WorldWideScience

Sample records for barstow solar pilot plant

  1. The 10 MWe Solar Thermal Central Receiver Pilot Plant: Solar facilities design integration. Pilot-plant station manual (RADL Item 2-1). Volume 1: System description

    Science.gov (United States)

    1982-09-01

    The complete Barstow Solar Pilot Plant is described. The plant requirements and general description are presented, the mechanical, electric power, and control and instrumentation systems as well as civil engineering and structural aspects and the station buildings are described. Included in the mechanical systems are the heliostats, receiver, thermal storage system, beam characterization system, steam, water, nitrogen, and compressed air systems, chemical feed system, fire protection system, drains, sumps and the waste disposal systems, and heating, ventilating, and air conditioning systems.

  2. A 10-MWe solar-thermal central-receiver pilot plant: Solar facilities design integration. Plant operating/training manual (RADL-Item 2-36)

    Science.gov (United States)

    1982-07-01

    Plant and system level operating instructions are provided for the Barstow Solar Pilot Plant. Individual status instructions are given that identify plant conditions, process controller responsibilities, process conditions and control accuracies, operating envelopes, and operator cautions appropriate to the operating condition. Transition operating instructions identify the sequence of activities to be carried out to accomplish the indicated transition. Most transitions involve the startup or shutdown of an individual flowpath. Background information is provided on collector field operations, and the heliostat groupings and specific commands used in support receiver startup are defined.

  3. 10-MWe solar-thermal central-receiver pilot plant: collector subsystem foundation construction. Revision No. 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-18

    Bid documents are provided for the construction of the collector subsystem foundation of the Barstow Solar Pilot Plant, including invitation to bid, bid form, representations and certifications, construction contract, and labor standards provisions of the Davis-Bacon Act. Instructions to bidders, general provisions and general conditions are included. Technical specifications are provided for the construction. (LEW)

  4. 10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-25

    Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

  5. Receiver subsystem analysis report (RADL Item 4-1). The 10-MWe solar thermal central-receiver pilot plant: Solar-facilities design integration

    Science.gov (United States)

    1982-04-01

    The results of thermal hydraulic, design for the stress analyses which are required to demonstrate that the receiver design for the Barstow Solar Pilot Plant satisfies the general design and performance requirements during the plant's design life are presented. Recommendations are made for receiver operation. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding.

  6. Software/firmware design specification for 10-MWe solar-thermal central-receiver pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Ladewig, T.D.

    1981-03-01

    The software and firmware employed for the operation of the Barstow Solar Pilot Plant are completely described. The systems allow operator control of up to 2048 heliostats, and include the capability of operator-commanded control, graphic displays, status displays, alarm generation, system redundancy, and interfaces to the Operational Control System, the Data Acquisition System, and the Beam Characterization System. The requirements are decomposed into eleven software modules for execution in the Heliostat Array Controller computer, one firmware module for execution in the Heliostat Field Controller microprocessor, and one firmware module for execution in the Heliostat Controller microprocessor. The design of the modules to satisfy requirements, the interfaces between the computers, the software system structure, and the computers in which the software and firmware will execute are detailed. The testing sequence for validation of the software/firmware is described. (LEW)

  7. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Drawings are presented for the repowering project described in SAN--1608-4-1. Reeves Sation No. 2 was selected for study for repowering at 50 percent (25 MWe) using the 10-MW solar central receiver pilot plant preliminary design for Barstow, California. (WHK)

  8. Solar Pilot Plant project review No. 9, May 4--5, 1977. CDRL item 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    Drawings and illustrations for the project review are presented. These are included for the 10 MW(e) solar pilot plant, the collector subsystem, the receiver subsystem, the electrical power generation system and balance of plant, plant controls and transient analysis, availability and safety, pilot and commercial plant designs, and summary and recommendations. (MHR)

  9. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    Science.gov (United States)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  10. Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia.

    Science.gov (United States)

    Bousselmi, L; Geissen, S U; Schroeder, H

    2004-01-01

    Based on results from bench-scale flow-film-reactors (FFR) and aerated cascade photoreactors, a solar catalytic pilot plant has been built at the site of a textile factory. This plant has an illuminated surface area of 50 m2 and is designed for the treatment of 1 m3 h(-1) of wastewater. The preliminary results are presented and compared with a bench-scale FFR using textile wastewater and dichloroacetic acid. Equivalent degradation kinetics were obtained and it was demonstrated that the solar catalytic technology is able to remove recalcitrant compounds and color. However, on-site optimization is still necessary for wastewater reuse and for an economic application.

  11. A pilot plant for solar-cell manufacture; Ligne pilote de fabrication de cellules solaires

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.; Ziegler, Y.; Closset, A. [VHF - Technologies SA, Yverdon-les-Bains (Switzerland)

    2005-07-01

    A pilot plant for the manufacture of amorphous silicon solar cells on plastic film substrate was built allowing the annual production of 40 kW peak power. The production steps comprise: a) the continuous coating of n-i-p solar cells by VHF-PECVD with a capacity of 28.5 meters in 8.5 hours; b) transparent-conducting-oxide (TCO) top contact structuring using a continuous process; c) series connection step (scribing and Ag-paste) with a capacity of 28 meters in 6 hours; d) back and top contact sputtering with 3 parallel magnetrons; e) integration of a large-area vacuum laminator enabling the simultaneous lamination of 4 products of 4 Wp. In parallel with this project, a complete cost model was established enabling a more quantitative approach of the future technological and industrial strategy of the company. An increase of the capacity to 100 kWp has been planned for summer 2005.

  12. Solar pilot plant, phase I. Quarterly report No. 1, July--December 1975

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-02-20

    Honeywell Inc. is investigating the technical and economic feasibility of generating electricity from solar energy. During the first 6 months of the program (1 July--31 December 1975), a preliminary design baseline for a 10-MW(e) solar pilot plant was generated and analyzed. Subsequently, several changes were made to improve performance and/or reduce cost. Conceptual designs and research experiments were generated for three key subsystems--collector, steam generator, and thermal storage. Limited testing was done to study the problem of removing eutectic salts from vaporizer tubes in the thermal storage subsystem. The program was on schedule at the end of 1975. Plans for the first quarter of 1976 include ordering long-leadtime items for the subsystem research experiments, continuing analysis of the conceptual designs preparatory to detailing them, and continuing engineering model experiments.

  13. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Public Service Company of New Mexico (PNM) has performed a Technical and Economic Assessment of Solar Hybrid Repowering under funding by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), Western Energy Supply and Transmission (WEST) Associates, and a number of southwestern utilities. Solar hybrid repowering involves placement of solar hardware adjacent to and connected to existing gas- and oil-fueled electric generation units to displace some of or all the fossil fuel normally used during daylight hours. The subject study assesses the technical economic viability of the solar hybrid repowering concept within the southwestern United States and the PNM system. This document is a final report on the study and its results. The study was divided into the six primary tasks to allow a systematic investigation of the concept: (1) market survey and cost/benefit analysis, (2) study unit selection, (3) conceptual design and cost estimates, (4) unit economic analysis, (5) program planning, future phases, and (6) program management. Reeves Station No. 2 at Albuquerque, New Mexico, was selected for repowering with a design goal of 50 percent (25 MWe). The solar system design is based on the 10 MW solar central receiver pilot plant preliminary design for Barstow, California. SAN--1608-4-2 contains the technical drawings. (WHK)

  14. Photocatalytic treatment of an industrial effluent using artificial and solar UV radiation: an operational cost study on a pilot plant scale.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; San Martín, I

    2012-05-15

    The aim of this work was to study the operation costs of treating a real effluent from an integrated gasification combined cycle (IGCC) power station located in Spain. The study compares different homogeneous photocatalytic processes on a pilot plant scale using different types of radiation (artificial UV or solar UV with a compound parabolic collector). The efficiency of the processes was evaluated by an analysis of the total organic carbon (TOC) removed. The following processes were considered in the study: (i) a photo-Fenton process at an artificial UV pilot plant (with the initial addition of H(2)O(2)), (ii) a modified photo-Fenton process with continuous addition of H(2)O(2) and O(2) to the system and (iii) a ferrioxalate-assisted solar photo-Fenton process at a compound parabolic collector (CPC) pilot plant. The efficiency of these processes in degrading pollutants has been studied previously, and the results obtained in each of those studies have been published elsewhere. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions of each process. The results showed that the solar photo-Fenton system was economically feasible, being able to achieve up to 75% mineralization with a total cost of 6 €/m(3), which can be reduced to 3.6 €/m(3) by subtracting the electrical costs because the IGCC plant is self-sufficient in terms of energy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Advances in solar photoelectro-Fenton: Decolorization and mineralization of the Direct Yellow 4 diazo dye using an autonomous solar pre-pilot plant

    International Nuclear Information System (INIS)

    Garcia-Segura, Sergi; Brillas, Enric

    2014-01-01

    Highlights: • Assessment of an autonomous solar pre-pilot plant for solar photoelectro-Fenton. • Total decolorization and 96-97% mineralization for solutions of Direct Yellow 4 diazo dye at pH 3.0. • More rapid dye decay and mineralization at 0.50 mmol dm −3 Fe 2+ and maximum current of 5.0 A. • 11 aromatics, 22 hydroxylated derivatives and 9 carboxylic acids detected as intermediates. • Release of NH 4 + and SO 4 2− as main inorganic ions. - Abstract: Here, an overview on the advances in solar photoelectro-Fenton (SPEF) is initially presented to show that it is the more potent electrochemical advanced oxidation process based on Fenton's reaction chemistry to remove organic pollutants from waters, due to the synergistic action of generated hydroxyl radicals and solar irradiation. As a novel advance for SPEF, an autonomous solar pre-pilot plant is proposed to make an energetically inexpensive process that can be viable at industrial level. The plant of 10 dm 3 capacity contained a Pt/air-diffusion cell with 90.2 cm 2 electrode area, coupled to a solar compound parabolic collectors (CPCs) photoreactor of 1.57 dm 3 irradiation volume and to a solar photovoltaic panel that provides a maximum average current of 5.0 A. The oxidation ability of this plant was assessed by studying the degradation of Direct Yellow 4 (DY4) diazo dye, which involved the predominant destruction of organics by ·OH formed from Fenton's reaction between H 2 O 2 generated at the cathode and added Fe 2+ , along with the photolysis of Fe(III)-carboxylate complexes with sunlight in the CPCs photoreactor. The effect of Fe 2+ and dye contents as well as current on decolorization rate, substrate decay and mineralization rate was examined. About 96-97% mineralization was rapidly attained using 0.50 mmol dm −3 Fe 2+ and up to 0.32 mmol dm −3 DY4 at 5.0 A. The DY4 decay always obeyed a pseudo-first-order kinetics. Eleven aromatic products, twenty two hydroxylated derivatives

  16. Coupling solar photo-Fenton and biotreatment at industrial scale: Main results of a demonstration plant

    International Nuclear Information System (INIS)

    Malato, Sixto; Blanco, Julian; Maldonado, Manuel I.; Oller, Isabel; Gernjak, Wolfgang; Perez-Estrada, Leonidas

    2007-01-01

    This paper reports on the combined solar photo-Fenton/biological treatment of an industrial effluent (initial total organic carbon, TOC, around 500 mg L -1 ) containing a non-biodegradable organic substance (α-methylphenylglycine at 500 mg L -1 ), focusing on pilot plant tests performed for design of an industrial plant, the design itself and the plant layout. Pilot plant tests have demonstrated that biodegradability enhancement is closely related to disappearance of the parent compound, for which a certain illumination time and hydrogen peroxide consumption are required, working at pH 2.8 and adding Fe 2+ = 20 mg L -1 . Based on pilot plant results, an industrial plant with 100 m 2 of CPC collectors for a 250 L/h treatment capacity has been designed. The solar system discharges the wastewater (WW) pre-treated by photo-Fenton into a biotreatment based on an immobilized biomass reactor. First, results of the industrial plant are also presented, demonstrating that it is able to treat up to 500 L h -1 at an average solar ultraviolet radiation of 22.9 W m -2 , under the same conditions (pH, hydrogen peroxide consumption) tested in the pilot plant

  17. Solar Pilot Plant, Phase I. Preliminary design report. Volume II. System description and system analysis. CDRL item 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    Honeywell conducted a parametric analysis of the 10-MW(e) solar pilot plant requirements and expected performance and established an optimum system design. The main analytical simulation tools were the optical (ray trace) and the dynamic simulation models. These are described in detail in Books 2 and 3 of this volume under separate cover. In making design decisions, available performance and cost data were used to provide a design reflecting the overall requirements and economics of a commercial-scale plant. This volume contains a description of this analysis/design process and resultant system/subsystem design and performance.

  18. Solar Power System SPS - A small-scale 10 kWe solar thermal pilot power plant - Phase 5. Annual report 2003; Solar Power System SPS - Projet d'une mini-centrale pilote electro-thermo-solaire de 10 kWe - Phase 5. Rapport annuel 2003

    Energy Technology Data Exchange (ETDEWEB)

    Giroud, P.-A.; Gay, B.; Favrat, D.

    2003-12-15

    This illustrated annual report for the Swiss Federal Office of Energy reports on the development of components for a 10 kW electric solar thermal mini power plant. The concentrating solar collector is designed as an extra-flat compound parabolic collector without any evacuated component. The solar collector performance measurements are described. The results obtained with this collector prototype are disappointing. Further improvements in the collector construction are needed. A computer simulation model has been developed for this purpose. In another development the instrumentation built in the pilot power plant has been modified in order to be able to characterize the thermal performance of the heat exchangers in the thermodynamical cycle, to measure the oil fraction in the refrigerant and to test the performance of the R245fa refrigerant used instead of the R123. Finally, a new pump has been developed for the circulation of the refrigerant. This pump is mounted on the same axis as the the turbine. Special technologies and materials were required.

  19. Anaerobic biogasification of domestic wastes and direct solar energy use to produce biogas, biofertilizer and distilled water in a city - a pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    kumar, R.A.; Pandya, N.H.; Patil, A.M.; Annamalai, M.; Iyer, M.V.; Nirmala, K.A.; Venkatesh, P.; Prasad, C.R.; Subramani, C.

    1982-01-01

    Domestic wastes are a source of gas of high calorific value as well as biofertilizer and distilled water. A pilot project undertaken by the Tata Electric Cos., Bombay on recycling sewage, garbage and garden wastes of a community by converting them into biogas, organic fertilizer and distilled water is described. Techniques used are anaerobic fermentation and Solar drying using Solar stills. A fish pond also can be fed the output slurry as feed material. In this pilot plant, 1 to 2 m/sup 3/ raw sewage and one to two tons of processed garden wastes and garbage would be input daily into the digester. The production is expected to be about 100 m/sup 3/ of gas per day, along with about 1500 litres of slurry from which organic fertilizer of 100 200 Kgs can be bagged and transported as well as distilled water of about 500 to 1000 litres Laboratory studies and studies on an approximate scale model of the plant are described. Scaling up to a pilot plant by about 2000 times would increase the efficiency of the rate of gas production as has been found by other workers. These tests and studies have shown that the project is technically and eonomically viable. Applications of the process on a mass scale would result in increasing replacement of fossil energy intensive processes with negentropic methods of economic and social activities.

  20. German central solar heating plants with seasonal heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, D.; Marx, R.; Nussbicker-Lux, J.; Ochs, F.; Heidemann, W. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Mueller-Steinhagen, H. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Institute of Technical Thermodynamics (ITT), German Aerospace Centre (DLR), Stuttgart (Germany)

    2010-04-15

    Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (in Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)

  1. Summary of the Solar Two Test and Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    PACHECO,JAMES E.; REILLY,HUGH E.; KOLB,GREGORY J.; TYNER,CRAIG E.

    2000-02-08

    Solar Two was a collaborative, cost-shared project between eleven US industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, was comprised of 1926 heliostats, a receiver, a thermal storage system and a steam generation system. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10 MWe, conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This paper describes the significant results from the test and evaluation activities.

  2. Stratigraphy, age, and depositional setting of the Miocene Barstow Formation at Harvard Hill, central Mojave Desert, California

    Science.gov (United States)

    Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.

    2010-01-01

    New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before

  3. Kvanefjeld refinery pilot plant operations

    International Nuclear Information System (INIS)

    Krebs, Damien; Furfaro, Domenic

    2016-01-01

    Greenland Minerals and Energy is a junior project development company which is listed on the Australian Stock Exchange (asx:GGG). It is developing the Kvanefjeld rare earth and uranium project located in the southern tip of Greenland. The project has completed a Feasibility Study and is currently in the permitting phase. Last year was a busy time for the company as it completed a Feasibility Study, a mining licence application (draft submitted in December 2015) and pilot plant operations. Beneficiation pilot plant operations were completed at GTK in Finland in April 2015. This pilot plant treated approximately 30 tonnes of ore to producing almost 2 tonnes of rare earth mineral concentrate. Later in the year a hydrometallurgical pilot plant was performed which mimicked the Refinery process. This pilot plant was performed at Outotec’s Pori Research laboratories in Finland from September till October 2015. The pilot plant treated approximately 200 kilograms of concentrate over 4 split operating campaigns. Each campaign was performed to focus on the performance of a specific part of the refinery flowsheet. This allowed for full operating focus on a single unit operation to ensure that it was operating correctly. The pilot plant operations were quite successful with no major issues with the flowsheet identified through continuous operation. Some fine tuning of conditions was required to ensure adequate removal of impurities was performed with recycle streams incorporated. Overall the leach extractions observed in the pilot plant exceeded the design assumptions in the Feasibility Study. These programs were partially funded by the EURARE program. The EURARE program aims to encourage the sustainable development of European based rare earth projects. This has the goal of allowing Europe to become less reliant on importation of these key raw materials. The professionalism and performance of both GTK and Outotec contributed significantly to the success of the pilot plant

  4. New large solar photocatalytic plant: set-up and preliminary results.

    Science.gov (United States)

    Malato, S; Blanco, J; Vidal, A; Fernández, P; Cáceres, J; Trincado, P; Oliveira, J C; Vincent, M

    2002-04-01

    A European industrial consortium called SOLARDETOX has been created as the result of an EC-DGXII BRITE-EURAM-III-financed project on solar photocatalytic detoxification of water. The project objective was to develop a simple, efficient and commercially competitive water-treatment technology, based on compound parabolic collectors (CPCs) solar collectors and TiO2 photocatalysis, to make possible easy design and installation. The design, set-up and preliminary results of the main project deliverable, the first European industrial solar detoxification treatment plant, is presented. This plant has been designed for the batch treatment of 2 m3 of water with a 100 m2 collector-aperture area and aqueous aerated suspensions of polycrystalline TiO2 irradiated by sunlight. Fully automatic control reduces operation and maintenance manpower. Plant behaviour has been compared (using dichloroacetic acid and cyanide at 50 mg l(-1) initial concentration as model compounds) with the small CPC pilot plants installed at the Plataforma Solar de Almería several years ago. The first results with high-content cyanide (1 g l(-1)) waste water are presented and plant treatment capacity is calculated.

  5. Sono-photo-degradation of carbamazepine in a thin falling film reactor: Operation costs in pilot plant.

    Science.gov (United States)

    Expósito, A J; Patterson, D A; Monteagudo, J M; Durán, A

    2017-01-01

    The photo-Fenton degradation of carbamazepine (CBZ) assisted with ultrasound radiation (US/UV/H 2 O 2 /Fe) was tested in a lab thin film reactor allowing high TOC removals (89% in 35min). The synergism between the UV process and the sonolytic one was quantified as 55.2%. To test the applicability of this reactor for industrial purposes, the sono-photo-degradation of CBZ was also tested in a thin film pilot plant reactor and compared with a 28L UV-C conventional pilot plant and with a solar Collector Parabolic Compound (CPC). At a pilot plant scale, a US/UV/H 2 O 2 /Fe process reaching 60% of mineralization would cost 2.1 and 3.8€/m 3 for the conventional and thin film plant respectively. The use of ultrasound (US) produces an extra generation of hydroxyl radicals, thus increasing the mineralization rate. In the solar process, electric consumption accounts for a maximum of 33% of total costs. Thus, for a TOC removal of 80%, the cost of this treatment is about 1.36€/m 3 . However, the efficiency of the solar installation decreases in cloudy days and cannot be used during night, so that a limited flow rate can be treated. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Light-induced catalytic transformation of ofloxacin by solar Fenton in various water matrices at a pilot plant: mineralization and characterization of major intermediate products.

    Science.gov (United States)

    Michael, I; Hapeshi, E; Aceña, J; Perez, S; Petrović, M; Zapata, A; Barceló, D; Malato, S; Fatta-Kassinos, D

    2013-09-01

    This work investigated the application of a solar driven advanced oxidation process (solar Fenton), for the degradation of the antibiotic ofloxacin (OFX) in various environmental matrices at a pilot-scale. All experiments were carried out in a compound parabolic collector pilot plant in the presence of doses of H2O2 (2.5 mg L(-1)) and at an initial Fe(2+) concentration of 2 mg L(-1). The water matrices used for the solar Fenton experiments were: demineralized water (DW), simulated natural freshwater (SW), simulated effluent from municipal wastewater treatment plant (SWW) and pre-treated real effluent from municipal wastewater treatment plant (RE) to which OFX had been spiked at 10 mg L(-1). Dissolved organic carbon removal was found to be dependent on the chemical composition of the water matrix. OFX mineralization was higher in DW (78.1%) than in SW (58.3%) at 12 mg L(-1) of H2O2 consumption, implying the complexation of iron or the scavenging of hydroxyl radicals by the inorganic ions present in SW. On the other hand, the presence of dissolved organic matter (DOM) in SWW and RE, led to lower mineralization per dose of H2O2 compared to DW and SW. The major transformation products (TPs) formed during the solar Fenton treatment of OFX, were elucidated using liquid chromatography-time of flight-mass spectrometry (LC-ToF-MS). The transformation of OFX proceeded through a defluorination reaction, accompanied by some degree of piperazine and quinolone substituent transformation while a hydroxylation mechanism occurred by attack of the hydroxyl radicals generated during the process leading to the formation of TPs in all the water matrices, seven of which were tentatively identified. The results obtained from the toxicity bioassays indicated that the toxicity originates from the DOM present in RE and its oxidation products formed during the photocatalytic treatment and not from the TPs resulted from the oxidation of OFX. Copyright © 2013 The Authors. Published by

  7. Achievement report on the development of solar thermal electric power plant technologies. Annex; Taiyonetsu hatsuden plant gijutsu kaihatsu seika hokokusho. Fuzoku shiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The two solar thermal electric power pilot plants are of the tower concentration type and the flat/curved surface concentration type. For the first time in the world, they succeeded in operating at a rated output of 1,000kW in August and September, 1981, respectively. Sunshine was inputted at an unstable rate, and the plants were operated under various load patterns. Studies were conducted and an optimum operating technique is established. Since designing, construction, and operation were carried for two types of pilot plants, quantities of useful data were collected through a variety of experiences. Valuable hints and design data were provided for use in the construction of full-scale power plants in the future. Element units developed for the plants were high-reflectance mirrors, high-precision tracking mechanisms, solar heat collectors of the cavity type and paraboloidal type, and molten salt heat accumulators. The tower concentration type plant exhibits a power generation efficiency of 16-17% and an overall plant efficiency of 3.1-4.4%. The maximum overall efficiency a month is 3.9% with the flat/curved surface concentration type plant. (NEDO)

  8. FY 1979 Annual report on Sunshine Project results. Fabrication designs for a solar thermal power pilot plant with curved-surface type light-collecting system (Part 1); 1979 nendo taiyonetsu hatsuden (kyokumen shuko hoshiki) seika hokokusho. 1. Pilot plant no seisaku ksekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This report describes basic and fabrication design specifications for operation and control of a solar thermal power pilot plant with curved-surface type light-collecting system, centered by computer for the plant control. Chapter I, basic fabrication design specifications, describes the general, design specifications and design scope. Chapter II, system design specifications, describes plant operating manuals, computer-aided plant control, computer-aided data processing for plant control, and analysis of system characteristics. Chapter III, hardware specifications, describes the specifications of central processing unit (CPU), fixed head disc device (M DISC), console inputting/outputting device, process inputting/outputting device, logging typewriter, process display (CRT), cassette magnetic tape device, operator console, relay cubicle, power source panel for computer, and hardware lists. Chapter IV, attachments, contains the following documents: plant operating manuals, operation procedure flow charts, control processing specifications, control function specifications, APS console function specifications, computer inputting/outputting point list, and data processing function instructions. The attachment documents are also contained in Part 2 of JN0040512. (NEDO)

  9. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  10. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    Science.gov (United States)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  11. 7 CFR 1412.48 - Planting Transferability Pilot Project.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Planting Transferability Pilot Project. 1412.48... and Peanuts 2008 through 2012 § 1412.48 Planting Transferability Pilot Project. (a) Notwithstanding § 1412.47, for each of the 2009 and subsequent crop years, the Planting Transferability Pilot Project...

  12. Coupled solar photo-Fenton and biological treatment for the degradation of diuron and linuron herbicides at pilot scale.

    Science.gov (United States)

    Farré, Maria José; Maldonado, Manuel Ignacio; Gernjak, Wolfgang; Oller, Isabel; Malato, Sixto; Domènech, Xavier; Peral, José

    2008-06-01

    A coupled solar photo-Fenton (chemical) and biological treatment has been used to remove biorecalcitrant diuron (42 mg l(-1)) and linuron (75 mg l(-1)) herbicides from water at pilot plant scale. The chemical process has been carried out in a 82 l solar pilot plant made up by four compound parabolic collector units, and it was followed by a biological treatment performed in a 40 l sequencing batch reactor. Two Fe(II) doses (2 and 5 mg l(-1)) and sequential additions of H2O2 (20 mg l(-1)) have been used to chemically degrade the initially polluted effluent. Next, biodegradability at different oxidation states has been assessed by means of BOD/COD ratio. A reagent dose of Fe=5 mg l(-1) and H2O2=100 mg l(-1) has been required to obtain a biodegradable effluent after 100 min of irradiation time. Finally, the organic content of the photo-treated solution has been completely assimilated by a biomass consortium in the sequencing batch reactor using a total suspended solids concentration of 0.2 g l(-1) and a hydraulic retention time of 24h. Comparison between the data obtained at pilot plant scale (specially the one corresponding to the chemical step) and previously published data from a similar system performing at laboratory scale, has been carried out.

  13. Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Henze, H.

    1986-01-01

    The Process Experimental Pilot Plant (PREPP) at the Idaho National Engineering Laboratory (INEL) was built to convert transuranic contaminated solid waste into a form acceptable for disposal at the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico. There are about 2.0 million cubic ft of transuranic waste stored at the Transuranic Storage Area of the INEL's Radioactive Waste Management Complex (RWMC). The Stored Waste Examination Pilot Plant (SWEPP) located at the RWMC will examine this stored transuranic waste to determine if the waste is acceptable for direct shipment to and storage at WIPP, or if it requires shipment to PREPP for processing before shipment to WIPP. The PREPP process shreds the waste, incinerates the shredded waste, and cements (grouts) the shredded incinerated waste in new 55-gal drums. Unshreddable items are repackaged and returned to SWEPP. The process off-gas is cleaned prior to its discharge to the atmosphere, and complies with the effluent standards of the State of Idaho, EPA, and DOE. Waste liquid generated is used in the grouting operation

  14. Central receiver solar thermal power system, Phase 1. CRDL Item 2. Pilot plant preliminary design report. Volume III, Book 2. Collector subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The methods and plans for the manufacture of the 10-MW collector heliostats and associated controls for the pilot plant are detailed. An in-depth description of the production, installation, and verification testing of heliostats for the pilot plant is presented. Specifications for the performance, design, and test requirements for the pilot plant collector subsystem are included. Also, a heliostat location summary report is given. (WHK)

  15. Plan for the civil reprocessing pilot plant of China

    International Nuclear Information System (INIS)

    Wang, D.Y.; Chen, M.

    1987-01-01

    Based on the R and D work, experience on plant operation and site situation, the necessity and feasibility of building a pilot plant for civil reprocessing in China are discussed. The capacity of 100 kg HM/day (LWR) and 3 kg HM/day (MTR) has been proposed. The plant consists of cold testing facility and hot pilot facility. It is expected to complete the pilot plant in 1990's. This paper also describes the purpose, scale, process and equipment of the pilot plant

  16. Extractive metalurgical pilot plant. Project and installation

    International Nuclear Information System (INIS)

    Paula, H.C.B.; Rolim, T.L.; Santana, A.O. de; Santos, F.S.M. dos; Dantas, C.C.

    1986-01-01

    An extractive metalurgical pilot plant with a flow capacity of 200l/h of phosphoric leach, recovering 80% of the uranium content has been designed and installed. Starting from the diagrams of the chemical process in the laboratory scale, the equipment worksheet of the basic project were developed. The procedure for dimensioning and positioning of each component is described. An isometric figure and the pilot plant lay-out are included. The pilot plant occupying 41 m 2 has been tested and operates at its nominal capacity. (author) [pt

  17. Environmental effects of solar thermal power systems: ecological observations during construction of the Barstow 10 MWe pilot STPS

    Energy Technology Data Exchange (ETDEWEB)

    Turner, F.B. (ed.)

    1981-10-01

    The environmental monitoring plan used consists of comparisons of a few meteorological variables and changes in the states of a limited array of indicator species or assemblages of species of plants and animals. Observations inlude aerial photography of the site, saltation meter measurements downwind from the site to measure fluxes of windblown sand, measurements of airborne particulates and atmospheric pollutants, and baseline temperature profiles made at two sites near the heliostat field to measure micro-meteorological patterns. Observations were made of annual plants both in off-field plots and in heliostat field, of shrubs, birds, rodents, reptiles, and sensitive species listed as rare or endangered. (LEW)

  18. FY 1979 Annual report on Sunshine Project results. Fabrication designs for a solar thermal power pilot plant with curved-surface type light-collecting system (Part 2); 1979 nendo taiyonetsu hatsuden (kyokumen shuko hoshiki) seika hokokusho. 2. Pilot plant no seisaku sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Part 1 of this report (JN0040511) describes basic and fabrication design specifications for operation and control of a solar thermal power pilot plant with curved-surface type light-collecting system, centered by computer for the plant control. Part 2 follows Part 1, which describes basic fabrication design specifications (Chapter I), system design specifications (Chapter II), hardware specifications (Chapter III) and attachments (Chapter IV), to contain the other attachments: daily processing specifications, computer-aided processing function specifications, operator request function specifications, summary data collection function specifications, basic structures of the software systems, basic specifications for computer inputting/outputting, failure display panel drawings, COD/channel base dimension drawings, console inputting/outputting dimension drawings, T/W disc dimension drawings, viewer external dimension drawings, cassette MT structure dimension drawings, operator console panel drawings, power source panel dimension drawings, program specifications GFC, 4 subroutine specifications GFC (R sub), table list, table structure drawings, and analysis of system characteristics (light- and heat-collection system simulation). (NEDO)

  19. Pilot and pilot-commercial plants for reprocessing spent fuels of FBR type reactors

    International Nuclear Information System (INIS)

    Shaldaev, V.S.; Sokolova, I.D.

    1988-01-01

    A review of modern state of investigations on the FBR mixed oxide uranium-plutonium fuel reprocessing abroad is given. Great Britain and France occupy the leading place in this field, operating pilot plants of 5 tons a year capacity. Technology of spent fuel reprocessing and specific features of certain stages of the technological process are considered. Projects of pilot and pilot-commercial plants of Great Britain, France, Japan, USA are described. Economic problems of the FBR fuel reprocessing are touched upon

  20. Modeling of solar polygeneration plant

    Science.gov (United States)

    Leiva, Roberto; Escobar, Rodrigo; Cardemil, José

    2017-06-01

    In this work, a exergoeconomic analysis of the joint production of electricity, fresh water, cooling and process heat for a simulated concentrated solar power (CSP) based on parabolic trough collector (PTC) with thermal energy storage (TES) and backup energy system (BS), a multi-effect distillation (MED) module, a refrigeration absorption module, and process heat module is carried out. Polygeneration plant is simulated in northern Chile in Crucero with a yearly total DNI of 3,389 kWh/m2/year. The methodology includes designing and modeling a polygeneration plant and applying exergoeconomic evaluations and calculating levelized cost. Solar polygeneration plant is simulated hourly, in a typical meteorological year, for different solar multiple and hour of storage. This study reveals that the total exergy cost rate of products (sum of exergy cost rate of electricity, water, cooling and heat process) is an alternative method to optimize a solar polygeneration plant.

  1. Central receiver solar thermal power system, Phase 1. CDRL item 2. Pilot plant preliminary design report. Volume VI. Electrical power generation and master control subsystems and balance of plant

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)

  2. Committee on the Challenges of Modern Society solar energy pilot study. First follow-up report, October 1979, pilot country: United States; co-pilot countries: Denmark and France. CCMS report No. 110

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    During 1973 to 1978, over twenty nations participated in the NATO/CCMS Solar Energy Pilot Study, whose objective was to promote and accelerate the use of solar heating and cooling of buildings. The activities in this information exchange included (1) the regular reporting of national solar heating and cooling programs, (2) the development of a format for reporting the performance of solar heating and cooling systems, (3) the exchange of system performance reports, (4) the establishment of two specialized working groups for solar-assisted low energy dwellings and passive solar applications. At the conclusion of the pilot study in 1978, the participants formulated recommendations for continued action at the international level, as well as for action at the national level. This report describes the progress made in implementing those recommendations. In addition to detailing the steps taken to continue collaboration in various efforts initiated within the Solar Energy Pilot Study, the report contains papers on the 1979 status of the solar heating and cooling programs in seventeen CCMS countries.

  3. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  4. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  5. Ningyo Toge uranium enrichment pilot plant comes into full

    International Nuclear Information System (INIS)

    1982-01-01

    The uranium enrichment pilot plant of the Power Reactor and Nuclear Fuel Development Corporation at Ningyo Toge went into full operation on March 26, 1982. This signifies that the front end of the nuclear fuel cycle in Japan, from uranium ore to enrichment, is only a step away from commercialization. On the same day, the pilot plant of uranium processing and conversion to UF 6 , the direct purification of uranium ore into uranium hexafluoride, began batch operation at the same works. The construction of the uranium enrichment pilot plant has been advanced in three stages: i.e. OP-1A with 1000 centrifuges, OP-1B with 3000 centrifuges and OP-2 with 3000 centrifuges. With a total of 7000 centrifuges, the pilot plant, the first enrichment plant in Japan, has now a capacity of supplying enriched uranium for six months operation of a 1,000 MW nuclear power plant. (J.P.N.)

  6. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  7. Development of 1000kW-class MCFC pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Ooue, M.; Yasue, H. [MCFC Research Association, Mie (Japan); Takasu, K.; Tsuchitori, T.

    1996-12-31

    This pilot plant is a part of the New Sunshine Program which has proceeded by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. MCFC Research Association is entrusted with the development of the pilot plant, and constructing it at Kawagoe site. Following items will be verified by this pilot plant operation. (a) Development of 250kW class stack and confirmation of stack performance and decay rate. (b) System verification such as basic process, control system and operation characteristics, toward commercialization. (c) To get design data for demonstration plant.

  8. Solar drying of liquid manure. Final report; Solare Trocknung von Guelle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M.; Hainzlmeier, F.; Schulz, H.

    1997-05-01

    This is a report on the solar drying of manure in a simple greenhouse tunnel. As part of the research project, a pilot plant was set up at the Duernast agricultural research station of the Technical University of Munich at Weihenstephan. During a test programme of more than one year, process engineering and mode of operation were studied and optimized by means of this pilot plant. (HW) [Deutsch] Es wird berichtet ueber solare Guelletrocknung in einem einfachen Gewaechshaustunnel. Im Rahmen des Forschungsvorhabens wurde eine Versuchsanlage auf dem landwirtschaftlichen Versuchsgut Duernast den TH Muenchen/Weihenstephan errichtet. An der Anlage wurde in einem mehr als einjaehrigen Versuchsprogramm die Verfahrenstechnik und Betriebsweise untersucht und optimiert. (HW)

  9. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  10. Solar energy conversion: an analysis of impacts on desert ecosystems. Final report, June 1, 1977-December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Patten, D.C.

    1978-05-01

    A research program is proposed to determine the response of desert ecosystems to the operation of various solar conversion systems. Existing solar powered irrigation pumping systems are described, as well as the 5 MW solar thermal test system at Albuquerque, the proposed 10 MW central receiver system at Barstow, and photovoltaic solar dispersed power systems. The theoretical ecological impacts of solar conversion system are described. Three major impact categories are discussed in detail: shading, wind deflection, and physical disturbance. Research needs necessary to evaluate biotic and abiotic changes in the desert ecosystem are delineated, and specific monitoring and manipulation programs for existing and proposed solar conversion sites are proposed.

  11. Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation.

    Science.gov (United States)

    Michael, I; Panagi, A; Ioannou, L A; Frontistis, Z; Fatta-Kassinos, D

    2014-09-01

    This study investigated the application of a solar-driven advanced oxidation process (solar Fenton) combined with previous coagulation/flocculation, for the treatment of olive mill wastewater (OMW) at a pilot scale. Pre-treatment by coagulation/flocculation using FeSO4·7H2O (6.67 g L(-1)) as the coagulant, and an anionic polyelectrolyte (FLOCAN 23, 0.287 g L(-1)) as the flocculant, was performed to remove the solid content of the OMW. The solar Fenton experiments were carried out in a compound parabolic collector pilot plant, in the presence of varying doses of H2O2 and Fe(2+). The optimization of the oxidation process, using reagents at low concentrations ([Fe(2+)] = 0.08 g L(-1); [H2O2] = 1 g L(-1)), led to a high COD removal (87%), while the polyphenolic fraction, which is responsible for the biorecalcitrant and/or toxic properties of OMW, was eliminated. A kinetic study using a modified pseudo first-order kinetic model was performed in order to determine the reaction rate constants. This work evidences also the potential use of the solar Fenton process at the inherent pH of the OMW, yielding only a slightly lower COD removal (81%) compared to that obtained under acidic conditions. Moreover, the results demonstrated the capacity of the applied advanced process to reduce the initial OMW toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba), and the water flea Daphnia magna. The OMW treated samples displayed a varying toxicity profile for each type of organism and plant examined in this study, a fact that can potentially be attributed to the varying oxidation products formed during the process applied. Finally, the overall cost of solar Fenton oxidation for the treatment of 50 m(3) of OMW per day was estimated to be 2.11 € m(-3). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Waste Isolation Pilot Plant Overview

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-27

    The mission of Waste Isolation Pilot Plant (WIPP) is to demonstrate the safe, environmentally sound, cost effective, permanent disposal of Transuranic (TRU) waste left from production of nuclear weapons.

  13. Thermal performance of solar district heating plants in Denmark

    DEFF Research Database (Denmark)

    Furbo, Simon; Perers, Bengt; Bava, Federico

    2014-01-01

    The market for solar heating plants connected to district heating systems is expanding rapidly in Denmark. It is expected that by the end of 2014 the 10 largest solar heating plants in Europe will be located in Denmark. Measurements from 23 Danish solar heating plants, all based on flat plate solar...... collectors mounted on the ground, shows measured yearly thermal performances of the solar heating plants placed in the interval from 313 kWh/m² collector to 493 kWh/m² collector with averages for all plants of 411 kWh/m² collector for 2012 and 450 kWh/m² collector for 2013. Theoretical calculations show...... of the cost/performance ratio for solar collector fields, both with flat plate collectors and with concentrating tracking solar collectors. It is recommended to continue monitoring and analysis of all large solar heating plants to document the reliability of the solar heating plants. It is also recommended...

  14. Photocatalysis and radiation absorption in a solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Curco, D; Gimenez, J [Departamento de Ingenieria Quimica, Facultad de Quimica, Universidad de Barcelona, Barcelona (Spain); Malato, S; Blanco, J [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Plataforma Solar de Almeria, Almeria (Spain)

    1996-11-15

    Recently, many papers have appeared in literature about photocatalytic detoxification. However, progress from laboratory data to the industrial solar reactor is not easy. Kinetic models for heterogeneous catalysis can be used to describe the photocatalytic processes, but luminic steps, related to the radiation, have to be added to the physical and chemical steps considered in heterogeneous catalysis. Thus, the evaluation of the radiation, and its distribution, inside a photocatalytic reactor is essential to extrapolate results from laboratory to outdoor experiments and to compare the efficiency of different installations. This study attempts to validate the experimental set up and theoretical data treatment for this purpose in a Solar Pilot Plant. The procedure consists of the calibration of different sunlight radiometers, the estimation of the radiation inside the reactor, and the validation of the results by actinometric experiments. Finally, a comparison between kinetic constants, for the same reaction in the laboratory (artificial light) and field conditions (sun light), is performed to demonstrate the advantages of knowing the radiation inside a large photochemical reactor

  15. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  16. Pilot-scale study of the solar detoxification of VOC-contaminated groundwater

    International Nuclear Information System (INIS)

    Mehos, M.; Turchi, C.; Pacheco, J.; Boegel, A.J.; Merrill, T.; Stanley, R.

    1992-08-01

    The Solar Detoxification Field Experiment was designed to investigate the photocatalytic decomposition of organic contaminants in groundwater at a Superfund site at Lawrence Livermore National Laboratory (LLNL). The process uses ultraviolet (UV) energy, available in sunlight, in conjunction with the photocatalyst, titanium dioxide, to decompose organic chemicals into nontoxic compounds. The field experiment was developed by three federal laboratories: the National Renewable Energy Laboratory (NREL), Sandia National Laboratory (SNLA), and LLNL. The US Department of Energy funded the experiment. The objectives of the pilot-scale study included the advancement of the solar technology into a nonlaboratory waste-remediation environment the compilation of test data to help guide laboratory research and future demonstrations and the development of safe operational procedures. Results of the pilot study are discussed, emphasizing the effect of several process variables on the system performance. These variables include alkalinity, catalyst loading, flow velocity through the reactor, and incident solar UV radiation. The performance of the solar detoxification process are discussed as it relates to concentrating and nonconcentrating collectors

  17. Thermal performance analysis of a solar heating plant

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Andersen, Ola Lie

    was developed to calculate thermal performances of the plant. In the Trnsys model, three solar collector fields with a total solar collector area of 33,300 m2, a seasonal water pit heat storage of 75,000 m3, a simplified CO2 HP, a simplified ORC unit and a simplified wood chip boiler were included. The energy......Detailed measurements were carried out on a large scale solar heating plant located in southern Denmark in order to evaluate thermal performances of the plant. Based on the measurements, energy flows of the plant were evaluated. A modified Trnsys model of the Marstal solar heating plant...... consumption of the district heating net was modeled by volume flow rate and given forward and return temperatures of the district heating net. Weather data from a weather station at the site of the plant were used in the calculations. The Trnsys calculated yearly thermal performance of the solar heating plant...

  18. WIPP: Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1984-01-01

    The following aspects of the Waste Isolation Pilot Plant are discussed briefly: history and site selection; salt as a disposal medium; transporting waste materials; early key events; impacts on New Mexico; project organization; and site certification profile

  19. Fiscal 1976 Sunshine Project result report. Research on solar energy utilization systems (solar heat power generation); 1976 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyonetsu hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Research was made on solar heat power generation following last fiscal year, as a part of solar energy utilization technologies. In this fiscal year, in particular, research was made on the following: selection of suitable sites for solar heat power plants in Japan, estimation of expected power supply, positioning of a solar heat power system among future power systems, operation policy of solar heat power systems, survey on suitable sites for the 1,000kW pilot power plant, operation characteristics of the small test plant, design of the 1,000kW pilot power plant, test methods and facilities for every element equipment of solar heat power systems, an environmental test method for mostly solar collectors, and the profitability of solar heat power systems. Optimum operation temperature levels were nearly 350 degrees C for distributed systems and nearly 400 degrees C for centralized ones. The distributed system is profitable in a unit capacity range less than 5-10MWe, while the centralized system is profitable in a range over 10MWe. Under some assumptions, the power cost of solar heat power systems was estimated to be 20-30yen/kWH. (NEDO)

  20. Optimising Solar Photo catalytic Mineralization of Pesticides at Solar Pilot by Adding Inorganic Oxidising Species; Application to the Recycling of Pesticide Containers

    International Nuclear Information System (INIS)

    Blanco, J.; Malato, S.; Fernandez, P.; Caceres, J.; Campos, A.; Carrion, A.

    2000-01-01

    This paper focuses on optimising the use of additional oxidants in the photo catalytic degradation of a complex mixture of ten commercial pesticides. The CPC solar pilot plant used for the tests has 8.9 m 2 of collector surface and a total volume of 247 L. Same TOC quantities of each pesticide were added to achieve the desired initial TOC concentration in all the experiments (from 5 to 100 mg of TOC per litre). Experiments were performed with H 2 O 2 and S 2 OS 8 - 2, but only peroxydisulphate was chosen for optimisation, because better results have been obtained with it. In addition to the consumption of the oxidant under different experimental conditions, the effect of peroxydisulphate and TOC concentrations was also evaluated. The mechanism of peroxydisulphate action is discussed with these results. The effect of reusing water and catalysts has also been studied. The results obtained from these experiments have been used to decide the dimensions and operating conditions of a solar photo catalytic plant, the final objective of which is the treatment of rin sates produced by washing pesticide containers. (Author) 37 refs

  1. Ion exchange/adsorbent pilot plant

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A decontamination of greater than 99% of the actinides and fission products contained in radioactive waste water can be obtained using ion exchange resins. A system for achieving this result is described in this paper. This ion exchange pilot-plant design is the culmination of five years of study of the decontamination of radioactive waste streams by ion exchange resins and other adsorbents at Mound. In order to maintain maximum flexibility of treatments, this pilot-plant design is a conceptual design with specific flows, resins, and column specifications, but with many optional features and no rigid equipment specifications. This flexibility allows the system to be amenable to almost any radioactive waste stream. Very specific designs can be constructed from this conceptual design for the treatment of any specific waste stream. Operating and capital costs are also discussed. 1 figure, 5 tables

  2. Financing Solar Thermal Power Plants

    International Nuclear Information System (INIS)

    Price, Henry W.; Kistner, Rainer

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  3. Financing solar thermal power plants

    International Nuclear Information System (INIS)

    Kistner, R.; Price, H.

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  4. Financing Solar Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, Rainer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Price, Henry W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1999-04-14

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier’s perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  5. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1993-03-01

    This permit application has been prepared to obtain a research, development, and demonstration permit to perform pilot-scale treatability testing on the 242-A Evaporator process condensate waste water effluent stream. It provides the management framework, and controls all the testing conducted in the waste water pilot plant using dangerous waste. It also provides a waste acceptance envelope (upper limits for selected constituents) and details the safety and environmental protection requirements for waste water pilot plant testing. This permit application describes the overall approach to testing and the various components or requirements that are common to all tests. This permit application has been prepared at a sufficient level of detail to establish permit conditions for all waste water pilot plant tests to be conducted

  6. General Atomic Reprocessing Pilot Plant: engineering-scale dissolution system description

    International Nuclear Information System (INIS)

    Yip, H.H.

    1979-04-01

    In February 1978, a dissolver-centrifuge system was added to the cold reprocessing pilot plant at General Atomic Company, which completed the installation of an HTGR fuel head-end reprocessing pilot plant. This report describes the engineering-scale equipment in the pilot plant and summarizes the design features derived from development work performed in the last few years. The dissolver operating cycles for both thorium containing BISO and uranium containinng WAR fissile fuels are included. A continuous vertical centrifuge is used to clarify the resultant dissolver product solution. Process instrumentation and controls for the system reflect design philosophy suitable for remote operation

  7. The pilot plant for electron beam food processing

    Science.gov (United States)

    Migdal, W.; Walis, L.; Chmielewski, A. G.

    1993-07-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plant is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established.

  8. The pilot plant for electron beam food processing

    International Nuclear Information System (INIS)

    Migdal, W.; Kosmal, W.; Malec-Czechowska, K.; Maciszewski, W.

    1992-01-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plants is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established. (author). 9 refs, 5 figs, 1 tab

  9. Dispatchable Solar Power Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Price, Henry [Solar Dynamics LLC, Broomfield, CO (United States)

    2018-01-31

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant can provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion turbines

  10. Automation of solar plants

    Energy Technology Data Exchange (ETDEWEB)

    Yebra, L.J.; Romero, M.; Martinez, D.; Valverde, A. [CIEMAT - Plataforma Solar de Almeria, Tabernas (Spain); Berenguel, M. [Almeria Univ. (Spain). Departamento de Lenguajes y Computacion

    2004-07-01

    This work overviews some of the main activities and research lines that are being carried out within the scope of the specific collaboration agreement between the Plataforma Solar de Almeria-CIEMAT (PSA-CIEMAT) and the Automatic Control, Electronics and Robotics research group of the Universidad de Almeria (TEP197) titled ''Development of control systems and tools for thermosolar plants'' and the projects financed by the MCYT DPI2001-2380-C02-02 and DPI2002-04375-C03. The research is directed by the need of improving the efficiency of the process through which the energy provided by the sun is totally or partially used as energy source, as far as diminishing the costs associated to the operation and maintenance of the installations that use this energy source. The final objective is to develop different automatic control systems and techniques aimed at improving the competitiveness of solar plants. The paper summarizes different objectives and automatic control approaches that are being implemented in different facilities at the PSA-CIEMAT: central receiver systems and solar furnace. For each one of these facilities, a systematic procedure is being followed, composed of several steps: (i) development of dynamic models using the newest modeling technologies (both for simulation and control purposes), (ii) development of fully automated data acquisition and control systems including software tools facilitating the analysis of data and the application of knowledge to the controlled plants and (iii) synthesis of advanced controllers using techniques successfully used in the process industry and development of new and optimized control algorithms for solar plants. These aspects are summarized in this work. (orig.)

  11. Central receiver solar thermal power system, phase 1. Progress report for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-01

    The program objective is the preliminary design of a 10 MWe pilot solar power plant supported by major subsystem experiments. Progress is reported on the following task elements: 10 MWe pilot plant; collector subsystem design and analysis; receiver subsystem requirements; receiver subsystem design; thermal storage subsystem; electrical power generation subsystem; and pilot plant architectural engineering and support. (WDM)

  12. Pilot plant for exploitation of geothermal waters

    Directory of Open Access Journals (Sweden)

    Stojiljković Dragan T.

    2006-01-01

    Full Text Available In Sijarinska spa, there are some 15 mineral and thermomineral springs, that are already being used for therapeutic purposes. For the exploitation of heat energy boring B-4 is very interesting. It is a boring of a closed type, with the water temperature of about 78°C and a flow rate of about 33 l/s. Waters with the flow rate of about 6 l/s are currently used for heating of the Gejzer hotel, and waters of the flow rate of about 0,121 l/s for the pilot drying plant. The paper presents this pilot plant. .

  13. Optimal offering strategy for a concentrating solar power plant

    International Nuclear Information System (INIS)

    Dominguez, R.; Baringo, L.; Conejo, A.J.

    2012-01-01

    Highlights: ► Concentrating solar power (CSP) plants are becoming economically viable. ► CSP production is positively correlated with the demand. ► CSP plants can be made dispatchable by using molten salt storage facilities. ► Integrating CSP plants in a market constitutes a relevant challenge. -- Abstract: This paper provides a methodology to build offering curves for a concentrating solar power plant. This methodology takes into account the uncertainty in the thermal production from the solar field and the volatility of market prices. The solar plant owner is a price-taker producer that participates in a pool-based electricity market with the aim of maximizing its expected profit. To enhance the value of the concentrating solar power plant, a molten salt heat storage is considered, which allows producing electricity during periods without availability of the solar resource. To derive offering curves, a mixed-integer linear programming model is proposed, which is robust from the point of view of the uncertainty associated with the thermal production of the solar field and stochastic from the point of view of the uncertain market prices.

  14. The UCOR pilot plant and the development of axial flow compressors

    International Nuclear Information System (INIS)

    Grant, W.

    1984-01-01

    This article discusses some of the mechanical aspects of the Uranium Enrichment Corporation of South Africa (Pty) Ltd. (UCOR) pilot plant. The most important mechanical components in a typical stage in the pilot plant, consists of a compressor which is used to compress the process gas mixture. After air cooling to almost room temperature, the mixture is fed through the separation elements. Other components are two pressure vessels connected to the compressor. The development and characteristics of the pilot plant is described in the article

  15. WIPP conceptual design report. Addendum F. HVAC systems energy analysis for Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1977-04-01

    This report presents the results of a technical and economic analysis of alternative methods of meeting the heating, ventilating, and air conditioning requirements of the Waste Isolation Pilot Plant (WIPP) facilities proposed to be constructed in southeastern New Mexico. This report analyzes a total of ten WIPP structures to determine the most energy and economic efficient means of providing heating, ventilating, and air conditioning services. Additional analyses were performed to determine the merits of centralized versus dispersed refrigeration and heating facilities, and of performing supplemental domestic hot water heating with solar panels

  16. Dynamic Modeling of the Solar Field in Parabolic Trough Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Lourdes A. Barcia

    2015-11-01

    Full Text Available Parabolic trough solar power plants use a thermal fluid to transfer thermal energy from solar radiation to a water-steam Rankine cycle in order to drive a turbine that, coupled to an electrical generator, produces electricity. These plants have a heat transfer fluid (HTF system with the necessary elements to transform solar radiation into heat and to transfer that thermal energy to the water-steam exchangers. In order to get the best possible performance in the Rankine cycle and, hence, in the thermal plant, it is necessary that the thermal fluid reach its maximum temperature when leaving the solar field (SF. Also, it is mandatory that the thermal fluid does not exceed the maximum operating temperature of the HTF, above which it degrades. It must be noted that the optimal temperature of the thermal fluid is difficult to obtain, since solar radiation can change abruptly from one moment to another. The aim of this document is to provide a model of an HTF system that can be used to optimize the control of the temperature of the fluid without interfering with the normal operation of the plant. The results obtained with this model will be contrasted with those obtained in a real plant.

  17. OUT Success Stories: Solar Trough Power Plants

    Science.gov (United States)

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  18. Guidebook on design, construction and operation of pilot plants for uranium ore processing

    International Nuclear Information System (INIS)

    1990-01-01

    The design, construction and operation of a pilot plant are often important stages in the development of a project for the production of uranium concentrates. Since building and operating a pilot plant is very costly and may not always be required, it is important that such a plant be built only after several prerequisites have been met. The main purpose of this guidebook is to discuss the objectives of a pilot plant and its proper role in the overall project. Given the wide range of conditions under which a pilot plant may be designed and operated, it is not possible to provide specific details. Instead, this book discusses the rationale for a pilot plant and provides guidelines with suggested solutions for a variety of problems that may be encountered. This guidebook is part of a series of Technical Reports on uranium ore processing being prepared by the IAEA's Division of Nuclear Fuel Cycle and Waste Management. 42 refs, 7 figs, 3 tabs

  19. ANALYSIS OF MEASURED AND MODELED SOLAR RADIATION AT THE TARS SOLAR HEATING PLANT IN DENMARK

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    , such as solar radiation, inlet and outlet temperature for the solar collector field, flow rate and pressure, ambient temperature, Wind speed and wind direction were measured. Global horizontal radiation, direct normal irradiation (DNI) and total radiation on the tilted collector plane of the flat plate...... collector field have been measured in Tars solar heating plant. To determine the accuracy of modeled and measured solar radiation in Tars solar heating plant, monthly comparisons of measured and calculated radiation using 6 empirical models have been carried out. Comparisons of measured and modeled total......A novel combined solar heating plant with tracking parabolic trough collectors (PTC) and flat plate collectors (FPC) has been constructed and put into operation in Tars, 30 km north of Aalborg, Denmark in August 2015. To assess the operation performance of the plant, detailed parameters...

  20. Solar Pilot Plant, Phase I. Preliminary design report. Volume II, Book 2. Central receiver optical model users manual. CDRL item 2. [HELIAKI code

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    HELIAKI is a FORTRAN computer program which simulates the optical/thermal performance of a central receiver solar thermal power plant for the dynamic conversion of solar-generated heat to electricity. The solar power plant which this program simulates consists of a field of individual sun tracking mirror units, or heliostats, redirecting sunlight into a cavity, called the receiver, mounted atop a tower. The program calculates the power retained by that cavity receiver at any point in time or the energy into the receiver over a year's time using a Monte Carlo ray trace technique to solve the multiple integral equations. An artist's concept of this plant is shown.

  1. Facing technological challenges of Solar Updraft Power Plants

    Science.gov (United States)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  2. Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Malato, S.; Blanco, J.; Campos, A.; Caceres, J. [Plataforma Solar de Almeria-CIEMAT, Ctra. Senes Km. 4, Tabernas, 04200 Almeria (Spain); Guillard, C.; Herrmann, J.M. [Laboratoire d' Application de la Chimie a l' Environnement, LACE-CNRS-UMR5634, Universite Claude Bernard Lyon 1, 43 Blvd. du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Fernandez-Alba, A.R. [Pesticide Residue Research Group, University of Almeria, 04071 Almeria (Spain)

    2003-06-10

    A new granulated version of the well-known P-25 titanium dioxide (VP AEROPERL P-25/20 (Aeroperl)) has been tested to determine whether its photocatalytic efficiency is good enough for use in photocatalytic water purification and to find out if it can be separated from water more easily than its well-known homologue, powdered Degussa P-25, a significant technical improvement that might eliminate the tedious final filtration necessary with a slurry. Furthermore, a new commercial catalyst (PC-100 from Millennium Inorganic Chemicals), having a surface area and structure that are both different from Degussa P-25, has also been studied. All the experiments were carried out in sunlight in the pilot compound parabolic collector (CPC) plant at the Plataforma Solar de Almeria. Three different substrates were chosen as model molecules for this study: dichloracetic acid, phenol and the pesticide imidacloprid. Results show that Degussa Aeroperl is not a good alternative to powdered Degussa P-25 because of its spontaneous sedimentation during photocatalysis. Millennium PC-100 efficiency seems to be in the same range as that of Degussa P-25. In this work we also attempt to demonstrate that the comparison of efficiencies of different photocatalysts is not a trivial matter. Many factors are involved and interfere in the testing of photocatalyst behaviour during the degradation of a contaminant. A thorough comparison of photocatalyst activity should include reactions with several different substrates under varied experimental conditions.

  3. The Marstal Central Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Jochen, Dahm

    1999-01-01

    The central solar heating plant in Marstal is running since 1996 and has been monitored since. The resulting data from the plant is analysed and the plant performance evaluated. A TRNSYS-model (computersimulation) id prepared and validated based on the measured data from the plant. Acceptable good...

  4. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  5. Pilot solar hybrid power station in rural area, Rompin, Pahang, Malaysia

    International Nuclear Information System (INIS)

    Iszuan Shah Syed Ismail; Azmi Omar; Hamdan Hassan

    2006-01-01

    Malaysia has considerable number of widely deployed small rural area. These hamlets are very much associated with Orang Asli residents. They get their source of energy by candle or kerosene light while some richer community can afford a generator set. The usual or normal system using solar as a source for electricity at rural area is standalone system for each house. As for this project, a pilot centralized solar power station will be the source of electricity to light up the fifteen houses at Kampung Denai, Rompin, Pahang, Malaysia. This system will be the first ever built for the orang asli settlement at Pahang. The objectives of this project are to design and install the solar power station at remote location and to develop standard design of stand-alone solar power station suitable for Malaysia. Orang Asli residents at Kampung Denai was chosen because there is a school for the Orang Asli children. Moreover, the remote communities are living in stratification, which makes electrical wiring easier. Furthermore, the remote area is far from the last transmission line and cumbersome to bring diesel through the rough and unpredictable land road. The main domestic energy is for residential purposes (e.g. small lighting unit, radio, television, video, etc). The generator capacity is 18.6 kW. The solar sizing was done both for the home and school appliances at Kampung Denai. The maximum demand measured was 4195.35 kW. The pilot centralized solar power station consists of 10 kW photovoltaic panels, 10 kW inverter, 150 kWh battery and other balance of system. A generator set with capacity of 12.5 kVA is installed for back up and during monsoon season. This paper will present status of the system, operational and maintenance issues, load profile of the solar power station and economics and system design of the whole system

  6. Solar greenhouse assisted biogas plant in hilly region - A field study

    Energy Technology Data Exchange (ETDEWEB)

    Vinoth Kumar, K.; Kasturi Bai, R. [Department of Bio-Energy, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu (India)

    2008-10-15

    The present study was undertaken with the objective of evaluating plastic as an alternative material for biogas plant on a par with conventional brick material. The field study was carried out for one year (October, 2005-September, 2006) in a small hamlet at Nilgiris incorporating solar energy to study its influence on biogas production. During summer (April-June) the temperature reaches to the maximum of 21-25 C and the minimum of 10-12 C. During winter (October-December), the temperature available is maximum of 16-21 C and minimum of 2 C. The solar insolation in the study area ranges from 250 to 600 W/m{sup 2}. This study involves the control conventional Deenabandhu model (Indian standard model prevailing in most part of India made of masonry structure only) and the experimental plastic tank with greenhouse canopy of similar capacity. Our previous work [Vinoth Kumar, K., Kasturi Bai, R., 2005. Plastic biodigesters - a systematic study. Energy for Sustainable Development 9 (4), 40-49] on lab scale digester made from plastic material was compared over other materials and the results gave us much confidence to carry out further study on pilot scale. In continuation, a semi-continuous study was conducted for one year with the retention time of 55 days. The gas generated from the biogas plants was utilized for cooking (burner) and lighting (lamp) purposes. The yearly average slurry temperatures recorded during the study period was 26.3 and 22.4 C in experimental and control biogas plants against ambient temperature of 17.0 C. The yearly average greenhouse chamber temperature recorded was 29.1 C in the experimental biogas plant. The yearly average gas yield from the experimental and control biogas plants were 39.1 and 34.6 l kg{sup -1}day{sup -1} respectively. Gas productions in the winter season registered lower than other months. It can be concluded that the solar greenhouse assisted plastic biogas plant can be efficiently adopted with minor modifications in hilly

  7. Dissolution studies with pilot plant and actual INTEC calcines

    International Nuclear Information System (INIS)

    Herbst, R.S.; Garn, T.G.

    1999-01-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive Al(NO 3 ) 3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt.% of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt.% dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt.% dissolution, a result consistent with previous studies using other similar types of pilot plant calcines

  8. Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology

    International Nuclear Information System (INIS)

    El-Ghenymy, Abdellatif; Garcia-Segura, Sergi; Rodríguez, Rosa María; Brillas, Enric; El Begrani, Mohamed Soussi; Abdelouahid, Ben Ali

    2012-01-01

    Highlights: ► Quicker degradation of sulfanilic acid by solar photoelectro-Fenton than electro-Fenton. ► The same optimized current density, Fe 2+ content and pH for both processes by CCRD. ► Description of TOC, energy cost and current efficiency by response surface methodology. ► Fe(III)–carboxylate complexes as main by-products after electro-Fenton. ► Photolysis of these complexes by UV irradiation of sunlight in solar photoelectro-Fenton. - Abstract: A central composite rotatable design and response surface methodology were used to optimize the experimental variables of the electro-Fenton (EF) and solar photoelectro-Fenton (SPEF) degradations of 2.5 L of sulfanilic acid solutions in 0.05 M Na 2 SO 4 . Electrolyses were performed with a pre-pilot flow plant containing a Pt/air diffusion reactor generating H 2 O 2 . In SPEF, it was coupled with a solar photoreactor under an UV irradiation intensity of ca. 31 W m −2 . Optimum variables of 100 mA cm −2 , 0.5 mM Fe 2+ and pH 4.0 were determined after 240 min of EF and 120 min of SPEF. Under these conditions, EF gave 47% of mineralization, whereas SPEF was much more powerful yielding 76% mineralization with 275 kWh kg −1 total organic carbon (TOC) energy consumption and 52% current efficiency. Sulfanilic acid decayed at similar rate in both treatments following a pseudo-first-order kinetics. The final solution treated by EF contained a stable mixture of tartaric, acetic, oxalic and oxamic acids, which form Fe(III) complexes that are not attacked by hydroxyl radicals formed from H 2 O 2 and added Fe 2+ . The quick photolysis of these complexes by UV light of sunlight explains the higher oxidation power of SPEF. NH 4 + was the main inorganic nitrogen ion released in both processes.

  9. Pilot plant for flue gas treatment - continuous operation tests

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Tyminski, B.; Iller, E.; Zimek, Z.; Licki, J.; Radzio, B.

    1995-01-01

    Tests of continuous operation have been performed on pilot plant at EPS Kaweczyn in the wide range of SO 2 concentration (500-3000 ppm). The bag filter has been applied for aerosol separation. The high efficiencies of SO 2 and NO x removal, approximately 90% were obtained and influenced by such process parameters as: dose, gas temperature and ammonia stoichiometry. The main apparatus of the pilot plant (e.g. both accelerators) have proved their reliability in hard industrial conditions. (Author)

  10. A soil washing pilot plant for removing petroleum hydrocarbons from contaminated soils

    International Nuclear Information System (INIS)

    Toor, I.A.; Roehrig, G.R.

    1992-01-01

    A soil washing pilot plant was built and tested for its ability to remove petroleum hydrocarbons from certain soils. The ITEX soil washing pilot plant is a trailer mountable mobile unit which has a washing capacity of two tons per hour of contaminated soils. A benchscale study was carried out prior to the fabrication of the pilot plant. The first sample was contaminated with diesel fuel while the second sample was contaminated with crude oil. Various nonionic, cationic and anionic cleaning agents were evaluated for their ability to remove petroleum hydrocarbons from these materials. The nonionic cleaning agents were more successful in cleaning the soils in general. The ultimate surfactant choice was based on several factors including cost, biodegradability, cleaning efficiency and other technical considerations. The soil samples were characterized in terms of their particle size distributions. Commercial diesel fuel was carefully mixed in this sand to prepare a representative sample for the pilot plant study. Two pilot runs were made using this material. A multistage washing study was also conducted in the laboratory which indicates that the contamination level can be reduced to 100 ppm using only four stages. Because the pilot plant washing efficiency is twice as high, it is believed that ultimate contamination levels can be reduced to lower levels using the same number of stages. However, this hypothesis has not been demonstrated to date

  11. Solar field control for desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Roca, Lidia [Convenio Universidad de Almeria, Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain); Berenguel, Manuel [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, 04120 Almeria (Spain); Yebra, Luis; Alarcon-Padilla, Diego C. [CIEMAT, Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain)

    2008-09-15

    This paper presents the development and application of a feedback linearization control strategy for a solar collector field supplying process heat to a multi-effect seawater distillation plant. Since one objective is to use as much as possible the solar resource, control techniques can be used to produce the maximum heat process in the solar field. The main purpose of the controller presented in this paper is to manipulate the water flow rate to maintain an outlet-inlet temperature gradient in the collectors, thereby ensuring continuous process heating, or in other words, continuous production of fresh water in spite of disturbances. The dynamic behaviour of this solar field was approximated by a simplified lumped-parameters nonlinear model based on differential equations, validated with real data and used in the feedback linearization control design. Experimental results in the seawater desalination plant at the Plataforma Solar de Almeria (Spain) show good agreement of the model and real data despite the approximations included. Moreover, by using feedback linearization control it is possible to track a constant gradient temperature reference in the solar field with good results. (author)

  12. Long term pilot plant experience on aromatics extraction with ionic liquids

    NARCIS (Netherlands)

    Meindersma, W.G.W.; Onink, F.S.A.F.; Hansmeier, A.R.; Haan, de A.B.

    2012-01-01

    Since 2004, we have been conducting pilot plant trials with various contactors and different ionic liquids for petrochemical model feeds as well as real refinery feeds. Our pilot plant contains a Rotating Disc Contactor with a height of 6 m and a diameter of 60 mm. Up to 100 kg of ionic liquid and

  13. Innovative configuration of a hybrid nuclear-solar tower power plant

    International Nuclear Information System (INIS)

    Popov, Dimityr; Borissova, Ana

    2017-01-01

    This paper proposes a combination of a nuclear and a CSP plant and performs a thermodynamic analysis of the potential benefit. Most of today's operating nuclear reactor systems are producing saturated steam at relatively low pressure. This, in turn, limits their thermodynamic efficiency. Superheating of nuclear steam with solar thermal energy has the potential to overcome this drawback. Accordingly, an innovative configuration of a hybrid nuclear-CSP plant is assembled and simulated. It brings together pressurized water reactor and solar tower. The solar heat is transferred to nuclear steam to raise its temperature. Continuous superheating is provided through thermal energy storage. The results from design point calculations show that solar superheating has the potential to increase nuclear plant electric efficiency significantly, pushing it to around 37.5%. Solar heat to electricity conversion efficiency reaches unprecedented rates of 56.2%, approaching the effectiveness of the modern combined cycle gas turbine plants. Off-design model was used to simulate 24-h operation for one year by simulating 8760 cases. Due to implementation of thermal energy storage non-stop operation is manageable. The increased efficiency leads to solar tower island installed cost reductions of up to 25% compared to the standalone CSP plant, particularly driven by the smaller solar field. - Highlights: • External superheating of nuclear steam with solar thermal energy is proposed. • Novel hybrid plant configuration is assembled, modeled and simulated. • Substantial increase of nuclear plant capacity and efficiency is reported. • Superior efficiency of solar heat to electricity conversion is achieved. • Substantial decrease of solar field investment cost is reported.

  14. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25

    International Nuclear Information System (INIS)

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the extent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost everybody are

  15. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Phillip F [ORNL

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  16. Fiscal 1997 report of the development of high efficiency waste power generation technology. No.2 volume. Pilot plant verification test; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu (pilot plant jissho shiken). 1997 nendo hokokusho (daini bunsatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As to a high efficiency waste power generation system using general waste as fuel, the details of the following were described: design/construction management and operational study of pilot plant, design/manufacture/construction of pilot plant, and study of an optimal total system. Concerning the construction management and operational study, the paper described the application for governmental/official inspection procedures and taking inspection, process management of pilot plant, site patrol, safety management, management of trial run of pilot plant, drawing-up of a verification test plan and test run, etc. Relating to the design/manufacture/construction of pilot plant, an outline of the pilot plant was described. The paper also stated points to be considered in design of furnace structure and boiler structure, points to be considered of the verification test, etc. As to the study of an optimal total system, the following were described: survey of waste gasification/slagging power generation technology, basic study on RDF production process, survey of trends of waste power generation technology in the U.S., etc. 52 refs., 149 figs., 121 tabs.

  17. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Dylan C. P.

    2013-08-15

    /kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  18. Pilot plant study

    International Nuclear Information System (INIS)

    Morris, M.E.

    1978-01-01

    Sandia Laboratories undertook the design and fabrication of an 8 ton/day dry sewage sludge irradiatior. The facility is intended (1) to function as a high-gamma-dose rate research facility; (2) to be a testbed for the unique electrical and mechanical components to be used in larger facilities; (3) to fulfill the formal requirements of a pilot plant so that design and construction of a demonstration facility could proceed; and (4) to provide accurate data base on construction and operating experience for the Environmental Impact Assessment (EIA), the Safety Analysis Report (SAR), and the cost analyses for a larger facility. The facility and its component systems are described in detail

  19. A pilot solar water disinfecting system: performance analysis and testing

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, T.S.; El-Ghetany, H.H. [Tohoku University, Sendai (Japan). Dept. of Aeronautics and Space Engineering

    2002-07-01

    In most countries, contaminated water is the major cause of most water-borne diseases. Disinfection of water may be accomplished by a number of different physical-chemical treatments including direct application of thermal energy, chemical and filtration techniques. Solar energy also can be used effectively in this field because inactivation of microorganisms is done either by heating water to a disinfecting temperature or by exposing it to ultraviolet solar radiation. A pilot solar system for disinfecting contaminated water is designed, constructed and tested. Investigations are carried out to evaluate the performance of a wooden hot box solar facility as a solar disinfectant. Experimental data show that solar energy is viable for the disinfection process. A solar radiation model is presented and compared with the experimental data. A mathematical model of the solar disinfectant is also presented. The governing equations are solved numerically via the fourth-order Runge-Kutta method. The effects of environmental conditions (ambient temperature, wind speed, solar radiation, etc.) on the performance of the solar disinfectant are examined. Results showed that the system is affected by ambient temperature, wind speed, ultraviolet solar radiation intensity, the turbidity of the water, the quantity of water exposed, the contact area between the transparent water container in the solar disinfectant and the absorber plate as well as the geometrical parameters of the system. It is pointed out that for partially cloudy conditions with a low ambient temperature and high wind speeds, the thermal efficiency of the solar disinfectant is at a minimum. The use of solar energy for the disinfection process will increase the productivity of the system while completely eliminating the coliform group bacteria at the same time. (author)

  20. Solar heating and cooling of buildings

    Science.gov (United States)

    Bourke, R. D.; Davis, E. S.

    1975-01-01

    Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.

  1. Summary of uranium refining and conversion pilot plant at Ningyo-toge works

    International Nuclear Information System (INIS)

    Iwata, Ichiro

    1981-01-01

    In the Ningyo-toge works, Power Reactor and Nuclear Fuel Development Corp., the construction of the uranium refining and conversion pilot plant was completed, and the operation will be started after the various tests based on the related laws. As for the uranium refining in Japan, the PNC process by wet refining method has been developed since 1958. The history of the development is described. It was decided to construct the refining and conversion pilot plant with 200 t uranium/year capacity as the comprehensive result of the development. This is the amount sufficient to supply UF 6 to the uranium enrichment pilot plant in Ningyo-toge. The building for the refining and conversion pilot plant is a three-story ferro-concrete building with the total floor area of about 13,000 m 2 . The raw materials are the uranium ore produced in Ningyo-toge and the yellow cakes from abroad. Uranyl sulfate solution is obtained by solvent extraction using an extraction tower or a mixer-settler. The following processes are electrolytic reduction, precipitation of uranium tetrafluoride, filtration, drying, dehydration and UF 6 conversion. The fluorine for UF 6 conversion is produced by the facility in the plant. The operation of the pilot plant will be started in the latter half of the fiscal year 1981, the batch operation is carrried out in 1982, and the continuous operation from 1983. (Kako, I.)

  2. FGD Franchising Pilot Project of Thermal Power Plants

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the national policy on enhancing environmental protection,the five major power generation companies are required to carry out flue gas desulphurization(FGD) franchising pilot project in thermal power plants.This paper introduces the development of this pilot project,including the foundation,purpose,objects,demands and procedures.It also discusses some main problems encountered during implementation,involving the understanding,legislation,financing,taxation,pricing and management of franchise.At...

  3. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci.

    Science.gov (United States)

    Michael, I; Hapeshi, E; Michael, C; Varela, A R; Kyriakou, S; Manaia, C M; Fatta-Kassinos, D

    2012-11-01

    This work investigated the application of a solar driven advanced oxidation process (solar photo-Fenton), for the degradation of antibiotics at low concentration level (μg L(-1)) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin (OFX) and trimethoprim (TMP). A compound parabolic collector (CPC) pilot plant was used for the photocatalytic experiments. The process was mainly evaluated by a fast and reliable analytical method based on a UPLC-MS/MS system. Solar photo-Fenton process using low iron and hydrogen peroxide doses ([Fe(2+)](0) = 5 mg L(-1); [H(2)O(2)](0) = 75 mg L(-1)) was proved to be an efficient method for the elimination of these compounds with relatively high degradation rates. The photocatalytic degradation of OFX and TMP with the solar photo-Fenton process followed apparent first-order kinetics. A modification of the first-order kinetic expression was proposed and has been successfully used to explain the degradation kinetics of the compounds during the solar photo-Fenton treatment. The results demonstrated the capacity of the applied advanced process to reduce the initial wastewater toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba) and the water flea Daphnia magna. The phytotoxicity of the treated samples, expressed as root growth inhibition, was higher compared to that observed on the inhibition of seed germination. Enterococci, including those resistant to OFX and TMP, were completely eliminated at the end of the treatment. The total cost of the full scale unit for the treatment of 150 m(3) day(-1) of secondary wastewater effluent was found to be 0.85 € m(-3). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Pilot plant of continuous ion-exchange in fluidized bed

    International Nuclear Information System (INIS)

    Botella, T.; Otero de Becerra, J.; Gasos, P.

    1985-01-01

    Research and development on continuous ion-exchange processes has been a major item in hydrometallurgy. This new technology has been under development during the last 15 years in the leading countries at uranium hydrometallurgy. The fluidized bed multi-stage column technique is proven to be the most attractive one, and since 1977 several commercial plants have begun production, some of them with a throughput of 500 cubic meters of pregnant liquour per hour. J.E.N. undertook the study of this new technology for uranium recovery in the early 70's. In 1979 a pilot plant had been installed, based on previous laboratory and smaller pilot plant experience. The plant was designed following JEN's own technology and has been operating successfully at a flow rate of near 0.5 cubic meters per hour. The test runs and the main processing, engineering and operation features are described. At present a demonstation plant is under design, and this installation will provide the necessary know-how for the construction and operation of a commercial scale plant. (author)

  5. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    International Nuclear Information System (INIS)

    Menard, J.E.; Bromberg, L.; Brown, T.; Burgess, Thomas W.; Dix, D.; Gerrity, T.; Goldston, R.J.; Hawryluk, R.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G.H.; Neumeyer, C.L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.G.; Zarnstorff, M.C.

    2011-01-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  6. Electroosmotically enhanced sludge dewatering-pilot-plant study

    CSIR Research Space (South Africa)

    Smollen, M

    1994-01-01

    Full Text Available role in determining the ease or difficulty of phase separation. It seems that the inefficiency of dewatering applied to gelatinous and fine-particle sludges can be overcome by mechanical dewatering enhanced by electroosmosis. A prototype pilot-plant...

  7. Design of a uranium recovery pilot plant

    International Nuclear Information System (INIS)

    1984-01-01

    The engineering design of a pilot plant of uranium recover, is presented. The diagrams and specifications of the equipments such as pipelines, pumps, values tanks, filters, engines, etc... as well as metallic structure and architetonic design is also presented. (author)

  8. Location optimization of solar plants by an integrated hierarchical DEA PCA approach

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Maghsoudi, A.

    2008-01-01

    Unique features of renewable energies such as solar energy has caused increasing demands for such resources. In order to use solar energy as a natural resource, environmental circumstances and geographical location related to solar intensity must be considered. Different factors may affect on the selection of a suitable location for solar plants. These factors must be considered concurrently for optimum location identification of solar plants. This article presents an integrated hierarchical approach for location of solar plants by data envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT). Furthermore, an integrated hierarchical DEA approach incorporating the most relevant parameters of solar plants is introduced. Moreover, 2 multivariable methods namely, PCA and NT are used to validate the results of DEA model. The prescribed approach is tested for 25 different cities in Iran with 6 different regions within each city. This is the first study that considers an integrated hierarchical DEA approach for geographical location optimization of solar plants. Implementation of the proposed approach would enable the energy policy makers to select the best-possible location for construction of a solar power plant with lowest possible costs

  9. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25; Solvarmedrevet koeling. Forberedelse af evt. deltagelse i IEA, Solar Heating Cooling Task 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the exent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost

  10. The significance of the pilot conditioning plant (PKA) for spent fuel management

    International Nuclear Information System (INIS)

    Willax, H.O.

    1996-01-01

    The pilot conditioning plant (PKA) is intended as a multi-purpose facility and thus may serve various purposes involved in the conditioning or disposal of spent fuel elements or radwaste. Its design as a pilot plant permits development and trial of various methods and processes for fuel element conditioning, as well as for radwaste conditioning. (orig./DG) [de

  11. The seed of change in society. Diffusion of solar cell systems in housing by means of pilot projects

    International Nuclear Information System (INIS)

    Van Mierlo, B.C.

    2002-01-01

    The central question in this thesis is: in what way can pilot projects contribute to the diffusion of new sustainable technologies, in particular solar cell systems in housing units. The reason for this is, in the first place, that trials, demonstration projects, practical experiments and market introduction projects are often launched by firms and subsidised by the state. The objective of such projects, referred to here as pilot projects, is in general to prepare the market introduction of new technologies. However, these projects are often realised and financed without much information being available on how they operate: about how they could prepare the market launch and how this function could be optimised. The second reason is that since the end of the 1980s the expectations in the Netherlands in respect of solar cell systems (PV systems) connected to the electricity grid have been high. These systems could have great advantages for the environment and after 2010 could be the most important source of sustainable energy. The government sees housing as the most promising market segment for these systems. It is recognised that certain major bottlenecks have to be solved before a large-scale diffusion is possible. According to the niche approach, the basic starting point of this thesis, this means that the existing social-technological regime needs to change: the rules and infrastructure according to which the existing technologies are, as it were, considered self-evident, and which hinder the introduction of new technologies. Subsidised pilot projects form a protected market niche that can stimulate a change in the regime by learning and by the social embedding of the learning experiences. According to this approach, a protected market niche is a necessary component of state-supported innovation policy if market niches do not arise spontaneously. It is, however, a limited instrument since the ultimate impact on existing regimes depends mainly on external factors

  12. Radioactive Waste Disposal Pilot Plant concept for a New Mexico site

    International Nuclear Information System (INIS)

    Weart, W.D.

    1976-01-01

    Twenty years of investigation have shown that disposal of nuclear wastes in deep salt formations is the surest means of isolating these wastes from the biosphere for the extremely long period of time required. A large scale demonstration of this capability will soon be provided by a Radioactive Waste Disposal Pilot Plant (RWDPP) to be developed in southeastern New Mexico. Initially, the pilot plant will accept only ERDA generated waste; high level waste from the commercial power reactor fuel cycle will eventually be accommodated in the pilot plant and the initial RWDPP design will be compatible with this waste form. Selection of a specific site and salt horizon will be completed in June 1976. Conceptual design of the RWDPP and assessment of its environmental impact will be completed by June 1977. Construction is expected to start in 1978 with first waste accepted in 1982. The present concept develops disposal areas for all nuclear waste types in a single salt horizon about 800 meters deep. This single level can accommodate all low level and high level waste generated in the United States through the year 2010. A major constraint on the RWDPP design is the ERDA requirement that all waste be ''readily'' retrievable during the duration of pilot plant operation

  13. Radioactive-waste isolation pilot plant

    International Nuclear Information System (INIS)

    Weart, W.D.

    1977-01-01

    The objective of the Waste Isolation Pilot Plant (WIPP) program is to demonstrate the suitability of bedded salt, specifically, the bedded salt deposits in the Los Medanos area of southeastern New Mexico, as a disposal medium for radioactive wastes. Our program responsibilities include site selection considerations, all aspects of design and development, technical guidance of facility operation, environmental impact assessment, and technical support to ERDA for developing public understanding of the facility

  14. Solar district heating and seasonal heat storage - state of the art; Solare Nahwaerme und Saisonale Waermespeicherung - Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    Pfeil, M.; Hahne, E. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany). Geschaeftsbereich Solarthermische Energietechnik; Lottner, V. [BEO Biologie, Energie Oekologie, Juelich (Germany); Schulz, M. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik

    1998-02-01

    Solar energy technology becomes more and more important for space and water heating of residential buildings. Compared to small systems for single-family houses, the specific investment cost of big solar plants is lower and a higher contribution of solar energy can be achieved. In central solar heating plants with seasonal storage (CSHPSS), more than 50% of the total heat demand of residential areas can be covered by solar energy. The first pilot plants for CSHPSS are operating in Germany since 1996. The first results of the accompanying monitoring program show good agreement between calculated and actual solar contribution. (orig.) [Deutsch] Die Nutzung solarer Niedertemperaturwaerme zur Brauchwassererwaermung und zur Beheizung von Wohngebaeuden erfaehrt in Deutschland ein immer groesseres Interesse. Solare Grossanlagen haben gegenueber solaren Kleinanlagen den Vorteil, dass mit geringeren Investitions- und Waermekosten groessere Anlagenertraege erzielt werden koennen. In Verbindung mit saisonaler Waermespeicherung erreichen solare Grossanlagen Deckungsanteile von 50% und darueber am Gesamtwaermebedarf von Wohnsiedlungen. Die ersten Pilotanlagen zur solaren Nahwaerme mit saisonalem Waermespeicher gingen 1996 in Betrieb und werden derzeit detailliert vermessen. Erste Ergebnisse zeigen, dass die vorausberechneten Werte fuer den Jahresenergieertrag erreicht werden koennen. (orig.)

  15. EXPERIMENTAL RESEARCH OF THE INFLUENCE OF VARIOUS TYPES OF SOLAR COLLECTORS FOR PERFORMANCE SOLAR DESALINATION PLANT

    Directory of Open Access Journals (Sweden)

    Rakhmatulin I.R.

    2014-04-01

    Full Text Available The article discusses the possibility of using renewable energy for water purification. Results of analysis of a preferred energy source for a water purification using installed in places where fresh water shortages and a lack of electrical energy. The possibility of desalination of salt water using solar energy for regions with temperate climate. Presented desalination plant working on energy vacuum solar collectors, principles of action developed by the desalination plant. The experimental results of a constructed distiller when working with vacuum glass tubes and vacuum tubes with copper core inside. Conclusions about the possibility of using solar collectors for water desalination, are tips and tricks to improve the performance of solar desalination plant.

  16. Waste Isolation Pilot Plant No-migration variance petition

    International Nuclear Information System (INIS)

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program

  17. Sharing five years of pilot plant experience on aromatics extraction with ionic liquids

    NARCIS (Netherlands)

    Onink, S.A.F.; Hansmeier, A.R.; Meindersma, G.W.; Haan, de A.B.

    2011-01-01

    Since 2004 pilot plant trials have been conducted with various contactors and different ionic liquids for petrochemical model feeds as well as real refinery feeds. Our pilot plant contains several columns (rotating disc contactor, Kuhni, pulsed disc and donut column) with a height of 6 m and 5 cm

  18. Identification of Radioactive Pilot-Plant test requirements

    Energy Technology Data Exchange (ETDEWEB)

    Powell, W.J.; Riebling, E.F.

    1995-05-09

    Radioactive Pilot-Plant testing needs and alternatives are evaluated for enhanced Sludge Washing and High and Low-Level Vitrification efforts. Also investigated was instrument and equipment testing needs associated with the vitrification and retrieval process. The scope of this document is to record the existing March 1994 letter report for future use. A structured Kepner-Trego{trademark} decision analysis process was used to assist analysis of the testing needs. This analysis provided various combinations of laboratory and radioactive (hot) and cold pilot testing options associated with the above need areas. Recommendations for testing requirements were made.

  19. Identification of Radioactive Pilot-Plant test requirements

    International Nuclear Information System (INIS)

    Powell, W.J.; Riebling, E.F.

    1995-01-01

    Radioactive Pilot-Plant testing needs and alternatives are evaluated for enhanced Sludge Washing and High and Low-Level Vitrification efforts. Also investigated was instrument and equipment testing needs associated with the vitrification and retrieval process. The scope of this document is to record the existing March 1994 letter report for future use. A structured Kepner-Trego trademark decision analysis process was used to assist analysis of the testing needs. This analysis provided various combinations of laboratory and radioactive (hot) and cold pilot testing options associated with the above need areas. Recommendations for testing requirements were made

  20. Solar Power Plants: Dark Horse in the Energy Stable

    Science.gov (United States)

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  1. Reduction of clarithromycin and sulfamethoxazole-resistant Enterococcus by pilot-scale solar-driven Fenton oxidation.

    Science.gov (United States)

    Karaolia, Popi; Michael, Irene; García-Fernández, Irene; Agüera, Ana; Malato, Sixto; Fernández-Ibáñez, Pilar; Fatta-Kassinos, Despo

    2014-01-15

    The presence of pathogenic antibiotic-resistant bacteria in aquatic environments has become a health threat in the last few years. Their presence has increased due to the presence of antibiotics in wastewater effluents, which are not efficiently removed by conventional wastewater treatments. As a result there is a need to study the possible ways of removal of the mixtures of antibiotics present in wastewater effluents and the antibiotic-resistant bacteria, which may also spread the antibiotic resistance genes to other bacterial populations. In this study the degradation of a mixture of antibiotics i.e. sulfamethoxazole and clarithromycin, the disinfection of total enterococci and the removal of those resistant to: a) sulfamethoxazole, b) clarithromycin and c) to both antibiotics have been examined, along with the toxicity of the whole effluent mixture after treatment to the luminescent aquatic bacterium Vibrio fischeri. Solar Fenton treatment (natural solar driven oxidation) using Fenton reagent doses of 50 mg L(-1) of hydrogen peroxide and 5 mg L(-1) of Fe(3+) in a pilot-scale compound parabolic collector plant was used to examine the disinfection and antibiotic resistance removal efficiency in different aqueous matrices, namely distilled water, simulated and real wastewater effluents. There was a faster complete removal of enterococci and of antibiotics in all aqueous matrices by applying solar Fenton when compared to photolytic treatment of the matrices. Sulfamethoxazole was more efficiently degraded than clarithromycin in all three aqueous matrices (95% removal of sulfamethoxazole and 70% removal of clarithromycin in real wastewater). The antibiotic resistance of enterococci towards both antibiotics exhibited a 5-log reduction with solar Fenton in real wastewater effluent. Also after solar Fenton treatment, there were 10 times more antibiotic-resistant enterococci in the presence of sulfamethoxazole than in the presence of clarithromycin. Finally, the toxicity

  2. Economic analysis of power generation from floating solar chimney power plant

    International Nuclear Information System (INIS)

    Zhou, Xinping; Yang, Jiakuan; Xiao, Bo; Wang, Fen

    2009-01-01

    Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh) -1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity. (author)

  3. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Eric Hu

    2013-03-01

    Full Text Available A solar-aided coal-fired power plant realizes the integration of a fossil fuel (coal or gas and clean energy (solar. In this paper, a conventional 600 MW coal-fired power plant and a 600 MW solar-aided coal-fired power plant have been taken as the study case to understand the merits of solar-aided power generation (SAPG technology. The plants in the case study have been analyzed by using the First and Second Laws of Thermodynamics principles. The solar irradiation and load ratio have been considered in the analysis. We conclude that if the solar irradiation was 925 W/m2 and load ratio of the SAPG plant was 100%, the exergy efficiency would be 44.54% and the energy efficiency of the plant (46.35%. It was found that in the SAPG plant the largest exergy loss was from the boiler, which accounted for about 76.74% of the total loss. When the load ratio of the unit remains at 100%, and the solar irradiation varies from 500 W/m2 to 1,100 W/m2, the coal savings would be in the range of 8.6 g/kWh to 15.8 g/kWh. If the solar irradiation were kept at 925 W/m2 while the load ratio of the plant changed from 30% to 100%, the coal savings could be in the range of 11.99 g/kWh to 13.75 g/kWh.

  4. Preliminary design needs for pilot plant of Monazite processing into Thorium Oxide (ThO_2)

    International Nuclear Information System (INIS)

    Hafni Lissa Nuri; Prayitno; Abdul Jami; M-Pancoko

    2014-01-01

    Data and information collection aimed in order to meet the needs of the initial design for pilot plant of monazite processing into thorium oxide (ThO_2). The content of thorium in monazite is high in Indonesia between 2.9 to 4.1% and relatively abundant in Bangka Belitung Islands. Thorium can be used as fuel because of its potential is more abundant instead of uranium. Plant of thorium oxide commercially from monazite established starting from pilot uranium. Plant of thorium oxide commercially from monazite established starting from pilot plant in order to test laboratory data. Pilot plant design started from initial design, basic design, detailed design, procurement and construction. Preliminary design needs includes data feed and products, a block diagram of the process, a description of the process, the determination of process conditions and type of major appliance has been conducted. (author)

  5. General Atomic HTGR fuel reprocessing pilot plant: results of initial sequential equipment operation

    International Nuclear Information System (INIS)

    1978-09-01

    In September 1977, the processing of 20 large high-temperature gas-cooled reactor (LHTGR) fuel elements was completed sequentially through the head-end cold pilot plant equipment. This report gives a brief description of the equipment and summarizes the results of the sequential operation of the pilot plant. 32 figures, 15 tables

  6. Thermo-economic analysis of Shiraz solar thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, M. [Academy of Science, Tehran (Iran, Islamic Republic of); Mokhtari, A.; Hesami, R. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Engineering

    2007-07-01

    The Shiraz solar thermal power plant in Iran has 48 parabolic trough collectors (PTCs) which are used to heat the working oil. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. Conventional energy analysis based on the first law of thermodynamics does qualitatively assess the various losses occurring in the components. Therefore, exergy analysis, based on the second law of thermodynamics, can be applied to better assess various losses quantitatively as well as qualitatively. This paper presented a newly developed exergy-economic model for the Shiraz solar thermal power plant. The objective was to find the minimum exergetic production cost (EPC), based on the second law of thermodynamics. The application of exergy-economic analysis includes the evaluation of utility supply costs for production plants, and the energy costs for process operations. The purpose of the analysis was to minimize the total operating costs of the solar thermal power plant by assuming a fixed rate of electricity production and process steam. 21 refs., 3 tabs., 8 figs.

  7. Encapsulation pilot plant of radioactive wastes in thermosetting resins

    International Nuclear Information System (INIS)

    1982-01-01

    The thermosetting resins (polyesters, epoxides) are used to encapsulate the low and intermediate - level radioactive wastes. The testing program concerning the drums produced by the pilot plant of the Chooz nuclear power plant is described. The installation operating is examined while thinking of the industrial application. The production costs are then evaluated

  8. Review of avian mortality studies at concentrating solar power plants

    Science.gov (United States)

    Ho, Clifford K.

    2016-05-01

    This paper reviews past and current avian mortality studies at concentrating solar power (CSP) plants and facilities including Solar One in California, the Solar Energy Development Center in Israel, Ivanpah Solar Electric Generating System in California, Crescent Dunes in Nevada, and Gemasolar in Spain. Findings indicate that the leading causes of bird deaths at CSP plants are from collisions (primarily with reflective surfaces; i.e., heliostats) and singeing caused by concentrated solar flux. Safe irradiance levels for birds have been reported to range between 4 and 50 kW/m2. Above these levels, singeing and irreversible damage to the feathers can occur. Despite observations of large numbers of "streamers" in concentrated flux regions and reports that suggest these streamers indicate complete vaporization of birds, analyses in this paper show that complete vaporization of birds is highly improbable, and the observed streamers are likely due to insects flying into the concentrated flux. The levelized avian mortality rate during the first year of operation at Ivanpah was estimated to be 0.7 - 3.5 fatalities per GWh, which is less than the levelized avian mortality reported for fossil fuel plants but greater than that for nuclear and wind power plants. Mitigation measures include acoustic, visual, tactile, and chemosensory deterrents to keep birds away from the plant, and heliostat aiming strategies that reduce the solar flux during standby.

  9. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent.

    Science.gov (United States)

    Beltrán-Heredia, J; Sánchez-Martín, J

    2009-05-01

    Moringa oleifera extract is a high-capacity flocculant agent for turbidity removal in surface water treatment. A complete study of a pilot-plant installation has been carried out. Because of flocculent sedimentability of treated water, a residual turbidity occured in the pilot plant (around 30 NTU), which could not be reduced just by a coagulation-flocculation-sedimentation process. Because of this limitation, the pilot plant (excluded filtration) achieved a turbidity removal up to 70%. A slow sand filter was put in as a complement to installation. A clogging process was characterized, according to Carman-Kozeny's hydraulic hypothesis. Kozeny's k parameter was found to be 4.18. Through fouling stages, this k parameter was found to be up to 6.36. The obtained data are relevant for the design of a real filter in a continuous-feeding pilot plant. Slow sand filtration is highly recommended owing to its low cost, easy-handling and low maintenance, so it is a very good complement to Moringa water treatment in developing countries.

  10. Study on designing a complete pilot plant for processing sandstone ores in Palua-Parong area

    International Nuclear Information System (INIS)

    Le Quang Thai; Tran Van Son; Tran The Dinh; Trinh Nguyen Quynh; Vu Khac Tuan

    2015-01-01

    Design work is the first step of the construction and operation of pilot plant. Thus, the project Study on designing a complete pilot plant for processing sandstone ores in Palua - Parong area was conducted to design a pilot plant for testing entire technological process to obtain yellowcake. Based on a literature review of uranium ore processing technology in the world, information of ore and previous research results of uranium ore in PaLua - PaRong area at the Institute for Technology of Radioactive and Rare Elements, a suitable technological flowsheet for processing this ore has been selected. The size, location of the pilot plant and planed experiments has been selected during the implementation of this project, in which basic parameters, designed system of equipment, buildings, ect. were also calculated. (author)

  11. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  12. Pilot plant for hydrogasification of coal with nuclear heat

    International Nuclear Information System (INIS)

    Falkenhain, G.; Velling, G.

    1976-01-01

    In the framework of a research and development programme sponsored by the Ministry of Research and Technology of the Federal Republic of Germany, two process variants for hydrogasification of coal by means of nuclear heat have been developed by the Rheinische Braunkohlenwerke AG, Cologne. For testing these process variants a semi-technical pilot plant for gasification of coal under pressure in a fluidized bed was constructed. The pilot plant, in which the gasification of lignite and hard coal is planned, is designed for a throughput of 100kg carbon per hour corresponding to 400kg raw lignite per hour or 150kg hard coal per hour. The plant should provide data on the influence of the most essential process parameters (pressure, temperature, residence time of gas and coal, type and pre-treatment of feed coal) on the performance of gasification and raw gas composition. Different plant components will also be tested. Since the pilot plant will permit testing of both process variants of hydrogasification, it was designed in such a way that it is possible to vary a great number of process parameters. Thus, for instance, the pressure can be chosen in a range up to 100 bar and pure hydrogen or mixtures of hydrogen, carbon monoxide and steam can be applied as gasification agents. The gasifier is an internally insulated fluidized bed reactor with an inner diameter of 200mm and a height of about 8m, to which an internally insulated cyclone for separation of the entrained fines is attached. The raw gas is then cooled down by direct water scrubbing. (author)

  13. First Experience from the World Largest fully commercial Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Furbo, Simon

    1997-01-01

    The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m.......The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m....

  14. Investigation of Parameters Affecting Gypsum Dewatering Properties in a Wet Flue Gas Desulphurization Pilot Plant

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Kiil, Søren

    2012-01-01

    of impurities (0.002 M Al2F6; 50 g quartz/L; 0.02 M Al3+, and 0.040 M Mg2+) were investigated. In addition, slurry from a full-scale wet FGD plant, experiencing formation of flat shaped crystals and poor gypsum dewatering properties, was transferred to the pilot plant to test if the plant would now start...... to time. In this work, the particle size distribution, morphology, and filtration rate of wet FGD gypsum formed in a pilot-scale experimental setup, operated in forced oxidation mode, have been studied. The influence of holding tank residence time (10–408 h), solids content (30–169 g/L), and the presence...... to produce low quality gypsum. The crystals formed in the pilot plant, on the basis of the full-scale slurry did, however, show acceptable filtration rates and crystal morphologies closer to the prismatic crystals from after pilot plant experiments with demineralized water. The gypsum slurry filtration rates...

  15. Raft River binary-cycle geothermal pilot power plant final report

    Energy Technology Data Exchange (ETDEWEB)

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  16. Development of the Risk-Based Inspection Techniques and Pilot Plant Activities

    International Nuclear Information System (INIS)

    Phillips, J.H.

    1997-01-01

    Risk-based techniques have been developed for commercial nuclear power plants. System boundaries and success criteria is defined using the probabilistic risk analysis or probabilistic safety analysis developed to meet the individual plant evaluation. Final ranking of components is by a plant expert panel similar to the one developed for maintenance rule. Components are identified as being high risk-significant or low-risk significant. Maintenance and resources are focused on those components that have the highest risk-significance. The techniques have been developed and applied at a number of pilot plants. Results from the first risk-based inspection pilot plant indicates that safety due to pipe failure can be doubled while the inspection reduced to about 80% when compared with current inspection programs. The reduction in inspection reduces the person-rem exposure resulting in further increases in safety. These techniques have been documented in publication by the ASME CRTD

  17. Waste Isolation Pilot Plant transuranic wastes experimental characterization program: executive summary

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1978-11-01

    A general overview of the Waste Isolation Pilot Plant transuranic wastes experimental characterization program is presented. Objectives and outstanding concerns of this program are discussed. Characteristics of transuranic wastes are also described. Concerns for the terminal isolation of such wastes in a deep bedded salt facility are divided into two phases, those during the short-term operational phase of the facility, and those potentially occurring in the long-term, after decommissioning of the repository. An inclusive summary covering individual studies, their importance to the Waste Isolation Pilot Plant, investigators, general milestones, and comments are presented

  18. Waste Isolation Pilot Plant, Land Management Plan

    International Nuclear Information System (INIS)

    1993-01-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives

  19. Waste Isolation Pilot Plant, Land Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  20. Progress in Developing a High-Availability Advanced Tokamak Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.; Goldston, R.; Kessel, C.; Neilson, G.; Menard, J.; Prager, S.; Scott, S.; Titus, P.; Zarnstorff, M., E-mail: tbrown@pppl.gov [Princeton University, Princeton Plasma Physics Laboratory, Princeton (United States); Costley, A. [Henley on Thames (United Kingdom); El-Guebaly, L. [University of Wisconsin, Madison (United States); Malang, S. [Fusion Nuclear Technology Consulting, Linkenheim (Germany); Waganer, L. [St. Louis (United States)

    2012-09-15

    Full text: A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The mission of the pilot plant was set to encompass component test and fusion nuclear science missions yet produce net electricity with high availability in a device designed to be prototypical of the commercial device. The objective of the study was to evaluate three different magnetic configuration options, the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS) in an effort to establish component characteristics, maintenance features and the general arrangement of each candidate device. With the move to look beyond ITER the fusion community is now beginning to embark on DEMO reactor studies with an emphasis on defining configuration arrangements that can meet a high availability goal. In this paper the AT pilot plant design will be presented. The selected maintenance approach, the device arrangement and sizing of the in-vessel components and details of interfacing auxiliary systems and services that impact the ability to achieve high availability operations will be discussed. Efforts made to enhance the interaction of in-vessel maintenance activities, the hot cell and the transfer process to develop simplifying solutions will also be addressed. (author)

  1. Exergy evaluation of a typical 330 MW solar-hybrid coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Wang, Zhaoguo; Hong, Hui; Xu, Da; Jin, Hongguang

    2014-01-01

    Highlights: • Exergy analysis of solar-hybrid coal-fired power plant has been processed. • EUD method is utilized to obtain detailed information on the exergy destruction in each process. • Off-design thermodynamic performances are discussed to identify the advantages. • Exergy destruction of several parts under varying solar radiation is examined. - Abstract: This study discusses the thermodynamic performance of a solar-hybrid coal-fired power plant that uses solar heat with temperature lower than 300 °C to replace the extracted steam from a steam turbine to heat the feed water. Through this process, the steam that was to be extracted can efficiently expand in the steam turbine to generate electricity. The flow rate of steam returning to the turbine retains only a small part of the main stream, allowing the steam turbine to run close to design conditions for all DNI. A solar-only thermal power plant without storage is also discussed to illustrate the advantages of a solar-hybrid coal-fired power plant. The off-design performances of both plants are compared based on the energy-utilization diagram method. The exergy destruction of the solar-hybrid coal-fired power plant is found to be lower than that of the solar-only thermal power plant. The comparison of two plants, which may provide detailed information on internal phenomena, highlights several advantages of the solar-hybrid coal-fired power plant in terms of off-design operation: lower exergy destruction in the solar feed water heater and steam turbine and higher exergy and solar-to-electricity efficiency. Preliminary technological economic performances of both plants are compared. The results obtained in this study indicate that a solar-hybrid coal-fired power plant could achieve better off-design performance and economic performance than a solar-only thermal power plant

  2. Strategic pilot for operator support system in nuclear power plant - design considerations

    International Nuclear Information System (INIS)

    Bucur, I.; Tatar, F.

    1999-01-01

    In order to improve the plant operational safety the development of an Operator Support System (OSS) is required. This system is intended to process data from nuclear systems and to provide adequate outputs to the plant operation staff. Before implementing this system, a strategic pilot should be produced as a demonstration of the technology. The strategic pilot could be considered as a means of building both skills and credibility in development and implementation of OSS. In any organization this project should be under plant management control with operation group involvement. This paper describes the managerial tasks that should be carried out to define, build and implement such a module. The main objectives, the functional requirements and the benefits of pilot implementation are revealed. Furthermore, the problem relating to the background at CNE-PROD Cernavoda is analyzed and the present achievements are pointed out. (authors)

  3. Systematic simulation of a tubular recycle reactor on the basis of pilot plant experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paar, H; Narodoslawsky, M; Moser, A [Technische Univ., Graz (Austria). Inst. fuer Biotechnologie, Mikrobiologie und Abfalltechnologie

    1990-10-10

    Systematic simulatiom may decisively help in development and optimization of bioprocesses. By applying simulation techniques, optimal use can be made of experimental data, decreasing development costs and increasing the accuracy in predicting the behavior of an industrial scale plant. The procedure of the dialogue between simulation and experimental efforts will be exemplified in a case study. Alcoholic fermentation of glucose by zymomonas mobilis bacteria in a gasified turbular recycle reactor was studied first by systematic simulation, using a computer model based solely on literature data. On the base of the results of this simulation, a 0.013 m{sup 3} pilot plant reactor was constructed. The pilot plant experiments, too, were based on the results of the systematic simulation. Simulated and experimental data were well in agreement. The pilot plant experiments reiterated the trends and limits of the process as shown by the simulation results. Data from the pilot plant runs were then used to improve the simulation model. This improved model was subsequently used to simulate the performances of an industrial scale plant. The results of this simulation are presented. They show that the alcohol fermentation in a tubular recycle reactor is potentially advantageous to other reactor configurations, especially to continuous stirred tanks. (orig.).

  4. Tetrafluoride uranium pilot plant in operation at IEA, using the moving bed process

    International Nuclear Information System (INIS)

    Franca Junior, J.M.

    1975-01-01

    A UF 4 pilot plant, in operation at IEA, using the moving bed process is reported. UO 3 obtained from the thermal decomposition of ADU is used as a starting material in this pilot plant. The type of equipment and the process are both described. Ammonia gas (NH 3 ) was used in the reduction operation and anhydrous hydrofluoric acid (HF) in the hydrofluorination step

  5. Solar wind power electric plant on Vis (Croatia)

    International Nuclear Information System (INIS)

    1998-01-01

    A project of a solar photovoltaic electric power plant presented by the Republic of Croatia at the meeting of the E.P.I.A. Mission for photovoltaic technology of the Mediterranean countries, aroused a great interest of the representatives of the invited countries. However, the interest within Croatia in the project has disappeared although E.P.I.A. offered a financing of two thirds of costs. There are attempts to construct 1800 kw wind-driven generators at the same location not taking into consideration a possibility of building a hybrid solar-wind-power electric plant. The chance that the solar part is completely of domestic origin is not accepted but the preference is given to the building of imported wind-driven generators. (orig.)

  6. [Yield of starch extraction from plantain (Musa paradisiaca). Pilot plant study].

    Science.gov (United States)

    Flores-Gorosquera, Emigdia; García-Suárez, Francisco J; Flores-Huicochea, Emmanuel; Núñez-Santiago, María C; González-Soto, Rosalia A; Bello-Pérez, Luis A

    2004-01-01

    In México, the banana (Musa paradisiaca) is cooked (boiling or deep frying) before being eaten, but the consumption is not very popular and a big quantity of the product is lost after harvesting. The unripe plantain has a high level of starch and due to this the use of banana can be diversified as raw material for starch isolation. The objective of this work was to study the starch yield at pilot plant scale. Experiments at laboratory scale were carried out using the pulp with citric acid to 0,3 % (antioxidant), in order to evaluate the different unitary operations of the process. The starch yield, based on starch presence in the pulp that can be isolated, were between 76 and 86 %, and the values at pilot plant scale were between 63 and 71 %, in different lots of banana fruit. Starch yield values were similar among the diverse lots, showing that the process is reproducible. The lower values of starch recovery at pilot plant scale are due to the loss during sieving operations; however, the amount of starch recovery is good.

  7. Studies in biogas technology. Part 4. A noval biogas plant incorporating a solar water-heater and solar still

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A K.N. [Indian Inst. of Science, Bangalore; Prasad, C R; Sathyanarayan, S R.C.; Rajabapaiah, P

    1979-09-01

    A reduction in the heat losses from the top of the gas holder of a biogas plant has been achieved by the simple device of a transparent cover. The heat losses thus prevented have been deployed to heat a water pond formed on the roof of the gas holder. This solar-heated water is mixed with the organic input for hot-charging of the biogas plant. To test whether the advantages indicated by a thermal analysis can be realized in practice, a biogas plant of the ASTRA design was modified to incorporate a roof-top water-heater. The operation of such a modified plant, even under worst case conditions, shows a significant improvement in the gas yield compared to the unmodified plant. Hence, the innovation reported here may lead to drastic reductions in the sizes and therefore costs of biogas plants. By making the transparent cover assume a tent-shape, the roof-top solar heater can serve the additional function of a solar still to yield distilled water. The biogas plant-cum-solar still described here is an example of a spatially integrated hybrid device which is extremely cost-effective.

  8. The Marcoule pilot plant

    International Nuclear Information System (INIS)

    Faugeras, P.; Calame Longjean, A.; Le Bouhellec, J.; Revol, G.

    1986-06-01

    The Marcoule spent fuel reprocessing pilot facility was built in 1960-1961 for extended testing of the PUREX process with various types of fuel under conditions similar to those encountered in a production plant. Extensive modification work was undertaken on the facility in 1983 in the scope of the TOR project, designed with the following objectives: - increase the throughput capacity to at least 5 metric tons of PHENIX equivalent fuel per year, - extend equipment and process R and D capability, - improve job safety by maximum use of remote handling facilities, - maximize waste conditioning treatments to produce waste forms suitable for direct storage, - provide a true industrial process demonstration in continuous operation under centralized control using computerized procedures. The redesigned plant is scheduled to begin operation during the second half of 1986. The proximity of the Industrial Prototypes Service and the ATALANTE radiochemical research laboratory scheduled to begin operation in 1990, will provide a synergistic environment in which R and D program may be carried out under exceptional conditions

  9. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  10. Solar energy e-learning laboratory - Remote experimentation over the Internet

    Directory of Open Access Journals (Sweden)

    Polyvios C Eleftheriou

    2005-11-01

    Full Text Available This paper presents the solar energy e-learning laboratory, developed at the Higher Technical Institute (HTI within the framework of the Leonardo da Vinci project MARVEL, focuses on the system architecture and its features, and elaborates on the learning platform employed. The laboratory focuses on experiential based learning-arrangements allowing remote and distributed training with the laboratory of solar energy. As a prototype working example the HTI solar energy laboratory comprises a remotely accessible pilot solar energy conversion plant employing the state of the art in software design.

  11. Waste Isolation Pilot Plant 2001 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  12. Waste Isolation Pilot Plant 2001 Site Environmental Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions, Inc.

    2002-01-01

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment

  13. Waste Isolation Pilot Plant 1999 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  14. Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant.

    Science.gov (United States)

    Parisi, Alfio V; Schouten, Peter; Downs, Nathan J; Turner, Joanna

    2010-05-03

    The possible ramifications of climate change include the influence it has upon the amount of cloud cover in the atmosphere. Clouds cause significant variation in the solar UV radiation reaching the earth's surface and in turn the amount incident on ecosystems. The consequences of changes in solar UV radiation delivered to ecosystems due to climate change may be significant and should be investigated. Plants are an integral part of the world wide ecological balance, and research has shown they are affected by variations in solar UV radiation. Therefore research into the influence of solar UV radiation on plants is of particular significance. However, this requires a means of obtaining detailed information on the solar UV radiation received by plants. This research describes a newly developed dosimetric technique employed to gather information on solar UV radiation incident to the leaves of plants in combination with the measurement of spectral irradiances in order to provide an accurate method of collecting detailed information on the solar UV radiation affecting the canopy and lower leaf layers of individual plants. Variations in the measurements take into account the inclination and orientation of each leaf investigated, as well as the influence of shading by other leaves in the plant canopy. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    Science.gov (United States)

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  16. Innovative milk pasteurizing plant fed by solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Lucentini, M.; Naso, V. [Univ. of Rome La Sapienza, Dept. of Mechanical Engineering (Italy); Rubini, L. [ISES ITALIA (Italy)

    2000-07-01

    The possible use of solar-heat energy for industrial production has been evaluated, verifying the sector where this resource could be suitably applied. After a preliminary phase, the analysis has been focused on the agro-alimentary sector. As a matter of fact, in this case the range of temperatures coincides with the one typically carried out from solar collectors. Moreover, a deciding factor of choice has been the energy flow provided by solar radiation, close to the one typically needed to pasteurize milk. Taking into account production requirements, one comes to the conclusion of utilizing stored solar energy hot water - for washing operations of pasteurizing plant. These operations - really heavy from the point of view of heat energy consumption - are concentrated in the midday, just when solar energy storage is at its maximum level. This paper analyzes the technical and economical feasibility of an innovative plant, through the operational simulations of each machinery, related to different radiation conditions during the year. The economical analysis has shown that this solution is worth-while, especially taking advantage from the incentives offered by the national campaign of renewable energy diffusion. (au)

  17. Solar CPC pilot plant photocatalytic degradation of bisphenol A in waters and wastewaters using suspended and supported-TiO2. Influence of photogenerated species.

    Science.gov (United States)

    Saggioro, Enrico Mendes; Oliveira, Anabela Sousa; Pavesi, Thelma; Tototzintle, Margarita Jiménez; Maldonado, Manuel Ignacio; Correia, Fábio Verissimo; Moreira, Josino Costa

    2014-11-01

    Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L(-1)) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol-gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L(-1)). The influence of OH·, O2 (·-), and h (+) on the BPA degradation were evaluated. The radicals OH· and O2 (·-) were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L(-1). According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7 × 10(-2) mg cm(-2). The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.

  18. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  19. Vestas Power Plant Solutions Integrating Wind, Solar PV and Energy Storage

    DEFF Research Database (Denmark)

    Petersen, Lennart; Hesselbæk, Bo; Martinez, Antonio

    2018-01-01

    This paper addresses a value proposition and feasible system topologies for hybrid power plant solutions integrating wind, solar PV and energy storage and moreover provides insights into Vestas hybrid power plant projects. Seen from the perspective of a wind power plant developer, these hybrid...... solutions provide a number of benefits that could potentially reduce the Levelized Cost of Energy and enable entrance to new markets for wind power and facilitate the transition to a more sustainable energy mix. First, various system topologies are described in order to distinguish the generic concepts...... for the electrical infrastructure of hybrid power plants. Subsequently, the benefits of combining wind and solar PV power as well as the advantages of combining variable renewable energy sources with energy storage are elaborated. Finally, the world’s first utility-scale hybrid power plant combining wind, solar PV...

  20. Integrated automation system for a pilot plant for energy conversion using PEMFCs

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Raceanu, Mircea; Stanciu, Vasile; Stefanescu, Ioan; Enache, Adrian; Lazaro, Pavel Gabriel; Lazaroiu, Gheorghe; Badea, Adrian

    2007-01-01

    Based on Hydrogen and Fuel Cells researches and technological capabilities achieved in the National R and D Programs, ICIT Rm. Valcea built an experimental-demonstrative pilot plant for energy conversion using hydrogen PEMFCs. This pilot plant consists of a fuel processor based on steam methane reforming (SMR) process, a hydrogen purification unit, a PEM fuel cells stack (FCS) and a power electronics unit. The paper deals with the dedicated controlling system that provides automated data acquisition, manual or on-line operational control, gas management, humidification, temperature and flow controls. (authors)

  1. Numerical analysis on the performance of solar chimney power plant system

    International Nuclear Information System (INIS)

    Xu Guoliang; Ming Tingzhen; Pan Yuan; Meng Fanlong; Zhou Cheng

    2011-01-01

    Power generating technology based on renewable energy resources will definitely become a new trend of future energy utilization. Numerical simulations on air flow, heat transfer and power output characteristics of a solar chimney power plant model with energy storage layer and turbine similar to the Spanish prototype were carried out in this paper, and mathematical model of flow and heat transfer for the solar chimney power plant system was established. The influences of solar radiation and pressure drop across the turbine on the flow and heat transfer, output power and energy loss of the solar chimney power plant system were analyzed. The numerical simulation results reveal that: when the solar radiation and the turbine efficiency are 600 W/m 2 and 80%, respectively, the output power of the system can reach 120 kW. In addition, large mass flow rate of air flowing through the chimney outlet become the main cause of energy loss in the system, and the collector canopy also results in large energy loss.

  2. Solar disinfection of water for low income communities; Desinfeccao solar de agua para comunidades de baixa renda

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Lorna Falcao

    2010-03-15

    The use of solar energy for water disinfection, and is accessible to disadvantaged communities because of its low cost, has the advantage of using disposable materials such as bottles of polyethylene terephthalate (PET). We present a study that used two methods of disinfection: the methodology proposed by the project Solar Water Disinfection (SODIS), which consisted of water disinfection by solar radiation and temperature and the methodology which the temperature of the water for disinfection. In both, we seek to eliminate microorganisms that cause serious diseases such as dysentery, typhoid, cholera, etc. Water samples were collected in the community of Bass, where the population has low income and the incidence of waterborne diseases is high. The experiments were divided into two stages. In step 1 we studied the feasibility of disinfection and in step 2 the feasibility of the pilot plant to obtain adequate levels of disinfection temperatures desired. The results showed the efficiency of the disinfection process, reaching an average of 80 to 100% death of microorganisms, but regrowth was observed in some samples. Finally on the good results of stage 1, is designed and built and tested in an experimental pilot plant, which has shown to be feasible to promote water disinfection through the use of solar energy. The water after treatment is in accordance with the limits established by Brazilian legislation for clean water, maintaining a positive performance for the disinfection and acceptable levels of bacterial regrowth. (author)

  3. Technical Proposal Salton Sea Geothermal Power Pilot Plant Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1975-03-28

    The proposed Salton Sea Geothermal Power Pilot Plant Program comprises two phases. The objective of Phase 1 is to develop the technology for power generation from high-temperature, high-salinity geothermal brines existing in the Salton Sea known geothermal resources area. Phase 1 work will result in the following: (a) Completion of a preliminary design and cost estimate for a pilot geothermal brine utilization facility. (b) Design and construction of an Area Resource Test Facility (ARTF) in which developmental geothermal utilization concepts can be tested and evaluated. Program efforts will be divided into four sub-programs; Power Generation, Mineral Extraction, Reservoir Production, and the Area Resources Test Facility. The Power Generation Subprogram will include testing of scale and corrosion control methods, and critical power cycle components; power cycle selection based on an optimization of technical, environmental and economic analyses of candidate cycles; preliminary design of a pilot geothermal-electric generating station to be constructed in Phase 2 of this program. The Mineral Extraction Subprogram will involve the following: selection of an optimum mineral recovery process; recommendation of a brine clean-up process for well injection enhancement; engineering, construction and operation of mineral recovery and brine clean-up facilities; analysis of facility operating results from environmental, economical and technical point-of-view; preliminary design of mineral recovery and brine clean-up facilities of sufficient size to match the planned pilot power plant. The Reservoir Production Subprogram will include monitoring the operation and maintenance of brine production, handling and injection systems which were built with private funding in phase 0, and monitoring of the brine characteristics and potential subsidence effects during well production and injection. Based on the above, recommendations and specifications will be prepared for production and

  4. Pilot-scale Biogas Plant for the Research and Development of New Technologies

    Directory of Open Access Journals (Sweden)

    Ivan Simeonov

    2012-09-01

    Full Text Available Тhe paper describes a new pilot-scale biogas plant of the Institute of Microbiology - Bulgarian Academy of Sciences. The equipment includes: a 100 L pilot bioreactor, a 200 L metal gasholder, sensors, actuators, a two-level automatic process monitoring and control system, a fire and explosion protection system and two web cameras. The monitoring and control system is composed on the lower level of a controller Beckhoff, and on the higher level - of a PC with specialized software (under development. The pilot biogas plant is designed to work out and scale up various anaerobic digestion (AD technologies based on different types of feedstock. All the data will be stored on the PC for quick reference and possibly data mining, parameter identification and verification of different AD mathematical models.

  5. Solar central receiver reformer system for ammonia plants

    Science.gov (United States)

    1980-07-01

    Details of the conceptual design, economic analysis, and development plan for a solar central receiver system for retrofitting the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant are presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system displaces natural gas presently used in the fossil reformer combustion chamber. The solar reformer retrofit system characteristics and its interface with the existing plant are simple, incorporating state of the art components with proven technology. A northfield composed of one thousand forty second generation heliostats provides solar energy to the receiver which is positioned on top of a 90 meter high steel tower. The overall economics of this system can provide over 20% discount cash flow rate of return with proper investment and market conditions.

  6. Solar-assisted district heating system - Scientific study. Solar-assisted district heating system with long-term thermal storage in Friedrichshafen-Wiggenhausen and Hamburg-Bramfeld.. Results of the first year of operation; Solar unterstuetzte Nahwaermeversorgung - Wissenschaftliches Begleitprogramm. Solare Nahwaermeversorgung mit Langzeitwaermespeicher in Friedrichshafen-Wiggenhausen und Hamburg-Bramfeld. Ergebnisse des ersten Betriebsjahres

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M.E.; Mahler, B.; Hahne, E. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik

    1998-12-31

    The first two pilot plants for solar district heating with seasonal thermal energy storage were put in operation in October 1996. Both projects were initiated by the Institute for Thermodynamics and Thermal Energy Technology (ITW) of the University of Stuttgart that also provided scientific support up to the present. This report presents the results of the first two years of operation of both plants. Both solar plants have been operated without any major problems. The solar energy yield in the first year of operation has only been reduced by the unsatisfactory operation of the heating grid. The most important step towards optimising the plants is the adjustment of the internal heating systems and thus the reduction of the heating temperatures which are currently too high. Based on subject pre-conditions the results projected for the first pilot plants for solar district heating and long-term thermal energy storage will be reached in the following years of operation. (orig.) [Deutsch] Im Oktober 1996 gingen die ersten beiden Pilotanlagen zur solaren Nahwaermeversorgung mit saisonaler Waermespeicherung in Betrieb. Beide Projekte wurden vom Institut fuer Thermodynamik und Waermetechnik (ITW), Universitaet Stuttgart initiiert und ueber die gesamte bisherige Laufzeit wissenschaftlich begleitet. Die Ergebnisse des ersten Betriebsjahres der beiden Anlagen sind in diesem Bericht zusammengestellt. In beiden Faellen funktionieren die Solaranlagen ohne grosse Probleme. Die solaren Ertraege wurden im ersten Betriebsjahr noch durch die unzureichende Betriebsweise der Heiznetze gemindert. Wichtigster Ansatzpunkt fuer eine Optimierung der Anlagen ist die Einregulierung der hausinternen Heizungssysteme und damit die Absenkung der derzeit noch zu hohen Heiznetztemperaturen. Unter dieser Voraussetzung werden die vorausgesagten Ergebnisse fuer die ersten Pilotanlagen zur solaren Nahwaerme mit Langzeit-Waermespeicher in den naechsten Betriebsjahren erreicht werden. (orig.)

  7. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, fabrication/installation work, etc. were made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. Construction work of a pilot plant of coal gasification power generation was at its peak in April 1990, and installation/piping work for each facility/equipment was carried out. In May, transportation/installation of gas turbine and generator were started. In June, installation of equipment of the 66kV special high voltage switching station was conducted, and the initial power receiving of 6.9kV was conducted. In August, inspection before use was made of the main piping of the gasifier equipment, gas refining equipment and gas turbine equipment. In December, trial unit operation of each equipment and interlock test were carried out. 'The integrated plant protection interlock test' was made from January 21 to February 21, 1991, and the favorable results were obtained. On February 28, a ceremony to celebrate the completion of all facilities of pilot plant was made. In March, drying of gasifier and initial firing by light oil were conducted, and all the work was completed on March 25. (NEDO)

  8. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, fabrication/installation work, etc. were made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. Construction work of a pilot plant of coal gasification power generation was at its peak in April 1990, and installation/piping work for each facility/equipment was carried out. In May, transportation/installation of gas turbine and generator were started. In June, installation of equipment of the 66kV special high voltage switching station was conducted, and the initial power receiving of 6.9kV was conducted. In August, inspection before use was made of the main piping of the gasifier equipment, gas refining equipment and gas turbine equipment. In December, trial unit operation of each equipment and interlock test were carried out. 'The integrated plant protection interlock test' was made from January 21 to February 21, 1991, and the favorable results were obtained. On February 28, a ceremony to celebrate the completion of all facilities of pilot plant was made. In March, drying of gasifier and initial firing by light oil were conducted, and all the work was completed on March 25. (NEDO)

  9. Prototype plant for nuclear process heat (PNP) - operation of the pilot plant for hydrogasification of coal

    International Nuclear Information System (INIS)

    Bruengel, N.; Dehms, G.; Fiedler, P.; Gerigk, H.P.; Ruddeck, W.; Schrader, L.; Schumacher, H.J.

    1988-04-01

    The Rheinische Braunkohlenwerke AG developed the process of hydrogasification of coal in a fluidized bed for generation of SNG. On basis of test results obtained in a semi-technical pilot plant of a through-put of 250 kg/h dried coal a large pilot plant was erected processing 10 t/h dried brown coal. This plant was on stream for about 14700 h, of which about 7800 h were with gasifier operation; during this time about 38000 t of dried brown coal of the Rhenish district were processed containing 4 to 25% of ash. At pressures of 60 to 120 bar and temperatures of 800 to 935 0 C carbon conversion rates up to 81 percent and methane amounts of 5000 m 3 (STP)/h were reached. The decisive parameter for methane generation was the hydrogen/coal-ratio. Even at high moisture contents, usually diminishing the methane yield from the coal essentially, by high hydrogen/coal-ratios high methane yields could be obtained. The gasifier itself caused no troubles during the total time operation. Difficulties with the original design of the residual char cooler could be overcome by change-over from water injection to liquid carbon dioxide. The design of the heat recovery system proved well. Alltogether so the size increasement of the gasifier from the semi-technical to the large pilot plant as well as the harmonization of gas generation and gas refining was proved. (orig.) With 20 refs., 20 tabs., 81 figs [de

  10. Double stage dry-wet-fermentation - start-up of a pilot biogas plant

    International Nuclear Information System (INIS)

    Buschmann, Jeannette; Busch, Gunter; Burkhardt, Marko

    2009-01-01

    The Brandenburg University of Technology (BTU) has developed a double stage dry-wet fermentation process for fast and safe anaerobic degradation. Originally designed for treatment of organic wastes, this process allows using a wide variety of solid biodegradable materials. The dividing of hydrolysis and methanation in this process, allows an optimization of the different steps of biogas generation separately. The main advantages of the process are the optimum process control, an extremely stable process operation and a high gas productivity and quality. Compared to conventional processes, the retention times within the percolation stage (hydrolysis) are reduced considerably. In cooperation with the engineering and consulting company GICON, the technology was qualified further to an industrial scale. In 2007 a pilot plant, and, simultaneously, an industrial plant were built by GICON based on this double stage technology. Based on practical experience from the operation of laboratory fermentation plants, the commissioning of the pilot plant was planned, controlled and monitored by our institution. The start-up of a biogas plant of this type focuses mainly on the inoculation the of methane reactor. The growth of microbial populations and generation of a stable biocenosis within the methane reactor is essential and affects the duration of starting period as well as the methanation efficiency a long time afterwards. This paper concerns with start-up of a pilot biogas plant and discusses particular occurrences and effects during this period. (author)

  11. Operation result of 40kW class MCFC pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, H.; Hatori, S.; Hosaka, M.; Uematsu, H. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    Ishikawajima-Harima Heavy Industries Co., Ltd. developed unique Molten Carbonate Fuel Cell (MCFC) system based on our original concept. To demonstrate the possibility of this system, based on MCFC technology of consigned research from New Energy and Industrial Technology Development Organization (NEDO) in Japan, we designed 40kW class MCFC pilot plant which had all equipments required as a power plant and constructed in our TO-2 Technical Center. This paper presents the test results of the plant.

  12. The working of RVNRL pilot plant of Rubber Board and it's safety devices

    International Nuclear Information System (INIS)

    Britto, I.J.; Thomas, E.V.

    1996-01-01

    A pilot plant for producing radiation vulcanized natural rubber latex (RVNRL) was established at Rubber Board, India in 1992. Irradiation is done by a batch process in the plant. The plant has a versatile safety system for safety of operators and people working in and around the plant

  13. Waste Isolation Pilot Plant Technical Assessment Team Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-17

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  14. Towards prioritizing flexibility in the design and construction of concentrating solar power plants

    DEFF Research Database (Denmark)

    Topel, Monika; Lundqvist, Mårten; Haglind, Fredrik

    2017-01-01

    In the operation and maintenance of concentrating solar power plants, high operational flexibility is required in order to withstand the variability from the inherent solar fluctuations. However, during the development phases of a solar thermal plant, this important objective is overlooked...... as a relevant factor for cost reduction in the long term. This paper will show the value of including flexibility aspects in the design of a concentrating solar power plant by breaking down their potential favorable impact on the levelized cost of electricity (LCOE) calculations. For this, three scenarios...... to include flexibility as a design objective are analyzed and their potential impact on the LCOE is quantified. The scenarios were modeled and analyzed using a techno-economic model of a direct steam generation solar tower power plant. Sensitivity studies were carried out for each scenario, in which...

  15. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  16. Solar fired combined RO/MED desalination plant integrated with electrical power grid

    International Nuclear Information System (INIS)

    Alrobaei, H.

    2006-01-01

    Currently, there is a strong demand for efficient seawater desalination plants, which can meet the tougher environment regulation and energy saving requirements. From this standpoint the present work was undertaken to include proposed scheme (solar Fired Combined Reverse Osmosis (ROY Multi-Effect Distillation (MED) Seawater desalination Plant (SCDP) integrated with electrical power grid (EPG)) for repowering and modification of the conventional grid connected RO desalination plants. The model of SCDP during sunny periods may be applied to the following modes operation: *Full solar desalination (i.e. solar thermal and electrical power generation in solar plant is elivered to the desalination process and the surplus electricity is fed into EPG). *Hybrid solar desalination (I.e. a small share of the electrical power consumption for desalination process compensated by EPG). During cloudly periods and at night the SCDP operates as a conventional RO desalination plant. To establish the range, in which solar energy for seawater desalination would be competitive to fossil energy and investigates the potential effect of the proposed scheme on the repowering effectiveness, mathematical model has been developed. The repowered effectiveness, mathematical model has been developed.The repowered effectiveness in optaimizing model was characterized by the condition of attaining maximum fuel saving in the EPG. The study result shows the effectiveness of proposed scheme for modification and repowering the RO plant. For the case study. (SCDP with maual share of solar electrical power generation 67.4%) the economical effect amount 138.9 ton fuel/year for each MW design thermal energy of parabolic solar collectors array and the corresponding decrease in exhaust gases emission (Nitrogen oxides (NO x ) 0.55 ton/year.MW, carbon dioxides (CO2) 434.9 ton/year.MW). Moreover, implementation of combined RO/MED design for repowering and modification of conventional grid connected RO plant will

  17. Pilot plant production at Riso of LEU silicide fuel for the Danish reactor DR3

    International Nuclear Information System (INIS)

    Toft, P.; Borring, J.; Adolph, E.

    1988-01-01

    A pilot plant for fabricating LEU silicide fuel elements has been established at Riso National Laboratory. Three test elements for the Danish reactor DR3 have been fabricated, based on 19.88% enriched U 3 Si 2 powder that has been purchased elsewhere. The pilot plant has been set up and 3 test elements fabricated without any major difficulties

  18. A new economic feasibility approach for solar chimney power plant design

    International Nuclear Information System (INIS)

    Okoye, Chiemeka Onyeka; Solyalı, Oğuz; Taylan, Onur

    2016-01-01

    Highlights: • A two-stage economic feasibility approach is proposed for the SCPP design. • The optimal size of the SCPP is determined by solving a nonlinear optimization model. • Energy demand and stochasticity of solar radiation and temperature are considered. • The proposed approach is evaluated on locations in Nigeria. • The proposed approach is an effective decision-making tool for the SCPP design. - Abstract: Solar chimney power plants have been accepted as one of the promising technologies for solar energy utilization. The objective of this study is to propose an effective approach to simultaneously determine the optimal dimensions of the solar chimney power plant and the economic feasibility of the proposed plant. For this purpose, a two-stage economic feasibility approach is proposed based on a new nonlinear programming model. In the first stage, the proposed optimization model which determines the optimal plant dimensions that not only minimize the discounted total cost of the system, but also satisfy the energy demand within a specified reliability taking into account the stochasticity of solar radiation and ambient temperature is solved using a commercial optimization solver that guarantees finding the global optimum. In the second stage, the net present value of building the plant is computed by deducting the discounted total cost found in the first stage from the present value of revenues obtained due to selling the electricity generated by the plant. The proposed approach is novel because it determines the optimal dimensions of the plant together with its economic feasibility by taking into account the energy demand and uncertainty in solar radiation and ambient temperature. The proposed approach is applied on a study in Potiskum, Nigeria, which reveals that building a plant with a collector diameter of 1128 m and chimney height of 715 m to Potiskum would be profitable for investors at an annual rate of return of 3% and would provide

  19. Solar CPC Pilot Plant Photocatalytic Degradation of Indigo Carmine Dye in Waters and Wastewaters Using Supported-TiO2: Influence of Photodegradation Parameters

    Directory of Open Access Journals (Sweden)

    Enrico Mendes Saggioro

    2015-01-01

    Full Text Available The photocatalytic degradation of indigo carmine (IC dye in the presence of titanium dioxide under different conditions was reported. Several factors which interfere with the photodegradation efficiency as catalyst concentration, pH, initial concentration of dye, presence of inorganic anions, temperature, and the addition of hydrogen peroxide were studied under artificial irradiation with a 125 W mercury vapor lamp. Additionally, the catalyst supported on glass spheres was used for the photocatalytic degradation of the dye present in several types of waters in a CPC solar pilot plant. The photocatalytic products, carboxylic acids, and SO42- and NH4+ were followed during IC mineralization. Formate, acetate, and oxalate were detected in real MWWTP secondary effluent. The mineralization efficiency was of 42 and 21% using in suspension and supported TiO2, respectively. In order to evaluate biological effects, Eisenia andrei earthworms were used as a model organism. No significant difference (P>0.05 of weight was observed in the earthworm submitted to different concentrations of IC and its photoproducts. The photocatalytic degradation of IC on TiO2 supported on glass spheres suffered strong influence of the water matrix; nevertheless the method has the enormous advantage that it eliminates the need for the final catalyst removal step, reducing therefore the cost of treatment.

  20. Solar Photovoltaic Plant for the 'Eftimie Murgu' University of Resita

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2010-01-01

    Full Text Available The paper presents an application of a solar photovoltaic plant for the 'Eftimie Murgu' University, with an estimation of the yearly medium energy production. The substantiation of the plant designed is based on the many years measurements obtained in the laboratory for monitoring the solar photovoltaic energy of the university and the favorable conditions of promoting the energy production from renewable sources, assured in the new legislation.

  1. TASK 3: PILOT PLANT GASIFIER TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Fusselman, Steve

    2015-11-01

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. Design, fabrication and initial testing of the pilot plant compact gasifier was completed in 2011 by a development team led by AR. Findings from this initial test program, as well as subsequent gasifier design and pilot plant testing by AR, identified a number of technical aspects to address prior to advancing into a demonstration-scale gasifier design. Key among these were an evaluation of gasifier ability to handle thermal environments with highly reactive coals; ability to handle high ash content, high ash fusion temperature coals with reliable slag discharge; and to develop an understanding of residual properties pertaining to gasification kinetics as carbon conversion approaches 99%. The gasifier did demonstrate the ability to withstand the thermal environments of highly reactive Powder River Basin coal, while achieving high carbon conversion in < 0.15 seconds residence time. Continuous operation with the high ash fusion temperature Xinyuan coal was demonstrated in long duration testing, validating suitability of outlet design as well as downstream slag discharge systems. Surface area and porosity data were obtained for the Xinyuan and Xinjing coals for carbon conversion ranging from 85% to 97%, and showed a pronounced downward trend in surface area per unit mass carbon as conversion increased. Injector faceplate measurements showed no incremental loss of material over the course of these experiments, validating the commercially traceable design approach and supportive of long injector life goals. Hybrid testing of PRB and natural gas was successfully completed over a wide range of natural gas feed content, providing test data to anchor predictions

  2. Solar-powered Gossamer Penguin in flight

    Science.gov (United States)

    1979-01-01

    Gossamer Penguin in flight above Rogers Dry Lakebed at Edwards, California, showing the solar panel perpendicular to the wing and facing the sun. Background The first flight of a solar-powered aircraft took place on November 4, 1974, when the remotely controlled Sunrise II, designed by Robert J. Boucher of AstroFlight, Inc., flew following a launch from a catapult. Following this event, AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) took on a more ambitious project to design a human-piloted, solar-powered aircraft. The firm initially took the human-powered Gossamer Albatross II and scaled it down to three-quarters of its previous size for solar-powered flight with a human pilot controlling it. This was more easily done because in early 1980 the Gossamer Albatross had participated in a flight research program at NASA Dryden in a program conducted jointly by the Langley and Dryden research centers. Some of the flights were conducted using a small electric motor for power. Gossamer Penguin The scaled-down aircraft was designated the Gossamer Penguin. It had a 71-foot wingspan compared with the 96-foot span of the Gossamer Albatross. Weighing only 68 pounds without a pilot, it had a low power requirement and thus was an excellent test bed for solar power. AstroFlight, Inc., of Venice, Calif., provided the power plant for the Gossamer Penguin, an Astro-40 electric motor. Robert Boucher, designer of the Sunrise II, served as a key consultant for both this aircraft and the Solar Challenger. The power source for the initial flights of the Gossamer Penguin consisted of 28 nickel-cadmium batteries, replaced for the solar-powered flights by a panel of 3,920 solar cells capable of producing 541 Watts of power. The battery-powered flights took place at Shafter Airport near Bakersfield, Calif. Dr. Paul MacCready's son Marshall, who was 13 years old and weighed roughly 80 pounds, served as the initial pilot for these flights to

  3. Solar One demolition and remediation

    International Nuclear Information System (INIS)

    Wallace, G.L.

    1995-01-01

    Solar One was designed to demonstrate the feasibility of generating electrical energy from solar power using a central receiver concept. An array of heliostats focused sunlight onto a central receiver, which superheated water to produce steam. Although Solar One was successful, the oil-based Thermal Storage System (TSS), used to store heat energy for power generation at night, was not efficient. When the TSS was demolished for the installation of a more efficient molten salt system, a major effort was made to salvage or recycle all of its equipment and materials. During TSS demolition, approximately 7 tons of aluminum shielding and 205 tons of steel were salvaged as scrap metal; 200 tons of concrete was used for erosion protection along the Mohave River banks; 150,000 gallons of oil was recycled and 100 tons of equipment was salvaged for use at other facilities. During remediation, approximately 9,000 tons of oil contaminated sand, gravel and soil was recycled into approximately 10,000 tons of asphalt concrete and used to pave a nearby 5-acre parking lot at Barstow College. This not only reduced project remediation costs, but also met environmental requirements and provided a much needed community service. Of the estimated 11,864 tons of equipment and material from the TSS, less than 1% was disposed of at a landfill

  4. Aesthetic impact assessment of solar power plants. An objective and a subjective approach

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Sibille, Ana del Carmen; Cloquell-Ballester, Vicente-Agustin; Cloquell-Ballester, Victor-Andres; Artacho Ramirez, Miguel Angel [Dpto. Proyectos de Ingenieria, Valencia University of Technology, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-15

    Solar energy for the production of electric energy is one source of renewable energy which is experiencing most development in recent years. In countries with high solar radiation indices, as is the case of Spain, expectations of installation of large solar power plants are increasing. Most solar power plants are located in rural environments, where the landscape has remained practically unaltered ever since extensive agriculture was introduced. Because of this, one of the most significant environmental impacts of this type of installation is the visual impact derived from the alteration of the landscape. In this work, an indicator is proposed for the quantification of the objective aesthetic impact, based on four criteria: visibility, colour, fractality and concurrence between fixed and mobile panels. The relative importance of each variable and the corresponding value functions are calculated using expert contribution. A study of the subjective aesthetic impact is then carried out using the semantic differential method, to obtain the perception of a sample of individuals of the initial landscapes and of the landscapes altered through the installation of a solar power plant. The indicator and the study of public perception are applied to five real solar power plants, to test their reliability. Subsequently, a different group of individuals is used to determine preferences between the five solar power plants. The study proves that the combined use of objective indicator and subjective study, faithfully explains user preferences corresponding to the combined comparisons of the five cases. It is concluded that the tools proposed for the evaluation of the aesthetic impact of solar power plants are useful for the selection of optimal plant location and most adequate use of panel technology, to minimise aesthetic impact. (author)

  5. Time scaling internal state predictive control of a solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.N. [DEE-FCT/UNL, Caparica (Portugal); Rato, L.M. [INESC-ID/University, Evora (Portugal); Lemos, J.M. [INESC-ID/IST, Lisboa (Portugal)

    2003-12-01

    The control of a distributed collector solar field is addressed in this work, exploiting the plant's transport characteristic. The plant is modeled by a hyperbolic type partial differential equation (PDE) where the transport speed is the manipulated flow, i.e. the controller output. The model has an external distributed source, which is the solar radiation captured along the collector, approximated to depend only of time. From the solution of the PDE, a linear discrete state space model is obtained by using time-scaling and the redefinition of the control input. This method allows overcoming the dependency of the time constants with the operating point. A model-based predictive adaptive controller is derived with the internal temperature distribution estimated with a state observer. Experimental results at the solar power plant are presented, illustrating the advantages of the approach under consideration. (author)

  6. MBR pilot plant for textile wastewater treatment and reuse.

    Science.gov (United States)

    Lubello, C; Caffaz, S; Mangini, L; Santianni, D; Caretti, C

    2007-01-01

    An experimental study was carried out in order to evaluate the possibility of upgrading the conventional activated sludge WWTP of Seano (Prato, Italy) which treats municipal and textile wastewaters, by using membrane bioreactor (MBR) technology. The MBR pilot plant, set up within Seano WWTP, was fed with mixed municipal-industrial wastewaters during the first experimental period and with pure industrial wastewaters during the second. Performances and operation of the MBR were evaluated in terms of permeate characteristics and variability (COD, colour, surfactants, total N and P) and other operational parameters (sludge growth and observed yield). According to the experimental results the MBR permeate quality was always superior to the Seano WWTP one and it was suitable for industrial reuse in the textile district of the Prato area. Respirometric tests provided a modified IWA ASM1 model which fits very well the experimental data and can be used for the design and the monitoring of a full-scale MBR pilot plant.

  7. Numerical simulation of the integrated solar/North Benghazi combined power plant

    International Nuclear Information System (INIS)

    Aldali, Y.; Morad, K.

    2016-01-01

    Highlights: • The thermodynamic and economic evaluation of power plant have been studied. • Saving and boosting modes are considered as the same solar field area. • Two modes of operation have been used and simulated on Libyan climate conditions. • The benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode. • Fuel saving mode is more economical than power boosting mode. - Abstract: The aim of this paper is to study the thermodynamic performance of a proposed integrated solar/North Benghazi combined power plant under Libyan climatic conditions. The parabolic trough collector field with direct steam generation was considered as solar system. Two modes of operations with the same solar field area are considered: fuel saving mode in which the generated solar steam was used to preheat the combustion air in the gas turbine unit and power boosting mode in which the generated solar steam was added into the steam turbine for boosting the electrical power generated from steam turbine unit. Moreover, the economic impact of solar energy is assessed in the form of benefit/cost ratio to justify the substitution potential of such clean energy. This study shows that, for fuel saving mode: the annual saving of natural gas consumption and CO_2 emission are approximately 3001.56 and 7972.25 tons, respectively, in comparison with the conventional North Benghazi combined cycle power plant. For power boosting mode: the annual solar share of electrical energy is approximately 93.33 GW h. The economic analysis of solar supported plant has indicated that the benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode, therefore, then fuel saving mode is more economical than power boosting mode for the same solar field area, moreover, it reduces the greenhouse CO_2 emission in order to avoid a collapse of the word climate.

  8. The design of a continuous ion-exchange pilot plant for the recovery of uranium from partially clarified solutions

    International Nuclear Information System (INIS)

    Cloete, F.L.D.

    1980-01-01

    A preliminary design is given for a pilot plant to recover uranium from partially clarified slime pulp by continuous ion exchange. Process and plant-design methods are indicated briefly, and an outline is given of experimental work that should be undertaken before the start-up of the pilot plant

  9. Producing drinking water with the aid of waste heat or solar energy

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A method developed in Finland for the production of drinking water is described. The energy required comes either from the waste heat of nuclear power plants or from solar installations. The method has been tested in a pilot plant with an output of 120 m/sup 3/ drinking water per day. The construction of plants with an output of 500 m/sup 3/ per day is still in the planning stage.

  10. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L. [Rocky Mountain Peace Center, Boulder, CO (United States)

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  11. Model validation of solar PV plant with hybrid data dynamic simulation based on fast-responding generator method

    Directory of Open Access Journals (Sweden)

    Zhao Dawei

    2016-01-01

    Full Text Available In recent years, a significant number of large-scale solar photovoltaic (PV plants have been put into operation or been under planning around the world. The model accuracy of solar PV plant is the key factor to investigate the mutual influences between solar PV plants and a power grid. However, this problem has not been well solved, especially in how to apply the real measurements to validate the models of the solar PV plants. Taking fast-responding generator method as an example, this paper presents a model validation methodology for solar PV plant via the hybrid data dynamic simulation. First, the implementation scheme of hybrid data dynamic simulation suitable for DIgSILENT PowerFactory software is proposed, and then an analysis model of solar PV plant integration based on IEEE 9 system is established. At last, model validation of solar PV plant is achieved by employing hybrid data dynamic simulation. The results illustrate the effectiveness of the proposed method in solar PV plant model validation.

  12. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    Science.gov (United States)

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  13. Design and simulation of a geothermal–solar combined chimney power plant

    International Nuclear Information System (INIS)

    Cao, Fei; Li, Huashan; Ma, Qiuming; Zhao, Liang

    2014-01-01

    Highlights: • A geothermal–solar chimney power plant (GSCPP) is designed and analyzed. • Three different models, viz. full solar model, full geothermal model and geothermal–solar mode are compared. • Power generation under GSM is larger than the sum of FSM and FGM. • GSCPP can effectively solve the continuous operation problem of the SCPP. - Abstract: The solar chimney power plant (SCPP) is dominated by the solar radiation, and therefore its discontinuous operation is an unavoidable problem. In this paper, low temperature geothermal water is introduced into the SCPP for overcoming this problem. Based on a developed transient model, theoretical analyses are carried out to investigate the performance of the geothermal–solar chimney power plant (GSCPP) with main dimensions the same as the Manzanares prototype in Spain. Three operation models, viz. the full solar model, the full geothermal model and the geothermal–solar combined model are compared in typical summer and winter days and throughout the year. It is found that the GSCPP can attractively run in the GSM to deliver power continuously. Due to the ambient-dependant geothermal water outlet temperature, introducing the geothermal water makes greater contribution in winter days than in summer days, in the night than in the daytime. Power generation under GSM is larger than the sum of FSM and FGM. GSM is not the simple superposition of FSM and FGM, but makes better utilization of solar and geothermal energy. In addition, introducing high temperature and mass flow rate geothermal water can doubled and redoubled improve the GSCPP’s power capacity

  14. Experimental investigation of the chemical looping method on a 1 MW pilot plant

    International Nuclear Information System (INIS)

    Orth, Matthias

    2014-01-01

    Attempting to counteract the consequences of climate change, leading industrial nations have agreed on reducing their CO 2 emissions significantly. To reach these reduction goals, it is essential to reduce the CO 2 emissions in the field of energy conversion. This PHD thesis covers the field of chemical looping combustion, a technology that uses fossil fuels for energy conversion with inherent capture of CO 2 . Since the research regarding chemical looping had so far focused mainly on lab scale or small scale experiments, a 1 MW pilot plant has been erected at Technische Universitaet Darmstadt in order to investigate the process in a semi-industrial scale and to check the process efficiency with commercially usable equipment. This pilot consists of two interconnected fluidized bed reactors and has an overall height of more than 11 m. In this thesis, some experiments with ilmenite - used as the oxygen carrier - are explained. Furthermore, the design, erection and commissioning of the pilot plant are presented as well as the results of the first test campaigns. The evaluation of the latter proves that the process can be handled in the design configuration and that CO 2 can be safely captured in a pilot plant of this scale.

  15. Thermoeconomic optimization of a combined-cycle solar tower power plant

    International Nuclear Information System (INIS)

    Spelling, James; Favrat, Daniel; Martin, Andrew; Augsburger, Germain

    2012-01-01

    A dynamic model of a pure-solar combined-cycle power plant has been developed in order to allow determination of the thermodynamic and economic performance of the plant for a variety of operating conditions and superstructure layouts. The model was then used for multi-objective thermoeconomic optimization of both the power plant performance and cost, using a population-based evolutionary algorithm. In order to examine the trade-offs that must be made, two conflicting objectives will be considered, namely minimal investment costs and minimal levelized electricity costs. It was shown that efficiencies in the region of 18–24% can be achieved, and this for levelized electricity costs in the region of 12–24 UScts/kWh e , depending on the magnitude of the initial investment, making the system competitive with current solar thermal technology. -- Highlights: ► Pure-solar combined-cycle studied using thermoeconomic tools. ► Multi-objective optimization conducted to determine Pareto-optimal power plant designs. ► Levelised costs between 12 and 24 UScts/kWhe predicted. ► Efficiencies between 18 and 24% predicted.

  16. General Atomic reprocessing pilot plant: description and results of initial testing

    International Nuclear Information System (INIS)

    1977-12-01

    In June 1976 General Atomic completed the construction of a reprocessing head-end cold pilot plant. In the year since then, each system within the head end has been used for experiments which have qualified the designs. This report describes the equipment in the plant and summarizes the results of the initial phase of reprocessing testing

  17. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    International Nuclear Information System (INIS)

    Cohen, Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-01-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O ampersand M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O ampersand M Improvement Program. O ampersand M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O ampersand M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O ampersand M costs was achieved. Based on the lessons learned, an optimum solar- field O ampersand M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O ampersand M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts

  18. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  19. Fiscal 1974 Sunshine Project result report. R and D on solar heat power generation system (R and D on tower solar collection system); 1974 nendo taiyonetsu hatsuden system no kenkyu kaihatsu seika hokokusho. Tower shuko hoshiki system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-29

    This report summarizes the fiscal 1974 research result on the solar heat power generation system with a tower light collection system. This system receives solar radiation energy by reflector group, and concentrates solar energy reflected by each reflector on the heat absorber mounted on the top of the tower. A ratio of the whole reflector group area to the receiving area of the heat absorber is called a concentration factor. The heat absorber converts concentrated dense radiation energy to thermal energy, and transfers heated thermal medium to the bottom of the tower to supply solar heat to a thermal plant after appropriate treatment. Based on the above basic idea, study was made on the total system and each subsystem, and some problems on component equipment and materials were extracted. After solving these problems and improving the whole system accuracy, these results are put to practical use for design and operation of an actual pilot plant. The main research items are as follows: feasibility study, simulation, element study, preparation of a 10kWT test equipment, and planning of a 1,000kW class pilot plant. (NEDO)

  20. A novel small dynamic solar thermal desalination plant with a fluid piston converter

    International Nuclear Information System (INIS)

    Mahkamov, Khamid; Orda, Eugene; Belgasim, Basim; Makhkamova, Irina

    2015-01-01

    Highlights: • A dynamic solar desalination plant was developed which works cyclically. • It integrates an evacuated tube solar collector and fluid piston converter. • Pressure during desalination process varies with frequency of 2–4 Hz. • The system has a small increase in fresh water yield and provides pumping capacity. • Mathematical modelling provides accurate description of experimental performance. - Abstract: An innovative small dynamic water desalination plant was developed and tested under laboratory conditions. The system is a combination of a heat pipe evacuated tube solar collector, conventional condenser and novel fluid piston converter. Saline water is boiled and turned into vapour in the manifold of the solar collector. A small fraction of the solar energy supplied to the plant is used to drive the fluid piston converter. Oscillations of the fluid piston periodically change the volume and pressure in the plant. For the duration of approximately half of the periodic cycle the pressure in the plant drops below the atmospheric level causing flash boiling of saline water in the manifold of the solar collector. Generated vapour is turned into fresh water in the condenser which is surrounded by a cooling jacket with saline water. The flash boiling effect improves the fresh water production capacity of the plant. Additionally, the fluid piston converter drives a pump which provides lifting of saline water from a well and pumps this through the cooling jacket of the condenser to a saline water storage tank. This tank replenishes saline water in the manifold of the solar collector. Experimental investigations demonstrated the saline water self-circulation capability of the plant and increase in the fresh water production compared to the static mode of operation. Experimental data was also used to calibrate the mathematical model of the plant. Comparison of theoretical and experimental information demonstrates that the model accurately predicts the

  1. Performance and Simulation of a Stand-alone Parabolic Trough Solar Thermal Power Plant

    Science.gov (United States)

    Mohammad, S. T.; Al-Kayiem, H. H.; Assadi, M. K.; Gilani, S. I. U. H.; Khlief, A. K.

    2018-05-01

    In this paper, a Simulink® Thermolib Model has been established for simulation performance evaluation of Stand-alone Parabolic Trough Solar Thermal Power Plant in Universiti Teknologi PETRONAS, Malaysia. This paper proposes a design of 1.2 kW parabolic trough power plant. The model is capable to predict temperatures at any system outlet in the plant, as well as the power output produced. The conditions that are taken into account as input to the model are: local solar radiation and ambient temperatures, which have been measured during the year. Other parameters that have been input to the model are the collector’s sizes, location in terms of latitude and altitude. Lastly, the results are presented in graphical manner to describe the analysed variations of various outputs of the solar fields obtained, and help to predict the performance of the plant. The developed model allows an initial evaluation of the viability and technical feasibility of any similar solar thermal power plant.

  2. Rock mechanics activities at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Francke, C.; Saeb, S.

    1996-01-01

    The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed

  3. A three-dimensional model of solar radiation transfer in a non-uniform plant canopy

    Science.gov (United States)

    Levashova, N. T.; Mukhartova, Yu V.

    2018-01-01

    A three-dimensional (3D) model of solar radiation transfer in a non-uniform plant canopy was developed. It is based on radiative transfer equations and a so-called turbid medium assumption. The model takes into account the multiple scattering contributions of plant elements in radiation fluxes. These enable more accurate descriptions of plant canopy reflectance and transmission in different spectral bands. The model was applied to assess the effects of plant canopy heterogeneity on solar radiation transmission and to quantify the difference in a radiation transfer between photosynthetically active radiation PAR (=0.39-0.72 μm) and near infrared solar radiation NIR (Δλ = 0.72-3.00 μm). Comparisons of the radiative transfer fluxes simulated by the 3D model within a plant canopy consisted of sparsely planted fruit trees (plant area index, PAI - 0.96 m2 m-2) with radiation fluxes simulated by a one-dimensional (1D) approach, assumed horizontal homogeneity of plant and leaf area distributions, showed that, for sunny weather conditions with a high solar elevation angle, an application of a simplified 1D approach can result in an underestimation of transmitted solar radiation by about 22% for PAR, and by about 26% for NIR.

  4. The performance of a Solar Aided Power Generation plant with diverse “configuration-operation” combinations

    International Nuclear Information System (INIS)

    Qin, Jiyun; Hu, Eric; Nathan, Graham J.

    2016-01-01

    Highlights: • Four configurations of solar preheaters have been proposed. • Three typical operation strategies of solar preheaters have been identified. • 12 “configuration-operation” combinations has been proposed. • There are superior combinations to achieve the highest solar thermal performance. - Abstract: Solar Aided Power Generation is an efficient way to integrate solar thermal energy into a fossil fuel fired power plant for solar power generation purposes. In this particular power plant, the solar heat is used to displace the extraction steam to preheat the feedwater to the boiler. The heat exchanger, which facilitates the heat exchange between the solar heat carried by the heat transfer fluid and the feedwater, is termed a solar preheater. Four possible configurations of the solar preheater, namely Parallel 1, Parallel 2, Series 1 and Series 2, are proposed in this paper. In this type of plant, the extraction steam flow rates must be adjusted according to the solar input. The ways to control the extraction steam flow rates are termed solar preheater operation strategies. Three typical strategies: the Constant Temperature control, Variable Temperature control with high to low temperature feedwater heater displacement and Variable Temperature control with low to high temperature feedwater heater displacement have been identified. Each configuration can be operated with one of the three strategies, resulting in twelve “configuration-operation” combinations/scenarios (shown in Table 1). Previous assessments and modelling of such a plant have only been based on a single combination. In this paper, a Solar Aided Power Generation plant, modified from a typical 300 MW power plant, is used to understand the plant’s performance for all twelve of the available combinations. The results show that the instantaneous and annual technical performances of such a plant are dependent on the combinations used. The scenario 10 (Table 1) is superior to the

  5. Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile

    International Nuclear Information System (INIS)

    Cardemil, José Miguel; Cortés, Felipe; Díaz, Andrés; Escobar, Rodrigo

    2016-01-01

    Highlights: • Thermodynamic evaluation of geothermal-solar hybrid systems. • A multi-parameter analysis for different cycle configurations. • Performance comparison between two operation modes. • Overview of the technical applicability of the hybridization. - Abstract: A thermodynamic model was developed using Engineering Equation Solver (EES) to evaluate the performance of single and double-flash geothermal power plants assisted by a parabolic trough solar concentrating collector field, considering four different geothermal reservoir conditions. The benefits of delivering solar thermal energy for either the superheating or evaporating processes were analyzed in order to achieve the maximum 2"n"d law efficiency for the hybrid schemes and reduce the geothermal resource consumption for a constant power production. The results of the hybrid single-flash demonstrate that the superheating process generates additional 0.23 kWe/kWth, while supplying solar heat to evaporate the geothermal brine only delivers 0.16 kWe/kWth. The double-flash hybrid plant simulation results allow obtaining 0.29 kWe/kWth and 0.17 kW/kWth by integrating solar energy at the superheater and evaporator, respectively. In this context, the hybrid single-flash power plant is able to produce at least 20% additional power output, depending on the characteristics of the geothermal resource. Moreover, all of the cases analyzed herein increased the exergy efficiency of the process by at least 3%. The developed model also allowed assessing the reduction on the consumption of the geothermal fluid from the reservoir when the plant power output stays constant, up to 16% for the hybrid single-flash, and 19% for the hybrid double-flash. Based on the results obtained in this study, the solar-geothermal hybrid scheme increases the power generation compared with geothermal-only power plants, being an attractive solution for improved management of the geothermal reservoir depletion rates. The study shows

  6. Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy

    Directory of Open Access Journals (Sweden)

    Barbara Mendecka

    2018-03-01

    Full Text Available Hybridization of Waste to Energy (WtE plants with solar facilities can take competing energy technologies and make them complementary. However, realizing the benefits of the solar integration requires careful consideration of its efficiency. To analyse such systems from the point of view of resource efficiency, the pure energy analysis is not sufficient since the quality of particular energy carriers is not evaluated. This work applies the exergo-ecological analysis using the concepts of thermoecological cost (TEC and exergy cost for the performance evaluation of an integrated Solar-Waste to Energy plant scheme, where solar energy is used for steam superheating. Different plant layouts, considering several design steam parameters as well as different solar system configurations, in terms of area of heliostats and size of the thermal storage tank, were studied. The results for the solar integrated plant scheme were compared with the scenarios where superheating is performed fully by a non-renewable energy source. The presented results of exergy cost analysis indicate that the most favorable system is the one supported by non-renewable energy. Such an analysis does not consider the advantage of the use of renewable energy sources. By extending the system boundary to the level of natural resource and applying the thermoecological cost analysis, an opposite result was obtained.

  7. Optimised heat recovery steam generators for integrated solar combined cycle plants

    Science.gov (United States)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  8. Performance and Model Calibration of R-D-N Processes in Pilot Plant

    DEFF Research Database (Denmark)

    de la Sota, A.; Larrea, L.; Novak, L.

    1994-01-01

    This paper deals with the first part of an experimental programme in a pilot plant configured for advanced biological nutrient removal processes treating domestic wastewater of Bilbao. The IAWPRC Model No.1 was calibrated in order to optimize the design of the full-scale plant. In this first phas...

  9. Experiences with publicly promoted solar plants in Munich, the capital of Bavaria

    International Nuclear Information System (INIS)

    Schmalschlaeger, T.; Sammueller, K.

    1994-01-01

    The purpose of the present study was to prepare, execute, and evaluate a poll among all the operators of solar heating plants promoted by the 'Foerderprogramm Energieeinsparung der Landeshauptstadt Muenchen' (Energy Conservation Promotion Programme for Munich). In the period from 1989 to April 1992 grants of upto 30% of investment costs were accorded by the city administration of Munich for solar heating plants and the technical energy conserving measures, notably high-efficiency boilers and some photovoltaic plants. The principal upper limit for grants was 25,000 DM per one or two-family house plus another 4.000 DM in certain borderline cases. Until early 1992 more than 350 households had made use of the grants offered by the Munich administration through this programme to finance thir solar heating plant. (orig.) [de

  10. Particle collection by a pilot plant venturi scrubber downstream from a pilot plant electrostatic precipitator

    Science.gov (United States)

    Sparks, L. E.; Ramsey, G. H.; Daniel, B. E.

    The results of pilot plant experiments of particulate collection by a venturi scrubber downstream from an electrostatic precipitator (ESP) are presented. The data, which cover a range of scrubber operating conditions and ESP efficiencies, show that particle collection by the venturi scrubber is not affected by the upstream ESP; i.e., for a given scrubber pressure drop, particle collection efficiency as a function of particle diameter is the same for both ESP on and ESP off. The experimental results are in excellent agreement with theoretical predictions. Order of magnitude cost estimates indicate that particle collection by ESP scrubber systems may be economically attractive when scrubbers must be used for SO x control.

  11. Experimental results: Pilot plant calcine dissolution and liquid feed stability

    International Nuclear Information System (INIS)

    Herbst, R.S.; Fryer, D.S.; Brewer, K.N.; Johnson, C.K.; Todd, T.A.

    1995-02-01

    The dissolution of simulated Idaho Chemical Processing Plant pilot plant calcines, containing none of the radioactive actinides, lanthanides or fission products, was examined to evaluate the solubility of calcine matrix materials in acidic media. This study was a necessary precursor to dissolution and optimization experiments with actual radionuclide-containing calcines. The importance of temperature, nitric acid concentration, ratio of acid volume to calcine mass, and time on the amount, as a weight percentage of calcine dissolved, was evaluated. These parameters were studied for several representative pilot plant calcine types: (1) Run No. 74 Zirconia calcine; (2) Run No. 17 Zirconia/Sodium calcine; (3) Run No. 64 Zirconia/Sodium calcine; (3) Run No. 1027 Alumina calcine; and (4) Run No. 20 Alumina/Zirconia/Sodium calcine. Statistically designed experiments with the different pilot plant calcines indicated the effect of the studied process variables on the amount of calcine dissolved decreases in the order: Acid/Calcine Ratio > Temperature > HNO 3 Concentration > Dissolution Time. The following conditions are suitable to achieve greater than 90 wt. % dissolution of most Zr, Al, or Na blend calcines: (1) Maximum nitric acid concentration of 5M; (2) Minimum acid/calcine ratio of 10 mL acid/1 gram calcine; (3) Minimum dissolution temperature of 90 degrees C; and (4) Minimum dissolution time of 30 minutes. The formation of calcium sulphate (CaSO 4 ) precipitates was observed in certain dissolved calcine solutions during the dissolution experiments. Consequently, a study was initiated to evaluate if and under what conditions the resulting dissolved calcine solutions would be unstable with regards to precipitate formation. The results indicate that precipitate formation in the calcine solutions prepared under the above proposed dissolution conditions are not anticipated

  12. DU-AGG pilot plant design study

    International Nuclear Information System (INIS)

    Lessing, P.A.; Gillman, H.

    1996-07-01

    The Idaho National Engineering Laboratory (INEL) is developing new methods to produce high-density aggregate (artificial rock) primarily consisting of depleted uranium oxide. The objective is to develop a low-cost method whereby uranium oxide powder (UO[sub 2], U[sub 3]O[sub ]8, or UO[sub 3]) can be processed to produce high-density aggregate pieces (DU-AGG) having physical properties suitable for disposal in low-level radioactive disposal facilities or for use as a component of high-density concrete used as shielding for radioactive materials. A commercial company, G-M Systems, conducted a design study for a manufacturing pilot plant to process DU-AGG. The results of that study are included and summarized in this report. Also explained are design considerations, equipment capacities, the equipment list, system operation, layout of equipment in the plant, cost estimates, and the proposed plan and schedule

  13. Process control of an HTGR fuel reprocessing cold pilot plant

    International Nuclear Information System (INIS)

    Rode, J.S.

    1976-10-01

    Development of engineering-scale systems for a large-scale HTGR fuel reprocessing demonstration facility is currently underway in a cold pilot plant. These systems include two fluidized-bed burners, which remove the graphite (carbon) matrix from the crushed HTGR fuel by high temperature (900 0 C) oxidation. The burners are controlled by a digital process controller with an all analog input/output interface which has been in use since March, 1976. The advantages of such a control system to a pilot plant operation can be summarized as follows: (1) Control loop functions and configurations can be changed easily; (2) control constants, alarm limits, output limits, and scaling constants can be changed easily; (3) calculation of data and/or interface with a computerized information retrieval system during operation are available; (4) diagnosis of process control problems is facilitated; and (5) control panel/room space is saved

  14. Numerical evaluation of the Kalina cycle for concentrating solar power plants

    DEFF Research Database (Denmark)

    Modi, Anish

    Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. One of the key challenges currently faced by the solar industry is the high cost of electricity production. These co...

  15. Research, development and pilot production of high output thin silicon solar cells

    Science.gov (United States)

    Iles, P. A.

    1976-01-01

    Work was performed to define and apply processes which could lead to high output from thin (2-8 mils) silicon solar cells. The overall problems are outlined, and two satisfactory process sequences were developed. These sequences led to good output cells in the thickness range to just below 4 mils; although the initial contract scope was reduced, one of these sequences proved capable of operating beyond a pilot line level, to yield good quality 4-6 mil cells of high output.

  16. Sunglass Filter Transmission and Its Operational Effect in Solar Protection for Civilian Pilots.

    Science.gov (United States)

    Chorley, Adrian C; Lyachev, Andrey; Higlett, Michael P; Khazova, Marina; Benwell, Martin J; Evans, Bruce J W

    2016-05-01

    The ocular effects of excess solar radiation exposure are well documented. Recent evidence suggests that ocular ultraviolet radiation (UVR) exposure to professional pilots may fall outside international guideline limits unless eye protection is used. Nonprescription sunglasses should be manufactured to meet either international or national standards. The mean increase in UVR and blue light hazards at altitude has been quantified and the aim of this research was to assess the effectiveness of typical pilot sunglasses in reducing UVR and blue light hazard exposure in flight. A series of sunglass filter transmittance measurements were taken from personal sunglasses (N = 20) used by pilots together with a series of new sunglasses (N = 18). All nonprescription sunglasses measured conformed to international standards for UVR transmittance and offered sufficient UVR protection for pilots. There was no difference between right and left lenses or between new and used sunglasses. All sunglasses offered sufficient attenuation to counter the mean increase in blue light exposure that pilots experience at altitude, although used sunglasses with scratched lenses were marginally less effective. One pair of prescription sunglasses offered insufficient UVR attenuation for some flights, but would have met requirements of international and national standards for UV-A transmittance. This was likely due to insufficient UVR blocking properties of the lens material. Lenses manufactured to minimally comply with standards for UVR transmittance could result in excess UVR exposure to a pilot based on in-flight irradiance data; an additional requirement of less than 10% transmittance at 380 nm is recommended.

  17. Pressurized fluidized bed combustion combined cycle power plant with coal gasification: Second generation pilot plant

    International Nuclear Information System (INIS)

    Farina, G.L.; Bressan, L.

    1991-01-01

    This paper presents the technical and economical background of a research and development program of a novel power generation scheme, which is based on coal gasification, pressurized fluid bed combustion and combined cycles. The participants in this program are: Foster Wheeler (project leader), Westinghouse, IGT and the USA Dept. of Energy. The paper describes the characteristics of the plant, the research program in course of implementation, the components of the pilot plant and the first results obtained

  18. Sequential Design of Experiments to Maximize Learning from Carbon Capture Pilot Plant Testing

    Energy Technology Data Exchange (ETDEWEB)

    Soepyan, Frits B.; Morgan, Joshua C.; Omell, Benjamin P.; Zamarripa-Perez, Miguel A.; Matuszewski, Michael S.; Miller, David C.

    2018-02-06

    Pilot plant test campaigns can be expensive and time-consuming. Therefore, it is of interest to maximize the amount of learning and the efficiency of the test campaign given the limited number of experiments that can be conducted. This work investigates the use of sequential design of experiments (SDOE) to overcome these challenges by demonstrating its usefulness for a recent solvent-based CO2 capture plant test campaign. Unlike traditional design of experiments methods, SDOE regularly uses information from ongoing experiments to determine the optimum locations in the design space for subsequent runs within the same experiment. However, there are challenges that need to be addressed, including reducing the high computational burden to efficiently update the model, and the need to incorporate the methodology into a computational tool. We address these challenges by applying SDOE in combination with a software tool, the Framework for Optimization, Quantification of Uncertainty and Surrogates (FOQUS) (Miller et al., 2014a, 2016, 2017). The results of applying SDOE on a pilot plant test campaign for CO2 capture suggests that relative to traditional design of experiments methods, SDOE can more effectively reduce the uncertainty of the model, thus decreasing technical risk. Future work includes integrating SDOE into FOQUS and using SDOE to support additional large-scale pilot plant test campaigns.

  19. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and

  20. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-01-01

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse

  1. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no

  2. Technical and economic analysis of integrating low-medium temperature solar energy into power plant

    International Nuclear Information System (INIS)

    Wang, Fu; Li, Hailong; Zhao, Jun; Deng, Shuai; Yan, Jinyue

    2016-01-01

    Highlights: • Seven configurations were studied regarding the integration of solar thermal energy. • Economic analysis was conducted on new built plants and retrofitted power plants. • Using solar thermal energy to preheat high pressure feedwater shows the best performance. - Abstract: In order to mitigate CO_2 emission and improve the efficiency of the utilization of solar thermal energy (STE), solar thermal energy is proposed to be integrated into a power plant. In this paper, seven configurations were studied regarding the integration of STE. A 300 MWe subcritical coal-fired plant was selected as the reference, chemical absorption using monoethanolamine solvent was employed for CO_2 ​capture, and parabolic trough collectors and evacuated tube collectors were used for STE collection. Both technical analysis and economic evaluation were conducted. Results show that integrating solar energy with post-combustion CO_2​ capture can effectively increase power generation and reduce the electrical efficiency penalty caused by CO_2 capture. Among the different configurations, Config-2 and Config-6, which use medium temperature STE to replace high pressure feedwater without and with CO_2 capture, show the highest net incremental solar efficiency. When building new plants, integrating solar energy can effectively reduce the levelized cost of electricity (LCOE). The lowest LCOE, 99.28 USD/MWh, results from Config-6, with a parabolic trough collector price of 185 USD/m"2. When retrofitting existing power plants, Config-6 also shows the highest net present value (NPV), while Config-2 has the shortest payback time at a carbon tax of 50 USD/ton CO_2. In addition, both LCOE and NPV/payback time are clearly affected by the relative solar load fraction, the price of solar thermal collectors and the carbon tax. Comparatively, the carbon tax can affect the configurations with CO_2 capture more clearly than those without CO_2 capture.

  3. Costs of Residential Solar PV Plants in Distribution Grid Networks

    DEFF Research Database (Denmark)

    Kjær, Søren Bækhøj; Yang, Guangya; Ipsen, Hans Henrik

    2015-01-01

    In this article we investigate the impact of residential solar PV plants on energy losses in distribution networks and their impact on distribution transformers lifetime. Current guidelines in Denmark states that distribution transformers should not be loaded with more than 67% solar PV power...

  4. Decontamination and decommissioning of the EBR-I complex. Topical report No. 3. NAK disposal pilot plant test

    International Nuclear Information System (INIS)

    Commander, J.C.; Lewis, L.; Hammer, R.

    1975-06-01

    Decontamination and decommissioning of the Experimental Breeder Reactor No. 1 (EBR-I) requires processing of the primary coolant, an eutectic solution of sodium and potassium (NaK), remaining in the EBR-I primary and secondary coolant systems. While developing design criteria for the NaK processing system, reasonable justification was provided for the development of a pilot test plant for field testing some of the process concepts and proposed hardware. The objective of this activity was to prove the process concept on a low-cost, small-scale test bed. The pilot test plant criteria provided a general description of the test including: the purpose, location, description of test equipment available, waste disposal requirements, and a flow diagram and conceptual equipment layout. The pilot plant test operations procedure provided a detailed step-by-step procedure for operation of the pilot plant to obtain the desired test data and operational experience. It also spelled out the safety precautions to be used by operating personnel, including the requirement for alkali metals training certification, use of protective clothing, availability of fire protection equipment, and caustic handling procedures. The pilot plant test was performed on May 16, 1974. During the test, 32.5 gallons or 240 lb of NaK was successfully converted to caustic by reaction with water in a caustic solution. (auth)

  5. Reports on 1979 result of Sunshine Project. Investigation and research on solar energy utilization system (solar thermal power generation system); 1979 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyonetsu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    An investigation and research were conducted on the operation method of various solar thermal power generation systems and on the evaluation of the rating and cost performance; in the environmental test method for the equipment, the examination was continued for the test method and evaluation method concerning the absorbing surface and transmitting film; in the heat storing technology, an investigative research was done on the optimum heat storing method and energy conversion method suitable for the operation of the thermal power generation system, as well as performing, as an objective, a computer simulation on the total system with the purpose of clarifying the heat storing capacity. The results in the year were as follows. The operation method for solar thermal power generation was examined, as were the energy analysis, evaluation method of 1 MW pilot plant, the optimum utilization system of solar energy in the long run including its application, and technological economical problems to be solved for the next large solar thermal power generating plant. A discussion was carried out on the endurance test of the selective absorbing surface and transmitting film and on the durability of the reflection mirror. Evaluation and examination were made on the various materials of the 1 MW pilot plant. A review was done on various heat accumulating devices for solar thermal generation, mathematical thermal characteristics of heat accumulating devices, and future energy storing methods and problems. (NEDO)

  6. Development of some operations in technological flowsheet for spent VVER fuel reprocessing at a pilot plant

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Galkin, B.Ya; Lyubtsev, R.I.; Romanovskii, V.N.; Velikhov, E.P.

    1981-01-01

    The fuel reprocessing pilot plants for high active materials would permit the study and development or particular processing steps and flowsheet variations; in some cases, these experimental installations realize on a small scale practically all technological chains of large reprocessing plants. Such a fuel reprocessing pilot plant with capacity of 3 kg U/d has been built at V. G. Khlopin Radium Institute. The pilot plant is installed in the hot cell of radiochemical compartment, and is composed of the equipments for fuel element cutting and dissolving, the preparation of feed solution (clarification, correction), extraction reprocessing and the production of uranium, plutonium and neptunium concentrates, the complex processing of liquid and solid wastes and a special unit for gas purification and analysis. In the last few years, a series of experiments have been carried out on the reprocessing of spent VVER fuel. (J.P.N.)

  7. Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant

  8. Phototropic solar tracking in sunflower plants: an integrative perspective

    Science.gov (United States)

    Kutschera, Ulrich; Briggs, Winslow R.

    2016-01-01

    Background One of the best-known plant movements, phototropic solar tracking in sunflower (Helianthus annuus), has not yet been fully characterized. Two questions are still a matter of debate. (1) Is the adaptive significance solely an optimization of photosynthesis via the exposure of the leaves to the sun? (2) Is shade avoidance involved in this process? In this study, these concepts are discussed from a historical perspective and novel insights are provided. Scope and Methods Results from the primary literature on heliotropic growth movements led to the conclusion that these responses cease before anthesis, so that the flowering heads point to the East. Based on observations on 10-week-old plants, the diurnal East–West oscillations of the upper fifth of the growing stem and leaves in relation to the position of the sun (inclusive of nocturnal re-orientation) were documented, and photon fluence rates on the leaf surfaces on clear, cloudy and rainy days were determined. In addition, the light–response curve of net CO2 assimilation was determined on the upper leaves of the same batch of plants, and evidence for the occurrence of shade-avoidance responses in growing sunflower plants is summarized. Conclusions. Only elongating, vegetative sunflower shoots and the upper leaves perform phototropic solar tracking. Photon fluence response and CO2 assimilation measurements cast doubt on the ‘photosynthesis-optimization hypothesis’ as the sole explanation for the evolution of these plant movements. We suggest that the shade-avoidance response, which maximizes light-driven CO2 assimilation, plays a major role in solar tracking populations of competing sunflower plants, and an integrative scheme of these growth movements is provided. PMID:26420201

  9. Pilot plant for the radioactive decontamination of spent oils

    International Nuclear Information System (INIS)

    Flores E, R.M.; Ortiz O, H.V.; Cisneros L, L.; Lopez G, R.

    2002-01-01

    In this work the operation parameters obtained in the laboratory of oil storage are presented, as well as the operations which shape the pilot plant, the design criteria and the basic design of the core equipment of the developed process. Finally, the comparative results obtained the decontamination process of oil are given as well as laboratory scale. (Author)

  10. Solar drying in sludge management in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Salihoglu, Nezih; Pinarli, Vedat; Salihoglu, Guray [Faculty of Engineering and Architecture, Environmental Engineering Department, Uludag University, 16059, Bursa (Turkey)

    2007-08-15

    Two main wastewater treatment plants in Bursa city in Turkey will start to operate and produce at least 27,000 tons of dry solids per year by the end of 2006. The purpose of this study was to investigate an economical solution to the sludge management problem that Bursa city would encounter. The general trend in Turkey is mechanical dewatering to obtain a dry solid (DS) content of 20%, and liming the mechanically dewatered sludge to reach the legal land filling requirement, 35% DS content. This study recommends limited liming and solar drying as an alternative to only-liming the mechanically dewatered sludge. Open and covered solar sludge drying plants were constructed in pilot scale for experimental purposes. Dry solids and climatic conditions were constantly measured. Faecal coliform reduction was also monitored. The specially designed covered solar drying plant proved to be more efficient than the open plant in terms of drying and faecal coliform reduction. It was found that, if the limited liming and solar drying method was applied after mechanical dewatering instead of only-liming method, the total amount of the sludge to be disposed would be reduced by approximately 40%. This would lead to a reduction in the transportation, handling, and land filling costs. The covered drying system would amortize itself in 4 years. (author)

  11. Optimisation of Control Strategy at the Central Solar Heating Plant in Marstal, Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    1999-01-01

    The central solar heating plant at Marstal is monitored since 1996. The data is analysed with focus on the applied constrol strategy for the solar collector field. Variable flow is applied which is not the case at the other plants compared. The project analysed the performance, compared...

  12. Chemical perspectives on alkali and earth alkaline nitrate and nitrite salts for concentrated solar power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph G. [Sandia National Labsoratories, Livermore, CA (United States)

    2013-04-01

    Molten salts have been widely considered as the leading candidate heat transfer fluids (HTF) used in high temperature, concentrated solar power plants. Specifically, nitrate and nitrite based salts have been investigated as a HTF and even deployed in pilot plants generating up to 19.9 MW of electricity at operating temperatures above 500 C. New plant designs requiring higher operating temperatures for better efficiencies are pushing the stability limit of HTF. This paper presents an overview of the thermophysical properties of nitrate and nitrite salts and discusses thermodynamic and kinetic stability limitations as they relate to concentrated solar power generation. (orig.)

  13. Water recovery in a concentrated solar power plant

    Science.gov (United States)

    Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun

    2016-05-01

    For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane

  14. Solar cooling. Dynamic computer simulations and parameter variations; Solare Kuehlung. Dynamische Rechnersimulationen und Parametervariationen

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Mario; Lohmann, Sandra [Fachhochschule Duesseldorf (Germany). E2 - Erneuerbare Energien und Energieeffizienz

    2011-05-15

    The research project 'Solar cooling in the Hardware-in-the-Loop-Test' is funded by the BMBF and deals with the modeling of a pilot plant for solar cooling with the 17.5 kW absorption chiller of Yazaki in the simulation environment of MATLAB/ Simulink with the toolboxes Stateflow and CARNOT. Dynamic simulations and parameter variations according to the work-efficient methodology of design of experiments are used to select meaningful system configurations, control strategies and dimensioning of the components. The results of these simulations will be presented and a view of the use of acquired knowledge for the planned laboratory field tests on a hardware-in-the-loop test stand will be given. (orig.)

  15. Modeling temperature variations in a pilot plant thermophilic anaerobic digester.

    Science.gov (United States)

    Valle-Guadarrama, Salvador; Espinosa-Solares, Teodoro; López-Cruz, Irineo L; Domaschko, Max

    2011-05-01

    A model that predicts temperature changes in a pilot plant thermophilic anaerobic digester was developed based on fundamental thermodynamic laws. The methodology utilized two simulation strategies. In the first, model equations were solved through a searching routine based on a minimal square optimization criterion, from which the overall heat transfer coefficient values, for both biodigester and heat exchanger, were determined. In the second, the simulation was performed with variable values of these overall coefficients. The prediction with both strategies allowed reproducing experimental data within 5% of the temperature span permitted in the equipment by the system control, which validated the model. The temperature variation was affected by the heterogeneity of the feeding and extraction processes, by the heterogeneity of the digestate recirculation through the heating system and by the lack of a perfect mixing inside the biodigester tank. The use of variable overall heat transfer coefficients improved the temperature change prediction and reduced the effect of a non-ideal performance of the pilot plant modeled.

  16. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  17. Development of a monitoring system for a PV solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Forero, N. [Licenciatura en Fisica, Universidad Distrital, Bogota (Colombia); Hernandez, J. [Departamento de Ingenieria Electrica, Universidad Nacional de Colombia, Bogota (Colombia); Gordillo, G. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2006-09-15

    The aim of this paper is to introduce a system developed for monitoring PV solar plants using a novel procedure based on virtual instrumentation. The measurements and processing of the data are made using high precision I/O modular field point (FP) devices as hardware, a data acquisition card as software and the package of graphic programming, LabVIEW. The system is able to store and display both the collected data of the environmental variables and the PV plant electrical output parameters, including the plant I-V curve. A relevant aspect of this work is the development of a unit that allows automatic measuring of the solar plant I-V curve using a car battery as power supply. The system has been in operation during the last two years and all its units have functioned well. (author)

  18. Development of a monitoring system for a PV solar plant

    International Nuclear Information System (INIS)

    Forero, N.; Hernandez, J.; Gordillo, G.

    2006-01-01

    The aim of this paper is to introduce a system developed for monitoring PV solar plants using a novel procedure based on virtual instrumentation. The measurements and processing of the data are made using high precision I/O modular field point (FP) devices as hardware, a data acquisition card as software and the package of graphic programming, LabVIEW. The system is able to store and display both the collected data of the environmental variables and the PV plant electrical output parameters, including the plant I-V curve. A relevant aspect of this work is the development of a unit that allows automatic measuring of the solar plant I-V curve using a car battery as power supply. The system has been in operation during the last two years and all its units have functioned well

  19. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Boardman; B. H. O& #39; Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing

  20. Analysis and validation of a quasi-dynamic model for a solar collector field with flat plate collectors and parabolic trough collectors in series for district heating

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    performance of the hybrid solar district heating plants is also presented. The measured and simulated results show that the integration of parabolic trough collectors in solar district heating plants can guarantee that the system produces hot water with relatively constant outlet temperature. The daily energy......A quasi-dynamic TRNSYS simulation model for a solar collector field with flat plate collectors and parabolic trough collectors in series was described and validated. A simplified method was implemented in TRNSYS in order to carry out long-term energy production analyses of the whole solar heating...... plant. The advantages of the model include faster computation with fewer resources, flexibility of different collector types in solar heating plant configuration and satisfactory accuracy in both dynamic and long-term analyses. In situ measurements were taken from a pilot solar heating plant with 5960 m...

  1. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India

    Directory of Open Access Journals (Sweden)

    Deepak Bishoyi

    2017-09-01

    Full Text Available Solar energy is a key renewable energy source and the most abundant energy source on the globe. Solar energy can be converted into electric energy by using two different processes: by means of photovoltaic (PV conversion and the thermodynamic cycles. Concentrated solar power (CSP is viewed as one of the most promising alternatives in the field of solar energy utilization. Lifetime and efficiency of PV system are very less compared to the CSP technology. A 100 MW parabolic trough solar thermal power plant with 6 h of thermal energy storage has been evaluated in terms of design and thermal performance, based on the System Advisor Model (SAM. A location receiving an annual DNI of 2248.17 kW h/m2 in Rajasthan is chosen for the technical feasibility of hypothetical CSP plant. The plant design consists of 194 solar collector loops with each loop comprising of 8 parabolic trough collectors. HITEC solar salt is chosen as an HTF due to its excellent thermodynamic properties. The designed plant can generate annual electricity of 285,288,352 kW h with the plant efficiency of 21%. The proposed design of PTC based solar thermal power plant and its performance analysis encourages further innovation and development of solar thermal power plants in India.

  2. Laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate to UF6 by fluidized-bed processes

    International Nuclear Information System (INIS)

    Youngblood, E.L.; Urza, I.J.; Cathers, G.I.

    1977-06-01

    This report describes laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate (UNH) to UF 6 and on purification of the UF 6 . Experimental laboratory studies on the removal of residual nitrate from uranium trioxide (UO 3 ) calcine and the fluorination of technetium and subsequent sorption on MgF 2 were conducted to support the pilot-plant work. Two engineering-scale pilot plants utilizing fluidized-bed processes were constructed for equipment and process testing of the calcination of UNH to UO 3 and the direct fluorination of UO 3 to UF 6

  3. Exergy Analysis of a Pilot Parabolic Solar Dish-Stirling System

    Directory of Open Access Journals (Sweden)

    Ehsan Gholamalizadeh

    2017-09-01

    Full Text Available Energy and exergy analyses were carried out for a pilot parabolic solar dish-Stirling System. The system was set up at a site at Kerman City, located in a sunny desert area of Iran. Variations in energy and exergy efficiency were considered during the daytime hours of the average day of each month in a year. A maximum collector energy efficiency and total energy efficiency of 54% and 12.2%, respectively, were predicted in July, while during the period between November and February the efficiency values were extremely low. The maximum collector exergy efficiency was 41.5% in July, while the maximum total exergy efficiency reached 13.2%. The values of energy losses as a percentage of the total losses of the main parts of the system were also reported. Results showed that the major energy and exergy losses occurred in the receiver. The second biggest portion of energy losses occurred in the Stirling engine, while the portion of exergy loss in the concentrator was higher compared to the Stirling engine. Finally, the performance of the Kerman pilot was compared to that of the EuroDish project.

  4. Gas cooled solar tower power plant (GAST) KWU approach to a 20 MW hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Martin

    1980-07-01

    The gas cooled solar tower powerplant with a hybrid solar-fossil heating system in the form given here represents a significant step towards the industrial use of solar energy. The transition from fossil fuels to solar energy can be facilitated for the power plant operators if the transition is gradual and if conventional technology is used. Using solar energy and with a turbine inlet temperature of 800/sup 0/C the GAST power plant reaches an output of approximately 20 MW and a thermal efficiency of approximately 40% reference to the heat supplied by the receiver. In the absence of solar radiation the plant can be operated exclusively on fossil fuel. Increasing the turbine inlet temperature to 1000/sup 0/C enables an efficiency of about 47% to be reached in the GUD cycle.

  5. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  6. A Hybrid Multiple-Criteria Decision-Making Approach for Photovoltaic Solar Plant Location Selection

    Directory of Open Access Journals (Sweden)

    Amy H. I. Lee

    2017-01-01

    Full Text Available Due to decaying fossil resource and increasing environmental consciousness, the demand of renewable energy resources is escalating these days. Photovoltaic solar energy is one of the most popular renewable energy resources in places where sunlight is abundant. The selection of a desirable location for constructing a photovoltaic solar plant is the first and one of the most important stages in the plant construction to provide a long-term energy production. In this paper, a comprehensive multiple-criteria decision-making model, which incorporates the interpretive structural modeling (ISM, fuzzy analytic network process (FANP and VIKOR (VlseKriterijumska OptimizacijaI Kompromisno Resenje in Serbian,meaning multi-criteria optimization and compromise solution, is proposed to select the most suitable photovoltaic solar plant location. The ISM is applied first to determine the interrelationships among the criteria and among the sub-criteria,andtheresults are used to construct a decision-making network. The FANP is applied next to solve the network and to calculate the importance weights of the sub-criteria. Finally, the VIKOR is adopted to determine the ranking of the photovoltaic solar plant locations. The proposed model is applied in a case study in evaluating photovoltaic solar plant locations in Taiwan. By applying the proposed model, decision makers can have a better thinking process and make more appropriate decisions justifiably.

  7. Utility-Scale Solar Photovoltaic Power Plants : A Project Developer’s Guide

    OpenAIRE

    International Finance Corporation

    2015-01-01

    With an installed capacity greater than 137 gigawatts (GWs) worldwide and annual additions of about 40 GWs in recent years, solar photovoltaic (PV) technology has become an increasingly important energy supply option. A substantial decline in the cost of solar PV power plants (80 percent reduction since 2008) has improved solar PV’s competitiveness, reducing the needs for subsidies and ena...

  8. A review on pilot plant development models

    International Nuclear Information System (INIS)

    Rosli Darmawan

    2005-01-01

    After more than 30 years, MINT has been able to produce many new findings, products and processes. Some of these have been able to penetrate local and international markets. This was achieved through a systematic commercialisation program practiced in MINT with its technological chain and MINT Technology Park program. This paper will review the development process of MINT pilot plants and compare them with a few other models from other institutions in Malaysia and abroad. The advantages and disadvantages of each model are reviewed and a discussion against MINT's model is presented. (Author)

  9. Vitrification pilot plant experiences at Fernald, Ohio

    International Nuclear Information System (INIS)

    Akgunduz, N.; Gimpel, R.F.; Paine, D.; Pierce, V.H.

    1997-01-01

    A one metric ton/day Vitrification Pilot Plant (VITPP) at Fernald, Ohio, simulated the vitrification of radium and radon bearing silo residues using representative non-radioactive surrogates containing high concentrations of lead, sulfates, and phosphates. The vitrification process was carried out at temperatures of 1,150 to 1,350 C. The VITPP processed glass for seven months, until a breach of the melter containment vessel suspended operations. More than 70,000 pounds of surrogate glass were produced by the VITPP. Experiences, lessons learned, and path forward will be presented

  10. Mathematical model for solar-hydrogen heated desalination plant using humidification-dehumidification process

    International Nuclear Information System (INIS)

    Yassin, Jamal S.; Eljrushi, Gibril S.

    2006-01-01

    This paper presents a mathematical model for thermal desalination plant operating with solar energy and hydrogen. This plant is composed of two main systems, the heating system and the distillation system. The distillation system is composed of multi-cells; each cell is using the humidification-dehumidification (H-D) process in the distillation unit and getting the required amount of heat from feed seawater heater. The feed seawater heater is a heat exchanger used to raise the temperature of the preheated seawater coming from the condensation chamber (Dehumidifier) of each cell to about 85 degree centigrade. The heating amount in the heat exchangers is obtained from the thermal storage tank, which gets its energy from solar thermal system and is coupled with a hydrogen-fired backup system to guaranty necessary operating conditions and permit 24 hours solar H-D desalination plant to enhance the performance of this system. The mathematical model studies the performance of the proposed desalination system using thermal solar energy and hydrogen as fuel. Other pertinent variable in the heating and distillation system are also studied. The outcomes of this study are analyzed to enhance the used solar desalination process and make commercial.(Author)

  11. Sunshine Program for fiscal 1979. Designs and drawings for tower concentration type solar thermal electric power generation pilot plant construction (Volume 1 of 2); 1979 nendo taiyonetsu hatsuden (tower shuko hoshiki) pilot plant no seisaku sekkei. Sekkei tosho (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The pilot plant outputs 1000kWe. Under an automated operation program, 2 operators per shift take care of the whole plant (with one operator on patrol). Daily startup and stop is automatic in principle. The system stops its operation in principle when the computer is down, with accessories to be manually stopped. Warnings are dealt with all by the computer. A safety sequence is organized independent from the computer. The operators interfere with the system for the manipulation of subsystems and adjustment functions. With the plant in normal operation, the computer system logs data, monitors warnings, and the plant is under control of an analog control unit. For the activation of the automatic startup/stop function, the operators have to choose a mode of operation. The above-named document covers, furthermore, the data processing function of the automatic operating system, automatic startup/stop program, hardware, automatic startup/stop table, and a general flow chart describing the automatic startup/stop train. (NEDO)

  12. Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model

    Science.gov (United States)

    Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-01-01

    This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.

  13. Solar heating for an electronics manufacturing plant--Blue Earth, Minnesota

    Science.gov (United States)

    1981-01-01

    Partial space heating for 97,000 square foot plant is supplied by 360 flat plate solar collectors; energy is sorted as heat in indoor 20,000 gallon water tank. System includes all necessary control electronics for year round operation. During December 1978, solar energy supplied 24.4 percent of building's space heating load.

  14. Optimising Solar Photocatalytic Mineralization of Pesticides at Solar Plant by Adding Inorganic Oxidising Species: Application to the Recycling of Pesticide Containers; Optimizacion de la Mineralizacion Fotocatalitica de Pesticidas en una Planta Solar mediante Adicion de Especies Inorganicas Oxidantes: Aplicacion al Reciclado de Envases de Pesticidas

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.; Fernandez, P.; Caceres, J.; Campos, A.; Carrion, A. [Ciemat. Plataforma Solar de Almeria. Almeria (Spain)

    2000-07-01

    This paper focuses on optimising the use of additional oxidants in the photocatalytic degradation of a complex mixture of ten commercial pesticides. The CPC solar pilot plant used for the tests has 8.9 m''2 of collector surface and a total volume of 247 L. Same TOC quantities of each pesticide were added to achieve the desired initial TOC concentration in all the experiments (from 5 tp 100 mg of TOC per litre). Experiments were performed with H{sub 2}O{sub 2} and S{sub 2}O{sub 8}''-2, but only peroxydisulphate was chosen for optimisation, because better results have been obtained with it. In addition to the consumption of the oxidant under different experiment conditions, the effect of peroxydisulphate and TOC concentrations was also evaluated. The mechanism of peroxydisulphate action is discussed with these results. The effect of reusing water and catalysts has also been studied. The results obtained from these experiments have been used to decide the dimensions and operating conditions of a solar photocatalytic plant, the final objective of which is the treatment of rinsates produced by washing pesticide containers. (Author) 37 refs.

  15. Pilot production of 4 sq cm ITO/InP photovoltaic solar cells

    Science.gov (United States)

    Gessert, T. A.; Li, X.; Coutts, T. J.; Tzafaras, N.

    1991-01-01

    Experimental results of a pilot production of 32 4-sq cm indium tin oxide (ITO)InP space solar cells are presented. The discussion includes analysis of the device performance of the best cells produced as well as the performance range of all production cells. The experience gained from the production is discussed, indicating other issues that may be encountered when large-scale productions are initiated. Available data on a 4-sq cm ITO/InP cell that was flown on the UoSAT-5 satellite is reported.

  16. PKI solar thermal plant evaluation at Capitol Concrete Products, Topeka, Kansas

    Science.gov (United States)

    Hauger, J. S.; Borton, D. N.

    1982-07-01

    A system feasibility test to determine the technical and operational feasibility of using a solar collector to provide industrial process heat is discussed. The test is of a solar collector system in an industrial test bed plant at Capitol Concrete Products in Topeka, Kansas, with an experiment control at Sandia National Laboratories, Albuquerque. Plant evaluation will occur during a year-long period of industrial utilization. It will include performance testing, operability testing, and system failure analysis. Performance data will be recorded by a data acquisition system. User, community, and environmental inputs will be recorded in logs, journals, and files. Plant installation, start-up, and evaluation, are anticipated for late November, 1981.

  17. Solar power plant performance evaluation: simulation and experimental validation

    Science.gov (United States)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  18. Optical study of solar tower power plants

    International Nuclear Information System (INIS)

    Eddhibi, F; Amara, M Ben; Balghouthi, M; Guizani, A

    2015-01-01

    The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature

  19. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments

    Science.gov (United States)

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V. K.

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  20. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments.

    Science.gov (United States)

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V K

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  1. Techno-economic design optimization of solar thermal power plants

    OpenAIRE

    Morin, G.

    2011-01-01

    A holistic view is essential in the engineering of technical systems. This thesis presents an integrative approach for designing solar thermal power plants. The methodology is based on a techno-economic plant model and a powerful optimization algorithm. Typically, contemporary design methods treat technical and economic parameters and sub-systems separately, making it difficult or even impossible to realize the full optimization potential of power plant systems. The approach presented here ov...

  2. Design of a solar updraft tower power plant for pakistan and its simulation in transys

    International Nuclear Information System (INIS)

    Khan, T.; Chaudhry, I.A.; Rehman, A.

    2014-01-01

    Solar updraft tower is a distinct and novel combination of three old concepts that are green house effect, chimney effect and wind turbine. It can be employed, with almost negligible maintenance cost, in electricity generation. Given the different climatic and economical conditions for different places, every region demands a specific design. As solar chimney power plant is a relatively new technology, much effort has not been done in evaluating the performances of the various plants. In this context, a solar updraft tower has been designed for the conditions of Pakistan (Lahore) and is simulated in TRNSYS to analyze the plant performance through different seasons and time of the year. The study reveals important results about the factors involved in determining the final output power produced. It is observed that the solar irradiance plays a more significant role in power generation than ambient temperature. The more the capacity of a plant to produce power, the more economical it would be. TRNSYS based program is presumed to be a handy mode of examining solar chimney power plants. (author)

  3. Italian experience with pilot reprocessing plants

    International Nuclear Information System (INIS)

    Cao, S.; Dworschak, H.; Rolandi, G.; Simonetta, R.

    1977-01-01

    Problems and difficulties recently experienced in the reprocessing technology of high burnup power reactor fuel elements have shown the importance of pilot plant experiments to optimize the separation processes and to test advanced equipment on a representative scale. The CNEN Eurex plant, in Saluggia (Vercelli), with a 50 kg/d thruput, in operation since '71, has completed several reprocessing campaigns on MTR type fuel elements. Two different chemical flowsheets based respectively on TBP and tertiary amines were thoroughly tested and compared: a concise comparative evaluation of the results obtained with the two schemes is given. Extensive modifications have then been introduced (namely a new headend cell equipped with a shear) to make the plant suitable to reprocess power reactor fuels. The experimental program of the plant includes a joint CNEN-AECL reprocessing experiment on CANDU (Pickering) type fuel elements to demonstrate a two cycle, amine based recovery of the plutonium. Later, a stock of high burnup fuel elements from the PWR Trino power station will be reprocessed to recover Pu and U with a Purex type flowsheet. ITREC, the second CNEN experimental reprocessing plant located at Trisaia Nuclear Center (Matera), started active operation two years ago. In the first campaign Th-U mixed oxide fuel elements irradiated in the Elk River reactor were processed. Results of this experiment are reported. ITREC special design features confer a high degree of versability to the plant allowing for substantial equipment modification under remote control conditions. For this reason the plant will be principally devoted in the near future to advanced equipment testing. Along this line high speed centrifugal contactor of a new type developed in Poland will be tested in the plant in the frame of a joint experiment between CNEN and the Polish AEC. Later on the plant program will include experimental campaign on fast reactor fuels; a detailed study on this program is in

  4. Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale.

    Science.gov (United States)

    Radjenović, Jelena; Sirtori, Carla; Petrović, Mira; Barceló, Damià; Malato, Sixto

    2010-04-01

    In the present study the mechanisms of solar photodegradation of H(2)-receptor antagonist ranitidine (RNTD) were studied in a well-defined system of a pilot plant scale Compound Parabolic Collector (CPC) reactor. Two types of heterogeneous photocatalytic experiments were performed: catalysed by titanium-dioxide (TiO(2)) semiconductor and by Fenton reagent (Fe(2+)/H(2)O(2)), each one with distilled water and synthetic wastewater effluent matrix. Complete disappearance of the parent compounds and discreet mineralization were attained in all experiments. Furthermore, kinetic parameters, main intermediate products, release of heteroatoms and formation of carboxylic acids are discussed. The main intermediate products of photocatalytic degradation of RNTD have been structurally elucidated by tandem mass spectrometry (MS(2)) experiments performed at quadrupole-time of flight (QqToF) mass analyzer coupled to ultra-performance liquid chromatograph (UPLC). RNTD displayed high reactivity towards OH radicals, although a product of conduction band electrons reduction was also present in the experiment with TiO(2). In the absence of standards, quantification of intermediates was not possible and only qualitative profiles of their evolution could be determined. The proposed TiO(2) and photo-Fenton degradation routes of RNTD are reported for the first time. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Verification of criticality Safety for ETRR-2 Fuel Manufacturing pilot Plant (FMPP) at Inshas

    International Nuclear Information System (INIS)

    Aziz, M.; Gadalla, A.A.; Orabi, G.

    2006-01-01

    The criticality safety of the fuel manufacturing pilot plant (FMPP) at inshas is studied and analyzed during normal and abnormal operation conditions. the multiplication factor during all stages of the manufacturing processes is determined. several accident scenarios were simulated and the criticality of these accidents were investigated. two codes are used in the analysis : MCNP 4 B code, based on monte Carlo method, and CITATION code , based on diffusion theory. the results are compared with the designer calculations and satisfactory agreement were found. the results of the study indicated that the safety of the fuel manufacturing pilot plant is confirmed

  6. Control of Solar Power Plants Connected Grid with Simple Calculation Method on Residential Homes

    Science.gov (United States)

    Kananda, Kiki; Nazir, Refdinal

    2017-12-01

    One of the most compatible renewable energy in all regions to apply is solar energy. Solar power plants can be built connected to existing or stand-alone power grids. In assisting the residential electricity in which there is a power grid, then a small scale solar energy power plants is very appropriate. However, the general constraint of solar energy power plants is still low in terms of efficiency. Therefore, this study will explain how to control the power of solar power plants more optimally, which is expected to reactive power to zero to raise efficiency. This is a continuation of previous research using Newton Rapshon control method. In this study we introduce a simple method by using ordinary mathematical calculations of solar-related equations. In this model, 10 PV modules type of ND T060M1 with a 60 Wp capacity are used. The calculations performed using MATLAB Simulink provide excellent value. For PCC voltage values obtained a stable quantity of approximately 220 V. At a maximum irradiation condition of 1000 W / m2, the reactive power value of Q solar generating system maximum 20.48 Var and maximum active power of 417.5 W. In the condition of lower irradiation, value of reactive power Q almost close to zero 0.77Var. This simple mathematical method can provide excellent quality control power values.

  7. Retrofitting a Geothermal Plant with Solar and Storage to Increase Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guangdong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McTigue, Joshua Dominic P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turchi, Craig S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Castro, Jose [Coso Operating Co.; Mungas, Greg [Hyperlight Energy; Kramer, Nick [Hyperlight Energy; King, John [Hyperlight Energy

    2017-10-04

    Solar hybridization using concentrating solar power (CSP) can be an effective approach to augment the power generation and power cycle efficiency of a geothermal power plant with a declining resource. Thermal storage can further increase the dispatchability of a geothermal/solar hybrid system, which is particularly valued for a national grid with high renewable penetration. In this paper, a hybrid plant design with thermal storage is proposed based on the requirements of the Coso geothermal field in China Lake, California. The objective is to increase the power production by 4 MWe. In this system, a portion of the injection brine is recirculated through a heat exchanger with the solar heat transfer fluid, before being mixed with the production well brine. In the solar heating loop the brine should be heated to at least 155 degrees C to increase the net power. The solar field and storage were sized based on solar data for China Lake. Thermal storage is used to store excess power at the high-solar-irradiation hours and generate additional power during the evenings. The solar field size, the type and capacity of thermal storage and the operating temperatures are critical factors in determining the most economic hybrid system. Further investigations are required to optimize the hybrid system and evaluate its economic feasibility.

  8. Design of preconcentration flow-sheet for processing Bhimunipatnam beach sands using pilot plant experiments and computer simulation

    International Nuclear Information System (INIS)

    Padmanabhan, N.P.H.; Sridhar, U.

    1993-01-01

    Simulation was carried out using a beach sand beneficiation plant simulator software, SANDBEN, currently being developed in Indian School of Mines, Dhanbad, and the results were compared and analyzed with those obtained by actual pilot plant experiments on a beach sand sample from Bhimunipatnam deposit. The software is discussed and its capabilities and limitations are highlighted. An optimal preconcentrator flow-sheet for processing Bhimunipatnam beach sand was developed by simulation and using the results of the pilot plant experiments. (author). 13 refs., 2 tabs., 3 figs

  9. The solar two power tower project

    International Nuclear Information System (INIS)

    Chavez, J.M.; Klimas, P.C.; Laquil, P. de III; Skowronski, M.

    1993-01-01

    A consortium of United States utility concerns led by Southern California Edison Company (SCE) has begun a cooperative project with the U.S. Department of Energy (DOE) and industry to convert the 10-MWe Solar One Tower Pilot Plant to molten nitrate salt technology. Successful operation of the convert plant to be called Solar Two, will reduce the economic risks in building the initial commercial power tower projects and accelerate the commercial acceptance of this promising renewable energy technology. In a molten salt power tower plant, sunlight is concentrated by a field of sun-tracking mirrors, called heliostats, onto a centrally located receiver, atop a tower. Molten salt is heated in the receiver and stored until it is needed to generate steam to power a conventional turbine generator. Joining the SCE and DOE in sponsoring in sponsoring this project are the following organizations: Los Alamos department of Water Power, Idaho Power Company, PacifiCorp, Pacific Gas and Electric Company, Sacramento Municipal Utility District, Arizona Public Service Company, Salt River Project, City of Pasadena, California Energy Commission, Electric Power Research Institute, South Coast Air Quality Commission, Electric Power research Institute, South Coast Air Quality Management District, and Bechtel Corporation. The Solar Two project will convert the Solar One heat transfer system from a water/steam type to molten nitrate salt by replacing the water/steam receiver and oil/rock thermal storage system with a nitrate salt receiver, salt thermal storage, and steam generator. The estimate cost of Solar Two, including 3-year test period, is 48.5 millions. The plant will be on line in early 1995. (authors)

  10. Evaluating the potential energy of a heliostat field and solar receiver of solar tower power plants in the southern region of Turkey

    Directory of Open Access Journals (Sweden)

    Raad Kadhim Al-Dualimi

    2016-08-01

    Full Text Available A prior study on the performance of high-efficient models for a heliostat field and solar receiver at various candidate locations (e.g., certain regions in the south of Turkey helped determine suitable locations for installing solar tower power plant units. This study considered the fact that solar tower power plants are affected by the working conditions of a particular site, which helps realize the highest performance of the solar power tower plant. An optimized heliostat field consisting of 2650 SENER heliostats and a model of a solar receiver based on the data obtained using Gemasolar in Seville, Spain, was used as a reference in this work. Each heliostat position is specified using an optimization algorithm that refines previously proposed models, and two parameters are added to this model to further optimize the heliostat layout. Then, a sample analytical thermal model is used for predicting the radiative and convective heat losses from the receiver system. Article History: Received March 13rd 2016; Received in revised form Jun 22nd 2016; Accepted July 3rd 2016; Available onlineHow to Cite This Article: Ra'ad, K, M, A. and Mehmet, S, S. (2016, Evaluating the potential energy of a heliostat field and solar receiver of solar tower power plants in the southern region of Turkey. Int. Journal of Renewable Energy Development, 5(2, 151-161, http://dx.doi.org/10.14710/ijred.5.2.151-161

  11. Summary of the achievements in fiscal 1991 in developing the coal liquefaction technology and the bituminous coal liquefaction technology. Studies by using a pilot plant; 1991 nendo sekitan ekika gijutsu kaihatsu rekiseitan ekika gijutsu no kaihatsu seika gaiyo. Pilot plant ni yoru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    This paper describes the achievements in 1991 on studies on the bituminous coal liquefaction technology using a pilot plant. Based on the detailed design of the 150-t/d pilot plant, study problems and analysis items were reviewed, and a material balance acquiring method and a reaction column data analyzing method were discussed. Utilization of the liquefaction simulator was attempted. Efficient execution of the pilot plant operation study requires to have the basic and support study achievements reflected on the pilot plant operation, and clarify the roles to be played by the groups. Therefore, discussion items were compiled. The overall process plan for the design and construction was reviewed based on the plan discussed in fiscal 1990. Fiscal 1991 has launched common civil engineering constructions. The operation plans for the main four facilities in the pilot plant, which have been prepared in fiscal 1988, were continued of reviewing to cope with the situation of the decreased construction budget. The budget was reviewed again in fiscal 1991, which would present a prospect of starting the operation in fiscal 1995. Annual reviews on the basic operation plans for the main four facilities and the conceptions taken to date were put into order. The project management system was also expanded and re-arranged, including the information registration and retrieval system. (NEDO)

  12. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume II. Plant specifications

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. E.

    1983-12-31

    The specifications and design criteria for all plant systems and subsystems used in developing the preliminary design of Carrisa Plains 30-MWe Solar Plant are contained in this volume. The specifications have been organized according to plant systems and levels. The levels are arranged in tiers. Starting at the top tier and proceeding down, the specification levels are the plant, system, subsystem, components, and fabrication. A tab number, listed in the index, has been assigned each document to facilitate document location.

  13. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2003-09-17

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  14. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    International Nuclear Information System (INIS)

    Washington Regulatory and Environmental Services

    2003-01-01

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED)

  15. The Stored Waste Examination Pilot Plant program at the INEL

    International Nuclear Information System (INIS)

    McKinley, K.B.; Anderson, B.C.; Clements, T.L.; Hinckley, J.P.; Mayberry, J.L.; Smith, T.H.

    1983-01-01

    Since 1970, defense transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the U.S. Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste from the INEL. The January 1981 DOE Record of Decision on the Waste Isolation Pilot Plant (WIPP) stated, ''The WIPP facility will dispose of defense transuranic waste stored retrievably at the Idaho National Engineering Laboratory.'' After retrieval and before shipment, processing may be necessary to prepare the waste for acceptance, handling, and enhanced long-term isolation in the WIPP. However, some of the waste is certifiable to the WIPP waste acceptance criteria without container opening or waste processing. To minimize costs, the Stored Waste Examination Pilot Plant (SWEPP) is being developed to certify INEL stored transuranic waste without container opening or waste processing. The SWEPP certification concept is based on records assessment, nondestructive examination techniques, assay techniques, health physics examinations, and limited opening of containers at another facility for quality control

  16. Thin film CdTe solar cells by close spaced sublimation: Recent results from pilot line

    International Nuclear Information System (INIS)

    Siepchen, B.; Drost, C.; Späth, B.; Krishnakumar, V.; Richter, H.; Harr, M.; Bossert, S.; Grimm, M.; Häfner, K.; Modes, T.; Zywitzki, O.; Morgner, H.

    2013-01-01

    CdTe is an attractive material to produce high efficient and low cost thin film solar cells. The semiconducting layers of this kind of solar cell can be deposited by the Close Spaced Sublimation (CSS) process. The advantages of this technique are high deposition rates and an excellent utilization of the raw material, leading to low production costs and competitive module prices. CTF Solar GmbH is offering equipment and process knowhow for the production of CdTe solar modules. For further improvement of the technology, research is done at a pilot line, which covers all relevant process steps for manufacture of CdTe solar cells. Herein, we present the latest results from the process development and our research activities on single functional layers as well as for complete solar cell devices. Efficiencies above 13% have already been obtained with Cu-free back contacts. An additional focus is set on different transparent conducting oxide materials for the front contact and a Sb 2 Te 3 based back contact. - Highlights: ► Laboratory established on industrial level for CdTe solar cell research ► 13.0% cell efficiency with our standard front contact and Cu-free back contact ► Research on ZnO-based transparent conducting oxide and Sb 2 Te 3 back contacts ► High resolution scanning electron microscopy analysis of ion polished cross section

  17. Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant

    International Nuclear Information System (INIS)

    Burin, Eduardo Konrad; Vogel, Tobias; Multhaupt, Sven; Thelen, Andre; Oeljeklaus, Gerd; Görner, Klaus; Bazzo, Edson

    2016-01-01

    This work evaluated the integration of Concentrated Solar Power (CSP) with a sugarcane bagasse cogeneration plant located in Campo Grande (Brazil). The plant is equipped with two 170 t/h capacity steam generators that provide steam at 67 bar/525 °C. Superheated steam is expanded in a backpressure and in a condensing-extraction turbine. The evaluated hybridization layouts were: (layout 1) solar feedwater pre-heating; (layout 2) saturated steam generation with solar energy and post superheating in biomass steam generators and (layout 3) superheated steam generation in parallel with biomass boilers. Linear Fresnel and parabolic trough were implemented in layouts 1 and 2, while solar tower in layout 3. The exportation of electricity to the grid was increased between 1.3% (layout 1/linear Fresnel) and 19.8% (layout 3) in comparison with base case. The levelized cost of additional electricity was accounted between 220 US$/MWh (layout 3) and 628 US$/MWh (layout 1/linear Fresnel). The key factor related to layout 3 was the improvement of solar field capacity factor due to the solar-only operation of this approach. These aspects demonstrate that the combination of solar and bagasse resources might be the key to turn CSP economically feasible in Brazil. - Highlights: • The integration of CSP and a sugarcane bagasse cogeneration plant was here evaluated. • Additional hours of operation during off-season were achieved due to hybridization. • The part load performance of plant was predicted as solar thermal load was increased. • The electricity exportation to the grid could be increased between 1.3 and 19.8%. • The LCOE of additional electricity produced was ranged between 220 and 628 US$/MWh.

  18. Solar central receiver reformer system for ammonia plants

    Science.gov (United States)

    1980-07-01

    An overview of a study to retrofit the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant with Solar Central Receiver Technology is presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system will displace natural gas presently used in the fossil reformer combustion chamber.

  19. A new framework to increase the efficiency of large-scale solar power plants.

    Science.gov (United States)

    Alimohammadi, Shahrouz; Kleissl, Jan P.

    2015-11-01

    A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.

  20. Solar microclimatology. [tables (data) on insolation for application to solar energy conversion by electric power plants

    Science.gov (United States)

    Mckenney, D. B.; Beauchamp, W. T.

    1975-01-01

    It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.

  1. Dismantling of an alpha contaminated hot cell at the Marcoule Pilot Plant

    International Nuclear Information System (INIS)

    Tachon, M.

    1988-01-01

    For the remodeling of Marcoule Pilot Plant, the cell 82: old unit for plutonium solution purification by extraction, was dismantled. About 42 tons of wastes were evacuated. Some wastes wen decontaminated by mechanical means other wastes with higher residual activity were stored for subsequent processing. The operation shows that dismantling of a hot cell is possible even if incorporated in an operating plant [fr

  2. Experience with the operation of a solar central heating system in Friedrichshafen/Wiggenhausen-Sued; Betriebserfahrungen mit der solaren Nahwaermeversorgung in Friedrichshafen/Wiggenhausen-Sued

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, B.; Gawantka, F. [Technische Werke Friedrichshafen GmbH, Friedrichshafen (Germany)

    1998-12-31

    The ideas, concepts and pilot plants for solar central heating systems developed by the Institute for Thermodynamics and Thermal Engineering of Stuttgart University were implemented by the Steinbeis-Transfer Centre for Energy, Building and Solar Engineering. In order to improve the economic efficiency of solar central heating with long-term storage a pilot plant with a heat storage tank of 12,000 cubic metres was built in Wiggenhausen-Sued. The `Technische Werke Friedrichshafen` (TWF) is in charge of the project `Solar City Wiggenhausen-Sued`. This company built the plant and also operates and maintains it. (orig.) [Deutsch] Die Ideen, Konzepte und erste Pilotanlagen zur solaren Nahwaerme werden seit Mitte der achtziger Jahre vom Institut fuer Thermodynamik und Waermetechnik (ITW) der Universitaet Stuttgart entwickelt und vom Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik umgesetzt. Um die solare Nahwaermeversorgung mit Langzeit-Waermespeicher der Wirtschaftlichkeit etwas naeher zu bringen, wurde eine Pilotanlage mit einem 12.000 m{sup 3} grossen Waermespeicher in Wiggenhausen-Sued gebaut. Mit diesem Pilotprojekt soll neben der technischen Durchfuehrbarkeit die Kostendegression durch steigende Anlagengroesse nachgewiesen werden. Als Energiedienstleistungsunternehmen hat die Technische Werke Friedrichshafen GmbH (TWF) die technische und kaufmaennische Durchfuehrung des Projektes `Solarstadt Wiggenhausen-Sued` uebernommen. Sie errichtete, betreibt und wartet die Anlage. (orig.)

  3. Pilot plant study for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J S [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)

    1996-02-01

    Most of domestic alcohol fermentation factory adopt batch process of which productivity is lower than continuous fermentation process. They have made great effort to increase productivity by means of partial unit process automatization and process improvement with their accumulated experience but there is technical limitation in productivity of batch fermentation process. To produce and supply fuel alcohol, economic aspects must be considered first of all. Therefore, development of continuous fermentation process, of which productivity is high, is prerequisite to produce and use fuel alcohol but only a few foreign company possess continuous fermentation technic and use it in practical industrial scale fermentation. We constructed pilot plant (5 Stage CSTR 1 kl 99.5 v/v% ethanol/Day scale) to study some aspects stated below and our ultimate aims are production of industrial scale fuel alcohol and construction of the plant by ourselves. Some study concerned with energy saving separation and contamination control technic were entrusted to KAIST, A-ju university and KIST respectively. (author) 67 refs., 100 figs., 58 tabs.

  4. Summary of reports on 1979 result of Sunshine Project. Solar energy; 1979 nendo sunshine keikaku seika hokokusho gaiyoshu. Taiyo energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-04-01

    This report is a compilation of all outlines of the results concerning 'solar energy' for which R and D was carried out as a part of Sunshine Project in fiscal 1979. The research subjects (items of the studies) are written below. 1. Solar energy system (measurement of spectral irradiance, utilization system, and meteorological investigation); 2. Solar thermal power generation system; 3. Photovoltaic power generation system (basic research on solar cells, silicon vertical ribbon crystal, silicon horizontal ribbon crystal, particle non-acceleration growth type thin film silicon crystal, particle acceleration growth type thin film silicon crystal, new type solar cells, secondary to quaternary compound semiconductor solar cells, and photovoltaic power generation system); 4. Solar cooling, heating and hot water supply system (evaluation system, newly-built private residential system, existing private residential system, multiple dwelling system, large building system, synthetic resin materials, glass based materials, and metallic materials); 5. Solar energy new utilization method (new power generation system and materials); 6. R and D on solar thermal power generation plant (R and D on pilot plant, experimental research for developing plant on curved surface converging method, and experimental research for developing plant on tower converging method). (NEDO)

  5. Optimal year-round operation of a concentrated solar energy plant in the south of Europe

    International Nuclear Information System (INIS)

    Martín, Lidia; Martín, Mariano

    2013-01-01

    We present the year-round optimization of the operation of a concentrated solar power facility evaluating the molten salts storage, the power block and cooling. We locate the plant in the south of Europe, Almería (Spain), where high solar radiation is available. The operation of the plant is a function of the solar incidence as well as the climate and atmospheric conditions. The optimization of the system is formulated as a multiperiod Non-linear Programming problem (NLP) that is solved for the optimal production of electricity over a year defining the main operating variables of the thermal and cooling cycles. For a maximum of 25 MW in summer and a minimum of 9.5 MW in winter the annual production cost of electricity is 0.15 €/kWh consuming an average of 2.1 L water /kWh. The investment for the plant is 260 M€. Scale-up studies reveal that the production cost can decrease by half while the investment per unit of power should become competitive with current coal based power plants if solar and coal facilities present similar production capacities. -- Highlights: • Plant design so far relies on process simulation and only partial optimization studies. • We optimize the operation of a concentrated solar power plant. • The facility involves solar field, molten salts, steam and electricity generation and cooling. • The results are promising and validate literature sensitive studies

  6. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  7. Selective absorption pilot plant for decontamination of fuel reprocessing plant off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, M.J.; Eby, R.S.; Huffstetler, V.C.

    1977-10-01

    A fluorocarbon-based selective absorption process for removing krypton-85, carbon-14, and radon-222 from the off-gas of conventional light water and advanced reactor fuel reprocessing plants is being developed at the Oak Ridge Gaseous Diffusion Plant in conjunction with fuel recycle work at the Oak Ridge National Laboratory and at the Savannah River Laboratory. The process is characterized by an especially high tolerance for many other reprocessing plant off-gas components. This report presents detailed drawings and descriptions of the second generation development pilot plant as it has evolved after three years of operation. The test facility is designed on the basis of removing 99% of the feed gas krypton and 99.9% of the carbon and radon, and can handle a nominal 15 scfm (425 slm) of contaminated gas at pressures from 100 to 600 psig (7.0 to 42.2 kg/cm/sup 2/) and temperatures from minus 45 to plus 25/sup 0/F (-43 to -4/sup 0/C). Part of the development program is devoted to identifying flowsheet options and simplifications that lead to an even more economical and reliable process. Two of these applicative flowsheets are discussed.

  8. Solar power plant performance evaluation: simulation and experimental validation

    International Nuclear Information System (INIS)

    Natsheh, E M; Albarbar, A

    2012-01-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P and O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  9. Cost-effective and reliable design of a solar thermal power plant

    International Nuclear Information System (INIS)

    Aliabadi, A.A.; Wallace, J.S.

    2009-01-01

    A design study was conducted to evaluate the cost-effectiveness of solar thermal power generation in a 50 kWe power plant that could be used in a remote location. The system combines a solar collector-thermal storage system utilizing a heat transfer fluid and a simple Rankine cycle power generator utilizing R123 refrigerant. Evacuated tube solar collectors heat mineral oil and supply it to a thermal storage tank. A mineral oil to refrigerant heat exchanger generates superheated refrigerant vapor, which drives a radial turbogenerator. Supplemental natural gas firing maintains a constant thermal storage temperature irregardless of solar conditions enabling the system to produce a constant 50 kWe output. A simulation was carried out to predict the performance of the system in the hottest summer day and the coldest winter day for southern California solar conditions. A rigorous economic analysis was conducted. The system offers advantages over advanced solar thermal power plants by implementing simple fixed evacuated tube collectors, which are less prone to damage in harsh desert environment. Also, backed up by fossil fuel power generation, it is possible to obtain continued operation even during low insolation sky conditions and at night, a feature that stand-alone PV systems do not offer. (author)

  10. Experimental fact-finding in CFB biomass gasification for ECN's 500 kWth pilot-plant

    NARCIS (Netherlands)

    Kersten, Sascha R.A.; Prins, W.; van der Drift, A.; van Swaaij, Willibrordus Petrus Maria

    2003-01-01

    CFB biomass gasification has been studied by experimentation with ECN's pilot facility and a cold-flow model of this plant. Data obtained by normal operation of this plant and the results of some special experiments have provided new insight into the behavior of circulating fluidized bed reactors

  11. Pilot-plant development of a Rover waste calcination flowsheet

    International Nuclear Information System (INIS)

    Birrer, S.A.

    1978-04-01

    Results of eight runs, six using the 10-cm dia and two using the 30-cm dia pilot-plant calciners, in which simulated first-cycle Rover waste was calcined, are described. Results of the tests showed that a feed blend consisting of one volume simulated first-cycle Rover waste and one or two volumes simulated first-cycle zirconium waste could not be successfully calcined. 5 figs., 8 tables

  12. Achievement report for fiscal 1981 on solar system survey projects implemented overseas. Singapore and Australia; 1981 nendo solar system kaigai chosa jigyo seika hokokusho. Singapore Australia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-06-01

    During a 20-day survey tour to Singapore and Australia which started on February 7, 1982, visits were paid to 6 universities, 2 national or state research institutes, 2 state government agencies, 6 passive solar facilities, and some industrial societies and solar equipment manufactures. At universities and research institutes, research and experiments are earnestly under way for the development of solar heat collectors, for the research and testing of software programs therefor, and for the research and development of photovoltaic and geothermal power generation systems. In the case of photovoltaic power, in particular, many programs require the construction of pilot plants and simultaneous supply of power to general consumers with tests and experiments continued for the pilot plants for putting the technology to practical use. This is thought to demonstrate the urgent need for measures for out-of-the-way locations. Electric power is priced at 7-8 yen/kWh, approximately half the price in Japan. Marginal supply capability is low because power is generated mainly by coal and no nuclear power is available. Efforts at underground reserves exploitation have become very active and, since there is need to supply power to the back regions, funds are eagerly invested in on-site power generation and photovoltaic power development. In Australia, power supply is monopolized by state governments. Even in Australia, who enjoy 65% self-sufficiency in oil and export a substantial amounts of natural gas and coal, there are enthusiastic efforts at harnessing solar energy. (NEDO)

  13. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs

  14. Techno-economic optimization for the design of solar chimney power plants

    International Nuclear Information System (INIS)

    Ali, Babkir

    2017-01-01

    Highlights: • Chimney height and collector area of different designs were optimized. • Simple actual and minimum payback periods were developed. • Comparative assessment was conducted for different designs configuration. • Effects of uncertain parameters on the payback period were studied. - Abstract: This paper aims to propose a methodology for optimization of solar chimney power plants taking into account the techno-economic parameters. The indicator used for optimization is the comparison between the actual achieved simple payback period for the design and the minimum possible (optimum) simple payback period as a reference. An optimization model was executed for different twelve designs in the range 5–200 MW to cover reinforced concrete chimney, sloped collector, and floating chimney. The height of the chimney was optimized and the associated collector area was calculated accordingly. Relationships between payback periods, electricity price, and the peak power capacity of each power plant were developed. The resulted payback periods for the floating chimney power plants were the shortest compared to the other studied designs. For a solar chimney power plant with 100 MW at electricity price 0.10 USD/kWh, the simple payback period for the reference case was 4.29 years for floating chimney design compared to 23.47 and 16.88 years for reinforced concrete chimney and sloped collector design, respectively. After design optimization for 100 MW power plant of each of reinforced concrete, sloped collector, and floating chimney, a save of 19.63, 2.22, and 2.24 million USD, respectively from the initial cost of the reference case is achieved. Sensitivity analysis was conducted in this study to evaluate the impacts of varied running cost, solar radiation, and electricity price on the payback periods of solar chimney power plant. Floating chimney design is still performing after applying the highest ratio of annual running cost to the annual revenue. The

  15. A realistic approach to modeling an in-duct desulfurization process based on an experimental pilot plant study

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, F.J.G.; Ollero, P. [University of Seville, Seville (Spain)

    2008-07-15

    This paper has been written to provide a realistic approach to modeling an in-duct desulfurization process and because of the disagreement between the results predicted by published kinetic models of the reaction between hydrated lime and SO{sub 2} at low temperature and the experimental results obtained in pilot plants where this process takes place. Results were obtained from an experimental program carried out in a 3-MWe pilot plant. Additionally, five kinetic models, from the literature, of the reaction of sulfation of Ca(OH){sub 2} at low temperatures were assessed by simulation and indicate that the desulfurization efficiencies predicted by them are clearly lower than those experimentally obtained in our own pilot plant as well as others. Next, a general model was fitted by minimizing the difference between the calculated and the experimental results from the pilot plant, using Matlab{sup TM}. The parameters were reduced as much as possible, to only two. Finally, after implementing this model in a simulation tool of the in-duct sorbent injection process, it was validated and it was shown to yield a realistic approach useful for both analyzing results and aiding in the design of an in-duct desulfurization process.

  16. Off-design thermodynamic performances on typical days of a 330 MW solar aided coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Wang, Yanjuan; Wang, Zhaoguo; Jin, Hongguang

    2014-01-01

    Highlights: • Optical loss and heat loss of solar field under different turbine load were investigated. • Off-design thermodynamic feature was disclosed by analyzing several operational parameters. • Possible schemes was proposed to improve the net solar-to-electricity efficiency. - Abstract: The contribution of mid-temperature solar thermal power to improve the performance of coal-fired power plant is analyzed in the present paper. In the solar aided coal-fired power plant, solar heat at <300 °C is used to replace the extracted steam from the steam turbine to heat the feed water. In this way, the steam that was to be extracted could consequently expand in the steam turbine to boost output power. The advantages of a solar aided coal-fired power plant in design condition have been discussed by several researchers. However, thermodynamic performances on off-design operation have not been well discussed until now. In this paper, a typical 330 MW coal-fired power plant in Sinkiang Province of China is selected as the case study to demonstrate the advantages of the solar aided coal-fired power plant under off-design conditions. Hourly thermodynamic performances are analyzed on typical days under partial load. The effects of several operational parameters, such as solar irradiation intensity, incident angle, flow rate of thermal oil, on the performance of solar field efficiency and net solar-to-electricity efficiency were examined. Possible schemes have been proposed for improving the solar aided coal-fired power plant on off-design operation. The results obtained in the current study could provide a promising approach to solve the poor thermodynamic performance of solar thermal power plant and also offer a basis for the practical operation of MW-scale solar aided coal-fired power plant

  17. Laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate to UF/sub 6/ by fluidized-bed processes

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, E.L.; Urza, I.J.; Cathers, G.I.

    1977-06-01

    This report describes laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate (UNH) to UF/sub 6/ and on purification of the UF/sub 6/. Experimental laboratory studies on the removal of residual nitrate from uranium trioxide (UO/sub 3/) calcine and the fluorination of technetium and subsequent sorption on MgF/sub 2/ were conducted to support the pilot-plant work. Two engineering-scale pilot plants utilizing fluidized-bed processes were constructed for equipment and process testing of the calcination of UNH to UO/sub 3/ and the direct fluorination of UO/sub 3/ to UF/sub 6/.

  18. Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Jorge M. Llamas

    2017-08-01

    Full Text Available Currently, operating parabolic trough (PT solar thermal power plants, either solar-only or with thermal storage block, use the solar field as a heat transfer fluid (HTF thermal storage system to provide extra thermal capacity when it is needed. This is done by circulating heat transfer fluid into the solar field piping in order to create a heat fluid buffer. In the same way, by oversizing the solar field, it can work as an alternative thermal energy storage (TES system to the traditionally applied methods. This paper presents a solar field TES model for a standard solar field from a 50-MWe solar power plant. An oversized solar model is analyzed to increase the capacity storage system (HTF buffering. A mathematical model has been developed and different simulations have been carried out over a cycle of one year with six different solar multiples considered to represent the different oversized solar field configurations. Annual electricity generation and levelized cost of energy (LCOE are calculated to find the solar multiple (SM which makes the highest solar field thermal storage capacity possible within the minimum LCOE.

  19. Modernization and enlarging of the Marcoule pilot plant for R and D

    International Nuclear Information System (INIS)

    Calame-Longjean, A.; Revol, G.; Roux, J.P.; Ranger, G.

    1987-01-01

    The aim of the pilot plant is the testing of process and equipment in actual conditions with spent fuels on a half-industrial scale and for a significant time. From 1963 to 1983 more than 11t of spent fuels (mainly from fast reactors) were reprocessed. Since 1983 is modernized and enlarged and the new plant of the TOR project (treatment of oxides from fast reactors) are described [fr

  20. Applied studies in solar photocatalytic detoxification: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Malato, S.; Blanco, J.; Vidal, A.; Alarcon, D.; Maldonado, M.I.; Caceres, J.; Gernjak, W. [CIEMAT - Plataforma Solar de Almeria, Tabernas (Spain)

    2003-10-01

    The technical feasibility and performance of photocatalytic degradation of four water-soluble pesticides (diuron, imidacloprid, formetanate and methomyl) have been studied at pilot scale in two well-defined systems which are of special interest because natural-solar UV light can be used for them: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. The pilot plant is made up of compound parabolic collectors specially designed for solar photocatalytic applications. The initial concentration tested with imidacloprid, formetanate and methomyl was 50 and 30 mg/l with diuron, and the catalyst concentrations were 200 mg/l and 0.05 mM with TiO{sub 2} and iron, respectively. Total disappearance of the parent compounds, 90% mineralisation and toxicity reduction below the threshold (EC{sub 50}) have been attained with all pesticides tested. All these results have contributed to an evaluation of photocatalytic treatment capacity and comments on the main parameters of TiO{sub 2} and Fe separation from the treated water. (author)

  1. Usage of hybrid solar collector system in drying technologies of medical plants

    International Nuclear Information System (INIS)

    Čiplienė, Aušra; Novošinskas, Henrikas; Raila, Algirdas; Zvicevičius, Egidijus

    2015-01-01

    Highlights: • Solar radiation energy utilization in drying technologies. • Accumulation of solar radiation energy. • The system comprising two different solar collector types. • Preparation of the drying agent by employing solar radiation energy around the clock. • The energy resources saving technology for medicinal plants’ raw material processing and drying. - Abstract: In the temperate climate zone under natural conditions, medicinal plants drying up to 8–12% moisture content and preparation of the quality medicinal plant’s raw material are complicated tasks. In many cases drying process of medicinal plants raw material, particularly rich in volatile compounds, needs the optimal drying temperatures of 30–45 °C and relative humidity not higher than 50–60%. In Lithuania, located in the northern part of the temperate climate zone, in summer the average temperature of ambient air is 16.1 ± 0.5 °C, and relative humidity is 77.3 ± 1.8%. In order to improve the sorption properties of ambient air, it is heated up to the admissible drying temperature. The experimental dryer was developed comprising two different solar collectors: the air type solar collector with area 12 m 2 for direct heating of the drying agent and the flat-plate type solar collector (8 m 2 ) for accumulation of converted heat energy. The research of motherwort (Leonurus cardiaca L.) drying was carried out in the dryer. It was determined that by combining operation of two different solar collectors, the solar radiation energy for drying agent’s heating could be used continuously around the clock by employing the accumulated energy, in order to compensate the solar irradiance variability and to ensure stability of the drying process. In the daytime the air-type solar collector at an airflow equal to 367 m 3 h −1 , i.e. at comparative flow of the drying agent per ton of dried medicinal plant raw material – 2450 m 3 h −1 , heats the air up to 30 °C when the solar

  2. Design of solar drying-plant for bulk material drying

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2008-11-01

    Full Text Available A generally well-known high energy requirement for technological processes of drying and the fact that the world’s supplyof the conventional energy sources has considerably decreased are the decisive factors forcing us to look for some new, if possible,renewable energy sources for this process by emphasising their environmental reliability. One of the possibilities how to replace, atleast partly, the conventional energy sources – heat in a drying process is solar energy.Air-drying of bulk materials usually has a series of disadvantages such as time expenditure, drying defects in the bulk materialand inadequate final moisture content. A method that obviates or reduces the disadvantages of air-drying and, at the same time, reducesthe costs of kiln drying, is drying with solar heat. Solar energy can replace a large part of this depletable energy since solar energy cansupply heat at the temperatures most often used to dry bulk material. Solar drying-plant offer an attractive solution.

  3. A pilot plant for removing chromium from residual water of tanneries.

    Science.gov (United States)

    Landgrave, J

    1995-02-01

    The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented.

  4. Flexible dynamic operation of solar-integrated power plant with solvent based post-combustion carbon capture (PCC) process

    International Nuclear Information System (INIS)

    Qadir, Abdul; Sharma, Manish; Parvareh, Forough; Khalilpour, Rajab; Abbas, Ali

    2015-01-01

    Highlights: • Flexible operation of power and PCC plant may significantly increase operational revenue. • Higher optimal carbon capture rates observed with solar thermal energy input. • Solar thermal repowering of the power plant provides highest net revenue. • Constant optimal capture rate observed for one of the flexible operation cases. • Up to 42% higher revenue generation observed between two cases with solar input. - Abstract: This paper examines flexible operation of solvent-based post-combustion carbon capture (PCC) for the reduction of power plant carbon emissions while minimizing revenue loss due to the reduced power plant electricity output. The study is conducted using a model superstructure enveloping three plants; a power plant, a PCC plant and a solar thermal field where the power plant and PCC plant are operated flexibly under the influence of hourly electricity market and weather conditions. Reduced (surrogate) models for the reboiler duty and auxiliary power requirement for the carbon capture plant are generated and applied to simulate and compare four cases, (A) power plant with PCC, (B) power plant with solar assisted PCC, (C) power plant with PCC and solar repowering – variable net electricity output and (D) power plant with PCC and solar repowering – fixed net electricity output. Such analyses are conducted under dynamic conditions including power plant part-load operation while varying the capture rate to optimize the revenue of the power plant. Each case was simulated with a lower carbon price of $25/tonne-CO 2 and a higher price of $50/tonne-CO 2 . The comparison of cases B–D found that optimal revenue generation for case C can be up to 42% higher than that of solar-assisted PCC (case B). Case C is found to be the most profitable with the lowest carbon emissions intensity and is found to exhibit a constant capture rate for both carbon prices. The optimal revenue for case D is slightly lower than case C for the lower carbon

  5. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Frances, E.; Campos, I.J.; Martin, J.A.; Gil, J. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  6. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M P; Frances, E; Campos, I J; Martin, J A; Gil, J [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1997-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  7. An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors

    International Nuclear Information System (INIS)

    Amelio, Mario; Ferraro, Vittorio; Marinelli, Valerio; Summaria, Antonio

    2014-01-01

    An evaluation of the performance of an innovative solar system integrated in a combined cycle plant is presented, in which the heat transfer fluid flowing in linear parabolic collectors is the same oxidant air that is introduced into the combustion chamber of the plant. This peculiarity allows a great simplification of the plant. There is a 22% saving of fossil fuel results in design conditions and 15.5% on an annual basis, when the plant works at nominal volumetric flow rate in the daily hours. The net average year efficiency is 60.9% against the value of 51.4% of a reference combined cycle plant without solar integration. Moreover, an economic evaluation of the plant is carried out, which shows that the extra-cost of the solar part is recovered in about 5 years. - Highlights: • A model to calculate an innovative ISCCS (Integrated solar Combined Cycle Systems) solar plant is presented. • The plant uses air as heat transfer fluid as well as oxidant in the combustor. • The plant presents a very high thermodynamic efficiency. • The plant is very simple in comparison with existing ISCCS

  8. WIPP conceptual design report. Addendum G. Accident analysis for Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Shefelbine, H.C.; Metcalf, J.H.

    1977-06-01

    The types of accidents or risks pertinent to the Waste Isolation Pilot Plant (WIPP) are presented. Design features addressing these risks are discussed. Also discussed are design features that protect the public

  9. Roles of Solar Power from Space for Europe - Space Exploration and Combinations with Terrestrial Solar Plant Concepts

    Science.gov (United States)

    Summerer, L.; Pipoli, T.; Galvez, A.; Ongaro, F.; Vasile, M.

    The paper presents the prospective roles of SPS concepts for Europe, shows the outcome of recent studies undertaken by ESA's Advanced Concepts Team (ACT) together with European industry and research centres and gives insight into planned activities. The main focus is on the assessment of the principal validity and economic viability of solar power from space concepts in the light of advances in alternative sustainable, clean and potentially abundant solar-based terrestrial concepts. The paper takes into account expected changes in the European energy system (e.g. gradual introduction of hydrogen as energy vector). Special emphasis is given to the possibilities of integrating space and terrestrial solar plants. The relative geographic proximity of areas in North Africa with high average solar irradiation to the European energy consumer market puts Europe in a special position regarding the integration of space and terrestrial solar power concepts. The paper presents a method to optimise such an integration, taking into account different possible orbital constellations, terrestrial locations, plant number and sizes as well as consumer profiles and extends the scope from the European-only to a multi continental approach including the fast growing Chinese electricity market. The work intends to contribute to the discussion on long-term options for the European commitment to worldwide CO2 emission reduction. Cleaner electricity generation and environmentally neutral transport fuels (e.g. solar generated hydrogen) might be two major tools in reaching this goal.

  10. Technical and economic assessment of the integrated solar combined cycle power plants in Iran

    International Nuclear Information System (INIS)

    Soltani Hosseini, M.; Hosseini, R.; Valizadeh, G.H.

    2002-01-01

    Thermal efficiency, capacity factor, environmental considerations, investment cost, fuel and O and M costs are the main parameters for technical and economic assessment of solar power plants. This analysis has shown that the Integrated Solar Combined Cycle System with 67 MW e solar field(ISCCS-67) is the most suitable plan for the first solar power plant in Iran. The Levelized Energy Costs of combined cycle and ISCCS-67 power plants would be equal if 49 million dollars of ISCCS-67 capital cost supplied by the international environmental organizations such as Global Environmental Facilities and World Bank. This study shows that an ISCCS-67 saves 59 million dollars in fuel consumption and reduces about 2.4 million ton in CO 2 emission during 30 years operating period. Increasing of steam turbine capacity by 50%, and 4% improvement in overall efficiency are other advantages of iSCCS-67 power plant. The LEC of ISCCS-67 is 10% and so 33% lower than the combined cycle and gas turbine, respectively, at the same capacity factor with consideration of environmental costs

  11. Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions.

    Science.gov (United States)

    Espinosa-Solares, Teodoro; Bombardiere, John; Chatfield, Mark; Domaschko, Max; Easter, Michael; Stafford, David A; Castillo-Angeles, Saul; Castellanos-Hernandez, Nehemias

    2006-01-01

    Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.

  12. Development of a computer systems for operational data acquisition of uranium isotopic enrichment pilot plant

    International Nuclear Information System (INIS)

    Maia, W.M.C.

    1985-01-01

    A pilot plant for uranium enrichment using the jet nozzle process was transfered from Federal Republic of Germany to Brazil, to train Brazilian technicist in its operation and to improve the process. This pilot plant is monitored by a data acquisition system and the possibility of faulty events would cause serious dificulties, as far as maintenance is concerned (for instance, unvailable special components). It is described the development of a new system, which is proposed in order to minimize difficulties with maintenance that utilizes in the assembling integrated circuits of large scale of integration. It is controlled by a microcomputer. (Author) [pt

  13. Decommissioning of an uranium hexafluoride pilot plant

    International Nuclear Information System (INIS)

    Santos, Ivan; Abrao, Alcidio; Carvalho, Fatima M.S.; Ayoub, Jamil M.S.

    2009-01-01

    The Institute of Nuclear and Energetic Researches has completed fifty years of operation, belongs to the National Commission for Nuclear Energy, it is situated inside the city of Sao Paulo. The IPEN-CNEN/SP is a Brazilian reference in the nuclear fuel cycle, researches in this field began in 1970, having dominance in the cycle steps from Yellow Cake to Uranium Hexafluoride technology. The plant of Uranium Hexafluoride produced 35 metric tonnes of this gas by year, had been closed in 1992, due to domain and total transference of know-how for industrial scale, demand of new facilities for the improvement of recent researches projects. The Institute initiates decommissioning in 2002. Then, the Uranium Hexafluoride pilot plant, no doubt the most important unit of the fuel cycle installed at IPEN-CNEN/SP, beginning decommissioning and dismantlement (D and D) in 2005. Such D and D strategies, planning, assessment and execution are described, presented and evaluated in this paper. (author)

  14. Intelligent system for a remote diagnosis of a photovoltaic solar power plant

    International Nuclear Information System (INIS)

    Sanz-Bobi, M A; San Roque, A Muñoz; Marcos, A de; Bada, M

    2012-01-01

    Usually small and mid-sized photovoltaic solar power plants are located in rural areas and typically they operate unattended. Some technicians are in charge of the supervision of these plants and, if an alarm is automatically issued, they try to investigate the problem and correct it. Sometimes these anomalies are detected some hours or days after they begin. Also the analysis of the causes once the anomaly is detected can take some additional time. All these factors motivated the development of a methodology able to perform continuous and automatic monitoring of the basic parameters of a photovoltaic solar power plant in order to detect anomalies as soon as possible, to diagnose their causes, and to immediately inform the personnel in charge of the plant. The methodology proposed starts from the study of the most significant failure modes of a photovoltaic plant through a FMEA and using this information, its typical performance is characterized by the creation of its normal behaviour models. They are used to detect the presence of a failure in an incipient or current form. Once an anomaly is detected, an automatic and intelligent diagnosis process is started in order to investigate the possible causes. The paper will describe the main features of a software tool able to detect anomalies and to diagnose them in a photovoltaic solar power plant.

  15. Radioactive Waste Treatment and Conditioning Using Plasma Technology Pilot Plant: Testing and Commissioning

    International Nuclear Information System (INIS)

    Rafizi Salihuddin; Rohyiza Baan; Norasalwa Zakaria

    2016-01-01

    Plasma pilot plant was commissioned for research and development program on radioactive waste treatment. The plant is equipped with a 50 kW direct current of non-transferred arc plasma torch which mounted vertically on top of the combustion chamber. The plant also consists of a dual function chamber, a water cooling system, a compress air supply system and a control system. This paper devoted the outcome after testing and commissioning of the plant. The problems arise was discussed in order to find the possible suggestion to overcome the issues. (author)

  16. NPDES Permit for Crow Municipal Rural & Industrial Pilot Water Treatment Plant in Montana

    Science.gov (United States)

    Under NPDES permit MT-0031827, the Crow Indian Tribe is authorized to discharge from the Crow Municipal Rural & Industrial (MR&I) Pilot Water Treatment Plant in Bighorn County, Montana to the Bighorn River.

  17. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  18. 3D NUMERICAL STUDY OF FLOW IN A SOLAR CHIMNEY POWER PLANT SYSTEM

    Directory of Open Access Journals (Sweden)

    TAHAR TAYEBI

    2015-12-01

    Full Text Available Heat transfer process and fluid flow in a Solar Chimney Power Plant System (SCPPS are investigated numerically. As simulation object we use the Spanish prototype plant. The calculative model and boundary conditions in calculation are introduced. Boussinesq model was chosen in the natural convection processus, Discrete Ordinate radiation model was employed for radiation. The principal factors that influence on the performance of the Solar Chimney have been analysed. The effects on the flow of the Solar Chimney which caused by solar radiation intensity have been simulated. The calculated results are compared and are approximately equivalent to the relative experimental data of the Manzanares prototype. It can be concluded that the temperature difference between the inlet and outlet of collector, as well as the air velocity in the collector of the system, is increase with the increase of solar radiation intensity and the pressure throughout system is negative value.

  19. Solar Central Receiver Prototype Heliostat. Volume II. Phase II planning (preliminary)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A currently planned DOE program will develop and construct a 10 MW/sub e/ Pilot Plant to demonstrate the feasibility and operational characteristics of Solar Central Receiver Power Generation. The field of heliostats is a major element of the Solar Central Receiver Power Generation system. The primary objective of the program described is to establish and verify the manufacturability, performance, durability, and maintenance requirements of the commercial plant heliostat design. End products of the 16 month effort include: (1) design, fabrication, and test of heliostats; (2) preliminary designs of manufacturing, assembly, installation, and maintenance processes for quantity production; (3) detailed design of critical tooling or other special equipment for such processes; (4) refined cost estimates for heliostats and maintenance; and (5) an updated commercial plant heliostat preliminary design. The program management and control system is discussed. (WHK)

  20. FY 1977 Annual report on Sunshine Project results. Experimental research for detailed designs of tower light-collection type solar thermal power plant; 1977 nendo taiyonetsu hatsuden plant (tower shuko hoshiki) no shosai sekkei no tame no shiken kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at pursuing technical and economic possibilities of solar thermal power plant by development of devices for a tower light-collecting type solar thermal power plant (in particular, heliostat, heat absorber and heat storage device) and materials therefor through the basic tests, and tests using a 10 kW heat collector and construction, on a trial basis, of a large-scale model plant with a commercial heliostat, and by planning to construct a 1,000 kW-class pilot plant for generating peak-shaving power using these devices. The major achievements in the FY1977 are summarized. The system analysis estimates annual power production possibly reaching 547,600 kWH. The heat-collecting test plant records a heat-collecting efficiency of 50 to 70% for collected heat quantity of 50 kW or more. The heliostat test confirms that the GL type is more favorable than the XY type. The heat absorber, which is a 1/3 model of the commercial device, is tested for its heat releasing performance, producing the quantitative released heat data. The heat transfer characteristics are investigated for the regenerative heat exchanger when the phase changes occur simultaneously on both molten salt and water sides. The mirror is exposure-tested in the field test for 1 year, to collect the data. (NEDO)

  1. Impact of solar energy cost on water production cost of seawater desalination plants in Egypt

    International Nuclear Information System (INIS)

    Lamei, A.; Zaag, P. van der; Munch, E.

    2008-01-01

    Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round. This paper presents unit production costs and energy costs for 21 RO desalination plants in the region. An equation is proposed to estimate the unit production costs of RO desalination plants as a function of plant capacity, price of energy and specific energy consumption. This equation is used to calculate unit production costs for desalinated water using photovoltaic (PV) solar energy based on current and future PV module prices. Multiple PV cells are connected together to form a module or a panel. Unit production costs of desalination plants using solar energy are compared with conventionally generated electricity considering different prices for electricity. The paper presents prices for both PV and solar thermal energy. The paper discusses at which electricity price solar energy can be considered economical to be used for RO desalination; this is independent of RO plant capacity. For countries with electricity prices of 0.09 US$/kWh, solar-generated electricity (using PV) can be competitive starting from 2 US$/W p (W p is the number of Watts output under standard conditions of sunlight). For Egypt (price of 0.06 US$/kWh), solar-generated electricity starts to be competitive from 1 US$/W p . Solar energy is not cost competitive at the moment (at a current module price for PV systems including installation of 8 US$/W p ), but advances in the technology will continue to drive the prices down, whilst penalties on usage

  2. Radiation treatment of sewage sludge - experience with an operating pilot plant

    International Nuclear Information System (INIS)

    Suess, A.; Lessel, T.

    1977-01-01

    After an operation time of a pilot plant for the γ-irradiation of sewage sludge after 3 years promising results could be obtained for economic considerations, killing rate of pathogenes and radiation induced changes in sedimentation properties. Irradiated sewage sludge indicated nearly the same effect on soil and plant as untreated. No special trained personnel are necessary for maintenance because of the simple design. Successful experience during 18 months resulted in an increase of the daily capacity up to 120 m 3 from December 1975. (author)

  3. Pilot plant studies of the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1977-09-30

    Work for the period July 1 to September 30, 1977 is summarized briefly. Results of the following studies are reported: analysis and evaluation of potential raw materials--chemical analysis of the Kudzu plant and effect of NO/sub x/ pretreatments on the hydrolysis of wheat straw; utilization of hemicellulose sugars; process design and economic studies--hydrolysis process and ethanol fermentation; pilot plant process development and design studies--enhanced cellulase production and continuous hydrolysis. (JGB)

  4. Use of Pilot Plants for Developing Used Nuclear Fuel Recycling Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Chris; Arm, Stuart [EnergySolutions LLC (United States); Banfield, Zara; Jeapes, Andrew; Taylor, Richard [National Nuclear Laboratory (United Kingdom)

    2009-06-15

    EnergySolutions and its teaming partners are working with the US Department of Energy (DOE) to develop processes, equipment and facilities for recycling used nuclear fuel (UNF). Recycling significantly reduces the volume of wastes that ultimately will be consigned to the National Geologic Repository, enables the re-use in new fuel of the valuable uranium and plutonium in the UNF, and allows the long-lived minor actinides to be treated separately so they do not become long term heat emitters in the Repository. A major requirement of any new UNF recycling facility is that pure plutonium is not separated anywhere in the process, so as to reduce the nuclear proliferation attractiveness of the facility. EnergySolutions and its team partner the UK National Nuclear Laboratory (NNL) have developed the NUEX process to achieve this and to handle appropriately the treatment of other species such as krypton, tritium, neptunium and technetium. NUEX is based on existing successful commercial UNF recycling processes deployed in the UK, France and imminently in Japan, but with a range of modifications to the flowsheet to keep some uranium with the plutonium at all times and to minimize aerial and liquid radioactive discharges. NNL's long-term experience in developing the recycling and associated facilities at the Sellafield site in the UK, and its current duties to support technically the operation of the Thermal Oxide Reprocessing Plant (THORP) at Sellafield provides essential input to the design of the US NUEX-based facility. Development work for THORP and other first-of-kind nuclear plants employed miniature scale fully radioactive through large scale inactive pilot plants. The sequence of development work that we have found most successful is to (i) perform initial process development at small (typically 1/5000) scale in gloveboxes using trace active materials, (ii) demonstrate the processes at the same small scale with actual irradiated fuel in hot cells and (iii

  5. Performance analysis of conventional and sloped solar chimney power plants in China

    International Nuclear Information System (INIS)

    Cao Fei; Zhao Liang; Li Huashan; Guo Liejin

    2013-01-01

    The solar chimney power plant (SCPP) has been accepted as one of the most promising approaches for future large-scale solar energy applications. This paper reports on a heat transfer model that is used to compare the performance of a conventional solar chimney power plant (CSCPP) and two sloped solar chimney power plants (SSCPPs) with the collector oriented at 30° and 60°, respectively. The power generation from SCPPs at different latitudes in China is also analyzed. Results indicate that the larger solar collector angle leads to improved performance in winter but results in lower performance in summer. It is found that the optimal collector angle to achieve the maximum power in Lanzhou, China, is around 60°. Main factors that influence the performance of SCPPs also include the system height and the air thermophysical characteristics. The ground energy loss, reflected solar radiation, and kinetic loss at the chimney outlet are the main energy losses in SCPPs. The studies also show SSCPPs are more suitable for high latitude regions in Northwest China, but CSCPPs are suggested to be built in southeastern and eastern parts of China with the combination to the local agriculture. - Highlights: ► The optimum collector angle for maximum power generation is 60° in Lanzhou. ► Main parameters influencing performances are the system height and air property. ► Ground loss, reflected loss and outlet kinetic loss are the main energy losses. ► The sloped styles are suitable for Northwest China. ► The conventional styles are suitable for Southeast and East China.

  6. Safety study on nuclear heat utilization system - accident delineation and assessment on nuclear steelmaking pilot plant

    International Nuclear Information System (INIS)

    Yoshida, T.; Mizuno, M.; Tsuruoka, K.

    1982-01-01

    This paper presents accident delineation and assessment on a nuclear steelmaking pilot plant as an example of nuclear heat utilization systems. The reactor thermal energy from VHTR is transported to externally located chemical process plant employing helium-heated steam reformer by an intermediate heat transport loop. This paper on the nuclear steelmaking pilot plant will describe (1) system transients under accident conditions, (2) impact of explosion and fire on the nuclear reactor and the public and (3) radiation exposure on the public. The results presented in this paper will contribute considerably to understanding safety features of nuclear heat utilization system that employs the intermediate heat transport loop and the helium-heated steam reformer

  7. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services (WRES)

    2004-10-25

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  8. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    International Nuclear Information System (INIS)

    2004-01-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  9. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    Science.gov (United States)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  10. Separation of packaging plastics by froth flotation in a continuous pilot plant

    International Nuclear Information System (INIS)

    Carvalho, Teresa; Durao, Fernando; Ferreira, Celia

    2010-01-01

    The objective of the research was to apply froth flotation to separate post-consumer PET (Polyethylene Terephthalate) from other packaging plastics with similar density, in a continuously operated pilot plant. A representative sample composed of 85% PET, 2.5% PVC (Polyvinyl Chloride) and 11.9% PS (Polystyrene) was subjected to a combination of alkaline treatment and surfactant adsorption followed by froth flotation. A mineral processing pilot plant, owned by a Portuguese mining company, was adapted for this purpose. The experimentation showed that it is possible to produce an almost pure concentrate of PET, containing 83% of the PET in feed, in a single bank of mechanical flotation cells. The concentrate grade attained was 97.2% PET, 1.1% PVC and 1.1% PS. By simulation it was shown that the Portuguese recycling industry specifications can be attained if one cleaning and one scavenger stages are added to the circuit.

  11. Concentrating solar power plant investment and operation decisions under different price and support mechanisms

    International Nuclear Information System (INIS)

    Kost, Christoph; Flath, Christoph M.; Möst, Dominik

    2013-01-01

    The dispatch opportunities provided by storage-enhanced Concentrating Solar Power (CSP) plants have direct implications on the investment decisions as not only nameplate capacity but also the storage capacity and the solar multiple play a crucial role for the viability of the plant investment. By integrating additional technical aspects and operation strategies, this paper extends the optimization model proposed by Madaeni et al., How Thermal Energy Storage Enhances the Economic Viability of Concentrating Solar Power. Using a mixed integer maximization approach the paper yields both the optimal layout decision and the operation of CSP plants. Subsequently, the economic value of CSP storage is analyzed via energy modeling of a Spanish plant location under the respective wholesale market prices as well as the local feed-in tariff. The analysis shows that investment incentives for CSP plants with storage need to appropriately account for the interdependency between the price incentives and the plant operating strategy. As the resulting revenue characteristics influence the optimal size of solar field and storage differing operating strategies also give rise to differing optimal plant layouts. Most noteworthy, the current Spanish support scheme offers only limited incentives for larger thermal storage capacity. - Highlights: • Dispatch opportunities of CSP have direct implications on both investment and operational decisions. • Valuation approach with a single mixed integer maximization problem. • Profitability of CSP plants under the premium feed-in tariff in Spain was assessed. • Layout decision and storage size are influenced by remuneration scheme. • Discuss alternative remuneration schemes for “dispatchable” RE technologies

  12. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume I. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard) solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report also discusses plant performance, operations and maintenance, development, and facility cost estimate and economic analysis.

  13. Conceptual design of SO3 decomposer for thermo-chemical iodine-sulfur process pilot plant

    International Nuclear Information System (INIS)

    Akihiro Kanagawa; Seiji Kasahara; Atsuhiko Terada; Shinji Kubo; Ryutaro Hino; Yoshiyuki Kawahara; Masaharu Watabe; Hiroshi Fukui; Kazuo Ishino; Toshio Takahashi

    2005-01-01

    Thermo-chemical water-splitting cycle is a method to make an effective use of the high temperature nuclear heat for hydrogen production. Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on HTGR and also on thermo-chemical hydrogen production by using a thermo-chemical iodine-sulfur cycle (IS process). Based on the test results and know-how obtained through a bench-scale tests of hydrogen production of about 30 NL/hr, JAERI has a plan to construct a pilot test plant heated by high temperature helium gas, which has a hydrogen production performance of 30 Nm 3 /hr and will be operated under the high pressure up to 2 MPa. One of the key components of the pilot test plant is a SO 3 decomposer under high temperature conditions up to 850 degree C and high pressure up to 2 MPa. In this paper, a concept of the SO 3 decomposer for the pilot test plant fabricated with SiC ceramics, a corrosion-resistant material is investigated. Preliminary analyses on temperature and flow-rate distributions in the SO 3 decomposer and on thermal stress were carried out. A SO 3 decomposer model was experimentally manufactured. (authors)

  14. 1974 conceptual design description of a bedded salt pilot plant in southeast New Mexico

    International Nuclear Information System (INIS)

    1977-06-01

    The policy of the United States Atomic Energy Commission is to take custody of all commercial high-level radioactive wastes and maintain control of them in perpetuity. This policy (Title 10, Code of Federal Regulations, Part 50, Appendix F) requires that the high-level wastes from nuclear fuels reprocessing plants be solidified within five years after reprocessing and then shipped to a federal repository within ten years after reprocessing. Ultimate disposal sites and/or methods have not yet been selected and are not expected to be ready when waste deliveries begin about 1983. Therefore, the AEC plans to build an interim storage facility, called Retrievable Surface Storage Facility (RSSF), to store and isolate the waste from man and his environment until the suitability of the permanent repository is demonstrated and public acceptance has been established. Meantime, the AEC is proceeding with the study and development of an ultimate disposal method. Bedded salt is being considered for ultimate waste disposal, and work is in progress to develop a Bedded Salt Pilot Plant to demonstrate its acceptability. The pilot plant will permit in situ verification of laboratory work on the interaction of heat and radioactivity of the waste with the salt and surroundings. One concept of such a pilot facility is described

  15. Reports on 1979 result of Sunshine Project. Research on solar energy system (meteorological investigation); 1979 nendo taiyo energy system no kenkyu seika hokokusho. Kisho chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-31

    The following were implemented with the purpose of collecting, measuring and putting in order the meteorological data required for the R and D on solar energy technology. (1) Observation of direct solar radiation (Nagoya/Sendai), (2) Meteorological observation for the pilot plant site of 1,000kW solar thermal power generation, (3) Studies on estimation of quantity of direct solar radiation, and (4) Studies on characteristics of quantity of direct solar radiation. In (1), the summary and the results were explained on the continuous observation of the quantity of the direct solar radiation conducted in Nagoya and Sendai using a self-recording actinometer. In (2), meteorological observation was conducted for building lots reclaimed from a salt pan at Nio-cho, Mitoyo county, Kagawa prefecture, a scheduled site for the pilot plant. The items were the quantity of global solar radiation, quantity of sky solar radiation, quantity of direct solar radiation, temperature, wet-bulb temperature, wind direction and wind velocity. In (3), A method was developed for estimating the monthly average quantity of the global solar radiation, normal direct solar radiation, horizontal sky solar radiation at an arbitrary spot. In (4), the characteristics of direct/specified direct solar radiation flux curves were elucidated as the basic data for the technological development of solar energy utilization using a sun follower type heat collecting device, with research done on a method for estimating these curves from other meteorological factors. (NEDO)

  16. Remote maintenance demonstration tests at a pilot plant for high level waste vitrification

    International Nuclear Information System (INIS)

    Selig, M.

    1984-01-01

    The remote maintenance and replacement technique designed for a radioactive vitrification plant have been developed and tested in a full scale handling mockup and in an inactive pilot plants by the Central Engineering Department of the Karlsruhe Nuclear Research Center. As a result of the development work and the tests it has been proved that the remote maintenance technique and remote handling equipment can be used without any technical problems and are suited for application in a radioactive waste vitrification plant

  17. Tårs 10000 m2 CSP + Flat Plate Solar Collector Plant - Cost-Performance Optimization of the Design

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Tian, Zhiyong

    2016-01-01

    , was established. The optimization showed that there was a synergy in combining CSP and FP collectors. Even though the present cost per m² of the CSP collectors is high, the total energy cost is minimized by installing a combination of collectors in such solar heating plant. It was also found that the CSP......A novel solar heating plant with Concentrating Solar Power (CSP) collectors and Flat Plate (FP) collectors has been put into operation in Tårs since July 2015. To investigate economic performance of the plant, a TRNSYS-Genopt model, including a solar collector field and thermal storage tank...

  18. Pilot plant study for treating sewage in the waste water treatment plant at Crevillente-Derramador, Alicante, Spain; Estudio con plant piloto para el tratamiento de aguas residuales en la EDAR de Crevillente-Derramador (Alicante)

    Energy Technology Data Exchange (ETDEWEB)

    Morenilla Martinez, J. J.; Bernacer Bonora, I.; Santos Asensi, J. M.; Martinez Muro, M. A.; Sanchez Ventral, A.; Martinez Cosin, J. M.

    2002-07-01

    It is much easier to carry out preliminary studies before a waste water treatment plant is built or enlarged or to identify existing problems and their possible solutions by using a portable pilot plant that is capable of operating under real conditions using the actual waste water that is causing the problem. A pilot plant was used to conduct treatability studies on the ground in the waste water treatment plant at Crevillente-Derramador, Alicante, Spain. The project was set up and directed by the Public Waste Water Treatment Agency of the Autonomous Community of Valencia. The work was aimed at finding a solution to existing problems in the plant and in pre dimensioning its future facilities. (Author) 8 refs.

  19. Analysis and comparison between a concentrating solar and a photovoltaic power plant

    International Nuclear Information System (INIS)

    Desideri, Umberto; Campana, Pietro Elia

    2014-01-01

    Highlights: • The performance of CSP and PV plants were compared with similar assumptions. • The influence of the site on the performance of CSP and PV plants is determined. • CSP plants performance is always higher in locations where DNI is prevailing. • CSP levelized electricity costs are generally lower than those from PV plants. • PV plants may produce larger amounts of electricity where the DNI is not prevailing. - Abstract: Solar energy is a source, which can be exploited in two main ways to generate power: direct conversion into electric energy using photovoltaic panels and by means of a thermodynamic cycle. In both cases the amount of energy, which can be converted, is changing daily and seasonally, causing a discontinuous electricity production. In order to limit this drawback, concentrated solar power plants (CSP) and photovoltaic plants (PV) can be equipped with a storage system that can be configured not only for covering peak-loads but also for the base-load after the sunset or before the sunrise. In CSP plants it is the sun’s thermal energy to be stored, whereas in PV applications it is the electrical energy to be stored in batteries, although this is not economically and environmentally feasible in large-scale power plants. The main aim of this paper is to study the performance of concentrated solar power plants equipped with molten salts thermal storage to cover a base load of 3 MW el . In order to verify the possibility of storing effectively the thermal energy and to design a plant for base load operation, two locations were chosen for the study: Gela in southern Italy, and Luxor in Egypt. The electricity production of the CSP facilities has been analyzed and then compared with the electricity production of PV plants. Two different comparisons were done, one by sizing the PV plant to provide the same peak power and one using the same collectors surface. This paper has also highlighted some important issues in site selection and in

  20. Report on 1979 result of Sunshine Project (detailed design). Part 1. Forty t/day solvolysis coal liquefaction pilot plant; 1979 nendo 40T/nichi solvolysis sekitan pilot plant shosai sekkei. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The subject design documents are the compilation of the result of the design operation for the 'detailed design of 40 t/day class solvolysis coal liquefaction pilot plant'. The design of this pilot plant was conducted using, as the fundamental reference, the basic data provided by Kyushu National Industrial Research Institute and Kyushu University and the results of a contract research on '1 t/day class solvolysis coal liquefaction plant'. The subject detailed design was intended for Phase 1 centering on a single stage liquefaction - coal liquefaction (transformation into pitch) by solvolysis liquefaction reaction. The areas covered consists of the pre-treatment process, material mixing process, reaction process, reaction freezing process, coke separation process, SR recovery process, pitch refining process, utility facilities, and waste water treatment facilities. Incidentally, the processes for which the design operation has been completed this year, particularly the reaction process, coke separation process, SR recovery process, etc., are in the field untrodden technologically in the world; therefore, their design method is supposed to be established from the results of the R and D on coal liquefaction, '1 t/day class solvolysis coal liquefaction plant.' (NEDO)

  1. Report on 1979 result of Sunshine Project (detailed design). Part 1. Forty t/day solvolysis coal liquefaction pilot plant; 1979 nendo 40T/nichi solvolysis sekitan pilot plant shosai sekkei. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The subject design documents are the compilation of the result of the design operation for the 'detailed design of 40 t/day class solvolysis coal liquefaction pilot plant'. The design of this pilot plant was conducted using, as the fundamental reference, the basic data provided by Kyushu National Industrial Research Institute and Kyushu University and the results of a contract research on '1 t/day class solvolysis coal liquefaction plant'. The subject detailed design was intended for Phase 1 centering on a single stage liquefaction - coal liquefaction (transformation into pitch) by solvolysis liquefaction reaction. The areas covered consists of the pre-treatment process, material mixing process, reaction process, reaction freezing process, coke separation process, SR recovery process, pitch refining process, utility facilities, and waste water treatment facilities. Incidentally, the processes for which the design operation has been completed this year, particularly the reaction process, coke separation process, SR recovery process, etc., are in the field untrodden technologically in the world; therefore, their design method is supposed to be established from the results of the R and D on coal liquefaction, '1 t/day class solvolysis coal liquefaction plant.' (NEDO)

  2. Higher plant acclimation to solar ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Robberecht, R.

    1981-01-01

    The objectives of this study were to determine: (1) the relationship between plant sensitivity and epidermal uv attenuation, (2) the effect of phenotypic changes in the leaf epidermis, resulting from uv-B exposure, on plant sensitivity to uv radiation, and (3) the platicity of these changes in the epidermis leading to plant acclimation to uv-B radiation. A mechanism of uv-B attenuation, possibly involving the biosynthesis of uv-absorbing flavonoid compounds in the epidermis and mesophyll under the stress of uv-B radiation, and a subsequent increase in the uv-B attenuation capacity of the epidermis, is suggested. The degree of plant sensitivity and acclimation to natural and intensified solar uv-B radiation may involve a dynamic balance between the capacity for uv-B attenuation and uv-radiation-repair mechanisms in the leaf

  3. A Decision Support System for Plant Optimization in Urban Areas with Diversified Solar Radiation

    Directory of Open Access Journals (Sweden)

    Heyi Wei

    2017-02-01

    Full Text Available Sunshine is an important factor which limits the choice of urban plant species, especially in environments with high-density buildings. In practice, plant selection and configuration is a key step of landscape architecture, which has relied on an experience-based qualitative approach. However, the rationality and efficiency of this need to be improved. To maintain the diversity of plant species and to ensure their ecological adaptability (solar radiation in the context of sustainable development, we developed the Urban Plants Decision Support System (UP-DSS for assisting plant selection in urban areas with diversified solar radiation. Our methodology mainly consists of the solar radiation model and calibration, the urban plant database, and information retrieval model. The structure of UP-DSS is also presented at the end of the methodology section, which is based on the platform of Geographic Information Systems (GIS and Microsoft Excel. An application of UP-DSS is demonstrated in a residential area of Wuhan, China. The results show that UP-DSS can provide a very scientific and stable tool for the adaptive planning of shade-tolerant plants and photoperiod-sensitive plants, meanwhile, it also provides a specific plant species and the appropriate types of plant community for user decision-making according to different sunshine radiation conditions and the designer’s preferences.

  4. LEU fuel element produced by the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.

    2000-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a Material Testing Reactor type (MTR) fuel element facility, for producing the specified fuel elements required for the Egyptian Second Research Reactor, ETRR-2. The plant uses uranium hexafluoride (UF 6 , 19.75% U 235 by wt) as a raw material which is processed through a series of the manufacturing, inspection and test plan to produce the final specified fuel elements. Radiological safety aspects during design, construction, operation, and all reasonably accepted steps should be taken to prevent or reduce the chance of accidents occurrence. (author)

  5. Comparison and assessment of electricity generation capacity for different types of PV solar plants of 1MW in Soko banja, Serbia

    Directory of Open Access Journals (Sweden)

    Pavlović Tomislav M.

    2011-01-01

    Full Text Available This paper gives the results of the electricity generated by the fixed, one-axis and dual-axis tracking PV solar plant of 1 MW with flat PV panels made of monocrystalline silicon which is to be built in the area of Soko banja (spa in Serbia. Further on follows a description of the functioning of the fixed and one-axis and dual-axis tracking PV solar plant. For the calculation of the electricity generated by these plants PVGIS program from the Internet was used. Calculations have shown that fixed PV solar plant power of 1 MW, solar modules of monocrystalline silicon yield 1130000 kWh power output, one-axis tracking PV solar plant yields 1420000 kWh, and dual-axis tracking PV solar plant yields 1450000 kWh of electricity. Electricity generated by the fixed PV solar plant could satisfy 86% of the annual needs for the electricity of the „Zdravljak“ hotel and the special „Novi stacionar“ hospital in Soko banja.

  6. Radioactive waste disposal: Waste isolation pilot plants (WIPP). (Latest citations from the NTIS Bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the Waste Isolation Pilot Plant (WIPP), a geologic repository located in New Mexico for transuranic wastes generated by the U.S. Government. Articles follow the development of the program from initial site selection and characterization through construction and testing, and examine research programs on environmental impacts, structural design, and radionuclide landfill gases. Existing plants and facilities, pilot plants, migration, rock mechanics, economics, regulations, and transport of wastes to the site are also included. The Salt Repository Project and the Crystalline Repository Project are referenced in separate bibliographies. (Contains a minimum of 228 citations and includes a subject term index and title list.)

  7. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  8. Waste Isolation Pilot Plant Safety Analysis Report. Volume 5

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  9. Waste Isolation Pilot Plant Safety Analysis Report. Volume 4

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  10. Waste Isolation Pilot Plant Safety Analysis Report. Volume 1

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection: Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating control and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  11. Waste Isolation Pilot Plant Safety Analysis Report. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  12. Two treatment methods for stormwater sediments--pilot plant and landfarming--and reuse of the treated sediments in civil engineering.

    Science.gov (United States)

    Petavy, F; Ruban, V; Conil, P; Viau, J Y; Auriol, J C

    2009-07-01

    The aim of this research was to present a pilot plant for the treatment of stormwater sediments and to compare the decontamination rate to that obtained by landfarming. The possibilities for reuse of the treated sediments in civil engineering are also studied. Four sediments from retention/infiltration ponds or from street sweeping were studied. In each case organic matter (OM), total hydrocarbons (TH) and polycyclic aromatic hydrocarbons (PAH) were measured. Geotechnical tests were carried out to evaluate the reuse possibilities of the treated sediments. Treatment by means of the pilot plant was efficient at reducing TH and PAH concentrations: THs were reduced by 53-97% and PAHs were decreased by 60-95%. By comparison, a reduction of 45-75% in TH concentration is obtained with landfarming, whereas there is no significant decrease in PAHs. Furthermore, geotechnical tests showed that the treated fractions from the pilot plant can be reused as road embankments and as a capping layer. These results are most encouraging and show that stormwater sediments can valuably be reused after treatment in a pilot plant. Landfarming is less efficient but this technique could be used as a pretreatment in the case of high TH pollution.

  13. Solar retrofitting of a historical brewery plant in Bad Toelz/Upper Bavaria; Solare Erneuerung einer historischen Brauereianlage in Bad Toelz/Obb.

    Energy Technology Data Exchange (ETDEWEB)

    Lichtblau, Wendelin; Lichtblau, Florian [Lichtblau Architekten, Muenchen (Germany); Bruenner, Michael [Ingenieurbuero EST, Miesbach (Germany)

    2010-07-01

    The contribution under consideration reports on a solar renovation of a historic brewery plant in Bad Toelz (Federal Republic of Germany). All energy requirements of this brewery plant were minimized and supplied with renewable energy sources. A visible sign of this is the fully glazed roof with an integrated solar technology for light, air, heat and electricity. The energy concept includes a fully renewable energy supply to the historic building complex under the limiting conditions of the stock.

  14. Deep shaft high rate aerobic digestion: laboratory and pilot plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Tran, F; Gannon, D

    1981-01-01

    The Deep Shaft is essentially an air-lift reactor, sunk deep in the ground (100-160 m); the resulting high hydrostatic pressure together with very efficient mixing in the shaft provide extremely high O transfer efficiencies (O.T.E.) of less than or equal to 90% vs. 4-20% in other aerators. This high O.T.E. suggests real potential for Deep-Shaft technology in the aerobic digestion of sludges and animal wastes: with conventional aerobic digesters an O.T.E. over 8% is extremely difficult to achieve. Laboratory and pilot plant Deep-Shaft aerobic digester studies carried out at Eco-Research's Pointe Claire, Quebec laboratories, and at the Paris, Ontario pilot Deep-Shaft digester are described.

  15. Environmental Impacts From the Installation and Operation of Large-scale Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.; Turney, Damon

    2011-04-23

    Large-scale solar power plants are being developed at a rapid rate, and are setting up to use thousands or millions of acres of land globally. The environmental issues related to the installation and operation phases of such facilities have not, so far, been addressed comprehensively in the literature. Here we identify and appraise 32 impacts from these phases, under the themes of land use intensity, human health and well-being, plant and animal life, geohydrological resources, and climate change. Our appraisals assume that electricity generated by new solar power facilities will displace electricity from traditional U.S. generation technologies. Altogether we find 22 of the considered 32 impacts to be beneficial. Of the remaining 10 impacts, 4 are neutral, and 6 require further research before they can be appraised. None of the impacts are negative relative to traditional power generation. We rank the impacts in terms of priority, and find all the high-priority impacts to be beneficial. In quantitative terms, large-scale solar power plants occupy the same or less land per kW h than coal power plant life cycles. Removal of forests to make space for solar power causes CO{sub 2} emissions as high as 36 g CO{sub 2} kW h{sup -1}, which is a significant contribution to the life cycle CO{sub 2} emissions of solar power, but is still low compared to CO{sub 2} emissions from coal-based electricity that are about 1100 g CO{sub 2} kW h{sup -1}.

  16. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  17. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  18. Implementation of a solar thermal electricity pilot plant (Concentrated Tower) of 1MW and introduction of a bus fleet of plug-in hybrids on the Ilha do Fundao, Rio de Janeiro, Brazil; Implementacao de uma planta piloto de heliotermia (Torre de Concentracao) de 1MW e introducao de uma frota de onibus hibridos plug-in na Ilha do Fundao

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Bruno Soares Moreira Cesar; Malagueta, Diego Cunha [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PPE/COPPE/UFRJ), RJ (Brazil). Programa de Planejamento Energetico

    2010-07-01

    The aim of this paper is to simulate a solar thermal electricity pilot plant at the Campus of the Federal University of Rio de Janeiro (UFRJ), at Fundao Island, which would generate part of the electricity demanded by the Technology Center (CT) of the UFRJ. Based on the electricity demand from UFRJ and the electric prices paid by the institution, this study proposes the construction of a 1MW Concentrated Solar Power (CSP) pilot plant and analyses the economical, energy and environmental viability of implementation of this plant, operating from 2015 to 2045. This CSP plant would cover a field of 0,01km{sup 2} and have a 30% of capacity factor. This study also evaluates the impact caused by the substitution of the current Campus internal bus fleet for plug-in hybrid electric buses. The current service is provided by Normandy, which operates 12 buses plus 1 backup. These new buses would be regularly partially recharged by the energy generated from CSP. All the simulations have been made with the RETScreen software, which simulated the operation of the CSP, the amount of electricity produced, the carbon emissions avoided, the acquisition and implementation of the plug-in hybrid electric bus fleet and the cash flow. Six scenarios generated were, namely A1, B1, C1 (all for lower costs for the CSP plants) and A2, B2, C2 (for higher costs). For a social discount rate around 8% and along 30 years, only the A1, C1 and C2 scenarios showed a non-negative cash flow. Also, the emissions avoided were around 222 tCO{sub 2}/yr (or 6.660 tCO{sub 2} over 30 years) in the A1 and A2 scenarios, and around 550 tCO{sub 2}/yr (or 16.512 tCO{sub 2} over 30 years) in all others scenarios. (author)

  19. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk

    2012-05-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  20. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk; Thu, Kyaw; Bhatia, Hitasha Kaur; Bhatia, Charanjit Singh; Ng, K. C.

    2012-01-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  1. WIPP conceptual design report. Addendum C. Cost worksheets for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1977-04-01

    The cost worksheets for the Waste Isolation Pilot Plant (WIPP) are presented. A summary cost estimate, cost estimate for surface facilities, and cost estimate for shafts and underground facilities are included

  2. Continuous precipitation of uranium peroxide in process pilot plant

    International Nuclear Information System (INIS)

    Quinelato, A.L.

    1990-01-01

    An experimental study on uranium peroxide precipitation has been carried out with the objective to evaluate the influence of the main process parameters with a technological approach. The uraniferous solution used was obtained from the hydrometallurgical processing of an ore from Itataia - CE. Studies were developed in two distinct experimental stages. In the first stage, the precipitation was investigated by means of laboratory batch tests and, in the second stage, by means of continuous operation in a process pilot plant. (author)

  3. Fundamental aspects affecting the return on investment from solar power plants

    International Nuclear Information System (INIS)

    Cintula, B.; Viglas, D.

    2012-01-01

    The article deals with fundamental parameters of solar cells-conversion efficiency of solar radiation into electricity and price of solar cells. These two aspects affect each other, so it is important to deal with both at once. In introduction are described the theoretical solutions about efficiency analysis. Furthermore the article is focused on a description of materials used in the photovoltaic cells. In addition, the article shows the price trend of photovoltaic cells for the last year. Finally, these two aspects are evaluated for return on investment in photovoltaic power plants. (Authors)

  4. Pilot plant experiments at Wairakei Power Station

    International Nuclear Information System (INIS)

    Brown, Kevin L.; Bacon, Lew G.

    2009-01-01

    In the mid-1990s, several pilot plants were constructed at Wairakei to either improve the operational and economic performance of the power station or to mitigate the environmental effects of discharges to the Waikato River. The results of the following investigations are discussed: (1) fluid flow dynamic effects on silica scaling; (2) production of silica sols of predetermined particle size to evaluate the potential for generating commercial grade silica products; (3) use of 'sulfur oxidising bacteria' for the abatement of dissolved hydrogen sulphide in cooling water; (4) removal of arsenic from separated geothermal water; (5) steam line condensate corrosion; and (6) measurement and modelling of steam scrubbing in Wairakei's long steamlines. (author)

  5. Europe's largest solar thermal power plant. [200 kw thermal output supplemented by two 10-kw windmills

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, U

    1976-03-01

    An overview is given over the solar heating plant which has recently been commissioned in the Camargue (France). This is the largest plant in Europe, with a mean heat output of about 200 kW, for the production of thermal energy from solar energy. The plant consists of 108 parabolic collectors (200 sq. metres) and 48 flat collectors (110 sq. metres). Two windmills with outputs of 10 kW each complete the system. The heat energy produced by the solar collectors is given up to 3 different stores, which in turn are connected to various consumers.

  6. Extraterrestrial fiberglass production using solar energy. [lunar plants or space manufacturing facilities

    Science.gov (United States)

    Ho, D.; Sobon, L. E.

    1979-01-01

    A conceptual design is presented for fiberglass production systems in both lunar and space environments. The raw material, of lunar origin, will be plagioclase concentrate, high silica content slag, and calcium oxide. Glass will be melted by solar energy. The multifurnace in the lunar plant and the spinning cylinder in the space plant are unique design features. Furnace design appears to be the most critical element in optimizing system performance. A conservative estimate of the total power generated by solar concentrators is 1880 kW; the mass of both plants is 120 tons. The systems will reproduce about 90 times their total mass in fiberglass in 1 year. A new design concept would be necessary if glass rods were produced in space.

  7. Solar-assisted district heating systems: The Solarthermie 2000-programme; Solarunterstuetzte Nahwaermeversorgung: Programm Solarthermie-2000

    Energy Technology Data Exchange (ETDEWEB)

    Lottner, V. [Forschungszentrum Juelich GmbH (Germany). Projekttraeger Biologie, Energie, Umwelt (BEO)

    1998-12-31

    In Germany, utilisation of solar energy for thermal energy supply has a considerable technical and economic potential in terms of substitution of fossil fuels and reduction of CO{sub 2} emission. If appropriate technologies are used, solar-assisted district heat supply systems can be a cost-efficient concept for thermal utilisation of solar energy. The BMBF -programme `Solarthermie 2000` supports a number of pilot and demonstration plants in order to test and develop the most promising systems and storage facilities under real conditions. Long-term measuring programmes generate reliable data on thermal performance and cost of the plant concepts and create a solid basis for a technical and economic evaluation. (orig.) [Deutsch] Die Nutzung von Solarenergie fuer die Waermeversorgung bietet in Deutschland ein grosses technisches und wirtschaftliches Potential zur Substitution fossiler Energietraeger und Reduzierung der CO{sub 2} Emissionen in die Atmosphaere. Solarunterstuetzte Nahwaermesysteme stellen unter guenstigen technischen Bedingungen ein kostenguenstiges Konzept der thermischen Nutzung der Solarenergie dar. In dem BMBF-Programm Solarthermie-2000 werden Pilot- und Demonstrationsanlagen gefoerdert, so dass die aussichtsreichsten System- und Speicherkonzepte in der Praxis erprobt und gezielt weiterentwickelt werden koennen. Mit Langzeit-Messprogrammen werden belastbare Werte der thermischen Leistung und Kosten der Anlagenkonzepte ermittelt und eine zuverlaessige Grundlage fuer die technisch-wirtschaftliche Bewertung geschaffen. (orig.)

  8. Optimization, selection and feasibility study of solar parabolic trough power plants for Algerian conditions

    International Nuclear Information System (INIS)

    Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S.

    2015-01-01

    Highlights: • Evaluation of solar resources in the absence of measured data. • Optimization of 2 PTSTPPs integrated with TES and FBS and using oil and salt as HTFs. • 4E comparative study of the two optimized plants alongside the Andasol 1 plant. • The salt plant resulting as the best one and has been chosen for the viability study. • Tamanrasset is the best location for construction of PTSTPPs. - Abstract: In the present study, optimization of two parabolic trough solar thermal power plants integrated with thermal energy storage (TES), and fuel backup system (FBS) has been performed. The first plant uses Therminol VP-1 as heat transfer fluid in the solar field and the second plant uses molten salt. The optimization is carried out with solar multiple (SM) and full load hours of TES as the parameters, with an objective of minimizing the levelized cost of electricity (LCOE) and maximizing the annual energy yield. A 4E (energy–exergy–environment–economic) comparison of the optimized plants alongside the Andasol 1 as reference plant is studied. The molten salt plant resulting as the best technology, from the optimization and 4E comparative study has been chosen for the viability analysis of ten locations in Algeria with semi-arid and arid climatic conditions. The results indicate that Andasol 1 reference plant has the highest mean annual energy efficiency (17.25%) and exergy efficiency (23.30%). Whereas, the highest capacity factor (54.60%) and power generation (236.90 GW h) are exhibited by the molten salt plant. The molten salt plant has least annual water usage of about 800,482 m 3 , but demands more land for the operation. Nevertheless the oil plant emits the lowest amount of CO 2 gas (less than 40.3 kilo tonnes). From the economic viewpoint, molten salt seems to be the best technology compared to other plants due to its lowest investment cost (less than 360 million dollars) and lower levelized cost of electricity (LCOE) (8.48 ¢/kW h). The

  9. Use of phosphorus release batch tests for modelling an EBPR pilot plant

    DEFF Research Database (Denmark)

    Tykesson, E.; Aspegren, H.; Henze, Mogens

    2002-01-01

    The aim of this study was to evaluate how routinely performed phosphorus release tests could be used when modelling enhanced biological phosphorus removal (EBPR) using activated sludge models such as ASM2d. A pilot plant with an extensive analysis programme was used as basis for the simulations...

  10. Not-from-concentrate pilot plant ‘Wonderful’ cultivar pomegranate juice changes: Volatiles

    Science.gov (United States)

    Pilot plant ultrafiltration was used to mimic the dominant U.S. commercial pomegranate juice extraction method (hydraulic pressing whole fruit), to deliver a not-from-concentrate (NFC) juice that was high-temperature short-time pasteurized and stored at 4 and 25 °C. Recovered were 46 compounds, of ...

  11. Technical data for concentrated solar power plants in operation, under construction and in project

    Directory of Open Access Journals (Sweden)

    Ugo Pelay

    2017-08-01

    Full Text Available This article presents technical data for concentrated solar power (CSP plants in operation, under construction and in project all over the world in the form of tables. These tables provide information about plants (e.g., name of the CSP plant, country of construction, owner of the plant, aim of the plant and their technical characteristics (e.g., CSP technology, solar power, area of the plant, presence and type of hybridization system, electricity cost, presence and type of TES, power cycle fluid, heat transfer fluid, operating temperature, operating pressure, type of turbine, type and duration of storage, etc.. Further interpretation of the data and discussions on the current state-of-the-art and future trends of CSP can be found in the associated research article (Pelay et al., 2017 [1].

  12. Web tools concerning performance analysis and planning support for solar energy plants starting from remotely sensed optical images

    International Nuclear Information System (INIS)

    Morelli, Marco; Masini, Andrea; Ruffini, Fabrizio; Potenza, Marco Alberto Carlo

    2015-01-01

    We present innovative web tools, developed also in the frame of the FP7 ENDORSE (ENergy DOwnstReam SErvices) project, for the performance analysis and the support in planning of solar energy plants (PV, CSP, CPV). These services are based on the combination between the detailed physical model of each part of the plants and the near real-time satellite remote sensing of incident solar irradiance. Starting from the solar Global Horizontal Irradiance (GHI) data provided by the Monitoring Atmospheric Composition and Climate (GMES-MACC) Core Service and based on the elaboration of Meteosat Second Generation (MSG) satellite optical imagery, the Global Tilted Irradiance (GTI) or the Beam Normal Irradiance (BNI) incident on plant's solar PV panels (or solar receivers for CSP or CPV) is calculated. Combining these parameters with the model of the solar power plant, using also air temperature values, we can assess in near-real-time the daily evolution of the alternate current (AC) power produced by the plant. We are therefore able to compare this satellite-based AC power yield with the actually measured one and, consequently, to readily detect any possible malfunctions and to evaluate the performances of the plant (so-called “Controller” service). Besides, the same method can be applied to satellite-based averaged environmental data (solar irradiance and air temperature) in order to provide a Return on Investment analysis in support to the planning of new solar energy plants (so-called “Planner” service). This method has been successfully applied to three test solar plants (in North, Centre and South Italy respectively) and it has been validated by comparing satellite-based and in-situ measured hourly AC power data for several months in 2013 and 2014. The results show a good accuracy: the overall Normalized Bias (NB) is − 0.41%, the overall Normalized Mean Absolute Error (NMAE) is 4.90%, the Normalized Root Mean Square Error (NRMSE) is 7.66% and the overall

  13. Web tools concerning performance analysis and planning support for solar energy plants starting from remotely sensed optical images

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, Marco, E-mail: marco.morelli1@unimi.it [Department of Physics, University of Milano, Via Celoria 16, 20133 Milano (Italy); Masini, Andrea, E-mail: andrea.masini@flyby.it [Flyby S.r.l., Via Puini 97, 57128 Livorno (Italy); Ruffini, Fabrizio, E-mail: fabrizio.ruffini@i-em.eu [i-EM S.r.l., Via Lampredi 45, 57121 Livorno (Italy); Potenza, Marco Alberto Carlo, E-mail: marco.potenza@unimi.it [Department of Physics, University of Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-04-15

    We present innovative web tools, developed also in the frame of the FP7 ENDORSE (ENergy DOwnstReam SErvices) project, for the performance analysis and the support in planning of solar energy plants (PV, CSP, CPV). These services are based on the combination between the detailed physical model of each part of the plants and the near real-time satellite remote sensing of incident solar irradiance. Starting from the solar Global Horizontal Irradiance (GHI) data provided by the Monitoring Atmospheric Composition and Climate (GMES-MACC) Core Service and based on the elaboration of Meteosat Second Generation (MSG) satellite optical imagery, the Global Tilted Irradiance (GTI) or the Beam Normal Irradiance (BNI) incident on plant's solar PV panels (or solar receivers for CSP or CPV) is calculated. Combining these parameters with the model of the solar power plant, using also air temperature values, we can assess in near-real-time the daily evolution of the alternate current (AC) power produced by the plant. We are therefore able to compare this satellite-based AC power yield with the actually measured one and, consequently, to readily detect any possible malfunctions and to evaluate the performances of the plant (so-called “Controller” service). Besides, the same method can be applied to satellite-based averaged environmental data (solar irradiance and air temperature) in order to provide a Return on Investment analysis in support to the planning of new solar energy plants (so-called “Planner” service). This method has been successfully applied to three test solar plants (in North, Centre and South Italy respectively) and it has been validated by comparing satellite-based and in-situ measured hourly AC power data for several months in 2013 and 2014. The results show a good accuracy: the overall Normalized Bias (NB) is − 0.41%, the overall Normalized Mean Absolute Error (NMAE) is 4.90%, the Normalized Root Mean Square Error (NRMSE) is 7.66% and the overall

  14. The waste isolation pilot plant regulatory compliance program

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Kehrman, R.F.

    1996-01-01

    The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation's transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

  15. Techno-Economic Evaluation of Solar Irrigation Plants Installed in Bangladesh

    Directory of Open Access Journals (Sweden)

    Najmul Hoque

    2016-02-01

    Full Text Available In the summer season, irrigation sector in Bangladesh suffers a lot due to the country wide electricity crisis. Solar pump offers a clean and simple alternative to the conventional fuel fired engine or grid electricity driven pump in this regard to resolve the issue. In this paper, the techno-economic analyses of solar irrigation plants installed in Bangladesh are evaluated.  It was observed that systems were running around 70% to 80% of the rated power which was quite acceptable. A 10 hp pump was able to pump 600 liter of water per minute which was also satisfactory to irrigate the land. Average operating time was found to be 8 hour/day. It was found that the overall efficiency of the systems were in between 11.39% to 16.52% whereas the typical average value of lit/Wp/year was 9200. On the other hand, the cost of irrigation to cultivate paddy in 0.161 hectares’ land for one season was 1,750 BDT by solar irrigation which was found to be lower than that of other available modes. This charge for grid electricity based irrigation was about 3,000 to 3500 BDT per 0.161 hectares’ and 2,300 to 2,600 BDT per 0.161 hectares’ for diesel engine based irrigation. According to the current financial scheme (15% equity investment, 35% credit support and remaining 50% from government through IDCOL the average value of payback period was 5.43 years, NPV in the range from 7 to 15% and IRR was 18%. By considering 100% equity investment, however, these projects were not economically attractive. The payback period for this case was about 18 years. Study also revealed that each solar irrigation plant reduces 42.8 kg of CO2 emission per day compare to diesel engine operated pump and 2566.24 kg/day compared to grid electricity operated pump. A comprehensive effort from the Government as well as from all the stakeholders is required for further expansion of solar irrigation plants in Bangladesh. Article History: Received Sept 05, 2015; Received in revised form

  16. Experiences with a small scale Solar/Wind pilot installation for basic electrification in the chilean altiplano

    Energy Technology Data Exchange (ETDEWEB)

    Sapiain, Raul; Ovalle, Ricardo; Torres, Ariel; Brockmeyer, Ricarda; Schmidt, Reinhold [Centro de Energias Renovables/Universidad de Tarapaca, Arica, (Chile); Meer, Andreas V. [Solar Institute, Juelich (Germany)

    1997-12-31

    Basic rural electrification programmes are already carried out in the rural areas of northern Chile by local communities and local governments using photovoltaic systems. Solar Home Systems, 12 VDC are installed for individual households while systems for schools, public lighting etc. are realized with bigger systems, 220 VAC. Within a cooperation with the Solar Institute of the Fachhochschule Juelich, Germany, the Renewable Energy Center of the University of Tarapaca designed, installed and evaluated the first solar/wind hybrid installation for basic electrification in northern Chile, realized in Colpitas, a typical small village in the chilean altiplano. The following paper presents results and experiences of this first pilot installation. [Espanol] Ya se estan llevando a cabo programas de electrificacion rural basica en las areas rurales del Norte de Chile por las comunidades y los gobiernos locales, usando sistemas fotovoltaicos. Se instalan Sistemas Domesticos Solares de 12VDC para casas-habitacion individuales, mientras que los sistemas para escuelas, alumbrado publico, etc., se ejecutan con sistemas mas grandes de 220VAC. Con la coperacion del Instituto Solar de la Fachhochschule en Julich, Alemania, el Centro de Energia Renovable de la Universidad de Tarapaca, diseno, instalo y evaluo, la primera instalacion hibrida solar/viento para electrificacion basica en el Norte de Chile, realizado en Colpitas, un pueblo tipico pequeno del altiplano chileno. El siguiete articulo presenta los resultados y experiencias de esta primera instalacion piloto.

  17. Experiences with a small scale Solar/Wind pilot installation for basic electrification in the chilean altiplano

    Energy Technology Data Exchange (ETDEWEB)

    Sapiain, Raul; Ovalle, Ricardo; Torres, Ariel; Brockmeyer, Ricarda; Schmidt, Reinhold [Centro de Energias Renovables/Universidad de Tarapaca, Arica, (Chile); Meer, Andreas V [Solar Institute, Juelich (Germany)

    1998-12-31

    Basic rural electrification programmes are already carried out in the rural areas of northern Chile by local communities and local governments using photovoltaic systems. Solar Home Systems, 12 VDC are installed for individual households while systems for schools, public lighting etc. are realized with bigger systems, 220 VAC. Within a cooperation with the Solar Institute of the Fachhochschule Juelich, Germany, the Renewable Energy Center of the University of Tarapaca designed, installed and evaluated the first solar/wind hybrid installation for basic electrification in northern Chile, realized in Colpitas, a typical small village in the chilean altiplano. The following paper presents results and experiences of this first pilot installation. [Espanol] Ya se estan llevando a cabo programas de electrificacion rural basica en las areas rurales del Norte de Chile por las comunidades y los gobiernos locales, usando sistemas fotovoltaicos. Se instalan Sistemas Domesticos Solares de 12VDC para casas-habitacion individuales, mientras que los sistemas para escuelas, alumbrado publico, etc., se ejecutan con sistemas mas grandes de 220VAC. Con la coperacion del Instituto Solar de la Fachhochschule en Julich, Alemania, el Centro de Energia Renovable de la Universidad de Tarapaca, diseno, instalo y evaluo, la primera instalacion hibrida solar/viento para electrificacion basica en el Norte de Chile, realizado en Colpitas, un pueblo tipico pequeno del altiplano chileno. El siguiete articulo presenta los resultados y experiencias de esta primera instalacion piloto.

  18. Seismic reflection data report: Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Hern, J.L.; Powers, D.W.; Barrows, L.J.

    1978-12-01

    Volume II contains uninterpreted processed lines and shotpoint maps from three seismic reflection surveys conducted from 1976 through 1978 by Sandia Laboratories to support investigations for the Waste Isolation Pilot Plant. Data interpretations will be the subject of subsequent reports

  19. Thermo-economic design optimization of parabolic trough solar plants for industrial process heat applications with memetic algorithms

    International Nuclear Information System (INIS)

    Silva, R.; Berenguel, M.; Pérez, M.; Fernández-Garcia, A.

    2014-01-01

    Highlights: • A thermo-economic optimization of a parabolic-trough solar plant for industrial process heat applications is developed. • An analysis of the influence of economic cost functions on optimal design point location is presented. • A multi-objective optimization approach to the design routine is proposed. • A sensitivity analysis of the optimal point location to economic, operational, and ambient conditions is developed. • Design optimization of a parabolic trough plant for a reference industrial application is developed. - Abstract: A thermo-economic design optimization of a parabolic trough solar plant for industrial processes with memetic algorithms is developed. The design domain variables considered in the optimization routine are the number of collectors in series, number of collector rows, row spacing, and storage volume. Life cycle savings, levelized cost of energy, and payback time objective functions are compared to study the influence on optimal design point location. Furthermore a multi-objective optimization approach is proposed to analyze the design problem from a multi-economic criteria point of view. An extensive set of optimization cases are performed to estimate the influence of fuel price trend, plant location, demand profile, operation conditions, solar field orientation, and radiation uncertainty on optimal design. The results allow quantifying as thermo-economic design optimization based on short term criteria as the payback time leads to smaller plants with higher solar field efficiencies and smaller solar fractions, while the consideration of optimization criteria based on long term performance of the plants, as life cycle savings based optimization, leads to the reverse conclusion. The role of plant location and future evolution of gas prices in the thermo-economic performance of the solar plant has been also analyzed. Thermo-economic optimization of a parabolic trough solar plant design for the reference industrial

  20. Land-Use Requirements for Solar Power Plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G.

    2013-06-01

    This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As of the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.

  1. Thermal and optical study of parabolic trough collectors of Shiraz solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Yaghoubi, M.; Vadiee, A.; Hessami, R. [Shiraz Univ, Shiraz (Iran, Islamic Republic of); Kanan, P. [Renewable Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2007-07-01

    The construction of the first 250 KW solar power plant in Shiraz, Iran was discussed. The power plant is comprised of a steam and oil cycle which includes 48 parabolic trough collectors (PTCs). Solar thermal power plants based on PTCs are currently the most successful solar technologies for electricity generation. These power plants are basically composed of a solar collector field and a power block. The solar collector field is designed to collect heat from the sun which it is continuously tracking. The reflecting surface concentrates direct solar radiation in the optical focal line of the collector where the heat collecting element (HCE) is located. The HCE absorbs the reflected energy and transmits it to the heat transfer fluid which is pumped to the conventional power block where electricity is generated. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. However, it is necessary to characterize the optical performance and determine the optical losses of PTCs in order to improve the optical efficiency of these systems and to ensure the desired power quality. In this study, thermocouple sensors were used to record the collector oil inlet and outlet temperature along with the ambient temperature in the PTCs. In addition to measuring the wind speed, the solar beam radiation intensity was measured along with the oil's mass flow rate. All parameters were measured as a function of time. Based on these measurements, the intercept factor value and collector's incidence angle was determined and compared with other large size constructed commercial parabolic collectors. The maximum beam radiation during the experimental period was 735 2mW. The useful heat gain and the collector's instantaneous efficiency as a whole was evaluated on an hourly basis. All these parameters were strongly influenced by the incident beam radiation and found to follow each other. The optical and thermal

  2. Analytical evaluation and optimization of advanced oxidation process in a solar pilot power plant; Evaluacion analitica y optimizacion de procesos de oxidacion avanzada en planta piloto solar

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Vazquez, J.; Malato Rodriguez, S.; Rodriguez Fernandez-Alba, A.

    2003-07-01

    The technical feasibility mechanisms and performance of degradation of several pesticides (imidacloprid, methomyl and diuron) dissolved in water have been studies at pilot scale in two well-defined photocatalytic systems of special interest because natural UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton.Equivalent pilot-scale (made up of Compound Parabolic Collectors (CPCs) specially designed for solar photocatalytic applications) and field conditions used for both systems and the three pesticides allowed adequate comparison of the degree of mineralization and toxicity achieved as well as the transformation products generated en route to mineralization. Total disappearance of the parent compounds and 90% mineralisation have been attained with all pesticides tested, methomyl being the most difficult to be degraded with both treatments. First order rate constants, initial rate,time necessary for mineralizing 90% of the initial TOC and hydrogen peroxide consumption were calculated in all cases, enabling comparison both of treatments and of the selected pesticide reactivity. Complete mineralisation of TOC is not achieved even after quite a long time (more than 300 minutes). Three different bioassays (Vibrio fischeri, Daphnia magna and a Microalga) have been used for testing the progress of toxicity during treatments. All remained toxic down to very low pesticide disappearance of the pesticide. Only if treatment is maintained throughout enough mineralisation (i. e. TOC disappearance), the toxicity is reduced to below the threshold (EC 50%). Transformation products evaluated by GC-MS/AED (after two SPE procedures), LC-IT-MS and LC-IC were the same in both phototreatments. The main differences between the two processes are in the amount of transformation products (TPs) generated, not in the TPs detected which were always the same. (Author)

  3. Solar-assisted district heating systems - the SOLARIS pilot plant at Chemnitz - Status report; Solar unterstuetzte Nahwaermeversorgung - Pilotanlage SOLARIS Chemnitz Statusbericht `98

    Energy Technology Data Exchange (ETDEWEB)

    Urbaneck, T.; Schirmer, U. [Technische Univ. Chemnitz (Germany). Projektgruppe Solarthermie 2000

    1998-12-31

    The solar-assisted district heating in the Technology and Industrial Park SOLARIS is currently being built. The seasonal heat storage is a gravel-water tank with a volume of 8,000 cubic metre and has already been completed. The expectations have been met with respect to using a simple technology for the construction of seasonal storage and reducing costs. The initial operation is scheduled for summer 1998. Afterwards a two-year measuring programme will control and evaluate the function of the solar-assisted district heating system. (orig.) [Deutsch] Das solar unterstuetzte Nahwaermesystem im Chemnitzer Technologie- und Gewerbepark solaris befindet sich im Bau. Der saisonale Waermespeicher, ein 8000 m{sup 3} Kies-Wasser-Speicher ist fertiggestellt. Die Erwartungen in bezug auf eine einfache Technologie zum Bau von saisonalen Speichern und in bezug auf die Einhaltung des Kostenrahmens wurden erfuellt. Die Inbetriebnahme ist im Sommer 1998 geplant. Ein zweijaehriges Messprogramm soll nach Inbetriebnahme die Funktion des solar unterstuetzten Nahwaermesystems ueberwachen. (orig.)

  4. Abatement of the antibiotic levofloxacin in a solar photoelectro-Fenton flow plant: Modeling the dissolved organic carbon concentration-time relationship.

    Science.gov (United States)

    Coria, Gabriela; Pérez, Tzayam; Sirés, Ignasi; Brillas, Enric; Nava, José L

    2018-05-01

    The degradation of solutions of the antibiotic levofloxacin (LVN) in sulfate medium at pH 3.0 has been investigated at pre-pilot scale by solar photoelectro-Fenton (SPEF) process. The flow plant included an FM01-LC filter-press cell equipped with a Ti|Pt anode and a three-dimensional-like air-diffusion cathode, connected to a compound parabolic collector as photoreactor and a continuous stirred tank under recirculation batch mode. The effect of volumetric flow rate on H 2 O 2 electrogeneration from O 2 reduction was assessed. Then, the influence of initial LVN concentration and Fe 2+ concentration as catalyst on dissolved organic carbon (DOC) removal was thoroughly investigated. LVN was gradually mineralized by SPEF process, with faster DOC abatement at 0.50 mM Fe 2+ , yielding 100% after 360 min at applied cathodic potential of -0.30 V|SHE. The high mineralization current efficiency (MCE) and low specific energy consumption (EC DOC ) revealed the extraordinary role of homogeneous hydroxyl radicals and natural UV light, which allowed the degradation of the antibiotic and its by-products with MCE values greater than 100%. Five cyclic by-products, N,N-diethylformamide and three short-chain linear carboxylic acids were detected by GC-MS and HPLC analyses. A parametric model to simulate the DOC decay versus electrolysis time was implemented for the SPEF pre-pilot flow plant, showing good agreement with experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Dengwei; Guo, Liejin; Zhao, Liang; Zhang, Ximin; Liu, Huan; Li, Mingtao; Shen, Shaohua; Liu, Guanjie; Hu, Xiaowei; Zhang, Xianghui; Zhang, Kai; Ma, Lijin; Guo, Penghui [State Key Lab of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, 28 Xianning West Road, Xi' an 710049 (China)

    2010-07-15

    Photocatalytic water splitting with solar light is one of the most promising technologies for solar hydrogen production. From a systematic point of view, whether it is photocatalyst and reaction system development or the reactor-related design, the essentials could be summarized as: photon transfer limitations and mass transfer limitations (in the case of liquid phase reactions). Optimization of these two issues are therefore given special attention throughout our study. In this review, the state of the art for the research of photocatalytic hydrogen production, both outcomes and challenges in this field, were briefly reviewed. Research progress of our lab, from fundamental study of photocatalyst preparation to reactor configuration and pilot level demonstration, were introduced, showing the complete process of our effort for this technology to be economic viable in the near future. Our systematic and continuous study in this field lead to the development of a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar rector for the first time. We have demonstrated the feasibility for efficient photocatalytic hydrogen production under direct solar light. The exiting challenges and difficulties for this technology to proceed from successful laboratory photocatalysis set-up up to an industrially relevant scale are also proposed. These issues have been the object of our research and would also be the direction of our study in future. (author)

  6. Continuous operation of a pilot plant for the production of beryllium oxide

    International Nuclear Information System (INIS)

    Costa, T.C.; Amaral, S.; Silveira, C.M.S.; Oliveira, A.P. de

    1975-01-01

    A method of obtaining beryllium oxide with a purity of 99,2% was developed in a pilot plant with a capacity of 7 tons per month destined to operate continuously. The operation market prospects and control of production with the objective of obtaining internacional technical grade beryllium oxide are discussed [pt

  7. Continuous operation of a pilot plant for the production of beryllium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Costa, T C; Amaral, S; Silveira, C M.S.; de Oliveira, A P [Instituto de Tecnologia, Governador Valadares (Brazil)

    1975-12-01

    A method of obtaining beryllium oxide with a purity of 99,2% was developed in a pilot plant with a capacity of 7 tons per month destined to operate continuously. The operation market prospects and control of production with the objective of obtaining internacional technical grade beryllium oxide are discussed.

  8. The Former Miss Barstow with every Tom, Dick and Harry in a doll's house

    Directory of Open Access Journals (Sweden)

    Richard Newton

    2015-02-01

    Full Text Available Julie Holledge, panel chairperson and member of the International Ibsen Committee, invited myself along with 3 others to participate in the Inaugural Artists’ Keynote Panel: Applied Ibsen on Four Continents: The Artists’ Intentions. My presentation focused on “The Former Miss Barstow with every Tom, Dick and Harry in a doll’s house.” This was an adaptation of Ibsen’s “A Doll’s House” produced and staged in Los Angeles, California, 1987.  For the XIIIth International Ibsen Conference at the University of Tromsø, Norway, I projected images; a few found on the internet, and many from the production itself, as well as a video clip shown streaming live from YouTube. The article describes the social context of the 80s, analyzes the reinterpretation of Ibsen’s characters, and sets out to explain the symbology of the sets and costumes. I also touch on the differences between this production and Ibsen’s original in four important aspects. These would be the macaroons, the Tarantella, the silk stockings and the end of the play. Finally, I explain my decision to upload this version of “A Doll’s House,’ scene by scene, to my page on YouTube. Having shown films and videos for many years at festivals around the globe, I was looking for a way to step outside that box and reach an international audience just beyond my keyboard. In all of these ways, the goal has been to illuminate the ways in which an artist takes Ibsen’s text and applies it to the specific social context of their time and culture.

  9. Retrieval of canistered experimental waste at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Stinebaugh, R.E.

    1979-07-01

    To assess the suitability of bedded salt for nuclear waste disposal, an extensive experimental program will be implemented at the Waste Isolation Pilot Plant. In order to evaluate experimental results, it will be necessary to recover certain of these experiments for postmortem examination and analysis. This document describes the equipment and procedures used to effect recovery of one category of WIPP experiments

  10. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, B.

    2006-07-01

    The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump

  11. Results of the DIOS pilot plant test and summary of the joint research; DIOS pilot plant no shiken sogyo kekka to kenkyu seika no matome

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T [Center for Coal Utilization, Japan, Tokyo (Japan); Kawaoka, K [The Japan Iron and Steel Federation, Tokyo (Japan)

    1996-09-01

    A joint research had been carried out with a subsidy from the Agency of Natural Resources and Energy since fiscal 1988 to fiscal 1995 on the direct iron ore smelting reduction process (DIOS process). The process utilizes coal directly as a process to use the strong points and supplement the weak points of the blast furnace process. During the period, a pilot plant had been operated since 1993. Upon having completed the feasibility study, this paper reports the result thereof. The main facilities consist of a smelting and reducing furnace of iron bath type, a spare reducing furnace of fluidized bed type, and a preheating furnace. The former two furnaces constitute a unit structure with the two furnaces connected vertically. The pilot plant achieved a three-day continuous operation producing 500 tons of iron every day. The production rate reached 21 tons an hour at an upward oxygen blowing velocity of about 13,000 Nm {sup 3} per hour. The coal unit requirement showed a result of <1000 kg/t for high VM coal and <900 kg/t for low VM coal. These results verified a possibility that this process can supplement or replace the blast furnace process even for a production scale of 9000 tons a day. 7 refs., 15 figs., 3 tabs.

  12. Fate of NDMA precursors through an MBR-NF pilot plant for urban wastewater reclamation and the effect of changing aeration conditions.

    Science.gov (United States)

    Mamo, Julian; Insa, Sara; Monclús, Hèctor; Rodríguez-Roda, Ignasi; Comas, Joaquim; Barceló, Damià; Farré, Maria José

    2016-10-01

    The removal of N-nitrosodimethylamine (NDMA) formation potential through a membrane bioreactor (MBR) coupled to a nanofiltration (NF) pilot plant that treats urban wastewater is investigated. The results are compared to the fate of the individual NDMA precursors detected: azithromycin, citalopram, erythromycin, clarithromycin, ranitidine, venlafaxine and its metabolite o-desmethylvenlafaxine. Specifically, the effect of dissolved oxygen in the aerobic chamber of the MBR pilot plant on the removal of NDMA formation potential (FP) and individual precursors is studied. During normal aerobic operation, implying a fully nitrifying system, the MBR was able to reduce NDMA precursors above 94%, however this removal percentage was reduced to values as low as 72% when changing the conditions to minimize nitrification. Removal decreased also for azithromycin (68-59%), citalopram (31-17%), venlafaxine (35-15%) and erythromycin (61-16%) on average during nitrifying versus non-nitrifying conditions. The removal of clarithromycin, o-desmethylvenlafaxine and ranitidine could not be correlated with the nitrification inhibition, as it varied greatly during the experiment time. The MBR pilot plant is coupled to a nanofiltration (NF) system and the results on the rejection of both, NDMA FP and individual precursors, through this system was above 90%. Finally, results obtained for the MBR pilot plant are compared to the percentage of removal by a conventional full scale biological wastewater treatment plant (WWTP) fed with the same influent. During aerobic operation, the removal of NDMA FP by the MBR pilot plant was similar to the full scale WWTP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles

    International Nuclear Information System (INIS)

    Bernardos, Eva; López, Ignacio; Rodríguez, Javier; Abánades, Alberto

    2013-01-01

    This paper proposes a first study in-depth of solar–fossil hybridization from a general perspective. It develops a set of useful parameters for analyzing and comparing hybrid plants, it studies the case of hybridizing Brayton cycles with current solar technologies and shows a tentative extrapolation of the results to integrated combined cycle systems (ISCSS). In particular, three points have been analyzed: the technical requirements for solar technologies to be hybridized with Brayton cycles, the temperatures and pressures at which hybridization would produce maximum power per unit of fossil fuel, and their mapping to current solar technologies and Brayton cycles. Major conclusions are that a hybrid plant works in optimum conditions which are not equal to those of the solar or power blocks considered independently, and that hybridizing at the Brayton cycle of a combined cycle could be energetically advantageous. -- Highlights: •We model a generic solar–fossil hybrid Brayton cycle. •We calculate the operating conditions for maximum ratio power/fuel consumption. •Best hybrid plant conditions are not the same as solar or power blocks separately. •We study potential for hybridization with current solar technologies. •Hybridization at the Brayton in a combined cycle may achieve high power/fuel ratio

  14. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India

    Directory of Open Access Journals (Sweden)

    B. Shiva Kumar

    2015-11-01

    Full Text Available The growing energy demand in developing nations has triggered the issue of energy security. This has made essential to utilize the untapped potential of renewable resources. Grid connected PV systems have become the best alternatives in renewable energy at large scale. Performance analysis of these grid connected plants could help in designing, operating and maintenance of new grid connected systems. A 10 MW photovoltaic grid connected power plant commissioned at Ramagundam is one of the largest solar power plants with the site receiving a good average solar radiation of 4.97 kW h/m2/day and annual average temperature of about 27.3 degrees centigrade. The plant is designed to operate with a seasonal tilt. In this study the solar PV plant design aspects along with its annual performance is elaborated. The various types of power losses (temperature, internal network, power electronics, grid connected etc. and performance ratio are also calculated. The performance results of the plant are also compared with the simulation values obtained from PV syst and PV-GIS software. The final yield (Y F of plant ranged from 1.96 to 5.07 h/d, and annual performance ratio (PR of 86.12%. It has 17.68% CUF with annual energy generation of 15798.192 MW h/Annum.

  15. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    Energy Technology Data Exchange (ETDEWEB)

    Enbar, Nadav [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weng, Dean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.

  16. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  17. Control oriented concentrating solar power (CSP) plant model and its applications

    Science.gov (United States)

    Luo, Qi

    Solar receivers in concentrating solar thermal power plants (CSP) undergo over 10,000 start-ups and shutdowns, and over 25,000 rapid rate of change in temperature on receivers due to cloud transients resulting in performance degradation and material fatigue in their expected lifetime of over 30 years. The research proposes to develop a three-level controller that uses multi-input-multi-output (MIMO) control technology to minimize the effect of these disturbances, improve plant performance, and extend plant life. The controller can be readily installed on any vendor supplied state-of-the-art control hardware. We propose a three-level controller architecture using multi-input-multi-output (MIMO) control for CSP plants that can be implemented on existing plants to improve performance, reliability, and extend the life of the plant. This architecture optimizes the performance on multiple time scalesreactive level (regulation to temperature set points), tactical level (adaptation of temperature set points), and strategic level (trading off fatigue life due to thermal cycling and current production). This controller unique to CSP plants operating at temperatures greater than 550 °C, will make CSPs competitive with conventional power plants and contribute significantly towards the Sunshot goal of 0.06/kWh(e), while responding with agility to both market dynamics and changes in solar irradiance such as due to passing clouds. Moreover, our development of control software with performance guarantees will avoid early stage failures and permit smooth grid integration of the CSP power plants. The proposed controller can be implemented with existing control hardware infrastructure with little or no additional equipment. In the thesis, we demonstrate a dynamics model of CSP, of which different components are modelled with different time scales. We also show a real time control strategy of CSP control oriented model in steady state. Furthermore, we shown different controllers

  18. 1-MWp electrical photovoltaic plant (EPHOP - project)

    International Nuclear Information System (INIS)

    Vitanov, P.; Toneva, A.; Petkanchin, L.; Ivancheva, J.; Neshev, S.

    2000-01-01

    The presented project concerns the realization of a grid connected 1-MW p pilot photovoltaic plant on the territory of Bulgaria.The purpose of the project is to demonstrate and prove solar energy advantages. A special attention will be paid to the possibility the generated electricity to join the national electric network. The site selection according to the meteorological conditions as well as general aspects of the project are discussed

  19. Operations Program Plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1990-09-01

    This document, Revision 4 of the Operations Program Plan, has been developed as the seven-year master plan for operating of the Waste Isolation Pilot Plant (WIPP). Subjects covered include public and technical communications; regulatory and environmental programs; startup engineering; radiation handling, surface operations, and underground operations; waste certification and waste handling; transportation development; geotechnical engineering; experimental operations; engineering program; general maintenance; security program; safety, radiation, and regulatory assurance; quality assurance program; training program; administration activities; management systems program; and decommissioning. 243 refs., 19 figs., 25 tabs. (SM)

  20. The design of a modular pilot plant based on the adsorber loop concept

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.

    1984-01-01

    The main design criteria for a pilot plant producing about 100 t uranium per year from seawater are discussed. The application of the ''adsorber loop concept'' for the contact between seawater and the adsorber granulate enables the employment of high seawater velocities. The seawater flow is accomplished by active pumping and the plant is supposed to be operating far from shores. Besides some informations on the theoretical background the essential engineering considerations are presented. (orig.) [de

  1. Integrating geothermal into coal-fired power plant with carbon capture: A comparative study with solar energy

    International Nuclear Information System (INIS)

    Wang, Fu; Deng, Shuai; Zhao, Jun; Zhao, Jiapei; Yang, Guohua; Yan, Jinyue

    2017-01-01

    Highlights: • Post-combustion carbon capture integrating geothermal energy was proposed. • A 300 MWe subcritical coal-fired plant was selected as the baseline. • The geothermal assisted carbon capture system was compared with solar assisted carbon capture plant. • Two different locations were chosen for the technical and economical comparison. • Using medium temperature geothermal thermal energy to replace steam extraction performs better performance. - Abstract: A new system integrating geothermal energy into post-combustion carbon capture is proposed in this paper. Geothermal energy at medium temperatures is used to provide the required thermal heat for solvent regeneration. The performance of this system is compared with solar assisted carbon capture plant via technical and economic evaluation. A 300 MWe coal-fired power plant is selected as the reference case, and two different locations based on the local climatic conditions and geothermal resources are chosen for the comparison. The results show that the geothermal assisted post-combustion carbon capture plant has better performances than the solar assisted one in term of the net power output and annual electricity generation. The net plant average efficiency based on lower heating value can be increased by 2.75% with a thermal load fraction of about 41%. Results of economic assessment show that the proposed geothermal assisted post-combustion carbon capture system has lower levelized costs of electricity and cost of carbon dioxide avoidance compared to the solar assisted post-combustion carbon capture plant. In order to achieve comparative advantages over the reference post-combustion carbon capture plant in both locations, the price of solar collector has to be lower than 70 USD/m 2 , and the drilling depth of the geothermal well shall be less than 2.1 km.

  2. Experimental Investigation and Modelling of a Wet Flue Gas Desulphurisation Pilot Plant

    DEFF Research Database (Denmark)

    Kiil, Søren; Michelsen, Michael Locht; Dam-Johansen, Kim

    1998-01-01

    A detailed model for a wet flue gas desulphurisation (FGD) pilot plant, based on the packed tower concept, has been developed. All important rate determining steps, absorption of SO2, oxidation of HSO3-, dissolution of limestone, and crystallisation of gypsum were included. Population balance...... equations, governing the description of particle size distributions of limestone in the plant, were derived. Model predictions were compared to experimental data such as gas phase concentration profiles of SO2, slurry pH-profiles, solids content of the slurry, liquid phase concentrations, and residual...

  3. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa

    2016-01-01

    with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers...... because of lower thermal pinch and heat transfer degradation for mixtures as compared with using a pure fluid in a conventional steam Rankine cycle, and the necessity to use a complex cycle arrangement. Most of the previous studies on the Kalina cycle focused solely on the thermodynamic aspects......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...

  4. Hydrologic studies for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Davies, P.B.

    1994-01-01

    The objective of this paper is to provide a general overview of hydrologic conditions at the Waste Isolation Pilot Plant (WIPP) by describing several key hydrologic studies that have been carried out as part of the site characterization program over the last 20 years. The paper is composed of three parts: background information about general objectives of the WIPP project; information about the geologic and hydrologic setting of the facility; and information about three aspects of the hydrologic system that are important to understanding the long-term performance of the WIPP facility. For additional detailed information, the reader is referred to the references cited in the text

  5. An evaluation of thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines with open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Marinelli, Valerio

    2012-01-01

    A performance analysis of innovative solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle, with and without intercooling and regeneration, is presented. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it seems able to compete well with other more complex plants operating with different heat transfer fluids. -- Highlights: ► Innovative CPS solar plants, operating with air in open Joule–Brayton cycle, are proposed. ► They are attractive for their simplicity and present interesting values of global efficiency. ► They seem able to compete well with other more complex solar plants.

  6. Study in pilot plant of the Itataia phosphoro-uraniferous ore - CE (Brazil)

    International Nuclear Information System (INIS)

    Reis Junior, J.B.; Aquino, J.A. de; Oliveira Luz, I.L. de.

    1987-01-01

    Pilot plant data have been obtained for the physical treatment studies of the Itataia, phosphoro-uraniferous ore body located in the state of Ceara-Brazil. Due to the presence of the silic-carbonated gangue, which turns the ore complex, the pilot plant operation comprised 1200 hours. From the results obtained, it was possible to stablish a basic flowsheet for the concentration process. Such process includes a grinding step followed by a cyclone disliming (d 50 =10μm). The cyclone underflow feeds the flotation step. The conventional flotation process, which envolves the direct phosphate flotation followed by cleaning steps, was not efficient due to the presence of the carbonated gangue. In fact, the presence of silicates and carbonates in the gangue required that the flotation would be carried out in two steps. The silicated gangue is eliminated in the first flotation and a phosphate concentrate with significant amount of carbonates is obtained. This concentrate is fed to the second flotation step, termed reverse flotation, where the calcite is floated and the apatite is depressed. (Author) [pt

  7. Study in pilot plant of the Itataia phosphoro-uraniferous ore (CE,Brazil)

    International Nuclear Information System (INIS)

    Reis Junior, J.B.; Aquino, J.A. de; Oliveira Luz, I.L. de

    1985-01-01

    Pilot plant data have been obtained for the physical treatment studies of the Itataia, phosphoro-uraniferous ore body located in the state of Ceara-Brazil. Due to the presence of the silic-carbonated gangue, which turns the ore complex, the pilot plant operation comprised 1200 hours. From the results obtained, it was possible to establish a basic flowsheet for the concentration process. Such process includes a grinding step (-65) followed by a cyclone disliming (d50 = 10μ). The cyclone underflow feeds the flotation step. The conventional flotation process, which envolves the direct phosphate flotation followed by cleaning steps, was not efficient due to the presence of the carbonated gangue. In fact, the presence of silicates and carbonates in the gangue required that the flotation would be carried out in two steps. The silicated gangue is eliminated in the first flotation and a phosphate concentrate with significant amount of carbonates is obtained. This concentrate is fed to the second flotation step, termed reverse flotation, where the calcite is floated and the apatite is depressed. (Author) [pt

  8. A shaft seal system for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hansen, F.D.; Ahrens, E.H.; Dennis, A.W.; Hurtado, L.D.; Knowles, M.K.; Tillerson, J.R.; Thompson, T.W.; Galbraith, D.

    1996-01-01

    As part of the demonstration of compliance with federal regulations, a shaft seal system has been designed for the Waste Isolation Pilot Plant. The system completely fills the 650 m shafts with components consisting of the common engineering materials, each of which possesses low permeability, longevity, and can be constructed using available technology. Design investigations couple rock mechanics and fluid flow analysis and tests of these materials within the natural geological setting, and demonstrate the effectiveness of the design

  9. Automatic data acquisition system for a photovoltaic solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.; Barrio, C.L.; Guerra, A.G.

    1986-01-01

    An autonomous monitoring system for photovoltaic solar plants is described. The system is able to collect data about the plant's physical and electrical characteristics and also about the environmental conditions. It may present the results on a display, if requested, but its main function is measuring periodically a set of parameters, including several points in the panel I-V characteristics, in an unattended mode. The data are stored on a magnetic tape for later processing on a computer. The system hardware and software are described, as well as their main functions.

  10. PILOT PLANT STUDY ON NATURAL WATER COAGULANTS AS COAGULAN AIDS FOR WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    B BINA

    2001-06-01

    Full Text Available Introduction: Natural plant coagulants have an important role to play in provision of portable water to rural communities in the developing world. The plant material that their coagulation properties have been confirmed in previous lab scale studies and can be found widely in Iran was selected as coagulant aids. Pilot plant study was done to evaluate the efficiency of natural material such as Starch/Gum Tragacanth, Fenugreek and Yeast as coagulant aids in conjunction with comercial alum. Methods: The pilot was placed in Isfahan Water Treatment Plant (IWTP and efficiency of these materials in removal of turbidity from raw water enters the IWTP was evaluated. The results indicated while these materials were used as coagulant aids in concentration of 1-5 mg/l conjunction with alum are able to reduced the turbidity and final residuals turbidity meets the standards limits. Results: The coagulation efficiency of these material were found to be effected by certain physico-chemical factors, namely, concentration of suspended solids, divalent cation metal and time of agitation. The relative importance of these variable was evaluated. The results of COD test proved that the natural coagulant aids in the optimum doses produce no any significant organic residual. Discussion: Economical considerations showed that using of these material as coagulant aids can cause reduction in alum consumption and in some cases are more econmical than synthetic polyelectrolyte.

  11. Reclamation of grey water for non-potable purposes using pilot-scale solar photocatalytic tubular reactors.

    Science.gov (United States)

    Saran, Sarangapany; Arunkumar, Patchaiyappan; Manjari, Gangarapu; Devipriya, Suja P

    2018-05-05

    Application of pilot-scale slurry-type tubular photocatalytic reactor was tested for the decentralized treatment of actual grey water. The reactors were fabricated by reusing the locally available materials at low cost, operated in batch recycle mode with 25 L of grey water. The influence of operational parameters such as catalysts' concentration, initial slurry pH and addition of H 2 O 2 on COD abatement were optimized. The results show that Ag-decorated TiO 2 showed a two-fold increase in COD abatement than did pure TiO 2 . Better COD abatement was observed under acidic conditions, and addition of H 2 O 2 significantly increases the rate of COD abatement. Within 2 h, 99% COD abatement was observed when the reactor was operated with optimum operational conditions. Silver ion lixiviate was also monitored during the experiment and is five times less than the permissible limits. The catalyst shows good stability even after five cycles without much loss in its photocatalytic activity. The results clearly reveal that pilot-scale slurry tubular solar photocatalytic reactors could be used as a cost-effective method to treat grey water and the resulting clean water could be reused for various non-potable purposes, thus conserving precious water resource. This study favours decentralized grey water treatment and possible scaling up of solar photocatalytic reactor using locally available materials for the potential reuse of treated water.

  12. Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria

    International Nuclear Information System (INIS)

    Boudaoud, S.; Khellaf, A.; Mohammedi, K.; Behar, O.

    2015-01-01

    Highlights: • Performance of power plant with molten salt cavity receiver is assessed. • A method has been used to optimize the plant solar multiple, capacity factor and LEC. • Comparison of the simulated results to those of PS20 has shown good agreement. • Higher fossil fuel fraction reduces the LEC and increases the capacity factor. • Highland and Sahara regions are suitable for CRS plants deployment. - Abstract: Of all Concentrating Solar Power (CSP) technologies available today, the molten salt solar power plant appears to be the most important option for providing a major share of the clean and renewable electricity needed in the future. In the present paper, a technical and economic analysis for the implementation of a probable molten salt cavity receiver thermal power plant in Algeria has been carried out. In order to do so, we have investigated the effect of solar field size, storage capacity factor, solar radiation intensity, hybridization and power plant capacity on the thermal efficiency and electricity cost of the selected plant. The system advisor model has been used to perform the technical performance and the economic assessment for different locations (coastal, highland and Sahara regions) in Algeria. Taking into account various factors, a method has been applied to optimize the solar multiple and the capacity factor of the plant, to get a trade-off between the incremental investment costs of the heliostat field and the thermal energy storage. The analysis has shown that the use of higher fossil fuel fraction significantly reduces the levelized electricity cost (LEC) and sensibly increases the capacity factor (CF). The present study indicates that hybrid molten salt solar tower power technology is very promising. The CF and the LEC have been found to be respectively of the order of 71% and 0.35 $/kW e . For solar-only power plants, these parameters are respectively about 27% and 0.63 $/kW e . Therefore, hybrid central receiver systems are

  13. Solar PV-based rooftop power plant

    International Nuclear Information System (INIS)

    Ashok Kumar, B.; Kumar, Chaitanya; Patel, C.B.; Pattanaik, B.R.; Panda, P.K.; Kaul, S.K.; Mishra, H.

    2017-01-01

    Technical Services Division (TSD) is responsible for providing reliable power supply to various operating reactors, laboratories and facilities of BARC. The power supply to BARC is derived from TATA Power at 110 KV and 22 KV at an average HT tariff of Rs.8.49 per unit at present. Peak power demand of BARC in summer season goes up to 23 MW. TSD has implemented several energy conservation measures to reduce the energy consumption and as well taken initiatives to install solar PV based rooftop power plants to reduce the cost of energy consumption in BARC

  14. Cloud Monitoring for Solar Plants with Support Vector Machine Based Fault Detection System

    Directory of Open Access Journals (Sweden)

    Hong-Chan Chang

    2014-01-01

    Full Text Available This study endeavors to develop a cloud monitoring system for solar plants. This system incorporates numerous subsystems, such as a geographic information system, an instantaneous power-consumption information system, a reporting system, and a failure diagnosis system. Visual C# was integrated with ASP.NET and SQL technologies for the proposed monitoring system. A user interface for database management system was developed to enable users to access solar power information and management systems. In addition, by using peer-to-peer (P2P streaming technology and audio/video encoding/decoding technology, real-time video data can be transmitted to the client end, providing instantaneous and direct information. Regarding smart failure diagnosis, the proposed system employs the support vector machine (SVM theory to train failure mathematical models. The solar power data are provided to the SVM for analysis in order to determine the failure types and subsequently eliminate failures at an early stage. The cloud energy-management platform developed in this study not only enhances the management and maintenance efficiency of solar power plants but also increases the market competitiveness of solar power generation and renewable energy.

  15. Thermal Analysis of the Receiver of a Standalone Pilot Solar Dish–Stirling System

    Directory of Open Access Journals (Sweden)

    Ehsan Gholamalizadeh

    2018-06-01

    Full Text Available Recent developments in solar thermal systems have aroused considerable interest in several countries with high solar potential. One of the most promising solar driven technologies is the solar thermal dish-Stirling system. One of the main issues of the solar dish–Stirling system is thermal losses from its components. The majority of the thermal losses of the system occur through its receiver before the thermal energy is converted to electrical energy by the Stirling engine. The goal of this investigation is to analyze the thermal performance of the receiver of a standalone pilot solar dish–Stirling system installed in Kerman City, Iran, to be used in remote off-grid areas of the Kerman Province. An analytical model was developed to predict the input energy, thermal losses, and thermal efficiency of the receiver. The receiver thermal model was first validated by comparing simulation results to experimental measurements for the EuroDish project. Then, the incident flux intensity intercepted by the receiver aperture, the thermal losses through the receiver (including conduction, convection, and radiation losses, and the power output during daytime hours (average day of each month for a year were predicted. The results showed that the conduction loss was small, while the convection and radiation losses played major roles in the total thermal losses through the receiver. The convection loss is dominant during the early morning and later evening hours, while radiation loss reaches its highest value near midday. Finally, the thermal efficiency of the receiver and the power output for each working hour throughout the year were calculated. The maximum performance of the system occurred at midday in the middle of July, with a predicted power output of 850 W, and a receiver efficiency of about 60%. At this time, a conduction loss of about 266 W, a convection loss of 284 W, and a radiation loss of about 2000 W were estimated.

  16. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul; Hall, Stephen; Morjaria, Mahesh; Chadliev, Vladimir; Milam, Nick; Milan, Christopher; Gevorgian, Vahan

    2017-03-24

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integration of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be

  17. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    Energy Technology Data Exchange (ETDEWEB)

    Enbar, Nadav [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Weng, Dean [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.

  18. Drying and purification of natural gas by clinoptilolite on an experimental pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Tsitsishvili, G V; Urotadze, S L; Lukin, V D; Bagirov, R M

    1976-02-01

    The paper deals with the process of the drying and purification of natural gas from CO/sub 2/ on an experimental pilot plant using the natural zeolite clinoptilolite. On the basis of the obtained data the dynamic activity of clinoptilolite against water and CO/sub 2/ has been calculated.

  19. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    Science.gov (United States)

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  20. FY 1977 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Solar thermal power generation systems); 1977 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyo netsu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at surveys and researches on operation, economic efficiency and performance evaluation of solar thermal power generation systems, and test methods, e.g., for aging the materials for their devices, in order to establish the methods for evaluating their performance. For operation of solar thermal power generation systems, a feasible system is a hybrid with another system, e.g., thermal power or nuclear system. For economic efficiency, heat-storage capacity will be based on power generation for around 4 hours a day for a solar system to be installed in Japan. The construction and light/heat-collecting costs should be reduced to around 300,000 yen/kW and 13,000 to 21,000 yen/m{sup 2}, respectively, in order to keep the power generation cost at around 23 yen/kWH. The energy analysis of solar thermal power generation, based on the data given by the industrial correlation tables, indicates that the total energy required for construction of the system can be recovered in 2 to 3 years. Also outlined are construction of a 1MW pilot plant and its facilities, and designs of the pilot plants with a curved surface or tower type light collector. A total of 12 types of reflection mirrors are screened for establishing the air-exposure testing methods. Methods for treating back surface edges of the reflection mirrors are also investigated. (NEDO)

  1. Solar hybrid power plants: Solar energy contribution in reaching full dispatchability and firmness

    Science.gov (United States)

    Servert, Jorge F.; López, Diego; Cerrajero, Eduardo; Rocha, Alberto R.; Pereira, Daniel; Gonzalez, Lucía

    2016-05-01

    Renewable energies for electricity generation have always been considered as a risk for the electricity system due to its lack of dispatchability and firmness. Renewable energies penetration is constrained to strong grids or else its production must be limited to ensure grid stability, which is kept by the usage of hydropower energy or fossil-fueled power plants. CSP technology has an opportunity to arise not only as a dispatchable and firm technology, but also as an alternative that improves grid stability. To achieve that objective, solar hybrid configurations are being developed, being the most representative three different solutions: SAPG, ISCC and HYSOL. A reference scenario in Kingdom of Saudi Arabia (KSA) has been defined to compare these solutions, which have been modelled, simulated and evaluated in terms of dispatchability and firmness using ratios defined by the authors. The results show that: a) SAPG obtains the highest firmness KPI values, but no operation constraints have been considered for the coal boiler and the solar energy contribution is limited to 1.7%, b) ISCC provides dispatchable and firm electricity production but its solar energy contribution is limited to a 6.4%, and c) HYSOL presents the higher solar energy contribution of all the technologies considered: 66.0% while providing dispatchable and firm generation in similar conditions as SAPG and ISCC.

  2. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants

    International Nuclear Information System (INIS)

    Zare, V.; Hasanzadeh, M.

    2016-01-01

    Highlights: • A novel combined cycle is proposed for solar power tower plants. • The effects of solar subsystem and power cycle parameters are examined. • The proposed combined cycle yields exergy efficiencies of higher than 70%. • For the overall power plant exergy efficiencies of higher than 30% is achievable. - Abstract: Concentrating Solar Power (CSP) technology offers an interesting potential for future power generation and research on CSP systems of all types, particularly those with central receiver system (CRS) has been attracting a lot of attention recently. Today, these power plants cannot compete with the conventional power generation systems in terms of Levelized Cost of Electricity (LCOE) and if a competitive LCOE is to be reached, employing an efficient thermodynamic power cycle is deemed essential. In the present work, a novel combined cycle is proposed for power generation from solar power towers. The proposed system consists of a closed Brayton cycle, which uses helium as the working fluid, and two organic Rankine cycles which are employed to recover the waste heat of the Brayton cycle. The system is thermodynamically assessed from both the first and second law viewpoints. A parametric study is conducted to examine the effects of key operating parameters (including solar subsystem and power cycle parameters) on the overall power plant performance. The results indicate that exergy efficiencies of higher than 30% are achieved for the overall power plant. Also, according to the results, the power cycle proposed in this work has a better performance than the other investigated Rankine and supercritical CO_2 systems operating under similar conditions, for these types of solar power plants.

  3. Effects of foaming and antifoaming agents on the performance of a wet flue gas desulfurization pilot plant

    DEFF Research Database (Denmark)

    Qin, Siqiang; Hansen, Brian Brun; Kiil, Søren

    2014-01-01

    Foaming is a common phenomenon in industrial processes, including wet flue gas desulfurization (FGD) plants. A systemic investigation of the influence of two foaming agents, sodium dodecyl sulphate (SDS) and egg white albumin (protein), and two commercial antifoams on a wet FGD pilot plant...

  4. Design of micro-reactors and solar photocatalytic prototypes; Diseno de micro-reactores y prototipos fotocataliticos solares

    Energy Technology Data Exchange (ETDEWEB)

    Flores E, R.M.; Hernandez H, M.; Perusquia del Cueto, M.R.; Bonifacio M, J.; Jimenez B, J.; Ortiz O, H.B.; Castaneda J, G.; Lugo H, M. [ININ, Km. 36.5 Carr. Mexico-Toluca, 52750 La Marquesa, Ocoyoacac (Mexico)]. e-mail: rmfe@nuclear.inin.mx

    2007-07-01

    In the ININ is carried out research in heterogeneous photocatalysis using artificial light for to degrade organic compounds. In this context, it is sought to use the solar radiation as energy source to knock down costs. Of equal form it requires to link the basic and applied research. For it, a methodology that allows to design and to build micro-reactors and plants pilot has been developed, like previous step, to request external supports and to a future commercialization. The beginning of these works gave place to the partial construction of a prototype of photocatalytic reactor of the cylinder-parabolic composed type (CPC)

  5. A standard description and costing methodology for the balance-of-plant items of a solar thermal electric power plant. Report of a multi-institutional working group

    Science.gov (United States)

    1983-01-01

    Standard descriptions for solar thermal power plants are established and uniform costing methodologies for nondevelopmental balance of plant (BOP) items are developed. The descriptions and methodologies developed are applicable to the major systems. These systems include the central receiver, parabolic dish, parabolic trough, hemispherical bowl, and solar pond. The standard plant is defined in terms of four categories comprising (1) solar energy collection, (2) power conversion, (3) energy storage, and (4) balance of plant. Each of these categories is described in terms of the type and function of components and/or subsystems within the category. A detailed description is given for the BOP category. BOP contains a number of nondevelopmental items that are common to all solar thermal systems. A standard methodology for determining the costs of these nondevelopmental BOP items is given. The methodology is presented in the form of cost equations involving cost factors such as unit costs. A set of baseline values for the normalized cost factors is also given.

  6. Treatment of Wastewater Contaminated with Pesticide (Alachlor by Solar Enhanced Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Yasmen Abdulaziz Mustafa

    2015-11-01

    Full Text Available The degradation performance of aqueous solution of pesticide Alachlor has been studied at solar pilot scale plant in two photocatalytic systems: homogeneous photocatalysis by photo-Fenton and heterogeneous photocatalysis with titanium dioxide. The pilot scale system included of compound parabolic collectors specially designed for solar photocatalytic applications, and installed at University of Baghdad, Department of Environmental Engineering back yard. The influence of different concentrations, H2O2 (200-2400 mg/l, Fe+2(5- 30 mg/l and TiO2 (100-500 mg/l and their relationship with the degradation efficiency were studied. The COD removal efficiency for homogeneous photocatalytic system at the best dosage was found to be 73.7%. The parent pollutant concentrations which were monitored using HPLC decreased to reach zero level at early time of the experiment. For heterogeneous photocatalytic system the COD removal efficiency was found to be 72.7%.

  7. Start-up performance of parabolic trough concentrating solar power plants

    DEFF Research Database (Denmark)

    Ferruzza, Davide; Topel, Monika; Basaran, Ibrahim

    2017-01-01

    Concentrating solar power plants, even though they can be integrated with thermal energy storage, are still subjected to cyclic start-up and shut-downs. As a consequence, in order to maximize their profitability and performance, the flexibility with respect to transient operations is essential...

  8. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions

    2000-12-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  9. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions

    2000-01-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period

  10. A solar power plant for Curtin University Malaysia

    International Nuclear Information System (INIS)

    Palanichamy, C

    2016-01-01

    The Curtin University, Sarawak Malaysia (Curtin Sarawak) is the first and largest offshore campus of Curtin University in Perth, Western Australia, and the first foreign university to be established in East Malaysia in partnership with the Sarawak State Government. Today's major concern of Curtin is its monthly electrical energy consumption and the electricity bill since its monthly energy consumption exceeds 0.3 Million kWh, and the corresponding electricity bill surpasses RM 95000. Such a situation necessitates Curtin to curtail the heavy energy consumption with immediate effect. Introducing Renewable Energy Source such as PV Solar Systems is a cost-effective and environmental friendly solution to reduce the exponential increase in energy consumption charges of Curtin. Hence, this paper proposes a 90 kW solar power plant for Curtin Sarawak. (paper)

  11. A solar power plant for Curtin University Malaysia

    Science.gov (United States)

    Palanichamy, C.

    2016-03-01

    The Curtin University, Sarawak Malaysia (Curtin Sarawak) is the first and largest offshore campus of Curtin University in Perth, Western Australia, and the first foreign university to be established in East Malaysia in partnership with the Sarawak State Government. Today's major concern of Curtin is its monthly electrical energy consumption and the electricity bill since its monthly energy consumption exceeds 0.3 Million kWh, and the corresponding electricity bill surpasses RM 95000. Such a situation necessitates Curtin to curtail the heavy energy consumption with immediate effect. Introducing Renewable Energy Source such as PV Solar Systems is a cost-effective and environmental friendly solution to reduce the exponential increase in energy consumption charges of Curtin. Hence, this paper proposes a 90 kW solar power plant for Curtin Sarawak.

  12. Laboratory and pilot plant studies for the recovery of uranium from phosphoric acid by the D2EHPA-TOPO process

    International Nuclear Information System (INIS)

    Botella, T.; Gasos, P.

    1989-01-01

    The activities and costs involved in laboratory and pilot plant studies are discussed as applied to the D2EHPA-TOPO process. The overall capital investment (including engineering) for a plant with a throughput of 12 cubic meters of acid/day has been estimated to be around one million US dollars. Operating costs per year, without considering amortization and labor, are over 20,000 US dollars. A total time of 3,5 years (including engineering, purchase and pilot plant tests) could be needed to obtain the information required for final scale-up. (author). 40 refs, 1 fig., 5 tabs

  13. Solar radiation uncorks the lignin bottleneck on plant litter decomposition in terrestrial ecosystems

    Science.gov (United States)

    Austin, A.; Ballare, C. L.; Méndez, M. S.

    2015-12-01

    Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.

  14. Geotechnical Perspectives on the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Francke, Chris T.; Hansen, Frank D.; Knowles, M. Kathyn; Patchet, Stanley J.; Rempe, Norbert T.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is the first nuclear waste repository certified by the United States Environmental Protection Agency. Success in regulatory compliance resulted from an excellent natural setting for such a repository, a facility with multiple, redundant safety systems, and from a rigorous, transparent scientific and technical evaluation. The WIPP story, which has evolved over the past 25 years, has generated a library of publications and analyses. Details of the multifaceted program are contained in the cited references. Selected geotechnical highlights prove the eminent suitability of the WIPP to serve its congressionally mandated purpose

  15. Some economic considerations for a pilot plant based on the adsorber loop concept

    International Nuclear Information System (INIS)

    Koske, P.H.; Ohlrogge, K.; Jager, W.

    1984-01-01

    Some first order estimates about the production costs of seawater uranium are presented on the basis of a pilot plant with a capacity of about 100 t uranium per year. The plant is assumed to be operating at high seas using the ''adsorber loop concept'' for the contact between seawater and adsorber granulate. The effects of some process relevant components and parameters are discussed with regard to their contribution to the production costs and in order to analyse their cost-cutting potential. (orig.) [de

  16. Pilot plant development of a new catalytic process for improved electrostatic separation of fly-ash in coal fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Salvador Martinez, L.; Muniz Baum, B.; Cortes Galeano, V. [University of Seville, Seville (Spain). Chemical and Environmental Engineering Dept.

    1996-12-31

    A new catalytic process for flue gas conditioning in pulverized coal fired power plants is outlined. Vanadium and platinum catalysts specifically prepared on ceramic honeycomb monoliths to oxidize SO{sub 2} into SO{sub 3} have been tested and evaluated at pilot scale. 10 refs., 3 figs., 2 tabs.

  17. Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt

    International Nuclear Information System (INIS)

    Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S.

    2015-01-01

    Thermodynamic, economic and environmental analyses of concentrating solar power plants assist in identifying an effective and viable configuration. In this paper, a 4E (energy-exergy-environmental-economic) comparative study of 8 different configurations of parabolic trough solar thermal power plants with two different working fluids (Therminol VP-1 -oil and molten solar salt), with and without integrated thermal energy storage or/and backup fuel system is presented. The results of the comparative study indicate relevant differences among the 8 configurations. The molten solar salt configuration with integrated thermal energy storage and fossil fuel backup system exhibits the highest overall energy efficiency (18.48%) compared to other configurations. Whereas, the highest overall exergy efficiency (21.77%), capacity factor (38.20%) and annual energy generation (114 GWh) are found for the oil based configuration with integrated thermal energy storage and fossil fuel backup system. The results indicate that the configurations based on molten salt are better in terms of environmental and economical parameters. The configurations with integrated thermal energy storage and fossil fuel backup system are found to be techno-economical, but on the other hand are less environment friendly. A detailed comparison of these plants after optimization must be performed before drawing a final conclusion about the best configuration to be adopted in parabolic trough solar thermal power plant. - Highlights: • 4E comparative study of 8 configurations of PTSTPP with two different fluids. • Comparison of the configurations with and without integrated TES (thermal energy storage) and FBS (fuel backup system). • The overall energy efficiency of the salt plant with TES and FBS is the highest. • The overall exergy efficiency of the oil plant with TES and FBS is the highest. • The salt plants are the best configurations in terms of environ–eco parameters

  18. Tax Revenue and Job Benefits from Solar Thermal Power Plants in Nye County

    Energy Technology Data Exchange (ETDEWEB)

    Kuver, Walt

    2009-11-10

    The objective of this report is to establish a common understanding of the financial benefits that the County will receive as solar thermal power plants are developed in Amargosa Valley. Portions of the tax data and job estimates in the report were provided by developers Solar Millennium and Abengoa Solar in support of the effort. It is hoped that the resulting presented data will be accepted as factual reference points for the ensuing debates and financial decisions concerning these development projects.

  19. Concentrating Solar Power Projects - Planta Solar 20 | Concentrating Solar

    Science.gov (United States)

    Power | NREL 20 This page provides information on Planta Solar 20, a concentrating solar power Solar's Planta Solar 20 (PS20) is a 20-megawatt power tower plant being constructed next to the PS10 tower and increasing incident solar radiation capture will increase net electrical power output by 10

  20. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  1. The pilot plant for electron beam food processing

    International Nuclear Information System (INIS)

    Migdal, W.; Stachowicz, W.

    1993-01-01

    The investigations on food irradiation began in Poland in the end of 50-ties. Till the end of 70-ties the research activity on food irradiation was rather of the random nature and the objectives involved the fundamental research areas of food science. After the JECFI recommended in 1980 the general approval of foods treated with the doses of ionizing radiation up to 10 kG as unconditionally wholesome, the interest on practical application of food irradiation was gained in Poland. In 1986 the governmental bodies decided to recognize the possibilities of practical application of radiation techniques in agriculture, and the Central Research and Development Project No 10.13. ''Radiation Techniques in Agriculture'' was initiated for the period of 5 years. The project in the part that refers to food irradiations involved 3 major objectives: - radiation preservation of food; - radiation hygienization of animal feed; - Pilot plants for food irradiation. The most liable project of the programme was the construction of experimental plant for electron beam food irradiation, intended to be the national center for future testing and implementary works in this field. (orig.)

  2. Economic Optimization of a Concentrating Solar Power Plant with Molten-salt Thermocline Storage

    OpenAIRE

    Flueckiger, S. M.; Iverson, B. D.; Garimella, S V

    2014-01-01

    System-level simulation of a molten-salt thermocline tank is undertaken in response to year-long historical weather data and corresponding plant control. Such a simulation is enabled by combining a finite-volume model of the tank that includes a sufficiently faithful representation at low computation cost with a system-level power tower plant model. Annual plant performance of a 100 MWe molten-salt power tower plant is optimized as a function of the thermocline tank size and the plant solar m...

  3. Biomass conversion to hydrocarbon fuels using the MixAlco™ process at a pilot-plant scale

    International Nuclear Information System (INIS)

    Taco Vasquez, Sebastian; Dunkleman, John; Chaudhuri, Swades K.; Bond, Austin; Holtzapple, Mark T.

    2014-01-01

    Texas A and M University has built a MixAlco™ pilot plant that converts biomass to hydrocarbons (i.e., jet fuel, gasoline) using the following steps: fermentation, descumming, dewatering, thermal ketonization, distillation, hydrogenation, and oligomerization. This study describes the pilot plant and reports results from an 11-month production campaign. The focus was to produce sufficient jet fuel to be tested by the U.S. military. Because the scale was relatively small, energy-saving features were not included in the pilot plant. Further, the equipment was operated in a manner to maximize productivity even if yields were low. During the production campaign, a total of 6.015 Mg of shredded paper and 120 kg of chicken manure (dry basis) were fermented to produce 126.5 m 3 of fermentation broth with an average concentration of 12.5 kg m −3 . A total of 1582 kg of carboxylate salts were converted to 587 L of raw ketones, which were distilled and hydrogenated to 470 L of mixed alcohols ranging from C3 to C12. These alcohols, plus 300 L of alcohols made by an industrial partner (Terrabon, Inc.) were shipped to an independent contractor (General Electric) and transformed to jet fuel (∼100 L) and gasoline (∼100 L) byproduct. - Highlights: • We produce hydrocarbons from paper and chicken manure in a pilot-scale production using the MixAlco™ process. • About 100 L of jet fuel were produced for military testing. • High production rates and good product quality were preferred rather than high yields or energy efficiency. • The MixAlco™ process converted successfully lignocellulosic biomass to hydrocarbons and viable for commercial-scale production

  4. Concentrating Solar Power Projects - Khi Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Khi Solar One This page provides information on Khi Solar One, a concentrating solar power (CSP) project, with data organized by background, parcipants and power plant configuration . Status Date: February 8, 2016 Project Overview Project Name: Khi Solar One Country: South Africa Location

  5. Location Study of Solar Thermal Power Plant in the State of Pernambuco Using Geoprocessing Technologies and Multiple-Criteria Analysis

    Directory of Open Access Journals (Sweden)

    Verônica Wilma B. Azevêdo

    2017-07-01

    Full Text Available Solar Thermal Technology for the generation of electricity in large scale has been a reality in the world since the 1980s, when the first large-sized solar plants in the United States were introduced. Brazil presents great potential for the development of large-scale projects, although it is noted that the main barriers for the insertion of this technology in Brazilian market are the lack of incentives and goals and associated costs. In a way to contribute to the insertion of solar thermal technology in Brazil, this paper presents a macro-spatial approach, based on the use of Multiple-Criteria Decision Analysis and Geoprocessing, for the location of solar thermal power plants. The applied methodology for Pernambuco, located in the Northeast Region of Brazil, considered the implantation of parabolic trough solar power plant of 80 MW, operating only in solar mode, without heat storage. Based on performed analysis, it was confirmed that Pernambuco presents great potential for the installation of solar power plants, especially in the backlands of Pernambuco. Performed validations in the model demonstrate that the methodology attended the objective once the consistence between the assigned weights to the thematic layers, individually, and the final Map of site suitability were evidenced.

  6. Environmentally friendly production of charcoal from empty fruit bunches using pilot plant

    International Nuclear Information System (INIS)

    Normah Mulop; Mohd Suffian Abdul Rahim

    2000-01-01

    Empty fruit bunches (EFB) from palm oil milling process are classified as palm oil waste. The EFB can be turned into valuable product such as charcoal, which can be processed further to activated carbon in order to solve some of the disposal problems. In this project, raw EFB was converted to charcoal by means of a pilot plant. A burner generating indirect heat controls the temperature of the process. The carbonization process was carried out in the absence of air at various temperatures and durations to find the optimum carbonization parameters. The study shows that the optimum operating, temperature for carbonization of EFB is 500 o C for the duration of 11/2 hours. The average fixed carbon content of the charcoal is 61.08. The high percentage of volatile matter is prevented from escaping into the air by trapping them in a series of cyclones. The double layered cyclones using water as the cooling medium, condense more volatile matter and reduces smoke exhaust. 50.7 % of ,gaseous product is condensed and 49.2 % is emitted to the atmosphere. The result is an environmental friendly pilot plant. (author)

  7. Large Pilot Scale Testing of Linde/BASF Post-Combustion CO2 Capture Technology at the Abbott Coal-Fired Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Kevin C. [University of Illinois, Champaign, IL (United States)

    2017-08-18

    The work summarized in this report is the first step towards a project that will re-train and create jobs for personnel in the coal industry and continue regional economic development to benefit regions impacted by previous downturns. The larger project is aimed at capturing ~300 tons/day (272 metric tonnes/day) CO2 at a 90% capture rate from existing coal- fired boilers at the Abbott Power Plant on the campus of University of Illinois (UI). It will employ the Linde-BASF novel amine-based advanced CO2 capture technology, which has already shown the potential to be cost-effective, energy efficient and compact at the 0.5-1.5 MWe pilot scales. The overall objective of the project is to design and install a scaled-up system of nominal 15 MWe size, integrate it with the Abbott Power Plant flue gas, steam and other utility systems, and demonstrate the viability of continuous operation under realistic conditions with high efficiency and capacity. The project will also begin to build a workforce that understands how to operate and maintain the capture plants by including students from regional community colleges and universities in the operation and evaluation of the capture system. This project will also lay the groundwork for follow-on projects that pilot utilization of the captured CO2 from coal-fired power plants. The net impact will be to demonstrate a replicable means to (1) use a standardized procedure to evaluate power plants for their ability to be retrofitted with a pilot capture unit; (2) design and construct reliable capture systems based on the Linde-BASF technology; (3) operate and maintain these systems; (4) implement training programs with local community colleges and universities to establish a workforce to operate and maintain the systems; and (5) prepare to evaluate at the large pilot scale level various methods to utilize the resulting captured CO2. Towards the larger project goal, the UI-led team, together

  8. Solar thermal power stations for activities implemented jointly. The Theseus 50 MWe solar thermal power plant for the island of Crete, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Brakmann, Georg [Fichtner, Stuttgart (Germany); Aringhoff, Rainer [Pilkington Solar International (United Kingdom); Cobi, Arend [PreussenElektra (Germany)

    1998-09-01

    THESEUS, the proposed commercial 50 MWe (net) Thermal Solar European Power Station for the Island of Crete is a solar hybrid plant with parabolic trough collectors and an advanced high efficiency Rankine reheat steam cycle. At the end of 1996 the DG XVII (Energy) of the European Commission has accepted the THERMIE application of the THESEUS consortium for the design phase. THESEUS reduces the required oil imports by 28 000 t/a, thereby saving the Greek economy every year 4 million ECU in foreign currency. During its 25 years technical lifetime 2.2 million tons of CO{sub 2} emissions will be avoided. Supply, construction, erection and operation of THESEUS creates 2 000 qualified employments (man-years). Because of the high manpower intensity of solar plants and their larger capital income from interest payments in contrast to the high fuel import intensity of fossil plants, THESEUS will generate larger tax revenues for Greece and for the supplier`s countries. The investment cost of THESEUS is some 135 million ECU. Even without any subsidies this would result in electricity generation cost of some 0.085 ECY/kWh, which is lower than the current average cost from the existing power plants of Crete. (author)

  9. A desalination plant with solar and wind energy

    International Nuclear Information System (INIS)

    Chen, H; Ye, Z; Gao, W

    2013-01-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m 2 per hour. Comparing

  10. Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox

    International Nuclear Information System (INIS)

    Ballare, C.L.; Scopel, A.L.; Stapleton, A.E.

    1996-01-01

    To study functional relationships between the effects of solar ultraviolet-B radiation (UV0B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferrox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores. 56 refs., 7 figs

  11. Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region

    Directory of Open Access Journals (Sweden)

    Praveen R. P.

    2018-03-01

    Full Text Available The Middle East is one among the areas of the world that receive high amounts of direct solar radiation. As such, the region holds a promising potential to leverage clean energy. Owing to rapid urbanization, energy demands in the region are on the rise. Along with the global push to curb undesirable outcomes such as air pollution, emissions of greenhouse gases, and climate change, an urgent need has arisen to explore and exploit the abundant renewable energy sources. This paper presents the design, performance analysis and optimization of a 100 MWe parabolic trough collector Solar Power Plant with thermal energy storage intended for use in the Middle Eastern regions. Two representative sites in the Middle East which offer an annual average direct normal irradiance (DNI of more than 5.5 kWh/m2/day has been chosen for the analysis. The thermodynamic aspect and annual performance of the proposed plant design is also analyzed using the System Advisor Model (SAM version 2017.9.5. Based on the analysis carried out on the initial design, annual power generated from the proposed concentrating solar power (CSP plant design in Abu Dhabi amounts to 333.15 GWh whereas that in Aswan recorded a value of 369.26 GWh, with capacity factors of 38.1% and 42.19% respectively. The mean efficiency of the plants in Abu Dhabi and Aswan are found to be 14.35% and 14.98% respectively. The optimization of the initial plant design is also carried out by varying two main design parameters, namely the solar multiple and full load hours of thermal energy storage (TES. Based on the findings of the study, the proposed 100 MW parabolic trough collector solar power plant with thermal energy storage can contribute to the sustainable energy future of the Middle East with reduced dependency on fossil fuels.

  12. Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants

    Science.gov (United States)

    Noureldin, Kareem; Hirsch, Tobias; Pitz-Paal, Robert

    2017-06-01

    Optimizing solar field operation and control is a key factor to improve the competitiveness of line-focus solar thermal power plants. However, the risks of assessing new and innovative control strategies on operational power plants hinder such optimizations and result in applying more conservative control schemes. In this paper, we describe some applications for a whole solar field transient in-house simulation tool developed at the German Aerospace Centre (DLR), the Virtual Solar Field (VSF). The tool offers a virtual platform to simulate real solar fields while coupling the thermal and hydraulic conditions of the field with high computational efficiency. Using the tool, developers and operator can probe their control strategies and assess the potential benefits while avoiding the high risks and costs. In this paper, we study the benefits gained from controlling the loop valves and of using direct normal irradiance maps and forecasts for the field control. Loop valve control is interesting for many solar field operators since it provides a high degree of flexibility to the control of the solar field through regulating the flow rate in each loop. This improves the reaction to transient condition, such as passing clouds and field start-up in the morning. Nevertheless, due to the large number of loops and the sensitivity of the field control to the valve settings, this process needs to be automated and the effect of changing the setting of each valve on the whole field control needs to be taken into account. We used VSF to implement simple control algorithms to control the loop valves and to study the benefits that could be gained from using active loop valve control during transient conditions. Secondly, we study how using short-term highly spatially-resolved DNI forecasts provided by cloud cameras could improve the plant energy yield. Both cases show an improvement in the plant efficiency and outlet temperature stability. This paves the road for further

  13. Development of pilot model of virtual nuclear power plant and its application to radiation management

    International Nuclear Information System (INIS)

    Kang, K. D.; Sin, S. W.

    2002-01-01

    Using Virtual Reality (VR) technique, a real model for radiation controlled area in nuclear power plant was developed and a feasibility study to develop a computational program to estimate radiation dose was performed. For this purpose a pilot model with an dynamic function and bi-directional communication was developed. This model was enhanced from the existing 3-D single-directional communication. In this pilot model, a plant visitor needs a series of security checking process initially. If he(she) enters the controlled area and approaches radiation hazard area, the alarms with warning lamp will be initiated automatically. Throughout the test to connect this model from both domestic and international sites in various time zones it has proven that it showed a sufficient performance. Therefore this model can be applied to broad fields as radiation protection procedures photographic data, on-line dose program

  14. Effects Total Solar Eclipse to Nasty Behaviour of the Several Legume Plants as a Result Student Research

    Science.gov (United States)

    Anggraeni, S.; Diana, S.; Supriatno, B.

    2017-09-01

    Some group students of plant Physiology course have given task to do free inquiry. They investigated of the nasty behaviour of several legume plants in response to changes in light during the partial solar eclipse that occurred at March 9, 2016. The investigation carried out in UPI Bandung, West Java, Indonesia, which is in the penumbra region of a total solar eclipse with the location coordinates of latitude: -6.86105, longitude: 07.59071, S 6057’ 37.53553 “and E 107035’ 24.29141”. They were measuring the movement of opening leaves every ten minutes at the beginning of the start until the end of the eclipse compared with the behaviour without eclipsing. Influence is expressed by comparing the leaf opening movement (measured in the form of leaf angular) at the time of the eclipse with a normal day. Each group was observed for one plant of the legume, there are: Mimosa pudica, Bauhinia purpurea, Caesalpinia pulcherrima, and Arachis pintoi. The results showed that the changes in leaf angular in plants Mimosa pudica, Caesalpinia pulcherrima, and Arachis pintoi differently significant, except for Bauhinia purpurea. In conclusion, the total solar eclipse in the penumbra area affects the movement of some nasty legume plants. It is recommended to conduct a study of the nasty behaviour of legume plants in the area umbra in the path of a total solar eclipse.

  15. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  16. Impact of the operation of non-displaced feedwater heaters on the performance of Solar Aided Power Generation plants

    International Nuclear Information System (INIS)

    Qin, Jiyun; Hu, Eric; Nathan, Graham J.

    2017-01-01

    Highlights: • Impact of non-displaced feedwater heater on plant’s performance has been evaluated. • Two operation strategies for non-displaced feedwater heater has been proposed. • Constant temperature strategy is generally better. • Constant mass flow rate strategy is suit for rich solar thermal input. - Abstract: Solar Aided Power Generation is a technology in which low grade solar thermal energy is used to displace the high grade heat of the extraction steam in a regenerative Rankine cycle power plant for feedwater preheating purpose. The displaced extraction steam can then expand further in the steam turbine to generate power. In such a power plant, using the (concentrated) solar thermal energy to displace the extraction steam to high pressure/temperature feedwater heaters (i.e. displaced feedwater heaters) is the most popular arrangement. Namely the extraction steam to low pressure/temperature feedwater heaters (i.e. non-displaced feedwater heaters) is not displaced by the solar thermal energy. In a Solar Aided Power Generation plants, when solar radiation/input changes, the extraction steam to the displaced feedwater heaters requires to be adjusted according to the solar radiation. However, for the extraction steams to the non-displaced feedwater heaters, it can be either adjusted accordingly following so-called constant temperature strategy or unadjusted i.e. following so-called constant mass flow rate strategy, when solar radiation/input changes. The previous studies overlooked the operation of non-displaced feedwater heaters, which has also impact on the whole plant’s performance. This paper aims to understand/reveal the impact of the two different operation strategies for non-displaced feedwater heaters on the plant’s performance. In this paper, a 300 MW Rankine cycle power plant, in which the extraction steam to high pressure/temperature feedwater heaters is displaced by the solar thermal energy, is used as study case for this purpose. It

  17. Techno-economic evaluation of a solar powered water desalination plant

    International Nuclear Information System (INIS)

    Fiorenza, G.; Sharma, V.K.; Braccio, G.

    2003-01-01

    Water desalination technologies and their possible coupling with solar energy have been evaluated. The topic is of particular interest, especially for countries located within the Southern Mediterranean belt, generally characterized with vast arid and isolated areas having practically no access to electric power from the national grid. Economic factors being one of the main barriers to diffusion of solar devices so far, an attempt has been made to estimate the water production cost for two different seawater desalination systems: reverse osmosis and multiple effect, powered by a solar thermal and a photovoltaic field, respectively. The results obtained for plants of capacity varying between 500 and 5000 m 3 /d have been compared to results concerning a conventional desalination system. In addition, the influences of various parameters, such as depreciation factor, economic incentives, PV modules cost and oil price, have also been considered

  18. Application of remedy studies to the development of a soil washing pilot plant that uses mineral processing technology: a practical experience

    International Nuclear Information System (INIS)

    Richardson, W.S.; Phillips, C.R.; Hicks, R.; Luttrell, J.; Cox, C.

    1999-01-01

    Soil washing employing mineral processing technology to treat radionuclide-contaminated soils has been examined as a remedy alternative to the exclusive excavation, transportation, and disposal of the soil. Successful application depends on a thorough remedy study, employing a systematic tiered approach that is efficient, self-limiting, and cost effective. The study includes: (1) site and soil characterization to determine the basic mineral and physical properties of both the soil and contaminants and to identify their relative associations; (2) treatment studies to evaluate the performance of process units for contaminant separation; (3) conceptual process design to develop a treatment pilot plant; and (4) engineering design to construct, test, and optimize the actual full-scale plant. A pilot plant using soil washing technology for the treatment of radium-contaminated soil was developed, tested, and demonstrated. The plant used particle-size separation to produced a remediated product that represented approximately 50% of the contaminated soil. Subsequently, it was modified for more effective performance and application to soil with alternate characteristics; it awaits further testing. The economic analysis of soil washing using the pilot plant as a model indicates that a remedy plan based on mineral processing technology is very competitive with the traditional alternative employing excavation, transportation, and disposal exclusively, even when disposal costs are modest or when recovery of remediated soil during treatment is low. This paper reviews the tiered approach as it applies to mineral processing technology to treat radionuclide-contaminated soils and a pilot plant developed to test the soil washing process. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Waste Isolation Pilot Plant: Alcove Gas Barrier trade-off study

    International Nuclear Information System (INIS)

    Lin, M.S.; Van Sambeek, L.L.

    1992-07-01

    A modified Kepner-Tregoe method was used for a trade-off study of Alcove Gas Barrier (AGB) concepts for the Waste Isolation Pilot Plant. The AGB is a gas-constraining seal to be constructed in an alcove entrance drift. In this trade-off study, evaluation criteria were first selected. Then these criteria were classified as to their importance to the task, assigning a weighting value to each aspect. Eleven conceptual design alternatives were developed based on geometrical/geological considerations, construction materials, constructibility, and other relevant factors and evaluated

  20. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  1. Development of greenhouse solar systems for bulk tobacco curing and plant production

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.K.; Bowers, C.G. Jr.

    1986-12-01

    Among many farm crops, bright leaf tobacco is the most energy- and labor-intensive crop. The greenhouse solar system (solar bulk-curing/greenhouse system, or solar barn) was developed to provide multiple-use facilities for year-round solar energy utilization to save fossil fuels in tobacco curing and plant production and to facilitate the total mechanization of tobacco culture. Two types of full-size greenhouse solar systems, the load-supporting wall design and the shell design, both utilizing the thermal envelope concept, were designed and constructed for solar bulk-curing of tobacco, growing transplants and horticultural crops under controlled environment, and aiding automation of transplanting operations. Full-scale field tests of solar bulk curing showed that the fuel savings were consistantly improved from 37% in 1975 to 51% in 1978 for this solar bulk-curing system as compared with a conventional bulk-curing barn as a control. The feasibility of the system to save energy by using solar energy as a first priority source was significantly demonstrated. Three-year greenhouse and field tests showed that high germination rate of 95-97% with excellent emergence frequency was obtained for tobacco seeds under the controlled environment provided by the greenhouse solar system. In general, the containerized transplants from greenhouse solar system significantly exceeded the conventional bare-root transplants in growth, leaf-quality and yield. 9 figs., 3 tabs., 10 refs.

  2. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    International Nuclear Information System (INIS)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years – with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 °C) and pressure (over 100 bar). Thermodynamic performance of the Kalina cycle in terms of the plant exergy efficiency was evaluated and compared with a simple Rankine cycle. The rates of exergy destruction for the different components in the two cycles were also calculated and compared. The results suggest that the simple Rankine cycle exhibits better performance than the Kalina cycle when the heat input is only from the solar receiver. However, when using a two-tank molten-salt storage system as the primary source of heat input, the Kalina cycle showed an advantage over the simple Rankine cycle because of about 33 % reduction in the storage requirement. The solar receiver showed the highest rate of exergy destruction for both the cycles. The rates of exergy destruction in other components of the cycles were found to be highly dependent on the amount of recuperation, and the ammonia mass fraction and pressure at the turbine inlet. - Highlights: •Kalina cycle for a central receiver solar thermal power plant with direct steam generation. •Rankine cycle shows better plant exergy

  3. Test phase plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US Department of Energy (DOE) has prepared this Test Phase Plan for the Waste Isolation Pilot Plant to satisfy the requirements of Public Law 102-579, the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act (LWA). The Act provides seven months after its enactment for the DOE to submit this Plan to the Environmental Protection Agency (EPA) for review. A potential geologic repository for transuranic wastes, including transuranic mixed wastes, generated in national-defense activities, the WIPP is being constructed in southeastern New Mexico. Because these wastes remain radioactive and chemically hazardous for a very long time, the WIPP must provide safe disposal for thousands of years. The DOE is developing the facility in phases. Surface facilities for receiving waste have been built and considerable underground excavations (2150 feet below the surface) that are appropriate for in-situ testing, have been completed. Additional excavations will be completed when they are required for waste disposal. The next step is to conduct a test phase. The purpose of the test phase is to develop pertinent information and assess whether the disposal of transuranic waste and transuranic mixed waste in the planned WIPP repository can be conducted in compliance with the environmental standards for disposal and with the Solid Waste Disposal Act (SWDA) (as amended by RCRA, 42 USC. 6901 et. seq.). The test phase includes laboratory experiments and underground tests using contact-handled transuranic waste. Waste-related tests at WIPP will be limited to contact-handled transuranic and simulated wastes since the LWA prohibits the transport to or emplacement of remote-handled transuranic waste at WIPP during the test phase

  4. 1480 W Plts Solar Power Plant Architecture With Solar Tracker For Controlling Microcontroller-Based Solar Panel In Tigaraja Village Sub-District Of Tigadolok Regency Of Simalungun

    Directory of Open Access Journals (Sweden)

    Robert Samosir

    2017-12-01

    Full Text Available Electrical energy has become a basic need for human being. In some remote areas however electricity is unreachable and poses a taboo subject and cannot be enjoyed by local people such as in Tigaraja Village Sub-District of Tigadolok Regency of Simalungun. The sun is a renewable energy that it is beneficial for power plant use. With PLTS solar energy can be changed into the sun through the solar panel. Battery Charge Regulator BCR operates stabilizing voltage from solar panel to battery. The battery will save electrical power to be distributed for household consumption. Since battery power has direct current however Inverter operates changing its direct current into alternating current. To optimize absorption of solar energy a servo motor is used to make solar panel moving by following the suns path. Arduino Uno as direct control of solar panel using solar sensor gives current for servo motor. Then the servo motor can move in reverse and forward. Therefore Household goods like water pumps lamps and televisions have been worked when people come home from their work.

  5. Value of solar thermal and photovoltaic power plants to Arizona Public Service Company

    International Nuclear Information System (INIS)

    Smith, P.A.

    1994-01-01

    Arizona Public Service Company has performed a study using historical solar radiation and system load data to (1) estimate the effects of six types of solar generation on system reliability, (2) estimate the central station value of each to its system, (3) and to assess the potential of each of those technologies to provide bulk power to its system in the 2000 time frame. Technologies included three solar thermal (central receiver, dish Stirling, and parabolic trough) and three flat plate photovoltaic plants (fixed position, one axis, and two axis tracking)

  6. Integrated bicarbonate-form ion exchange treatment and regeneration for DOC removal: Model development and pilot plant study.

    Science.gov (United States)

    Hu, Yue; Boyer, Treavor H

    2017-05-15

    The application of bicarbonate-form anion exchange resin and sodium bicarbonate salt for resin regeneration was investigated in this research is to reduce chloride ion release during treatment and the disposal burden of sodium chloride regeneration solution when using traditional chloride-form ion exchange (IX). The target contaminant in this research was dissolved organic carbon (DOC). The performance evaluation was conducted in a completely mixed flow reactor (CMFR) IX configuration. A process model that integrated treatment and regeneration was investigated based on the characteristics of configuration. The kinetic and equilibrium experiments were performed to obtain required parameters for the process model. The pilot plant tests were conducted to validate the model as well as provide practical understanding on operation. The DOC concentration predicted by the process model responded to the change of salt concentration in the solution, and showed a good agreement with pilot plant data with less than 10% difference in terms of percentage removal. Both model predictions and pilot plant tests showed over 60% DOC removal by bicarbonate-form resin for treatment and sodium bicarbonate for regeneration, which was comparable to chloride-form resin for treatment and sodium chloride for regeneration. Lastly, the DOC removal was improved by using higher salt concentration for regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Monitoring and toxicity evaluation of phytoplankton on lithium manganese oxide adsorbents at lithium recovery pilot plant field.

    Science.gov (United States)

    Yoon, H. O.; Kim, J. A.; Kim, J. C.; Chung, K. S.; Ryu, J. H.

    2015-12-01

    For recovery of rare mineral resources such as lithium or boron from seawater, the lithium adsorbent material have been made by Korea Institute of Geoscience and Mineral Resources (KIGAM) and pilot plant was conducted in Okgye Harbor, Gangneung, Korea. The application of lithium adsorbent in pilot plant, it is important to consider the impact on the marine environment. Especially phytoplankton communities are important marine microorganism to represent marine primary product. At the same time, phytoplankton is possible to induce the decrease of lithium recovery rate due to cause of biofouling to surfaces of lithium adsorbents. Therefore long-term and periodic monitoring of phytoplankton is necessary to understand the environmental impact and biofouling problems near the lithium pilot plant. The abundance and biomass of phytoplankton have been evaluated through monthly interval sampling from February 2013 to May 2015. Abundance and species diversity of phytoplankton went up to summer from winter. When lithium adsorbents were immersing to seawater, eco-toxicities of released substances were determined using Microtox with bioluminescence bacteria Vibrio fischeri. The adsorbents were soaked in sterilized seawater and aeration for 1, 3, 5, 7, 10 and 14 days intervals under controlled temperature. Maximum EC50 concentration was 61.4% and this toxicity was showed in more than 10 days exposure.

  8. The Waste Isolation Pilot Plant: a potential solution for the disposal of transuranic waste

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    ... Isolation Pilot Plant Board on Radioactive Waste Management Commission on Geosciences, Environment, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1996 i Copyrighttrue Please breaks inserted. are Page files. accidentally typesetting been have may original from the errors not typographic original retained, and from the c...

  9. Model of yield response of corn to plant population and absorption of solar energy.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1 and g plant(-1 on plant population (plants m(-2. Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L. grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m (Mg ha(-1 for maximum yield at high plant population and c (m(2 plant(-1 for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c = 1/c (plants m(-2. The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c were very similar for the three field studies with the same crop species.

  10. Draft forecast of the final report for the comparison to 40 CFR Part 191, Subpart B, for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bertram-Howery, S.G.; Marietta, M.G.; Anderson, D.R.; Gomez, L.S.; Rechard, R.P. (Sandia National Labs., Albuquerque, NM (USA)); Brinster, K.F.; Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

    1989-12-01

    The United States Department of Energy is planning to dispose of transuranic wastes, which have been generated by defense programs, at the Waste Isolation Pilot Plant. The WIPP Project will assess compliance with the requirements of the United States Environmental Protection Agency. This report forecasts the planned 1992 document, Comparison to 40 CFR, Part 191, Subpart B, for the Waste Isolation Pilot Plant (WIPP). 130 refs., 36 figs., 11 tabs.

  11. An improved model to evaluate thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines in open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Imineo, Francesco; Marinelli, Valerio

    2013-01-01

    An improved model to analyze the performance of solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle is presented. In the new model, the effect of the incident angle modifier is included, to take into account the variation of the optical efficiency with the incidence angle of the irradiance, and the effect of the reheating of the fluid also has been studied. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine, with and without reheating of the fluid in the solar field. When reheating is used, the efficiency of the plant is increased. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it is able to compete well with other more complex plants operating with different heat transfer fluids. - Highlights: ► An improved model to calculate an innovative CPS solar plant is presented. ► The plant works with air in an open Joule–Brayton cycle. ► The reheating of the air increases the thermodynamic efficiency. ► The plant is very simple and competes well with other more complex solar plants

  12. Solar radiation interception of various planting space patterns of maize and its relation to yields

    International Nuclear Information System (INIS)

    Akhir, N.

    2003-01-01

    A research was carried out to study solar radiation interception and its relation to yield of maize in various plant spacing patterns at high elevation. The goal of this research was to contribute the development of crop science, especially the plant ecophysiology. A field experiment was executed from March to August 1998 at Assessment Institute of Agricultural Technology, Sukarami, West Sumatra. The experiment was arranged in Randomized Block Design and each treatment was replicated three times. The experiment data was analyzed by ANOVA and path analysis. The results of experiment indicated that the percentage of solar radiation interception gave high contribution to the dry grain yield for Pioneer-7 cultivar, and the solar radiation interception was depend on LAI and leaf angle

  13. Scope for solar hydrogen power plants along Indian coasts

    Science.gov (United States)

    Hajra, Debdyut; Mukhopadhyay, Swarnav

    2016-09-01

    Energy is at the core of economic growth and development in the present day world. But relentless and unchecked use of harmful energy resources like fossil fuels (coil and oil), nuclear energy has taken a toll on mother nature. The energy coffers are being rapidly depleted and within a few years all of them will become empty, leaving nothing for the future generations to build on. Their constant usage has degraded the air quality and given way to land and water pollution. Scientists and world leaders have initiated a call for action to shift our dependence from currently popular energy sources to cleaner and renewable energy sources. Search for such energy sources have been going on for many years. Solar energy, wind energy, ocean energy, tidal energy, biofuel, etc. have caught the attention of people. Another such important which has become popular is 'Solar Hydrogen'. Many visionary scientists have called hydrogen the energy of the future. It is produced from water by direct or indirect use of sunlight in a sustainable manner. This paper discusses the current energy scenario, the importance of solar-hydrogen as a fuel and most importantly the scope for solar hydrogen power plants along Indian coastline.

  14. A 22 MW pilot plant with an ammonia bottoming cycle is being tested by Electricite de France

    International Nuclear Information System (INIS)

    Fleury, J.; Bellot, C.

    1989-01-01

    EDF's DER has built a 22 MW ammonia bottoming cycle pilot power plant in Gennevilliers near Paris. This construction marks a turning point in the development of bottoming cycles which was undertaken at EDF in 1970. These cycles could be used in powerful PWR plants. The key feature of this type of plant is its appreciable capacity gain when the temperature of the heat sink drops. Thus, with a heat sink of the dry cooling tower type, low air temperatures in winter can be turned to use to produce more energy when demand is at its highest. At the same time, with dry cooling towers, a tiresome constraint vanishes since the plant location choice does no longer depend on the existence of a water reservoir in the vicinity of the plant. The construction of the pilot plant Cybiam began in 1980. Its steam turbine-generator set was coupled to the French network in March 1986 and its ammonia turbine-generator set in December 1986. The full load was attained on June 4th 1987. The main problems met during its commissioning are described in this paper as well as the first test results. From the economic point of view, the money value of the extra power generated during cold spells is assessed

  15. Dry cooling with night cool storage to enhance solar power plants performance in extreme conditions areas

    International Nuclear Information System (INIS)

    Muñoz, J.; Martínez-Val, J.M.; Abbas, R.; Abánades, A.

    2012-01-01

    Highlights: ► Solar thermo-electric power plants with thermal storage for condenser cooling. ► Technology to mitigate the negative effect on Rankine cycles of the day-time high temperatures in deserts. ► Electricity production augmentation in demand-peak hours by the use of day-night temperature difference. -- Abstract: Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

  16. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C.

    2010-07-01

    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  17. An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant.

    Science.gov (United States)

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2015-11-05

    The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display.

  18. An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant

    Directory of Open Access Journals (Sweden)

    Francesco Salamone

    2015-11-01

    Full Text Available The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display.

  19. Electrodialytic remediation of CCA-treated waste wood in a 2 m3 pilot plant

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Waste wood that has been treated with chromated-copper-arsenate (CCA) poses a potential environmental problem due to the content of copper, chromium and arsenic. A pilot plant for electrodialytic remediation of up to 2 m3 wood has been designed and tested and the results are presented here. Sever...

  20. Operating boundaries of full-scale advanced water reuse treatment plants: many lessons learned from pilot plant experience.

    Science.gov (United States)

    Bele, C; Kumar, Y; Walker, T; Poussade, Y; Zavlanos, V

    2010-01-01

    Three Advanced Water Treatment Plants (AWTP) have recently been built in South East Queensland as part of the Western Corridor Recycled Water Project (WCRWP) producing Purified Recycled Water from secondary treated waste water for the purpose of indirect potable reuse. At Luggage Point, a demonstration plant was primarily operated by the design team for design verification. The investigation program was then extended so that the operating team could investigate possible process optimisation, and operation flexibility. Extending the demonstration plant investigation program enabled monitoring of the long term performance of the microfiltration and reverse osmosis membranes, which did not appear to foul even after more than a year of operation. The investigation primarily identified several ways to optimise the process. It highlighted areas of risk for treated water quality, such as total nitrogen. Ample and rapid swings of salinity from 850 to 3,000 mg/l-TDS were predicted to affect the RO process day-to-day operation and monitoring. Most of the setpoints used for monitoring under HACCP were determined during the pilot plant trials.

  1. Concentrating Solar Power Projects - KaXu Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL KaXu Solar One This page provides information on KaXu Solar One, a concentrating solar power (CSP) project, with data organized by background, parcipants and power plant configuration . Status Date: April 14, 2015 Project Overview Project Name: KaXu Solar One Country: South Africa Location

  2. Thermodynamic, Environmental and Economic Analyses of Solar Ejector Refrigeration System Application for Cold Storage

    Directory of Open Access Journals (Sweden)

    İbrahim ÜÇGÜL

    2009-02-01

    Full Text Available The refrigeration processes have been widely applied for especially in cold storages. In these plants, the systems working with compressed vapour cooling cycles have been used as a classical method. In general, electrical energy is used for compressing in these processes. Although, mainly the electricity itself has no pollution effect on the environment, the fossil fuels that are widely used to produce electricity in the most of the world, affect the nature terribly. In short, these refrigeration plants, because of the source of the electricity pollute the nature indirectly. However, for compression an ejector refrigeration system requires one of the important renewable energy sources with negligible pollution impact on the environment, namely solar energy from a thermal source. Thermodynamical, environmental and economical aspects of the ejector refrigeration system working with solar energy was investigated in this study. As a pilot case, apple cold storage plants widely used in ISPARTA city, which 1/5 th of apple production of TURKEY has been provided from, was chosen. Enviromental and economical advantages of solar ejector refrigeration system application for cold storage dictated by thermodynamic, economic and enviromental analyses in this research.

  3. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume I contains the following attachments for Module II: waste analysis plan; quality assurance program plan for the Waste Isolation Pilot Plant (WIPP) Experiment Waste Characterization Program(QAPP); WIPP Characterization Sampling and Analysis Guidance Manual (Plan)(SAP); and no migration Determination Requirement Summary (NMD)

  4. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate

    International Nuclear Information System (INIS)

    Anglada, Angela; Urtiaga, Ana M.; Ortiz, Inmaculada

    2010-01-01

    Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m 2 was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted.

  5. Pilot project concerning the establishment of a collective biomass conversion plant on the island of Mors

    International Nuclear Information System (INIS)

    1993-06-01

    This pilot project comprises a feasibility study in connection with plans to establish a biomass conversion plant, on the Danish island of Mors, which would provide methane to be used as fuel, in combination with natural gas, for a cogeneration plant serving six villages. The subjects of location, organization, the transportation of biomass, the design of the biomass conversion plant, economical aspects and conditions of the use of the methane are discussed as a basis for decisions in this respect. Environmental considerations are also dealt with. (AB)

  6. Desind an operation of pilot plant production of biodisel fron frying oils

    Directory of Open Access Journals (Sweden)

    Nelly Morales Pedraza

    2008-06-01

    Full Text Available The objective of this article is present the pilot plant used in the research titled: Production of biodiesel from used edible oils to industrial level for the production of methyl or ethyl esters from vegetable oils used in the food industry that be used as a fuel in diesel engines type, in order to generate alternative use for these oils are reused, and additionally, generate new options in biofuels that can replace methyl ester, since these need of methanol, a product that usually is a derived petrochemical and highly toxic. In this small-scale plant for the production of ethyl esters (biodiesel can be evaluated spent oils of different kinds and diverse origin, or study oils from food industries, which are usually a blend of palm oil and soybean oil, and other times palm oils hydrogenated or mixtures of oil spent with palm oil refning RBD (refned, bleached and deodorized. The results are the basis for the design and construction of a pilot plant to produce biodiesel by lot of 6 liter by hour approximately, which is evaluated under simulated conditions of loading and operation. It was designed and implemented a batch reactor with heating and stirring mechanics, drivers with temperature, condensation and total alcohol refux, maintaining a molar relationship of 6:1 (alcohol/oil, which is considered the best relation for a esterification with basic catalysis several scientifc publications. The temperature of the reaction is set at 60 °C and atmospheric pressure. The productivity of the reaction

  7. Climate protection in Mecklenburg-Vorpommern. A selection of innovative plants

    International Nuclear Information System (INIS)

    Behling, Hans

    2008-01-01

    The publication covers the following contributions: Competence centre RegioStrom Ivenack - sustainable solutions using renewable energy; The envelope power greenhouse - centre for technology transfer and product development at the solar centre Mecklenburg-Vorpommern in Wietow; cooling of crystalline solar cells by geothermal energy; regional economic cycles - sustainable development in the region Mueritz - biomass farm GbR Varchentin; wind power driven seawater desalination - WME pilot plant in Ruegen; heat recovery from bathroom exhaust air in high-rise buildings; world largest biomass power plant NAWARO in Mecklenburg-Vorpommern; hydrogen hybrid car - alternative traffic concepts for touristic centres - a development of ibz Hohen Luckow; the ''Klanghaus am See'' in Klein Jasedow - studio appropriate building appliances based on renewable energy; public utility Neutrelitz - biomass co-generation power plant; energy production from waste materials with innovative ESS (fluidized bed technology) - fluidized bed combustion of landfill gas; thermal usage of ground water for the heating and cooling base load supply of the MedClin Mueritz-Klinikum Waren; the ratiodomo Energy monitoring - energy saving by plant efficiency; ''heat from the forest'' for the Diakonisches Zentrum Serrahn

  8. Annual stability evaluation of Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-06-01

    A stability evaluation of the underground workings of the Waste Isolation Pilot Plant (WIPP) was completed by the US Bureau of Mines' WIPP evaluation committee. This work included a critical evaluation of the processes employed at WIPP to ensure stability, an extensive review of available deformation measurements, a 3-day site visit, and interviews with the Department of Energy (DOE) and Westinghouse staff. General ground control processes are in place at WIPP to minimize the likelihood that major stability problems will go undetected. To increase confidence in both short- and long-term stability throughout the site (underground openings and shafts), ground stability monitoring systems, mine layout design, support systems and data analyses must be continuously improved. Such processes appear to be in place at WIPP and are discussed in this paper

  9. Revised concept for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Dennis, A.W.; Milloy, J.A.; Scully, L.W.; Shefelbine, H.C.; Stinebaugh, R.E.; Wowak, W.E.

    1978-07-01

    The quantities of remotely handled wastes that must be handled at the Waste Isolation Pilot Plant have been reduced from 250 x 10 3 ft 3 /y to 10 x 10 3 ft 3 /y; the capital cost of the facility will be reduced from 534 to 428 million dollars. Changes in the facility design due to the reduction in the amount of remote-handled waste are discussed. If DOE should exercise its option to construct a high-level waste repository concurrently with the construction of the revised design, with both facilities receiving waste in 1985, the combined cost would be about 580 million dollars. However, it is unlikely that significant quantities of high-level waste in a form suitable for geologic disposal would be available until after 1990. (13 figures, 5 tables)

  10. Thermocline thermal storage systems for concentrated solar power plants: One-dimensional numerical model and comparative analysis

    DEFF Research Database (Denmark)

    Modi, Anish; Pérez-Segarra, Carlos David

    2014-01-01

    Concentrated solar power plants have attracted increasing interest from researchers and governments all over the world in recent years. An important part of these plants is the storage system which improves dispatchability and makes the plant more reliable. In this paper, a one-dimensional transi...

  11. The Waste Isolation Pilot Plant status and related socioeconomic impacts

    International Nuclear Information System (INIS)

    Little, C.C.; Adcock, L.D.; Hohmann, G.L.

    1984-01-01

    The Waste Isolation Pilot Plant (WIPP) has been ''authorized as a defense activity of the Department of Energy...for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States...'' (PL 96-164). As reported in previous conferences, WIPP continues ahead of schedule and below budget with full facility construction well underway. To date, based on recent review, the socioeconomic impacts have been negligible and steps have been taken to ensure that they remain that way throughout operations

  12. Solar Plant Growth System for Food Production in Space Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI), in collaboration with Vencore Services and Solutions, Inc. (Vencore) and Utah State University (USU), proposes to develop a Solar Plant...

  13. Future-oriented computerized information system for power plant process control in a pilot project at Philippsburg nuclear power plant

    International Nuclear Information System (INIS)

    Woehrle, G.; Kraft, M.

    1988-01-01

    The motivation for the pilot project at Philippsburg nuclear power plant resulted from the Three Mile Island accident in 1979. The primary task embraces an efficient computer-aided reduction of information when a fault occurs based on a process engineering analysis of the information accrued. Accompanying this are a consolidation and evaluation of the information available in the control room. In this pilot project the new tasks of status monitoring, information reduction and operationalcontrol have been realized for the first time using a computer-aided process information system. In addition to the existing control computer, an information computer with approximately 1200 analogue and about 10000 binary signals has been installed. The installation of the system was completed in 1984 and in the meantime initial operational experience has become available. (orig.) [de

  14. An overview of performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Jow, Hong-Nian; Anderson, D.R.; Marietta, M.

    1997-01-01

    This paper presents an overview of the methodology used in the recent performance assessment (PA) to support the U.S. Department of Energy (DOE) Carlsbad Area Office's (CAO's) Waste Isolation Pilot Plant (WIPP) Compliance Certification Application (CCA). The results of this recently completed WIPP PA will be presented. Major release modes contributing to the total radionuclide release to the accessible environment will be discussed. Comparison of the mean complementary cumulative distribution function (CCDF) curve against the Environmental Protection Agency (EPA) radionuclide release limits will be presented

  15. Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Damen, K.; Gnutek, R.; Kaptein, J.; Nannan, N.R.; Oyarzun, B.; Trapp, C.; Colonna, P.; Van Dijk, E.; Gross, J.; Bardow, A.

    2011-01-01

    N.V. Nuon (part of the Vattenfall Group) operates an IGCC in Buggenum and is developing a multi-fuel IGCC with CO2 capture and storage (Nuon Magnum) in Eemshaven, the Netherlands. In order to prepare for large-scale application of CO2 capture and storage, a CO2 capture pilot plant is constructed at

  16. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    International Nuclear Information System (INIS)

    1993-01-01

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated

  17. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2002-09-24

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  18. Pilot plant SERSE: Description and results of the experimental tests under treatment of simulated chemical liquid waste

    International Nuclear Information System (INIS)

    Calle, C.; Gili, M.; Luce, A.; Marrocchelli, A.; Pietrelli, L.; Troiani, F.

    1989-11-01

    The chemical processes for the selective separation of the actinides and long lived fission products from aged liquid wastes is described. The SERSE pilot plant is a cold facility which has been designed, by ENEA, for the engineering scale demonstration of the chemical separation processes. The experimental tests carried out in the plant are described and the results confirm the laboratory data. (author)

  19. Modeling energy production of solar thermal systems and wind turbines for installation at corn ethanol plants

    Science.gov (United States)

    Ehrke, Elizabeth

    Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a

  20. Ti O{sub 2}-Based Solar Photocatalytic Degradation of Selected pesticides in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bernecker, A.; Baune, M.; Malato, S.; Thiemann, W.

    1999-07-01

    The photocatalytic oxidation of the pesticides pirimicarb and imidacloprid, using Ti O{sub 2} suspensions under solar radiation, has been studied at pilot-plant scale at the Plataforma Solar de Almeria. The effect of the added Ti O{sub 2}-concentration (ranging from 0 to 1000 mg.dm''-3) and the pH value of the solution (pH values 3, 7 and 10) on the decomposition rates of pirimicarb and imidacloprid oxidation was examined. Addition of Ti O{sub 2} leads to an increase in the reaction rates of both investigated pollutants. A pH dependence is also obvious, but not similar for both pesticides. (Author) 10 refs.