; Ridl, Jethro; Rodriguez-Torres, Sergio; Rosell, Aurelio Carnero; Ross, Ashley J; Rossi, Graziano; Ruan, John; Salvato, Mara; Sayres, Conor; Schneider, Donald P; Schlegel, David J; Seljak, Uros; Seo, Hee-Jong; Sesar, Branimir; Shandera, Sarah; Shu, Yiping; Slosar, Anze; Sobreira, Flavia; Strauss, Michael A; Streblyanska, Alina; Suzuki, Nao; Tao, Charling; Tinker, Jeremy L; Tojeiro, Rita; Vargas-Magana, Mariana; Wang, Yuting; Weaver, Benjamin A; Weinberg, David H; White, Martin; Wood-Vasey, W M; Yeche, Christophe; Zhai, Zhongxu; Zhao, Cheng; Zhao, Gong-bo; Zheng, Zheng; Zhu, Guangtun Ben; Zou, Hu
2015-01-01
The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. Observations will be simultaneous with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. eBOSS will use four different tracers to measure the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z=0.72, we project that eBOSS will yield measurements of $d_A(z)$ to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z>0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of $d_A(z)$ to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z= 0.87. A sample of more than 500,000 spectroscop...
Baryon acoustic oscillations with the cross-correlation of spectroscopic and photometric samples
Nishizawa, Atsushi J; Takada, Masahiro
2013-01-01
The baryon acoustic oscillation (BAO) experiment requires a sufficiently dense sampling of large-scale structure tracers with spectroscopic redshift, which is observationally expensive especially at high redshifts $z\\simgt 1$. Here we present an alternative route of the BAO analysis that uses the cross-correlation of sparse spectroscopic tracers with a much denser photometric sample, where the spectroscopic tracers can be quasars or bright, rare galaxies that are easier to access spectroscopically. We show that measurements of the cross-correlation as a function of the transverse comoving separation rather than the angular separation avoid a smearing of the BAO feature without mixing the different scales at different redshifts in the projection, even for a wide redshift slice $\\Delta z\\simeq 1$. The bias, scatter, and catastrophic redshift errors of the photometric sample affect only the overall normalization of the cross-correlation which can be marginalized over when constraining the angular diameter distan...
Leauthaud, Alexie; Bundy, Kevin; Saito, Shun; Tinker, Jeremy; Maraston, Claudia; Tojeiro, Rita; Huang, Song; Brownstein, Joel R.; Schneider, Donald P.; Thomas, Daniel
2016-04-01
The Baryon Oscillation Spectroscopic Survey (BOSS) has collected spectra for over one million galaxies at 0.15 11.6 only in the narrow redshift range z = [0.51, 0.61]. The low-redshift LOWZ sample is 80 per cent complete at log 10(M*/M⊙) > 11.6 for z = [0.15, 0.43]. To construct mass complete samples at lower masses, spectroscopic samples need to be significantly supplemented by photometric redshifts. This work will enable future studies to better utilize the BOSS samples for galaxy-formation science.
The SDSS-IV extended Baryonic Oscillation Spectroscopic Survey: Quasar Target Selection
Myers, Adam D; Prakash, Abhishek; Pâris, Isabelle; Yeche, Christophe; Dawson, Kyle S; Bovy, Jo; Lang, Dustin; Schlegel, David J; Newman, Jeffrey A; Petitjean, Patrick; Kneib, Jean Paul; Laurent, Pierre; Percival, Will J; Ross, Ashley J; Seo, Hee-Jong; Tinker, Jeremy L; Armengaud, Eric; Brownstein, Joel; Burtin, Etienne; Cai, Zheng; Comparat, Johan; Kasliwal, Mansi; Kulkarni, Shrinivas R; Laher, Russ; Levitan, David; McBride, Cameron K; McGreer, Ian D; Miller, Adam A; Nugent, Peter; Ofek, Eran; Rossi, Graziano; Ruan, John; Schneider, Donald P; Sesar, Branimir; Streblyanska, Alina; Surace, Jason
2015-01-01
As part of the SDSS-IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will perform measurements of the cosmological distance scale via application of the Baryon Acoustic Oscillation (BAO) method to samples of quasars and galaxies. Quasar surveys are particularly useful in the BAO context as they can trace extremely large volumes back to moderately high redshift. eBOSS will adopt two approaches to target quasars over a 7500 sq. deg. area. First, z > 2.1 quasars will be targeted to improve BAO measurements in the Lyman-Alpha Forest. Second, a homogeneously selected "CORE" sample of quasars at 0.9 2.1 quasars. A supplemental selection based on variability of quasars in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 per sq. deg. z > 2.1 quasars to g 500,000 new spectroscopically confirmed quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of SDSS-IV, the SDSS will have provided unique spectra...
Magaña, Mariana Vargas; Xu, Xiaoying; Sánchez, Ariel G; O'Connell, Ross; Eisenstein, Daniel J; Cuesta, Antonio J; Percival, Will J; Ross, Ashley J; Aubourg, Eric; Kirkby, Stéphanie Escoffier David; Manera, Marc; Schneider, Donald P; Tinker, Jeremy L; Weaver, Benjamin A
2013-01-01
Extraction of the Baryon Acoustic Oscillations (BAO) to percent level accuracy is challenging and demands an understanding of many potential systematic to an accuracy well below 1 per cent, in order ensure that they do not combine significantly when compared to statistical error of the BAO measurement. Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) SDSS Data Release Eleven (DR11) reaches a distance measurement with $\\sim 1\\%$ statistical error and this prompts an extensive search for all possible sub-percent level systematic errors which could be safely ignored previously. In this paper, we analyze the potential systematics in BAO fitting methodology using mocks and data from BOSS DR10 and DR11. We demonstrate the robustness of the fiducial multipole fitting methodology to be at $0.1\\%-0.2\\%$ level with a wide range of tests in mock galaxy catalogs pre- and post-reconstruction. We also find the DR10 and DR11 data from BOSS to be robust against changes in methodology at simi...
The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Quasar Target Selection
Myers, Adam D.; Palanque-Delabrouille, Nathalie; Prakash, Abhishek; Pâris, Isabelle; Yeche, Christophe; Dawson, Kyle S.; Bovy, Jo; Lang, Dustin; Schlegel, David J.; Newman, Jeffrey A.; Petitjean, Patrick; Kneib, Jean-Paul; Laurent, Pierre; Percival, Will J.; Ross, Ashley J.; Seo, Hee-Jong; Tinker, Jeremy L.; Armengaud, Eric; Brownstein, Joel; Burtin, Etienne; Cai, Zheng; Comparat, Johan; Kasliwal, Mansi; Kulkarni, Shrinivas R.; Laher, Russ; Levitan, David; McBride, Cameron K.; McGreer, Ian D.; Miller, Adam A.; Nugent, Peter; Ofek, Eran; Rossi, Graziano; Ruan, John; Schneider, Donald P.; Sesar, Branimir; Streblyanska, Alina; Surace, Jason
2015-12-01
As part of the Sloan Digital Sky Survey (SDSS) IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 deg2. First, a “CORE” quasar sample will combine the optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color cut. eBOSS CORE selection (to g 2.1 quasars. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ˜3-4 deg-2z > 2.1 quasars to g sample should thus be sufficiently dense and homogeneous over 0.9 2.1 will be used to improve BAO measurements in the Lyα Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising >500,000 new quasars and >500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra for more than 800,000 quasars.
Anderson, Lauren; Bailey, Stephen; Beutler, Florian; Bhardwaj, Vaishali; Blanton, Michael; Bolton, Adam S; Brinkmann, J; Brownstein, Joel R; Burden, Angela; Chuang, Chia-Hsun; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Escoffier, Stephanie; Gunn, James E; Guo, Hong; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Lupton, Robert H; Manera, Marc; Maraston, Claudia; McBride, Cameron K; Mena, Olga; Montesano, Francesco; Nichol, Robert C; Nuza, Sebastian E; Olmstead, Matthew D; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Parejko, John; Percival, Will J; Petitjean, Patrick; Prada, Francisco; Price-Whelan, Adrian M; Reid, Beth; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Sabiu, Cristiano G; Saito, Shun; Samushia, Lado; Sanchez, Ariel G; Schlegel, David J; Schneider, Donald P; Scoccola, Claudia G; Seo, Hee-Jong; Skibba, Ramin A; Strauss, Michael A; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Magana, Mariana Vargas; Verde, Licia; Wake, David A; Weaver, Benjamin A; Weinberg, David H; White, Martin; Xu, Xiaoying; Yeche, Christophe; Zehavi, Idit; Zhao, Gong-Bo
2013-01-01
We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range $0.2
The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey
Smee, Stephen; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M; Carr, Michael A; Leger, French; Dawson, Kyle S; Olmstead, Matthew D; Brinkmann, Jon; Owen, Russell; Barkhouser, Robert H; Honscheid, Klaus; Harding, Paul; Long, Dan; Lupton, Robert H; Loomis, Craig; Anderson, Lauren; Annis, James; Bernardi, Mariangela; Bhardwaj, Vaishali; Bizyaev, Dmitry; Bolton, Adam S; Brewington, Howard; Briggs, John W; Burles, Scott; Burns, James G; Castander, Francisco; Connolly, Andrew; Davenport, James R; Ebelke, Garrett; Epps, Harland; Feldman, Paul D; Friedman, Scott; Frieman, Joshua; Heckman, Timothy; Hull, Charles L; Knapp, Gillian R; Lawrence, David M; Loveday, Jon; Mannery, Edward J; Malanushenko, Elena; Malanushenko, Viktor; Merrelli, Aronne; Muna, Demitri; Newman, Peter; Nichol, Robert C; Oravetz, Daniel; Pan, Kaike; Pope, Adrian C; Ricketts, Paul G; Shelden, Alaina; Sandford, Dale; Siegmund, Walter; Simmons, Audrey; Smith, D; Snedden, Stephanie; Schneider, Donald P; Strauss, Michael; SubbaRao, Mark; Tremonti, Christy; Waddell, Patrick; York, Donald G
2012-01-01
We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-$\\alpha$ absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber sp...
The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data
Dawson, Kyle S.; Kneib, Jean-Paul; Percival, Will J.; Alam, Shadab; Albareti, Franco D.; Anderson, Scott F.; Armengaud, Eric; Aubourg, Éric; Bailey, Stephen; Bautista, Julian E.; Berlind, Andreas A.; Bershady, Matthew A.; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R.; Blomqvist, Michael; Bolton, Adam S.; Bovy, Jo; Brandt, W. N.; Brinkmann, Jon; Brownstein, Joel R.; Burtin, Etienne; Busca, N. G.; Cai, Zheng; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Cope, Frances; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; da Costa, Luiz N.; Cousinou, Marie-Claude; Darling, Jeremy; de la Macorra, Axel; de la Torre, Sylvain; Delubac, Timothée; du Mas des Bourboux, Hélion; Dwelly, Tom; Ealet, Anne; Eisenstein, Daniel J.; Eracleous, Michael; Escoffier, S.; Fan, Xiaohui; Finoguenov, Alexis; Font-Ribera, Andreu; Frinchaboy, Peter; Gaulme, Patrick; Georgakakis, Antonis; Green, Paul; Guo, Hong; Guy, Julien; Ho, Shirley; Holder, Diana; Huehnerhoff, Joe; Hutchinson, Timothy; Jing, Yipeng; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark A.; Laher, Russ R.; Lang, Dustin; Laurent, Pierre; Le Goff, Jean-Marc; Li, Cheng; Liang, Yu; Lima, Marcos; Lin, Qiufan; Lin, Weipeng; Lin, Yen-Ting; Long, Daniel C.; Lundgren, Britt; MacDonald, Nicholas; Geimba Maia, Marcio Antonio; Malanushenko, Elena; Malanushenko, Viktor; Mariappan, Vivek; McBride, Cameron K.; McGreer, Ian D.; Ménard, Brice; Merloni, Andrea; Meza, Andres; Montero-Dorta, Antonio D.; Muna, Demitri; Myers, Adam D.; Nandra, Kirpal; Naugle, Tracy; Newman, Jeffrey A.; Noterdaeme, Pasquier; Nugent, Peter; Ogando, Ricardo; Olmstead, Matthew D.; Oravetz, Audrey; Oravetz, Daniel J.; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Pâris, Isabelle; Peacock, John A.; Petitjean, Patrick; Pieri, Matthew M.; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Raichoor, Anand; Reid, Beth; Rich, James; Ridl, Jethro; Rodriguez-Torres, Sergio; Carnero Rosell, Aurelio; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Salvato, Mara; Sayres, Conor; Schneider, Donald P.; Schlegel, David J.; Seljak, Uros; Seo, Hee-Jong; Sesar, Branimir; Shandera, Sarah; Shu, Yiping; Slosar, Anže; Sobreira, Flavia; Streblyanska, Alina; Suzuki, Nao; Taylor, Donna; Tao, Charling; Tinker, Jeremy L.; Tojeiro, Rita; Vargas-Magaña, Mariana; Wang, Yuting; Weaver, Benjamin A.; Weinberg, David H.; White, Martin; Wood-Vasey, W. M.; Yeche, Christophe; Zhai, Zhongxu; Zhao, Cheng; Zhao, Gong-bo; Zheng, Zheng; Ben Zhu, Guangtun; Zou, Hu
2016-02-01
In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 yield measurements of the angular diameter distance dA(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of dA(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 2.1 these new data will enhance the precision of dA(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.
Sadeh, Iftach; Feng, Low Lerh; Lahav, Ofer
2014-01-01
The gravitational redshift effect allows one to directly probe the gravitational potential in clusters of galaxies. Following up on Wojtak et al. [Nature (London) 477, 567 (2011)], we present a new measurement. We take advantage of new data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. We compare the spectroscopic redshift of the brightest cluster galaxies (BCGs) with that of galaxies at the outskirts of clusters, using a sample w...
THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE
The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg2, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations (BAOs) in the distribution of Lyα absorption from the spectra of a sample of ∼150,000 z > 2.2 quasars. Along with measuring the angular diameter distance at z ≈ 2.5, BOSS will provide the first direct measurement of the expansion rate of the universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars in the redshift range 2.2 –2 in this redshift range, with a goal of 20 out of 40 targets deg–2 allocated to the quasar survey. To achieve these surface densities, the magnitude limit of the quasar targets was set at g ≤ 22.0 or r ≤ 21.85. While detection of the BAO signature in the distribution of Lyα absorption in quasar spectra does not require a uniform target selection algorithm, many other astrophysical studies do. We have therefore defined a uniformly selected subsample of 20 targets deg–2, for which the selection efficiency is just over 50% (∼10 z > 2.20 quasars deg–2). This 'CORE' subsample will be fixed for Years Two through Five of the survey. For the remaining 20 targets deg–2, we will continue to develop improved selection techniques, including the use of additional data sets beyond the Sloan Digital Sky Survey (SDSS) imaging data. In this paper, we describe the evolution and implementation of the BOSS QTS algorithms during the first two years of BOSS operations (through 2011 July), in support of the science investigations based on these data, and we analyze the spectra obtained during the first year. During this year, 11,263 new z > 2.20 quasars were spectroscopically confirmed by BOSS, roughly double the number of previously known quasars with z > 2.20. Our current algorithms select an average of 15 z > 2.20 quasars deg–2 from 40
We present a new measurement of the optical quasar luminosity function (QLF), using data from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III: BOSS). From the SDSS-III Data Release Nine, a uniform sample of 22,301 i ∼2, with confirmed spectroscopic redshifts between 2.2 i (z = 2.2) ≈ –24.5 and see a clear break in the QLF at all redshifts up to z = 3.5. A log-linear relation (in log Φ* – M*) for a luminosity evolution and density evolution model is found to adequately describe our data within the range 2.2 < z < 3.5; across this interval the break luminosity increases by a factor of ∼2.6 while Φ* declines by a factor of ∼8. At z ∼< 2.2 our data are reasonably well fit by a pure luminosity evolution model, and only a weak signature of ''AGN downsizing'' is seen, in line with recent studies of the hard X-ray luminosity function. We compare our measured QLF to a number of theoretical models and find that models making a variety of assumptions about quasar triggering and halo occupation can fit our data over a wide range of redshifts and luminosities
The SDSS-IV extended Baryonic Oscillation Spectroscopic Survey: Luminous Red Galaxy Target Selection
Prakash, Abhishek; Newman, Jeffrey A; Ross, Ashley J; Myers, Adam D; Dawson, Kyle S; Kneib, Jean-Paul; Percival, Will J; Bautista, Julian E; Comparat, Johan; Tinker, Jeremy L; Schlegel, David J; Tojeiro, Rita; Ho, Shirley; Lang, Dustin; Rao, Sandhya M; McBride, Cameron K; Zhu, Guangtun Ben; Brownstein, Joel R; Bailey, Stephen; Bolton, Adam S; Delubac, Timothee; Mariappan, Vivek; Blanton, Michael R; Reid, Beth; Schneider, Donald P; Seo, Hee-Jong; Rosell, Aurelio Carnero; Prada, Francisco
2015-01-01
We describe the algorithm used to select the Luminous Red Galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-Field Infrared Survey Explorer (WISE). LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least 89% of the target sample yield...
The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Luminous Red Galaxy Target Selection
Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; Ross, Ashley J.; Myers, Adam D.; Dawson, Kyle S.; Kneib, Jean-Paul; Percival, Will J.; Bautista, Julian E.; Comparat, Johan; Tinker, Jeremy L.; Schlegel, David J.; Tojeiro, Rita; Ho, Shirley; Lang, Dustin; Rao, Sandhya M.; McBride, Cameron K.; Ben Zhu, Guangtun; Brownstein, Joel R.; Bailey, Stephen; Bolton, Adam S.; Delubac, Timothée; Mariappan, Vivek; Blanton, Michael R.; Reid, Beth; Schneider, Donald P.; Seo, Hee-Jong; Carnero Rosell, Aurelio; Prada, Francisco
2016-06-01
We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer. LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.
Zhao, G. -B.; Saito, S.; Percival, W J; Ross, A. J.; Montesano, F.; M. Viel(INAF-Osservatorio Astronomico di Trieste, Italy); Schneider, D. P.; Manera, M; Miralda-Escude, J.; Palanque-Delabrouille, N.; Ross, N. P.; Samushia, L.; Sanchez, A. G.; Swanson, M. E. C.; D. Thomas
2013-01-01
We measure the sum of the neutrino particle masses using the three-dimensional galaxy power spectrum of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) CMASS galaxy sample. Combined with the cosmic microwave background (CMB), supernova (SN) and additional baryonic acoustic oscillation (BAO) data, we find upper 95 percent confidence limits of the neutrino mass $\\Sigma m_{\
Beutler, Florian; Ross, Ashley J; McDonald, Patrick; Saito, Shun; Bolton, Adam S; Brownstein, Joel R; Chuang, Chia-Hsun; Cuesta, Antonio J; Eisenstein, Daniel J; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C; Percival, Will J; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A; Ross, Nicholas P; Salazar-Albornoz, Salvador; Sánchez, Ariel G; Schneider, Donald P; Slosar, Anže; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A
2016-01-01
We analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes $1\\,198\\,006$ galaxies over the redshift range $0.2 < z < 0.75$. We divide this dataset into three (overlapping) redshift bins with the effective redshifts $\\zeff = 0.38$, $0.51$ and $0.61$. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as $\\sim 1000$ MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ separately. We obtain two independent $1.6\\%$ and $1.5\\%$ constraints on $D_A(z)$ and $2.9\\%$ and $2.3\\%$ constraints...
Beutler, Florian; Saito, Shun; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Percival, Will J.; Ross, Ashley J.; Ross, Nicholas P.; Schneider, Donald P.; Samushia, Lado; Sanchez, Ariel G.; Seo, Hee-Jong; Tinker, Jeremy L.; Wagner, Christian; Weaver, Benjamin A.
2014-01-01
We investigate the cosmological implications of the latest growth of structure measurement from the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 with particular focus on the sum of the neutrino masses, $\\sum m_{\
Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; Percival, Will J.; Tinker, Jeremy; Tojeiro, Rita; White, Martin; Eisenstein, Daniel J.; Maraston, Claudia; Ross, Ashley J.; Sanchez, Ariel G.; Schlegel, David; Sheldon, Erin; Strauss, Michael A.; Thomas, Daniel
2016-01-01
The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target cat...
Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey
Zhi-fu, Chen; Luwenjia, Zhou; Yanmei, Chen
2016-01-01
In this paper, we extend our works of Papers I and II, which are assigned to systematically survey \\CIVab\\ narrow absorption lines (NALs) with \\zabs$\\ll$\\zem\\ on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS), to collect \\CIV\\ NALs with \\zabs$\\approx$\\zem\\ from blue to red wings of \\CIVwave\\ emission lines. Together with Papers I and II, we have collected a total number of 41,479 \\CIV\\ NALs with $1.4544\\le$\\zabs$\\le4.9224$ in surveyed spectral region redward of \\lya\\ until red wing of \\CIVwave\\ emission line. We find that the stronger \\CIV\\ NALs tend to be the more saturated absorptions, and associated systems (\\zabs$\\approx$\\zem) seem to have larger absorption strengths when compared to intervening ones (\\zabs$\\ll$\\zem). The redshift density evolution behavior of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity ($\\beta$) distribution of \\MgII\\ absorbers, the $\\beta$ distribution of \\C...
The extended Baryon Oscillation Spectroscopic Survey (eBOSS): a cosmological forecast
Zhao, Gong-Bo; Ross, Ashley J; Shandera, Sarah; Percival, Will J; Dawson, Kyle S; Kneib, Jean-Paul; Myers, Adam D; Brownstein, Joel R; Comparat, Johan; Delubac, Timothée; Gao, Pengyuan; Hojjati, Alireza; Koyama, Kazuya; McBride, Cameron K; Meza, Andrés; Newman, Jeffrey A; Palanque-Delabrouille, Nathalie; Pogosian, Levon; Prada, Francisco; Rossi, Graziano; Schneider, Donald P; Seo, Hee-Jong; Tao, Charling; Wang, Dandan; Yèche, Christophe; Zhang, Hanyu; Zhang, Yuecheng; Zhou, Xu; Zhu, Fangzhou; Zou, Hu
2015-01-01
We present a science forecast for the eBOSS survey, part of the SDSS-IV project, which is a spectroscopic survey using multiple tracers of large-scale structure, including luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars (both as a direct probe of structure and through the Ly-$\\alpha$ forest). Focusing on discrete tracers, we forecast the expected accuracy of the baryonic acoustic oscillation (BAO), the redshift-space distortion (RSD) measurements, the $f_{\\rm NL}$ parameter quantifying the primordial non-Gaussianity, the dark energy and modified gravity parameters. We also use the line-of-sight clustering in the Ly-$\\alpha$ forest to constrain the total neutrino mass. We find that eBOSS LRGs ($0.60.6$), ELGs ($0.6
Palanque-Delabrouille, N.; Magneville, Ch.; Yèche, Ch.; Pâris, I.; Petitjean, P.; Burtin, E.; Dawson, K.; McGreer, I.; Myers, A. D.; Rossi, G.; Schlegel, D.; Schneider, D.; Streblyanska, A.; Tinker, J.
2016-03-01
The extended Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey (SDSS-IV/eBOSS) has an extensive quasar program that combines several selection methods. Among these, the photometric variability technique provides highly uniform samples, which are unaffected by the redshift bias of traditional optical-color selections, when z = 2.7-3.5 quasars cross the stellar locus or when host galaxy light affects quasar colors at z 2.2. Both models are constrained to be continuous at z = 2.2. They present a flattening of the bright-end slope at high redshift. The LEDE model indicates a reduction of the break density with increasing redshift, but the evolution of the break magnitude depends on the parameterization. The models are in excellent accord, predicting quasar counts that agree within 0.3% (resp., 1.1%) to g< 22.5 (resp., g< 23). The models are also in good agreement over the entire redshift range with models from previous studies.
Ross, Nicholas P.; White, Martin; Bailey, Stephen [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 92420 (United States); McGreer, Ian D. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Palanque-Delabrouille, Nathalie; Yeche, Christophe [CEA, Centre de Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Shen, Yue; Swanson, Molly E. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Aubourg, Eric [APC, University of Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite (France); Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); DeGraf, Colin; Di Matteo, Tiziana, E-mail: npross@lbl.gov [McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); and others
2013-08-10
We present a new measurement of the optical quasar luminosity function (QLF), using data from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III: BOSS). From the SDSS-III Data Release Nine, a uniform sample of 22,301 i {approx}< 21.8 quasars are selected over an area of 2236 deg{sup 2}, with confirmed spectroscopic redshifts between 2.2 < z < 3.5, filling in a key part of the luminosity-redshift plane for optical quasar studies. The completeness of the survey is derived through simulated quasar photometry, and this completeness estimate is checked using a sample of quasars selected by their photometric variability within the BOSS footprint. We investigate the level of systematics associated with our quasar sample using the simulations, in the process generating color-redshift relations and a new quasar K-correction. We probe the faint end of the QLF to M{sub i} (z = 2.2) Almost-Equal-To -24.5 and see a clear break in the QLF at all redshifts up to z = 3.5. A log-linear relation (in log {Phi}* - M*) for a luminosity evolution and density evolution model is found to adequately describe our data within the range 2.2 < z < 3.5; across this interval the break luminosity increases by a factor of {approx}2.6 while {Phi}* declines by a factor of {approx}8. At z {approx}< 2.2 our data are reasonably well fit by a pure luminosity evolution model, and only a weak signature of ''AGN downsizing'' is seen, in line with recent studies of the hard X-ray luminosity function. We compare our measured QLF to a number of theoretical models and find that models making a variety of assumptions about quasar triggering and halo occupation can fit our data over a wide range of redshifts and luminosities.
Anderson, Lauren; Mena Requejo, Olga
2013-01-01
We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43
THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE
Ross, Nicholas P.; Kirkpatrick, Jessica A.; Carithers, William C.; Ho, Shirley [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Myers, Adam D. [Department of Astronomy, MC-221, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Sheldon, Erin S. [Brookhaven National Laboratory, Blgd 510, Upton, NY 11375 (United States); Yeche, Christophe; Aubourg, Eric [CEA, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette (France); Strauss, Michael A.; Lee, Khee-Gan [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Bovy, Jo; Blanton, Michael R.; Hogg, David W. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Croft, Rupert A. C. [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Da Silva, Robert [Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Dawson, Kyle [Department of Physics and Astronomy, University of Utah, UT (United States); Eisenstein, Daniel J. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hennawi, Joseph F., E-mail: npross@lbl.gov [Max-Planck-Institut fuer Astronomie, Konigstuhl 17, 69117 Heidelberg (Germany); and others
2012-03-01
The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg{sup 2}, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations (BAOs) in the distribution of Ly{alpha} absorption from the spectra of a sample of {approx}150,000 z > 2.2 quasars. Along with measuring the angular diameter distance at z Almost-Equal-To 2.5, BOSS will provide the first direct measurement of the expansion rate of the universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars in the redshift range 2.2 < z < 3.5, where their colors tend to overlap those of the far more numerous stars. During the first year of the BOSS survey, quasar target selection (QTS) methods were developed and tested to meet the requirement of delivering at least 15 quasars deg{sup -2} in this redshift range, with a goal of 20 out of 40 targets deg{sup -2} allocated to the quasar survey. To achieve these surface densities, the magnitude limit of the quasar targets was set at g {<=} 22.0 or r {<=} 21.85. While detection of the BAO signature in the distribution of Ly{alpha} absorption in quasar spectra does not require a uniform target selection algorithm, many other astrophysical studies do. We have therefore defined a uniformly selected subsample of 20 targets deg{sup -2}, for which the selection efficiency is just over 50% ({approx}10 z > 2.20 quasars deg{sup -2}). This 'CORE' subsample will be fixed for Years Two through Five of the survey. For the remaining 20 targets deg{sup -2}, we will continue to develop improved selection techniques, including the use of additional data sets beyond the Sloan Digital Sky Survey (SDSS) imaging data. In this paper, we describe the evolution and implementation of the BOSS QTS algorithms during the first two years of BOSS operations (through 2011 July), in support of the science investigations
Sanchez, Ariel G; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J; Brownstein, Joel R; Chuang, Chia-Hsun; Cuesta, Antonio J; Eisenstein, Daniel J; Kitaura, Francisco-Shu; Percival, Will J; Prada, Francisco; Rodriguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Vazquez, Jose A; Zhao, Gong-Bo
2016-01-01
The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. We present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations (BAO) and redshift-space distortions (RSD), based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements a...
Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II λ2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line Hα, Hβ, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad Hα/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions with levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (≅ 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions.
Raichoor, A; Delubac, T; Kneib, J -P; Yèche, C; Zou, H; Abdalla, F B; Dawson, K; Fan, X; Fan, Z; Jiang, Z; Jing, Y; Jouvel, S; Lang, D; Lesser, M; Li, C; Ma, J; Newman, J A; Nie, J; Olszewski, E; Palanque-Delabrouille, N; Percival, W; Prada, F; Shen, S; Wang, J; Wu, Z; Zhang, T; Zhou, X; Zhou, Z
2015-01-01
We present a new selection technique to produce spectroscopic target catalogues for massive spectroscopic surveys for cosmology. This work was conducted in the context of the extended Baryon Oscillation Spectroscopic Survey (eBOSS), which will use 200,000 emission line galaxies (ELGs) at 0.6
Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey
Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei
2015-12-01
Using the Data Release 9 Quasar spectra from the Baryonic Oscillation Spectroscopic Survey, which does not include quasar spectra from the Sloan Digital Sky Survey Data Release 7, we detect narrow Mg ii λλ2796, 2803 absorption doublets in the spectral data redward of 1250 Å (quasar rest frame) until the red wing of the Mg ii λ2800 emission line. Our survey is limited to quasar spectra with a median signal-to-noise ratio ≥slant 4 pixel-1 in the surveyed spectral region, resulting in a sample that contains 43,260 quasars. We have detected a total of 18,598 Mg ii absorption doublets with 0.2933 ≤ zabs ≤ 2.6529. About 75% of absorbers have an equivalent width at rest frame of {W}rλ 2796≥slant 1 \\mathringA . About 75% of absorbers have doublet ratios ({DR}={W}rλ 2796/{W}rλ 2803) in the range of 1 ≤ DR ≤ 2, and about 3.2% lie outside the range of 1 - σDR ≤ DR ≤ 2 + σDR. We characterize the detection false positives/negatives by the frequency of detected Mg ii absorption doublets in the limits of the S/N of the spectral data. The S/N = 4.5 limit is assigned a completeness fraction of 53% and tends to be complete when the S/N is greater than 4.5. The redshift number densities of all of the detected Mg ii absorbers moderately increase from z ≈ 0.4 to z ≈ 1.5, which parallels the evolution of the cosmic star formation rate density. Limiting our investigation to those quasars whose emission redshift can be determined from narrow emission lines, the relative velocities (β) of Mg ii absorbers have a complex distribution which probably consists of three classes of Mg ii absorbers: (1) cosmologically intervening absorbers; (2) environmental absorbers that reside within the quasar host galaxies or galaxy clusters; (3) quasar outflow absorbers. After subtracting contributions from cosmologically intervening absorbers and environmental absorbers, the β distribution of the Mg iiabsorbers might mainly be contributed by the quasar outflow absorbers and
Reid, Beth; Padmanabhan, Nikhil; Percival, Will J; Tinker, Jeremy; Tojeiro, Rita; White, Martin; Eisenstein, Daniel J; Maraston, Claudia; Ross, Ashley J; Sanchez, Ariel G; Schlegel, David; Sheldon, Erin; Strauss, Michael A; Thomas, Daniel; Wake, David; Beutler, Florian; Bizyaev, Dmitry; Bolton, Adam S; Brownstein, Joel R; Chuang, Chia-Hsun; Dawson, Kyle; Harding, Paul; Kitaura, Francisco-Shu; Leauthaud, Alexie; Masters, Karen; McBride, Cameron K; More, Surhud; Olmstead, Matthew D; Oravetz, Daniel; Nuza, Sebastian E; Pan, Kaike; Parejko, John; Pforr, Janine; Prada, Francisco; Rodriguez-Torres, Sergio; Salazar-Albornoz, Salvador; Samushia, Lado; Schneider, Donald P; Scoccola, Claudia G; Simmons, Audrey; Vargas-Magana, Mariana
2015-01-01
The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large scale structure catalogues for the final Data Release (DR12) samples and the associated ...
Bautista, Julian E; Font-Ribera, Andreu; Pieri, Matthew M; Busca, Nicolás G; Miralda-Escudé, Jordi; Palanque-Delabrouille, Nathalie; Rich, James; Dawson, Kyle; Feng, Yu; Ge, Jian; Gontcho, Satya Gontcho A; Ho, Shirley; Goff, Jean Marc Le; Noterdaeme, Pasquier; Pâris, Isabelle; Rossi, Graziano; Schlegel, David
2014-01-01
We describe mock data-sets generated to simulate the high-redshift quasar sample in Data Release 11 (DR11) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The mock spectra contain Ly{\\alpha} forest correlations useful for studying the 3D correlation function including Baryon Acoustic Oscillations (BAO). They also include astrophysical effects such as quasar continuum diversity and high-density absorbers, instrumental effects such as noise and spectral resolution, as well as imperfections introduced by the SDSS pipeline treatment of the raw data. The Ly{\\alpha} forest BAO analysis of the BOSS collaboration, described in Delubac et al. 2014, has used these mock data-sets to develop and cross-check analysis procedures prior to performing the BAO analysis on real data, and for continued systematic cross checks. Tests presented here show that the simulations reproduce sufficiently well important characteristics of real spectra. These mock data-sets will be made available together with the data at t...
Kitaura, Francisco-Shu; Rodriguez-Torres, Sergio; Chuang, Chia-Hsun; Zhao, Cheng; Prada, Francisco; Gil-Marin, Hector; Guo, Hong; Yepes, Gustavo; Klypin, Anatoly; Scoccola, Claudia G.; Tinker, Jeremy; McBride, Cameron; Reid, Beth; Sanchez, Ariel G.; Salazar-Albornoz, Salvador
2016-01-01
We reproduce the galaxy clustering catalogue from the SDSS-III Baryon Oscillation Spectroscopic Survey Final Data Release (BOSS DR11&DR12) with high fidelity on all relevant scales in order to allow a robust analysis of baryon acoustic oscillations and redshift space distortions. We have generated (6,000) 12,288 MultiDark PATCHY BOSS (DR11) DR12 light-cones corresponding to an effective volume of $\\sim192,000\\,[h^{-1}\\,{\\rm Gpc}]^3$ (the largest ever simulated volume), including cosmic evolut...
CP Violating Baryon Oscillations
McKeen, David; Nelson, Ann E.
2015-01-01
We analyze neutron-antineutron oscillation in detail, developing a Hamiltonian describing the system in the presence of electromagnetic fields. While magnetic fields can couple states of different spin, we show that, because of Fermi statistics, this coupling of different spin states does not involve baryon-number--changing transitions and, therefore, a two-state analysis ignoring spin is sufficient even in the presence of electromagnetic fields. We also enumerate the conditions necessary for...
Reconstructing baryon oscillations
Noh, Yookyung; White, Martin; Padmanabhan, Nikhil
2009-01-01
The baryon acoustic oscillation (BAO) method for constraining the expansion history is adversely affected by non-linear structure formation, which washes out the correlation function peak created at decoupling. To increase the constraining power of low z BAO experiments, it has been proposed that one use the observed distribution of galaxies to "reconstruct'' the acoustic peak. Recently Padmanabhan, White and Cohn provided an analytic formalism for understanding how reconstruction works withi...
Ross, Ashley J; Sanchez, Ariel G; Samushia, Lado; Ho, Shirley; Kazin, Eyal; Manera, Marc; Reid, Beth; White, Martin; Tojeiro, Rita; McBride, Cameron K; Xu, Xiaoying; Wake, David A; Strauss, Michael A; Montesano, Francesco; Swanson, Molly E C; Bailey, Stephen; Bolton, Adam S; Dorta, Antonio Montero; Eisenstein, Daniel J; Guo, Hong; Hamilton, Jean-Christophe; Nichol, Robert C; Padmanabhan, Nikhil; Prada, Francisco; Schlegel, David J; Magana, Mariana Vargas; Zehavi, Idit; Blanton, Michael; Bizyaev, Dmitry; Brewington, Howard; Cuesta, Antonio J; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Parejko, John; Pan, Kaike; Shelden, Donald P Schneider Alaina; Simmons, Audrey; Snedden, Stephanie; Zhao, Gong-bo
2012-01-01
We analyze the density field of galaxies observed by the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) included in the SDSS Data Release Nine (DR9). DR9 includes spectroscopic redshifts for over 400,000 galaxies spread over a footprint of 3,275 deg^2. We identify, characterize, and mitigate the impact of sources of systematic uncertainty on large-scale clustering measurements, both for angular moments of the redshift-space correlation function and the spherically averaged power spectrum, P(k), in order to ensure that robust cosmological constraints will be obtained from these data. A correlation between the projected density of stars and the higher redshift (0.43 120h^-1Mpc or k < 0.01hMpc^-1. We find that these errors can be ameliorated by weighting galaxies based on their surface brightness and the local stellar density. We use mock galaxy catalogs that simulate the CMASS selection function to determine that randomly selecting galaxy redshifts in order to simulate th...
Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; Percival, Will J.; Tinker, Jeremy; Tojeiro, Rita; White, Martin; Eisenstein, Daniel J.; Maraston, Claudia; Ross, Ashley J.; Sánchez, Ariel G.; Schlegel, David; Sheldon, Erin; Strauss, Michael A.; Thomas, Daniel; Wake, David; Beutler, Florian; Bizyaev, Dmitry; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia-Hsun; Dawson, Kyle; Harding, Paul; Kitaura, Francisco-Shu; Leauthaud, Alexie; Masters, Karen; McBride, Cameron K.; More, Surhud; Olmstead, Matthew D.; Oravetz, Daniel; Nuza, Sebastián E.; Pan, Kaike; Parejko, John; Pforr, Janine; Prada, Francisco; Rodríguez-Torres, Sergio; Salazar-Albornoz, Salvador; Samushia, Lado; Schneider, Donald P.; Scóccola, Claudia G.; Simmons, Audrey; Vargas-Magana, Mariana
2016-01-01
The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. The code used, designated MKSAMPLE, is released with this paper.
Sadeh, Iftach; Feng, Low Lerh; Lahav, Ofer
2015-02-01
The gravitational redshift effect allows one to directly probe the gravitational potential in clusters of galaxies. Following up on Wojtak et al. [Nature (London) 477, 567 (2011)], we present a new measurement. We take advantage of new data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. We compare the spectroscopic redshift of the brightest cluster galaxies (BCGs) with that of galaxies at the outskirts of clusters, using a sample with an average cluster mass of 1014 M⊙ . We find that these galaxies have an average relative redshift of -11 km /s compared with that of BCGs, with a standard deviation of +7 and -5 km /s . Our measurement is consistent with that of Wojtak et al. [Nature (London) 477, 567 (2011)]. However, our derived standard deviation is larger, as we take into account various systematic effects, beyond the size of the data set. The result is in good agreement with the predictions from general relativity.
Sadeh, Iftach; Feng, Low Lerh; Lahav, Ofer
2015-02-20
The gravitational redshift effect allows one to directly probe the gravitational potential in clusters of galaxies. Following up on Wojtak et al. [Nature (London) 477, 567 (2011)], we present a new measurement. We take advantage of new data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. We compare the spectroscopic redshift of the brightest cluster galaxies (BCGs) with that of galaxies at the outskirts of clusters, using a sample with an average cluster mass of 1014M⊙. We find that these galaxies have an average relative redshift of -11 km/s compared with that of BCGs, with a standard deviation of +7 and -5 km/s. Our measurement is consistent with that of Wojtak et al. [Nature (London) 477, 567 (2011)]. However, our derived standard deviation is larger, as we take into account various systematic effects, beyond the size of the data set. The result is in good agreement with the predictions from general relativity. PMID:25763947
Manera, Marc; Samushia, Lado; Tojeiro, Rita; Howlett, Cullan; Ross, Ashley J.; Percival, Will J.; Gil-Marín, Hector; Brownstein, Joel R.; Burden, Angela; Montesano, Francesco
2015-01-01
MM and WJP acknowledge support from European Research Council, through grant ‘MDEPUGS’. We present 1000 mock galaxy catalogues (mocks) for the analysis of the low-redshift sample (LOWZ; effective redshift z ˜ 0.32) of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Releases 10 and 11. These mocks have been created following the PTHalos method revised to include new developments. The main improvement is the introduction of a redshift dependence in the halo occupation distribution in...
Shekoyan, V.; Dehipawala, S.; Liu, Ernest; Tulsee, Vivek; Armendariz, R.; Tremberger, G.; Holden, T.; Marchese, P.; Cheung, T.
2012-10-01
Digital solar image data is available to users with access to standard, mass-market software. Many scientific projects utilize the Flexible Image Transport System (FITS) format, which requires specialized software typically used in astrophysical research. Data in the FITS format includes photometric and spatial calibration information, which may not be useful to researchers working with self-calibrated, comparative approaches. This project examines the advantages of using mass-market software with readily downloadable image data from the Solar Dynamics Observatory for comparative analysis over with the use of specialized software capable of reading data in the FITS format. Comparative analyses of brightness statistics that describe the solar disk in the study of magnetic energy using algorithms included in mass-market software have been shown to give results similar to analyses using FITS data. The entanglement of magnetic energy associated with solar eruptions, as well as the development of such eruptions, has been characterized successfully using mass-market software. The proposed algorithm would help to establish a publicly accessible, computing network that could assist in exploratory studies of all FITS data. The advances in computer, cell phone and tablet technology could incorporate such an approach readily for the enhancement of high school and first-year college space weather education on a global scale. Application to ground based data such as that contained in the Baryon Oscillation Spectroscopic Survey is discussed.
Parejko, John K; Padmanabhan, Nikhil; Wake, David A; Berlind, Andreas A; Bizyaev, Dmitry; Blanton, Michael; Bolton, Adam S; Bosch, Frank van den; Brinkmann, Jon; Brownstein, Joel R; da Costa, Luiz Alberto Nicolaci; Eisenstein, Daniel J; Guo, Hong; Kazin, Eyal; Maia, Marcio; Malanushenko, Elena; Maraston, Claudia; McBride, Cameron K; Nichol, Robert C; Oravetz, Daniel J; Pan, Kaike; Percival, Will J; Prada, Francisco; Ross, Ashley J; Ross, Nicholas P; Schlegel, David J; Schneider, Don; Simmons, Audrey E; Skibba, Ramin; Tinker, Jeremy; Tojeiro, Rita; Weaver, Benjamin A; Wetzel, Andrew; White, Martin; Weinberg, David H; Thomas, Daniel; Zehavi, Idit; Zheng, Zheng
2012-01-01
We report on the small scale (0.5
Alam, Shadab; Vargas-Magaña, Mariana; Schneider, Donald P
2015-01-01
The measured redshift ($z$) of an astronomical object is a combination of Hubble recession, gravitational redshift and peculiar velocity. In particular, the line of sight distance to a galaxy inferred from redshift is affected by the peculiar velocity component of galaxy redshift, which can also be observed as an anisotropy in the correlation function. This anisotropy allows us to measure the linear growth rate of matter ($f\\sigma_8$). In this paper, we measure the linear growth rate of matter ($f\\sigma_8$) at $z=0.57$ using the CMASS sample from Data Release 11 of Sloan Digital Sky Survey III (SDSS III) Baryon Oscillations Spectroscopic Survey (BOSS). The galaxy sample consists of 690,826 Luminous Red Galaxies (LRGs) in the redshift range 0.43 to 0.7 covering 8498 deg$^2$. Here we report the first measurement of $f\\sigma_8$ and cosmology using Convolution Lagrangian Perturbation Theory (CLPT) with Gaussian streaming model (GSRSD). We arrive at a constraint of $f\\sigma_8=0.462\\pm0.041$ (9\\% accuracy) at effec...
Ahn, Christopher P; Prieto, Carlos Allende; Anderson, Scott F; Anderton, Timothy; Andrews, Brett H; Bailey, Éric Aubourg Stephen; Barnes, Rory; Bautista, Julian; Beers, Timothy C; Beifiori, Alessandra; Berlind, Andreas A; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blake, Cullen H; Blanton, Michael R; Blomqvist, Michael; Bochanski, John J; Bolton, Adam S; Borde, Arnaud; Bovy, Jo; Brandt, W N; Brinkmann, J; Brown, Peter J; Brownstein, Joel R; Bundy, Kevin; Busca, N G; Carithers, William; Carnero, Aurelio R; Carr, Michael A; Casetti-Dinescu, Dana I; Chen, Yanmei; Chiappini, Cristina; Comparat, Johan; Connolly, Natalia; Crepp, Justin R; Cristiani, Stefano; Croft, Rupert A C; Cuesta, Antonio J; da Costa, Luiz N; Davenport, James R A; Dawson, Kyle S; de Putter, Roland; De Lee, Nathan; Delubac, Timothée; Dhital, Saurav; Ealet, Anne; Ebelke, Garrett L; Edmondson, Edward M; Eisenstein, Daniel J; Escoffier, S; Esposito, Massimiliano; Evans, Michael L; Fan, Xiaohui; Castellá, Bruno Femení a; Alvar, Emma Fernández; Ferreira, Leticia D; Ak, N Filiz; Finley, Hayley; Fleming, Scott W; Font-Ribera, Andreu; Frinchaboy, Peter M; García-Hernández, D A; Pérez, A E García; Ge, Jian; Génova-Santos, R; Gillespie, Bruce A; Girardi, Léo; Hernández, Jonay I González; Grebel, Eva K; Gunn, James E; Haggard, Daryl; Hamilton, Jean-Christophe; Harris, David W; Hawley, Suzanne L; Hearty, Frederick R; Ho, Shirley; Hogg, David W; Holtzman, Jon A; Honscheid, Klaus; Huehnerhoff, J; Ivans, Inese I; Ivezić, Zeljko; Jacobson, Heather R; Jiang, Linhua; Johansson, Jonas; Johnson, Jennifer A; Kauffmann, Guinevere; Kirkby, David; Kirkpatrick, Jessica A; Klaene, Mark A; Knapp, Gillian R; Kneib, Jean-Paul; Goff, Jean-Marc Le; Leauthaud, Alexie; Lee, Khee-Gan; Lee, Young Sun; Long, Daniel C; Loomis, Craig P; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H; Ma, Bo; Ma, Zhibo; MacDonald, Nicholas; Mahadevan, Suvrath; Maia, Marcio A G; Majewski, Steven R; Makler, Martin; Malanushenko, Elena; Malanushenko, Viktor; Manchado, A; Mandelbaum, Rachel; Manera, Marc; Maraston, Claudia; Margala, Daniel; Martell, Sarah L; McBride, Cameron K; McGreer, Ian D; McMahon, Richard G; Ménard, Brice; Meszaros, Sz; Miralda-Escudé, Jordi; Montero-Dorta, Antonio D; Montesano, Francesco; Morrison, Heather L; Muna, Demitri; Munn, Jeffrey A; Murayama, Hitoshi; Myers, Adam D; Neto, A F; Nguyen, Duy Cuong; Nichol, Robert C; Nidever, David L; Noterdaeme, Pasquier; Ogando, Ricardo L C; Olmstead, Matthew D; Oravetz, Daniel J; Owen, Russell; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K; Parihar, Prachi; Pâris, Isabelle; Pattarakijwanich, Petchara; Pepper, Joshua; Percival, Will J; Pérez-Fournon, Ismael; Pérez-Ráfols, Ignasi; Petitjean, Patrick; Pforr, Janine; Pieri, Matthew M; Pinsonneault, Marc H; de Mello, G F Porto; Prada, Francisco; Price-Whelan, Adrian M; Raddick, M Jordan; Rebolo, Rafael; Rich, James; Richards, Gordon T; Robin, Annie C; Rocha-Pinto, Helio J; Rockosi, Constance M; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rubiño-Martin, J A; Samushia, Lado; Almeida, J Sanchez; Sánchez, Ariel G; Santiago, Basílio; Sayres, Conor; Schlegel, David J; Schlesinger, Katharine J; Schmidt, Sarah J; Schneider, Donald P; Schwope, Axel D; Scóccola, C G; Seljak, Uros; Sheldon, Erin; Shen, Yue; Shu, Yiping; Simmerer, Jennifer; Simmons, Audrey E; Skibba, Ramin A; Slosar, A; Sobreira, Flavia; Sobeck, Jennifer S; Stassun, Keivan G; Steele, Oliver; Steinmetz, Matthias; Strauss, Michael A; Swanson, Molly E C; Tal, Tomer; Thakar, Aniruddha R; Thomas, Daniel; Thompson, Benjamin A; Tinker, Jeremy L; Tojeiro, Rita; Tremonti, Christy A; Magaña, M Vargas; Verde, Licia; Viel, Matteo; Vikas, Shailendra K; Vogt, Nicole P; Wake, David A; Wang, Ji; Weaver, Benjamin A; Weinberg, David H; Weiner, Benjamin J; West, Andrew A; White, Martin; Wilson, John C; Wisniewski, John P; Wood-Vasey, W M; Yanny, Brian; Yèche, Christophe; York, Donald G; Zamora, O; Zasowski, Gail; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng; Zhu, Guangtun; Zinn, Joel C
2012-01-01
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has...
Universal fitting formulae for baryon oscillation surveys
Blake, Chris; Parkinson, David; Glazebrook, Karl; Bassett, Bruce A.; Kunz, Martin; Nichol, Robert C.
2006-01-01
The next generation of galaxy surveys will attempt to measure the baryon oscillations in the clustering power spectrum with high accuracy. These oscillations encode a preferred scale which may be used as a standard ruler to constrain cosmological parameters and dark energy models. In this paper we present simple analytical fitting formulae for the accuracy with which the preferred scale may be determined in the tangential and radial directions by future spectroscopic and photometric galaxy re...
Percival, W J; Ross, A. J.; Sanchez, A. G.; Samushia, L.; Burden, A; Crittenden, R.; Cuesta, A. J.; Magana, M. V.; Manera, M; Beutler, F.; Chuang, C. -H.; Eisenstein, D. J.; Ho, S.; Mcbride, C. K.; Montesano, F.
2014-01-01
JP acknowledges support from the UK Science & Technology Facilities Council (STFC) through the consolidated grant ST/K0090X/1 and from the European Research Council through the ‘Starting Independent Research’ grant 202686, MDEPUGS. AGS acknowledges support from the Trans-regional Collaborative Research Centre TR33 ‘The Dark Universe’ of the German Research Foundation (DFG). We present improved methodology for including covariance matrices in the error budget of Baryon Oscillation Spectrosc...
Anderson, Lauren; Bailey, Stephen; Beutler, Florian; Bolton, Adam S; Brinkmann, J; Brownstein, Joel R; Chuang, Chia-Hsun; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Honscheid, Klaus; Kazin, Eyal A; Kirkby, David; Manera, Marc; McBride, Cameron K; Mena, O; Nichol, Robert C; Olmstead, Matthew D; Padmanabhan, Nikhil; Palanque-Delabrouille, N; Percival, Will J; Prada, Francisco; Ross, Ashley J; Ross, Nicolas P; Sanchez, Ariel G; Samushia, Lado; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Strauss, Michael A; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Verde, Licia; Weinberg, David H; Xu, Xiaoying; Yeche, Christophe
2013-01-01
We present measurements of the angular diameter distance to and Hubble parameter at z=0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264,283 galaxies over 3275 square degrees in the redshift range 0.43
Gil-Marín, Héctor; Will J. Percival(Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX, UK); Verde, Licia; Brownstein, Joel R.; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodríguez-Torres, Sergio A.; Olmstead, Matthew D.
2016-01-01
We measure and analyse the bispectrum of the final, Data Release 12, galaxy sample provided by the Baryon Oscillation Spectroscopic Survey, splitting by selection algorithm into LOWZ and CMASS galaxies. The LOWZ sample contains 361762 galaxies with an effective redshift of $z_{\\rm LOWZ}=0.32$, and the CMASS sample 777202 galaxies with an effective redshift of $z_{\\rm CMASS}=0.57$. Combining the power spectrum, measured relative to the line-of-sight, with the spherically averaged bispectrum, w...
Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; McDonald, Patrick; Monteagudo, Carlos Hernández; Müller, Volker; Yepes, Gustavo; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J
2016-01-01
We present a Bayesian phase space reconstruction of the cosmic large-scale matter density and velocity fields from the SDSS-III Baryon Oscillations Spectroscopic Survey Data Release 12 (BOSS DR12) CMASS galaxy clustering catalogue. We rely on a given $\\Lambda$CDM cosmology, a mesh resolution in the range of 6-10 $h^{-1}$ Mpc, and a lognormal-Poisson model with a redshift dependent nonlinear bias. The bias parameters are derived from the data and a general renormalised perturbation theory appr...
Ross, Ashley J.; Samushia, Lado; Burden, Angela; Percival, Will J.; Tojeiro, Rita; Manera, Marc; Beutler, Florian; Brinkmann, J.; Brownstein, Joel R.; Carnero, Aurelio; da Costa, Luiz A. N.; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; Maia, Marcio A. G.; Montesano, Francesco; Muna, Demitri; Nichol, Robert C.; Nuza, Sebastián E.; Sánchez, Ariel G.; Schneider, Donald P.; Skibba, Ramin A.; Sobreira, Flávia; Streblyanska, Alina; Swanson, Molly E. C.; Thomas, Daniel; Tinker, Jeremy L.; Wake, David A.; Zehavi, Idit; Zhao, Gong-bo
2014-01-01
We study the clustering of galaxies, as a function of their colour, from Data Release Ten (DR10) of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey. DR10 contains 540 505 galaxies with 0.43 comb = 0.443 ± 0.055. This result compares favourably to that of the full 0.43 tests on mock samples, which predict that any colour-dependent systematic uncertainty on the measured BAO position is less than 0.5 per cent.
Beutler, Florian; Saito, Shun; Seo, Hee-Jong; Brinkmann, Jon; Dawson, Kyle S.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Ho, Shirley; McBride, Cameron K.; Montesano, Francesco; Percival, Will J.; Ross, Ashley J.; Ross, Nicholas P.; Samushia, Lado; Schlegel, David J.
2013-01-01
We analyse the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 (DR11) sample, which consists of $690\\,827$ galaxies in the redshift range $0.43 < z < 0.7$ and has a sky coverage of $8\\,498\\,\\text{deg}^2$. We perform our analysis in Fourier space using a power spectrum estimator suggested by Yamamoto et al. (2006). We measure the multipole power spectra in a self-consistent manner for the first time in the sense that we provide a proper way to...
Cuesta, Antonio J.; Vargas-Magaña, Mariana; Beutler, Florian; Bolton, Adam S.; Brownstein, Joel R.; Eisenstein, Daniel J.; Gil-Marín, Héctor; Ho, Shirley; McBride, Cameron K.; Maraston, Claudia; Padmanabhan, Nikhil; Percival, Will J.; Reid, Beth A.; Ross, Ashley J.; Ross, Nicholas P.; Sánchez, Ariel G.; Schlegel, David J.; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Verde, Licia; White, Martin
2016-04-01
We present distance scale measurements from the baryon acoustic oscillation signal in the constant stellar mass and low-redshift sample samples from the Data Release 12 of the Baryon Oscillation Spectroscopic Survey. The total volume probed is 14.5 Gpc3, a 10 per cent increment from Data Release 11. From an analysis of the spherically averaged correlation function, we infer a distance to z = 0.57 of D_V(z)r^fid_d/r_d = 2028± 21 Mpc and a distance to z = 0.32 of D_V(z)r^fid_d/r_d = 1264± 22 Mpc assuming a cosmology in which r^fid_d = 147.10 Mpc. From the anisotropic analysis, we find an angular diameter distance to z = 0.57 of D_A(z)r^fid_d/r_d = 1401± 21 Mpc and a distance to z = 0.32 of 981 ± 20 Mpc, a 1.5 and 2.0 per cent measurement, respectively. The Hubble parameter at z = 0.57 is H(z)r_d/r^fid_d = 100.3± 3.7 km s-1 Mpc-1 and its value at z = 0.32 is 79.2 ± 5.6 km s-1 Mpc-1, a 3.7 and 7.1 per cent measurement, respectively. These cosmic distance scale constraints are in excellent agreement with a Λ cold dark matter model with cosmological parameters released by the recent Planck 2015 results.
Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Zhao, Cheng; Prada, Francisco; Gil-Marin, Hector; Guo, Hong; Yepes, Gustavo; Klypin, Anatoly; Scoccola, Claudia G; Tinker, Jeremy; McBride, Cameron; Reid, Beth; Sanchez, Ariel G; Salazar-Albornoz, Salvador; Grieb, Jan Niklas; Vargas-Magana, Mariana; Cuesta, Antonio J; Neyrinck, Mark; Beutler, Florian; Comparat, Johan; Percival, Will; Ross, Ashley
2015-01-01
We reproduce the galaxy clustering catalogue from the SDSS-III Baryon Oscillations Spectroscopic Survey Data Release 12 (BOSS DR12) with high fidelity on all relevant scales in order to allow a robust analysis of baryon acoustic oscillations and redshift space distortions. We have generated 12,288 MultiDark patchy light-cones corresponding to an effective volume of ~192,000 [Gpc/h]^3 (the largest ever simulated volume), including cosmic evolution in the range from 0.15 to 0.75. The mocks have been calibrated using a reference galaxy catalogue based on the Halo Abundance Matching modelling of the BOSS DR12 galaxy clustering data and on the data themselves. The production of the MultiDark PATCHY BOSS DR12 mocks follows three steps. First, we apply the PATCHY-code to generate a dark matter field and an object distribution including nonlinear stochastic galaxy bias. Second, we run the halo/stellar distribution reconstruction HADRON-code to assign masses to the various objects. This step uses the mass distribution...
Gil-Marín, Héctor; Cuesta, Antonio J; Brownstein, Joel R; Chuang, Chia-Hsun; Ho, Shirley; Kitaura, Francisco-Shu; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashely J; Schlegel, David J; Schneider, Donald P; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Magaña, Mariana Vargas; Zhao, Gong-Bo
2015-01-01
[abridged] We present an anisotropic analysis of the baryonic acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryonic Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains contains 361\\,762 galaxies with an effective redshift of $z_{\\rm LOWZ}=0.32$, and the CMASS sample consists of 777\\,202 galaxies with an effective redshift of $z_{\\rm CMASS}=0.57$. We extract the BAO peak position from the monopole power spectrum moment, $\\alpha_0$, and from the $\\mu^2$ moment, $\\alpha_2$. We report $H(z_{\\rm LOWZ})r_s(z_d)=(11.64\\pm0.62)\\cdot10^3\\,{\\rm km}s^{-1}$ and $D_A(z_{\\rm LOWZ})/r_s(z_d)=6.85\\pm0.17$ with a cross-correlation coefficient of $r_{HD_A}=0.42$, for the LOWZ sample; and $H(z_{\\rm CMASS})r_s(z_d)=(14.56\\pm0.38)\\cdot10^3\\,{\\rm km}s^{-1}$ and $D_A(z_{\\rm CMASS})/r_s(z_d)=9.42\\pm0.13$ with a cross-correlation coefficient of $r_{HD_A}=0.51$, for the CMASS sample. We combine these results with the measurements...
Zhao, Gong-Bo; Saito, Shun; Wang, Dandan; Ross, Ashley J; Beutler, Florian; Grieb, Jan Niklas; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodriguez-Torres, Sergio; Percival, Will J; Brownstein, Joel R; Cuesta, Antonio J; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; Nichol, Robert C; Olmstead, Matthew D; Prada, Francisco; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Weinberg, David H; Zhu, Fangzhou
2016-01-01
We perform a tomographic baryon acoustic oscillations (BAO) analysis using the monopole, quadrupole and hexadecapole of the redshift-space galaxy power spectrum measured from the pre-reconstructed combined galaxy sample of the completed Sloan Digital Sky Survey (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) Data Release (DR)12 covering the redshift range of $0.20
Beutler, Florian; Saito, Shun; Chuang, Chia-Hsun; Cuesta, Antonio J; Eisenstein, Daniel J; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C; Olmstead, Matthew D; Percival, Will J; Prada, Francisco; Sánchez, Ariel G; Rodriguez-Torres, Sergio; Ross, Ashley J; Ross, Nicholas P; Schneider, Donald P; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana
2016-01-01
We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample, which consists of $1\\,198\\,006$ galaxies in the redshift range $0.2 < z < 0.75$ and a sky coverage of $10\\,252\\,$deg$^2$. We analyse this dataset in Fourier space, using the power spectrum multipoles to measure Redshift-Space Distortions (RSD) simultaneously with the Alcock-Paczynski (AP) effect and the Baryon Acoustic Oscillation (BAO) scale. We include the power spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation theory based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline we participate in a mock challenge, which resulted in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on $f\\sigma_8$ at $z_{\\rm eff}=0.61$ indicates a small ($\\sim 1.4\\sigma$) deviation from the prediction of th...
Alam, Shadab; Bailey, Stephen; Beutler, Florian; Bizyaev, Dmitry; Blazek, Jonathan A; Bolton, Adam S; Brownstein, Joel R; Burden, Angela; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Escoffier, Stephanie; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Ho, Shirley; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Malanushenko, Elena; Malanushenko, Viktor; Maraston, Claudia; McBride, Cameron K; Nichol, Robert C; Olmstead, Matthew D; Oravetz, Daniel; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J; Petitjean, Patrick; Prada, Francisco; Price-Whelan, Adrian M; Reid, Beth A; Rodríguez-Torres, Sergio A; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G; Saito, Shun; Salazar-Albornoz, Salvador; Samushia, Lado; Satpathy, Siddharth; Scóccola, Claudia G; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Simmons, Audrey; Slosar, Anže; Strauss, Michael A; Swanson, Molly E C; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Magaña, Mariana Vargas; Vazquez, Jose Alberto; Verde, Licia; Wake, David A; Wang, Yuting; Weinberg, David H; White, Martin; Wood-Vasey, W Michael; Yèche, Christophe; Zehavi, Idit; Zhai, Zhongxu; Zhao, Gong-Bo
2016-01-01
We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg^2 and volume of 18.7 Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DM*H from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by f{\\sigma}8(z), from redshift-space distortions (RSD). We combine measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one m...
Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Scoccimarro, Román; Crocce, Martín; Vecchia, Claudio Dalla; Montesano, Francesco; Gil-Marín, Héctor; Ross, Ashley J; Beutler, Florian; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Prada, Francisco; Kitaura, Francisco-Shu; Cuesta, Antonio J; Eisenstein, Daniel J; Percival, Will J; Vargas-Magana, Mariana; Tinker, Jeremy L; Tojeiro, Rita; Brownstein, Joel R; Maraston, Claudia; Nichol, Robert C; Olmstead, Matthew D; Samushia, Lado; Seo, Hee-Jong; Streblyanska, Alina; Zhao, Gong-bo
2016-01-01
We extract cosmological information from the anisotropic power spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new FFT-based estimators, we measure the power spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles l > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias, and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular diameter distance, the Hubble parameter, and the cosmic growth rate, and explore the cosmological implications of our full shape clustering measurements in combination with CMB and SN Ia data. Assuming a {\\Lambda}CDM cosmology, we constra...
Gil-Marín, Héctor; Brownstein, Joel R; Chuang, Chia-Hsun; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J; Samushia, Lado; Schlegel, David J; Thomas, Daniel; Tinker, Jeremy L; Zhao, Gong-Bo
2015-01-01
We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) relative to the line-of-sight (LOS), for LOWZ and CMASS galaxy samples drawn from the final Data Release 12 (DR12). The LOWZ sample contains 361\\,762 galaxies with an effective redshift of $z_{\\rm lowz}=0.32$, and the CMASS sample 777\\,202 galaxies with an effective redshift of $z_{\\rm cmass}=0.57$. From the power spectrum monopole and quadrupole moments around the LOS, we measure the growth of structure parameter $f$ times the amplitude of dark matter density fluctuations $\\sigma_8$ by modeling the Redshift-Space Distortion signal. When the geometrical Alcock-Paczynski effect is also constrained from the same data, we find joint constraints on $f\\sigma_8$, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch $H(z)r_s(z_d)$, and the angular distance parameter divided by the sound horizon $D_A(z)/r_s(z_d)$. We find $f(z_{\\rm lowz})\\sigma_8(z_{\\rm lowz})=0.394\\pm0.062$, $D_A(z_{\\rm l...
Gil-Marín, Héctor; Verde, Licia; Brownstein, Joel R; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodríguez-Torres, Sergio A; Olmstead, Matthew D
2016-01-01
We measure and analyse the bispectrum of the final, Data Release 12, galaxy sample provided by the Baryon Oscillation Spectroscopic Survey, splitting by selection algorithm into LOWZ and CMASS galaxies. The LOWZ sample contains 361762 galaxies with an effective redshift of $z_{\\rm LOWZ}=0.32$, and the CMASS sample 777202 galaxies with an effective redshift of $z_{\\rm CMASS}=0.57$. Combining the power spectrum, measured relative to the line-of-sight, with the spherically averaged bispectrum, we are able to constrain the product of the growth of structure parameter, $f$, and the amplitude of dark matter density fluctuations, $\\sigma_8$, along with the geometric Alcock-Paczynski parameters, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch, $H(z)r_s(z_d)$, and the angular distance parameter divided by the sound horizon, $D_A(z)/r_s(z_d)$. We find $f(z_{\\rm LOWZ})\\sigma_8(z_{\\rm LOWZ})=0.460\\pm 0.066$, $D_A(z_{\\rm LOWZ})/r_s(z_d)=6.74 \\pm 0.22$, $H(z_{\\rm LOWZ})r_s(z_d)=(1...
Universal fitting formulae for baryon oscillation surveys
Blake, Chris; Parkinson, David; Bassett, Bruce; Glazebrook, Karl; Kunz, Martin; Nichol, Robert C.
2006-01-01
The next generation of galaxy surveys will attempt to measure the baryon oscillations in the clustering power spectrum with high accuracy. These oscillations encode a preferred scale which may be used as a standard ruler to constrain cosmological parameters and dark energy models. In this paper we present simple analytical fitting formulae for the accuracy with which the preferred scale may be determined in the tangential and radial directions by future spectroscopic and photometric galaxy redshift surveys. We express these accuracies as a function of survey parameters such as the central redshift, volume, galaxy number density and (where applicable) photometric redshift error. These fitting formulae should greatly increase the efficiency of optimizing future surveys, which requires analysis of a potentially vast number of survey configurations and cosmological models. The formulae are calibrated using a grid of Monte Carlo simulations, which are analysed by dividing out the overall shape of the power spectrum before fitting a simple decaying sinusoid to the oscillations. The fitting formulae reproduce the simulation results with a fractional scatter of 7 per cent (10 per cent) in the tangential (radial) directions over a wide range of input parameters. We also indicate how sparse-sampling strategies may enhance the effective survey area if the sampling scale is much smaller than the projected baryon oscillation scale.
Schaan, Emmanuel; Ferraro, Simone; Vargas-Magaña, Mariana; Smith, Kendrick M.; Ho, Shirley; Aiola, Simone; Battaglia, Nicholas; Bond, J. Richard; De Bernardis, Francesco; Calabrese, Erminia; Cho, Hsiao-Mei; Devlin, Mark J.; Dunkley, Joanna; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn; Hill, J. Colin; Hincks, Adam D.; Hlozek, Renée; Hubmayr, Johannes; Hughes, John P.; Irwin, Kent D.; Koopman, Brian; Kosowsky, Arthur; Li, Dale; Louis, Thibaut; Lungu, Marius; Madhavacheril, Mathew; Maurin, Loïc; McMahon, Jeffrey John; Moodley, Kavilan; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D.; Page, Lyman A.; Pappas, Christine G.; Partridge, Bruce; Schmitt, Benjamin L.; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jonathan L.; Spergel, David N.; Staggs, Suzanne T.; van Engelen, Alexander; Wollack, Edward J.; ACTPol Collaboration
2016-04-01
We use microwave temperature maps from two seasons of data from the Atacama Cosmology Telescope at 146 GHz, together with the "Constant Mass" CMASS galaxy sample from the Baryon Oscillation Spectroscopic Survey to measure the kinematic Sunyaev-Zel'dovich (kSZ) effect over the redshift range z =0.4 - 0.7 . We use galaxy positions and the continuity equation to obtain a reconstruction of the line-of-sight velocity field. We stack the microwave temperature at the location of each halo, weighted by the corresponding reconstructed velocity. We vary the size of the aperture photometry filter used, thus probing the free electron profile of these halos from within the virial radius out to three virial radii, on the scales relevant for investigating the missing baryons problem. The resulting best fit kSZ model is preferred over the no-kSZ hypothesis at 3.3 and 2.9 σ for two independent velocity reconstruction methods, using 25,537 galaxies over 660 square degrees. The data suggest that the baryon profile is shallower than the dark matter in the inner regions of the halos probed here, potentially due to energy injection from active galactic nucleus or supernovae. Thus, by constraining the gas profile on a wide range of scales, this technique will be useful for understanding the role of feedback in galaxy groups and clusters. The effect of foregrounds that are uncorrelated with the galaxy velocities is expected to be well below our signal, and residual thermal Sunyaev-Zel'dovich contamination is controlled by masking the most massive clusters. Finally, we discuss the systematics involved in converting our measurement of the kSZ amplitude into the mean free electron fraction of the halos in our sample.
Kitaura, Francisco-Shu; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Zhao, Cheng; Prada, Francisco; Gil-Marín, Héctor; Guo, Hong; Yepes, Gustavo; Klypin, Anatoly; Scóccola, Claudia G.; Tinker, Jeremy; McBride, Cameron; Reid, Beth; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Grieb, Jan Niklas; Vargas-Magana, Mariana; Cuesta, Antonio J.; Neyrinck, Mark; Beutler, Florian; Comparat, Johan; Percival, Will J.; Ross, Ashley
2016-03-01
We reproduce the galaxy clustering catalogue from the SDSS-III Baryon Oscillation Spectroscopic Survey Final Data Release (BOSS DR11&DR12) with high fidelity on all relevant scales in order to allow a robust analysis of baryon acoustic oscillations and redshift space distortions. We have generated (6000) 12 288 MultiDark PATCHY BOSS (DR11) DR12 light cones corresponding to an effective volume of ˜192 000 [h-1 Gpc]3 (the largest ever simulated volume), including cosmic evolution in the redshift range from 0.15 to 0.75. The mocks have been calibrated using a reference galaxy catalogue based on the halo abundance matching modelling of the BOSS DR11&DR12 galaxy clustering data and on the data themselves. The production follows three steps. First, we apply the PATCHY code to generate a dark matter field and an object distribution including non-linear stochastic galaxy bias. Secondly, we run the halo/stellar distribution reconstruction HADRON code to assign masses to the various objects. This step uses the mass distribution as a function of local density and non-local indicators (i.e. tidal field tensor eigenvalues and relative halo exclusion separation for massive objects) from the reference simulation applied to the corresponding patchy dark matter and galaxy distribution. Finally, we apply the SUGAR code to build the light cones. The resulting MultiDarkPATCHY mock light cones reproduce the number density, selection function, survey geometry, and in general within 1σ, for arbitrary stellar mass bins, the power spectrum up to k = 0.3 h Mpc-1, the two-point correlation functions down to a few Mpc scales, and the three-point statistics of the BOSS DR11&DR12 galaxy samples.
Universal fitting formulae for baryon oscillation surveys
Blake, C; Bassett, B; Glazebrook, K; Kunz, M; Nichol, R C; Blake, Chris; Parkinson, David; Bassett, Bruce; Glazebrook, Karl; Kunz, Martin; Nichol, Robert C.
2006-01-01
The next generation of galaxy surveys will attempt to measure the baryon oscillations in the clustering power spectrum with high accuracy. These oscillations encode a preferred scale which may be used as a standard ruler to constrain cosmological parameters and dark energy models. In this paper we present simple analytical fitting formulae for the accuracy with which the preferred scale may be determined in the tangential and radial directions by future spectroscopic and photometric galaxy redshift surveys. We express these accuracies as a function of survey parameters such as the central redshift, volume, galaxy number density and (where applicable) photometric redshift error. These fitting formulae should greatly increase the efficiency of optimizing future surveys, which requires analysis of a potentially vast number of survey configurations and cosmological models. The formulae are calibrated using a grid of Monte Carlo simulations, which are analyzed by dividing out the overall shape of the power spectru...
Gil-Marín, Héctor; Percival, Will J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Grieb, Jan Niklas; Ho, Shirley; Shu Kitaura, Francisco-; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Samushia, Lado; Schlegel, David J.; Thomas, Daniel; Tinker, Jeremy L.; Zhao, Gong-Bo
2016-05-01
We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) relative to the line-of-sight (LOS), for LOWZ and CMASS galaxy samples drawn from the final Data Release 12 (DR12). The LOWZ sample contains 361 762 galaxies with an effective redshift of zlowz = 0.32, and the CMASS sample 777 202 galaxies with an effective redshift of zcmass = 0.57. From the power spectrum monopole and quadrupole moments around the LOS, we measure the growth of structure parameter f times the amplitude of dark matter density fluctuations σ8 by modeling the Redshift-Space Distortion signal. When the geometrical Alcock-Paczynski effect is also constrained from the same data, we find joint constraints on fσ8, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch H(z)rs(zd), and the angular distance parameter divided by the sound horizon DA(z)/rs(zd). We find f(zlowz)σ8(zlowz) = 0.394 ± 0.062, DA(zlowz)/rs(zd) = 6.35 ± 0.19, H(zlowz)rs(zd) = (11.41 ± 0.56) 103kms-1 for the LOWZ sample, and f(zcmass)σ8(zcmass) = 0.444 ± 0.038, DA(zcmass)/rs(zd) = 9.42 ± 0.15, H(z_cmass)r_s(z_d)=(13.92 ± 0.44) {10^3km}s^{-1} for the CMASS sample. We find general agreement with previous BOSS DR11 measurements. Assuming the Hubble parameter and angular distance parameter are fixed at fiducial ΛCDM values, we find f(zlowz)σ8(zlowz) = 0.485 ± 0.044 and f(zcmass)σ8(zcmass) = 0.436 ± 0.022 for the LOWZ and CMASS samples, respectively.
Gil-Marín, Héctor; Percival, Will J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Samushia, Lado; Schlegel, David J.; Thomas, Daniel; Tinker, Jeremy L.; Zhao, Gong-Bo
2016-08-01
We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) relative to the line of sight (LOS), for LOWZ and CMASS galaxy samples drawn from the final Data Release 12. The LOWZ sample contains 361 762 galaxies with an effective redshift of zlowz = 0.32, and the CMASS sample 777 202 galaxies with an effective redshift of zcmass = 0.57. From the power spectrum monopole and quadrupole moments around the LOS, we measure the growth of structure parameter f times the amplitude of dark matter density fluctuations σ8 by modelling the redshift-space distortion signal. When the geometrical Alcock-Paczynski effect is also constrained from the same data, we find joint constraints on fσ8, the product of the Hubble constant and the comoving sound horizon at the baryon-drag epoch H(z)rs(zd), and the angular distance parameter divided by the sound horizon DA(z)/rs(zd). We find f(zlowz)σ8(zlowz) = 0.394 ± 0.062, DA(zlowz)/rs(zd) = 6.35 ± 0.19, H(zlowz)rs(zd) = (11.41 ± 0.56) 103 km s- 1 for the LOWZ sample, and f(zcmass)σ8(zcmass) = 0.444 ± 0.038, DA(zcmass)/rs(zd) = 9.42 ± 0.15, H(zcmass)rs(zd) = (13.92 ± 0.44) 103 km s- 1 for the CMASS sample. We find general agreement with previous BOSS DR11 measurements. Assuming the Hubble parameter and angular distance parameter are fixed at fiducial Λcold dark matter values, we find f(zlowz)σ8(zlowz) = 0.485 ± 0.044 and f(zcmass)σ8(zcmass) = 0.436 ± 0.022 for the LOWZ and CMASS samples, respectively.
Rodríguez-Torres, Sergio A.; Chuang, Chia-Hsun; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Maraston, Claudia; McBride, Cameron K.; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P.; Thomas, Daniel
2016-08-01
We present a study of the clustering and halo occupation distribution of Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 relation for the CMASS sample measured using weak lensing in the Canada-France-Hawaii Telescope Stripe 82 Survey with the prediction of our clustering model, and find a good agreement within 1σ. The BigMD-BOSS light cone including properties of BOSS galaxies and halo properties is made publicly available.
Ata, Metin; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E; Ferraro, Simone; McDonald, Patrick; Monteagudo, Carlos Hernández; Müller, Volker; Yepes, Gustavo; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R; Burden, Angela; Eisenstein, Daniel J; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D; Padmanabhan, Nikhil; Perciva, Will J; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G; Schlege, David; Schneider, Donald P; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana
2016-01-01
We present a Bayesian phase space reconstruction of the cosmic large-scale matter density and velocity fields from the SDSS-III Baryon Oscillations Spectroscopic Survey Data Release 12 (BOSS DR12) CMASS galaxy clustering catalogue. We rely on a given $\\Lambda$CDM cosmology, a mesh resolution in the range of 6-10 $h^{-1}$ Mpc, and a lognormal-Poisson model with a redshift dependent nonlinear bias. The bias parameters are derived from the data and a general renormalised perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the \\textsc{argo} code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions (RSD). Our tests relying on accurate $N$-body based mock galaxy catalogues, show unbiased real space power spectra of the nonlinear density field up to $k\\sim0.2\\, h$ Mpc$^{-1}$, and vanishing quadrupoles down to $\\sim20\\,h^{-1}$ Mpc. We also demonstrate tha...
Sanchez, Ariel G; Crocce, Martin; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; DallaVecchia, Claudio; Lippich, Martha; Beutler, Florian; Brownstein, Joel R; Chuang, Chia-Hsun; Eisenstein, Daniel J; Kitaura, Francisco-Shu; Olmstead, Matthew D; Percival, Will J; Prada, Francisco; Rodriguez-Torres, Sergio; Ross, Ashley J; Samushia, Lado; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Wang, Yuting; Zhao, Gong-Bo
2016-01-01
We explore the cosmological implications of anisotropic clustering measurements in configuration space of the final galaxy samples from Data Release 12 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We implement a new detailed modelling of the effects of non-linearities, galaxy bias and redshift-space distortions that can be used to extract unbiased cosmological information from our measurements for scales $s \\gtrsim 20\\,h^{-1}{\\rm Mpc}$. We combined the galaxy clustering information from BOSS with the latest cosmic microwave background (CMB) observations and Type Ia supernovae samples and found no significant evidence for a deviation from the $\\Lambda$CDM cosmological model. In particular, these data sets can constrain the dark energy equation of state parameter to $w_{\\rm DE}=-0.996\\pm0.042$ when assumed time-independent, the curvature of the Universe to $\\Omega_{k}=-0.0007\\pm 0.0030$ and the sum of the neutrino masses to $\\sum m_{\
Baryon Oscillations in the Large Scale Structure
Cooray, Asantha
2001-01-01
We study the possibility for an observational detection of oscillations due to baryons in the matter power spectrum and suggest a new cosmological test using the angular power spectrum of halos. The "standard rulers" of the proposed test involve overall shape of the matter power spectrum and baryon oscillation peaks in projection, as a function of redshift. Since oscillations are erased at non-linear scales, traces at redshifts greater than 1 are generally preferred. Given the decrease in num...
Gil-Marín, Héctor; Percival, Will J.; Cuesta, Antonio J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Ho, Shirley; Shu Kitaura, Francisco-; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Schlegel, David J.; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Vargas Magaña, Mariana; Zhao, Gong-Bo
2016-05-01
We present an anisotropic analysis of the baryonic acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryonic Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains contains 361 762 galaxies with an effective redshift of zLOWZ = 0.32; the CMASS sample consists of 777 202 galaxies with an effective redshift of zCMASS = 0.57. We extract the BAO peak position from the monopole power spectrum moment, α0, and from the μ2 moment, α2, where μ is the cosine of the angle to the line-of-sight. The μ2-moment provides equivalent information to that available in the quadrupole but is simpler to analyse. After applying a reconstruction algorithm to reduce the BAO suppression by bulk motions, we measure the BAO peak position in the monopole and μ2-moment, which are related to radial and angular shifts in scale. We report H(zLOWZ)rs(zd) = (11.60 ± 0.60) · 103 kms-1 and DA(zLOWZ)/rs(zd) = 6.66 ± 0.16 with a cross-correlation coefficient of r_{HD_A}=0.41, for the LOWZ sample; and H(zCMASS)rs(zd) = (14.56 ± 0.37) · 103 kms-1 and DA(zCMASS)/rs(zd) = 9.42 ± 0.13 with a cross-correlation coefficient of r_{HD_A}=0.47, for the CMASS sample. We demonstrate that our results are not affected by the fiducial cosmology assumed for the analysis. We combine these results with the measurements of the BAO peak position in the monopole and quadrupole correlation function of the same dataset (Cuesta et al. 2016, companion paper) and report the consensus values: H(zLOWZ)rs(zd) = (11.63 ± 0.69) · 103 kms-1 and DA(zLOWZ)/rs(zd) = 6.67 ± 0.15 with r_{HD_A}=0.35 for the LOWZ sample; H(zCMASS)rs(zd) = (14.67 ± 0.42) · 103 kms-1 and DA(zCMASS)/rs(zd) = 9.47 ± 0.12 with r_{HD_A}=0.52 for the CMASS sample.
Gil-Marín, Héctor; Percival, Will J.; Cuesta, Antonio J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Ho, Shirley; Kitaura, Francisco-Shu; Maraston, Claudia; Prada, Francisco; Rodríguez-Torres, Sergio; Ross, Ashley J.; Schlegel, David J.; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Vargas Magaña, Mariana; Zhao, Gong-Bo
2016-08-01
We present an anisotropic analysis of the baryon acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryon Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains 361 762 galaxies with an effective redshift of zLOWZ = 0.32; the CMASS sample consists of 777 202 galaxies with an effective redshift of zCMASS = 0.57. We extract the BAO peak position from the monopole power-spectrum moment, α0, and from the μ2 moment, α2, where μ is the cosine of the angle to the line of sight. The μ2-moment provides equivalent information to that available in the quadrupole but is simpler to analyse. After applying a reconstruction algorithm to reduce the BAO suppression by bulk motions, we measure the BAO peak position in the monopole and μ2-moment, which are related to radial and angular shifts in scale. We report H(zLOWZ)rs(zd) = (11.60 ± 0.60) × 103 km s-1 and DA(zLOWZ)/rs(zd) = 6.66 ± 0.16 with a cross-correlation coefficient of r_{HD_A}=0.41, for the LOWZ sample; and H(zCMASS)rs(zd) = (14.56 ± 0.37) × 103 km s-1 and DA(zCMASS)/rs(zd) = 9.42 ± 0.13 with a cross-correlation coefficient of r_{HD_A}=0.47, for the CMASS sample. We demonstrate that our results are not affected by the fiducial cosmology assumed for the analysis. We combine these results with the measurements of the BAO peak position in the monopole and quadrupole correlation function of the same data set (Cuesta et al. 2016, companion paper) and report the consensus values: H(zLOWZ)rs(zd) = (11.63 ± 0.69) × 103 km s-1 and DA(zLOWZ)/rs(zd) = 6.67 ± 0.15 with r_{HD_A}=0.35 for the LOWZ sample; H(zCMASS)rs(zd) = (14.67 ± 0.42) × 103 km s-1 and DA(zCMASS)/rs(zd) = 9.47 ± 0.12 with r_{HD_A}=0.52 for the CMASS sample.
Tojeiro, R.; Ross, A. J.; Burden, A; Samushia, L.; Manera, M; Percival, W J; Beutler, F.; Brinkmann, J.; Brownstein, J. R.; Cuesta, A. J.; Dawson, K.; Eisenstein, D. J.; Ho, S.; Howlett, C.; Mcbride, C. K.
2014-01-01
RT is thankful for support from the European Research Council and the Science & Technology Facilities Council. We present the distance measurement to z = 0.32 using the eleventh data release (DR) of the Sloan Digital Sky Survey-III Baryon Acoustic Oscillation Survey (BOSS). We use 313 780 galaxies of the low-redshift (LOWZ) sample over 7341 square degrees to compute DV=(1264 ± 25)(rd/rd,fid}) - a sub 2 per cent measurement - using the baryon acoustic feature measured in the galaxy two-poin...
Rodríguez-Torres, Sergio A.; Chuang, Chia-Hsun; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Maraston, Claudia; McBride, Cameron K.; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P.; Thomas, Daniel
2016-08-01
We present a study of the clustering and halo occupation distribution of Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 baryon acoustic oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to k ˜ 1 h Mpc-1), and the three-point correlation function. The quadrupole of the correlation function presents some tensions with observations. We discuss possible causes that can explain this disagreement, including target selection effects. Overall, the standard HAM model describes remarkably well the clustering statistics of the CMASS sample. We compare the stellar-to-halo mass relation for the CMASS sample measured using weak lensing in the Canada-France-Hawaii Telescope Stripe 82 Survey with the prediction of our clustering model, and find a good agreement within 1σ. The BigMD-BOSS light cone including properties of BOSS galaxies and halo properties is made publicly available.
Soumagnac, M. T.; Barkana, R.; Sabiu, C. G.; Loeb, A.; Ross, A. J.; Abdalla, F. B.; Balan, S. T.; Lahav, O.
2016-05-01
Baryon acoustic oscillations in the early Universe are predicted to leave an as yet undetected signature on the relative clustering of total mass versus luminous matter. A detection of this effect would provide an important confirmation of the standard cosmological paradigm and constrain alternatives to dark matter as well as nonstandard fluctuations such as compensated isocurvature perturbations (CIPs). We conduct the first observational search for this effect, by comparing the number-weighted and luminosity-weighted correlation functions, using the SDSS-III BOSS Data Release 10 CMASS sample. When including CIPs in our model, we formally obtain evidence at 3.2 σ of the relative clustering signature and a limit that matches the existing upper limits on the amplitude of CIPs. However, various tests suggest that these results are not yet robust, perhaps due to systematic biases in the data. The method developed in this Letter used with more accurate future data such as that from DESI, is likely to confirm or disprove our preliminary evidence.
Application of Wavelet Packet Analysis to the Measurement of the Baryon Acoustic Oscillation
Kadowaki, Kevin; Garcia, Noel; Ford, Taurean; Pando, Jesus; SDSS-FAST Collaboration
2016-03-01
We develop a method of wavelet packet analysis to measure the Baryon Acoustic Oscillation (BAO) peak and apply this method to the CMASS galaxy catalog from the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) collaboration. We compare our results to a fiducial ?CDM flat cosmological model and detect a BAO signature in the power spectrum comparable to the previous consensus results of the BOSS collaboration. We find DA = 1365rd /rd , fid at z = . 54 . Member ID Forthcoming.
Sanchez, Ariel G; Kazin, Eyal A; Aubourg, Eric; Beutler, Florian; Brinkmann, Jon; Brownstein, Joel R; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Ho, Shirley; Honscheid, Klaus; Manera, Marc; Maraston, Claudia; McBride, Cameron K; Percival, Will J; Ross, Ashley J; Samushia, Lado; Schlegel, David J; Schneider, Donald P; Skibba, Ramin; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Wake, David A; Weaver, Benjamin A; White, Martin; Zehavi, Idit
2013-01-01
We explore the cosmological implications of the angle-averaged correlation function, xi(s), and the clustering wedges, xi_perp(s) and xi_para(s), of the LOWZ and CMASS galaxy samples from Data Release 10 and 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. Our results show no significant evidence for a deviation from the standard LCDM model. The combination of the information from our clustering measurements with recent data from the cosmic microwave background is sufficient to constrain the curvature of the Universe to Omega_k = 0.0010 +- 0.0029, the total neutrino mass to Sum m_nu < 0.23 eV (95% confidence level), the effective number of relativistic species to N_eff=3.31 +- 0.27, and the dark energy equation of state to w_DE = -1.051 +- 0.076. These limits are further improved by adding information from type Ia supernovae and baryon acoustic oscillations from other samples. In particular, this data set combination is completely consistent with a time-independent dark energy equation of state,...
Optimal Redshift Weighting For Baryon Acoustic Oscillations
Zhu, Fangzhou; Padmanabhan, Nikhil; White, Martin
2014-01-01
Future baryon acoustic oscillation (BAO) surveys will survey very large volumes, covering wide ranges in redshift. We derive a set of redshift weights to compress the information in the redshift direction to a small number of modes. We suggest that such a compression preserves almost all of the signal for most cosmologies, while giving high signal-to-noise measurements for each combination. We present some toy models and simple worked examples. As an intermediate step, we give a precise meani...
Wang, Yuting; Chuang, Chia-Hsun; Ross, Ashley J; Percival, Will J; Gil-Marín, Héctor; Cuesta, Antonio J; Kitaura, Francisco-Shu; Rodriguez-Torres, Sergio; Brownstein, Joel R; Eisenstein, Daniel J; Ho, Shirley; Kneib, Jean-Paul; Olmstead, Matt; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G; Salazar-Albornoz, Salvador; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Zhu, Fangzhou
2016-01-01
We perform a tomographic baryon acoustic oscillations analysis using the two-point galaxy correlation function measured from the combined sample of BOSS DR12, which covers the redshift range of $0.2
Detecting baryon acoustic oscillations by 3d weak lensing
Grassi, Alessandra; Schaefer, Bjoern Malte
2013-01-01
We investigate the possibility of detecting baryon acoustic oscillation features in the cosmic matter distribution by 3d weak lensing. Baryon oscillations are inaccessible even to weak lensing tomography because of wide line-of-sight weighting functions and require a specialized approach via 3d shear estimates. We quantify the uncertainty of estimating the matter spectrum amplitude at the baryon oscillations wave vectors by a Fisher-matrix approach with a fixed cosmology and show in this way ...
Wang, Xin; Chen, Xuelei; Zheng, Zheng; Wu, Fengquan; Zhang, Pengjie; Zhao, Yongheng
2008-01-01
The Large Area Multi-Object Spectroscopic Telescope (LAMOST) is a dedicated spectroscopic survey telescope being built in China, with an effective aperture of 4 meters and equiped with 4000 fibers. Using the LAMOST telescope, one could make redshift survey of the large scale structure (LSS). The baryon acoustic oscillation (BAO) features in the LSS power spectrum provide standard rulers for measuring dark energy and other cosmological parameters. In this paper we investigate the meaurement pr...
Pellejero-Ibanez, Marcos; Rubiño-Martín, J A; Cuesta, Antonio J; Wang, Yuting; Zhao, Gong-bo; Ross, Ashley J; Rodríguez-Torres, Sergio; Prada, Francisco; Slosar, Anže; Vazquez, Jose A; Alam, Shadab; Beutler, Florian; Eisenstein, Daniel J; Gil-Marín, Héctor; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G; Satpathy, Siddharth; Seo, Hee-Jong; Tinker, Jeremy L; Tojeiro, Rita; Vargas-Magaña, Mariana; Brownstein, Joel R; Nichol, Robert C; Olmstead, Matthew D
2016-01-01
We develop a new methodology called double-probe analysis with the aim of minimizing informative priors in the estimation of cosmological parameters. We extract the dark-energy-model-independent cosmological constraints from the joint data sets of Baryon Oscillation Spectroscopic Survey (BOSS) galaxy sample and Planck cosmic microwave background (CMB) measurement. We measure the mean values and covariance matrix of $\\{R$, $l_a$, $\\Omega_b h^2$, $n_s$, $log(A_s)$, $\\Omega_k$, $H(z)$, $D_A(z)$, $f(z)\\sigma_8(z)\\}$, which give an efficient summary of Planck data and 2-point statistics from BOSS galaxy sample, where $R=\\sqrt{\\Omega_m H_0^2}\\,r(z_*)$, and $l_a=\\pi r(z_*)/r_s(z_*)$, $z_*$ is the redshift at the last scattering surface, and $r(z_*)$ and $r_s(z_*)$ denote our comoving distance to $z_*$ and sound horizon at $z_*$ respectively. The advantage of this method is that we do not need to put informative priors on the cosmological parameters that galaxy clustering is not able to constrain well, i.e. $\\Omega_b...
Satpathy, Siddharth; Ho, Shirley; White, Martin; Bahcall, Neta A; Beutler, Florian; Brownstein, Joel R; Chuang, Chia-Hsun; Eisenstein, Daniel J; Grieb, Jan Niklas; Kitaura, Francisco; Olmstead, Matthew D; Percival, Will J; Salazar-Albornoz, Salvador; Sánchez, Ariel G; Seo, Hee-Jong; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita
2016-01-01
We present a measurement of the linear growth rate of structure, \\textit{f} from the Sloan Digital Sky Survey III (SDSS III) Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) using Convolution Lagrangian Perturbation Theory (CLPT) with Gaussian Streaming Redshift-Space Distortions (GSRSD) to model the two point statistics of BOSS galaxies in DR12. The BOSS-DR12 dataset includes 1,198,006 massive galaxies spread over the redshift range $0.2 < z < 0.75$. These galaxy samples are categorized in three redshift bins. Using CLPT-GSRSD in our analysis of the combined sample of the three redshift bins, we report measurements of $f \\sigma_8$ for the three redshift bins. We find $f \\sigma_8 = 0.430 \\pm 0.054$ at $z_{\\rm eff} = 0.38$, $f \\sigma_8 = 0.452 \\pm 0.057$ at $z_{\\rm eff} = 0.51$ and $f \\sigma_8 = 0.457 \\pm 0.052$ at $z_{\\rm eff} = 0.61$. Our results are consistent with the predictions of Planck $\\Lambda$CDM-GR. Our constraints on the growth rates of structure in the Universe at differ...
Neutron-antineutron Oscillation and Baryonic Majoron: Low Scale Spontaneous Baryon Violation
Berezhiani, Zurab
2015-01-01
We discuss a possibility that baryon number $B$ is spontaneously broken at low scales, of the order of MeV or even smaller, so that the neutron-antineutron oscillation can be induced at the experimentally accessible level. An associated Goldstone particle, baryonic majoron, can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to $B-L$ symmetry, baryo-majoron can be identified with the ordinary majoron associated with t...
Efficient construction of mock catalogs for baryon acoustic oscillation surveys
Sunayama, Tomomi; Padmanabhan, Nikhil; Heitmann, Katrin; Habib, Salman; Rangel, Esteban
2016-05-01
Precision measurements of the large scale structure of the Universe require large numbers of high fidelity mock catalogs to accurately assess, and account for, the presence of systematic effects. We introduce and test a scheme for generating mock catalogs rapidly using suitably derated N-body simulations. Our aim is to reproduce the large scale structure and the gross properties of dark matter halos with high accuracy, while sacrificing the details of the halo's internal structure. By adjusting global and local time-steps in an N-body code, we demonstrate that we recover halo masses to better than 0.5% and the power spectrum to better than 1% both in real and redshift space for k=1hMpc‑1, while requiring a factor of 4 less CPU time. We also calibrate the redshift spacing of outputs required to generate simulated light cones. We find that outputs separated by Δ z=0.05 allow us to interpolate particle positions and velocities to reproduce the real and redshift space power spectra to better than 1% (out to k=1hMpc‑1). We apply these ideas to generate a suite of simulations spanning a range of cosmologies, motivated by the Baryon Oscillation Spectroscopic Survey (BOSS) but broadly applicable to future large scale structure surveys including eBOSS and DESI. As an initial demonstration of the utility of such simulations, we calibrate the shift in the baryonic acoustic oscillation peak position as a function of galaxy bias with higher precision than has been possible so far. This paper also serves to document the simulations, which we make publicly available.
Optimising Baryon Acoustic Oscillation Surveys - I: Testing the concordance LCDM cosmology
Parkinson, David; Blake, Chris; Kunz, Martin; Bassett, Bruce A.; Nichol, Robert C.; Glazebrook, Karl
2007-01-01
We optimize the design of future spectroscopic redshift surveys for constraining the dark energy via precision measurements of the baryon acoustic oscillations (BAO), with particular emphasis on the design of the Wide-Field Multi-Object Spectrograph (WFMOS). We develop a model that predicts the number density of possible target galaxies as a function of exposure time and redshift. We use this number counts model together with fitting formulae for the accuracy of the BAO measurements to determ...
Oscillating neutrons and disappearing baryons: a theoretical overview
Baryon and lepton number are accidental symmetries in the standard SU(3) x SU(2) x (U)1 theory. We discuss the implications of this for neutron oscillations and compare the situation with that in proton decay. To illustrate our arguments we briefly discuss several models where neutron oscillations might be observed with tau/sub n anti n/ approx. 108 - 109 sec. In particular, just to prove a point, we construct a grand unified model with neutron oscillation but no proton decay
Neutron-antineutron Oscillation and Baryonic Majoron: Low Scale Spontaneous Baryon Violation
Berezhiani, Zurab
2015-01-01
We discuss a possibility that baryon number $B$ is spontaneously broken at low scales, of the order of MeV or even smaller, so that the neutron-antineutron oscillation can be induced at the experimentally accessible level. An associated Goldstone particle, baryonic majoron, can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to $B-L$ symmetry, baryo-majoron can be identified with the ordinary majoron associated with the spontaneous breaking of lepton number, with interesting implications for neutrinoless $2\\beta$ becay with the majoron emission, etc. We also discuss a hypothesis suggesting that baryon number maybe spontaneously broken by the QCD itself via the six-quark condensates.
Oscillations of the static meson fields at finite baryon density
The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (author). 19 refs, 6 figs
Skewness as a probe of baryon acoustic oscillations
Juszkiewicz, Roman; Hellwing, Wojciech A.; van de Weygaert, Rien
2013-01-01
In this study, we show that the skewness S-3 of the cosmic density field contains a significant and potentially detectable and clean imprint of baryonic acoustic oscillations (BAOs). Although the BAO signal in the skewness has a lower amplitude than second-order measures like the two-point correlati
The baryon acoustic oscillation peak: a flexible standard ruler
Roukema, Boudewijn F
2015-01-01
For about a decade, the baryon acoustic oscillation (BAO) peak at about 105 Mpc/h has provided a standard ruler test of the LCDM cosmological model, a member of the Friedmann--Lemaitre--Robertson--Walker (FLRW) family of cosmological models---according to which comoving space is rigid. However, general relativity does not require comoving space to be rigid. During the virialisation epoch, when the most massive structures form by gravitational collapse, it should be expected that comoving spac...
Is the baryon acoustic oscillation peak a cosmological standard ruler?
Roukema, Boudewijn F; Buchert, Thomas; Fujii, Hirokazu; Ostrowski, Jan J.
2015-01-01
In the standard model of cosmology, the Universe is static in comoving coordinates; expansion occurs homogeneously and is represented by a global scale factor. The baryon acoustic oscillation (BAO) peak location is a statistical tracer that represents, in the standard model, a fixed comoving-length standard ruler. Recent gravitational collapse should modify the metric, rendering the effective scale factor, and thus the BAO standard ruler, spatially inhomogeneous. Using the Sloan Digital Sky S...
Measuring the matter density using baryon oscillations in the SDSS
Percival, Will J.; Nichol, Robert C.; Eisenstein, Daniel J.; Weinberg, David H.; Fukugita, Masataka; Pope, Adrian C.; Schneider, Donald P.; Szalay, Alex S.; Vogeley, Michael S.; Zehavi, Idit; Bahcall, Neta A.; Brinkmann, Jon; Connolly, Andrew J; Loveday, Jon; Meiksin, Avery
2006-01-01
We measure the cosmological matter density by observing the positions of baryon acoustic oscillations in the clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We jointly analyse the main galaxies and LRGs in the SDSS DR5 sample, using over half a million galaxies in total. The oscillations are detected with 99.74% confidence (3.0sigma assuming Gaussianity) compared to a smooth power spectrum. When combined with the observed scale of the peaks within the CMB, we find a best-fit va...
Measuring the matter density using baryon oscillations in the SDSS
Percival, Will J.; Nichol, Robert C.; Eisenstein, Daniel J.; Weinberg, David H.; Fukugita, Masataka; Pope, Adrian C.; Schneider, Donald P.; Szalay, Alex S.; Vogeley, Michael S.; Zehavi, Idit; Bahcall, Neta A.; Brinkmann, Jon; Connolly, Andrew J; Loveday, Jon; Meiksin, Avery
2007-01-01
We measure the cosmological matter density by observing the positions of baryon acoustic oscillations in the clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We jointly analyze the main galaxies and LRGs in the SDSS DR5 sample, using over half a million galaxies in total. The oscillations are detected with 99.74% confidence (3.0 σ assuming Gaussianity) compared to a smooth power spectrum. When combined with the observed scale of the peaks within the CMB, we find a best-fit value...
The information content of anisotropic Baryon Acoustic Oscillation scale measurements
Ross, Ashley J.; Percival, Will J.; Manera, Marc
2015-01-01
Anisotropic measurements of the Baryon Acoustic Oscillation (BAO) feature within a galaxy survey enable joint inference about the Hubble parameter $H(z)$ and angular diameter distance $D_A(z)$. These measurements are typically obtained from moments of the measured 2-point clustering statistics, with respect to the cosine of the angle to the line of sight $\\mu$. The position of the BAO features in each moment depends on a combination of $D_A(z)$ and $H(z)$, and measuring the positions in two o...
Rodríguez-Torres, Sergio A; Chuang, Chia-Hsun; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D; Brownstein, Joel R; Maraston, Claudia; McBride, Cameron K; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P; Thomas, Daniel
2015-01-01
We present a study of the clustering and halo occupation distribution of BOSS CMASS galaxies in the redshift range 0.43 < z < 0.7 drawn from the Final SDSS-III Data Release. We compare the BOSS results with the predictions of a halo abundance matching (HAM) clustering model that assigns galaxies to dark matter halos selected from the large BigMultiDark N-body simulation of a flat $\\Lambda$CDM Planck cosmology. We compare the observational data with the simulated ones on a light-cone constructed from 20 subsequent outputs of the simulation. Observational effects such as incompleteness, geometry, veto masks and fiber collisions are included in the model, which reproduces within 1-$\\sigma$ errors the observed monopole of the 2-point correlation function at all relevant scales{: --} from the smallest scales, 0.5 $h^{-1}$Mpc , up to scales beyond the Baryonic Acoustic Oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to $k\\sim1$ $h$ Mpc$^{-1}$), and the three...
Efficient Reconstruction of Linear Baryon Acoustic Oscillations in Galaxy Surveys
Burden, Angela; Manera, Marc; Cuesta, Antonio J; Magana, Mariana Vargas; Ho, Shirley
2014-01-01
Reconstructing an estimate of linear Baryon Acoustic Oscillations (BAO) from an evolved galaxy field has become a standard technique in recent analyses. By partially removing non-linear damping caused by bulk motions, the real-space BAO peak in the correlation function is sharpened, and oscillations in the power spectrum are visible to smaller scales. In turn these lead to stronger measurements of the BAO scale. Future surveys are being designed assuming that this improvement has been applied, and this technique is therefore of critical importance for future BAO measurements. A number of reconstruction techniques are available, but the most widely used is a simple algorithm that decorrelates large-scale and small-scale modes approximately removing the bulk-flow displacements by moving the overdensity field (Eisenstein et al. 2007; Padmanabhan, White & Cohn 2009). We consider the practical implementation of this algorithm, looking at the efficiency of reconstruction as a function of the assumptions made fo...
Baryon Acoustic Oscillation Intensity Mapping of Dark Energy
Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick
2008-03-01
The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.
Baryon Acoustic Oscillation Intensity Mapping of Dark Energy
Chang, Tzu-Ching; Peterson, Jeffrey B; McDonald, Patrick
2007-01-01
The expansion of the universe appears to be accelerating, and the mysterious anti-gravity agent of this acceleration has been called ``dark energy''. To measure the dynamics of dark energy, Baryon Acoustic Oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10^9 individual galaxies, by observing the 21cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three dimensional brightness mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.
Baryon acoustic oscillation intensity mapping of dark energy.
Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick
2008-03-01
The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy. PMID:18352692
Measuring the distance-redshift relation with the baryon acoustic oscillations of galaxy clusters
Veropalumbo, A.; Marulli, F.; Moscardini, L.; Moresco, M.; Cimatti, A.
2016-05-01
We analyse the largest spectroscopic samples of galaxy clusters to date, and provide observational constraints on the distance-redshift relation from baryon acoustic oscillations. The cluster samples considered in this work have been extracted from the Sloan Digital Sky Survey at three median redshifts, z = 0.2, 0.3 and 0.5. The number of objects is 12 910, 42 215 and 11 816, respectively. We detect the peak of baryon acoustic oscillations for all the three samples. The derived distance constraints are rs/DV(z = 0.2) = 0.18 ± 0.01, rs/DV(z = 0.3) = 0.124 ± 0.004 and rs/DV(z = 0.5) = 0.080 ± 0.002. Combining these measurements with the sound horizon scale measured from the cosmic microwave background, we obtain robust constraints on cosmological parameters. Our results are in agreement with the standard Λ cold dark matter (ΛCDM) model. Specifically, we constrain the Hubble constant in a ΛCDM model, H_0 = 64_{-8}^{+17} km s^{-1} Mpc^{-1} , the density of curvature energy, in the oΛCDM context, Ω _K = -0.01_{-0.33}^{+0.34}, and finally the parameter of the dark energy equation of state in the wCDM case, w = -1.06_{-0.52}^{+0.49}. This is the first time the distance-redshift relation has been constrained using only the peak of baryon acoustic oscillations of galaxy clusters.
Baryon Acoustic Oscillations in the Ly-\\alpha\\ forest of BOSS quasars
Busca, Nicolás G; Rich, James; Bailey, Stephen; Font-Ribera, Andreu; Kirkby, David; Goff, J -M Le; Pieri, Matthew M; Slosar, Anze; Aubourg, Éric; Bautista, Julian E; Bizyaev, Dmitry; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brewington, Howard; Borde, Arnaud; Brinkmann, J; Carithers, Bill; Croft, Rupert A C; Dawson, Kyle S; Ebelke, Garrett; Eisenstein, Daniel J; Hamilton, Jean-Christophe; Ho, Shirley; Hogg, David W; Honscheid, Klaus; Lee, Khee-Gan; Lundgren, Britt; Malanushenko, Elena; Malanushenko, Viktor; Margala, Daniel; Maraston, Claudia; Mehta, Kushal; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Olmstead, Matthew D; Oravetz, Daniel; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pâris, Isabelle; Percival, Will J; Petitjean, Patrick; Roe, N A; Rollinde, Emmanuel; Ross, Nicholas P; Rossi, Graziano; Schlegel, David J; Schneider, Donald P; Shelden, Alaina; Sheldon, Erin S; Simmons, Audrey; Snedden, Stephanie; Tinker, Jeremy L; Viel, Matteo; Weaver, Benjamin A; Weinberg, David H; White, Martin; Yèche, Christophe; York, Donald G; Zhao, Gong-Bo
2012-01-01
We report a detection of the baryon acoustic oscillation (BAO) feature in the three-dimensional correlation function of the transmitted flux fraction in the \\Lya forest of high-redshift quasars. The study uses 48,640 quasars in the redshift range $2.1\\le z \\le 3.5$ from the Baryon Oscillation Spectroscopic Survey (BOSS) of the third generation of the Sloan Digital Sky Survey (SDSS-III). At a mean redshift $z=2.3$, we measure the monopole and quadrupole components of the correlation function for separations in the range $20\\hMpc
Quasar-Lyman $\\alpha$ Forest Cross-Correlation from BOSS DR11 : Baryon Acoustic Oscillations
Font-Ribera, Andreu; Busca, Nicolas; Miralda-Escudé, Jordi; Ross, Nicholas P; Slosar, Anže; Aubourg, Éric; Bailey, Stephen; Bhardwaj, Vaishali; Bautista, Julian; Beutler, Florian; Bizyaev, Dmitry; Blomqvist, Michael; Brewington, Howard; Brinkmann, Jon; Brownstein, Joel R; Carithers, Bill; Dawson, Kyle S; Delubac, Timothée; Ebelke, Garrett; Eisenstein, Daniel J; Ge, Jian; Kinemuchi, Karen; Lee, Khee-Gan; Malanushenko, Viktor; Malanushenko, Elena; Marchante, Moses; Margala, Daniel; Muna, Demitri; Myers, Adam D; Noterdaeme, Pasquier; Oravetz, Daniel; Palanque-Delabrouille, Nathalie; Pâris, Isabelle; Petitjean, Patrick; Pieri, Matthew M; Rossi, Graziano; Schneider, Donald P; Simmons, Audrey; Viel, Matteo; Yeche, Christophe; York, Donald G
2013-01-01
We measure the large-scale cross-correlation of quasars with the Lyman alpha forest absorption, using over 164,000 quasars from Data Release 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We extend the previous study of roughly 60,000 quasars from Data Release 9 to larger separations, allowing a measurement of the Baryonic Acoustic Oscillation (BAO) scale along the line of sight $c/(H(z=2.36) ~ r_s) = 9.0 \\pm 0.3$ and across the line of sight $D_A(z=2.36)~ / ~ r_s = 10.8 \\pm 0.4$, consistent with CMB and other BAO data. Using the best fit value of the sound horizon from Planck data ($r_s=147.49 Mpc$), we can translate these results to a measurement of the Hubble parameter of $H(z=2.36) = 226 \\pm 8 km/s$ and of the angular diameter distance of $D_A(z=2.36) = 1590 \\pm 60 Mpc$. The measured cross-correlation function and an update of the code to fit the BAO scale (baofit) are made publicly available.
Baryon Acoustic Oscillations in the Ly{\\alpha} forest of BOSS DR11 quasars
Delubac, Timothée; Busca, Nicolás G; Rich, James; Kirkby, David; Bailey, Stephen; Font-Ribera, Andreu; Slosar, Anže; Lee, Khee-Gan; Pieri, Matthew M; Hamilton, Jean-Christophe; Aubourg, Éric; Blomqvist, Michael; Bovy, Jo; Brinkmann, J; Carithers, William; Dawson, Kyle S; Eisenstein, Daniel J; Kneib, Jean-Paul; Goff, J -M Le; Margala, Daniel; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; O'Connell, Ross; Olmstead, Matthew D; Palanque-Delabrouille, Nathalie; Pâris, Isabelle; Petitjean, Patrick; Ross, Nicholas P; Rossi, Graziano; Schlegel, David J; Schneider, Donald P; Weinberg, David H; Yèche, Christophe; York, Donald G
2014-01-01
We report a detection of the baryon acoustic oscillation (BAO) feature in the flux-correlation function of the Ly{\\alpha} forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range $2.1\\le z \\le 3.5$ from the Data Release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, $D_A(z=2.34)$ and expansion rate, $H(z=2.34)$, both on a scale set by the sound horizon at the drag epoch, $r_d$. We find $D_A/r_d=11.28\\pm0.65(1\\sigma)^{+2.8}_{-1.2}(2\\sigma)$ and $D_H/r_d=9.18\\pm0.28(1\\sigma)\\pm0.6(2\\sigma)$ where $D_H=c/H$. The optimal combination, $\\sim D_H^{0.7}D_A^{0.3}/r_d$ is determined with a precision of $\\sim2\\%$. For the value $r_d=147.4~{\\rm Mpc}$, consistent with the CMB power spectrum measured by Planck, we find $D_A(z=2.34)=1662\\pm96(1\\sigma)~{\\rm M...
The BOSS-WiggleZ overlap region I: Baryon Acoustic Oscillations
Beutler, Florian; Koda, Jun; Marin, Felipe; Seo, Hee-Jong; Cuesta, Antonio J; Schneider, Donald P
2015-01-01
We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We calculate the auto-correlation and cross-correlation functions in the overlap region of the two datasets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO measurement from the cross-correlation function represents the first such detection between two different galaxy surveys. After applying density-field reconstruction we report distance-scale measurements $D_V r_s^{\\rm fid} / r_s = (1970 \\pm 47, 2132 \\pm 67, 2100 \\pm 200)$ Mpc from CMASS, the cross-correlation and WiggleZ, respectively. We use correlated mock realizations to calculate the covariance between the three BAO constraints. The distance scales derived from the two datasets are consistent, and are also robust against switching the displacement fields used for reconstruction between the two surveys. This approach can be used to construct a correlati...
Redshift Weights for Baryon Acoustic Oscillations : Application to Mock Galaxy Catalogs
Zhu, Fangzhou; White, Martin; Ross, Ashley J; Zhao, Gongbo
2016-01-01
Large redshift surveys capable of measuring the Baryon Acoustic Oscillation (BAO) signal have proven to be an effective way of measuring the distance-redshift relation in cosmology. Building off the work in Zhu et al. (2015), we develop a technique to directly constrain the distance-redshift relation from BAO measurements without splitting the sample into redshift bins. We parametrize the distance-redshift relation, relative to a fiducial model, as a quadratic expansion. We measure its coefficients and reconstruct the distance-redshift relation from the expansion. We apply the redshift weighting technique in Zhu et al. (2015) to the clustering of galaxies from 1000 QuickPM (QPM) mock simulations after reconstruction and achieve a 0.75% measurement of the angular diameter distance $D_A$ at $z=0.64$ and the same precision for Hubble parameter H at $z=0.29$. These QPM mock catalogs are designed to mimic the clustering and noise level of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12). W...
Streaming Velocities and the Baryon Acoustic Oscillation Scale.
Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M
2016-03-25
At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation. PMID:27058069
Streaming Velocities and the Baryon Acoustic Oscillation Scale
Blazek, Jonathan A.; McEwen, Joseph E.; Hirata, Christopher M.
2016-03-01
At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ˜5 ) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.
Systematic treatment of non-linear effects in Baryon Acoustic Oscillations
Ivanov, Mikhail M
2016-01-01
In this contribution we will discuss the non-linear effects in the baryon acoustic oscillations and present a systematic and controllable way to account for them within time-sliced perturbation theory.
Cosmological implications of baryon acoustic oscillation (BAO) measurements
Aubourg, Éric; Bautista, Julian E; Beutler, Florian; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brewington, Howard; Brinkmann, J; Brownstein, Joel R; Burden, Angela; Busca, Nicolás G; Carithers, William; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J; Dawson, Kyle S; Delubac, Timothée; Eisenstein, Daniel J; Font-Ribera, Andreu; Ge, Jian; Goff, J -M Le; Gontcho, Satya Gontcho A; Gott, J Richard; Gunn, James E; Guo, Hong; Guy, Julien; Hamilton, Jean-Christophe; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Kitaura, Francisco S; Kneib, Jean-Paul; Lee, Khee-Gan; Long, Dan; Lupton, Robert H; Magaña, Mariana Vargas; Malanushenko, Viktor; Malanushenko, Elena; Manera, Marc; Maraston, Claudia; Margala, Daniel; McBride, Cameron K; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Nuza, Sebastián E; Olmstead, Matthew D; Oravetz, Daniel; Pâris, Isabelle; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J; Petitjean, Patrick; Pieri, Matthew M; Prada, Francisco; Reid, Beth; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G; Samushia, Lado; Santos, Ricardo Tanausú Génova; Scóccola, Claudia G; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Sheldon, Erin; Simmons, Audrey; Skibba, Ramin A; Slosar, Anže; Strauss, Michael A; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Vazquez, Jose Alberto; Viel, Matteo; Wake, David A; Weaver, Benjamin A; Weinberg, David H; Wood-Vasey, W M; Yèche, Christophe; Zehavi, Idit; Zhao, Gong-Bo
2014-01-01
We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) and Type Ia supernova (SN) data. We take advantage of high-precision BAO measurements from galaxy clustering and the Ly-alpha forest (LyaF) in the BOSS survey of SDSS-III. BAO data alone yield a high confidence detection of dark energy, and in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Combining BAO and SN data into an "inverse distance ladder" yields a 1.7% measurement of $H_0=67.3 \\pm1.1$ km/s/Mpc. This measurement assumes standard pre-recombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat LCDM cosmology is an important corroboration of this minimal cosmological model. For open LCDM, our BAO+SN+CMB combination yields $\\Omega_m=0.301 \\pm 0.008$ and curvature $\\Omega_k=-0.003 \\pm ...
Cosmological implications of two types of baryon acoustic oscillation data
Hu, Yazhou; Li, Nan; Wang, Shuang
2015-01-01
Aims: We explore the cosmological implications of two types of baryon acoustic oscillation (BAO) data that are extracted by using the spherically averaged one-dimensional galaxy clustering (GC) statistics (hereafter BAO1) and the anisotropic two-dimensional GC statistics (hereafter BAO2), respectively. Methods: Firstly, making use of the BAO1 and the BAO2 data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we constrain the parameter spaces of the $\\Lambda$CDM, the $w$CDM, and the Chevallier-Polarski-Linder (CPL) model. Then, we discuss the impacts of different BAO data on parameter estimation, equation of state $w$, figure of merit and deceleration-acceleration transition redshift. At last, we use various dark energy diagnosis, including Hubble diagram $H(z)$, deceleration diagram $q(z)$, statefinder hierarchy $\\{S^{(1)}_3, S^{(1)}_4\\}$, composite null diagnosic (CND) $\\{S^{(1)}_3, \\epsilon(z)\\}$ and $\\{S^{(1)}_4, \\epsilon(z)\\}$, to distinguish the differences between the...
Measuring Baryon Acoustic Oscillations from the clustering of voids
Liang, Yu; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling
2015-01-01
We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal, from voids based on galaxy redshift catalogues. To this end, we study the dependency of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the meth...
A New Statistic for Analyzing Baryon Acoustic Oscillations
Xu, X; Padmanabhan, N; Eisenstein, D; Eckel, J; Mehta, K; Metchnik, M; Pinto, P; Seo, H -J
2010-01-01
We introduce a new statistic omega_l for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. omega_l is a band-filtered, configuration space statistic that is easily implemented and has advantages over the traditional power spectrum and correlation function estimators. Unlike these estimators, omega_l can localize most of the acoustic information into a single dip at the acoustic scale while also avoiding sensitivity to the poorly constrained large scale power (i.e., the integral constraint) through the use of a localized and compensated filter. It is also sensitive to anisotropic clustering through pair counting and does not require any binning. We measure the shift in the acoustic peak due to nonlinear effects using the monopole omega_0 derived from subsampled dark matter catalogues as well as from mock galaxy catalogues created via halo occupation distribution (HOD) modeling. All of these are drawn from 44 realizations of 1024^3 particle dark matter simulations ...
Babu, K. S.; Mohapatra, Rabindra N.
2016-01-01
We point out that if the baryon number violating neutron-antineutron oscillation is discovered, it would impose strong limits on the departure from Einstein's equivalence principle at a level of one part in $10^{19}$. If this departure owes its origin to the existence of long-range forces coupled to baryon number $B$ (or $B-L$), it would imply very stringent constraints on the strength of gauge bosons coupling to baryon number current. For instance, if the force mediating baryon number has st...
Redshift weights for baryon acoustic oscillations: application to mock galaxy catalogues
Zhu, Fangzhou; Padmanabhan, Nikhil; White, Martin; Ross, Ashley J.; Zhao, Gongbo
2016-09-01
Large redshift surveys capable of measuring the baryon acoustic oscillation (BAO) signal have proven to be an effective way of measuring the distance-redshift relation in cosmology. Building off the work in Zhu et al., we develop a technique to directly constrain the distance-redshift relation from BAO measurements without splitting the sample into redshift bins. We apply the redshift weighting technique in Zhu et al. to the clustering of galaxies from 1000 Quick particle mesh (QPM) mock simulations after reconstruction and achieve a 0.75 per cent measurement of the angular diameter distance DA at z = 0.64 and the same precision for Hubble parameter H at z = 0.29. These QPM mock catalogues mimic the clustering and noise level of the Baryon Oscillation Spectroscopic Survey Data Release 12 (DR12). We compress the correlation functions in the redshift direction on to a set of weighted correlation functions. These estimators give unbiased DA and H measurements across the entire redshift range of the combined sample. We demonstrate the effectiveness of redshift weighting in improving the distance and Hubble parameter estimates. Instead of measuring at a single `effective' redshift as in traditional analyses, we report our DA and H measurements at all redshifts. The measured fractional error of DA ranges from 1.53 per cent at z = 0.2 to 0.75 per cent at z = 0.64. The fractional error of H ranges from 0.75 per cent at z = 0.29 to 2.45 per cent at z = 0.7. Our measurements are consistent with a Fisher forecast to within 10-20 per cent depending on the pivot redshift. We further show the results are robust against the choice of fiducial cosmologies, galaxy bias models, and redshift-space distortions streaming parameters.
Measuring baryon acoustic oscillations from the clustering of voids
Liang, Yu; Zhao, Cheng; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling
2016-07-01
We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal from voids, based on galaxy redshift catalogues. To this end, we study the dependence of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale-dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the methodology on an additional set of 1000 realistic mock galaxy catalogues reproducing the SDSS-III/BOSS CMASS DR11 data, to control the impact of sky mask and radial selection function. Our solution is based on generating voids from randoms including the same survey geometry and completeness, and a post-processing cleaning procedure in the holes and at the boundaries of the survey. The methodology and optimal selection of void populations validated in this work have been used to perform the first BAO detection from voids in observations, presented in a companion paper.
Babu, K S
2016-01-01
We point out that if the baryon number violating neutron-antineutron oscillation is discovered, it would impose strong limits on the departure from Einstein's equivalence principle at a level of one part in $10^{19}$. If this departure owes its origin to the existence of long-range forces coupled to baryon number $B$ (or $B-L$), it would imply very stringent constraints on the strength of gauge bosons coupling to baryon number current. For instance, if the force mediating baryon number has strength $\\alpha_B$ and its range is larger than a megaparsec, we find the limit to be $\\alpha_B \\leq 2\\times 10^{-57}$, which is much stronger than all other existing bounds. For smaller range for the force, we get slightly weaker, but still stringent bounds by considering the potential of the Earth and the Sun.
Probing dark energy with baryonic oscillations and future radio surveys of neutral Hydrogen
Abdalla, F. B.; Rawlings, S.
2004-01-01
Current surveys may be on the verge of measuring the baryonic oscillations in the galaxy power spectrum which are clearly seen imprinted on the Cosmic Microwave Background. It has recently been proposed that these oscillations allow a `standard ruler' method of probing the equation of state of dark energy. In this paper we present a new calculation of the number of galaxies future adio telescopes will detect in surveys of the sky in neutral Hydrogen (HI). We estimate the likely statistical er...
Slosar, Anže; Kirkby, David; Bailey, Stephen; Busca, Nicolás G; Delubac, Timothée; Rich, James; Bhardwaj, Vaishali; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brownstein, Joel; Carithers, Bill; Croft, Rupert A C; Dawson, Kyle S; Font-Ribera, Andreu; Goff, J -M Le; Ho, Shirley; Honscheid, Klaus; Lee, Khee-Gan; Margala, Daniel; McDonald, Patrick; Medolin, Bumbarija; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Pâris, Isabelle; Petitjean, Patrick; Pieri, Matthew M; Roe, Yodovina Piškur N A; Ross, Nicholas P; Rossi, Graziano; Schlegel, David J; Schneider, Donald P; Sheldon, Erin S; Seljak, Uroš; Viel, Matteo; Weinberg, David H; Yèche, Christophe
2013-01-01
We use the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) to detect and measure the position of the Baryonic Acoustic Oscillation (BAO) feature in the three-dimensional correlation function in the Lyman-alpha forest flux fluctuations at a redshift z=2.4. The feature is clearly detected at significance between 3 and 5 sigma (depending on the broadband model and method of error covariance matrix estimation) and is consistent with predictions of the standard LCDM model. We assess the biases in our method, stability of the error covariance matrix and possible systematic effects. We fit the resulting correlation function with several models that decouple the broadband and acoustic scale information. For an isotropic dilation factor, we measure 100x(alpha_iso-1) = -1.6 ^{+2.0+4.3+7.4}_{-2.0-4.1-6.8} (stat.) +/- 1.0 (syst.) (multiple statistical errors denote 1,2 and 3 sigma confidence limits) with respect to the acoustic scale in the fiducial cosmological model (flat LCDM with Omega_m=0.27, h=0...
The Morphology of Galaxies in the Baryon Oscillation Spectroscopic Survey
Masters, Karen L; Nichol, Robert C; Thomas, Daniel; Beifiori, Alessandra; Bundy, Kevin; Edmondson, Edward M; Higgs, Tim D; Leauthaud, Alexie; Mandelbaum, Rachel; Pforr, Janine; Ross, Ashley J; Ross, Nicholas P; Schneider, Donald P; Skibba, Ramin; Tinker, Jeremy; Brinkmann, Jon; Weaver, Benjamin A
2011-01-01
We study the morphology of luminous and massive galaxies at 0.32.35 selects a sub-sample of BOSS galaxies with 90% early-type morphology - more comparable to the earlier Luminous Red Galaxy (LRG) samples of SDSS-I/II. The remaining 10% of galaxies above this cut have a late-type morphology and may be analogous to the "passive spirals" found at lower redshift. We find that 23+/-4% of the early-type galaxies are unresolved multiple systems in the SDSS imaging. We estimate that at least 50% of these are real associations (not projection effects) and may represent a significant "dry merger" fraction. We study the SDSS pipeline sizes of BOSS galaxies which we find to be systematically larger (by 40%) than those measured from HST images, and provide a statistical correction for the difference. These details of the BOSS galaxies will help users of the data fine-tune their selection criteria, dependent on their science applications. For example, the main goal of BOSS is to measure the cosmic distance scale and expans...
THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III
Dawson, Kyle; Génova-Santos, Ricardo; Pérez-Fournon, Ismael; Rebolo López, Rafael; J.A. Rubino-Martin; Scoccola, C. G.; Streblyanska, Alina; Prada, Francisco; Mena, Olga
2013-01-01
The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort fromthe technical and administrative staff in Malarg¨ue. The authors are very grateful to the following agencies and organizations for financial support: Comisi´on Nacional de Energ´ıa At´omica, Fundaci ´on Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malarg¨ue, NDM Holdings and Valle Las Le˜...
Experiments on lepton and baryon stability and oscillation phenomena
The various experiments on lepton number conservation and on nucleon stability currently being done or prepared are reviewed, and their relative merits compared and discussed. The first part of the paper is devoted to the measurement of the neutrino mass and to the present limits on the conservation of the total lepton number and of the various lepton flavours. The existing results and future projects on the strictly connected problems of neutrino oscillations at nuclear reactors, pion factories and high energy accelerators will be also discussed, together with oscillations of solar and atmospheric neutrinos. The second part of the paper concerns the few results and the many planned detectors on nucleon decay with particular emphasis on the problems of background radioactivity and of the variety of experimental approaches. Oscillation experiments on neutron-antineutron oscillations at nuclear reactors are also considered. (author)
A Simple Analytic Treatment of Linear Growth of Structure with Baryon Acoustic Oscillations
Slepian, Zachary
2015-01-01
In linear perturbation theory, all information about the growth of structure is contained in the Green's function, or equivalently, transfer function. These functions are generally computed using numerical codes or by phenomenological fitting formula anchored in accurate analytic results in the limits of large and small scale. Here we present a framework for analytically solving all scales, in particular the intermediate scales relevant for the baryon acoustic oscillations (BAO). We solve for the Green's function and transfer function using spherically-averaged overdensities and the approximation that the density of the coupled baryon-photon fluid is constant interior to the sound horizon.
A simple analytic treatment of linear growth of structure with baryon acoustic oscillations
Slepian, Zachary; Eisenstein, Daniel J.
2016-03-01
In linear perturbation theory, all information about the growth of structure is contained in the Green's function, or equivalently, transfer function. These functions are generally computed using numerical codes or by phenomenological fitting formula anchored in accurate analytic results in the limits of large and small scale. Here, we present a framework for analytically solving all scales, in particular the intermediate scales relevant for the baryon acoustic oscillations (BAO). We solve for the Green's function and transfer function using spherically averaged overdensities and the approximation that the density of the coupled baryon-photon fluid is constant interior to the sound horizon.
Streaming velocities and the baryon-acoustic oscillation scale
Blazek, Jonathan; Hirata, Christopher M
2015-01-01
At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the BAO peak is dramatically enhanced (by a factor of ~5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approxim...
Lepori, Francesca; Di Dio, Enea; Viel, Matteo; Baccigalupi, Carlo; Durrer, Ruth
2016-01-01
We investigate the Alcock Paczy\\'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, c...
Yamamoto, Kazuhiro; Bassett, Bruce A.; Nichol, Robert C.; Suto, Yasushi; Yahata, Kazuhiro
2006-01-01
We discuss how the baryon acoustic oscillation (BAO) signatures in the galaxy power spectrum can distinguish between modified gravity and the cosmological constant as the source of cosmic acceleration. To this end we consider a model characterized by a parameter n, which corresponds to the Dvali- Gabadadze-Porrati (DGP) model if n = 2 and reduces to the standard spatially flat cosmological constant concordance model for n equal to infinity. We find that the different expansion histories of th...
How does non-linear dynamics affect the baryon acoustic oscillation?
Sugiyama, Naonori S.; Spergel, David N
2013-01-01
We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation...
On the baryon acoustic oscillation amplitude as a probe of radiation density
Sutherland, Will; Mularczyk, Lukasz
2014-01-01
The baryon acoustic oscillation (BAO) feature in the distribution of galaxies has been widely studied as an excellent standard ruler for probing cosmic distances and expansion history, and hence dark energy. In contrast, the amplitude of the BAO feature has received relatively little study, mainly due to limited signal-to-noise, and complications due to galaxy biasing, effects of non-linear clustering and dependence on several cosmological parameters. As expected, the amplitude of the BAO fea...
Song, Yong-Seon
2010-01-01
New statistical method is proposed to coherently combine Baryon Acoustic Oscillation statistics (BAO) and peculiar velocity measurements exploiting decomposed density-density and velocity-velocity spectra in real space from the observed redshift distortions in redshift space, 1) to achieve stronger dark energy constraints, \\sigma(w)=0.06 and \\sigma(w_a)=0.20, which are enhanced from BAO or velocity measurements alone, and 2) to cross-check consistency of dark energy constraints from two diffe...
Baryon Acoustic Oscillation Intensity Mapping as a Test of Dark Energy
Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick
2007-01-01
The expansion of the universe appears to be accelerating, and the mysterious anti-gravity agent of this acceleration has been called ``dark energy''. To measure the dynamics of dark energy, Baryon Acoustic Oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as $10^9$ individual galaxies, by observing the 21cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the ...
Modelling baryon acoustic oscillations with perturbation theory and stochastic halo biasing
Kitaura, Francisco-Shu; Yepes, Gustavo; Prada, Francisco
2014-03-01
In this work we investigate the generation of mock halo catalogues based on perturbation theory and non-linear stochastic biasing with the novel PATCHY code. In particular, we use Augmented Lagrangian Perturbation Theory (ALPT) to generate a dark matter density field on a mesh starting from Gaussian fluctuations and to compute the peculiar velocity field. ALPT is based on a combination of second order LPT (2LPT) on large scales and the spherical collapse model on smaller scales. We account for the systematic deviation of perturbative approaches from N-body simulations together with halo biasing adopting an exponential bias model. We then account for stochastic biasing by defining three regimes: a low-, an intermediate- and a high-density regime, using a Poisson distribution in the intermediate regime and the negative binomial distribution - including an additional parameter - to model over-dispersion in the high-density regime. Since we focus in this study on massive haloes, we suppress the generation of haloes in the low-density regime. The various non-linear and stochastic biasing parameters, and density thresholds, are calibrated with the large BigMultiDark N-body simulation to match the power spectrum of the corresponding halo population. Our model effectively includes only five parameters, as they are additionally constrained by the halo number density. Our mock catalogues show power spectra, in both real- and redshift-space, which are compatible with N-body simulations within about 2 per cent up to k ˜ 1 h Mpc-1 at z = 0.577 for a sample of haloes with the typical Baryon Oscillation Spectroscopic Survey (BOSS) CMASS (constant stellar mass galaxy sample) galaxy number density. The corresponding correlation functions are compatible down to a few Mpc. We also find that neglecting over-dispersion in high-density regions produces power spectra with deviations of 10 per cent at k ˜ 0.4 h Mpc-1. These results indicate the need to account for an accurate
Time-Sliced Perturbation Theory II: Baryon Acoustic Oscillations and Infrared Resummation
Blas, Diego; Ivanov, Mikhail M; Sibiryakov, Sergey
2016-01-01
We use time-sliced perturbation theory (TSPT) to give an accurate description of the infrared non-linear effects affecting the baryonic acoustic oscillations (BAO) present in the distribution of matter at very large scales. In TSPT this can be done via a systematic resummation that has a simple diagrammatic representation and does not involve uncontrollable approximations. We discuss the power counting rules and derive explicit expressions for the resummed matter power spectrum up to next-to leading order and the bispectrum at the leading order. The two-point correlation function agrees well with N-body data at BAO scales. The systematic approach also allows to reliably assess the shift of the baryon acoustic peak due to non-linear effects.
Time-sliced perturbation theory II: baryon acoustic oscillations and infrared resummation
Blas, Diego; Garny, Mathias; Ivanov, Mikhail M.; Sibiryakov, Sergey
2016-07-01
We use time-sliced perturbation theory (TSPT) to give an accurate description of the infrared non-linear effects affecting the baryonic acoustic oscillations (BAO) present in the distribution of matter at very large scales. In TSPT this can be done via a systematic resummation that has a simple diagrammatic representation and does not involve uncontrollable approximations. We discuss the power counting rules and derive explicit expressions for the resummed matter power spectrum up to next-to leading order and the bispectrum at the leading order. The two-point correlation function agrees well with N-body data at BAO scales. The systematic approach also allows to reliably assess the shift of the baryon acoustic peak due to non-linear effects.
Baryon number violation in supersymmetry: Neutron-antineutron oscillations as a probe beyond the LHC
Calibbi, Lorenzo; Milstead, David; Petersson, Christoffer; Pöttgen, Ruth
2016-01-01
We summarize the current status of baryon number violation in supersymmetry and provide prospects for going beyond the present reach by means of a new search for neutron-antineutron oscillations. The main motivation is the recently proposed neutron-antineutron oscillation experiment at the European Spallation Source in Lund, Sweden, which is projected to be able to improve the current bound on the transition probability in the quasi-free regime by three orders of magnitude. We consider various processes involving superpartners that give rise to neutron-antineutron oscillations and extract the corresponding simplified models, including only the most relevant superpartners and couplings. In terms of these models we recast and determine the exclusion limits from LHC searches as well as from searches for flavor transitions, CP violation and di-nucleon decays. We find that, for certain regions of the parameter space, the proposed neutron-antineutron experiment has a reach that goes beyond all other experiments, as...
Probing dark energy with baryonic oscillations and future radio surveys of neutral Hydrogen
Abdalla, F B
2004-01-01
Current surveys may be on the verge of measuring the baryonic oscillations in the galaxy power spectrum which are clearly seen imprinted on the Cosmic Microwave Background. It has recently been proposed that these oscillations allow a `standard ruler' method of probing the equation of state of dark energy. In this paper we present a new calculation of the number of galaxies future adio telescopes will detect in surveys of the sky in neutral Hydrogen (HI). We estimate the likely statistical errors if the standard ruler method were to be applied to such surveys. We emphasise uncertainties in our calculations, and pinpoint the most important features of future HI surveys if they are to provide new constraints on dark energy via baryonic oscillations. Designs of future radio telescopes are required to have a large bandwidth (characterised by \\beta$, the ratio of the instantaneous bandwidth to the bandwidth required by survey) and to have the widest instantaneous (1.4 GHz) field of view ($FOV$) possible. Given the...
Baryon number violation in supersymmetry: n - overline{n} oscillations as a probe beyond the LHC
Calibbi, Lorenzo; Ferretti, Gabriele; Milstead, David; Petersson, Christoffer; Pöttgen, Ruth
2016-05-01
We study baryon number violation in R-parity violating supersymmetry with focus on Δ B = 2 processes which allow neutron-anti-neutron ( n - overline{n} ) oscillations. We provide prospects for going beyond the present limits by means of a new search for n - overline{n} oscillations. The motivation is the recently proposed n - overline{n} oscillation experiment at the European Spallation Source in Lund, which is projected to be able to improve the current bound on the transition probability in the quasi-free regime by three orders of magnitude. We consider various processes giving rise to baryon number violation and extract the corresponding simplified models, including only the relevant superpartners and couplings. In terms of these models we determine the exclusion limits from LHC searches as well as from searches for flavor transitions, CP violation and di-nucleon decays. We find that, for certain regions of parameter space, the proposed n - overline{n} experiment has a reach that goes beyond all other experiments, as it can probe gluino and squark masses in the multi-TeV range.
Model-independent dark energy equation of state from unanchored baryon acoustic oscillations
Evslin, Jarah
2016-09-01
Ratios of line of sight baryon acoustic oscillation (BAO) peaks at two redshifts only depend upon the average dark energy equation of states between those redshifts, as the dependence on anchors such as the BAO scale or the Hubble constant is canceled in a ratio. As a result, BAO ratios provide a probe of dark energy which is independent of both the cosmic distance ladder and the early evolution of universe. In this note, we use ratios to demonstrate that the known tension between the Lyman alpha forest BAO measurement and other probes arises entirely from recent (0.57 dark energy equation of state falls steeply at high redshift.
Ma, Cong; Corasaniti, Pier-Stefano
2016-01-01
We use cosmological luminosity distance ($d_L$) from the JLA Type Ia supernovae compilation and angular-diameter distance ($d_A$) based on BOSS and WiggleZ baryon acoustic oscillation measurements to test the distance-duality relation $\\eta \\equiv d_L / [ (1 + z)^2 d_A ] = 1$. The $d_L$ measurements are matched to $d_A$ redshift by a statistically-motivated compression procedure. By means of Monte Carlo methods, non-trivial and correlated distributions of $\\eta$ can be explored in a straightf...
Xu, Lixin
2012-01-01
In this paper, the holographic dark energy (HDE) model, where the future event horizon is taken as an IR cut-off, is confronted by using currently available cosmic observational data sets which include type Ia supernovae, baryon acoustic oscillation and cosmic microwave background radiation from full information of WMAP-7yr. Via the Markov Chain Monte Carlo method, we obtain the values of model parameter $c= 0.696_{- 0.0737- 0.132- 0.190}^{+ 0.0736+ 0.159+ 0.264}$ with $1,2,3\\sigma$ regions. ...
Optimizing baryon acoustic oscillation surveys II: curvature, redshifts, and external datasets
Parkinson, David; Kunz, Martin; Liddle, Andrew R.; Bassett, Bruce A.; Nichol, Robert C.; Vardanyan, Mihran
2009-01-01
We extend our study of the optimization of large baryon acoustic oscillation (BAO) surveys to return the best constraints on the dark energy, building on Paper I of this series by Parkinson et al. The survey galaxies are assumed to be pre-selected active, star-forming galaxies observed by their line emission with a constant number density across the redshift bin. Star-forming galaxies have a redshift desert in the region 1.6 < z < 2, and so this redshift range was excluded from the anal...
Pober, Jonathan C; DeBoer, David R; McDonald, Patrick; McQuinn, Matthew; Aguirre, James E; Ali, Zaki; Bradley, Richard F; Chang, Tzu-Ching; Morales, Miguel F
2012-01-01
This work describes a new instrument optimized for a detection of the neutral hydrogen 21cm power spectrum between redshifts of 0.5-1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) Array. BAOBAB will build on the efforts of a first generation of 21cm experiments which are targeting a detection of the signal from the Epoch of Reionization at z ~ 10. At z ~ 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are Baryon Acoustic Oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900MHz band with a frequency resolution of 300 kHz and a system temperature of 50K. The number of antennas will grow in staged deployments, and reconfigurations...
Nishimichi, Takahiro; Ohmuro, Hiroshi; Nakamichi, Masashi; Taruya, Atsushi; Yahata, Kazuhiro; Shirata, Akihito; Saito, Shun; Nomura, Hidenori; Yamamoto, Kazuhiro; Suto, Yasushi
2007-01-01
An acoustic oscillation of the primeval photon-baryon fluid around the decoupling time imprints a characteristic scale in the galaxy distribution today, known as the baryon acoustic oscillation (BAO) scale. Several on-going and/or future galaxy surveys aim at detecting and precisely determining the BAO scale so as to trace the expansion history of the universe. We consider nonlinear and redshift-space distortion effects on the shifts of the BAO scale in $k$-space using perturbation theory. Th...
Hütsi, Gert; Kolodzig, Alexander; Sunyaev, Rashid
2014-01-01
We investigate the potential of large X-ray selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide us redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is: (i) to find necessary requirements to the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of sigma_0=10^{-2} and the catastrophic failure rate of <~30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts combined with negligible fraction of catastrophic failures will boost the confidence level of the BAO detection by a factor of ~2. For the meaningful detection of BAO, X-ray surveys of moderate depth of F_lim ~ few 10^{-15} erg/s/cm^2 covering sky area from a ~few hundred to ~ten thousand square degrees are required. The optimal...
Slosar, Anže [Brookhaven National Laboratory, Blgd 510, Upton NY 11375 (United States); Iršič, Vid [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Kirkby, David; Blomqvist, Michael [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bailey, Stephen; Carithers, Bill [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Busca, Nicolás G.; Aubourg, Éric; Bautista, Julian E. [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Delubac, Timothée; Rich, James; Goff, J.-M. Le [CEA, Centre de Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Bhardwaj, Vaishali [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 09195 (United States); Bolton, Adam S.; Brownstein, Joel; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112 (United States); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Croft, Rupert A.C.; Ho, Shirley [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Font-Ribera, Andreu, E-mail: anze@bnl.gov [Institute of Theoretical Physics, University of Zurich, 8057 Zurich (Switzerland); and others
2013-04-01
We use the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) to detect and measure the position of the Baryonic Acoustic Oscillation (BAO) feature in the three-dimensional correlation function in the Lyman-α flux fluctuations at a redshift z{sub eff} = 2.4. The feature is clearly detected at significance between 3 and 5 sigma (depending on the broadband model and method of error covariance matrix estimation) and is consistent with predictions of the standard ΛCDM model. We assess the biases in our method, stability of the error covariance matrix and possible systematic effects. We fit the resulting correlation function with several models that decouple the broadband and acoustic scale information. For an isotropic dilation factor, we measure 100 × (α{sub iso} − 1) = −1.6{sup +2.0+4.3+7.4}{sub −2.0−4.1−6.8} (stat.) ±1.0 (syst.) (multiple statistical errors denote 1,2 and 3 sigma confidence limits) with respect to the acoustic scale in the fiducial cosmological model (flat ΛCDM with Ω{sub m} = 0.27, h = 0.7). When fitting separately for the radial and transversal dilation factors we find marginalised constraints 100 × (α{sub ||} − 1) = −1.3{sup +3.5+7.6+12.3}{sub −3.3−6.7−10.2} (stat.) ±2.0 (syst.) and 100 × (α{sub p}erpendicular − 1) = −2.2{sup +7.4+17}{sub −7.1−15} (stat.) ±3.0 (syst.). The dilation factor measurements are significantly correlated with cross-correlation coefficient of ∼ −0.55. Errors become significantly non-Gaussian for deviations over 3 standard deviations from best fit value. Because of the data cuts and analysis method, these measurements give tighter constraints than a previous BAO analysis of the BOSS DR9 Lyman-α sample, providing an important consistency test of the standard cosmological model in a new redshift regime.
We use the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) to detect and measure the position of the Baryonic Acoustic Oscillation (BAO) feature in the three-dimensional correlation function in the Lyman-α flux fluctuations at a redshift zeff = 2.4. The feature is clearly detected at significance between 3 and 5 sigma (depending on the broadband model and method of error covariance matrix estimation) and is consistent with predictions of the standard ΛCDM model. We assess the biases in our method, stability of the error covariance matrix and possible systematic effects. We fit the resulting correlation function with several models that decouple the broadband and acoustic scale information. For an isotropic dilation factor, we measure 100 × (αiso − 1) = −1.6+2.0+4.3+7.4−2.0−4.1−6.8 (stat.) ±1.0 (syst.) (multiple statistical errors denote 1,2 and 3 sigma confidence limits) with respect to the acoustic scale in the fiducial cosmological model (flat ΛCDM with Ωm = 0.27, h = 0.7). When fitting separately for the radial and transversal dilation factors we find marginalised constraints 100 × (α|| − 1) = −1.3+3.5+7.6+12.3−3.3−6.7−10.2 (stat.) ±2.0 (syst.) and 100 × (αperpendicular − 1) = −2.2+7.4+17−7.1−15 (stat.) ±3.0 (syst.). The dilation factor measurements are significantly correlated with cross-correlation coefficient of ∼ −0.55. Errors become significantly non-Gaussian for deviations over 3 standard deviations from best fit value. Because of the data cuts and analysis method, these measurements give tighter constraints than a previous BAO analysis of the BOSS DR9 Lyman-α sample, providing an important consistency test of the standard cosmological model in a new redshift regime
Lepori, Francesca; Viel, Matteo; Baccigalupi, Carlo; Durrer, Ruth
2016-01-01
We investigate the Alcock Paczy\\'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, causing different values of galaxy bias to induce offsets up to 1% in the AP test. On the other hand, we find that the lensing correction around the BAO scale modifies the amplitude but not the shape of the correlation function and therefore does not introduce any systematic effect. Furthermore, we investigate in details how the AP test is sensitive to redshift binning: a window function in transverse direction suppresses correlations and shifts the peak position toward smaller angular scales. We determine the correction t...
Ma, Cong
2016-01-01
We use cosmological luminosity distance ($d_L$) from the JLA Type Ia supernovae compilation and angular-diameter distance ($d_A$) based on BOSS and WiggleZ baryon acoustic oscillation measurements to test the distance-duality relation $\\eta \\equiv d_L / [ (1 + z)^2 d_A ] = 1$. The $d_L$ measurements are matched to $d_A$ redshift by a statistically-motivated compression procedure. By means of Monte Carlo methods, non-trivial and correlated distributions of $\\eta$ can be explored in a straightforward manner without resorting to a particular evolution template $\\eta(z)$. Assuming Planck cosmological parameter uncertainty, we find 5% constraints in favor of $\\eta = 1$, consistent with the weaker 7--10% constraints obtained using WiggleZ data. These results stand in contrast to previous claims that $\\eta < 1$ has been found close to or above $1\\sigma$ level.
Model-Independent Dark Energy Equation of State from Baryon Acoustic Oscillations
Evslin, Jarah
2015-01-01
We present a simple formula for the average dark energy equation of state at redshifts between those of two observations of baryon acoustic oscillations (BAO). The formula is independent of any parametrization or basis of the dark energy equation of state and essentially independent of the cosmological model. We use this formula to study the well-known tension between Lyman alpha forest BAO and other cosmological probes. Using only the line of sight Lyman alpha forest BAO and BOSS CMASS dataset, there is already more than 2 sigma tension with the standard LambdaCDM cosmological model which implies that either (i) The BOSS Lyman alpha forest measurement of the Hubble parameter was too low as a result of a statistical fluctuation or systematic error or else (ii) the dark energy equation of state falls steeply at high redshift.
A cross-check for H0 from Lyman-α Forest and Baryon Acoustic Oscillations
Busti, V. C.; Guimarães, R. N.; Lima, J. A. S.
2016-04-01
A new method is proposed to infer the Hubble constant H0 through the observed mean transmitted flux from high-redshift quasars and the baryon acoustic oscillations (BAOs). A semi-analytical model for the cosmological-independent volume density distribution function was adopted; it allowed us to obtain constraints on the cosmological parameters once a moderate knowledge of the Inter Galactic Medium (IGM) parameters is assumed. Our analysis, based on two different samples of Lyman-α forest and the BAO measurement, restricts (h, Ωm) to the intervals 0.19 ≤ Ωm ≤ 0.23 and 0.53 ≤ h ≤ 0.82 (1σ). Although the constraints are weaker compared with other estimates, we point out that, with a bigger sample and a better knowledge of the IGM, this method could provide complementary results to measure the Hubble constant independently of the cosmic distance ladder.
Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments
Ball, S.J.; Kamyshkov, Y.A. [ed.
1996-11-01
These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.
Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments
These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base
Sutherland, Will
2011-01-01
We propose a new and highly model-independent test of cosmic acceleration by comparing observations of the baryon acoustic oscillation (BAO) scale at low and intermediate redshifts: we derive a new inequality relating BAO observables at two distinct redshifts, which must be satisfied for any reasonable homogeneous non-accelerating model, but is violated by models similar to LambdaCDM, due to acceleration in the recent past. This test is fully independent of the theory of gravity (GR or otherw...
Simulations of Baryon Acoustic Oscillations II: Covariance matrix of the matter power spectrum
Takahashi, Ryuichi; Takada, Masahiro; Matsubara, Takahiko; Sugiyama, Naoshi; Kayo, Issha; Nishizawa, Atsushi J; Nishimichi, Takahiro; Saito, Shun; Taruya, Atsushi
2009-01-01
We use 5000 cosmological N-body simulations of 1(Gpc/h)^3 box for the concordance LCDM model in order to study the sampling variances of nonlinear matter power spectrum. We show that the non-Gaussian errors can be important even on large length scales relevant for baryon acoustic oscillations (BAO). Our findings are (1) the non-Gaussian errors degrade the cumulative signal-to-noise ratios (S/N) for the power spectrum amplitude by up to a factor of 2 and 4 for redshifts z=1 and 0, respectively. (2) There is little information on the power spectrum amplitudes in the quasi-nonlinear regime, confirming the previous results. (3) The distribution of power spectrum estimators at BAO scales, among the realizations, is well approximated by a Gaussian distribution with variance that is given by the diagonal covariance component. (4) For the redshift-space power spectrum, the degradation in S/N by non-Gaussian errors is mitigated due to nonlinear redshift distortions. (5) For an actual galaxy survey, the additional shot...
Baryonic acoustic oscillations from 21cm intensity mapping: the Square Kilometre Array case
Villaescusa-Navarro, Francisco; Viel, Matteo
2016-01-01
We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometer Array (SKA) instrument, makes it undetectable at redshifts $z\\gtrsim1$. We however demonstrate that the BAO peak can still be detected in the radial 21cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21cm power spectrum. We systematically investigate the signal-to-noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected nois...
Model-independent dark energy equation of state from unanchored baryon acoustic oscillations
Evslin, Jarah
2016-09-01
Ratios of line of sight baryon acoustic oscillation (BAO) peaks at two redshifts only depend upon the average dark energy equation of states between those redshifts, as the dependence on anchors such as the BAO scale or the Hubble constant is canceled in a ratio. As a result, BAO ratios provide a probe of dark energy which is independent of both the cosmic distance ladder and the early evolution of universe. In this note, we use ratios to demonstrate that the known tension between the Lyman alpha forest BAO measurement and other probes arises entirely from recent (0.57 < z < 2.34) cosmological expansion. Using ratios of the line of sight Lyman alpha forest and BOSS CMASS BAO scales, we show that there is already more than 3 σ tension with the standard ΛCDM cosmological model which implies that either (i) The BOSS Lyman alpha forest measurement of the Hubble parameter was too low as a result of a statistical fluctuation or systematic error or else (ii) the dark energy equation of state falls steeply at high redshift.
Constraining H0 from Lyman-alpha Forest and Baryon Acoustic Oscillations
Busti, V C; Lima, J A S
2012-01-01
A new method is proposed to measure the Hubble constant H0 through the mean transmitted flux observed from high redshift quasars. A semi-analytical model for the cosmological-independent volume density distribution function is adopted which allows one to obtain constraints over the cosmological parameters once a moderate knowlegde of the InterGalactic Medium (IGM) parameters is assumed. By assuming a flat LCDM cosmology, we show that such method alone cannot provide good constraints on the pair of free parameters (h, Omega_m). However, it is possible possible to break the degeneracy on the mass density parameter by applying a joint analysis involving the baryon acoustic oscillations (BAOs). Our analysis based on two different samples of Lyman-alpha forest restricts the parameters on the intervals 0.58 < h < 0.91 and 0.215 < Omega_m < 0.245 (1 sigma). Although the constraints are weaker comparatively to other estimates, we point out that with a bigger sample and a better knowledge of the IGM this m...
An accurate determination of the Hubble constant from Baryon Acoustic Oscillation datasets
Cheng, Cheng
2014-01-01
Even though the Hubble constant cannot be significantly determined by the low-redshift Baryon Acoustic Oscillation (BAO) data alone, it can be tightly constrained once the high-redshift BAO data are combined. Combining BAO data from 6dFGS, BOSS DR11 clustering of galaxies, WiggleZ and $z=2.34$ from BOSS DR11 quasar Lyman-$\\alpha$ forest lines, we get $H_0=68.17^{+1.55}_{-1.56}$ km s$^{-1}$ Mpc$^{-1}$. In addition, adopting the the simultaneous measurements of $H(z)$ and $D_A(z)$ from the two-dimensional two-point correlation function from BOSS DR9 CMASS sample and two-dimensional matter power spectrum from SDSS DR7 sample, we obtain $H_0=68.11\\pm1.69$ km s$^{-1}$ Mpc$^{-1}$. Finally, combining all of the BAO datasets, we conclude $H_0=68.11\\pm 0.86$ km s$^{-1}$ Mpc$^{-1}$, a 1.3% determination.
The C IV Forest as a Probe of Baryon Acoustic Oscillations
Pieri, Matthew M
2014-01-01
In light of recent successes in measuring baryon acoustic oscillations in quasar absorption using the Lyman-alpha (Ly-alpha) transition, I explore the possibility of using the 1548 Ang transition of triply-ionized carbon (C IV) as a tracer. While the Ly-alpha forest is a more sensitive tracer of intergalactic gas, it is limited by the fact that it can only be measured in the optical window at redshifts z > 2. Quasars are challenging to identify and observe at these high-redshifts, but the C IV forest can be probed down to redshifts z = 1.3, taking full advantage of the peak in the redshift distribution of quasars that can be targeted with high efficiency. I explore the strength of the C IV absorption signal and show that the absorbing population on the red side of the Ly-alpha emission line is dominated by C IV. As a consequence, I argue that forthcoming surveys will have a sufficient increase in quasar number density to offset the lower sensitivity of the C IV forest and provide competitive precision using b...
Model independent evidence for dark energy evolution from Baryon Acoustic Oscillations
Sahni, Varun; Starobinsky, Alexei A
2014-01-01
Baryon Acoustic Oscillations (BAO) allow us to determine the expansion history of the Universe, thereby shedding light on the nature of dark energy. Recent observations of BAO's in the SDSS DR9 and DR11 have provided us with statistically independent measurements of $H(z)$ at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model independent manner by means of an improved version of the $Om$ diagnostic. Our results indicate that the SDSS DR11 measurement of $H(z) = 222 \\pm 7$ km/sec/Mpc at $z = 2.34$, when taken in tandem with measurements of $H(z)$ at lower redshifts, imply considerable tension with the standard $\\Lambda$CDM model. Our estimation of the new diagnostic $Omh^2$ from SDSS DR9 and DR11 data, namely $Omh^2 \\approx 0.122 \\pm 0.01$, which is equivalent to $\\Omega_{0m}h^2$ for the spatially flat $\\Lambda$CDM model, is in tension with the value $\\Omega_{0m}h^2 = 0.1426 \\pm 0.0025$ determined for $\\Lambda$CDM from P...
Effect of model-dependent covariance matrix for studying Baryon Acoustic Oscillations
Labatie, A; Lachièze-Rey, M
2012-01-01
Large-scale structures in the Universe are a powerful tool to test cosmological models and constrain cosmological parameters. A particular feature of interest comes from Baryon Acoustic Oscillations (BAOs), which are sound waves traveling in the hot plasma of the early Universe that stopped at the recombination time. This feature can be observed as a localized bump in the correlation function at the scale of the sound horizon $r_s$. As such, it provides a standard ruler and a lot of constraining power in the correlation function analysis of galaxy surveys. Moreover the detection of BAOs at the expected scale gives a strong support to cosmological models. Both of these studies (BAO detection and parameter constraints) rely on a statistical modeling of the measured correlation function $\\hat{\\xi}$. Usually $\\hat{\\xi}$ is assumed to be gaussian, with a mean $\\xi_\\theta$ depending on the cosmological model and a covariance matrix $C$ generally approximated as a constant (i.e. independent of the model). In this ar...
Optimizing baryon acoustic oscillation surveys II: curvature, redshifts, and external datasets
Parkinson, David; Liddle, Andrew R; Bassett, Bruce A; Nichol, Robert C; Vardanyan, Mihran
2009-01-01
We extend our study of the optimization of large baryon acoustic oscillation (BAO) surveys to return the best constraints on the dark energy, building on Paper I of this series (Parkinson et al. 2007). The survey galaxies are assumed to be pre-selected active, star-forming galaxies observed by their line emission with a constant number density across the redshift bin. We go beyond our earlier analysis by examining the effect of including curvature on the optimal survey configuration, using the Seo & Eisenstein (2007) fitting formula for the accuracies of the BAO measurements, and updating the expected `prior' constraints from Planck. We once again find that the optimal survey strategy involves minimizing the exposure time and maximizing the survey area (within the instrumental constraints), and that all time should be spent observing in the low-redshift range (z < 1.6) rather than beyond z=2. We find that when assuming a flat universe the optimal survey makes measurements in the redshift range 0.1 <...
A Detection of Baryon Acoustic Oscillations from the Distribution of Galaxy Clusters
Hong, Tao; Han, J. L.; Wen, Z. L.
2016-08-01
We calculate the correlation function of 79,091 galaxy clusters in the redshift region of z≤slant 0.5, selected from the WH15 cluster catalog. With a weight of cluster mass, a significant baryon acoustic oscillation (BAO) peak is detected on the correlation function with a significance of 3.7σ . By fitting the correlation function with a ΛCDM model curve, we find {D}v(z=0.331){r}d{fid}/{r}d=1261.5+/- 48 Mpc, which is consistent with the Planck 2015 cosmology. We find that the correlation function of the higher mass sub-sample shows a higher amplitude at small scales of r\\lt 80 {h}-1 {{Mpc}}, which is consistent with our previous result. The two-dimensional correlation function of this large sample of galaxy clusters shows a faint BAO ring with a significance of 1.8σ , from which we find that the distance scale parameters on directions across and along the line of sight are {α }σ =1.02+/- 0.06 and {α }π =0.94+/- 0.10, respectively.
A detection of Baryon Acoustic Oscillations from the distribution of galaxy clusters
Hong, Tao; Wen, Z L
2015-01-01
We calculate the correlation function of 79,091 galaxy clusters in the redshift region of $0.05 \\leq z \\leq 0.5$ selected from the WH15 cluster catalog. With a weight of cluster mass, a significant baryon acoustic oscillation (BAO) peak is detected on the correlation function with a significance of $3.9 \\sigma$. By fitting the correlation function with a $\\Lambda$CDM model curve, we find $D_v(z = 0.331) r_d^{fid}/r_d = 1269.4 \\pm 58$ Mpc which is consistent with the Planck 2015 cosmology. We find that the correlation functions of the higher mass sub-samples show a higher amplitude at small scales of $r < 80~h^{-1}{\\rm Mpc}$, which is consistent with our precious result. We find a clear signal of the `Finger-of-God' effect on the 2D correlation function of the whole sample, which indicates the random peculiar motion of central bright galaxies in the gravitation potential well of clusters.
Testing cosmic transparency with the latest baryon acoustic oscillations and type Ia supernovae data
Jun Chen; Pu-Xun Wu; Hong-Wei Yu; Zheng-Xiang Li
2013-01-01
Observations show that Type Ia supernovae (SNe Ia) are dimmer than expected from a matter dominated Universe.It has been suggested that this observed phenomenon can also be explained using light absorption instead of dark energy.However,there is a serious degeneracy between the cosmic absorption parameter and the present matter density parameter Ωm when one tries to place constraints on the cosmic opacity using SNe Ia data.We combine the latest baryon acoustic oscillation (BAO) and Union2 SNe Ia data in order to break this degeneracy.Assuming a flat ACDM model,we find that,although an opaque Universe is favored by SNe Ia+BAO since the best fit value of the cosmic absorption parameter is larger than zero,Ωm =1 is ruled out at the 99.7％ confidence level.Thus,cosmic opacity is not sufficient to account for the present observations and dark energy or modified gravity is still required.
Väliviita, Jussi; Palmgren, Elina
2015-07-01
We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological wCDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, ωc, allowing a large interaction rate |Γ| ~ H0. However, as has been known for a while, the BAO data break this degeneracy. Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift z ~ 2 and is very sensitive to the growth of structure, and hence one of the tools for discerning between the ΛCDM model and its alternatives. However, we find that in the non-phantom models (wde>-1), the constraints remain unchanged by the inclusion of the lensing data and consistent with zero interaction, -0.14 energy transfer from dark energy to dark matter is moderately favoured over the non-interacting model; 0-0.57 < Γ/H0 < -0.1 at 95% CL with CMB+BAO, while addition of the lensing data shifts this to -0.46 < Γ/H0 < -0.01.
Valiviita, Jussi
2015-01-01
We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological $w$CDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, $\\omega_c$, allowing a large interaction rate $|\\Gamma| \\sim H_0$. However, as has been known for a while, the BAO data break this degeneracy. Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift $z \\sim 2$ and is very sensitive to the growth of structure, and hence one of the tools for discerning between the $\\Lambda$CDM model and its alternatives. However, we find that in the non-phantom models ($w_{\\mathrm{de}}>-1$), the constraints remain unchange...
MODEL-INDEPENDENT EVIDENCE FOR DARK ENERGY EVOLUTION FROM BARYON ACOUSTIC OSCILLATIONS
Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s–1 Mpc–1 at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh 2 from SDSS DR9 and DR11 data, namely, Omh 2 ≈ 0.122 ± 0.01, which is equivalent to Ω0m h 2 for the spatially flat ΛCDM model, is in tension with the value Ω0m h 2 = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories
Hunting down systematics in baryon acoustic oscillations after cosmic high noon
Prada, Francisco; Scóccola, Claudia G.; Chuang, Chia-Hsun; Yepes, Gustavo; Klypin, Anatoly A.; Kitaura, Francisco-Shu; Gottlöber, Stefan; Zhao, Cheng
2016-05-01
Future dark energy experiments will require accurate theoretical predictions for the baryon acoustic oscillations (BAOs). Here, we use large N-body simulations to study any systematic shifts and damping in BAO due to non-linear effects. The impact of cosmic variance is largely reduced by dividing the tracer power spectrum by that from a `BAO-free' simulation starting with the same random amplitudes and phases. The accuracy of our simulations allows us to resolve well dark matter (sub)haloes, which permits us to study with high accuracy (better than 0.02 per cent for dark matter and 0.07 per cent for low-bias haloes) small BAO shifts α towards larger k, and non-linear damping Σnl of BAO in the power spectrum. For dark matter, we provide an accurate parametrization of the evolution of α as a function of the linear growth factor D(z). For halo samples, with bias from 1.2 to 2.8, we measure a typical BAO shift of ≈0.25 per cent, with no appreciable evolution with redshift. Moreover, we report a constant shift as a function of halo bias. We find a different evolution of the BAO damping in all halo samples as compared to dark matter with haloes suffering less damping, and also find some weak dependence on bias. Larger BAO shift and damping are measured in redshift-space, which can be explained by linear theory due to redshift-space distortions. A clear modulation in phase with the acoustic scale is observed in the scale-dependent halo bias due to the presence of BAOs. We compare our results with previous works.
Nakamura, Gen; Huetsi, Gert; Sato, Takahiro; Yamamoto, Kazuhiro
2009-01-01
We determine a constraint on the growth factor by measuring the damping of the baryon acoustic oscillations in the matter power spectrum using the Sloan Digital Sky Survey luminous red galaxy sample. The damping of the BAO is detected at the one sigma level. We obtain \\sigma_8D_1(z=0.3) = 0.42^{+0.34}_{-0.28} at the 1\\sigma statistical level, where \\sigma_8 is the root mean square overdensity in a sphere of radius 8h^{-1}Mpc and D_1(z) is the growth factor at redshift z. The above result assu...
White, Martin; Carlson, Jordan; Heitmann, Katrin; Habib, Salman; Fasel, Patricia; Daniel, David; Lukic, Zarija
2009-01-01
We present a set of ultra-large particle-mesh simulations of the LyA forest targeted at understanding the imprint of baryon acoustic oscillations (BAO) in the inter-galactic medium. We use 9 dark matter only simulations which can, for the first time, simultaneously resolve the Jeans scale of the intergalactic gas while covering the large volumes required to adequately sample the acoustic feature. Mock absorption spectra are generated using the fluctuating Gunn-Peterson approximation which have approximately correct flux probability density functions (PDFs) and small-scale power spectra. On larger scales there is clear evidence in the redshift space correlation function for an acoustic feature, which matches a linear theory template with constant bias. These spectra, which we make publicly available, can be used to test pipelines, plan future experiments and model various physical effects. As an illustration we discuss the basic properties of the acoustic signal in the forest, the scaling of errors with noise ...
We consider recently proposed higher-order gravity models where the action is built from the Einstein-Hilbert action plus a function f(G) of the Gauss-Bonnet invariant. The models were previously shown to pass physical acceptability conditions as well as solar system tests. In this paper, we compare the models to combined data sets of supernovae, baryon acoustic oscillations, and constraints from the CMB surface of last scattering. We find that the models provide fits to the data that are close to those of the lambda cold dark matter concordance model. The results provide a pool of higher-order gravity models that pass these tests and need to be compared to constraints from large scale structure and full CMB analysis.
Moldenhauer, Jacob; Thompson, John; Easson, Damien A
2010-01-01
We consider recently proposed higher order gravity models where the action is built from the Einstein-Hilbert action plus a function f(G) of the Gauss-Bonnet invariant. The models were previously shown to pass physical acceptability conditions as well as solar system tests. In this paper, we compare the models to combined data sets of supernovae, baryon acoustic oscillations, and constraints from the CMB surface of last scattering. We find that the models provide fits to the data that are close to those of the LCDM concordance model. The results provide a pool of higher order gravity models that pass these tests and need to be compared to constraints from large scale structure and full CMB analysis.
Kirkby, David; Margala, Daniel; Blomqvist, Michael [Department of Physics and Astronomy, University of California, Irvine, 92697 (United States); Slosar, Anže [Brookhaven National Laboratory, Blgd 510, Upton NY 11375 (United States); Bailey, Stephen; Carithers, Bill [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Busca, Nicolás G.; Bautista, Julian E. [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Delubac, Timothée; Rich, James; Palanque-Delabrouille, Nathalie [CEA, Centre de Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112 (United States); Croft, Rupert A.C. [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, 8057 Zurich (Switzerland); Miralda-Escudé, Jordi [Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia (Spain); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Pâris, Isabelle; Petitjean, Patrick, E-mail: dkirkby@uci.edu [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); and others
2013-03-01
We describe fitting methods developed to analyze fluctuations in the Lyman-α forest and measure the parameters of baryon acoustic oscillations (BAO). We apply our methods to BOSS Data Release 9. Our method is based on models of the three-dimensional correlation function in physical coordinate space, and includes the effects of redshift-space distortions, anisotropic non-linear broadening, and broadband distortions. We allow for independent scale factors along and perpendicular to the line of sight to minimize the dependence on our assumed fiducial cosmology and to obtain separate measurements of the BAO angular and relative velocity scales. Our fitting software and the input files needed to reproduce our main BOSS Data Release 9 results are publicly available.
Hoeneisen, B
2016-01-01
We define Baryon Acoustic Oscillation (BAO) distances $\\hat{d}_\\alpha(z, z_c)$, $\\hat{d}_z(z, z_c)$, and $\\hat{d}_/(z, z_c)$ that do not depend on cosmological parameters. These BAO distances are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From these BAO distances alone, or together with the correlation angle $\\theta_\\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the cosmological parameters in several scenarios. We find $4.3 \\sigma$ tension between the BAO plus $\\theta_\\textrm{MC}$ data and a cosmology with flat space and constant dark energy density $\\Omega_\\textrm{DE}(a)$. Releasing one and/or the other of these constraints obtains agreement with the data. We measure $\\Omega_\\textrm{DE}(a)$ as a function of $a$.
We describe fitting methods developed to analyze fluctuations in the Lyman-α forest and measure the parameters of baryon acoustic oscillations (BAO). We apply our methods to BOSS Data Release 9. Our method is based on models of the three-dimensional correlation function in physical coordinate space, and includes the effects of redshift-space distortions, anisotropic non-linear broadening, and broadband distortions. We allow for independent scale factors along and perpendicular to the line of sight to minimize the dependence on our assumed fiducial cosmology and to obtain separate measurements of the BAO angular and relative velocity scales. Our fitting software and the input files needed to reproduce our main BOSS Data Release 9 results are publicly available
Spectroscopic Analyses of Oscillations in ECTO-NOX-Catalyzed Oxidation of NADH
Morré, D. James; Morré, Dorothy M
2003-01-01
Spectroscopic strategies that substantiate periodic oscillations in low rates of NADH oxidation exhibited by ECTO-NOX proteins at the animal and plant cell surface are described. Both continuous display and discontinuous rate determinations exhibit the oscillations but continuous displays lack sufficient resolution to discern details. A procedure is documented where rates are determined by least squares analyses of traces recorded over 1 min at intervals of 1.5 min. These traces recapitulate ...
SOHO/UVCS spectroscopic observations of coronal oscillations
Mancuso, Salvatore; Raymond, John C.; Rubinetti, Sara; Taricco, Carla
2016-06-01
We analyzed the temporal evolution of the intensities and Doppler shifts of two sets of high-cadence sit-and-stare observations acquired with the Ultraviolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory (SOHO) satellite to detect the possible signature of wave and oscillatory motions in the solar corona. The first set of data consisted of H I Lyα observations collected on 1997 December 14 at 1.43 RS above the eastern limb of the Sun. Spectral analysis of the data revealed clear Doppler-shift oscillations with period P = 14.3 min over a portion of the UVCS slit. The origin of these oscillations is attributable to the excitation of propagating fast-mode magnetoacoustic kink waves along a narrow, jet-like ejection observed higher up in the white-light corona. The second set of data consisted of O VI 1032 Å observations collected on 1996 December 19 at 1.38 RS above the north polar coronal hole. In this case, clear intensity oscillations (P = 19.5 min) and Doppler-shift oscillations (P = 7.2 min) over two different portions of the UVCS slit were detected. The origin of these oscillations is attributable to the excitation of slow-mode magnetoacoustic waves propagating along polar plumes that may partially account for heating of the plasma in the corona.
Robust New Statistic for fitting the Baryon Acoustic Feature
Osumi, Keisuke; Ho, Shirley; Eisenstein, Daniel J.; Vargas-Magaña, Mariana
2015-01-01
We investigate the utility and robustness of a new statistic, $\\omega_{\\ell}\\left(r_{c}\\right)$, for analyzing Baryon Acoustic Oscillations (BAO). We apply $\\omega_{\\ell}\\left(r_{c}\\right)$, introduced in Xu et al. (2010), to mocks and data from the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) included in the SDSS Data Release Eleven (DR11). We fit the anisotropic clustering using the monopole and quadrupole of the $\\omega_{\\ell}\\left(r_{c}\\right)$ statis...
Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo
2016-04-01
Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.
Palanque-Delabrouille, N; Yèche, Ch; Pâris, I; Petitjean, P; Burtin, E; Dawson, K; McGreer, I; Myers, A D; Rossi, G; Schlegel, D; Schneider, D; Streblyanska, A; Tinker, J
2015-01-01
The SDSS-IV/eBOSS has an extensive quasar program that combines several selection methods. Among these, the photometric variability technique provides highly uniform samples, unaffected by the redshift bias of traditional optical-color selections, when $z= 2.7 - 3.5$ quasars cross the stellar locus or when host galaxy light affects quasar colors at $z 2.2$. Both models are constrained to be continuous at $z=2.2$. They present a flattening of the bright-end slope at large redshift. The LEDE model indicates a reduction of the break density with increasing redshift, but the evolution of the break magnitude depends on the parameterization. The models are in excellent accord, predicting quasar counts that agree within 0.3\\% (resp., 1.1\\%) to $g<22.5$ (resp., $g<23$). The models are also in good agreement over the entire redshift range with models from previous studies.
Simulations of Baryon Acoustic Oscillations III: Likelihood analysis of the matter power spectrum
Takahashi, Ryuichi; Takada, Masahiro; Matsubara, Takahiko; Sugiyama, Naoshi; Kayo, Issha; Nishimichi, Takahiro; Saito, Shun; Taruya, Atsushi
2009-01-01
We study the sample variance of the matter power spectrum for the standard Lambda Cold Dark Matter universe. We use a total of 5000 cosmological N-body cosmological simulations to study in detail the distribution of the best-fit cosmological parameters and the baryon acoustic peak positions. The obtained distribution is compared with the results from the Fisher matrix analysis with and without including non-Gaussian errors. For the Fisher matrix analysis, we compute the derivatives of the matter power spectrum with respect to cosmological parameters using directly full nonlinear simulations. We show that the non-Gaussian errors increase the unmarginalized errors by up to a factor 5 for k_{max}=0.4h/Mpc if there is only one free parameter provided other parameters are well determined by external information. On the other hand, for multi-parameter fitting, the impact of the non-Gaussian errors is significantly mitigated due to severe parameter degeneracies in the power spectrum. The distribution of the acoustic...
Spectroscopic Analysis of Oscillating Algol-Type Systems
Tkachenko, A.; Lehmann, H.; Tsymbal, V.; Mkrtichian, D.
2010-12-01
We analyze time-series of highresolution spectra of RZCas, one of the brightest Algoltype stars where the primary shows δ Sct-like oscillations. Our inverstigation uses a variety of methods like the KOREL program to derive the orbital solution and to decompose the spectra of the binary components, the SynthV program to derive the elemental abundances of both components from the mean, decomposed spectra, and finally the newly developed Shellspec07_inverse program to compute optimized stellar parameters from the composite line profiles observed at different orbital phases including the eclipse mapping. Spectra of RZ Cas have been taken at two different epochs. In 2006, the system can be well modeled without including any Algol-typical effects like a gas stream or an accretion annulus into the calculations. We have only to assume that the secondary of RZCas shows a large dark spot on its surface pointing toward the primary, presumably originating from a cooling mechanism by the enthalpy transport via the inner Lagrangian point. The O-C residuals of our solution based on the spectra from 2001 show a complex distribution of circumbinary matter, however, pointing to the occurrence of an episode of rapid mass transfer. This assumption is supported by the deduced change of the orbital period of RZCas of 2 seconds between the two epochs of observations. Numerical simulations of the spatial filtration effect that occures during the primary eclipse showed that this effect can be used for an identification of the excited non-radial pulsation modes in terms of l and m numbers.
Blake, Chris; Forster, Karl; Martin, D. Christopher; Wyder, Ted K.
2011-01-01
We present measurements of the baryon acoustic peak at redshifts z= 0.44, 0.6 and 0.73 in the galaxy correlation function of the final data set of the WiggleZ Dark Energy Survey. We combine our correlation function with lower redshift measurements from the 6-degree Field Galaxy Survey and Sloan Digital Sky Survey, producing a stacked survey correlation function in which the statistical significance of the detection of the baryon acoustic peak is 4.9σ relative to a zero-baryon model with no pe...
Frederick, B.deB. [California Univ., Berkeley, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)
1994-12-01
Nuclear magnetic resonance (NMR) spectroscopic imaging of {sup 23}Na holds promise as a non-invasive method of mapping Na{sup +} distributions, and for differentiating pools of Na{sup +} ions in biological tissues. However, due to NMR relaxation properties of {sup 23}Na in vivo, a large fraction of Na{sup +} is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T{sub 2}. Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo {sup 23}Na T{sub 2} values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic {sup 1}H and {sup 23}Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25{mu}s, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form.
Nuclear magnetic resonance (NMR) spectroscopic imaging of 23Na holds promise as a non-invasive method of mapping Na+ distributions, and for differentiating pools of Na+ ions in biological tissues. However, due to NMR relaxation properties of 23Na in vivo, a large fraction of Na+ is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T2. Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo 23Na T2 values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic 1H and 23Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25μs, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form
Babu, K S; Al-Binni, U; Banerjee, S; Baxter, D V; Berezhiani, Z; Bergevin, M; Bhattacharya, S; Brice, S; Brock, R; Burgess, T W; Castellanos, L; Chattopadhyay, S; Chen, M-C; Church, E; Coppola, C E; Cowen, D F; Cowsik, R; Crabtree, J A; Davoudiasl, H; Dermisek, R; Dolgov, A; Dutta, B; Dvali, G; Ferguson, P; Perez, P Fileviez; Gabriel, T; Gal, A; Gallmeier, F; Ganezer, K S; Gogoladze, I; Golubeva, E S; Graves, V B; Greene, G; Handler, T; Hartfiel, B; Hawari, A; Heilbronn, L; Hill, J; Jaffe, D; Johnson, C; Jung, C K; Kamyshkov, Y; Kerbikov, B; Kopeliovich, B Z; Kopeliovich, V B; Korsch, W; Lachenmaier, T; Langacker, P; Liu, C-Y; Marciano, W J; Mocko, M; Mohapatra, R N; Mokhov, N; Muhrer, G; Mumm, P; Nath, P; Obayashi, Y; Okun, L; Pati, J C; Pattie, R W; Phillips, D G; Quigg, C; Raaf, J L; Raby, S; Ramberg, E; Ray, A; Roy, A; Ruggles, A; Sarkar, U; Saunders, A; Serebrov, A; Shafi, Q; Shimizu, H; Shiozawa, M; Shrock, R; Sikdar, A K; Snow, W M; Soha, A; Spanier, S; Stavenga, G C; Striganov, S; Svoboda, R; Tang, Z; Tavartkiladze, Z; Townsend, L; Tulin, S; Vainshtein, A; Van Kooten, R; Wagner, C E M; Wang, Z; Wehring, B; Wilson, R J; Wise, M; Yokoyama, M; Young, A R
2013-01-01
This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.
Samanta, T; Sindhuja, G; Banerjee, D
2015-01-01
During the total solar eclipse of 11 July 2010, multi-slit spectroscopic observations of the solar corona were performed from Easter Island, Chile. To search for high-frequency waves, observations were taken at a high cadence in the green line at 5303 A due to [Fe xiv] and the red line at 6374 A due to [Fe x]. The data are analyzed to study the periodic variations in the intensity, Doppler velocity and line width using wavelet analysis. The data with high spectral and temporal resolution enabled us to study the rapid dynamical changes within coronal structures. We find that at certain locations each parameter shows significant oscillation with periods ranging from 6 - 25 s. For the first time, we could detect damping of high-frequency oscillations with periods of the order of 10 s. If the observed damped oscillations are due to magnetohydrodynamic (MHD) waves then they can contribute significantly in the heating of the corona. From a statistical study we try to characterize the nature of the observed oscillat...
Baryon Instability in SUSY Models
Nath, Pran; Arnowitt, R.
1996-01-01
Comment: 14 pages, latex, 1 fig, to be published in proceedings of the International Workshop on " Future Prospects of Baryon Instability Search in p-Decay and n-nbar Oscillation Experiments", Oak Ridge, Tennessee, March 28-30,1996
This paper contains a discussion of the spectrum of the lowest-lying charm baryons and review the experimental status of the masses of charm baryons and briefly comment on theoretical attempts to understand their spectroscopy. Lifetime measurements and lifetime hierarchies suggested by the interplay of various theoretical mechanisms contributing to the decay and semileptonic decays of charm baryons are discussed. It also treats exclusive nonleptonic charm baryon decays, where there are more data to be compared to theoretical modeling, and contains a summary and an outlook on future charm baryon experiments
We review the experimental and theoretical status of baryons containing one heavy quark. The charm and bottom baryon states are classified and their mass spectra are listed. The appropriate theoretical framework for the description of heavy baryons is the Heavy Quark Effective Theory, whose general ideas and methods are introduced and illustrated in specific examples. We present simple covariant expressions for the spin wave functions of heavy baryons including p-wave baryons. The covariant spin wave functions are used to determine the Heavy Quark Symmetry structure of flavour-changing current-induced transitions between heavy baryons as well as one-pion and one-photon transitions between heavy baryons of the same flavour. We discuss 1/mQ corrections to the current-induced transitions as well as the structure of heavy to light baryon transitions. Whenever possible we attempt to present numbers to compare with experiment by making use of further model-dependent assumptions as e.g. the constituent picture for light quarks. We highlight recent advances in the theoretical understanding of the inclusive decays of hadrons containing one heavy quark including polarization. For exclusive semileptonic decays we discuss rates, angular decay distributions and polarization effects. We provide an update of the experimental and theoretical status of lifetimes of heavy baryons and of exclusive nonleptonic two body decays of charm baryons. (orig.)
Manera, Marc; Scoccimarro, Roman; Percival, Will J.; Samushia, Lado; McBride, Cameron K.; Ross, Ashley J.; Sheth, Ravi K.; White, Martin; Reid, Beth A.; Sánchez, Ariel G.; de Putter, Roland; XU, Xiaoying; Andreas A. Berlind(Department of Physics and Astronomy, Vanderbilt University, VU Station 1807, Nashville, TN 37235, USA); Brinkmann, Jonathan; Nichol, Bob
2012-01-01
We present a fast method of producing mock galaxy catalogues that can be used to compute covariance matrices of large-scale clustering measurements and test the methods of analysis. Our method populates a 2nd-order Lagrangian Perturbation Theory (2LPT) matter field, where we calibrate masses of dark matter halos by detailed comparisons with N-body simulations. We demonstrate the clustering of halos is recovered at ~10 per cent accuracy. We populate halos with mock galaxies using a Halo Occupa...
Tojeiro, Rita; Percival, Will J.; Brinkmann, Jon; Brownstein, Joel R.; Eisenstein, Daniel J.; Manera, Marc; Maraston, Claudia; McBride, Cameron K.; Muna, Demitri; Reid, Beth; Ross, Ashley J.; Ross, Nicholas P.; Samushia, Lado; Padmanabhan, Nikhil; Schneider, Donald P.
2012-01-01
We explore the benefits of using a passively evolving population of galaxies to measure the evolution of the rate of structure growth between z=0.25 and z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The large-scale linear bias of a population of dynamically passive galaxies, which we select from both surveys, is easily modeled. Knowing the bias evolution breaks degeneracies inherent to other methodologies, and decreases the uncertainty in measurements of the rate of struct...
Sarkar, Tapomoy Guha
2011-01-01
The cross-correlation of the Ly-alpha forest and redshifted 21-cm emission has recently been proposed as an observational tool for mapping out the large-scale structures in the post-reionization era z < 6. This has a significant advantage as the problems of continuum subtraction and foreground removal are expected to be considerably less severe in comparison to the respective auto-correlation signals. Further, the effect of discrete quasar sampling is less severe for the cross-correlation in comparison to the Ly-alpha forest auto-correlation signal. In this paper we explore the possibility of using the cross-correlation signal to detect the baryon acoustic oscillation (BAO). To this end, we have developed a theoretical formalism to calculate the expected cross-correlation signal and its variance. We have used this to predict the expected signal, and estimate the range of observational parameters where a detection is possible. For the Ly-$\\alpha$ forest, we have considered BOSS and BIGBOSS which are expecte...
Hoeneisen, B
2016-01-01
We define Baryon Acoustic Oscillation (BAO) observables $\\hat{d}_\\alpha(z, z_c)$, $\\hat{d}_z(z, z_c)$, and $\\hat{d}_/(z, z_c)$ that do not depend on any cosmological parameter. From each of these observables we recover the BAO correlation length $d_\\textrm{BAO}$ with its respective dependence on cosmological parameters. These BAO observables are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From the BAO measurements alone, or together with the correlation angle $\\theta_\\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the curvature parameter $\\Omega_k$ and the dark energy density $\\Omega_\\textrm{DE}(a)$ as a function of the expansion parameter $a$ in several scenarios. These observables are further constrained with external measurements of $h$ and $\\Omega_\\textrm{b} h^2$. We find some tension between the data and a cosmology with flat space and constant dark energy density $\\Omega_\\textrm{DE}(a)$.
Slepian, Zachary; Brownstein, Joel R; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J; Ross, Ashley J; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2016-01-01
We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of $777,202$ Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance ($4.5\\sigma$) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to $z=0.57$ to $1.7\\%$ precision (statistical plus systematic). We find $D_{\\rm V}= 2024\\pm29\\;{\\rm Mpc\\;(stat)}\\pm20\\;{\\rm Mpc\\;(sys)}$ for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing ...
We use the Busca et al. (2012) [11] measurement of the Hubble parameter at redshift z=2.3 in conjunction with 21 lower z measurements, from Simon, Verde, and Jimenez (2005) [81], Gaztañaga, Cabré, and Hui (2009) [33], Stern et al. (2010) [85], and Moresco et al. (2012) [52], to place constraints on model parameters of constant and time-evolving dark energy cosmological models. The inclusion of the new Busca et al. (2012) [11] measurement results in H(z) constraints significantly more restrictive than those derived by Farooq, Mania, and Ratra (2013) [31]. These H(z) constraints are now more restrictive than those that follow from current Type Ia supernova (SNIa) apparent magnitude measurements Suzuki et al. (2012) [86]. The H(z) constraints by themselves require an accelerating cosmological expansion at about 2 σ confidence level, depending on cosmological model and Hubble constant prior used in the analysis. A joint analysis of H(z), baryon acoustic oscillation peak length scale, and SNIa data favors a spatially-flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude slowly-evolving dark energy density
Gilliot, Mickael [SOPRA SA, 26 rue Pierre Joigneaux, Bois-Colombes 92270 (France)], E-mail: mickael.gilliot@sopra-sa.com; Piel, Jean-Philippe [SOPRA SA, 26 rue Pierre Joigneaux, Bois-Colombes 92270 (France)
2008-09-30
We propose a study on the use of Voigt or Lorentz oscillators on three examples of microelectronics materials: fluorinated silicate glass, silicon nitride and polybenzoxazole. The Voigt oscillator is a convolution of Gauss distribution and Lorentz oscillator and includes both homogeneous and inhomogeneous broadening. It is especially suitable to represent infrared transitions in amorphous materials by considering oscillators in the collection of nominally identical atoms that may have slightly different resonance frequencies because of local surroundings, local crystal structures, defects, dislocations or lattice impurities... Infrared ellipsometry spectra are analyzed and fitted using either of these oscillators. The fits are processed first on the regular part of the spectra and then by progressively extending the fitting range from high to low frequencies to the different absorption bands. Through these three examples it is shown that the Voigt oscillator can simplify the fit process, especially when the materials have absorption bands with complicated structure.
Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob
2012-01-01
In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a serie...
Decay and spectra of baryons especially beauty baryons
Kalman, C. S.
1996-06-01
Masses and decays of the baryons are considered. The entire spectroscopy of baryons containing u,d,s,c and b quarks is calculated using the five quark masses and only four additional parameters describing the potential between the baryons. This potential is taken to be a short-range Coulomb potential together with a long-range linear potential modified by a harmonic-oscillator potential. Decays are studied using the quark pair creation model of Le Yaouanc et. al. The pair strength γ is replaced by kγ . This and the meson radius are the only parameters used in the calculation of the decays. Overall, we have a useful model, employing a small number of parameters, yet capable of yielding a description of the baryons in good accord with experimental data.
A brief review on the theoretical and experimental situation of baryon spectroscopy is first given. Then, the radial structure of baryons, related to the ground state form factors and the baryonic compressibility, is discussed. An experiment has been performed at Saturne laboratory (France) in which for the first time a compression of the nucleon is observed, exciting the P11 (1440 MeV) resonance (Roper resonance) by α-particles. The analysis of the data indicates that this excitation covers a large fraction of the available monopole strength in the nucleon. The derived compressibility is discussed as well as the consequence for other fields, as nuclear medium effects on baryon properties, high density phenomena in nuclear collisions as well as colour transparency. In the last point the spin-flip structure of the P11 (1440 MeV) resonance is discussed. The possibility to determine isoscalar spin-flip strength by polarized deuteron scattering is contrasted with first preliminary results from photon-induced reactions studied at Mainz which indicate a non-negligible M1 excitation of the Roper resonance. (author) 10 figs., 31 refs
Cuesta, Antonio J.; Vargas-Magaña, Mariana; Beutler, Florian; Bolton, Adam S.; Brownstein, Joel R.; Eisenstein, Daniel J.; Gil-Marín, Héctor; Ho, Shirley; McBride, Cameron K.; Maraston, Claudia; Padmanabhan, Nikhil; Percival, Will J.; Reid, Beth A.; Ross, Ashley J.; Ross, Nicholas P.
2016-01-01
AJC and LV are supported by supported by the European Research Council under the European Community's Seventh Framework Programme FP7-IDEAS-Phys.LSS 240117. Funding for this work was partially provided by the Spanish MINECO under projects AYA2014-58747-P and MDM-2014-0369 of ICCUB (Unidad de Excelencia ‘María de Maeztu’). The Science, Technology and Facilities Council is acknowledged for support through the Survey Cosmology and Astrophysics consolidated grant, ST/I001204/1. We present dist...
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested
Kaplunovsky, Vadim; Sonnenschein, Jacob
2012-01-01
In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2...
Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob
2012-11-01
In the large N c limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti- ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.
Eriksen, Martin; Gaztanaga, Enrique
2015-01-01
Future spectroscopic and photometric surveys will measure accurate positions and shapes of an increasing number of galaxies. In the previous paper of this series we studied the effects of Redshift Space Distortions (RSD), baryon acoustic oscillations (BAO) and Weak gravitational Lensing (WL) using angular cross-correlation. Here, we provide a new forecast that explores the contribution of including different observables, physical effects (galaxy bias, WL, RSD, BAO) and approximations (non-lin...
Baryonic and Non-Baryonic Dark Matter
Carr, Bernard
2000-01-01
Cosmological nucleosynthesis calculations imply that there should be both non-baryonic and baryonic dark matter. Recent data suggest that some of the non-baryonic dark matter must be "hot" (i.e. massive neutrinos) and there may also be evidence for "cold" dark matter (i.e. WIMPs). If the baryonic dark matter resides in galactic halos, it is likely to be in the form of compact objects (i.e. MACHOs) and these would probably be the remnants of a first generation of pregalactic or protogalactic P...
Fukushima, Kenji
2014-01-01
We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.
Salazar-Albornoz, Salvador; Grieb, Jan Niklas; Crocce, Martin; Scoccimarro, Roman; Alam, Shadab; Beutler, Florian; Brownstein, Joel R; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Olmstead, Matthew D; Percival, Will J; Prada, Francisco; Rodríguez-Torres, Sergio; Samushia, Lado; Tinker, Jeremy; Thomas, Daniel; Tojeiro, Rita; Wang, Yuting; Zhao, Gong-bo
2016-01-01
We investigate the cosmological implications of studying galaxy clustering using a tomographic approach applied to the final BOSS DR12 galaxy sample, including both auto- and cross-correlation functions between redshift shells. We model the signal of the full shape of the angular correlation function, $\\omega(\\theta)$, in redshift bins using state-of-the-art modelling of non-linearities, bias and redshift-space distortions. We present results on the redshift evolution of the linear bias of BOSS galaxies, which cannot be obtained with traditional methods for galaxy-clustering analysis. We also obtain constraints on cosmological parameters, combining this tomographic analysis with measurements of the cosmic microwave background (CMB) and type Ia supernova (SNIa). We explore a number of cosmological models, including the standard $\\Lambda$CDM model and its most interesting extensions, such as deviations from $w_\\rm{DE} = -1$, non-minimal neutrino masses, spatial curvature and deviations from general relativity u...
Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Ross, Ashley J; Zhao, Gong-bo; Wang, Yuting; Cuesta, Antonio J; Rubiño-Martín, J A; Prada, Francisco; Alam, Shadab; Beutler, Florian; Eisenstein, Daniel J; Gil-Marín, Héctor; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G; Satpathy, Siddharth; Slosar, Anže; Tinker, Jeremy L; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A; Brownstein, Joel R; Nichol, Robert C; Olmstead, Matthew D
2016-01-01
We analyse the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate $H(z)$, the angular-diameter distance $D_A(z)$, the normalised growth rate $f(z)\\sigma_8(z)$, and the physical matter density $\\Omega_mh^2$. We adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe' galaxy clustering analysis. We also marginalise over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chain analysis is computationally expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis. We obtain $\\{D_A(z)r_{s,fid}/r_s$Mpc, $H(z)r_s/r_{s,fid}$kms$^{-1}$Mpc$^{-1}$, $f(z)\\sigma_8(z)$, $\\Omega_m h^2\\}$ = $\\{956\\pm28$ , $75.0\\pm4.0$ , $0.397 \\pm 0.073$, $0.143\\pm0.017\\}$ at $z=0.32$ and $\\{1421\\pm23$, $96.7\\pm2.7$ , $0.497 ...
Baryonic matter perturbations in decaying vacuum cosmology
Marttens, R.F. vom; Zimdahl, W. [Departamento de Física, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitória, Espírito Santo (Brazil); Hipólito-Ricaldi, W.S., E-mail: rodrigovonmarttens@gmail.com, E-mail: wiliam.ricaldi@ufes.br, E-mail: winfried.zimdahl@pq.cnpq.br [Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, CEUNES, Rodovia BR 101 Norte, km. 60, CEP 29932-540, São Mateus, Espírito Santo (Brazil)
2014-08-01
We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbative level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.
Experiments on strangeness production in nucleus-nucleus collisions at SIS energies address fundamental aspects of modern nuclear physics: the determination of the nuclear equation-of-state at high baryon densities and the properties of hadrons in dense nuclear matter. Experimental data and theoretical results will be reviewed. Future experiments at the FAIR accelerator aim at the exploration of the QCD phase diagram at highest baryon densities. The proposal for the Compressed Baryonic Matter (CBM) experiment will be presented. (author)
Brownstein, Joel R; Schlegel, David J; Eisenstein, Daniel J; Kochanek, Christopher S; Connolly, Natalia; Maraston, Claudia; Pandey, Parul; Seitz, Stella; Wake, David A; Wood-Vasey, W Michael; Brinkmann, Jon; Schneider, Donald P; Weaver, Benjamin A; 10.1088/0004-637X/744/1/41
2011-01-01
We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with redshifts 0.4 \\lesssim z \\lesssim 0.7, discovered spectroscopically by the presence of higher redshift emission-lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens ACS Survey (SLACS: Bolton et al. 2006; 2008) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST Adanced Camera for Surveys (ACS) image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The...
Baryogenesis via particle-antiparticle oscillations
Ipek, Seyda; March-Russell, John
2016-06-01
CP violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in particle-antiparticle oscillations. We study particle-antiparticle oscillations [of a particle with mass O(100GeV)] with CP violation in the early Universe in the presence of interactions with O(ab-fb) cross sections. We show that if baryon-number-violating interactions exist, a baryon asymmetry can be produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a U(1)R-symmetric, R-parity-violating supersymmetry model with pseudo-Dirac gauginos, which undergo particle-antiparticle oscillations. Taking bino to be the lightest U(1)R-symmetric particle, and assuming it decays via baryon-number-violating interactions, we show that bino-antibino oscillations can produce the baryon asymmetry of the Universe.
Baryogenesis via particle-antiparticle oscillations
Ipek, Seyda; March-Russell, John
2016-06-01
C P violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in particle-antiparticle oscillations. We study particle-antiparticle oscillations [of a particle with mass O (100 GeV )] with C P violation in the early Universe in the presence of interactions with O (ab -fb ) cross sections. We show that if baryon-number-violating interactions exist, a baryon asymmetry can be produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a U (1 )R-symmetric, R -parity-violating supersymmetry model with pseudo-Dirac gauginos, which undergo particle-antiparticle oscillations. Taking bino to be the lightest U (1 )R -symmetric particle, and assuming it decays via baryon-number-violating interactions, we show that bino-antibino oscillations can produce the baryon asymmetry of the Universe.
Baryogenesis via Particle-Antiparticle Oscillations
Ipek, Seyda
2016-01-01
CP violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in particle-antiparticle oscillations. We study particle-antiparticle oscillations (of a particle with mass O(100 GeV)) with CP violation in the early Universe in the presence of interactions with O(ab-fb) cross-sections. We show that, if baryon-number-violating interactions exist, a baryon asymmetry can be produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a $U(1)_R$-symmetric, R-parity-violating SUSY model with pseudo-Dirac gauginos, which undergo particle-antiparticle oscillations. Taking bino to be the lightest $U(1)_R$-symmetric particle, and assuming it decays via baryon-number-violating interactions, we show that bino-antibino oscillations can produce the baryon asymmetry of the Universe.
Spectroscopy of beautiful baryons
Caloi, R.; Gentile, S.; Mignani, R. (Rome Univ. (Italy). Ist. di Fisica)
1980-09-20
By assuming a non-relativistic quark model, an estimate of the masses of the low-lying (non-strange and non-charmed) beautiful baryons is given. Electromagnetic mass splittings of the same baryons are also discussed in some detail.
Three body calculations for studying the baryons are performed in a non-relativistic treatment with three quarks interacting via Bhaduri's potential. From the resulting wave functions, it is analysed under which conditions can a diquark structure occurs. Several photos showing quark distributions inside the baryons are presented and discussed in details
Wavelet analysis of baryon acoustic structures in the galaxy distribution
Arnalte-Mur, P.; Labatie, A.; Clerc, N.; Martínez, V. J.; Starck, J.-L.; Lachièze-Rey, M.; Saar, E; Paredes, S.
2012-01-01
Baryon Acoustic Oscillations (BAO) are a feature imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. In this work, we present a new method for the detection of the real-space structures associated with this feature. These baryon acoustic structures are sp...
New Paradigm for Baryon and Lepton Number Violation
Perez, Pavel Fileviez
2015-01-01
The possible discovery of proton decay, neutron-antineutron oscillation, neutrinoless beta decay in low energy experiments, and exotic signals related to the violation of the baryon and lepton numbers at collider experiments will change our understanding of the conservation of fundamental symmetries in nature. In this review we discuss the rare processes due to the existence of baryon and lepton number violating interactions. The simplest grand unified theories and the neutrino mass generatio...
詹想; 崔建华; 王宝泉; 翟忠旭; 张同杰
2014-01-01
Radial Baryon Acoustic Oscillation (RBAO)measurements,distant type Ia supernovae (SNe Ia),the observational H(z)data (OHD)and the Cosmic Microwave Background (CMB)shift parameter data are used to constrain cosmological parameters ofΛCDM and XCDM cosmologies and to further examine the role of OHD and SNe Ia data in cosmological constraints.The likelihood function over h is marginalized by integrating the probability density P∝e(-χ2/2)to obtain best fitting results and confidence regions in theΩm-ΩΛplane.Combination analysis for bothΛCDM and XCDM models reveal that confidence regions of 68.3%, 95.4% and 99.7% levels using OHD+RBAO+CMB data are in good agreement with that of SNe Ia+RBAO+CMB data which is consistent with data from Lin et al.(2009).With more OHD data,it may be possible to constrain cosmological parameters using OHD data instead of SNe Ia data in the future.%使用径向重子声学振荡(RBAO)测量遥远的 Ia型超新星(SNe Ia)、观测哈勃参量数据(OHD)和宇宙微波背景(CMB)位移参数数据来限制ΛCDM和 XCDM宇宙的宇宙学参量,进一步检查了 OHD和 SNe Ia 数据对宇宙学的约束作用.我们对似然函数的归化哈勃参数h进行了边缘化,即积分概率密度P∝e-Χ2/2,以在Ωm-ΩΛ平面获得最佳的拟合结果和置信区域.依据ΛCDM和 XCDM模型的组合分析,我们发现在置信区域为68.3%、95.4%和99.7%的置信水平上,OHD+RBAO+CMB数据和 SNe Ia+RBAO+CMB数据符合得很好.随着越来越多的 OHD数据的获得,我们或许在将来可以使用 OHD数据代替 SNe Ia数据来限制宇宙学参量.
Dipion decays of heavy baryons
Compared with the charmed baryons, the bottom baryons are not known very well both experimentally and theoretically. In this paper, we investigate the dipion strong decays of the P-wave and D-wave excited bottom baryons in the framework of the QPC model. We also extend the same analysis to the charmed baryons
Torsten Leddig
2012-11-01
From inclusive measurements, it is known that about 7% of all mesons decay into final states with baryons. In these decays, some striking features become visible compared to mesonic decays. The largest branching fractions come with quite moderate multiplicities of 3–4 hadrons. We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.
Lifetime of Doubly Charmed Baryons
XU Xue-Fen; CHANG Chao-Hsi; LI Tong; LI Xue-Qian; WANG Yu-Ming
2008-01-01
In this work, we evaluate the lifetimes of the doubly charmed baryons cc+, cc++, and Ωcc+. We carefully calculate the non-spectator contributions at the quark level, where the Cabibbo-suppressed diagrams are also included. The hadronic matrix elements are evaluated in the simple non-relativistic harmonic oscillator model. Our numerical results are generally consistent with that obtained by other authors who used the diquark model. However, all the theoretical predictions on the lifetimes are one order larger than the upper limit set by the recent SELEX measurement. This discrepancy would be clarified by the future experiment. If more accurate experiment still confirms the value of the SELEX collaboration, there must be some unknown mechanism to be explored.
Photoproduction of hermaphrodite baryons
We show that photoexcitation of the lightest hermaphrodite baryons is strongly suppressed from proton targets but allowed from neutrons, a result that is reminiscent of a quark model selection rule due to Moorhouse. This is consistent with suggestions that the P11 (1710) is the lightest q3G baryon and eliminates the possibility of considerable mixing of q3G into the nucleon and delta's Fock space wavefunctions. (orig.)
Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small ΩB. However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then Ω should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman α clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with ΩB = 1 cosmological nucleosynthesis
Quark cluster model of baryon-baryon interaction
The quark cluster model of the baryon-baryon interaction is reviewed. The emphasis is on the foundation of the approach and the main features of the model. The origins of the short-range repulsion in the nuclear force and other baryonic interactions are discussed. (author)
Supersymmetric Baryonic Branes
Gomis, J P; Simón, J; Townsend, P K; Gomis, Joaquim; Ramallo, Alfonso V.; Simon, Joan; Townsend, Paul K.
1999-01-01
We derive an energy bound for a `baryonic' D5-brane probe in the $adS_5\\times S^5$ background near the horizon of $N$ D3-branes. Configurations saturating the bound are shown to be 1/4 supersymmetric $S^5$-wrapped D5-branes with $N$ singularities at arbitrary positions. Previous results for $N$ coincident singularities are recovered as a special case. We derive a similar energy bound for a `baryonic' M5-brane probe in the background of $N$ M5-branes. Configurations saturating the bound are again 1/4 supersymmetric and, in the $adS_7\\times S^4$ near-horizon limit, provide a worldvolume realization of the `baryon string' vertex of the (2,0)-supersymmetric six-dimensional conformal field theory on coincident M5-branes. For the full M5-background we find a worldvolume realization of the Hannany-Witten effect in M-theory.
Measurements of inclusive Λ + anti Λ production for 1.0 less than or equal to p less than or equal to 10.0 GeV/c and p + anti p production for 0.4 less than or equal to p less than or equal to 2.0 GeV/c show significant baryon production in e+e- annihilation at E/sub cm/ = 29 GeV. Λ + anti Λ production represents 0.2 Λ's or anti Λ's per PEP event while the observed p + anti p production implies all baryon-antibaryon pair production is occurring at least as often as 0.6 per event, depending on the yet to be measured p + anti p production at high momentum. Comparisons are made with the first theoretical attempts to account for baryon production at these energies
Charmed Bottom Baryon Spectroscopy
Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-01
The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.
Photoproduction of hermaphrodite baryons
It is shown that photoexcitation of the lightest hermaphrodite baryons is strongly suppressed from proton targets but allowed from neutrons, a result that is reminiscent of a quark model selection rule due to Moorhouse (Phys. Rev. Lett.; 16:772 (1966)). This is consistent with suggestions that the P11(1710) is the lightest q3G baryon and eliminates the possibility that the Roper resonance is dominantly an hermaphrodite state. Magnetic moments do not constrain the possibility of considerable mixing of q3G into the nucleon and delta's Fock space wavefunctions. (author)
Using state of the art lattice techniques we investigate the static baryon potential. We employ the multi-hit procedure for the time links and a variational approach to determine the ground state with sufficient accuracy that, for distances up to ∼ 1.2 fm, we can distinguish the Y- and Δ- Ansaetze for the baryonic Wilson area law. Our analysis shows that the Δ-Ansatz is favoured. This result is also supported by the gauge-invariant nucleon wave function which we measure for the first time
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Electroproduction of light quark baryons
The status of electromagnetic excitation of light quark (u, d) baryon states is reviewed and confronted with results of calculations within the framework of microscopic models of the baryon structure and the photon-baryon coupling. Prospects for a qualitative improvement of our knowledge in this sector using photon and electron beams at the new, intermediate energy continuous wave electron machines are discussed
Universal Neutrino Mass Hierarchy and Cosmological Baryon Number Asymmetry
Xing, Zhi-zhong
2004-01-01
We conjecture that three light Majorana neutrinos and their right-handed counterparts may have a universal geometric mass hierarchy. Incorporating this phenomenological conjecture with the Fritzsch texture of lepton mass matrices in a simple seesaw mechanism, we show that it is possible to simultaneously account for current neutrino oscillation data and the cosmological baryon number asymmetry via leptogenesis.
By formal manipulation of the QCD functional integral we arrive at a relativistic low energy effective theory of non-local color singlet mesons and baryons, which at tree level sums up ladders of effective glue exchange between constituent quarks. (orig.)
Problems in baryon spectroscopy
Capstick, S. [Florida State Univ., Tallahassee, FL (United States)
1994-04-01
Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.
Paolis, F.; Ingrosso, G.; Jetzer, Ph.; Roncadelli, M.
1997-01-01
Reasons supporting the idea that most of the dark matter in galaxies and clusters of galaxies is baryonic are discussed. Moreover, it is argued that most of the dark matter in galactic halos should be in the form of MACHOs and cold molecular clouds.
Combining Spectroscopic and Photometric Surveys: Same or different sky?
Eriksen, Martin
2014-01-01
This article looks at the combined constraints from a photometric and spectroscopic survey. These surveys will measure cosmology using weak lensing (WL), galaxy cluster- ing, baryon acoustic oscillations (BAO) and redshift space distortions (RSD). We find, contrary to some findings in the recent literature, that overlapping surveys can give important benefits when measuring dark energy. We therefore try to clarify the status of this issue with a full forecast of two stage-IV surveys using a new approach to prop- erly account for covariance between the different probes in the overlapping samples. The benefit of the overlapping survey can be traced back to two factors: additional observables and sample variance cancellation. Both needs to be taken into account and contribute equally when combining 3D power spectrum and 2D correlations for lensing. With an analytic example we also illustrate that for optimal constraints, one should minimize the (Pearson) correlation coefficient between cosmological and nui- sanc...
Photoproduction of charmed baryons
The results of a search for the photoproduction of charmed baryons in the broad-band neutral beam at Fermi National Accelerator Laboratory are reported. The lowest lying charmed baryon (Λ/sub c/+) is observed through its decay to p-anti K0. The cross section times branching ratio of γ + C → Λ/sub c/+ + X, γ + C → p + anti K0 is measured to be sigma B = 3 nanobarns/nucleon. The total error on this measurement is estimated to be -20% to +40%. The mass of the Λ/sub c/+ is found to be 2.284 +- 0.001 GeV/c2, in good agreement with the Mark II result from SPEAR. Upper limits (90% confidence level) are set on sigma B for the modes Λ0π, Λ0πππ, pKπ
Buccella, F.; Farrar, G.R.; Rutgers - the State Univ., New Brunswick, NJ; Pugliese, A.
1985-04-04
The MIT bag model is used to calculate masses of (R-)baryons, composed of three quarks and a gluino. If the gluino mass is small, the lightest of these, a flavor singlet, could be long-lived or even absolutely stable. The next lighest, the R-nucleons, probably have only weak decays, while all others are likely to decay strongly. This physical picture is not ruled out experimentally. (orig.).
Buccella, F.; Farrar, G.R.; Pugliese, A.
1985-04-04
The MIT bag model is used to calculate masses of (R-)baryons, composed of three quarks and a gluino. If the gluino mass is small, the lightest of these, a flavor singlet, could be long-lived or even absolutely stable. The next lighest, the R-nucleons, probably have only weak decays, while all others are likely to decay strongly. This physical picture is not ruled out experimentally.
The MIT bag model is used to calculate masses of (R-)baryons, composed of three quarks and a gluino. If the gluino mass is small, the lightest of these, a flavor singlet, could be long-lived or even absolutely stable. The next lighest, the R-nucleons, probably have only weak decays, while all others are likely to decay strongly. This physical picture is not ruled out experimentally. (orig.)
Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT
I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.