WorldWideScience

Sample records for bars building materials

  1. Bar code usage in nuclear materials accountability

    International Nuclear Information System (INIS)

    Mee, W.T.

    1983-01-01

    The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At this time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable, however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented

  2. Bar code usage in nuclear materials accountability

    International Nuclear Information System (INIS)

    Mee, W.T.

    1983-01-01

    The age old method of physically taking an inventory of materials by listing each item's identification number has lived beyond its usefulness. In this age of computerization, which offers the local grocery store a quick, sure, and easy means to inventory, it is time for nuclear materials facilities to automate accountability activities. The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At that time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable; however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented

  3. Ceramic bar impact experiments for improved material model

    International Nuclear Information System (INIS)

    Brar, N.S.; Proud, W.G.; Rajendran, A.M.

    2004-01-01

    Ceramic bar-on-bar (uniaxial stress) experiments are performed to extend uniaxial strain deformation states imposed in flyer plate impact experiments. A number of investigators engaged in modeling the bar-on-bar experiments have varying degrees of success in capturing the observed fracture modes in bars and correctly simulating the measured in-situ axial stress or free surface velocity histories. The difficulties encountered are related to uncertainties in understanding the dominant failure mechanisms as a function of different stress states imposed in bar impacts. Free surface velocity of the far end of the target AD998 bar were measured using a VISAR in a series of bar-on-bar impact experiments at nominal impact speeds of 100 m/s, 220 m/s, and 300 m/s. Velocity history data at an impact of 100 m/s show the material response as elastic. At higher impact velocities of 200 m/s and 300 m/s the velocity history data suggest an inelastic material response. A high-speed (Imacon) camera was employed to examine the fracture and failure of impactor and target bars. High speed photographs provide comprehensive data on geometry of damage and failure patterns as a function of time to check the validity of a particular constitutive material model for AD998 alumina used in numerical simulations of fracture and failure of the bars on impact

  4. CSER 79-028, Addendum 2: Security bar addition to pedestal storage racks in Room 3 in 2736-Z Building

    International Nuclear Information System (INIS)

    Miller, E.M.

    1994-01-01

    The Plutonium Finishing Plant (PFP) is installing security bars on plutonium storage racks in Room 3 in 2736-Z Building to meet International Atomic Energy Agency (IAEA) material control requirements. Figures show the existing arrangement and design of the security bars. The security bars are to be fabricated of aluminum or carbon steel. The detailed fabrication sketches are reproduced in Appendix C. The security bars are to be installed close to the chains of plutonium so a determination of their effect on criticality safety needs to be made. The addition of security bars to the storage array of 2.5 kg plutonium buttons in Room 3 can effect reactivity by reflecting neutrons back into the plutonium in the storage cans, by absorbing neutrons, and by moderating neutrons between stored plutonium buttons. The small amount of metal added by the storage bars in comparison to the amount of concrete in the walls and aluminum in the shelf monitors already in place would not significantly increase the k eff of the storage array. Several computer calculations in previous analyses show that the security bars will have a negligible affect on reactivity

  5. Seismic Behavior and Retrofit of Concrete Columns of Old R.C. Buildings Reinforced With Plain Bars

    International Nuclear Information System (INIS)

    Marefat, M. S.; Arani, K. Karbasi; Shirazi, S. M. Hassanzadeh; Amrollahi, A.

    2008-01-01

    Seismic rehabilitation of old buildings has been a major challenge in recent years. The first step in seismic rehabilitation is evaluation of the existing capacity and the seismic behaviour. For investigation of the seismic behaviour of RC members of a real old building in Iran which has been designed and constructed by European engineers in 1940, three half-scale column specimens reinforced with plain bars have been tested. The tests indicate significant differences between the responses of specimens reinforced by plain bars relative to those reinforced by deformed bars. A regular pattern of cracking and a relatively brittle behaviour was observed while a relatively large residual strength appeared after sudden drop of initial strength and stiffness due to slip of longitudinal bars

  6. Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials

    International Nuclear Information System (INIS)

    Ngachin, M.; Garavaglia, M.; Giovani, C.; Kwato Njock, M.G.; Nourreddine, A.

    2007-01-01

    The concentration of 238 U, 232 Th and 40 K in 13 building materials obtained from factories and collected in field in Cameroon were investigated by γ-ray spectrometry. The activity ranged from 1.76 to 49.84Bqkg -1 , 0.32 to 147Bqkg -1 and 18 to 1226Bqkg -1 for 238 U, 232 Th and 40 K, respectively. The highest 238 U activity was found in compressed red soil brick type I (49.6+/-0.3Bqkg -1 ) produced by a local manufacturer while the highest 232 Th (139+/-13Bqkg -1 ) and 40 K (1162+/-108Bqkg -1 ) activities were found in gravel collected from an exploitation site in Logbadjeck. The activities are compared with available data from other investigations and with the world average value for soils. The radium equivalent activity Ra eq , the external hazard index H ex , the indoor absorbed dose rate D-bar in air and the annual effective dose equivalent E-bar were evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. All building materials have shown Ra eq (range from 10 to 313Bqkg -1 ) lower than the limit of 370Bqkg -1 set in the Organization for Economic Cooperation and Development [OECD, 1979. Exposure to radiation from the natural radioactivity in building materials. OECD, Paris] report which is equivalent to a γ-dose of 1.5mSvyr -1 . Except for the gravel from Logbadjeck, all the materials examined are acceptable for use as building materials as defined by the OECD criterion

  7. Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials

    Energy Technology Data Exchange (ETDEWEB)

    Ngachin, M. [Center for Atomic, Molecular Physics and Quantum Optics, University of Douala, P.O. Box 8580, Douala (Cameroon) and Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy)]. E-mail: mngachin@yahoo.com; Garavaglia, M. [Regional Agency for Environmental Protection (ARPA), 91 via Tavagnacco, 33100 Udine (Italy); Giovani, C. [Regional Agency for Environmental Protection (ARPA), 91 via Tavagnacco, 33100 Udine (Italy); Kwato Njock, M.G. [Center for Atomic, Molecular Physics and Quantum Optics, University of Douala, P.O. Box 8580, Douala (Cameroon); Nourreddine, A. [Institut Pluridisciplinaire Hubert Curien, UMR7500 CNRS-IN2P3 et Universite Louis Pasteur, 23 Rue du Loess, BP 28, F-67037, Strasbourg Cedex 2 (France)

    2007-01-15

    The concentration of {sup 238}U, {sup 232}Th and {sup 40}K in 13 building materials obtained from factories and collected in field in Cameroon were investigated by {gamma}-ray spectrometry. The activity ranged from 1.76 to 49.84Bqkg{sup -1}, 0.32 to 147Bqkg{sup -1} and 18 to 1226Bqkg{sup -1} for {sup 238}U, {sup 232}Th and {sup 40}K, respectively. The highest {sup 238}U activity was found in compressed red soil brick type I (49.6+/-0.3Bqkg{sup -1}) produced by a local manufacturer while the highest {sup 232}Th (139+/-13Bqkg{sup -1}) and {sup 40}K (1162+/-108Bqkg{sup -1}) activities were found in gravel collected from an exploitation site in Logbadjeck. The activities are compared with available data from other investigations and with the world average value for soils. The radium equivalent activity Ra{sub eq}, the external hazard index H{sub ex}, the indoor absorbed dose rate D-bar in air and the annual effective dose equivalent E-bar were evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. All building materials have shown Ra{sub eq} (range from 10 to 313Bqkg{sup -1}) lower than the limit of 370Bqkg{sup -1} set in the Organization for Economic Cooperation and Development [OECD, 1979. Exposure to radiation from the natural radioactivity in building materials. OECD, Paris] report which is equivalent to a {gamma}-dose of 1.5mSvyr{sup -1}. Except for the gravel from Logbadjeck, all the materials examined are acceptable for use as building materials as defined by the OECD criterion.

  8. Sensor calibration of polymeric Hopkinson bars for dynamic testing of soft materials

    Science.gov (United States)

    Martarelli, Milena; Mancini, Edoardo; Lonzi, Barbara; Sasso, Marco

    2018-02-01

    Split Hopkinson pressure bar (SHPB) testing is one of the most common techniques for the estimation of the constitutive behaviour of metallic materials. In this paper, the characterisation of soft rubber-like materials has been addressed by means of polymeric bars thanks to their reduced mechanical impedance. Due to their visco-elastic nature, polymeric bars are more sensitive to temperature changes than metallic bars, and due to their low conductance, the strain gauges used to measure the propagating wave in an SHPB may be exposed to significant heating. Consequently, a calibration procedure has been proposed to estimate quantitatively the temperature influence on strain gauge output. Furthermore, the calibration is used to determine the elastic modulus of the polymeric bars, which is an important parameter for the synchronisation of the propagation waves measured in the input and output bar strain gate stations, and for the correct determination of stress and strain evolution within the specimen. An example of the application has been reported in order to demonstrate the effectiveness of the technique. Different tests at different strain rates have been carried out on samples made of nytrile butadyene rubber (NBR) from the same injection moulding batch. Thanks to the correct synchronisation of the measured propagation waves measured by the strain gauges and applying the calibrated coefficients, the mechanical behaviour of the NBR material is obtained in terms of strain-rate-strain and stress-strain engineering curves.

  9. Influence of residual stresses during eddy current testing of zircaloy bar material

    International Nuclear Information System (INIS)

    Saibaba, N.; Das, G.; Pratap, Y.; Acharya, S.; Chaube, R.K.; Jayaraj, R.N.

    2009-01-01

    Full text: Zirconium alloy bar is the input material for making end plugs required for encapsulating the fuel tubes after loading of uranium di-oxide pellets. These bars are manufactured through extrusion followed by multi-pass swaging and intermediate vacuum annealing. The bar is subjected to 100% Ultrasonic testing to ensure that defect free material is used for making the end plugs. The elements thus welded are subjected to helium leak testing for checking the weld integrity. However, stray cases of helium leakage from fuel elements were observed on few occasions. On investigation, it was found that the leakage was from small porosity present in the plugs. In order to isolate such an eventuality, stricter ultrasonic standards were adopted and additionally eddy current testing was introduced. It was observed that a number of eddy current signals equal to the defect standard were noticed and the reasons for these indications could not be identified. This led to a significant fall in the material recovery. An in-depth study with various heat treatment cycles and process steps was carried out. It was finally concluded that the indications observed in eddy current testing were due to the residual stresses on the periphery of the bar material caused due by improper straightening being carried out at the final stage of the bar manufacture. This paper presents the systematic studies carried out and correlation established between the eddy current signals and the residual stresses

  10. Trends in building materials

    CSIR Research Space (South Africa)

    Mapiravana, Joseph

    2012-07-01

    Full Text Available , steel and composites research. Analysis of the building materials market situation in South Africa identified the major building material cost drivers as cement and concrete and steel. For South Africa, research and development focus has been... in South Africa be cement and concrete, light-weight steel construction, smart tiles and composite materials. Nanotechnology materials should be used for property enhancement. The building materials developed should be modularised and/or panelised...

  11. Analysis of FRP bars used as reinforcement in concrete structures

    Directory of Open Access Journals (Sweden)

    Kinga Brózda

    2016-09-01

    Full Text Available In the design and construction of building and engineering structures, it is of utmost importance to provide their reliability and safety. The use of FRP (Fiber Reinforced Polymers bars as reinforcement of structural concrete elements could help reducing the typical defects of reinforced concrete and increase its strength parameters. In the paper the selected FRP bar characteristic properties are presented and advantages derived therefrom are specified. Furthermore, the most commonly used in construction types of FRP bars, depending on the raw material used during the production process are listed. In addition, the possibility of recycling of elements reinforced with FRP bars is presented and compared with traditional reinforced concrete (reinforced with steel bars. The production method of FRP bars (pultrusion is shown. Moreover, the advantages and disadvantages of using this method are discussed.

  12. Building materials. Stichwort Baustoff

    Energy Technology Data Exchange (ETDEWEB)

    Rohwer, W

    1981-01-01

    To handle building materials properly, one must know about their characteristics. This pocket book will be of help: structured like a glossary, it gives brief descriptions of the most common building materials. It is small and handy enough to be a constant companion to resident engineers, foremen, gangers, building tradesmen, and construction workers and an aid in their training. The following groups of building materials are discussed: Natural stone; units for brick walls, floors, and roofs; mortar and concrete (definitions, binders, aggregates, additives, admixtures, mixing water); special types of plaster and rendering; light-weight building boards and wood wool basis; multilayer light-weight building boards; gypsum plasterboards; chimney construction; sewers; thermal insulation and sound section; structural steels; plastics.

  13. INFLUENCING OF FRICTION IN HINGES FORCE SIZE OF BARS

    Directory of Open Access Journals (Sweden)

    BOHOMAZ V. N.

    2016-04-01

    Full Text Available Formulation of the problem. The size of critical force of bar on the traditional method of calculation is determined in supposition of ideal hinge in the place of fixing of bar. There are both a hinge resistance at the turn of bar ends and their moving in the real hinges. Thus, there is the necessity of influencing character determination of these hinge imperfections on the size of critical force. In the existent scientific labours is devoted the alike problems, influencing of friction in the hinges of bar fastening on the size of critical force was not taken into account. At determination of bars stability with no ideality of hinges friction in them it is possible to take into account by the eccentric appendix of loading or appendix of moment. However at such approach it is difficult enough to define the size of attached force or moment. Purpose. To set influencing of friction in the hinge of bar fastening on of his critical force size in sense of Euler, and also build dependences for determination of bar critical force taking into account mechanical descriptions of hinges materials. Conclusion. For the task of determination the size of bar critical force with the joint fastening on ends are got the dependences which take into account mechanical descriptions of material hinge. The received dependences allow to define more exact meaning of critical force for bars. The examples of calculation of whole bar and bar with undercuting in the middle are resulted that values of critical force, certain on a traditional method are overpriced.

  14. Brief Discussion on Green Building Materials

    International Nuclear Information System (INIS)

    Cai, Jia-wei; Sun, Jian

    2014-01-01

    With more and more emphasizes on the environment and resources, the concept of green buildings has been widely accepted. Building materials are vectors of architectures, only if green building materials and related technical means are used, can we construct green buildings to achieve the purpose of energy conservation and environmental protection. This paper introduces the relationship between green building materials and green buildings, the current situation of green building materials in China, as well as the measures to accelerate the development of green building materials

  15. Building Materials in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2005-01-01

    Building in the artic requires special attention on the appropriateness of building materials. The harsh climate makes execution difficult and sets unusual requirements for the pure material properties. In addition, there is a lack of choice of good, natural building materials in the arctic...

  16. Variation of radon exhalation on building materials

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Wang Chunhong; Pan Ziqiang; Zhang Yonggui; Ji Dong

    2009-01-01

    The 19 samples from different building material factories were collected for four kinds of building materials. The activity concentration and radon exhalation of building materials were measured. The radon exhalations of building materials are not obviously different if the component is same and the processes of building materials are similar. However, the radon exhalations of same kind of building material are greatly different if the components are different and the processes of building material are varied even if the activity concentrations of building material are similar. (authors)

  17. Unit-bar migration and bar-trough deposition: impacts on hydraulic conductivity and grain size heterogeneity in a sandy streambed

    Science.gov (United States)

    Korus, Jesse T.; Gilmore, Troy E.; Waszgis, Michele M.; Mittelstet, Aaron R.

    2018-03-01

    The hydrologic function of riverbeds is greatly dependent upon the spatiotemporal distribution of hydraulic conductivity and grain size. Vertical hydraulic conductivity ( K v) is highly variable in space and time, and controls the rate of stream-aquifer interaction. Links between sedimentary processes, deposits, and K v heterogeneity have not been well established from field studies. Unit bars are building blocks of fluvial deposits and are key to understanding controls on heterogeneity. This study links unit bar migration to K v and grain size variability in a sand-dominated, low-sinuosity stream in Nebraska (USA) during a single 10-day hydrologic event. An incipient bar formed parallel to the thalweg and was highly permeable and homogenous. During high flow, this bar was submerged under 10-20 cm of water and migrated 100 m downstream and toward the channel margin, where it became markedly heterogeneous. Low- K v zones formed in the subsequent heterogeneous bar downstream of the original 15-40-cm-thick bar front and past abandoned bridge pilings. These low- K v zones correspond to a discontinuous 1-cm layer of fine sand and silt deposited in the bar trough. Findings show that K v heterogeneity relates chiefly to the deposition of suspended materials in low-velocity zones downstream of the bar and obstructions, and to their subsequent burial by migration of the bar during high flow. Deposition of the unit bar itself, although it emplaced the vast majority of the sediment volume, was secondary to bar-trough deposition as a control on the overall pattern of heterogeneity.

  18. MOISTURE-BUFFERING CHARACTERISTICS OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Young Cheol Choi

    2016-05-01

    Full Text Available The humidity level of indoor air is an important factor influencing the air quality and energy consumption of buildings, as well as the durability of building components. Indoor humidity levels depend on several factors, such as moisture sources, air flow, and the adsorption/desorption properties of materials. The moisture-buffering characteristics of building materials that are in contact with indoor air may help moderate the variations of indoor humidity, especially in the summer and winter. In this study, the moisture adsorption/desorption properties of building materials were investigated experimentally and numerically. These properties can be used to characterize the ability of building materials to exchange moisture with the indoor environment. This study indicates that a building material surface resistivity was the main factor creating variations of moisture buffering.

  19. Environmental Evaluation of Building Materials of 5 Slovak Buildings

    Science.gov (United States)

    Porhincak, Milan; Estokova, Adriana

    2013-11-01

    Building activity has recently led to the deterioration of environment and has become unsustainable. Several strategies have been introduced in order to minimize consumption of energy and resulting CO2 emissions having their origin in the operational phase. But also other stages of Life Cycle should are important to identify the overall environmental impact of construction sector. In this paper 5 similar Slovak buildings (family houses) were analyzed in terms of environmental performance of building materials used for their structures. Evaluation included the weight of used materials, embodied energy and embodied CO2 and SO2 emissions. Analysis has proven that the selection of building materials is an important factor which influences the environmental profile. Findings of the case study indicated that materials like concrete, ceramic or thermal insulation materials based on polystyrene and mineral wool are ones with the most negative environmental impact.

  20. Strengthing of Beams and Columns using GFRP Bars

    Science.gov (United States)

    Nayak, C. B.; Tade, M. K.; Thakare, S. B., Dr.

    2017-08-01

    Nowadays infrastructure development is raising its pace. Many reinforced high concrete and masonry buildings are constructed annually around the globe. There are large numbers of structures which deteriorate or become unsafe to use because of changes in use, changes in loading condition, change in the design configuration, inferior building material used or natural calamities. Thus repairing and retrofitting of these structures for safe usage of has a great market. There are several situations in which a civil structure would require strengthening due to lack of strength, stiffness, ductility and durability. Beams, columns may be strengthened in flexure by using GFRP in tension zone. In this present work comparative study will be made with and without GFRP circular bars in a beam and column. An experiment study will be carried out to study the change in the structural behavior of beams & columns with GFRP circular bars of different thickness, varying span to depth ratio.

  1. Implementation of viscoelastic Hopkinson bars

    Directory of Open Access Journals (Sweden)

    Govender R.

    2012-08-01

    Full Text Available Knowledge of the properties of soft, viscoelastic materials at high strain rates are important in furthering our understanding of their role during blast or impact events. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. Implementing polymeric Hopkinson bars requires characterization of the viscoelastic properties of the material used. In this paper, 30 mm diameter Polymethyl Methacrylate bars are used as Hopkinson pressure bars. This testing technique is applied to polymeric foam called Divinycell H80 and H200. Although there is a large body of of literature containing compressive data, this rarely deals with strain rates above 250s−1 which becomes increasingly important when looking at the design of composite structures where energy absorption during impact events is high on the list of priorities. Testing of polymeric foams at high strain rates allows for the development of better constitutive models.

  2. Synthetic building materials for transport buildings and structures

    Science.gov (United States)

    Gerasimova, Vera

    2017-10-01

    The most effective building materials account for the highest growth not only in construction of residential and public buildings, but also other capital projects including roadways, bridges, drainage, communications and other engineering projects. Advancement in the technology of more efficient and ecologically responsible insulation materials have been a priority for safety, minimal maintenance and longevity of finished construction projects. The practical use of modern building materials such as insulation, sound reduction and low energy consumption are a benefit in cost and application compared to the use of outdated heavier and labor-intensive materials. The most efficient way for maximizing insolation and sound proofing should be done during the design stages of the project according to existing codes and regulations that are required by Western Government. All methods and materials that are used need to be optimized in order to reach a high durability and low operational and maintenance cost exceeding more than 50 years of the life of the building, whether it is for public, industrial or residential use. Western construction techniques and technologies need to be applied and adapted by the Russian Federation to insure the most productive successful methods are being implemented. The issues of efficient insulation materials are outlined in this article.

  3. Natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Mrnustik, J.

    1988-01-01

    Within a study of the natural radioactivity of building materials, coefficients were determined of the emanation from selected materials and raw materials, such as porous concrete, bricks, marlite, quartzite, etc. Measurements were made of ground samples using Lucas scintillation chambers which give an accuracy of determination of the coefficient of about 10%. Specific radium activity was also determined for the samples. Tabulated is a comparison of the average specific activity of radium in concrete, power plant ash and porous concrete in Czechoslovakia and abroad. It is stated that monitoring the content of natural radionuclides in building materials is an indispensable part of the production process in the building industry, this with regard to the radiation protection of the population. This will be enhanced by the new Czechoslovak standard determining methods of measuring the content of natural radionuclides and the coefficient of radon emanation, and the subsequent evaluation of the properties of building materials. (Z.M.) 3 figs., 3 tabs

  4. A study of shock mitigating materials in a split Hopkinson bar configuration

    International Nuclear Information System (INIS)

    Bateman, V.I.; Bell, R.G. III; Brown, F.A.; Hansen, N.R.

    1996-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125-fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical system. As part of the investigation of packaging techniques, a two part study of shock mitigating materials is being conducted. This paper reports the first part of the shock mitigating materials study. A study to compare three thicknesses (0.125, 0.250, and 0.500 in.) of seventeen, unconfined materials for their shock mitigating characteristics has been completed with a split Hopkinson bar configuration. The nominal input as measured by strain gages on the incident Hopkinson bar is 50 fps at sign 100 micros for these tests. It is hypothesized that a shock mitigating material has four purposes: to lengthen the shock pulse, to attenuate the shock pulse, to mitigate high frequency content in the shock pulse, and to absorb energy. Both time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare the materials' achievement of these purposes

  5. The Reduction of CO2 Emissions by Application of High-Strength Reinforcing Bars to Three Different Structural Systems in South Korea

    Directory of Open Access Journals (Sweden)

    Seungho Cho

    2017-09-01

    Full Text Available The architecture, engineering, and construction (AEC industry consume approximately 23% of the national energy annually, and are considered among the highest energy consuming industries. Recently, several studies have focused on establishing strategies to reduce the emissions of carbon dioxide in the AEC industry by utilisation of low-carbon materials, material reuse, recycling and minimal usage; selection of an optimal structural system and structural optimisation; and optimisation of construction operations. While several studies examined material selection and replacement in concrete, there is a paucity of studies investigating the replacement and implementation of high-strength re-bars to lower the carbon dioxide emissions in buildings. To fill this research gap, the purpose of this study involves calculating the emissions of carbon dioxide by applying high-strength reinforcement bars in three different types of buildings. The input–output analysis method was adopted to compute the emissions of carbon dioxide by using the yield strength and size. This study showed that the application of the high-strength re-bars is beneficial in reducing the input amount of materials, although the quantity of reinforcing bars on the development and splice increased. Furthermore, the application of high-strength deformed bars is also advantageous as a means of carbon dioxide reduction in the studied structural systems. In this study, the CO2 emissions of three different structural systems indicated that implementing SD500 re-bars is the most effective method to reduce carbon dioxide emissions.

  6. International conventions for measuring radioactivity of building materials

    International Nuclear Information System (INIS)

    Tan Chenglong

    2004-01-01

    In buildings, whether civil or industrial, natural radioactivity always occurs at different degrees in the materials (main building materials, decorative materials). Concerns on radioactivity from building materials is unavoidable for human living and developing. As a member of WTO, China's measuring method of radioactivity for building materials, including radionuclides limitation for building materials, hazard evaluation system etc, should keep accordance with the international rules and conventions. (author)

  7. Flexural Performance of Transparent Plastic Bar Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Byoungil Kim

    2018-02-01

    Full Text Available In this study, experiments were conducted to derive a mix design for improving the flexural performance of light transparent concrete, which is attracting much attention and interest as an interior and exterior material for buildings, so that it could be easily applied in the field as a non-structural element by securing a lightweight, workability, and economic efficiency through the improvement of the concrete mix design and the use of economical materials for promoting its practical use. It was found that the mixing of polyvinyl alcohol (PVA fiber was effective in improving the consistency by preventing the aggregate from floating due to the mixing of lightweight aggregate with a low specific gravity. The flexural performance test results showed that the load transfer factor (LTF from the concrete matrix to the fiber was highest in the test specimens without plastic bars, followed by those with 5 and 10 mm plastic bars, respectively.

  8. Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials

    Directory of Open Access Journals (Sweden)

    Seungjun Roh

    2018-05-01

    Full Text Available Because the reduction in environmental impacts (EIs of buildings using life-cycle assessment (LCA has been emphasized as a practical strategy for the sustainable development of the construction industry, studies are required to analyze not only the operational environmental impacts (OEIs of buildings, but also the embodied environmental impacts (EEIs of building materials. This study aims to analyze the EEIs of Korean apartment buildings on the basis of major building materials as part of research with the goal of reducing the EIs of buildings. For this purpose, six types of building materials (ready-mixed concrete, reinforcement steel, concrete bricks, glass, insulation, and gypsum for apartment buildings were selected as major building materials, and their inputs per unit area according to the structure types and plans of apartment buildings were derived by analyzing the design and bills of materials of 443 apartment buildings constructed in South Korea. In addition, a life-cycle scenario including the production, construction, maintenance, and end-of-life stage was constructed for each major building material. The EEIs of the apartment buildings were quantitatively assessed by applying the life-cycle inventory database (LCI DB and the Korean life-cycle impact assessment (LCIA method based on damage-oriented modeling (KOLID, and the results were analyzed.

  9. Anisotropic chemical etching of semipolar {101-bar 1-bar}/{101-bar +1} ZnO crystallographic planes: polarity versus dangling bonds

    International Nuclear Information System (INIS)

    Palacios-Lidon, E; Perez-GarcIa, B; Colchero, J; Vennegues, P; Zuniga-Perez, J; Munoz-Sanjose, V

    2009-01-01

    ZnO thin films grown by metal-organic vapor phase epitaxy along the nonpolar [112-bar] direction and exhibiting semipolar {101-bar 1-bar}/{101-bar +1} facets have been chemically etched with HCl. In order to get an insight into the influence of the ZnO wurtzite structure in the chemical reactivity of the material, Kelvin probe microscopy and convergent beam electron diffraction have been employed to unambiguously determine the absolute polarity of the facets, showing that {101-bar +1} facets are unstable upon etching in an HCl solution and transform into (000+1)/{101-bar 1-bar} planes. In contrast, {101-bar 1-bar} undergo homogeneous chemical etching perpendicular to the initial crystallographic plane. The observed etching behavior has been explained in terms of surface oxygen dangling bond density, suggesting that the macroscopic polarity plays a secondary role in the etching process.

  10. Radioactive substances in the Danish building materials

    International Nuclear Information System (INIS)

    Ulbak, K.

    1986-01-01

    Building materials as any other materials of natural occurrence contain small concentrations of natural radioactive elements. This natural radioactivity affects people inside buildings. This publiccation refers measurements of the Danish building materials, and radiation doses originating from this source affecting the Danish population are related to the other components of background radioactivity. (EG)

  11. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Rahim, Faszly; Hanifah, Sharina Abu [School of Environmental Scieces and Natural Resources Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

    2015-09-25

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  12. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    International Nuclear Information System (INIS)

    Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji; Rahim, Faszly; Hanifah, Sharina Abu

    2015-01-01

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration

  13. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    Science.gov (United States)

    Esa, Mohammad Faris Mohammad; Rahim, Faszly; Hassan, Ibrahim Haji; Hanifah, Sharina Abu

    2015-09-01

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  14. Wood as a sustainable building material

    Science.gov (United States)

    Robert H. Falk

    2009-01-01

    Few building materials possess the environmental benefits of wood. It is not only the most widely used building material in the United States but also one with characteristics that make it suitable for a wide range of applications. Efficient, durable, and useful wood products produced from trees range from a minimally processed log at a log-home building site to a...

  15. A storey of buildings and materials

    Science.gov (United States)

    2017-12-01

    Throughout history, the development of new materials and technologies has enabled more functional and aesthetically pleasing buildings. With the advent of sustainable architecture, the role of materials science in building innovation is becoming more prominent than ever.

  16. Numerical simulations of wave propagation in long bars with application to Kolsky bar testing

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    Material testing using the Kolsky bar, or split Hopkinson bar, technique has proven instrumental to conduct measurements of material behavior at strain rates in the order of 103 s-1. Test design and data reduction, however, remain empirical endeavors based on the experimentalist's experience. Issues such as wave propagation across discontinuities, the effect of the deformation of the bar surfaces in contact with the specimen, the effect of geometric features in tensile specimens (dog-bone shape), wave dispersion in the bars and other particulars are generally treated using simplified models. The work presented here was conducted in Q3 and Q4 of FY14. The objective was to demonstrate the feasibility of numerical simulations of Kolsky bar tests, which was done successfully.

  17. Recipes for porous building materials, More with less

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Fischer, H.-B.; Bode, K.-A.; Beuthan, C.

    2012-01-01

    The building sector, comprising both buildings and infrastructure, is the largest consumer of energy and materials. As well as the huge amount of raw materials involved, enormous amounts of energy are also used for the production and transport of raw materials, building materials and products. Among

  18. Radioactivity in building materials

    International Nuclear Information System (INIS)

    1985-01-01

    The present report, drawn up at the request of the former Minister of Public Health and Environmental Affairs of the Netherlands, discusses the potential radiological consequences for the population of the Netherlands of using waste materials as building materials in housing construction. (Auth.)

  19. Ecology Beyond Building

    DEFF Research Database (Denmark)

    Peters, Terri

    2011-01-01

    As the designers of the WWf building in Zeist, The Netherslands a CO2-neutral, self-sufficient office complex, RAU has set the bar for sustainable research and design. Guesteditor Terri Peters visited the firm's studio in Amsterdam to talk to principal Thomas Rau. As Peters relates, Rau prefers t...... to put on the dwindling supply of raw materials rather than the immidiate problems of energy consumption for which there are solutions within reach. With the emphasis on a more far-reaching approach, he places buildings in a wider context of ecological thinking and systems....

  20. Exotic open-flavor $bc\\bar{q}\\bar{q}$, $bc\\bar{s}\\bar{s}$ and $qc\\bar{q}\\bar{b}$, $sc\\bar{s}\\bar{b}$ tetraquark states

    OpenAIRE

    Chen, Wei; Steele, T. G.; Zhu, Shi-Lin

    2013-01-01

    We study the exotic $bc\\bar{q}\\bar{q}$, $bc\\bar{s}\\bar{s}$ and $qc\\bar{q}\\bar{b}$, $sc\\bar{s}\\bar{b}$ systems by constructing the corresponding tetraquark currents with $J^P=0^+$ and $1^+$. After investigating the two-point correlation functions and the spectral densities, we perform QCD sum rule analysis and extract the masses of these open-flavor tetraquark states. Our results indicate that the masses of both the scalar and axial vector tetraquark states are about $7.1-7.2$ GeV for the $bc\\...

  1. Environmental effect of structural solutions and building materials to a building

    International Nuclear Information System (INIS)

    Haapio, Appu; Viitaniemi, Pertti

    2008-01-01

    The field of building environmental assessment tools has become a popular research area over the past decade. However, how the service life of a building affects the results of the environmental assessment of a building has not been emphasised previously. The aim of this study is to analyse how different structural solutions and building materials affect the results of the environmental assessment of a whole building over the building's life cycle. Furthermore, how the length of the building's service life affects the results is analysed. The environmental assessments of 78 single-family houses were calculated for this study. The buildings have different wall insulations, claddings, window frames, and roof materials, and the length of the service life varies from 60 years up to 160 years. The current situation and the future of the environmental assessment of buildings are discussed. In addition, topics for further research are suggested; for example, how workmanship affects the service life and the environmental impact of a building should be studied

  2. Sustainability of earth building materials - Environmental product declarations as an instrument of competition in building material industry

    OpenAIRE

    Schroeder, Horst; Lemke, Manfred

    2015-01-01

    [EN] The evaluation of the building process in terms of their environmental impact in all life cycle phases of a building leads to the key principle of sustainable building: the analysis of the life cycle of the materials used in a building. The goal of this analysis is to reduce waste and keep the environmental impact as low as possible by “closing” the cycle. During an inventory, the entire life cycle is assessed. This includes the sourcing and extracting of the raw material, the use of the...

  3. SYSTEM ORGANIZATION OF MATERIAL PROVIDING OF BUILDING

    Directory of Open Access Journals (Sweden)

    A. V. Rаdkеvich

    2014-04-01

    Full Text Available Purpose. Development of scientific-methodical bases to the design of rational management of material streams in the field of building providing taking into account intersystem connections with the enterprises of building industry. Methodology. The analysis of last few years of functioning of building industry in Ukraine allows distinguishing a number of problems that negatively influence the steady development of building, as the component of the state economics system. Therefore the research of existent organization methods of the system of building objects providing with material resources is extremely necessary. In connection with this the article justifies the use of method of hierarchies analysis (Saati method for finding the optimal task solution of fixing the enterprises of building industry after building objects. Findings. Results give an opportunity to guidance of building organization to estimate and choose advantageous suppliers - enterprises of building industry, to conduct their rating, estimation taking into account basic descriptions, such as: quality, price, reliability of deliveries, specialization, financial status etc. Originality. On the basis of Saati method the methodologies of organization are improved, planning and managements of the reliable system of providing of building necessary material resources that meet the technological requirements of implementation of building and installation works. Practical value. Contribution to the decisions of many intricate organizational problems that are accompanied by the problems of development of building, provided due to organization of the reliable system of purchase of material resources.

  4. Electrokinetic desalination of porous building materials

    NARCIS (Netherlands)

    Kamran, K.

    2012-01-01

    The deterioration of porous building materials and structures by the crystallization of water soluble salts is a well known phenomenon. The threats posed by salts to building materials can be minimized either by controlling the environment or by removing the salts from the deteriorated zone. In

  5. Bar codes for nuclear safeguards

    International Nuclear Information System (INIS)

    Keswani, A.N.; Bieber, A.M. Jr.

    1983-01-01

    Bar codes similar to those used in supermarkets can be used to reduce the effort and cost of collecting nuclear materials accountability data. A wide range of equipment is now commercially available for printing and reading bar-coded information. Several examples of each of the major types of commercially available equipment are given, and considerations are discussed both for planning systems using bar codes and for choosing suitable bar code equipment

  6. Bar codes for nuclear safeguards

    International Nuclear Information System (INIS)

    Keswani, A.N.; Bieber, A.M.

    1983-01-01

    Bar codes similar to those used in supermarkets can be used to reduce the effort and cost of collecting nuclear materials accountability data. A wide range of equipment is now commercially available for printing and reading bar-coded information. Several examples of each of the major types of commercially-available equipment are given, and considerations are discussed both for planning systems using bar codes and for choosing suitable bar code equipment

  7. Moisture performance of building materials: From material characterization to building simulation using the Moisture Buffer Value concept

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, Marc Olivier [Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, PUC-PR/CCET, Curitiba, PR 80215-901 (Brazil); LEPTAB, University of La Rochelle, La Rochelle, 17042 Cedex 1 (France); Mendonca, Katia Cordeiro [Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, PUC-PR/CCET, Curitiba, PR 80215-901 (Brazil)

    2009-02-15

    Predicting the indoor air relative humidity evolution is of great importance to evaluate people thermal comfort, perceived air quality and energy consumption. In building environments, porous materials of the envelope and furniture act on the indoor air humidity by reducing its variations. Solving the physical processes involved inside the porous materials requires the knowledge of the material hygrothermal properties that needs multiple and, for some of them, time-consuming experimental procedures. Recently, both the NORDTEST Project and Japanese Industrial Standard described a new Moisture Buffer Capacity index that accounts for surrounding air vapor concentration variation. The Moisture Buffer Value (MBV) indicates the amount of water vapor that is transported in or out of a material, during a certain period of time, when the vapor concentration of the surrounding air varies. The MBV evaluation requires only one experimental procedure and its value permits a direct comparison of the building materials moisture performance. However, two limitations can be distinguished: first, no relation between the MBV and the usual material hygrothermal properties has been clearly identified and second, no model has been proposed to actually use the MBV in building simulation. The present study aims to solve these two problems. First, the MBV fundamentals are introduced and discussed; followed by its relation with the usual material properties. Then, a lumped model for building simulation, whose parameters can be determined from the MBV experimental procedure, is described. To finish, examples of the use of this MBV-based lumped model for moisture prediction in buildings are presented. (author)

  8. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  9. Moisture Buffer Value of Building Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut; Time, Berit

    2007-01-01

    When building materials are in contact with indoor air they have some effect to moderate the variations of indoor humidity in occupied buildings. But so far there has been a lack of a standardized quantity to characterize the moisture buffering capability of materials. It has been the objective o...... is a test protocol which expresses how materials should be tested for determination of their Moisture Buffer Value. Finally, the paper presents some of the results of a Round Robin Test on various typical building materials that has been carried out in the project....... of a recent Nordic project to define such a quantity, and to declare it in the form of a NORDTEST method. The Moisture Buffer Value is the figure that has been developed in the project as a way to appraise the moisture buffer effect of materials, and the value is described in the paper. Also explained...

  10. Photoelastic analysis of mandibular full-arch implant-supported fixed dentures made with different bar materials and manufacturing techniques.

    Science.gov (United States)

    Zaparolli, Danilo; Peixoto, Raniel Fernandes; Pupim, Denise; Macedo, Ana Paula; Toniollo, Marcelo Bighetti; Mattos, Maria da Glória Chiarello de

    2017-12-01

    To compare the stress distribution of mandibular full dentures supported with implants according to the bar materials and manufacturing techniques using a qualitative photoelastic analysis. An acrylic master model simulating the mandibular arch was fabricated with four Morse taper implant analogs of 4.5×6mm. Four different bars were manufactured according to different material and techniques: fiber-reinforced resin (G1, Trinia, CAD/CAM), commercially pure titanium (G2, cpTi, CAD/CAM), cobalt‑chromium (G3, Co-Cr, CAD/CAM) and cobalt‑chromium (G4, Co-Cr, conventional cast). Standard clinical and laboratory procedures were used by an experienced dental technician to fabricate 4 mandibular implant-supported dentures. The photoelastic model was created based on the acrylic master model. A load simulation (150N) was performed in total occlusion against the antagonist. Dentures with fiber-reinforced resin bar (G1) exhibited better stress distribution. Dentures with machined Co-Cr bar (G3) exhibited the worst standard of stress distribution, with an overload on the distal part of the posteriors implants, followed by dentures with cast Co-Cr bar (G4) and machined cpTi bar (G2). The fiber-reinforced resin bar exhibited an adequate stress distribution and can serve as a viable alternative for oral rehabilitation with mandibular full dentures supported with implants. Moreover, the use of the G1 group offered advantages including reduced weight and less possible overload to the implants components, leading to the preservation of the support structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Energy impacts of recycling disassembly material in residential buildings

    International Nuclear Information System (INIS)

    Gao, Weijun; Ariyama, Takahiro; Ojima, Toshio; Meier, Alan

    2000-01-01

    In order to stop the global warmth due to the CO2 concentration, the energy use should be decreased. The investment of building construction industry in Japan is about 20 percent of GDP. This fraction is much higher than in most developed countries. That results the Japanese building construction industry including residential use consumes about one third of all energy and resources of the entire industrial sectors. In order to save energy as well as resource, the recycle of the building materials should be urgent to be carried out. In this paper, we focus on the potential energy savings with a simple calculated method when the building materials or products are manufactured from recycled materials. We examined three kinds of residential buildings with different construction techniques and estimated the decreased amount of energy consumption and resources resulting from use of recycled materials. The results have shown for most building materials, the energy consumption needed to remake housing materials from recycled materials is lower than that to make new housing materials. The energy consumption of building materials in all case-study housing can be saved by at least 10 percent. At the same time, the resource, measured by mass of building materials (kg) can be decreased by over 50 percent

  12. Mould growth on building materials

    DEFF Research Database (Denmark)

    Fog Nielsen, K.

    Mould growth in buildings is associated with adverse health effects among the occupants of the building. However actual growth only occurs in damp and water-damaged materials, and is an increasing problem in Denmark, due to less robust constructions, inadequate maintenance, and too little...

  13. PHYSICAL AND MECHANICAL CHARACTERISTICS OF BUILDING MATERIALS OF HISTORIC BUILDINGS

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2017-12-01

    Full Text Available The article presents partial results of laboratory research into physical and mechanical characteristics of materials most commonly used as walling units in masonry structures of historic and heritage buildings. Core boreholes and specimens for the laboratory research of selected characteristics were sampled from accessible places of historic buildings, which had not been restored or reconstructed. The results of the research brought new knowledge about the unreliability (variance of the properties of historical, mainly natural building materials, and, at the same time, pointed out the need for further research and extension of knowledge necessary for the assessment of residual physical and mechanical characteristics of historic masonry structures.

  14. Wood as a sustainable building material

    Science.gov (United States)

    Robert H. Falk

    2010-01-01

    Few building materials possess the environmental benefits of wood. It is not only our most widely used building material but also one with characteristics that make it suitable for a wide range of applications. As described in the many chapters of this handbook, efficient, durable, and useful wood products produced from trees can range from a minimally processed log at...

  15. Effect of phase change material on the heat transfer rate of different building materials

    Science.gov (United States)

    Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan

    2017-12-01

    Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.

  16. Environmental impacts of adobe as a building material: The north cyprus traditional building case

    Directory of Open Access Journals (Sweden)

    A.P. Olukoya Obafemi

    2016-06-01

    Summarily, this paper posits that the successful fusion of traditional building materials such as Adobe and modern design construct will not only give birth to earth conscious building, but will also be energy efficient. Moreover, it will be a substitute building material the building industry can adopt at as a contributing solution to the omniscient global warming malady.

  17. Radiological dose assessment of naturally occurring radioactive materials in concrete building materials

    International Nuclear Information System (INIS)

    Amran AB Majid; Aznan Fazli Ismail; Muhamad Samudi Yasir; Redzuwan Yahaya; Ismail Bahari

    2013-01-01

    Previous studies have shown that the natural radioactivity contained in building materials have significantly influenced the dose rates in dwelling. Exposure to natural radiation in building has been of concerned since almost 80 % of our daily live are spend indoor. Thus, the aim of the study is to assess the radiological risk associated by natural radioactivity in soil based building materials to dwellers. A total of 13 Portland cement, 46 sand and 43 gravel samples obtained from manufacturers or bought directly from local hardware stores in Peninsular of Malaysia were analysed for their radioactivity concentrations. The activity concentrations of 226 Ra, 232 Th and 40 K in the studied building materials samples were found to be in the range of 3.7-359.3, 2.0-370.8 and 10.3-1,949.5 Bq kg -1 respectively. The annual radiation dose rates (μSv year -1 ) received by dwellers were evaluated for 1 to 50 years of exposure using Resrad-Build Computer Code based on the activity concentration of 226 Ra, 232 Th and 40 K found in the studied building material samples. The rooms modelling were based on the changing parameters of concrete wall thickness and the room dimensions. The annual radiation dose rates to dwellers were found to increase annually over a period of 50 years. The concrete thicknesses were found to have significantly influenced the dose rates in building. The self-absorption occurred when the concrete thickness was thicker than 0.4 m. Results of this study shows that the dose rates received by the dwellers of the building are proportional to the size of the room. In general the study concludes that concrete building materials; Portland cements, sands, and gravels in Peninsular of Malaysia does not pose radiological hazard to the building dwellers. (author)

  18. Measurement of naturally occurring radioactive materials in commonly used building materials in Hyderabad, India

    International Nuclear Information System (INIS)

    Balbudhe, A.Y.; Vishwa Prasad, K.; Vidya Sagar, D.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Building materials can cause significant gamma dose indoors, due to their natural radioactivity content. The knowledge of the natural radioactivity level of building materials is important for determination of population exposure, as most people spend 80-90% of their time indoors furthermore, it is useful in setting the standards and national guidelines for the use and management of these materials. The concentrations of natural radionuclides in building materials vary depending on the local geological and geographical conditions as well as geochemical characteristics of those materials. The aim of the study is to determine levels of natural radionuclide in the commonly used building materials in Hyderabad, India

  19. Developing material for promoting problem-solving ability through bar modeling technique

    Science.gov (United States)

    Widyasari, N.; Rosiyanti, H.

    2018-01-01

    This study aimed at developing material for enhancing problem-solving ability through bar modeling technique with thematic learning. Polya’s steps of problem-solving were chosen as the basis of the study. The methods of the study were research and development. The subject of this study were five teen students of the fifth grade of Lab-school FIP UMJ elementary school. Expert review and student’ response analysis were used to collect the data. Furthermore, the data were analyzed using qualitative descriptive and quantitative. The findings showed that material in theme “Selalu Berhemat Energi” was categorized as valid and practical. The validity was measured by using the aspect of language, contents, and graphics. Based on the expert comments, the materials were easy to implement in the teaching-learning process. In addition, the result of students’ response showed that material was both interesting and easy to understand. Thus, students gained more understanding in learning problem-solving.

  20. Fiber reinforced concrete as a material for nuclear reactor containment buildings

    International Nuclear Information System (INIS)

    Mallikarjuna; Banthia, N.; Mindess, S.

    1991-01-01

    The fiber reinforced concrete as a constructional material for nuclear reactor containment buildings calls for an examination of its individual characteristics and potentialities due to its inherent superiority over normal plain and reinforced concrete. In the present investigation, first, to study the static behavior of straight, hooked-end and crimped fibers, recently developed nonlinear three-dimensional interface (contact) element has been used in conjunction with the eight nodded hexahedron and two nodded bar elements for concrete and steel fiber respectively. Then impact tests were carried out on fiber reinforced concrete beams with an instrumented drop weight impact machine. Two different concrete mixes were tested: normal strength and high strength concrete specimens. Fibers in the concrete mix found to significantly increase the ductility and the impact resistance of the composite. Deformed fibers increase peak pull-out load and pull-out distance, and perform better in the steel fiber reinforced concrete (SFRC) structures. (author)

  1. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  2. Natural radioactivity measurements of building materials in Baotou, China.

    Science.gov (United States)

    Zhao, Caifeng; Lu, Xinwei; Li, Nan; Yang, Guang

    2012-12-01

    Natural radioactivity due to (226)Ra, (232)Th and (40)K in the common building materials collected from Baotou city of Inner Mongolia, China was measured using gamma-ray spectrometry. The radiation hazard of the studied building materials was estimated by the radium equivalent activity (Ra(eq)), internal hazard index (H(in)) and annual effective dose (AED). The concentrations of the natural radionuclides and Ra(eq) in the studied samples were compared with the corresponding results of other countries. The Ra(eq) values of the building materials are below the internationally accepted values (370 Bq kg(-1)). The values of H(in) in all studied building materials are less than unity. The AEDs of all measured building materials are at an acceptable level.

  3. Investigations of radioactivity of building raw and materials

    International Nuclear Information System (INIS)

    Zak, A.; Biernacka, M.; Jagielak, J.; Lipinski, P.

    1993-01-01

    In 1980, Ministry of Building and Building Materials Industry, the Central Laboratory for Radiological Protection (abbreviated as CLRP), Ministry of Health and Social Welfare have agreed to issue the compulsory regulation of performing the validation of investigations of building raw and materials. Methods of measurement, apparatus and method of evaluation of results of the investigations have been recommended for the whole country. The following two criteria of usefulness of a building material for housing and public building have been accepted, f 1 = 0.00027 S K + 0.0027 S Ra0 .0043 S Th ≤ 1 (this one limit exposition of the whole body to gamma radiation); f 2 = S Ra ≤ 185 Bq/kg (this one limits exposition of lung epithelium to progeny of radon 222 Rn exhaled from the building walls). The CLRP and Institute of Building Technology supervise over correctness (agreement with the regulations) of operation of laboratories in Departments of Building Industry and Energy, organize training of the personnel and collect results of the measurements. From 1980 till 1991, results of measurements of 6550 samples from 550 localities were collected in computer data base organized in CLRP. In this paper, results of examination of selected groups of building raw and materials have been presented. Annual average values of the qualification coefficients f 1 and f 2 have been also analyzed. (author). 7 refs, 13 figs, 2 tabs

  4. Wood: a construction material for tall buildings

    Science.gov (United States)

    Wimmers, Guido

    2017-12-01

    Wood has great potential as a building material, because it is strong and lightweight, environmentally friendly and can be used in prefabricated buildings. However, only changes in building codes will make wood competitive with steel and concrete.

  5. 29 CFR 779.335 - Sales of building materials for residential or farm building construction.

    Science.gov (United States)

    2010-07-01

    ... materials for residential or farm building construction. Section 3(n) of the Act, as amended, excludes from... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for residential or farm building construction. 779.335 Section 779.335 Labor Regulations Relating to Labor (Continued) WAGE AND...

  6. Mycotoxins in building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Frisvad, Jens Christian

    2011-01-01

    as in future energy efficient buildings. It brings together different disciplinary points of view on indoor mold, ranging from physics and material science to microbiology and health sciences. The contents have been outlined according to three main issues: Fundamentals, particularly addressing the crucial...... roles of water and materials, Health, including a state-of-the-art description of the health-related effects of indoor molds, and Strategies, integrating remediation, prevention and policies....

  7. Application of BIM technology in green building material management system

    Science.gov (United States)

    Zhineng, Tong

    2018-06-01

    The current green building materials management system in China's construction industry is not perfect, and there are still many shortcomings. Active construction of green building materials management system based on BIM technology, combined with the characteristics of green building materials and its relationship with BIM technology application, is urgently needed to better realize the scientific management of green building materials.

  8. Radioactivity of building materials

    International Nuclear Information System (INIS)

    Terpakova, E.

    2000-01-01

    In this paper the gamma-spectrometric determination of natural radioactivity in the different building materials and wares applied in Slovakia was performed. The specific activities for potassium-40, thorium, radium as well as the equivalent specific activities are presented

  9. Parameters for Building Materials Specifications in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Clement Oluwole Folorunso

    2013-07-01

    Full Text Available The responsibility of specifying materials for building construction purposes within Nigeria rests on the architects. Understanding the appropriate parameters for specifying building materials that could lead to immense financial proportion is required from the architects. The level of understanding and knowledge of architects is germane to the optimum performance of buildings throughout their life cycle. The methodology applied for this research involved the administration of a structured questionnaire on professional architects within the study area to determine the basis of their decision on the materials they specify or chose for building finishes. The parameters used to measure the specification of materials for finishes are client’s choice, cost, climatic compliance, and maintenance demand of materials. Findings show that the maintenance demand of materials is the most important factor that determines the specification of materials irrespective of the choice of client and climate. However, cost occupies a prominent role in the decision process. It also shows that most architects are not fully aware about the role of climate in determining the life cycle of materials in tropical environments. The compliance of materials to ever-changing climate does not constitute a major factor in the specification of materials in the area.

  10. Investigating the presence of hazardous materials in buildings

    International Nuclear Information System (INIS)

    Gustitus, D.A.; Blaisdell, P.M.

    1996-01-01

    Environmental hazards in buildings can be found in the air, on exposed surfaces, or hidden in roofs, walls, and systems. They can exist in buildings in solid, liquid, and gaseous states. A sound methodology for investigating the presence of environmental hazards in buildings should include several components. The first step in planning an investigation of environmental hazards in buildings is to ascertain why the investigation is to be performed. Research should be performed to review available documentation on the building. Next, a visual inspection of the building should be performed to identify and document existing conditions, and all suspect materials containing environmental hazards. Lastly, samples of suspect materials should be collected for testing. It is important to sample appropriate materials, based on the information obtained during the previous steps of the investigation. It is also important to collect the samples using standard procedures. Pollutants of concern include asbestos, lead, PCBs, and radon

  11. Numerical Simulations of the Kolsky Compression Bar Test

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The Kolsky compression bar, or split Hopkinson pressure bar (SHPB), is an ex- perimental apparatus used to obtain the stress-strain response of material specimens at strain rates in the order of 10 2 to 10 4 1/s. Its operation and associated data re- duction are based on principles of one-dimensional wave propagation in rods. Second order effects such as indentation of the bars by the specimen and wave dispersion in the bars, however, can significantly affect aspects of the measured material response. Finite element models of the experimental apparatus were used here to demonstrate these two effects. A procedure proposed by Safa and Gary (2010) to account for bar indentation was also evaluated and shown to improve the estimation of the strain in the bars significantly. The use of pulse shapers was also shown to alleviate the effects of wave dispersion. Combining the two can lead to more reliable results in Kolsky compression bar testing.

  12. Natural radioactivity of building materials in Austria

    International Nuclear Information System (INIS)

    Sorantin, H.; Steger, F.

    1984-03-01

    About 120 samples of natural and manufactured building materials have been analyzed by gamma-spectrometry for their Thorium 232-, Radium 226- and Potassium 40 - content. Granites showed generally the greatest amounts of the above mentioned radionuclides, whereas other natural products like sand, gravels, marbles and gypsum contained only traces of radionuclides. As regards the manufactured building materials only some types of bricks and chemical gypsum showed relatively high concentrations of radionuclides, while the rest of the bricks, tiles, plaster and accessory materials fulfilled the criteria set up in the OECD-NEA report 1979. (Author)

  13. Assessing sustainability of building materials in developing countries: the sustainable building materials index (SBMI)

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2014-10-01

    Full Text Available performance. This paper reviews a selection of sustainability assessment and reporting methodologies in order understand the applicability of existing systems as a means of measuring sustainability of building materials in developing countries. The review...

  14. Frost resistance of building materials

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    materials, has been developed.The importance of the pore structure on the development of stresses in the material during freezing is emphasized. To verify the model, experimental investigations are made on various concretes without air-entrainment and brick tiles with different porosities.Calculations......In this thesis it is shown that the critical degree of saturation is suitable as parameter for the frost resistance of porous building materials. A numerical model for prediction of critical degrees of saturation based on fracture mechanics and phase geometry of two-phase materials, e.g. porous...

  15. Is the quality of cement a contributing factor for building collapse in Ghana?

    OpenAIRE

    Danso, Humphrey; Boateng, Isaac

    2013-01-01

    Sub-standard (poor quality) materials have been mentioned as one of the major causes of building collapse worldwide. The main materials mostly identified as sub-standard are cement, reinforcement bars, timber and aggregate. This Paper assesses whether the quality of Type I Portland cement use in Ghana - contribute to the recent building collapse in Accra and Kumasi. This was achieved through experimental study by comparing the properties of Ghana cement with that of UK cement. The study found...

  16. Model Simulasi Risiko Rantai Pasok Material Proyek Konstruksi Gedung

    Directory of Open Access Journals (Sweden)

    Jati Utomo Dwi Hatmoko

    2017-07-01

    Full Text Available Delays related to materials are one of main problems of construction project. An effective supply chain management has a significant role in preventing this type of delay. The aim of this research is develop risk simulation model of construction supply chain in buildings. The materials include steel bars, steel profiles, formwork, and precast concrete, as they are considered the main building material. The supply chain risks are classified from supply, control, process, and demand sides. Monte Carlo simulation has been performed using Cristal Ball software. Risk identification was done through literature review, site observation, and interviews with 29 contractor personnel  working for nine building projects. The simulation results show that the minimum, maximum, and most frequent delays (in days, as follows: steel bars (2.20. 17.05, 11.24; steel profiles (2.12, 15.10, 9.75, formwork (1.79, 16.04, 10.45, precast concrete (1.76, 15.61, 10.24.  The sensitivity analysis shows that delay due to change order from client is the most sensitive for  steel bars, steel profiles, and formwork of 25.5%, 37.4%, dan 17%, respectively. The results of this research is useful for contractors and owners who can use them as a guidance in identifying, predicting, and mitigating supply chain risks for a successful project.

  17. Using Bamboo as an Alternative Material for Environmental Friendly Building

    NARCIS (Netherlands)

    Mardjono, F.; Erkelens, P.A.; Jonge, S. de; Vliet, A.A.M. van

    2000-01-01

    Bamboo is one of natural resources that can be applied for building materials. In such bamboo growing countries, bamboo has main role as a building material for more than hundreds years ago. Sometimes bamboo can be used to replace wood based building material. Based on the detecting of problems on

  18. Building materials as sources of indoor exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Mustonen, R.

    1992-11-01

    The thesis deals with the radioactivity of Finnish building materials and of industrial wastes or residues which can be used as building materials or as mixing substances of such materials. The external and internal exposure to radiation from building materials is described. The study also discusses with the methods used for measuring concentrations of natural and artificial gamma emitters in different kinds of materials and the amount of radon exhaling from building materials. A computational method for assessing the gamma ray exposure inside dwellings is desribed, and the results are compared with those of other corresponding methods. The results of the simple method described here are in good agreement with those obtained with the more refined Monte Carlo technique

  19. CONSEQUENCES OF INADEQUATE ENGAGEMENT OF EXPERTS FOR BUILDING SPORT FACILITIES IN BAR

    Directory of Open Access Journals (Sweden)

    Miodrag Banović

    2010-09-01

    Full Text Available In Bar we still do not have experiance that for investments in sport facilities, sport experts are consulted. Such an approach to this problem put in question racional reasons for an investment? Consequences: Such facilities were not built in accordance with the sport rules and could not be registrated to the Sports Associations for performance of official sport competitions. 1. Hotel „Topolica“, 1980. year (open swimming pool, 2. OŠ „Anto Đedović“, 1983. year (asfaltfloor playground, 3. Sportsko-rekreativni centar Bar, 1986. year (tartan track i asfaltfloor playground, 4. OŠ „Meksiko“, 1987. year ( gim, 5. Sportsko-rekreativni centar Bar, 1987. year (stadium dressing room, 6. Sportsko-rekreativni centar Bar, 2004. year (tartan track i asfaltfloor playground, i cross-country track 7. Rekreativni parak „Oaza“, 2005. godine ( trim track reconstruction and artificial light instalement at „Oaza“, 8. Sportsko-rekreativni centar Bar, 2009. year (football – tennis pitch, Distorical and descriptive methods were used. Subject of inquiery were sport facilities where sport rules were not followed.Vanity of certain persons has been fulfilled, but not the needs of sport population. If there is a wish that sport facilities should be in the function of sport in its full capacity, it is necessary that during construction, reconstruction and adaptation of such facilities expers are to be engaged.

  20. Natural radioactivity for some Egyptian building material

    International Nuclear Information System (INIS)

    Eissa, M. F.; Mostafa, R. M.; Shahin, F.; Hassan, K. F.; Saleh, Z. A.; Yahia, A.

    2007-01-01

    Study of the radiation hazards for the building materials is interested in most international countries. Measurements of natural radioactivity was verified for some egyptian building materials to assess any possible radiological hazard to man by the use of such materials. The measurements for the level of natural radioactivity in the materials was determined by γ-ray spectrum using HP Ge detector. A track detector Cr-39 was used to measure the radon exhalation rate from these materials. The radon exhalation rates were found to vary from 2.83±0.86 to 41.57 ± 8.38 mBqm -2 h -1 for egyptian alabaster. The absorbed dose rate in air is lower than the international recommended value (55 n Gy h -1 ) for all test samples

  1. Influence of building materials process technology on radon exhalation

    International Nuclear Information System (INIS)

    Liu Fudong; Wang Chunhong; Liu Senlin; Ji Dong; Zhang Yonggui; Pan Ziqiang

    2009-01-01

    The building materials were produced through changing raw material ingredient, baking temperature, pressure difference between surface and interior of building material, grain diameter etc. Experiment indicates that change of raw material ingredient ratio can obviously influence the radon exhalation from building material, followed by baking temperature; and pressure difference does not have significant influence on radon exhalation. For the factory to produce shale-brick, the radon exhalation is relatively low under the condition that coal gangue accounts for 40%-50%, the grain diameter is less than 2 mm, the baking temperature is about 960 degree C or 1 020 degree C and the pressure difference is 85 kPa. (authors)

  2. Natural radioactivity level of main building materials in Baotou, China

    International Nuclear Information System (INIS)

    Zhao Caifeng; Lu Xinwei; Li Nan; Yang Guang

    2012-01-01

    A survey was done on natural radioactivity level and annual effective dose rate of main building materials in Baotou, China. The natural radionuclides of 40 K, 232 Th and 226 Ra in main building materials collected from Baotou were measured using NaI γ-ray spectrometry and the measured data were analyzed according to the national standards and radiological protection principles of the European Commission. The specific activities of 40 K, 232 Th and 226 Ra in the building materials samples were 218.82-1145.92, 19.75-1.32.50 and 11.46-82.66 Bq/kg, respectively. The internal and external exposure indexes of building materials were 0.06-0.41 and 0.28-0.70, respectively. The annual effective dose equivalent was 0.41-0.97 mSv/y. This justifies the production and sale of the main building materials, as both the internal and external exposure indexes of building materials are less than 1. The effective dose rate of ash brick is 0.97 mSv/y, while the maximum acceptable value is 1 mSv/y. Therefore, it is necessary to control the amount of industrial waste residue in building materials to avoid unnecessary radioactive exposure to residents. (authors)

  3. Building materials. VOC emissions, diffusion behaviour and implications from their use

    International Nuclear Information System (INIS)

    Katsoyiannis, Athanasios; Leva, Paolo; Barrero-Moreno, Josefa; Kotzias, Dimitrios

    2012-01-01

    Five cement- and five lime-based building materials were examined in an environmental chamber for their emissions of Volatile Organic Compounds (VOCs). Typical VOCs were below detection limits, whereas not routinely analysed VOCs, like neopentyl glycol (NPG), dominated the cement-based products emissions, where, after 72 h, it was found to occur, in levels as high as 1400 μg m −3 , accounting for up to 93% of total VOCs. The concentrations of NPG were not considerably changed between the 24 and 72 h of sampling. The permeability of building materials was assessed through experiments with a dual environmental chamber; it was shown that building materials facilitate the diffusion of chemicals through their pores, reaching equilibrium relatively fast (6 h). - Highlights: ► Neopentyl glycol is reported in emissions from building materials for the first time. ► Neopentyl glycol dominates the VOC emissions from cement-based building materials. ► A dual chamber was developed to control diffusion through building materials. ► Building materials facilitate diffusion of indoor air pollutants through their pores. - Neopentyl glycol was detected in high concentrations in emissions from building materials.

  4. Survey and specimen taking of building materials which are destined for house building in The Netherlands

    International Nuclear Information System (INIS)

    Boer, J.F. den

    1985-11-01

    This investigation deals with the following items: (a) Some building materials cause an increase of the natural radioactive radiation level indoors, especially building materials containing a certain kind of phosphogypsum. The radiation level depends among other things on the applied quantity of building materials and on the location in the building (walls, floors or roofs, etc.). The soil underneath dwellings can also be an important radiation source. The report gives a listing of the kind of building materials used for dwellings in The Netherlands, both present ones as well as possible future ones. A survey of the quantities applied and the location of application in dwellings is also given. The different types of soil underneath the dwellings are discussed. (b) Samples were collected from various factories, dealers and other sources (both present and future samples) of the most important building materials and components thereof. The samples were handed over to Division of Technology for Society TNO, Radiological Service TNO and Netherland Energy Research Foundation, in order to measure the activity concentrations and the radon exhalations. A listing of the samples is given. (Auth.)

  5. Experimental Study on Basic Mechanical Properties of BFRP Bars

    Science.gov (United States)

    Fan, Xiaochun; Xu, Ting; Zhou, Zhengrong; Zhou, Xun

    2017-10-01

    Basalt Fiber Reinforced Polymer (BFRP) bars have the advantages of corrosion resistance, high strength, light weight, good dielectric properties, and they are new type of green reinforced alternative material. In order to determine the mechanical properties of BFRP bars, the tensile strength of basalt fiber bars was necessary to be studied. The diameters of the basalt fiber bars were compared by means of uniaxial tensile test in this article. Then the stress-strain curve can be drawn out. The results show that the stress - strain curve of BFRP bars present straight line relation, and there is no sign before failure; there is no yield platform on the stress-strain curve of BFRP bars, which are typical brittle material;the tensile strength of BFRP bars is about 3 times higher than that of ordinary steel bars. and the elastic modulus is about 1/5 of that of ordinary steel; the ultimate tensile strength of BFRP bars varies little with the increase of diameter, but there exist some differences in modulus values.

  6. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bar...... and the fire resistance. Such a fibre reinforced ultra high-strength material has been used to develop a simple joint solution between slab elements in a column - slab building system....

  7. Dune Ecosystem Management of the Razim-Sinoie Littoral Bar (Romania

    Directory of Open Access Journals (Sweden)

    Gheorghe ROMANESCU

    2010-12-01

    Full Text Available The Razim-Sinoie lagoon complex is located in the south-eastern part of Romania. It is bordered by the Dobrudja region to the west and north, the Danube Delta to the north-east and the Black Sea to the east. An assessment of the quality of dunes was made in that area and several conservation measures were proposed. The age of the Razim-Sinoie littoral bar cannot be older than 1500 - 2000 years, according to to the total closure of the Halmyris bay and the end of the harbour activities in Histria and, subsequently, in Enisala. Transversally, the littoral bar is quite symmetrical, with few differences between the part towards the sea, which is more abrupt, and the less abrupt part towards the lagoon. Most of the sediments that make up the littoral bar are of Danubian origin and the rest are of marine origin (bio-constructional, caused by the smashing of the empty shells. The materials get transported by the littoral stream and deposited by waves and wind. The average increase of the marine level is between 1 and 2 cm/year. Even if the transgressive phenomenon occurs along the entire bar, several sectors are slightly eroded (as in Portita, others are slightly progradated (as in Chituc-Capul Midia and the rest have a precarious relative equilibrium (Periboina, Periteasca. The reduced water transparency facilitates a good development of the shell population, and causes the terrigenic material/organogenic material ratio (T/O to be 50/50. As a result of the reduction of the Danube solid discharge which supplied the littoral bar, the whole alignment was affected, and, consequently, a generalized retreat of the shore line occurred. Under such circumstances, a supplementary sediment discharge was necessary, but without affecting the nearby ecosystems. Supplementary material can be brought from offshore, from the - 20m deep isobath or by building canals between the Sfantu Gheorghe arm of the Danube (the southernmost arm and the littoral nearby. In that

  8. Flammability tests for regulation of building and construction materials

    Science.gov (United States)

    K. Sumathipala

    2006-01-01

    The regulation of building materials and products for flammability is critical to ensure the safety of occupants in buildings and other structures. The involvement of exposed building materials and products in fires resulting in the loss of human life often spurs an increase in regulation and new test methods to address the problem. Flammability tests range from those...

  9. Radioactivity of natural and artificial building materials - a comparative study.

    Science.gov (United States)

    Szabó, Zs; Völgyesi, P; Nagy, H É; Szabó, Cs; Kis, Z; Csorba, O

    2013-04-01

    Building materials and their additives contain radioactive isotopes, which can increase both external and internal radioactive exposures of humans. In this study Hungarian natural (adobe) and artificial (brick, concrete, coal slag, coal slag concrete and gas silicate) building materials were examined. We qualified 40 samples based on their radium equivalent, activity concentration, external hazard and internal hazard indices and the determined threshold values of these parameters. Absorbed dose rate and annual effective dose for inhabitants living in buildings made of these building materials were also evaluated. The calculations are based on (226)Ra, (232)Th and (40)K activity concentrations determined by gamma-ray spectrometry. Measured radionuclide concentrations and hence, calculated indices and doses of artificial building materials show a rather disparate distribution compared to adobes. The studied coal slag samples among the artificial building materials have elevated (226)Ra content. Natural, i.e. adobe and also brick samples contain higher amount of (40)K compared to other artificial building materials. Correlation coefficients among radionuclide concentrations are consistent with the values in the literature and connected to the natural geochemical behavior of U, Th and K elements. Seven samples (coal slag and coal slag concrete) exceed any of the threshold values of the calculated hazard indices, however only three of them are considered to be risky to use according to the fact that the building material was used in bulk amount or in restricted usage. It is shown, that using different indices can lead to different conclusions; hence we recommend considering more of the indices at the same time when building materials are studied. Additionally, adding two times their statistical uncertainties to their values before comparing to thresholds should be considered for providing a more conservative qualification. We have defined radon hazard portion to point

  10. Review of Punching Shear Behaviour of Flat Slabs Reinforced with FRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania

    2017-10-01

    Using Fibre Reinforced Polymer (FRP) bars to reinforce two-way concrete slabs can extend the service life, reduce maintenance cost and improve-life cycle cost efficiency. FRP reinforcing bars are more environmentally friendly alternatives to traditional reinforcing steel. Shear behaviour of reinforced concrete structural members is a complex phenomenon that relies on the development of internal load-carrying mechanisms, the magnitude and combination of which is still a subject of research. Many building codes and design standards provide design formulas for estimation of punching shear capacity of FRP reinforced flat slabs. Building code formulas take into account the effects of the axial stiffness of main reinforcement bars, the ratio of the perimeter of the critical section to the slab effective depth, and the slab thickness on the punching shear capacity of two-way slabs reinforced with FRP bars or grids. The goal of this paper is to compare experimental data published in the literature to the equations offered by building codes for the estimation of punching shear capacity of concrete flat slabs reinforced with FRP bars. Emphasis in this paper is on two North American codes, namely, ACI 440.1R-15 and CSA S806-12. The experimental data covered in this paper include flat slabs reinforced with GFRP, BFRP, and CFRP bars. Both ACI 440.1R-15 and CSA S806-12 are shown to be in good agreement with test results in terms of predicting the punching shear capacity.

  11. Dependence of indoor 222Rn level on building materials

    International Nuclear Information System (INIS)

    Tso, M.W.; Ng, C.; Leung, J.K.C.

    1993-01-01

    The radionuclide contents of typical building materials used in Hong Kong were studied by γ spectroscopic analysis. The physical properties of these building materials affecting the production and transportation of 222 Rn to the surrounding air were examined; these include the emanation coefficient of 2 '2 2 Rn of the material, the diffusion coefficient of 222 Rn in the material and the effect of surface coating and temperature on the rate of 222 Rn exhalation. Results obtained in this study explain the indoor 222 Rn concentration observed in our previous surveys and also suggest that the main source of indoor 222 Rn in Hong Kong is building material. (3 figs., 4 tabs.)

  12. Measurement of natural radioactivity in building materials used in Urumqi, China.

    Science.gov (United States)

    Ding, Xiang; Lu, Xinwei; Zhao, Caifeng; Yang, Guang; Li, Nan

    2013-07-01

    Building materials contain natural radionuclides (226)Ra, (232)Th and (40)K, which cause direct radiation exposure of the public. The concentrations of (226)Ra, (232)Th and (40)K in commonly used building materials of Urumqi, China have been analysed using gamma-ray spectrometry. The concentrations of (226)Ra, (40)K and (232)Th in the studied building materials range from 19.8 to 87.4, from 273.3 to 981.2 and from 11.6 to 47.7 Bq kg(-1), respectively. The radium equivalent activity (Raeq), gamma index (Iγ) and alpha index (Iα) were calculated to assess the radiation hazards to people living in dwellings made of the materials studied. The calculated Raeq values of all the building materials are lower than the limit of 370 Bq kg(-1) for building materials. The values of Iγ and Iα of all the building materials are less than unity. The study shows that these materials may be safely used as construction materials and do not pose significant radiation hazards.

  13. A study on plate anchor detailing systems of shear re-bar

    International Nuclear Information System (INIS)

    Tsurumaki, S.; Ujiie, K.; Nishikawa, T.; Kitayama, K.

    1995-01-01

    For shell walls and base slabs in reactor buildings, besides a large amount of main bars, numerous shear re-bars have been employed to resist to out-of-plane force. As a result , detailing work involving shear re-bar is extremely involved. For example, the employed re-bar anchor method differs from the ordinary methods in which, a end of shear re-bar with 135-degrees hook or with anchor plate type and another re-bar end with 90-degrees hook are used. However the structural characteristics in members using shear re-bar of the bolt-mounted anchor plate have not yet been examined. A test was performed to confirm the effects of anchor methods for shear re-bars on shearing behavior of members. This paper describes the test plan, method and results. (author). 12 figs., 7 tabs

  14. The use of portable equipment for the activity concentration index determination of building materials: method validation and survey of building materials on the Belgian market

    International Nuclear Information System (INIS)

    Stals, M.; Verhoeven, S.; Bruggeman, M.; Pellens, V.; Schroeyers, W.; Schreurs, S.

    2014-01-01

    The Euratom BSS requires that in the near future (2015) the building materials for application in dwellings or buildings such as offices or workshops are screened for NORM nuclides. The screening tool is the activity concentration index (ACI). Therefore it is expected that a large number of building materials will be screened for NORM and thus require ACI determination. Nowadays, the proposed standard for determination of building material ACI is a laboratory analyses technique with high purity germanium spectrometry and 21 days equilibrium delay. In this paper, the B-NORM method for determination of building material ACI is assessed as a faster method that can be performed on-site, alternative to the aforementioned standard method. The B-NORM method utilizes a LaBr 3 (Ce) scintillation probe to obtain the spectral data. Commercially available software was applied to comprehensively take into account the factors determining the counting efficiency. The ACI was determined by interpreting the gamma spectrum from 226 Ra and its progeny; 232 Th progeny and 40 K. In order to assess the accuracy of the B-NORM method, a large selection of samples was analyzed by a certified laboratory and the results were compared with the B-NORM results. The results obtained with the B-NORM method were in good correlation with the results obtained by the certified laboratory, indicating that the B-NORM method is an appropriate screening method to assess building material ACI. The B-NORM method was applied to analyze more than 120 building materials on the Belgian market. No building materials that exceed the proposed reference level of 1 mSv/year were encountered. -- Highlights: • Many building materials will have to be tested for NORM activity concentrations. • An on-site NORM analysis method has been developed and validated. • Over 120 building materials on the Belgian market have been analyzed with this method. • The Euratom BSS reference level of 1 mSv/year excess dose will

  15. Effects of energy and carbon taxes on building material competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, 831 25 Oestersund, (Sweden)

    2007-04-15

    The relations between building material competitiveness and economic instruments for mitigating climate change are explored in this bottom-up study. The effects of carbon and energy taxes on building material manufacturing cost and total building construction cost are modelled, analysing individual materials as well as comparing a wood-framed building to a reinforced concrete-framed building. The energy balances of producing construction materials made of wood, concrete, steel, and gypsum are described and quantified. For wood lumber, more usable energy is available as biomass residues than is consumed in the processing steps. The quantities of biofuels made available during the production of wood materials are calculated, and the cost differences between using these biofuels and using fossil fuels are shown under various tax regimes. The results indicate that higher energy and carbon taxation rates increase the economic competitiveness of wood construction materials. This is due to both the lower energy cost for material manufacture, and the increased economic value of biomass by-products used to replace fossil fuel. (Author)

  16. Effective 226Ra-content of some Hungarian building materials

    International Nuclear Information System (INIS)

    Toth, A.; Feher, I.

    1976-01-01

    The aim of the work was to analyse the effective 226 Ra content of building- and back filling materials used in Hungary. The quantity of radon was determined by ionization chambers connected to vibrating-reed electrometers, as well as by a scintillation radon counter. The radon measuring instruments were calibrated by known 222 Rn quantities given off from standard RaCl 2 solutions. The overall uncertainty of the data obtained is estimated as being 25%. The minimum measurable effective 226 Ra concentration due to a 10 4 g building material source is calculated as 16 fCi/g for the ionization chambers and 8 fCi/g for the scintillation counter. 68 building material samples and 11 backfill (concrete made by fly-ashes) samples have been studied and it has been found, that the effective 226 Ra contents of the tested building materials are 2 to 9 times greater than those found in the Soviet Union though none exceeds the recommended 600 fCi/g level. Among the back filling materials made with fly-ash the maximum 226 Ra content was 3300 fCi/g. The effective 226 Ra content measurements are well suited for a priori radon escape qualification of building materials. (K.A.)

  17. Durability of building materials and components

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    Durability of Building Materials and Components provides a collection of recent research works to contribute to the systematization and dissemination of knowledge related to the long-term performance and durability of construction and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of durability, service life prediction methodologies, the durability approach for historical and old buildings, asset and maintenance management and on the durability of materials, systems and components. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  18. Activity measurement and effective dose modelling of natural radionuclides in building material

    International Nuclear Information System (INIS)

    Maringer, F.J.; Baumgartner, A.; Rechberger, F.; Seidel, C.; Stietka, M.

    2013-01-01

    In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. - Highlights: • Dose models for indoor radiation exposure due to natural radionuclides in building materials. • Strategies and methods in radionuclide metrology, activity measurement and dose modelling. • Selection of appropriate parameters in radiation protection standards for building materials. • Scientific-based limitations of indoor exposure due to natural radionuclides in building materials

  19. New build: Materials, techniques, skills and innovation

    International Nuclear Information System (INIS)

    Glass, Jacqueline; Dainty, Andrew R.J.; Gibb, Alistair G.F.

    2008-01-01

    The transition to secure, sustainable, low-energy systems will have a significant effect on the way in which we design and construct new buildings. In turn, the new buildings that are constructed will play a critical role in delivering the better performance that would be expected from such a transition. Buildings account for about half of UK carbon dioxide (CO 2 ) production. So it is urgent to ensure that energy is used efficiently in existing buildings and that new building stock is better able to cope with whatever the future holds. Most energy used in buildings goes towards heating, lighting and cooling, but a growing percentage is consumed by domestic appliances, computers and other electrical equipment. Actual energy consumption is the product of a number of factors, including individual behaviours and expectations, the energy efficiency of appliances and the building envelope. This review focuses on the third of these, the building itself, and its design and construction. It discusses the issues faced by the construction industry today, suggesting that major changes are needed relating to materials, techniques, skills and innovation. It moves on to consider future advances to 2050 and beyond, including developments in ICT, novel materials, skills and automation, servitisation (the trend for manufacturers to offer lifetime services rather than simple products), performance measurement and reporting, and resilience. We present a vision of the new build construction industry in 2050 and recommendations for policy makers, industry organisations and construction companies

  20. Rehabilitation of adobe buildings. Understanding different materials from Portugal

    Science.gov (United States)

    Costa, Cristiana; Rocha, Fernando; Velosa, Ana

    2016-04-01

    Earth construction is the oldest building material known, with documented cases of the use of earth bricks since Mesopotamia around 10 000 BC (Heathcote, 1995). The earth construction exists throughout the majority of the world in different cultures, and for some countries, nowadays it continues to be the main process of construction (Vega et al, 2011). Around 30% of the world's population lives in buildings made of earth materials. Earthen construction is an environmentally friendly technique with a social and cultural contribution; this advantage is increased when this type of construction is applied in developing countries where the material costs counterbalance with labour costs, and where other materials and techniques cannot be available (Ciancio et al, 2013). Studies of materials characterization are required in order to understand the composition and specific properties of the earth buildings, their heterogeneity and their degradation mechanisms. Some adobes from different buildings, ages and regions of Portugal were collected in order to characterize them (mineralogically, chemically and physically). It was possible to understand the composition of these materials and their differences. Main minerals are quartz, feldspars, calcite and phyllosilicates (mica and kaolinite). The mechanical behaviour of these materials isn't the best, but it is possible to improve it with some simple and cheap natural additives (kaolinitic soils). The characterization of these materials allows us to understand the differences between the materials from the different regions (controlled by locally available raw materials). Understanding these materials, and their properties, it is possible to formulate new ones for repair, conservation and rehabilitation works. The adobe bricks are an alternative of kiln baked bricks which has several advantages and one of the most important is that these materials are recyclable. Adobes are an excellent option for building rehabilitation, if

  1. Decreased bio-inhibition of building materials due to transport of biocides

    NARCIS (Netherlands)

    Erich, S.J.F.; Mendoza, S.M.; Floor, W.; Hermanns, S.P.M.; Homan, W.J.; Adan, O.C.G.

    2011-01-01

    Bio-inhibition of buildings and structures is an important issue. In many cases building materials have biocides added to prevent growth of micro-organisms. Growth of microorganisms on building materials has several negative effects; (1) Aesthetic damage, e.g. fungi, algae grow on the material,

  2. The measurement theory of radioactivity in building materials

    International Nuclear Information System (INIS)

    Qu Jinhui; Wang Renbo; Zhang Xiongjie; Tan Hai; Zhu Zhipu; Man Zaigang

    2010-01-01

    Radioactivity in Building Materials is the main source of natural radiation dose that the individual is received, which has caused serious concern of all Social Sector. The paper completely introduce the measurement theory of the Radioactivity in Building Materials along with the measurement principle of natural radioactivity, design of shielding facility, choosing measurement time, sample prepared and spectrum analyzed. (authors)

  3. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  4. Build green and conventional materials off-gassing tests: A final report

    Energy Technology Data Exchange (ETDEWEB)

    Piersol, P.

    1995-12-31

    Build Green is a certification program that will identify and label building products with a known recycled content. The introduction of these recycled materials has raised the concern that they may emit more indoor pollutants than conventional materials. This study addresses that concern by analyzing Build Green and conventional materials to assess their potential for off-gassing. The study involved emission tests of 37 materials including carpets, carpet undercushions, structural lumber, foundation material, insulation, drywall, fiberboard, counter tops, and cabinetry. The results presented in this report include comparisons of Build Green and conventional materials in terms of emissions of volatile organic compounds and formaldehyde, the material loading ratio, and discussion of the specific sources of the emissions.

  5. Natural radioactivity in building materials used in Changzhi, China

    International Nuclear Information System (INIS)

    Yang, G.; Lu, X.; Zhao, C.; Li, N.

    2013-01-01

    The natural radioactivity levels of the commonly used building materials collected from Changzhi, China was analysed using gamma-ray spectroscopy. The activity concentrations of 226 Ra, 232 Th and 40 K in the investigated building materials range from 14.6 to 131.2, from 9.9 to 138.8 and from 96.1 to 819.0 Bq kg -1 , respectively. The results were compared with the reported data of other countries and with the worldwide mean activity of soil. The external and internal hazard indices and gamma index were calculated to assess the radiation hazard to residents. The external hazard index of all building materials are less than unity, while the internal hazard and gamma indexes of hollow brick and gravel aggregate exceed unity. The study shows that the investigated hollow brick and gravel aggregate are not suitable for use as building materials in dwellings. (authors)

  6. Natural radioactivity in building materials used in Changzhi, China.

    Science.gov (United States)

    Yang, Guang; Lu, Xinwei; Zhao, Caifeng; Li, Nan

    2013-08-01

    The natural radioactivity levels of the commonly used building materials collected from Changzhi, China was analysed using gamma-ray spectroscopy. The activity concentrations of (226)Ra, (232)Th and (40)K in the investigated building materials range from 14.6 to 131.2, from 9.9 to 138.8 and from 96.1 to 819.0 Bq kg(-1), respectively. The results were compared with the reported data of other countries and with the worldwide mean activity of soil. The external and internal hazard indices and gamma index were calculated to assess the radiation hazard to residents. The external hazard index of all building materials are less than unity, while the internal hazard and gamma indexes of hollow brick and gravel aggregate exceed unity. The study shows that the investigated hollow brick and gravel aggregate are not suitable for use as building materials in dwellings.

  7. Bar dimensions and bar shapes in estuaries

    Science.gov (United States)

    Leuven, Jasper; Kleinhans, Maarten; Weisscher, Steven; van der Vegt, Maarten

    2016-04-01

    Estuaries cause fascinating patterns of dynamic channels and shoals. Intertidal sandbars are valuable habitats, whilst channels provide access to harbors. We still lack a full explanation and classification scheme for the shapes and dimensions of bar patterns in natural estuaries, in contrast with bars in rivers. Analytical physics-based models suggest that bar length in estuaries increases with flow velocity, tidal excursion length or estuary width, depending on which model. However, these hypotheses were never validated for lack of data and experiments. We present a large dataset and determine the controls on bar shape and dimensions in estuaries, spanning bar lengths from centimeters (experiments) to 10s of kilometers length. First, we visually identified and classified 190 bars, measured their dimensions (width, length, height) and local braiding index. Data on estuarine geometry and tidal characteristics were obtained from governmental databases and literature on case studies. We found that many complex bars can be seen as simple elongated bars partly cut by mutually evasive ebb- and flood-dominated channels. Data analysis shows that bar dimensions scale with estuary dimensions, in particular estuary width. Breaking up the complex bars in simple bars greatly reduced scatter. Analytical bar theory overpredicts bar dimensions by an order of magnitude in case of small estuarine systems. Likewise, braiding index depends on local width-to-depth ratio, as was previously found for river systems. Our results suggest that estuary dimensions determine the order of magnitude of bar dimensions, while tidal characteristics modify this. We will continue to model bars numerically and experimentally. Our dataset on tidal bars enables future studies on the sedimentary architecture of geologically complex tidal deposits and enables studying effects of man-induced perturbations such as dredging and dumping on bar and channel patterns and habitats.

  8. Building stock dynamics and its impacts on materials and energy demand in China

    International Nuclear Information System (INIS)

    Hong, Lixuan; Zhou, Nan; Feng, Wei; Khanna, Nina; Fridley, David; Zhao, Yongqiang; Sandholt, Kaare

    2016-01-01

    China hosts a large amount of building stocks, which is nearly 50 billion square meters. Moreover, annual new construction is growing fast, representing half of the world's total. The trend is expected to continue through the year 2050. Impressive demand for new residential and commercial construction, relative shorter average building lifetime, and higher material intensities have driven massive domestic production of energy intensive building materials such as cement and steel. This paper developed a bottom-up building stock turnover model to project the growths, retrofits and retirements of China's residential and commercial building floor space from 2010 to 2050. It also applied typical material intensities and energy intensities to estimate building materials demand and energy consumed to produce these building materials. By conducting scenario analyses of building lifetime, it identified significant potentials of building materials and energy demand conservation. This study underscored the importance of addressing building material efficiency, improving building lifetime and quality, and promoting compact urban development to reduce energy and environment consequences in China. - Highlights: •Growths of China's building floorspace were projected from 2010 to 2050. •A building stock turnover model was built to reflect annual building stock dynamics. •Building related materials and energy demand were projected.

  9. Sustainable materials for low carbon buildings

    OpenAIRE

    B.V. Venkatarama Reddy

    2009-01-01

    This paper focuses on certain issues pertaining to energy, carbon emissions and sustainability of building construction with particular reference to the Indian construction industry. Use of sustainable natural materials in the past, related durability issues, and the implications of currently used energy-intensive materials on carbon emissions and sustainability are discussed. Some statistics on the Indian construction sector regarding materials produced in bulk quantities and the energy impl...

  10. Study of radon diffusion coefficient for technologically enhanced building construction materials

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Chauhan, R.P.; Chakarvarti, S.K.

    2012-01-01

    Most building materials of natural origin contain small amounts of Naturally Occurring Radioactive Materials (NORMs), mainly radionuclides from the 226 Ra and 232 Th decay chains and 40 K. The origin of these materials is the earths crust, but they find their way into building materials, air, water, food and the human body itself. The worldwide average indoor effective dose due to gamma rays from building materials is estimated to be about 0.4 mSv per year. In many parts of the world, building materials containing radioactive materials have been used for generations. As individuals spend more than 80% of their time indoors, the internal and external radiation exposure from building materials creates prolonged exposure situations. The internal (inhalation) radiation exposure is due to 222 Rn and their short lived decay products exhaled from building materials into the room air. The average activity concentrations of 226 Ra, 232 Th and 40 K in the earths crust are 35, 30 and 400 Bq/kg respectively. However, elevated levels of natural radionuclides causing annual doses of several mSv were identified in some regions around the world. Recycled industrial by-products containing Technologically Phosphogypsum, a by-product in the production of phosphate fertilizers is used as building material, and red mud, a waste from primary aluminum production, is used in bricks, ceramics and tiles. The increased tendency of the building material industry to use industrial wastes as substitutes for natural products having relatively high activity concentration of NORMs and the increased exposure caused by them were the driving forces for undertaking the present investigation. (author)

  11. Proceedings of the workshop on cool building materials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Fishman, B. [Lawrence Berkeley Lab., CA (United States); Frohnsdorff, G. [National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Materials Div.] [eds.

    1994-04-01

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  12. People, planet and profit: Unintended consequences of legacy building materials.

    Science.gov (United States)

    Zimmer, Anthony T; Ha, HakSoo

    2017-12-15

    Although an explosion of new building materials are being introduced into today's market, adequate up-front research into their chemical and physical properties as well as their potential health and environmental consequences is lacking. History has provided us with several examples where building materials were broadly deployed into society only to find that health and environmental problems resulted in unintended sustainability consequences. In the following paper, we use lead and asbestos as legacy building materials to show their similar historical trends and sustainability consequences. Our research findings show unintended consequences such as: increased remediation and litigation costs; adverse health effects; offshoring of related industries; and impediments to urban revitalization. As numerous new building materials enter today's market, another building material may have already been deployed, representing the next "asbestos." This paper also proposes an alternative methodology that can be applied in a cost-effective way into existing and upcoming building materials, to minimize and prevent potential unintended consequences and create a pathway for sustainable communities. For instance, our findings show that this proposed methodology could have prevented the unintended incurred sustainability costs of approximately $272-$359 billion by investing roughly $24 million in constant 2014 U.S. dollars on up-front research into lead and asbestos. Published by Elsevier Ltd.

  13. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  14. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  15. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  16. Radioisotopes present in building materials of workplaces

    Science.gov (United States)

    Del Claro, F.; Paschuk, S. A.; Corrêa, J. N.; Denyak, V.; Kappke, J.; Perna, A. F. N.; Martins, M. R.; Santos, T. O.; Rocha, Z.; Schelin, H. R.

    2017-11-01

    The isotope 222Rn is responsible for approximately half of the effective annual dose received by the world population. The decay products of 222Rn interacting with the cells of biological tissue of lungs have very high probability to induce cancer. The present survey was focused in the evaluation of activity concentration of 222Rn and other radioisotopes related to the building materials at workplaces at Curitiba - Paraná State. For this purpose, the instant radon detector AlphaGUARD (Saphymo GmbH) was used to measure the average concentrations of 222Rn in building materials, which were also submitted to gamma spectrometry analysis for qualitative and quantitative evaluation of the radionuclides present in samples of sand, mortar, blue crushed stone (Gneissic rock), red crushed stone (Granite), concrete and red bricks. The main radionuclides evaluated by gamma spectrometry in building material samples were 238U/226Ra, 232Th and 40K. These measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology - Paraná in collaboration with the Center of Nuclear Technology Development (CDTN - CNEN). The results of the survey present the concentration values of 222Rn related to construction materials in a range from 427±40.52 Bq/m³ to 2053±90.06 Bq/m³. The results of gamma spectroscopy analysis show that specific activity values for the mentioned isotopes are similar to the results indicated by the literature. Nevertheless, the present survey is showing the need of further studies and indicates that building materials can contribute significantly to indoor concentration of 222Rn.

  17. What is the peak stress in ceramic bar impacts?

    International Nuclear Information System (INIS)

    Simha, C. Hari Manoj; Bless, S.J.; Bedford, A.

    2000-01-01

    The bar impact experiment has been extensively used to characterize the high strain rate properties of high strength ceramics. In particular, alumina AD-99.5 has been widely studied; both stress gauge and VISAR bar impact data are available for this material. We have performed plate-on-bar impact experiments using this material in some novel configurations. An interface was introduced in the target bar (by cutting it) in the zone where the material fails by axial splitting. Such experiments resulted in a dramatic drop in the peak stress measured in the experiment, when compared to experiments with no interface. We show that the damage kinetics in tension influence these measurements. Since the peak stress is dependent on the damage kinetics we conclude that the measurement cannot be correlated to some intrinsic strength of the ceramic

  18. Research Progress of Building Materials Used in Construction Land

    Science.gov (United States)

    Niu, Yan

    2018-01-01

    Construction land preparation is an important aspect of land remediation project. The research of materials in the process of land improvement is the foundation and the core. Therefore, it is necessary to study the materials that may be involved in the process of building land preparation. In this paper, the research on the construction materials such as recycled concrete, geosynthetics, soil stabilizers, soil improvers, building insulation materials and inorganic fibrous insulation materials, which are commonly used in construction sites, is reviewed and discussed in this paper. Land remediation project involved in the construction of land materials to provide reference.

  19. Natural radioactivity and radiological hazards of building materials in Xianyang, China

    International Nuclear Information System (INIS)

    Lu Xinwei; Yang Guang; Ren Chunhui

    2012-01-01

    Common building materials collected from Xianyang, China were analyzed for the natural radioactivity of 226 Ra, 232 Th and 40 K using γ-ray spectroscopy. The average activity concentration of 226 Ra, 232 Th and 40 K in the studied building materials ranges from 13.4 to 69.9, 13.1–99.1 and 124.7–915.1 Bq kg −1 , respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and with the worldwide average activity of soil. To assess the radiation hazard of the natural radioactivity in all samples to the people, the radium equivalent activity, external hazard index, internal hazard index, indoor absorbed dose rate and total annual effective dose were estimated. The radium equivalent activities of the studied samples are below the internationally accepted values. The external hazard index and internal hazard index of all analyzed building materials are less than unity. The mean values of indoor absorbed dose rate for all building materials except for lime are higher than the world population-weighted average of 84 nGy h −1 and the total annual effective dose values of building materials are lower than 1 mSv y −1 except for some cyan brick samples. The study shows the measured building materials do not pose significant source of radiation hazard and are safe for use in the construction of dwellings. - Highlights: ► Natural radioactivity in building materials was determined by gamma ray spectrometry. ► The radiological hazard of studied building materials is within the recommended safety limit. ► Most of the studied building materials do not pose significant radiation risk to residents.

  20. Natural radioactivity in building materials in Iran

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.

    2011-01-01

    This work presents a comprehensive study of natural radioactivity in building materials used in Iran. For this purpose, 177 samples of five types of building material, i.e. cement, gypsum, cement blocks, gravel and brick, were gathered from different regions of the country and analyzed by gamma spectroscopy to quantify radioactivity concentrations using a high purity germanium (HPGe) detector and a spectroscopy system. According to the results of this investigation, cement samples had maximum values of the mean Ra-226 and Th-232 concentrations, 39.6 and 28.9 Bq/kg, respectively, while the lowest value for mean concentration of these two radionuclides were found in gypsum samples 8.1 and 2.2 Bq/kg, respectively. The highest (851.4 Bq/kg) and lowest (116.2 Bq/kg) value of K-40 mean concentration were found in brick and gypsum samples, respectively. The absorbed dose rate and the annual effective dose were also calculated from the radioactivity content of the radionuclides. The results show that the maximum values of dose rate and annual effective dose equivalent were 53.72 nGy/h and 0.37 mSv/y in brick samples. The radium equivalent activities R eq calculated were below the permissible level of 370 Bq/kg for all building materials. The values of hazard indexes were below the recommended levels, therefore, it is concluded that the buildings constructed from such materials are safe for the inhabitants. The results of this study are consistent with the results of other investigations in different parts of the world. (authors)

  1. Radon exhalation study in cements and other building materials

    International Nuclear Information System (INIS)

    Singh, J.; Sharma, N.

    2012-01-01

    Radon is a radioactive inert gas, which is produced during the decay of radium, an element present in the naturally occurring uranium series. In the recent past, environmental scientists all over the world have been expressing great concern about the radiation hazard from radon and its short lived daughter products inside buildings. The radon concentration inside a building depends upon the radon exhalation from the building materials used for the construction and the soil underneath the building. In the present investigations, a comparative study for radon exhalation rate has been carried out in some Indian and Pakistani cements and other building materials being used locally such as sand, soil, bricks, marbles, CaCO 3 , POPs by using Track Etch Technique. The Pakistani cement with the trade name 'Elephant' shows the minimum mass exhalation rate while the Indian 'Birla White' cement has shown the maximum. Among the other building materials studied, CaCO 3 has shown the minimum, while local soil the maximum mass exhalation rate. Out of the fired clay bricks, roof tiles, floor tiles and different marbles, floor tiles have the minimum areal exhalation rate while roof tiles the maximum. (author)

  2. The effect of using low-polluting building materials on ventilation requirements and energy use in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Frontczak, M. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The main objective of the ongoing research project described in this paper was to study the potential for reducing energy used for ventilating buildings by using low-polluting building materials, without compromising the indoor air quality. To quantify this potential, the exposure-response relationships, i.e. the relationships between ventilation rate and perceived indoor air quality, were established for rooms furnished with different categories of polluting materials and the simulations of energy used for ventilation were carried out. The exposure-response relationships were based on a summary of data reported in the literature on exposure-response relationships for materials tested in laboratory settings in small-scale glass chambers, and in full-scale in climate chambers, test rooms or normal offices. New experiments were also considered in which the effect of using low-polluting materials on perceived air quality was examined in test rooms ventilated with different outdoor air supply rates, low-polluting materials being selected in small glass chambers. The results suggest that the exposure-response relationships vary between different building materials and that the perceived air quality can be improved considerably when polluting building materials are substituted with materials that pollute less. The preliminary energy simulations indicate that selecting low-polluting materials will result in considerable energy savings as a result of reducing the ventilation rates required to achieve acceptable indoor air quality. (au)

  3. The release of lindane from contaminated building materials.

    Science.gov (United States)

    Volchek, Konstantin; Thouin, Geneviève; Kuang, Wenxing; Li, Ken; Tezel, F Handan; Brown, Carl E

    2014-10-01

    The release of the organochlorine pesticide lindane (γ-hexachlorocyclohexane) from several types of contaminated building materials was studied to assess inhalation hazard and decontamination requirements in response to accidental and/or intentional spills. The materials included glass, polypropylene carpet, latex-painted drywall, ceramic tiles, vinyl floor tiles, and gypsum ceiling tiles. For each surface concentration, an equilibrium concentration was determined in the vapour phase of the surrounding air. Vapor concentrations depended upon initial surface concentration, temperature, and type of building material. A time-weighted average (TWA) concentration in the air was used to quantify the health risk associated with the inhalation of lindane vapors. Transformation products of lindane, namely α-hexachlorocyclohexane and pentachlorocyclohexene, were detected in the vapour phase at both temperatures and for all of the test materials. Their formation was greater on glass and ceramic tiles, compared to other building materials. An empiric Sips isotherm model was employed to approximate experimental results and to estimate the release of lindane and its transformation products. This helped determine the extent of decontamination required to reduce the surface concentrations of lindane to the levels corresponding to vapor concentrations below TWA.

  4. Daylight as a building material

    DEFF Research Database (Denmark)

    Thule Kristensen, Peter; Madsen, Merete

    2005-01-01

    The article draws on examples to chronologically trace the use of daylight as building material in architecture of the 20th and early 21st century. The essay covers works of Mies van der Rohe, Le Corbusier, Erik Bryggman, Rudolf Schwarz, Alvar Aalto, Aldo Rossi, Jørn Utzon, Daniel Libeskind, Peter...

  5. Integrating bar-code devices with computerized MC and A systems

    International Nuclear Information System (INIS)

    Anderson, L.K.; Boor, M.G.; Hurford, J.M.

    1998-01-01

    Over the past seven years, Los Alamos National Laboratory developed several generations of computerized nuclear materials control and accountability (MC and A) systems for tracking and reporting the storage, movement, and management of nuclear materials at domestic and international facilities. During the same period, Oak Ridge National Laboratory was involved with automated data acquisition (ADA) equipment, including installation of numerous bar-code scanning stations at various facilities to serve as input devices to computerized systems. Bar-code readers, as well as other ADA devices, reduce input errors, provide faster input, and allow the capture of data in remote areas where workstations do not exist. Los Alamos National Laboratory and Oak Ridge National Laboratory teamed together to implement the integration of bar-code hardware technology with computerized MC and A systems. With the expertise of both sites, the two technologies were successfully merged with little difficulty. Bar-code input is now available with several functions of the MC and A systems: material movements within material balance areas (MBAs), material movements between MBAs, and physical inventory verification. This paper describes the various components required for the integration of these MC and A systems with the installed bar-code reader devices and the future directions for these technologies

  6. Susceptibility of green and conventional building materials to microbial growth.

    Science.gov (United States)

    Mensah-Attipoe, J; Reponen, T; Salmela, A; Veijalainen, A-M; Pasanen, P

    2015-06-01

    Green building materials are becoming more popular. However, little is known about their ability to support or limit microbial growth. The growth of fungi was evaluated on five building materials. Two green, two conventional building materials and wood as a positive control were selected. The materials were inoculated with Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum, in the absence and presence of house dust. Microbial growth was assessed at four different time points by cultivation and determining fungal biomass using the N-acetylhexosaminidase (NAHA) enzyme assay. No clear differences were seen between green and conventional building materials in their susceptibility to support microbial growth. The presence of dust, an external source of nutrients, promoted growth of all the fungal species similarly on green and conventional materials. The results also showed a correlation coefficient ranging from 0.81 to 0.88 between NAHA activity and culturable counts. The results suggest that the growth of microbes on a material surface depends on the availability of organic matter rather than the classification of the material as green or conventional. NAHA activity and culturability correlated well indicating that the two methods used in the experiments gave similar trends for the growth of fungi on material surfaces. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived......The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However......, in many cases such a coefficient would be highly appreciated, e.g. in interaction of industry and research or for the distinction and selection of suitable building materials throughout design and practise. This article first highlights the importance of drying experiments for hygrothermal...

  8. The Influence Of Brand Positioning Fun, Art And Education Bale Seni Barli-Kota Baru Parahyangan Toward Visit Decision In Bale Seni Barli-Kota Baru Parahyangan

    Directory of Open Access Journals (Sweden)

    Vany Octaviany

    2015-10-01

    Full Text Available Bale Seni Barli-Kota Baru Parahyangan is one tourist attraction (DTW art which is located in Kota Baru Parahyangan, Padalarang. Number of tourists visiting Bale Seni Barli-Kota Baru Parahyangan from year to year has increased, but did not meet the expected targets visit the manager. Building a strong Brand Positioning able to provide a reference for tourists in choosing DTW to be addressed which can then influence the decision of tourists to visit a DTW. Therefore Bale Seni Barli-Kota Baru Parahyangan trying to build a strategy Brand Positioning Fun, Art and Education in order to position itself as DTW which offers attractions and tourist activity-laden art education but still fun for tourists. This study aims to find out about how much influence the Brand Positioning Fun, Art and Education against the decision of visiting tourists in Bale Seni Barli-Kota Baru Parahyangan. In this study, the independent variable (X is the Brand Positioning and the dependent variable was the decision to visit, with a sample of 100 respondents, data collection techniques using a questionnaire (questionnaire, interviews, documentary studies and literature studies, while data analysis techniques using simple regression. The results showed that the influence strategy Brand Positioning Fun, Art and Education on the decision been run Bale Seni Barli-Kota Baru Parahyangan have a strong influence, which amounted to 83%. This shows that when Brand Positioning Fun, Art and Education implemented properly, then the decision to tourists visiting Bale Seni Barli-Kota Baru Parahyangan will increase.

  9. Review on phase change materials for building applications

    Directory of Open Access Journals (Sweden)

    Lavinia SOCACIU

    2014-11-01

    Full Text Available In nowadays, the Phase Change Material (PCM is a viable alternative for reducing the energy consumption and for increase the thermal comfort in buildings. The use of PCM in building applications provides the potential to increase the indoor thermal comfort for occupants due to the reduced indoor temperature fluctuations and lower global energy consumption. The possibility to incorporate the PCM into the material of construction for cooling and heating the buildings gained the interest of researchers from all the world because the PCM have a high heat of fusion, meaning it is capable to storing and release large amounts of energy in the form of heat during its melting and solidifying process at a specific temperature.

  10. Production of mycotoxins on artificially and naturally infested building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Gravesen, S.; Nielsen, P.A.

    1999-01-01

    , especially Asp. ustus and Asp. niger produced many unknown secondary metabolites on the building materials. Analyses of wallpaper and glass-fibre wallpaper naturally infested with Asp. versicolor revealed sterigmatocystin and 5-methoxysterigmatocystin. Analyses of naturally infested wallpaper showed that C......In this study, the ability to produce mycotoxins during growth on artificially infested building materials was investigated for Penicillium chrysogenum, Pen. polonicum, Pen. brevicompactum, Chaetomium spp., Aspergillus ustus, Asp. niger, Ulocladium spp., Alternaria spp., and Paecilomyces spp., all...... isolated from water-damaged building materials. Spores from the different isolates of the above mentioned species were inoculated on gypsum board with and without wallpaper and on chipboard with and without wallpaper. Fungal material was scraped off the materials, extracted, and analyzed using high...

  11. Prediction of Vibration Transmission within Periodic Bar Structures

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Andersen, Lars Vabbersgaard; Sorokin, Sergey

    2012-01-01

    The present analysis focuses on vibration transmission within semi-infinite bar structure. The bar is consisting of two different materials in a periodic manner. A periodic bar model is generated using two various methods: The Finite Element method (FEM) and a Floquet theory approach. A parameter...... study is carried out regarding the influence of the number of periods at various frequencies within a semi-infinite bar, stop bands are illustrated at certain periodic intervals within the structure. The computations are carried out in frequency domain in the range below 500 Hz. Results from both...

  12. Studies on natural radioactivity of some egyptian building materials

    International Nuclear Information System (INIS)

    Eissa, E. A.; El-Khayat, A.; Ashmawy, L.; Hassan, A.M.

    2005-01-01

    Using high-resolution y-rays spectrometry, the natural radioactivity of 14 samples of natural and o manufactured Egyptian building materials have been investigated. The samples were collected from local market and construction sites. From the measured gamma-ray spectra, specific activities were determined. The radium equivalent activity in each sample was estimated. Radiological evaluations of these materials indicate that all materials meet the external gamma-ray dose limitation. Calculation of concentration indices by assuming a Markkanen room model is constructed from these materials, to find the excess gamma-ray dose taken over that received from the outdoors. The Austrian Standard ONORM S 5200 is used in testing the building materials

  13. The radioactivity of house-building materials

    International Nuclear Information System (INIS)

    Sos, K.

    2007-01-01

    The paper compares the natural radioactivity and radon emission properties of different building materials like bricks, concretes, cements, sands, limes, marmors of different origin. A description of the radioactive model of apartments is also given. (TRA)

  14. Measurement of thoron exhalation rates from building materials.

    Science.gov (United States)

    de With, G; de Jong, P; Röttger, A

    2014-09-01

    Thoron (220Rn) exhalation from building materials has become increasingly recognized as a potential source for radiation exposure in dwellings. However, contrary to radon (220Rn), limited information on thoron exposure is available. The purpose of this study is to develop a test method for the determination of the thoron exhalation rate from building materials. The method is validated, and subsequently the thoron exhalation rates from 10 widely-applied concretes, gypsums, brick, limestone, and mortar are determined. The measured thoron exhalation rates of these materials range from 0.01 Bq m-2 s-1 to 0.43 Bq m-2 s-1, with relative standard uncertainties between 6% to 14%.

  15. Radiological consequences of radioactive substances in building materials

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1982-01-01

    A review of radiological consequences of radioactive substances in building materials is given. Where the other contributing papers are dealing with technical problems and measuring techniques, this paper is going beyond the term dose and is considering the risk by radioactive substances in building materials in relation to conventional risks. The present state of international standards is also discussed. If a limit of 1 mSv is adopted, it is shown that this limit is just met at present conditions. (Author) [de

  16. Buildings materials and raw materials as a source of exposition of population of the Slovak Republic

    International Nuclear Information System (INIS)

    Cabanekova, H.

    2005-01-01

    In this presentation author presents specific activities of potassium-40, radium-226, thorium-232 and equivalent of specific activity in some building materials and raw materials used at building-up of flats in the Slovak Republic

  17. Natural radioactivity in Slovak construction materials and the indoor dose rate from building materials

    International Nuclear Information System (INIS)

    Cabanekova, H.; Vladar, M.

    1998-01-01

    For keeping the population exposure al low as reasonably achievable (recommended by the Slovak regulations), the radioactive content of primordial radionuclides in building materials and products have not to exceed 370 Bq kg -1 of radium equivalent activity and 120 Bq kg -1 of 226 Ra. Samples of building materials (cement, stone, fly-ash, light concrete, slag, dross, sand dolomite. etc.) user for construction of the residential buildings were collected, milled and screened with 2-3 cm sieve. After drying, the samples were stored in 450 cm 3 sealed polyethylene containers for a 30 day period. All samples were measured in a 4 π geometry usually for 60,000 seconds. Measurements of 226 Ra, 232 Th and 40 K concentrations were carried out by high resolution gamma-ray spectrometry. The primordial radionuclides 226 and 232 Th were assessed through their progeny photo-peaks 214 Bi (609 keV), 214 Pb (295 keV, 351 keV) 228 Ac (338 keV, 911 keV) and 212 Pb (238 keV). The specific activity of both nuclides has been determined as weighted average of their photo-peaks. 40 K was measured directly via its 1460 keV peak. Until now, about 600 samples of building materials have been measured. The obtained radium equivalent activity in various types of building materials and mean annual effective doses of gamma radiation are presented. (J.K.)

  18. Activity measurement and effective dose modelling of natural radionuclides in building material.

    Science.gov (United States)

    Maringer, F J; Baumgartner, A; Rechberger, F; Seidel, C; Stietka, M

    2013-11-01

    In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Low-cost NORM concentrations measuring technique for building materials of Uzbekistan

    Science.gov (United States)

    Safarov, Akmal; Safarov, Askar; Azimov, Askarali; Darby, Iain G.

    2016-04-01

    Concentrations of natural radionuclides of building materials are important in order to estimate exposure of humans to radiation, who can spend up to 80% of their time indoors. One of the indicators of building materials' safety is the radium equivalent activity, which is regulated by national and international normative documents [1,2,3]. Materials with Ra(eq) =stone, red sand, granite, white marble and concrete cubes was performed both before and after ageing of samples (10, 20, 30 and 40 days). Measurement times of samples were 1, 3, 6 and 12 hours. Samples were measured in 1 liter Marinelli beaker geometry, using NaI(Tl) spectrometers with crystal sizes 2.5 x 2.5 in and 3.1 x 3.1 in. Efficiency calibration of spectrometers was done using certified volumetric (1 liter Marinelli beaker) Ra-226, Th-232 and K-40 sources filled with silica sand and density 1,7 kg/l. Herein we present results indicating that one hour measuring may be sufficient for samples in 1 liter Marinelli beakers offering prospect of significant time and cost improvements. References: 1. NEA-OECD (1979): Exposure to radiation from natural radioactivity in building materials. Report by Group of Experts of the OECD Nuclear Energy Agency (NEA) Paris 2. STUK (Radiation and Nuclear Safety Authority) (2003): The radioactivity of building materials and ash. Regulatory Guides on Radiation Safety (ST Guides) ST 12.2 (Finland) (8 October 2003) 3. GOST 30108-94 (1995): Building materials and elements. Determination of specific activity of natural radioactive nuclei. Interstate Standard. 4. Krisiuk E.M. et al., (1971). A study on Radioactivity in Building Materials (Leningrad: Research Institute for radiation Hygiene) 5. Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, waste and by-products. Health Physics, 48, 87-95. 6. Uosif M.A.M. (2014). Estimation of Radiological Hazards of Some Egyptian Building Materials Due to Natural Radioactivity. International Journal

  20. Numerical Analysis of Prefabricated Steel-Concrete Composite Floor in Typical Lipsk Building

    Directory of Open Access Journals (Sweden)

    Lacki Piotr

    2017-12-01

    Full Text Available The aim of the work was to perform numerical analysis of a steel-concrete composite floor located in a LIPSK type building. A numerical model of the analytically designed floor was performed. The floor was in a six-storey, retail and service building. The thickness of a prefabricated slab was 100 mm. The two-row, crisscrossed reinforcement of the slab was made from φ16 mm rods with a spacing of 150 x 200 mm. The span of the beams made of steel IPE 160 profiles was 6.00 m and they were spaced every 1.20 m. The steelconcrete composite was obtained using 80×16 Nelson fasteners. The numerical analysis was carried out using the ADINA System based on the Finite Element Method. The stresses and strains in the steel and concrete elements, the distribution of the forces in the reinforcement bars and cracking in concrete were evaluated. The FEM model was made from 3D-solid finite elements (IPE profile and concrete slab and truss elements (reinforcement bars. The adopted steel material model takes into consideration the plastic state, while the adopted concrete material model takes into account material cracks.

  1. Radioactivity assessment of some building materials from Little Poland Region

    International Nuclear Information System (INIS)

    Bogacz, J.; Cywicka-Jakiel, T.; Mazur, J.; Loskiewicz, J.; Swakon, J.; Tracz, G.

    1994-01-01

    In the paper are presented the results of building materials analysis connected with radiation protection. The concentration of natural radioactive elements (K, U, Th), and the values of f 1 and f 2 coefficients are measured for these materials. The values for ceramic building materials and for cellular concretes are composed. The utility of f 2 parameter is unformally discussed. (author). 9 refs, 12 figs, 3 tabs

  2. CP asymmetries in B-bar → K-bar *( → K-bar π) l-bar l and untagged B-bar s, Bs → φ( → K+K-) l-bar l decays at NLO

    International Nuclear Information System (INIS)

    Bobeth, Christoph; Hiller, Gudrun; Piranishvili, Giorgi

    2008-01-01

    The decay B-bar → K-bar *( → K-bar π) l-bar l offers great opportunities to explore the physics at and above the electroweak scale by means of an angular analysis. We investigate the physics potential of the seven CP asymmetries plus the asymmetry in the rate, working at low dilepton mass using QCD factorization at next-to leading order (NLO). The b → s CP asymmetries are doubly Cabibbo-suppressed ∼ d , B d → K*( → K 0 π 0 ) l-bar l and B-bar s , B s → φ( → K + K - ) l-bar l decays. Analyses of these CP asymmetries can rule out, or further support the minimal description of CP violation through the CKM mechanism. Experimental studies are promising for (super) flavor factories and at hadron colliders.

  3. Floating houses “lanting” in Sintang: Assessment on sustainable building materials

    Science.gov (United States)

    Susanto, D.; Lubis, M. S.

    2018-03-01

    One important element in the concept of sustainable building is the use of materials. The higher the use of sustainable material in building, the more sustained the building. Lanting is one type of floating construction, usually made from wood, that can be found in settlement along the river, such as in the city of Sintang, West Kalimantan. Lanting is still survive today because it is still used by community whose lives are tied to the river, and also because of its flexible nature that is able to function as a ‘water building’ as well as ‘land building’, and it is also movable, in addition for land limitation in some places. However, the existence of lanting settlements in the city of Sintang faces insistence because it is considered slum, polluting the environment, the scarcity of wooden materials, disturbing the beauty of the city, and threatened by the concretized river banks by local government. This paper discussed the sustainability of waterfront buildings in the city of Sintang in terms of material uses, through the assessment of ‘green-features’ of the main materials used. Assessment results show that wood is the most green building material and lanting is considered at the highest sustainability level for its use of wooden materials.

  4. Moisture measurement in wood, wood-based materials and building materials - a literature review

    International Nuclear Information System (INIS)

    Kober, A.; Mehlhorn, L.; Plinke, B.

    1989-10-01

    Methods of moisture measurement in solid substances, especially on wood, wood-based materials and building materials were examined and evaluated according to the literature available. The question was which methods of examining the moisture distribution in building elements at climate loading offer the best accuracy and spatial resolution as well as which methods are the most appropriate at present and in future for the solution of measurement problems in the wood and wood-based industry. The most common methods are electric measurement methods which are utilizing either the moisture-depending conductivity or the dielectric constant or the reflectivity of the material for infrared radiation but they offer only a limited accuracy. The same is valid for the rarely used microwave methods or X-ray and NMR tomography. Simple electric methods will further on play an important role in the industrial process measuring technique. For the examination of building elements, methods using nuclear radiation still offer possibilities for a further development. (orig.) With 207 refs., 13 figs [de

  5. Study of the reactions $\\bar{p}p \\rightarrow \\bar{\\Lambda} \\Lambda , \\bar{\\Lambda} \\Sigma^{0}$ or $\\bar{\\Sigma^{0}} \\Lambda , \\bar{\\Sigma^{+}} \\Sigma^{+}$ at 3.6 GeV/c

    CERN Document Server

    Atherton, Henry W; Moebes, J P; Quercigh, Emanuele

    1974-01-01

    The reactions $\\bar{p}p \\rightarrow \\bar{\\Lambda} \\Lambda , \\bar{\\Lambda} \\Sigma^{0}$ or $\\bar{\\Sigma^{0}} \\Lambda , \\bar{\\Sigma^{+}} \\Sigma^{+}$ are studied at an incident momentum of 3.6 GeV/c in a 35.4 event/$\\mu$ b experiment performed in the CERN 2m HBC. Total and differential cross sections are presented. The polarization of the hyperons is measured as a function of $t$ and for the reaction $\\bar{p}p \\rightarrow \\bar{\\Lambda} \\Lambda$ the complete spin correlation matrix is given. (23 refs).

  6. The Possible Heavy Tetraquarks $qQ\\bar q \\bar Q$, $qq\\bar Q \\bar Q$ and $qQ\\bar Q \\bar Q$

    OpenAIRE

    Cui, Ying; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin

    2006-01-01

    Assuming X(3872) is a $qc \\bar q \\bar c$ tetraquark and using its mass as input, we perform a schematic study of the masses of possible heavy tetraquarks using the color-magnetic interaction with the flavor symmetry breaking corrections.

  7. Radiological evaluation of building materials used in Malumfashi ...

    African Journals Online (AJOL)

    ... in building materials (sand, cement, blocks, granite, and paints) used in the construction of buildings in Malumfashi local Government area of Katsina state, Nigeria were determined by means of a gamma-ray spectrometry system using Sodium Iodide thallium activated (NaI(Tl)) detector in a low background configuration.

  8. Endophilin-A1 BAR domain interaction with arachidonyl CoA.

    Science.gov (United States)

    Petoukhov, Maxim V; Weissenhorn, Winfried; Svergun, Dmitri I

    2014-01-01

    Endophilin-A1 belongs to the family of BAR domain containing proteins that catalyze membrane remodeling processes via sensing, inducing and stabilizing membrane curvature. We show that the BAR domain of endophilin-A1 binds arachidonic acid and molds its coenzyme A (CoA) activated form, arachidonyl-CoA into a defined structure. We studied low resolution structures of endophilin-A1-BAR and its complex with arachidonyl-CoA in solution using synchrotron small-angle X-ray scattering (SAXS). The free endophilin-A1-BAR domain is shown to be dimeric at lower concentrations but builds tetramers and higher order complexes with increasing concentrations. Extensive titration SAXS studies revealed that the BAR domain produces a homogenous complex with the lipid micelles. The structural model of the complexes revealed two arachidonyl-CoA micelles bound to the distal arms of an endophilin-A1-BAR dimer. Intriguingly, the radius of the bound micelles significantly decreases compared to that of the free micelles, and this structural result may provide hints on the potential biological relevance of the endophilin-A1-BAR interaction with arachidonyl CoA.

  9. Multiscale modelling for better hygrothermal prediction of porous building materials

    Directory of Open Access Journals (Sweden)

    Belarbi Rafik

    2018-01-01

    Full Text Available The aim of this work is to understand the influence of the microstructuralgeometric parameters of porous building materials on the mechanisms of coupled heat, air and moisture transfers, in order to predict behavior of the building to control and improve it in its durability. For this a multi-scale approach is implemented. It consists of mastering the dominant physical phenomena and their interactions on the microscopic scale. Followed by a dual-scale modelling, microscopic-macroscopic, of coupled heat, air and moisture transfers that takes into account the intrinsic properties and microstructural topology of the material using X-ray tomography combined with the correlation of 3D images were undertaken. In fact, the hygromorphicbehavior under hydric solicitations was considered. In this context, a model of coupled heat, air and moisture transfer in porous building materials was developed using the periodic homogenization technique. These informations were subsequently implemented in a dynamic computation simulation that model the hygrothermalbehaviourof material at the scale of the envelopes and indoor air quality of building. Results reveals that is essential to consider the local behaviors of materials, but also to be able to measure and quantify the evolution of its properties on a macroscopic scale from the youngest age of the material. In addition, comparisons between experimental and numerical temperature and relative humidity profilesin multilayers wall and in building envelopes were undertaken. Good agreements were observed.

  10. Dismantling of a hot cell-block and the treatment of the produced concrete bars

    International Nuclear Information System (INIS)

    Rompf, U.; Brielmayer, M.; Graf, A.; Stutz, U.; Ambos, F.

    2003-01-01

    A building with hot cells had been operated in Karlstein/Main from 1968 to 1989 in order to perform check-ups at radiated fuel rods and nuclear components. The operation of the system was stopped after an operation period of approximately 20 years. The core part of the building to be disassembled is a U-shaped hot cell-block with nine individual cells, partly consisting of heavy reinforced concrete, located in the ground floor (fig. 1 and fig. 2). The major part of the cells was covered with 10 mm steel plate and provided with approx. 1,400 openings of all different kinds. The wall thickness of the cells was between 0.90 m and 1.10 m. Under these conditions a successful decontamination at the ''existing building structure'' was not possible. Therefore, the non-supporting structures of the hot cell-block were removed in individual blocks by means of sawing and the remaining walls and floors were peeled by using the diamond rope sawing technique. The dismantling took 17 months. A re-treatment of the produced concrete blocks (235 blocks, approx. 970 Mg) to reduce the radioactive waste to a minimum was performed at the Research Centre Karlsruhe, Central Decontamination Department (HDB). The Target of the concrete bar treatment at HDB is to reduce the volume of radioactive waste to a minimum and to add the major part of the concrete bars to harmless utilisation. To achieve the same, initially the more contaminated parts of the bars without openings, such as tubes, cable or ventilating shafts, are removed by means of wire cutting and packed into a KONRAD-Container as radioactive waste. The remaining bar is decontaminated by means of sandblasting and afterwards, following successful release measurement, released from the scope of the regulations under the Atomic Energy. Bars with openings are crushed into small pieces by means of the remote-controlled chisel excavator, in order to separate the individual kinds of material. The rubble is packed into drums and measured by

  11. Selective versus routine patch metal allergy testing to select bar material for the Nuss procedure in 932 patients over 10years.

    Science.gov (United States)

    Obermeyer, Robert J; Gaffar, Sheema; Kelly, Robert E; Kuhn, M Ann; Frantz, Frazier W; McGuire, Margaret M; Paulson, James F; Kelly, Cynthia S

    2018-02-01

    The aim of the study was to determine the role of patch metal allergy testing to select bar material for the Nuss procedure. An IRB-approved (11-04-WC-0098) single institution retrospective, cohort study comparing selective versus routine patch metal allergy testing to select stainless steel or titanium bars for Nuss repair was performed. In Cohort A (9/2004-1/2011), selective patch testing was performed based on clinical risk factors. In Cohort B (2/2011-9/2014), all patients were patch tested. The cohorts were compared for incidence of bar allergy and resultant premature bar loss. Risk factors for stainless steel allergy or positive patch test were evaluated. Cohort A had 628 patients with 63 (10.0%) selected for patch testing, while all 304 patients in Cohort B were tested. Over 10years, 15 (1.8%) of the 842 stainless steel Nuss repairs resulted in a bar allergy, and 5 had a negative preoperative patch test. The incidence of stainless steel bar allergy (1.8% vs 1.7%, p=0.57) and resultant bar loss (0.5% vs 1.3%, p=0.23) was not statistically different between cohorts. An allergic reaction to a stainless steel bar or a positive patch test was more common in females (OR=2.3, pbar allergies occur at a low incidence with either routine or selective patch metal allergy testing. If selective testing is performed, it is advisable in females and patients with a personal or family history of metal sensitivity. A negative preoperative patch metal allergy test does not preclude the possibility of a postoperative stainless steel bar allergy. Level III Treatment Study and Study of Diagnostic Test. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Amoebae and other protozoa in material samples from moisture-damaged buildings

    International Nuclear Information System (INIS)

    Yli-Pirilae, T.; Kusnetsov, Jaana; Haatainen, Susanna; Haenninen, Marja; Jalava, Pasi; Reiman, Marjut; Seuri, Markku; Hirvonen, Maija-Riitta; Nevalainen, Aino

    2004-01-01

    Mold growth in buildings has been shown to be associated with adverse health effects. The fungal and bacterial growth on moistened building materials has been studied, but little attention has been paid to the other organisms spawning in the damaged materials. We examined moist building materials for protozoa, concentrating on amoebae. Material samples (n=124) from moisture-damaged buildings were analyzed for amoebae, fungi, and bacteria. Amoebae were detected in 22% of the samples, and they were found to favor cooccurrence with bacteria and the fungi Acremonium spp., Aspergillus versicolor, Chaetomium spp., and Trichoderma spp. In addition, 11 seriously damaged samples were screened for other protozoa. Ciliates and flagellates were found in almost every sample analyzed. Amoebae are known to host pathogenic bacteria, such as chlamydiae, legionellae, and mycobacteria and they may have a role in the complex of exposure that contributes to the health effects associated with moisture damage in buildings

  13. Study of the factors affecting radon diffusion through building materials

    International Nuclear Information System (INIS)

    Chauhan, R.P.

    2011-01-01

    Radon appears mainly by diffusion processes from the point of origin following - decay of 226 Ra in underground soil and building materials used, in the construction of floors, walls, and ceilings. The diffusion of radon in dwellings is a process determined by the radon concentration gradient across the building material structure and can be a significant contributor to indoor radon inflow. Radon can originate from the deeply buried deposit beneath homes and can migrate to the surface of earth. Radon diffusion and transport through different media is a complex process and is affected by several factors. It is well known that for building construction materials the porosity, permeability and the diffusion coefficient are the parameters, which can quantify the materials capability to hinder the flow of radon soil gas. An increase in porosity will provide more air space within the material for radon to travel, thus reducing its resistance to radon transport. The permeability of material describes its ability to act as a barrier to gas movement when a pressure gradient exists across it and is closely related to the porosity of material. The radon diffusion coefficient of a material quantifies the ability of radon gas to move through it when a concentration gradient is the driving force. This parameter depends upon the porosity and permeability of the medium. As diffusion process is the major contributor to indoor levels, therefore, the factors affecting the diffusion process need to be kept in consideration. Keeping this in mind the experimental arrangements have been made for control study of radon diffusion through some building materials to observe the effects of different factors viz.; compaction, grain size, temperature, humidity and the mixing of these materials etc. For the present study alpha sensitive LR-115 type II solid-state nuclear track detectors (SSNTDs) have been used for the recording of alpha tracks caused by radon gas after its diffusion through the

  14. Naturally radioactivity in common building materials used in Thiruvannamalai city, Tamilnadu, India

    International Nuclear Information System (INIS)

    Ravisankar, R.; Vanasundari, K.; Suganya, M.; Sivakumar, S.; Senthilkumar, G.; Chandramohan, J.; Vijayagopal, P.; Venkatraman, B.

    2012-01-01

    The radioactivity of some building materials used in Thiruvannamalai city has been measured using a NaI(Tl) detector based gamma ray spectrometer. The distribution of natural occurring radionuclides ( 226 Ra, 232 Th and 40 K) in the building materials was studied. The radium equivalent activity (Ra eq ), external hazard index (H ex ) internal radiation hazard index (H in ) and the activity utilization index (I) associated with the natural radionuclide are calculated to assess the radiation hazard of the natural radioactivity in the building materials. The present work shows that the natural radioactivity levels in the building construction materials used in Thiruvannamalai city is well below the acceptable limits. From the analysis, it was found that these materials may be safely used as construction materials and do not pose significant radiation hazards. (author)

  15. Risk to Krakow population of gamma radiation from building materials

    International Nuclear Information System (INIS)

    Koperski, J.; Jasinska, M.

    1980-01-01

    A statistics was made of 7128 dwelling-houses considering their age, types of building materials and density of population. Gamma dose rates were measured by means of the TL and pressurized ionization chamber techniques inside 300 buildings and in 44 points outdoors over different kinds of beddings. Personal doses of 49 inhabitants of the buildings monitored were also recorded. By means of the spectrometric analysis of gamma radiation, and basing on a specially developed computational programme ''DOZA'' mean concentrations of 40 K, 226 Ra and 232 Th in 61 samples of building materials were evaluated. It was found that the mean personal dose rate as well as the mean indoor dose rate equals 5.7 urad/h /15.8 pGy/s/ and is about 19% higher than the dose outdoors which equals 4.8 urad/h /13.3 pGy/s/. Gamma dose rates inside the buildings made of gravel-sand concrete elements are about 10% lower than those in the buildings made of red bricks. Mean annual dose equivalent per capita from gamma radiation of building materials equals 40.6 mrem/y /406 uSv/y/, which constitutes about 57% of total annual dose equivalent per capita from all environmental sources of gamma radiation in the residential districts in Krakow. (author)

  16. Gamma spectrometric method for measuring natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Toth, A.; Feher, I.

    1976-11-01

    The natural 232 Th, 226 Ra and 40 K concentrations of building materials were determined by gamma spectrometry. Altogether 121 samples from all over Hungary, one from each factory producing building materials, were examined. The presented data had preliminary character. The results were compared to the relating ones from abroad. (Sz.N.Z.)

  17. Waste Foundry Sand Usage for Building Material Production: A First Geopolymer Record in Material Reuse

    Directory of Open Access Journals (Sweden)

    Neslihan Doğan-Sağlamtimur

    2018-01-01

    Full Text Available In order to bring a solution to the problem of waste foundry sand (WFS in the foundry sector and achieve its reuse, geopolymer building material (as a cementless technology was produced from the WFS for the first time in the literature in this study. The physical and mechanical characteristics of this material were determined. In the first part of the experimental step, the sieve analysis, loose/tight unit weight, and loss of ignition of the WFS were obtained as well as the ultimate analysis. In the second step, the water absorption percentage, porosity, unit weight, and compressive strength tests were conducted on the WFS-based geopolymer specimens activated by chemical binders (sodium hydroxide: NaOH and sodium silicate: Na2SiO3. As the unit weights of all the produced samples were lower than 1.6 g/cm3, they may be considered as lightweight building materials. The minimum compressive strength value for building wall materials was accepted as 2.5 MPa by national standards. In this study, the maximum compressive strength value was measured as 12.3 MPa for the mixture incorporation of 30% Na2SiO3 at the curing temperature of 200°C in 28 days. It was concluded that this geopolymer material is suitable for using as a building wall material.

  18. Suggestions for inclulsion of radon exhalation control target in building materials radioactivity standards

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Pan Ziqiang; Zhang Yonggui

    2010-01-01

    The specific-activity and radon exhalation rate from 26 building material samples from different areas were measured with high pure germanium (HPGe) gamma spectrometer and activated carbon cartridge. It is shown that the radium content is not completely relevant to radon exhalation rate from some building material. The existing national standards on 'The Limit of Radionuclides in Building Materials' (GB 6566-2001) only present internal exposure index as control target but not for radon exhalation rate; in fact, the radon exhalation rate from building materials is closely nearly related to indoor radon concentration. So we suggest that the radon exhalation control target should be included in the national standards on 'The Limit of Radionuclides in Building Materials'. (authors)

  19. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 2

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1997-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil and rock penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reached the electronics contained in the various mechanical systems. Here, a study to compare two thickness values, 0.125 and 0.250 in. of five materials, GE RTV 630, HS II Silicone, Polysulfide Rubber, Sylgard 184, and Teflon for their shock mitigating characteristics with a split Hopkinson bar configuration has been completed. The five materials have been tested in both unconfined and confined conditions at ambient temperature and with two applied loads of 750 με peak (25 fps peak) with a 100 micros duration, measured at 10% amplitude, and 1500 με peak (50 fps peak) with a 100 micros duration, measured at 10% amplitude. The five materials have been tested at ambient, cold (-65 F), and hot (+165 F) for the unconfined condition with the 750 με peak (25 fps peak) applied load. Time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare how these materials lengthen the shock pulse, attenuate the shock pulse, reflect high

  20. Development of phase change materials based microencapsulated technology for buildings: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, V.V.; Kaushik, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tyagi, S.K. [School of Infrastructure Technology and Resource Management, Shri Mata Vaishno Devi University, Katra 182320, J and K (India); Akiyama, T. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-86283 (Japan)

    2011-02-15

    Thermal energy storage (TES) systems using phase change material (PCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. Now the research is focus on suitable method to incorporate PCMs with building. There are several methods to use phase change materials (PCMs) in thermal energy storage (TES) for different applications. Microencapsulation is one of the well known and advanced technologies for better utilization of PCMs with building parts, such as, wall, roof and floor besides, within the building materials. Phase change materials based microencapsulation for latent heat thermal storage (LHTS) systems for building application offers a challenging option to be employed as effective thermal energy storage and a retrieval device. Since the particular interest in using microencapsulation PCMs for concrete and wall/wallboards, the specific research efforts on both subjects are reviewed separately. This paper presents an overview of the previous research work on microencapsulation technology for thermal energy storage incorporating the phase change materials (PCMs) in the building applications, along with few useful conclusive remarks concluded from the available literature. (author)

  1. An Examination of the Causes and Effects of Building Collapse in Nigeria

    Directory of Open Access Journals (Sweden)

    Oke Ayodeji

    2011-12-01

    Full Text Available The research investigated the causes and consequence of building collapse in Nigeria using historical data from 1974 to 2006 and also proffers appropriate solutions. Relevant books, seminar papers, workshop papers, articles, etc. were reviewed so as to examine the general view of individuals that have worked on similar study. Data for the study were obtained through historical data of past building collapse in Nigeria. The data were presented and analysed using tables, bar graphs, Pearson moment correlation coefficient (r and linear regression analysis to generate a model. Sixty (60 buildings that collapsed in the country were gathered, upon which the analysis was carried out. The study revealed that poor maintenance culture, design error, poor quality of materials and workmanship, natural phenomenon and excessive loading contributed to about 7%, 15%, 52%, 7% and 20% respectively of building collapse in Nigeria with most of them being private residential buildings executed by indigenous contractors. The study finally recommended that Standard Organisation of Nigeria (SON should increase their effort in sanitizing building materials in the market. More so, construction professionals should ensure proper supervision of workmen and efficient checking of materials before incorporation into building works.

  2. Corrosion Detection of Reinforcement of Building Materials with Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Jia Peng

    2017-06-01

    Full Text Available The extensive use of reinforced materials in the construction industry has raised increased concerns about their safety and durability, while corrosion detection of steel materials is becoming increasingly important. For the scientific management, timely repair and health monitoring of construction materials, as well as to ensure construction safety and prevent accidents, this paper investigates corrosion detection on construction materials based on piezoelectric sensors. At present, the commonly used corrosion detection methods include physical and electrochemical methods, but there are shortcomings such as large equipment area, low detection frequency, and complex operation. In this study an improved piezoelectric ultrasonic sensor was designed, which could not only detect the internal defects of buildings while not causing structural damage, but also realize continuous detection and enable qualitative and quantitative assessment. Corrosion detection of reinforced building materials with piezoelectric sensors is quick and accurate, which can find hidden dangers and provide a reliable basis for the safety of the buildings.

  3. ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Randy M [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Hill, David E [ORNL

    2011-11-01

    Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulness of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to

  4. ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project

    International Nuclear Information System (INIS)

    Walker, Randy M.; Gross, Ian G.; Smith, Cyrus M.; Hill, David E.

    2011-01-01

    Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulness of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor

  5. Radioactivity in building materials

    International Nuclear Information System (INIS)

    Stranden, E.

    1979-01-01

    The object of this brief report is to make the pollution inspectorate aware of the radiation hazards involved in new building materials, such as gypsum boards and alum slate based concrete blocks whose radium content is high. Experience in Swedish housebuilding has shown that a significant increase in the radiation dose to the occupants can occur. Improved insulation and elimination of draughts in fuel conservation accentuate the problem. Norwegian investigations are referred to and OECD and Scandinavian discussions aiming at recommendations and standards are mentioned. Suggested measures by the Norwegian authorities are given. (JIW)

  6. Preservation of adobe buildings. Study of materials

    Science.gov (United States)

    Velosa, A.; Rocha, F.; Costa, C.; Varum, H.

    2012-04-01

    Adobe buildings are common in the central region of Portugal due to the lack of natural stone in the surrounding area. This type of construction technique lasted until the 20th Century, at which time cementitious materials, with faster hardening and greater structural capacity substituted traditional materials and techniques. Currently, a significant percentage of these buildings is vacant and many are degraded and in need of conservation actions. Adobes from central Portugal are distinctive as they are lightly coloured and made from air lime and quarry sand. Although some adobes were manufactured locally, most were produced almost 'industrially' and sold to nearby regions. In order to preserve this heritage, conservation actions must be undertaken. So as to ensure the adequacy of these actions and compatibility between original materials and new ones, a thorough study of adobe compostion is mandatory. The current study is an initial step in the characterization of earth based construction materials from central Portugal. Adobe samples were collected from residential buildings in two different locations. The determination of the composition of adobe blocks encompassed the determination of the binder fraction and of their chemical composition and also the particle size analysis of the aggregate. For this purpose FRX analysis, acid dissolution and dry sieving were performed. Methylene blue test was also executed in order to determine the clay fraction. Additionally, the mineral composition of powder samples and oriented samples was performed using XRD analysis in order to determine the clay minerals present in the blocks. As adobe blocks are extremely prone to the action of water the Geelong test was undertaken in order to provide information in terms of durability. It was concluded that air lime was generally used in adobe compositions. However, the clay content varies in adobes from different regions, providing distinct durability characteristics to these materials.

  7. Triply heavy tetraquark states with the $QQ\\bar{Q}\\bar{q}$ configuration

    OpenAIRE

    Chen, Kan; Liu, Xiang; Wu, Jing; Liu, Yan-Rui; Zhu, Shi-Lin

    2016-01-01

    In the framework of the color-magnetic interaction, we systematically investigate the mass splittings of the $QQ\\bar{Q}\\bar{q}$ tetraquark states and estimated their rough masses in this work. These systems include the explicitly exotic states $cc\\bar{b}\\bar{q}$ and $bb\\bar{c}\\bar{q}$ and the hidden exotic states $cc\\bar{c}\\bar{q}$, $cb\\bar{b}\\bar{q}$, $bc\\bar{c}\\bar{q}$, and $bb\\bar{b}\\bar{q}$. If a state around the estimated mass region could be observed, its nature as a genuine tetraquark ...

  8. Assessment of the radiological impact of selected building materials

    International Nuclear Information System (INIS)

    Gwiazdowski, B.

    1983-02-01

    Naturally occurring radionuclides in building materials are a source of external and internal radiation exposure to essentially the entire Polish population. The programme of our studies met two main aspects on radioactivity of building materials: Gamma dose rate and radon or alpha potential energy concentration measurements in dwellings of various kinds of structure and materials in both industrial and rural districts of Poland. Gamma dose rate measurements were made in about 2200 dwellings and radon or alpha potential energy concentration measurements - in 750 dwellings. On the basis of these studies the annual effective dose equivalent to the Polish population due to gamma and alpha radiation indoors was estimated to be 0.39 mSv/a and 0.99 mSv/a, respectively. The contribution of external (from gamma) and internal (from alpha) radiation exposure due to naturally occurring radionuclides in building materials to the total radiation exposure of Polish population was assessed to be 3.6 per cent and 34.2 per cent, respectively. Measurements of about 1500 samples of various kinds of building materials and raw materials were made to determine radionuclide concentrations in them. The highest values were obtained in samples of phosphogypsum, fly ash and slag: potassium concentration ranges up to 36 pCi g -1 (a slag sample), radium - up to 17 pCi g -1 (a phosphogypsum sample) and thorium - up to 4 pCi g -1 (a phosphogypsum). On the basis of the results of our studies we came to the conclusion that it was necessary to work out a control system which could protect habitants against enhancement of indoor exposure to ionizing radiation

  9. Stress-strain relationship of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Anggraini, Retno; Tavio, Raka, I. Gede Putu; Agustiar

    2018-05-01

    The introduction of High-Strength Steel (HSS) reinforcing bars in reinforced concrete members has gained much attention in recent years and led to many advantages such as construction timesaving. It is also more economical since it can reduce the amount of reinforcing steel bars used in concrete members which in turn alleviates the congestion of reinforcement. Up to present, the building codes, e.g. American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013, still restrict the use of higher-strength steel reinforcing bars for concrete design up to Grade 420 MPa due to the possible suspected brittle behavior of concrete members. This paper evaluates the characteristics of stress-strain relationships of HSS bars if they are comparable to the characteristics of those of Grade 420 MPa. To achieve the objective of the study, a series of steel bars from various grades (420, 550, 650, and 700 MPa) was selected. Tensile tests of these steel samples were conducted under displacement-controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. The results indicate that all the steel bars tested had the actual yield strengths greater than the corresponding specified values. The stress-strain curves of HSS reinforcing bars (Grade 550, 650, and 700 MPa) performed slightly different characteristics with those of Grade 420 MPa.

  10. Effect of bar cross-section and female housing material on retention of mandibular implant bar overdentures: A comparative in vitro study

    Directory of Open Access Journals (Sweden)

    Elsayed A Abdel-Khalek

    2017-01-01

    Conclusions: Within the limitation of this in vitro study and for a similar period of service, heat-cured silicone female housing for Hader bar could maintain greater retention for two-implant-retained overdentures than provided by conventional plastic clip after 1.5 year. The oval bar recorded reasonable initial retention values and maintained these values for 1.5 years of service.

  11. Sensory ratings of emissions from nontraditional building materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Peuhkuri, Ruut

    2016-01-01

    Twenty-five subjects assessed the emissions from building materials: linoleum, cement mortar with and without fly ash, gypsum board and tiles with air cleaning properties and natural organic sheep wool. The ratings were made at different material loadings and in combinations with linoleum....... The results showed that except for natural organic product, increasing loading and combining materials with linoleum increased intensity of odor....

  12. Contributions to indoor gamma dose rate from building materials

    International Nuclear Information System (INIS)

    Liu Xionghua; Li Guangming; Yang Xiangdong

    1990-01-01

    In the coures of construction of a building structured with bricks and concrets, the indoor gamma air absorbed dose rates were seperately measured from the floors, brick walls and prefabricated plates of concrets, etc.. It suggested that the indoor gamma dose rates from building materials are mainly attributed to the brick walls and the floors. A little contribution comes from other brilding materials. The dose rates can be calculated through a 4π-infinite thick model with a correction factor of 0.52

  13. Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars

    Science.gov (United States)

    Bayer, Andreas; Unger, Andreas; Köhler, Bernd; Küster, Matthias; Dürsch, Sascha; Kissel, Heiko; Irwin, David A.; Bodem, Christian; Plappert, Nora; Kersten, Maik; Biesenbach, Jens

    2016-03-01

    The demand for high brightness fiber coupled diode laser devices in the multi kW power region is mainly driven by industrial applications for materials processing, like brazing, cladding and metal welding, which require a beam quality better than 30 mm x mrad and power levels above 3kW. Reliability, modularity, and cost effectiveness are key factors for success in the market. We have developed a scalable and modular diode laser architecture that fulfills these requirements through use of a simple beam shaping concept based on two dimensional stacking of tailored diode bars mounted on specially designed, tap water cooled heat sinks. The base element of the concept is a tailored diode laser bar with an epitaxial and lateral structure designed such that the desired beam quality in slow-axis direction can be realized without using sophisticated beam shaping optics. The optical design concept is based on fast-axis collimator (FAC) and slow-axis collimator (SAC) lenses followed by only one additional focusing optic for efficient coupling into a 400 μm fiber with a numerical aperture (NA) of 0.12. To fulfill the requirements of scalability and modularity, four tailored bars are populated on a reduced size, tap water cooled heat sink. The diodes on these building blocks are collimated simply via FAC and SAC. The building blocks can be stacked vertically resulting in a two-dimensional diode stack, which enables a compact design of the laser source with minimum beam path length. For a single wavelength, up to eight of these building blocks, implying a total of 32 tailored bars, can be stacked into a submodule, polarization multiplexed, and coupled into a 400 μm, 0.12NA fiber. Scalability into the multi kW region is realized by wavelength combining of replaceable submodules in the spectral range from 900 - 1100 nm. We present results of a laser source based on this architecture with an output power of more than 4 kW and a beam quality of 25 mm x mrad.

  14. Experimental Study on the Comparison of the Material Properties of Glass Wool Used as Building Materials

    Directory of Open Access Journals (Sweden)

    Kyoung-Woo KIM

    2014-04-01

    Full Text Available Artificial mineral fibers such as glass wool or stone wool are commonly used in building walls, ceilings and floors as a major insulation material for buildings. Among the material properties of building materials, thermal conductivity, the sound absorption coefficient, compressibility, and dynamic stiffness are regarded as important performance requirements since they directly affect the thermal and acoustic properties of the building. This study measured the changes of the thermal and acoustical performances of glass wool that was actually installed for a long time to the outer wall of a building as an insulation material through a comparison with recently produced glass wool. The results showed that the measured thermal conductivities of the old and the new specimens both rise with an increase of temperature, showing quite similar results in both specimens over temperature ranges of (0 – 20 ºC. The noise reduction coefficient decreased by 0.1 in the old specimen and the difference of the compressibilities in both specimens was shown to be 7.32 mm. The dynamic stiffness of the old specimen was found to be 1.28 MN/m3 higher than that of the new specimen.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3714

  15. Neutron activation analysis of some building materials

    International Nuclear Information System (INIS)

    Salagean, M.; Pantelica, A.; Georgescu, I.I.; Muntean, M.I.

    1999-01-01

    Over the past decade, indoor air quality has become a growing environmental problem. A careful selection of building materials concerning the acceptance of chemical and radioactive emissions is one of the ways to ensure high indoor air quality. Nowadays, it is a tendency to obtain new building materials having good isolation properties and low density by using the cheap and practically inexhaustible solid waste products like furnace slag, fly coal ash and phosphogypsum, without combustion. The Romanian furnace slag containing generally, above 45 % CaO can be used alone or mixed with fly ash to obtain some binder materials with mechanical resistance comparable to the Portland cement. Different additives such as CaO+Na 2 SO 4 or CaCl 2 +Na 2 SO 4 are used as activating admixtures. Concentrations of As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mo, Na, Nd, Rb, Sb, Sc, Sr, Ta, Tb, Th, U, Yb, W and Zn in seven Romanian building materials were determined by Instrumental Neutron Activation Analysis (INAA) method at WWR-S Reactor of IFIN-HH, Bucharest. Raw material used in the cement production (∼75 % limestone, ∼25 % clay), cement samples from three different factories, furnace slag, phosphogypsum, and a type of brick compacted from furnace slag, fly coal ash, phosphogypsum, lime and cement have been analyzed. The fly coal ashes from five Romanian coal-fired power plants, resulting by the combustion of the xyloide brown coals, lignite and bituminous-subbituminous coals were previously analyzed. It was found that the content of the toxic microelements like As, Co, Cr, Th, U, Zn in the ceramic blocks is especially due to the slag and fly ash, the main components. This content depends on the particular sources of mineral raw materials. The presence of U, Th and K in slag is mainly correlated with the limestone and dolomite as used in the metallurgical process. (authors)

  16. VOCs and odors: key factors in selecting `green` building materials?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, C. [Steven Winter Associates Inc., Norwalk, CT and Washington DC (United States)

    1998-12-01

    The current state of knowledge available for selecting building materials on the basis of emissions of volatile organic compounds (VOCs) and odors is reviewed. The significance of VOCs and odors in building materials is related to their role in influencing indoor air quality. As far as toxicity is concerned, many of the VOCs detected in indoor air are relatively inert when considered singly. They are not however, unimportant because in actual fact they are invariably found in mixtures some of which can be toxic. Although knowledge of VOCs is incomplete, it is important to specify ozone-resistant polymeric building products, i.e. those that are chemically stable and inert to oxidation. In addition to VOCs, attention should also be focused on semi-volatile organic compounds (SVOCs) since they are even more persistent than VOCs and tend to offgas for prolonged periods of time. Similarly, it is reasonable to specify low-odor materials. Inclusion of issues related to complex indoor chemistry, less volatile emissions, in addition to VOCs and odor, should in time result in expanded choices of building materials that promote indoor air quality. 16 refs.,2 tabs.

  17. Guidelines for Assessment and Abatement of Asbestos-Containing Materials in Buildings.

    Science.gov (United States)

    Pielert, James H.; Mathey, Robert G.

    This report presents guidelines, based on available information, for the assessment and abatement of asbestos-containing materials in buildings. Section 1 provides background information on the history and use of asbestos-containing products in buildings, the characteristics of asbestos fibers, products and materials containing asbestos, and…

  18. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  19. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    Science.gov (United States)

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational

  20. Updated database on natural radioactivity in building materials in Europe.

    Science.gov (United States)

    Trevisi, R; Leonardi, F; Risica, S; Nuccetelli, C

    2018-07-01

    The paper presents the latest collection of activity concentration data of natural radionuclides ( 226 Ra, 232 Th and 4  K) in building materials. This database contains about 24200 samples of both bulk materials and their constituents (bricks, concrete, cement, aggregates) and superficial materials used in most European Union Member States and some European countries. This collection also includes radiological information about some NORM residues and by-products (by-product gypsum, metallurgical slags, fly and bottom ashes and red mud) which can be of radiological concern if recycled in building materials as secondary raw materials. Moreover, radon emanation and radon exhalation rate data are reported for bricks and concrete. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Application of Nanotechnology-Based Thermal Insulation Materials in Building Construction

    Directory of Open Access Journals (Sweden)

    Bozsaky David

    2016-03-01

    Full Text Available Nanotechnology-based materials have previously been used by space research, pharmaceuticals and electronics, but in the last decade several nanotechnology-based thermal insulation materials have appeared in building industry. Nowadays they only feature in a narrow range of practice, but they offer many potential applications. These options are unknown to most architects, who may simply be afraid of these materials owing to the incomplete and often contradictory special literature. Therefore, they are distrustful and prefer to apply the usual and conventional technologies. This article is intended to provide basic information about nanotechnology-based thermal insulation materials for designers. It describes their most important material properties, functional principles, applications, and potential usage options in building construction.

  2. Radioactivity in building materials : a first overview of the European scenario

    International Nuclear Information System (INIS)

    Trevisi, Rosabianca; D'Alessandro, Marco; Nuccetelli, Cristina; Risica, Serena

    2008-01-01

    With a wide research into the national and international literature an inventory was created of building materials in Europe, characterised on the basis of activity concentration of the main natural radionuclides ( 226 Ra, 232 Th and 40 K). Materials of natural origin and containing industrial by-products were both accounted for. The inventory allowed to calculate the activity concentration index I - suggested by a European technical guidance document - for many building materials in Europe. A first identification of materials was thus made, which could be subject to controls or restrictions as for movement and/or use if the index were to be adopted by the European legislation. The analysis presented in this paper is a first attempt to discuss the data of our inventory and only five materials have been analysed. In a near future a more complete discussion will be published, also considering natural stones and superficial materials. As regards natural stones a tentative grouping will be made, classifying stones by their geological origin. Moreover, if enough data were available, we will also assess the radiation protection consequences of the potential use of by-products of industrial origin in building materials. Finally, the activity concentration of 232 Th, often higher than that of 226 Ra, in building materials shows the need of improving research into the health effects of the 232 Th chain, in particular of thoron concentration indoors. (author)

  3. Measurement of natural radioactivity in building materials of Hassan District, Karnataka, India

    International Nuclear Information System (INIS)

    Srinivasa, E.; Rangaswamy, D.R.; Sannappa, J.; Suresh, S.

    2018-01-01

    Significant portion of the background radiation is coming from the primordial nuclides such as 226 Ra, 232 Th and 40 K which are present in the soil, rock and building material. These radionuclides are sources of the external and the internal radiation exposures in dwellings. The specific activities of 226 Ra, 232 Th and 40 K in the building raw materials and products mainly depend on geological and geographical conditions as well as geochemical characteristics of those materials. Knowledge of radioactivity present in building materials enables one to assess any possible radiological risk to human health

  4. Development of a miniature tensile Kolsky bar for dynamic testing of thin films

    Science.gov (United States)

    Paul, Jastin V.

    Mechanical properties such as yield stress and ultimate strength are most commonly obtained under quasi-static (strain rate of 10--4 s--1) loading conditions Materials such as metals, ceramics, and polymers may exhibit significant changes in mechanical response when subjected to high strain rate (102 --105 per second) conditions. The loading rate or strain rate can affect the material properties such as elastic modulus, yield strength, work hardening, and ductility. To ensure product quality and reliability under impact conditions, the mechanical responses of materials under dynamic loading conditions must be characterized. A Kolsky bar is a tool that can be used to study the uniaxial compressive constitutive behavior of materials under high strain rates. The goal of this thesis is to develop a miniature Tensile Kolsky bar that can be used to test materials with thickness on the order of 200 micrometers (thin foils). The system consists of a cylindrical launch tube with an internal striker, a rectangular incident bar and a transmitted bar. The specimen is held in pockets that were milled directly into the incident and transmitted bar. The rectangular incident and transmitted bars facilitate specimen and strain gage mounting. The rectangular section also provides a reduced cross sectional bar area compared to a bar of circular cross section with diameter equivalent to the width of the rectangular bar, which increases the system sensitivity. This thesis presents the detailed description of the miniature Kolsky bar device, specimen geometry, diagnostic techniques and different calibration and validation techniques used for developing the system. The Kolsky bar setup was used to test 99.9 percent pure magnesium at two different strain rates (5000 and 10000 per second). Specimens were cut from billets processed via the 4Bc equal channel angular extrusion route and were tested in three different directions: extrusion, longitudinal and transverse. The results from the

  5. Natural radioactivity in granite stones and their radiological aspects as building material

    International Nuclear Information System (INIS)

    Kumaravel, S.; Sunil, C.N.; Narashimha Nath, V.; Raghunath, T.; Prashanth Kumar, M.; Ramakrishna, V.; Nair, B.S.K.; Purohit, R.G.; Tripati, R.M.

    2014-01-01

    Natural radioactivity in building and building decorating materials comes mainly from natural radioactive series like 238 U, 232 Th and 40 K. India is one of the leading users of granite stones as it is preferred by decorators and architects. The knowledge of presence of natural radioactivity in these materials is required for the assessment of radiation exposure due to them. The objective of this study is to determine the natural radioactivity and radiological aspects of granite stones as building material

  6. BUILDING MATERIALS RECLAMATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  7. Building Materials Reclamation Program

    International Nuclear Information System (INIS)

    Weggel, David C.; Chen, Shen-En; Hilger, Helene; Besnard, Fabien; Cavalline, Tara; Tempest, Brett; Alvey, Adam; Grimmer, Madeleine; Turner, Rebecca

    2011-01-01

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C and D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C and D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C and D materials. Table 1 summarizes the six subprojects, including the C and D material studied and the graduate student and the faculty advisor on each subproject.

  8. Bar Coliseo, en Sevilla

    Directory of Open Access Journals (Sweden)

    de la Peña Neila, Antonio

    1963-10-01

    Full Text Available This bar is situated inside the «Coliseo» building, which houses a cinema, as well as a number of commercial establishments. In order not to break the unity of the total project, no attempt has been made to alter the exterior aspect of the bar. No attempt was made, either, to make it into an intimate, club type of bar, now so much in fashion. Rather has it been given a diaphanous style, seeking the best possible use of the floor space. The windows of the building are elongated, and there is an intermediate floor level, whose detailed structure is metallic. A cleverly designed staircase, of folded sheet metal connects the ground floor, the intermediate floor level and the restaurant. Materials were carefully chosen in accordance with their function. The colour scheme has a sustained unity throughout the building, and care has been taken to avoid surprising or vivid chromatic patterns. Ceramic enamels by the painter Santiago del Campo provide a feature of decoration on the ground floor, and also serve to cover up the return air ducts. On the top floor, the restaurant is fitted with coloured tile facings, the work of the Seville painters Maria Josefa Sánchez, María Dolores Sánchez and Emilio García Ortiz. The bottom joints of the timber beams, in conjunction with the tile patterns, is reminiscent of the traditional Sevillian habit of placing ceramic units between the timber framework of buildings. The initial problem of the architect was to combine the optimum functional efficiency and aesthetic quality of the project, and the final solution is undoubtedly successful.El establecimiento está situado dentro del edificio «Coliseo», complejo formado por una sala de cine, y con la parte lateral destinada a locales comerciales. Formando un conjunto único no se pensó nunca en transformar los revestimientos y molduras de fachada. Tampoco presidió la idea de conseguir un establecimiento íntimo «tipo Club», tan en boga actualmente, sino un

  9. RELATING BOTTOM QUARK MASS IN DR-BAR AND MS-BAR REGULARIZATION SCHEMES

    International Nuclear Information System (INIS)

    2002-01-01

    The value of the bottom quark mass at Q = M Z in the (bar D)(bar R) scheme is an important input for the analysis of supersymmetric models with a large value of tan β. Conventionally, however, the running bottom quark mass extracted from experimental data is quoted in the (bar M)(bar S) scheme at the scale Q = m b . We describe a two loop procedure for the conversion of the bottom quark mass from (bar M)(bar S) to (bar D)(bar R) scheme. The Particle Data Group value m b # bar M# # bar S#(m b # bar M# # bar S#) = 4.2 ± 0.2 GeV corresponds to a range of 2.65-3.03 GeV for m b # bar D# # bar R#(M Z )

  10. ICAN Computer Code Adapted for Building Materials

    Science.gov (United States)

    Murthy, Pappu L. N.

    1997-01-01

    The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.

  11. Natural radioactivity in some building materials and assessment of the associated radiation hazards

    Energy Technology Data Exchange (ETDEWEB)

    Kasumovic, Amira; Hankic, Ema; Kasic, Amela; Adrovic, Feriz [Tuzla Univ. (Bosnia and Herzegovina). Dept. of Physics

    2018-04-01

    The results of the specific activities of {sup 232}Th, {sup 226}Ra and {sup 40}K measured in samples of commonly used building materials in Bosnia and Herzegovina are presented. Measurements were performed by gamma-ray spectrometer with coaxial HPGe detector. The surface radon exhalation and mass exhalation rates for selected building materials were also measured. The determined values of specific activities were in range from 3.16 ± 0.81 Bq kg{sup -1} to 64.79 ± 6.16 Bq kg{sup -1} for {sup 232}Th, from 2.46 ± 0.95 Bq kg{sup -1} to 53.89 ± 3.67 Bq kg{sup -1} for {sup 226}Ra and from 28.44 ± 7.28 Bq kg{sup -1} to 557.30 ± 93.38 Bq kg{sup -1} for {sup 40}K. The radium equivalent activity, the activity concentration index, the external and internal hazard indices as well as the absorbed dose rate in indoor air and the corresponding annual effective dose, due to gamma-ray emission from the radioactive nuclides in the building material, were evaluated in order to assess the radiation hazards for people. The measured specific activities of the natural radioactive nuclides in all investigated building materials were compared with the published results for building materials from other European countries. It can be noted that the results from this study are similar to the data for building materials from neighbouring countries and for building materials used in the EU Member States. The radiological hazard parameters of the building materials were all within the recommended limits for safety use.

  12. RESRAD-BUILD: A computer model for analyzing the radiological doses resulting from the remediation and occupancy of buildings contaminated with radioactive material

    International Nuclear Information System (INIS)

    Yu, C.; LePoire, D.J.; Jones, L.G.

    1994-11-01

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material. The transport of radioactive material inside the building from one compartment to another is calculated with an indoor air quality model. The air quality model considers the transport of radioactive dust particulates and radon progeny due to air exchange, deposition and resuspension, and radioactive decay and ingrowth. A single run of the RESRAD-BUILD code can model a building with up to: three compartments, 10 distinct source geometries, and 10 receptor locations. A shielding material can be specified between each source-receptor pair for external gamma dose calculations. Six exposure pathways are considered in the RESRAD-BUILD code: (1) external exposure directly from the source; (2) external exposure to materials deposited on the floor; (3) external exposure due to air submersion; (4) inhalation of airborne radioactive particulates; (5) inhalation of aerosol indoor radon progeny; and (6) inadvertent ingestion of radioactive material, either directly from the sources or from materials deposited on the surfaces of the building compartments

  13. Natural radioactivity and associated radiation hazards in building materials used in Peloponnese, Greece

    International Nuclear Information System (INIS)

    Papaefthymiou, H.; Gouseti, O.

    2008-01-01

    Five different kinds of building materials (Pozzolanic and Portland cements, limestone, white cement, marble powder and sand) commonly used in building construction in Peloponnese, Greece, and Portland cement's raw materials were analyzed for their natural radioactivity content, using γ-ray spectrometry. Pozzolanic and Portland cement (Cem II) samples were found to contain the highest average 226 Ra, 232 Th and 40 K activity concentrations compared with the other examined building material samples. This could be attributed to their containing fly ash, which was found to contain high natural radionuclide concentrations, especially that of 226 Ra (1041Bqkg -1 ). Results obtained were compared with the results reported by other Greek researchers and the worldwide values for building materials and soil. The calculated activity concentration index (I) values for all the examined building material samples were lower than the recommended exception limits for exposure to external γ-radiation

  14. Valorisation of phosphogypsum as building material: Radiological aspects

    Directory of Open Access Journals (Sweden)

    Tayibi, H.

    2011-12-01

    Full Text Available Nowadays, alternative uses of phosphogypsum (PG in the building industry are being considered in several countries; however, the natural radioactivity level in the PG could be a restriction for those uses. United States Environmental Protection Agency (US-EPA classified PG as Technologically Enhanced Naturally Occurring Radioactive Material (TENORM. This drawback could be avoided controlling its percentage in the cement preparation and the radionuclides content in the other raw materials used in its production, and calculating the activity concentration index (I in the final by-products. The valorization of PG as a building material has been studied, from a radiological point of view, by developing a new stabilisation/solidification process. PG is incorporated within a polymeric sulphur matrix, obtaining a concrete-like material, which presents lower natural radioactive content than the initial PG. The 226Ra content of this material ranged between 26-27 Bq·kg-1 and it is quite similar to that of common Spanish building materials.

    Actualmente, en muchos países se está contemplando el uso alternativo del fosfoyeso (PG en la industria de la construcción, aunque su contenido en radionucleidos naturales puede presentar ciertas restricciones para dicha aplicación (material clasificado por la US-EPA como TENORM: “Technologically Enhanced Naturally Occurring Materials. No obstante, estos inconvenientes podrían paliarse controlando el porcentaje del PG y los niveles de radioactividad en las materias primas a incorporar al cemento y calculando el índice de concentración de actividad (I en los productos finales. La valorización del PG como material de construcción se ha estudiado en este trabajo desde el punto de vista radiológico, desarrollando un nuevo proceso de estabilización/solidificación, obteniéndose un material de características similares al cemento y que presenta menor contenido de radionucleidos naturales que el

  15. Drying and wetting of building materials and components

    CERN Document Server

    2014-01-01

    This book, Drying and Wetting of Building Materials and Components, provides a collection of recent contributions in the field of drying and wetting in porous building materials. The main benefit of the book is that it discusses some of the most important topics related to the drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  16. Use of hafnium in control bars of nuclear reactors

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Alonso V, G.

    2003-01-01

    Recently the use of hafnium as neutron absorber material in nuclear reactors has been reason of investigation by virtue of that this material has nuclear properties as to the neutrons absorption and structural that can prolong the useful life of the control mechanisms of the nuclear reactors. In this work some of those more significant hafnium properties are presented like nuclear material. Also there are presented calculations carried out with the HELIOS code for fuel cells of uranium oxide and of uranium and plutonium mixed oxides under controlled conditions with conventional bars of boron carbide and also with similar bars to which are substituted the absorbent material by metallic hafnium, the results are presented in this work. (Author)

  17. Exposure to radiation from the natural radioactivity in Tunisian building materials.

    Science.gov (United States)

    Gharbi, F; Oueslati, M; Abdelli, W; Samaali, M; Ben Tekaya, M

    2012-12-01

    Building materials can expose public and workers to radiation because of their content of radium, thorium and potassium isotopes. This is why it is very important from the radiological point of view to survey the natural radioactivity content of commonly used building materials in any country. This work consists of the measurement of (226)Ra, (232)Th and (40)K activity concentrations in a variety of commonly used building materials in Tunisia and on the estimation of their radiological hazard. The maximum value of radium equivalent for the studied materials was equal to 169 Bq kg(-1) and corresponds to the clay brick, which is lower than the recommended value of 370 Bq kg(-1). In this work, several radiological indexes were calculated and were found to be under their highest permitted limit.

  18. LOSS FACTOR AND DYNAMIC YOUNG MODULUS DETERMINATION FOR COMPOSITE SANDWICH BARS REINFORCED WITH STEEL FABRIC

    Directory of Open Access Journals (Sweden)

    Cosmin-Mihai MIRIŢOIU

    2015-05-01

    Full Text Available In this paper I have build some composite sandwich bars. For these bars I have determined the dynamic response by recording their free vibrations. These bars have the core made of polypropylene honeycomb with upper and lower layers reinforced with steel wire mesh. For these bars I have determined the the eigenfrequency of the first eigenmode in this way: the bar was embedded at one end and free at the other where there was placed an accelerometer at 10 mm distance from the edge and I applied an initial force at the free end. I have determined the eigenfrequency because I will use its values for the loss factor and dynamic Young modulus determination.

  19. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    Science.gov (United States)

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  20. Performance simulation of BaBar DIRC bar boxes in TORCH

    Science.gov (United States)

    Föhl, K.; Brook, N.; Castillo García, L.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; van Dijk, M.

    2017-12-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  1. Natural radioactivity and associated radiation hazards in building materials used in Peloponnese, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Papaefthymiou, H. [Division of Physics, Inorganic and Nuclear Chemistry, Department of Chemistry, University of Patras, Patras 265 00 (Greece)], E-mail: epap@chemistry.upatras.gr; Gouseti, O. [Division of Physics, Inorganic and Nuclear Chemistry, Department of Chemistry, University of Patras, Patras 265 00 (Greece)

    2008-09-15

    Five different kinds of building materials (Pozzolanic and Portland cements, limestone, white cement, marble powder and sand) commonly used in building construction in Peloponnese, Greece, and Portland cement's raw materials were analyzed for their natural radioactivity content, using {gamma}-ray spectrometry. Pozzolanic and Portland cement (Cem II) samples were found to contain the highest average {sup 226}Ra, {sup 232}Th and {sup 40}K activity concentrations compared with the other examined building material samples. This could be attributed to their containing fly ash, which was found to contain high natural radionuclide concentrations, especially that of {sup 226}Ra (1041Bqkg{sup -1}). Results obtained were compared with the results reported by other Greek researchers and the worldwide values for building materials and soil. The calculated activity concentration index (I) values for all the examined building material samples were lower than the recommended exception limits for exposure to external {gamma}-radiation.

  2. Evaluation of internal/external exposure from interior building materials

    International Nuclear Information System (INIS)

    Furuta, Etsuko; Morita-Murase, Yuko; Yoshizawa, Yukio

    2008-01-01

    Internal exposure to alpha particles emitted from 222 Rn (radon) and its daughters is the second leading cause of lung cancer. As a source of indoor radon in home, there are interior building materials that contain radioactive minerals. These radioactive consumer products have been claimed by distributors to have effect of 'minus-ion' or 'radon spring' for healthy promotion. We analyzed radioactive nuclides contained in the interior building materials, and measured radon levels released from them. The results of gamma-ray spectrometry revealed that these interior building materials contain U- and Th-series nuclides. The densities of some radioactive nuclides in the tile used for a bathroom exceeded the exempt limits of International Basic Safety Standards. However, the radon densities released from the tile was lower than detectable limit. In contrast, one of the wallpaper released 34 Bq·m -3 of radon gas in a 50-liter container. This value is two times higher than the average radon level in Japanese homes. The minus-ion effect' wallpapers are thought to be a cause of residential exposure to radon. (author)

  3. Study of radiation dose reduction of buildings of different sizes and materials

    International Nuclear Information System (INIS)

    Furuta, Takuya; Takahashi, Fumiaki

    2015-01-01

    The dependence of radiation dose reduction on the sizes and materials of buildings was studied by numerical analyses using the Monte Carlo simulation code, PHITS. The dose rates inside the buildings were calculated by simulating gamma-ray transport from radioactive cesium deposited at the ground surface. Three building models were developed: the wooden house, the open-space concrete building, and the thin-wall building, to study the effect of building size and construction material on dose reduction inside these structures. Here the floor-area sizes of the building models were varied to clarify the influence of building configuration on dose reduction. The results demonstrated that the dose rates inside the buildings linearly decreased with increasing floor area on a logarithmic scale for all types of buildings considered. The calculated dose distribution inside a building indicated that the distance from the outer walls was a determining factor for the dose rate at each position in the building. The obtained tendency was verified by comparison with data reflecting the dose reduction of typical buildings in Japan. (author)

  4. Natural radioactivity of building materials used in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M. [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang, Selangor D.E. (Malaysia)

    2002-03-01

    A study has been carried out to determine the natural radioactive content of building materials used in Malaysia. The materials analysed include both old and new clay bricks, cement bricks, mortar, cement, sands, ceramic tiles and gypsum. Samples of the first three materials were collected from the 12 states of the Malay Peninsula. Radium-226 (from the U-238 series) and Ra-228 (from the Th-232 series), these both representing naturally occurring radionuclides, were analysed using high-resolution HpGe gamma spectrometers. The results of our investigations showed that some old clay bricks contain high levels (at more than 5 times the normal soil concentration) of natural radionuclides, with maximum concentrations of 590 Bq/kg and 480 Bq/kg for respectively Ra-226 and Ra-228. The reasons behind this finding were not clearly understood. As there are people living in old buildings, i.e. built using old clay bricks, there is a possibility that they are being exposed to significant radiation doses. However, there proved to be no significant overall difference between old and new clay bricks in terms of the natural radioactivity levels determined, at a 95% confidence level. The overall mean concentrations of Ra-226 and Ra-228 observed in Malaysian clay bricks were respectively 118 {+-} 58 Bq/kg and 120 {+-} 42 Bq/kg. The radioactive content of other materials was found to be not much different from that to be determined in normal soil from Malaysia. The data obtained can be used as a basis for reaching decisions on the regulatory limits for radioactivity levels in building materials in Malaysia. (orig.)

  5. Vibrations of a connecting system of curved bars, in-plane

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Takahashi, Shin; Asakura, Akira.

    1979-01-01

    Piping systems were simulated with the combined bars with many kinds of curved and straight shapes. The system consists of straight bars and a circular arc bar, an elliptic arc bar and a catenary curved bar. The inplane vibration of a complicated bar system of any shape, which is indicated by two-dimensional center line, was analyzed strictly and simply, utilizing Lagrangean equation. The theoretical and analytical equations of vibration were derived, such as Lagrangean equation, Euler's equation, and those for bending moment, shearing force, tangential force, deformation, inclination, amplitude frequency, etc. The calculations were conducted on the U-shaped bars, namely the elliptic arc bar connected to straight bars and the catenary bar connected to straight bars, with the boundary condition of fixed ends. The analytical in-plane vibrating characteristics including natural frequency and vibration mode are shown. In the relating experiment, the frequency was measured with the U-shaped test pieces, changing the parameters of the length ratio of elliptic arc and straight part. Both ends were fixed. The test result showed that the vibration characteristics were consistent with the analytical result comparatively. This method is advantageous especially for complicated piping systems. The material and the cross section of bars were not varied in this analysis as the analytical condition. (Nakai, Y.)

  6. Ozone reactions with indoor materials during building disinfection

    DEFF Research Database (Denmark)

    Poppendieck, D.; Hubbard, H.; Ward, M.

    2007-01-01

    , and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office...... partition, and medium density fiberboard each released greater than 38 mg m(-2) of by-products....

  7. Exposure to radiation from the natural radioactivity in building materials

    International Nuclear Information System (INIS)

    1979-05-01

    Radiation exposure of members of the public can be increased appreciably by the use of building materials containing above-normal levels of natural radioactivity. This phenomenon has attracted attention in recent years, and in this review, an attempt is made to the quantify exposures incurred under various circumstances. The second section of the review is a general survey of those building materials, mostly industrial wastes, that have aroused interest in Member countries. The probability that environmental pressures may cause such wastes to be used more and more by building industries may lead to similar situations in the future. Other review material of a relevant nature is described in the third section. Primordial radionuclides only are considered here. They are: potassium-40 (K-40); radium-226 (Ra-226) and its decay products; the series headed by thorium-232 (Th-232). The important radiological consequences of the natural radioactivity in building materials are two-fold, irradiation of the body by gamma rays and irradiation of the lung tissues by radon-222 (Rn-222) decay products or daughters. These consequences cannot be explored quantitatively except in relation to the specific activities of the nuclides of interest, and the approach adopted in this review is to assess the consequences in terms of the incremental radiation exposures that would be incurred by occupants of substantial dwellings entirely constructed of materials with various specific activities or combinations thereof. Gamma rays are dealt with in the fourth section and radon daughters in the fifth

  8. Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings

    OpenAIRE

    PAVEL CLAUDIU; BLAGOEVA DARINA

    2017-01-01

    Insulation materials could contribute significantly to improving the overall energy efficiency and sustainability of the buildings, especially by reducing the energy losses through the building envelope (walls, roofs, floors, etc.). The global demand for thermal insulation materials in building applications is projected to increase at a CAGR of 4.5 % between 2016 and 2027. In the EU the demand for thermal insulation materials is estimated at 3.48 % (2015-2027). Wool minerals (glass and stone ...

  9. [Amaranth bars enriched with fructans: acceptability and nutritional value].

    Science.gov (United States)

    Dias Capriles, Vanessa; Gomes Arêas, José Alfredo

    2010-09-01

    There is an increasing appeal for convenience foods with potential health benefits to the consumer. Raw materials with high nutritional value and functional properties must be used on the development of these food products. Amaranth is a gluten-free grain with high nutrition value. Inulin and oligofructose are prebiotic ingredients presenting effects as the enhancement of calcium absorption. Amaranth bars enriched with inulin and oligofructose were developed in the flavors: banana, Brazilian nuts and dried grape, coconut, peach, strawberry and wall nut. The proximate composition were determined and compared to commercial cereal bars, available in traditional (n=59), light (n=60), diet (n=8), with soy (n=10) and quinoa (n=1) categories. Amaranth bars present mean global acceptance values from 6.3 to 7.6 on a 9-point hedonic scale, nutritional advantages as compared to commercial cereal bars (caloric reduction and higher levels of dietary fiber). Although amaranth is an unknown raw material in Brazil, it shows good potential to be used in the manufacturing of ready-to-eat products. As they are gluten free, these amaranth bars are also an alternative product for celiacs, also contributing to the enhancement of calcium absorption, a problem frequently observed in these patients.

  10. Algae and their biodegradation effects on building materials in the Ostrava industrial agglomeration

    Science.gov (United States)

    Vojtková, H.

    2017-10-01

    Microorganisms cause changes in the building stone, which reduce its usable life and reliability. Microalgae make important parts of the biodegradation consortia of microorganisms on the surface of building materials. Via their metabolites, microalgae affect the stability of mineral components and thus lead to the material destruction. The aim of the paper was to identify aerophytic microalgae on the surface of engineering structures in the Ostrava agglomeration, and to describe the basic interactions between such microorganisms and the building materials, which may lead to the destruction of the materials.

  11. Associations between Fungal Species and Water-Damaged Building Materials

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Frisvad, Jens Christian; Søndergaard, Ib

    2011-01-01

    melleus, Aspergillus niger, Aspergillus ochraceus, Chaetomium spp., Mucor racemosus, Mucor spinosus, and concrete and other floor-related materials. These results can be used to develop new and resistant building materials and relevant allergen extracts and to help focus research on relevant mycotoxins...

  12. Recycling and reuse of chosen kinds of waste materials in a building industry

    Science.gov (United States)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  13. Natural radioactivity and associated radiation hazardous of main building materials in Yan'an, China

    International Nuclear Information System (INIS)

    Li Nan; Lu Xinwei; Yang Guang; Zhao Caifeng

    2012-01-01

    Background: With the rapidly economic development and urbanization in Yan'an city, more building materials were consumed in building construction. While the natural radioactivity level of building materials from Yan'an is limited in the literatures. Purpose: The main objective of this study is to determine the natural radioactivity level and to analyze the associated radiation hazards of building materials in Yan'an. Methods: The specific activities of natural radionuclides 226 Ra, 232 Th and 40 K in various building materials from Yan'an city were determined using low-background gamma-ray spectrometry, and their radiation hazards were evaluated according to the standard methods. Results: The results show that the specific activities of 226 Ra, 232 Th and 40 K in the building materials are 9.4-73.1, 11.5-86.9 and 258.9-1055.1 Bq/kg, respectively. The activities of 226 Ra and 232 Th, except for sand and gravel aggregate, in all other building materials are higher than the corresponding means of local soil, and the activities of 40 K in hollow brick, red-clay brick, sand and gravel aggregate exceed the means of 40 K in soil. However, the values of internal exposure index, external exposure index and gamma radiation index in all investigated building materials are less than 1. Conclusions: The radiation levels of all analyzed building materials are within the national safety standard, which indicates that all analyzed building materials can be used anywhere and they can't cause radiation hazard to the local residents. (authors)

  14. Assessment of natural radioactivity in major building materials of Xiangyang, China

    International Nuclear Information System (INIS)

    Feng, Tingting; Lu, Xinwei

    2014-01-01

    The activity concentrations of 40 K, 226 Ra and 232 Th in the commonly used building materials collected from Xiangyang were measured using NaI (Tl) gamma spectrometer. The radioactivity values of 40 K, 226 Ra and 232 Th in the studied samples ranged from 130.5 to 1006.3, 8.4 to 164.0, and 8.7 to 145.6 Bq kg -1 , respectively. The concentrations of these radionuclides have been compared with the typical published world values. Radium equivalent activity, external and internal hazard indexes, external and internal exposure indexes, indoor air absorbed dose rate and annual effective dose rate have been calculated to assess the potential radiological hazard associated with natural radionuclides in the studied materials. The calculated values of all the assessed indices in the analyzed building materials except for fly ash are below the internationally accepted limits indicating that these building materials can be safely used in dwellings construction and do not lead to any significant radiation exposure to occupants. Nevertheless, the annual effective dose rate values of all fly ash samples, external and internal hazard indexes values in most fly ash samples exceed the recommended values. It is, therefore, desirable to regularly monitor the natural radioactivity level of the building materials products made from fly ash.

  15. Terrain and building effects on the transport of radioactive material at a nuclear site

    International Nuclear Information System (INIS)

    Jeong, Hyojoon; Park, Misun; Jeong, Haesun; Hwang, Wontae; Kim, Eunhan; Han, Moonhee

    2014-01-01

    Highlights: • This study is to quantify the building and terrain effects on the atmospheric dispersion. • Statistical methods with AERMOD-PRIME and CFD were used. • To assess the risk in nuclear power plants, terrain and building effects have to be considered. - Abstract: This study identified the terrain and building effects on the atmospheric dispersion of radioactive materials at the Wolsong Nuclear Site. To analyze the atmospheric dispersion of radioactive materials, the AERMOD-PRIME model, CFD model and meteorological data from 2010 were used. The terrain and building effects on the atmospheric dispersion of radioactive materials within a 1 km radius of the site were statistically significant. The maximum concentration of the radioactive material increased by 7 times compared to the concentration when the terrain and building effects were not considered. It was found that the terrain and building influenced the decrease in the concentration of radioactive material in a concentric circle with a 914 m radius from the center of the site. The concentration of radioactive material in a concentric circle with a 350 m radius was two-times higher than the concentration estimated at the backside of the building, which is the downwind side, without any consideration of the terrain and building effects. In consideration of the Korean situation, in which multiple nuclear reactors are built on the same nuclear site, it is necessary to evaluate the risk that may affect workers and nearby residents by reflecting the terrain and building effects

  16. Study on the Application Mode and Legal Protection of Green Materials in Medical-Nursing Combined Building

    Science.gov (United States)

    Zhiyong, Xian

    2017-09-01

    In the context of green development, green materials are the future trend of Medical-Nursing Combined building. This paper summarizes the concept and types of green building materials. Then, on the basis of existing research, it constructs the green material system framework of Medical-Nursing Combined building, puts forward the application mode of green building materials, and studies the policy and legal protection of green material application.

  17. Towards The Adaptation of Green Building Material Systems to the Egyptian Environment

    OpenAIRE

    Sherif Mohamed Sabry Elattar; Eman Badawy Ahmed

    2014-01-01

    This research briefly reviews the definition and the principles of green architecture, making a comparison between the global green building rating systems in respect to materials only. These systems are the [1, 2]Green Pyramid, BREEAM (Building Research Establishment Environment Assessment Method), [3] LEED (Leadership in Energy and Environmental Design) and the [4] Green Star in the form of Credits %, importance and its Requirements.The research Aims to evaluate the green building material ...

  18. The natural radioactivity of building materials used in the Christchurch urban area

    International Nuclear Information System (INIS)

    Chapman, R.H.

    1984-01-01

    The natural gamma radioactivity of a variety of common building materials in Christchurch, has been measured by gamma spectroscopy. Using conversion factors from the literature, relative dose rate indices for the various building materials were calculated and compared. An increasing order of radioactivity concentration was found from timber to compressed limestone to brick products. These levels are however less than the acceptable limits of radioactivity based on some overseas criteria suggested as building standards

  19. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Science.gov (United States)

    2010-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION...

  20. Variability in energy and carbon dioxide balances of wood and concrete building materials

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Sathre, Roger [Ecotechnology, Mid Sweden University, SE-831 25 OEstersund (Sweden)

    2006-07-15

    A variety of factors affect the energy and CO{sub 2} balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO{sub 2} emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO{sub 2} balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO{sub 2} balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO{sub 2} balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO{sub 2} emission to the atmosphere. (author)

  1. Variability in energy and carbon dioxide balances of wood and concrete building materials

    International Nuclear Information System (INIS)

    Gustavsson, Leif; Sathre, Roger

    2006-01-01

    A variety of factors affect the energy and CO 2 balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO 2 emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO 2 balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO 2 balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO 2 balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO 2 emission to the atmosphere. (author)

  2. Moisture measurements in building materials with microwaves; Rakennusmateriaalien kosteusmittauksia mikroaalloilla

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, H.; Rudolph, M.; Schaurich, D.; Wiggenhauser, H. [VTT Building Technology, Espoo (Finland). Construction and Facility Management

    1998-12-01

    In order to assess the condition and evaluate the reliability of buildings and structures, it is essential to establish the moisture condition of the floor and other structural elements of the building. NDT-methods are increasingly being used for such moisture measurements because they do not cause any damage to the building under investigation. Microwave transmission is one of the NDT-methods and has been in use for several years. In this report, the applicability of the microwave method for measuring moisture in different building materials was investigated. This method has been successfully used at BAM for repeated moisture measurements in brick and sandstone material. This project also included other materials, such as concrete, sand, gravel, insulation and wood. At the same time, information was gathered about in situ moisture determination of building materials with a microwave moisture measuring system. The equipment used in this research has been developed at BAM over the last few years. The method requires two parallel boreholes in the specimen in which two microwave antennae can be moved. The moisture content in the material can be calculated from the microwave intensity transmitted between the two boreholes. Moisture profiles along the boreholes can be obtained by moving the antennae in steps along the length of the boreholes and taking measurements at each step. Special care must be taken while drilling the holes for the antennae, as this process must not affect the moisture condition in the specimen, and the boreholes must be made as parallel to each other as possible. The microwave frequencies used in the laboratory measurements ranged from 8 to 16,5 GHz in steps of 0,5 GHz. The diameters of the antennae were between 7 and 9 mm, and of the boreholes between 8 and 12 mm. Except for the concrete specimen, all the specimens were measured using plastic tubes in the boreholes. The moisture content measured by the microwave technique was verified by the

  3. Enhancement of global flood damage assessments using building material based vulnerability curves

    Science.gov (United States)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  4. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Ravisankar, R.; Vanasundari, K.; Chandrasekaran, A.; Rajalakshmi, A.; Suganya, M.; Vijayagopal, P.; Meenakshisundaram, V.

    2012-01-01

    The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of 226 Ra, 232 Th and 40 K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards. - Highlights: ► Most of the building materials contain natural radionuclides. ► The radioactivity level in building materials is used to assess the radiological hazards to human. ► We present the results for the measured activities and radiation hazards of building materials. ► We report that the studied building materials do not pose any significant radiation hazard.

  5. Research and Development of solar cell frame. Study on solar cell array solid with building material-business building

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    This is a NEDO annual report for 1985. A feasibility study was carried out from the viewpoints demanded both from the building material side and the solar cell. Evaluation from the technical, institutional, and economical viewpoints indicated the possibility of using a roof material solid with carbon-fiber-reinforced concrete and a curtain wall. The solar cell module was verified as a building material to be resistant against the external force, water, and heat. A problem left is how to enlarge the module. Integrated use of CFRC (Carbon Fiber Reinforced Concrete) and a cell of maximum size (1,240 x 700 mm), which is industrially available, can be expected. Present solar cell array can be utilized as a building material as it is for a curtain wall. Cost calculation of the CFRC solid roofing material indicates 276 yen/KWH for 15 years depreciation, 10 % residual value, and 8% annual interest, which is a little expensive, but this cost may be applicable to the use as a curtain wall.

  6. Natural radioactivity in some building materials of Xi'an, China

    International Nuclear Information System (INIS)

    Lu Xinwei

    2005-01-01

    Eight kinds of building materials collected from Xi'an, China were analyzed for the natural radioactivity of 226 Ra, 232 Th and 40 K using γ-ray spectroscopy. The concentrations of 226 Ra, 232 Th and 40 K in the selected building materials ranges from 19.5 to 68.3Bqkg -1 , 13.4 to 51.7Bqkg -1 and 63.2 to 713.9Bqkg -1 , respectively. The measured activity concentrations for these natural radionuclides were compared with the reported data of other countries and with the world average activity of soil. The radium equivalent activities (Ra eq ), external hazard index (H ex ) and the internal radiation hazard index (H in ) associated with the natural radionuclides were calculated. The Ra eq values of all building materials are lower than the limit of 370Bqkg -1 , equivalent to a γ-dose of 1.5mSvyr -1 . The values of H ex and H in are less than unity

  7. Calculation of radiation dose rate arisen from radionuclide contained in building materials

    International Nuclear Information System (INIS)

    Lai Tien Thinh; Nguyen Hao Quang

    2008-01-01

    This paper presents some results that we used MCNP5 program to calculate radiation dose rate arisen from radionuclide in building materials. Since then, the limits of radionuclide content in building materials are discussed. The calculation results by MCNP are compared with those calculated by analytical method. (author)

  8. Qq(Q-bar)(q-bar)' states in chiral SU(3) quark model

    International Nuclear Information System (INIS)

    Zhang Haixia; Zhang Min; Zhang Zongye

    2007-01-01

    We study the masses of Qq(Q-bar)(q-bar)' states with J PC =0 ++ , 1 ++ , 1 +- and 2 ++ in the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q(q') is the light quark (u,d or s). According to our numerical results, it is improbable to make the interpretation of [cn(c-bar)(n-bar)] 1 ++ and [cn(c-bar)(n-bar)] 2 ++ (n=u,d) states as X(3872) and Y(3940), respectively. However, it is interesting to find the tetraquarks in the bq(b-bar)(q-bar)' system. (authors)

  9. The Bologna Annotation Resource (BAR 3.0): improving protein functional annotation.

    Science.gov (United States)

    Profiti, Giuseppe; Martelli, Pier Luigi; Casadio, Rita

    2017-07-03

    BAR 3.0 updates our server BAR (Bologna Annotation Resource) for predicting protein structural and functional features from sequence. We increase data volume, query capabilities and information conveyed to the user. The core of BAR 3.0 is a graph-based clustering procedure of UniProtKB sequences, following strict pairwise similarity criteria (sequence identity ≥40% with alignment coverage ≥90%). Each cluster contains the available annotation downloaded from UniProtKB, GO, PFAM and PDB. After statistical validation, GO terms and PFAM domains are cluster-specific and annotate new sequences entering the cluster after satisfying similarity constraints. BAR 3.0 includes 28 869 663 sequences in 1 361 773 clusters, of which 22.2% (22 241 661 sequences) and 47.4% (24 555 055 sequences) have at least one validated GO term and one PFAM domain, respectively. 1.4% of the clusters (36% of all sequences) include PDB structures and the cluster is associated to a hidden Markov model that allows building template-target alignment suitable for structural modeling. Some other 3 399 026 sequences are singletons. BAR 3.0 offers an improved search interface, allowing queries by UniProtKB-accession, Fasta sequence, GO-term, PFAM-domain, organism, PDB and ligand/s. When evaluated on the CAFA2 targets, BAR 3.0 largely outperforms our previous version and scores among state-of-the-art methods. BAR 3.0 is publicly available and accessible at http://bar.biocomp.unibo.it/bar3. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Assessment of radioactivity in building material(granite) in Sudan

    International Nuclear Information System (INIS)

    Osman, Z. A; Salih, I; Albadwai, K. A; Salih, A. M; Salih, S. A.

    2016-01-01

    In the present work radioactivity in building materials (granite) central Sudan was evaluated. In general the building materials used in Sudan are derived either from rocks or soil. These contain trace amounts of naturally occurring radioactive materials(NORMs), so it contains radionuclides from uranium and thorium series and natural potassium. The levels of these radionuclides vary according to the geology of their site of origin. High levels increase the risk of radiation exposure in homes(especially exposure due to radon). Investigation of radioactivity in granite used of the building materials in Sudan is carried out, a total of 18 major samples of granite have been collected and measured using X- ray fluorescence system (30 mci). The activity concentrations have been determined for uranium ("2"3"8U), thorium ('2"3"2Th) and potassium("4"0K) in each sample. The concentrations of uranium have been found to range from 14.81 Bq/kg to 24.572 Bq/kg, thorium between 10.02 Bq/kg and 10.020-84.79 Bq/kg and the potassium concentration varies between 13.33 Bq/kg to 82.13 Bq/kg. Limits of radioactivity in the granite are based on dose criteria for controls. This study can be used as a reference for more extensive studies of the same subject in future. (Author)

  11. The release of lindane from contaminated building materials

    OpenAIRE

    Volchek, Konstantin; Thouin, Geneviève; Kuang, Wenxing; Li, Ken; Tezel, F. Handan; Brown, Carl E.

    2014-01-01

    The release of the organochlorine pesticide lindane (γ-hexachlorocyclohexane) from several types of contaminated building materials was studied to assess inhalation hazard and decontamination requirements in response to accidental and/or intentional spills. The materials included glass, polypropylene carpet, latex-painted drywall, ceramic tiles, vinyl floor tiles, and gypsum ceiling tiles. For each surface concentration, an equilibrium concentration was determined in the vapour phase of the s...

  12. submitter Performance simulation of BaBar DIRC bar boxes in TORCH

    CERN Document Server

    Föhl, K; Castillo García, L; Cussans, D; Forty, R; Frei, C; Gao, R; Gys, T; Harnew, N; Piedigrossi, D; Rademacker, J; Ros García, A; van Dijk, M

    2017-01-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  13. Building materials. VOC emissions, diffusion behaviour and implications from their use.

    Science.gov (United States)

    Katsoyiannis, Athanasios; Leva, Paolo; Barrero-Moreno, Josefa; Kotzias, Dimitrios

    2012-10-01

    Five cement- and five lime-based building materials were examined in an environmental chamber for their emissions of Volatile Organic Compounds (VOCs). Typical VOCs were below detection limits, whereas not routinely analysed VOCs, like neopentyl glycol (NPG), dominated the cement-based products emissions, where, after 72 h, it was found to occur, in levels as high as 1400 μg m(-3), accounting for up to 93% of total VOCs. The concentrations of NPG were not considerably changed between the 24 and 72 h of sampling. The permeability of building materials was assessed through experiments with a dual environmental chamber; it was shown that building materials facilitate the diffusion of chemicals through their pores, reaching equilibrium relatively fast (6 h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Complete cubic and quartic couplings of 16 and 16-bar in SO(10) unification

    International Nuclear Information System (INIS)

    Nath, Pran; Syed, Raza M.

    2001-01-01

    A recently derived basic theorem on the decomposition of SO(2N) vertices is used to obtain a complete analytic determination of all SO(10)-invariant cubic superpotential couplings involving 16 ± semispinors of SO(10) chirality ± and tensor representations. In addition to the superpotential couplings computed previously using the basic theorem involving the 10, 120 and 126-bar tensor representations we compute here couplings involving the 1-, 45- and 210-dimensional tensor representations, i.e., we compute the 16-bar -+ 16 ± 1, 16-bar -+ 16 ± 45 and 16-bar -+ 16 ± 210 Higgs couplings in the superpotential. A complete determination of dimension five operators in the superpotential arising from the mediation of the 1-, 45- and 210-dimensional representations is also given. The vector couplings 16-bar ± 16 ± 1, 16-bar ± 16 ± 45 and 16-bar ± 16 ± 210 are also analyzed. The role of large tensor representations and the possible application of results derived here in model building are discussed

  15. Assessment of natural radioactivity in major building materials of Xiangyang, China

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Tingting; Lu, Xinwei [Shaanxi Normal Univ., Xi' an (China). School of Tourism and Environment

    2014-10-01

    The activity concentrations of {sup 40}K, {sup 226}Ra and {sup 232}Th in the commonly used building materials collected from Xiangyang were measured using NaI (Tl) gamma spectrometer. The radioactivity values of {sup 40}K, {sup 226}Ra and {sup 232}Th in the studied samples ranged from 130.5 to 1006.3, 8.4 to 164.0, and 8.7 to 145.6 Bq kg{sup -1}, respectively. The concentrations of these radionuclides have been compared with the typical published world values. Radium equivalent activity, external and internal hazard indexes, external and internal exposure indexes, indoor air absorbed dose rate and annual effective dose rate have been calculated to assess the potential radiological hazard associated with natural radionuclides in the studied materials. The calculated values of all the assessed indices in the analyzed building materials except for fly ash are below the internationally accepted limits indicating that these building materials can be safely used in dwellings construction and do not lead to any significant radiation exposure to occupants. Nevertheless, the annual effective dose rate values of all fly ash samples, external and internal hazard indexes values in most fly ash samples exceed the recommended values. It is, therefore, desirable to regularly monitor the natural radioactivity level of the building materials products made from fly ash.

  16. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    Energy Technology Data Exchange (ETDEWEB)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model was based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.

  17. A metric for characterizing the effectiveness of thermal mass in building materials

    International Nuclear Information System (INIS)

    Talyor, Robert A.; Miner, Mark

    2014-01-01

    Highlights: • Proposes a metric for interior thermal mass materials (floors, walls, counters). • Simple, yet effective, metric composed of easily calculated ‘local’ and ‘global’ variables. • Like Energy Star, the proposed metric gives a single number to aid consumer choice. • The metric is calculated and compared for selected, readily available data. • Drywall, concrete flooring, and wood paneling are quite effective thermal mass. - Abstract: Building energy use represents approximately 25% of the average total global energy consumption (for both residential and commercial buildings). Heating, ventilation, and air conditioning (HVAC) – in most climates – embodies the single largest draw inside our buildings. In many countries around the world a concerted effort is being made towards retrofitting existing buildings to improve energy efficiency. Better windows, insulation, and ducting can make drastic differences in the energy consumption of a building HVAC system. Even with these improvements, HVAC systems are still required to compensate for daily and seasonal temperature swings of the surrounding environment. Thermal mass inside the thermal envelope can help to alleviate these swings. While it is possible to add specialty thermal mass products to buildings for this purpose, commercial uptake of these products is low. Common building interior building materials (e.g. flooring, walls, countertops) are often overlooked as thermal mass products, but herein we propose and analyze non-dimensional metrics for the ‘benefit’ of selected commonly available products. It was found that location-specific variables (climate, electricity price, material price, insolation) can have more than an order of magnitude influence in the calculated metrics for the same building material. Overall, this paper provides guidance on the most significant contributors to indoor thermal mass, and presents a builder- and consumer-friendly metric to inform decisions about

  18. Impact on the bar value in hot by the introduction of advanced control bars in the Unit 1 of the Laguna Verde Nuclear power plant

    International Nuclear Information System (INIS)

    Montes, J.L.; Perusquia, R.; Ortiz, J.J.; Hernandez, J.L.; Ramirez, J.R.

    2004-01-01

    In recent dates the Laguna Verde Nuclear Power station (CNLV) has acquired new designs of control bars, this new type of bars presents modifications important in their design. For what is important to analyze their performance inside those reactors of this nuclear power station. Presently work is shown the behavior of the nucleus of the reactor in hot condition (HFP) when three different types of control bar are used. The first of them corresponds the one that initially has been used in this power station and that we will call original. The second type of control bars, it corresponds to an advanced type and it is the first design different from the original and it corresponds to a bar design that it includes Hafnium (Hf) like one of their neutronic absorption characteristics. The third, denoted as 2AV, include besides the material of the second type new design characteristics, and it is the last finish bar type that it has been introduced in the operation of the reactors of the CNLV. With base in the studied cases is found that the bars 2AV have a total power value, 7.6 % bigger respect the bars 1AV; and in turn the bars 1AV, 6.1 % bigger with respect the ORG control bars. (Author)

  19. Studies on radon exhalation rate from building materials of Mysuru district, Karnataka

    International Nuclear Information System (INIS)

    Chandini, M.; Lavanya, B.S.K.; Chandrashekara, M.S.; Pruthvi Rani, K.S.

    2017-01-01

    In the present study, mass exhalation rate of 222 Rn from soil and building materials was studied using scintillation based Smart Radon Monitor (SRM) and also using Solid State Nuclear Track Detectors (SSNTD) employing Can Technique, following standard procedure. Mass exhalation rate of 222 Rn from various building material samples such as brick, sand, cement, concrete and from different types of flooring materials was determined. The results obtained from these methods were compared and analysed. The samples of construction materials were collected from various locations of Mysuru city. The city has an area of about 128 sq km with population of about 1 million. Mining industries of magnetite, dunite and lime stone are located around Mysuru city. In addition to this, quarrying and crushing of granite stones for building activities also exist nearby

  20. Formation of q bar q resonances in the bar NN system

    International Nuclear Information System (INIS)

    Ivanov, N.Ya.

    1995-01-01

    The formation of q bar q resonances lying on the leading Regge trajectories in the bar NN system is studied in the quark-gluon string model. The model predicts strong suppression of the decays of q bar q states into bar NN pairs in relation to two-meson modes. The author's analysis shows that the contributions of the resonances f 4 (2050) (I G J PC = 0 + 4 ++ ), ρ 5 (2240) (I G J PC = 1 + 5 -- ), and f 6 (2510) (I G J PC = 0 + 6 ++ ) to the processes of two-meson bar NN annihilation (bar pp → ππ, bar KK, hor-ellipsis) are about 1% of the corresponding experimental integrated cross sections. 30 refs., 2 figs., 1 tab

  1. Production of n-bar's and Sigma-bar+-'s in e+e- annihilations

    International Nuclear Information System (INIS)

    Ferguson, T.; Buchanan, C.; Nodulman, L.; Poster, R.; Breidenbach, M.; Morehouse, C.C.; Vannucci, F.

    1979-01-01

    The production of antineutrons and charged Sigma-bar's in e + e - annihilations has been measured at √s +- production between 4 and 7 GeV is consistent with simple expectations for charmed-baryon production. A search for the decays Lambda-bar - /sub c/ → Sigma-bar +- π -+ π - and Sigma-baratsup asteriskat/sub c//Sigma-bar/sub c/ → Lambda-bar - /sub c/π +- yields no significant peaks. An upper limit, at the 90% confidence level, of sigmaatsub Lambda-baratc-italicB (Lambda-bar/sub c/ → Sigma-bar +- π -+ π - ) < 56 pb is set

  2. The exact S -matrix for an osp(2 vertical bar 2) disordered system

    International Nuclear Information System (INIS)

    Bassi, Zorawar S.; LeClair, Andre

    2000-01-01

    We study a two-dimensional disordered system consisting of Dirac fermions coupled to a scalar potential. This model is closely related to a more general disordered system that has been introduced in conjunction with the integer quantum Hall transition. After disorder averaging, the interaction can be written as a marginal osp(2 vertical bar 2) current-current perturbation. The osp(2 vertical bar 2) current-current model in turn can be viewed as the fully renormalized version of an osp(2 vertical bar 2) (1) Toda-type system (at the marginal point). We build nonlocal charges for the Toda system satisfying the U q [osp(2 vertical bar 2) (1) ] quantum superalgebra. The corresponding quantum group symmetry is used to construct a Toda S -matrix for the vector representation. We argue that in the marginal (or rational) limit, this S -matrix gives the exact (Yangian symmetric) physical S -matrix for the fundamental 'solitons' of the osp(2 vertical bar 2) current-current model

  3. Prevention of radioactive gas seeping into buildings through constructive materials

    International Nuclear Information System (INIS)

    Khaydarov, R.A.; Gapurova, O.U.; Khaydarov, R.R.

    2004-01-01

    Full text: One of possible method of realization of the terrorist acts is using gases and liquids, which easily permeate through the constructive materials of walls, floor, ceiling, roof, etc. into buildings by the capillary action of the pores. Toxic volatile organic compounds, organic and inorganic gases, radioactive elements, especially, which emits alpha particles can be used as the dangerous substances. Increased ventilation may help in removing the gases, but can actually increase the gases level by increasing the suction through the pores of concrete. If the gases and liquids are soluble in water and are easily volatilized from it, they can also get by groundwater up to underground structures and penetrate inside through opening and pores in concrete or pushed by hydrostatic pressure. The purpose of this work is creating a method to reduce concentration of toxic and radioactive gases in homes, buildings, underground buildings, tunnels, hangars, garages, bomb shelters, etc. The most effective method to prevent penetration of radionuclides into premises of buildings and underground structures through walls, roofs, floors is using special chemicals, which seal micropores inside the construction materials against gases. Worked out chemicals which consist of blend of polymeric compounds are described in the paper. Radioactive gases permeability in constructive materials after treatment by chemicals was studied. Influence of types of cement, sand and gypsum, preliminary treatment by different chemicals, different types of polymeric compounds, time between treatments, moisture of materials, time between preparation of chemicals and treatment of materials (aging of chemicals), time between treatment of concrete and testing (aging of treated concrete) were examined. Experiments have shown that our method allows reducing the coefficient of gas permeability 200 - 400 times

  4. Four bars inn; Four bars inn

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, T. [National Defense Academy, Kanagawa (Japan)

    1999-05-15

    The name Four Bars Inn puns on four drinking bars and four bars on a musical score. It is a public house sited on the busy St. Mary Street, Cardiff, England. During my stay in that town, I often attended the regular jam session that opened at the bar at nine o`clock every Monday evening. A jam session is an event in which any amateur player, and a professional artist occasionally, is allowed to come on the stage freely and to play jazz, the participation fee as low as 300-yen. It is an occasion that provides a friendly meeting of man and woman, young and old, everyone carrying a pint of ale. Senior people happily talking to young ones aged like their grandchildren certainly presents a heart-warming scene, which we scarcely encounter in Japan. The affection that the British entertain toward their domestic furnishings relayed down through many a generation may lead to their respect for senior citizens. I heartily look forward detecting like scenes some day at drinking spots in Japan where the consumption-happy days are over. (NEDO)

  5. Development of an Assessment Method for Building Materials Under Euratom Scope.

    Science.gov (United States)

    de With, Govert

    2017-11-01

    In 2013, the European Commission published its basic safety standards for protection against the dangers arising from exposure to ionizing radiation (Council Directive 2013/59/Euratom)-also known as EU-BSS. As a result, the use of raw materials with potentially elevated activity concentrations such as fly ash, phosphogypsum, and slags will now fall under EU-BSS scope when applied in building materials. In light of this new policy, a variety of tools are available to assess compliance with the 1-mSv y reference level for building materials. At the heart of these tools is a gamma-spectrometric determination of the naturally occurring radionuclides Ra, Th, and K in the material of concern. As a large number of construction products contain a certain amount of the raw material that falls under the scope of the EU regulation, this policy will lead to substantial measurement of building materials that pose little radiation risk. For this reason, a method is developed to enable assessment against the 1-mSv value not on the basis of gamma-spectrometric analysis but rather based on the product's material composition. The proposed method prescribes a maximum permitted content of raw materials with potentially elevated activity concentrations in terms of a weight percentage of the end product, where the raw materials of concern are defined as those listed in Annex XIII of the EU-BSS. The permitted content is a function of the product's surface density. Therefore, a product with a low surface density of up to 25 kg m can consist of nearly 100% raw materials with potentially elevated activity concentrations, and this percentage drops to around 15% for products with a surface density of around 500 kg m. Building materials that comply with these requirements on product composition are exempt from testing, while products that do not comply must perform regular gamma-spectrometric analysis. A full validation and testing of the method is provided. In addition, the paper discusses

  6. Building Materials, Ionizing Radiation and HBIM: A Case Study from Pompei (Italy

    Directory of Open Access Journals (Sweden)

    Pasquale Argenziano

    2018-01-01

    Full Text Available This paper presents a different point of view on the conservation of the built heritage, adding ionizing radiation to the most well-known digital documentation dataset. Igneous building materials characterize most of the built heritage in the Campania region, and in a large part of southern Italy. The ionizing radiations proceeding from these materials can produce stochastic biological effects on the exposed living beings. The research team designed and tested a technical-scientific protocol to survey and analyse this natural phenomenon in association with the use of geological material for building purposes. Geographical Information Systems (GISs, City Information Modelling (CIM, and Building Information Modelling (BIM are the digital tools used to manage the construction entities and their characteristics, and then to represent the thematic data as false-colour images. The emission spectra of fair-faced or plastered materials as a fingerprint of their nature is proposed as a non-invasive method. Due to both the huge presence of historical buildings and an intense touristic flow, the main square of Pompei has been selected as a study area.

  7. Uranium concentration in building materials used in the central region of Egypt

    International Nuclear Information System (INIS)

    Higgy, R.H.; El-Tahawy, M.S.; Ghods, A.

    1997-01-01

    Within a radiological survey of the building materials used in the urban dwellings in the central region of Egypt, the uranium concentration in 80 representative samples of raw and fabricated building materials are determined using laser fluorimetry technique. For 40 samples from the studied raw building materials of sand, gravel, gypsum, lime-stone, granite and marble the determined uranium concentration values range between 0.3 and 3.6 ppm for all these samples except for one type of granite having the corresponding value of 7.8 ppm. For 37 samples from studied fabricated building materials of normal cement, clay brick, sand brick, tiles and ceramic plates the determined uranium concentration values range from 0.5 to 3.4 ppm. The corresponding values for three types of iron cement are 3.1, 6.1 and 9.3 ppm. The radium-226 content (of the uranium-238 series) in the same samples was determined using high resolution gamma-ray spectrometers based on HP Ge-detectors. The data obtained by the two techniques are in good agreement for the majority of the studied samples. (author)

  8. Derivation of asymptotic Vertical BarΔIVertical Bar = 1/2 rule

    International Nuclear Information System (INIS)

    Terasaki, K.; Oneda, S.

    1982-01-01

    It is argued that the origin of the observed approximate Vertical BarΔIVertical Bar = 1/2 rule is the presence of an asymptotic Vertical BarΔIVertical Bar = 1/2 rule which exists among certain two-body hadronic weak matrix elements, involving especially the ground-state hadrons

  9. First Measurement of σ(gg → t$\\bar{t}$)/σ(p$\\bar{p}$ → t$\\bar{t}$)

    Energy Technology Data Exchange (ETDEWEB)

    Alamdari, Shabnaz Pashapour [Univ. of Toronto, ON (Canada)

    2008-01-01

    The work presented here is the first measurement of the fraction of top quark pair production through gluon-gluon fusion. We use an integrated luminosity of 0.96 ± 0.06 fb-1 of p{bar p} collisions at √s of 1.96 TeV collected by the CDF II detector. We select t$\\bar{t}$ candidates by identifying a high-pT lepton candidate, a large missing ET as evidence for a neutrino candidate and at least four high ET jets, one of which has to be identified as originating from a b quark. The challenge is to discriminate between the two production processes with the identical final state, gg → t$\\bar{t}$ and q$\\bar{p}$ → t$\\bar{t}$. We take advantage of the fact that compared to a quark, a gluon is more likely to radiate a low momentum gluon and therefore, one expects a larger number of charged particles with low pT in a process involving more gluons. Given the large uncertainties associated with the modeling of the low pT charged particle multiplicity, a data-driven technique was employed. Using calibration data samples, we show there exists a clear correlation between the observed average number of low pT charged particles and the average number of gluons involved in the production process predicted by Monte Carlo calculations. Given the correlation, one can identify low pT charged particle multiplicity distributions associated with specific average number of gluons. The W + 0 jet sample and dijets sample with leading jet ET in the range of 80-100 GeV are used to find no-gluon and gluon-rich low p{sub T} charged particle multiplicity distributions, respectively. Using these no-gluon and gluon-rich distributions in a likelihood fit, we find the fraction of gluon-rich events in t{bar t} candidates. This fraction has contributions from the signal and background events. Taking into account these contributions and the gg → t$\\bar{t}$ and q$\\bar{q}$ → t$\\bar

  10. Fungal Microbiomes Associated with Green and Non-Green Building Materials.

    Science.gov (United States)

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J; Yermakov, Mikhail; Reponen, Tiina

    2017-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks.

  11. Use of moisture probes in building materials industry

    International Nuclear Information System (INIS)

    Hanke, L.

    A neutron probe to be built in the production line was developed for monitoring moisture content of bulk materials and suspensions of all types in the building material industry. The probe is dust- and external moisture-protected. The probe measuring capacity is about 100 l, the mean measurement error is +- 0.008 g water per 1 cm 3 , which for fine sand represents an error of +- 0.3%. The probe is connected via a cable to a measuring instrument showing an electrical value proportional to the measured material moisture content. (Z.M.)

  12. New concrete materials technology for competitive house building

    OpenAIRE

    Peterson, Markus

    2003-01-01

    The research project aims at investigating the potential of new concrete materials technology (high performance concrete, HPC and self-compacting concete, SCC) for competitive design, production and function of structural frames of cast in-situ concrete in house building.

  13. Safety distance for preventing hot particle ignition of building insulation materials

    OpenAIRE

    Jiayun Song; Supan Wang; Haixiang Chen

    2014-01-01

    Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle temperature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere ...

  14. Photon activation analysis on building materials

    International Nuclear Information System (INIS)

    Schulze, D.; Heller, W.; Kupsch, H.

    1988-01-01

    With regard to the planned construction of a new microtron, first investigations on raw materials for the aerated concrete production have been done to clear up the possibilities of photon activation analysis (PAA). Irradiations have been partly carried out on linear accelerators with a self-developed moveable activation equipment. PAA results of qualitative and quantitative elemental analysis are described. The detection of chlorine is important for studying the oversalting processes in buildings. (author)

  15. The analysis of radon diffusion through the buildings materials

    International Nuclear Information System (INIS)

    Grujic, S.; Radukin-Kosanovic, A.; Bikit, I.; Mrdja, D.; Forkapic, S.

    2009-01-01

    Since people most of the time spent indoors it is of great importance to analyse the radon diffusion through different types of materials, in order to prevent the increase of its concentration in the interior of buildings. The paper examined six different types of materials used in construction, mainly in the insulating purposes, in order to determine the material, or a combination of appropriate type and thickness of material which have a smaller value of diffusion coefficient of radon. (author) [sr

  16. Static, Fire and Fatigue Tests of Ultra High-Strength Fibre Reinforced Concrete and Ribbed Bars

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard; Heshe, Gert

    2001-01-01

    A new building system has been developed during the last 10 years. This new system consists of a column / slab system with 6 x 6 m distance between the columns. The slabs are precast concrete elements of size 2.9 x 5.9 m connected through joints of ultra high strength fibre reinforced concrete...... - Densit Joint Cast ®. Also the connections between the columns and the slabs are made of this very strong concrete material. The paper describes some of the static tests carried out as well as some fire tests. Further, 2 chapters deal with some fatigue tests of the reinforcing bars as well as some fatigue...

  17. Radon exhalation from building materials for decorative use

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jing, E-mail: jing.chen@hc-sc.gc.c [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada); Rahman, Naureen M.; Atiya, Ibrahim Abu [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada)

    2010-04-15

    Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m{sup -2} d{sup -1}. Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m{sup -2} d{sup -1} for slate tiles and 42 Bq m{sup -2} d{sup -1} for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m{sup -2} d{sup -1}, it would contribute only 18 Bq m{sup -3} to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange.

  18. Study of building materials impregnation processes by quasi-real-time neutron radiography

    International Nuclear Information System (INIS)

    Nemec, T.; Rant, J.; Apih, V.; Glumac, B.

    1999-01-01

    Neutron radiography (NR) is a useful non-destructive method for determination of hydrogen content in various building and technical materials. Monitoring of transport processes of moisture and hydrogenous liquids in porous building materials is enabled by fast, quasi-real-time NR methods based on novel imaging plate neutron detectors (IP-NDs). Hydrogen content in the samples is determined by quantitative analysis of measured profiles of neutron attenuation in the samples. Detailed description of quantitative NR method is presented by the authors in another accompanying contribution at this conference. Deterioration of building materials is originated by different processes that all require presence of water therefore it is essential to limit or prevent the transport of water through the porous material. In this presentation, results of a study of clay brick impregnation by silicone based hydrophobic agents will be presented. Quantitative results obtained by NR imaging successfully explained the processes that occur during the impregnation of porous materials. Efficiency of hydrophobic treatment was quantitatively evaluated

  19. Assessment of the material properties of a fire damaged building

    OpenAIRE

    Oladipupo OLOMO; Olufikayo ADERINLEWO; Moses TANIMOLA; Silvana CROOPE

    2012-01-01

    This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive) tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concr...

  20. Investigation of natural radioactivity in building materials commonly used in Sudan

    International Nuclear Information System (INIS)

    Mohamed, S. E. A.

    2010-12-01

    Investigation of radioactivity content of commonly used building materials in Khartoum State is carried out during the year 2010. A total of 25 samples of natural and manufactured materials from different types of building materials have been collected and measured using gamma spectrometry system. The activity concentrations have been determined for radium (2''2''6''Ra), thorium (''2'3''2Th) and potassium (''4''0K) in each sample. The concentrations of radium (represents activity of uranium and its decay series) have been found to rang from 2.8 Bq/kg in (gravel) to 108.2 Bq/kg (porcelain), thorium between 48 and 302 Bq/kg and the potassium concentration varies between 82.3 Bq/kg in (gravel) to 1413.3 Bq/kg in (marble). The activity index has also been calculated and found that it is less than 1 (mean value of 0.77 range between 0.33 and 1.97), and less than 6 for surface materials. The results have been compared with European previous studies. It is concluded that the measured radioactivity of building materials are within acceptable levels and dose not poses any risk from radiation protection point of view. (Author)

  1. The Use Potential of Traditional Building Materials for the Realization of Structures by Modern Methods of Construction

    Science.gov (United States)

    Spišáková, Marcela; Mačková, Daniela

    2015-11-01

    The sustainable building has taken off in recent years with many investors looking for new and different methods of construction. The traditional building materials can be made out of natural materials, while others can help to lower energy costs of the occupant once built. Regardless of what the goal of the investor is, traditional building materials and their use is on the rise. The submitted paper provides an overview of natural building materials and possible modern building systems using these construction materials. Based on the questionnaire survey is defined the use potential of traditional building materials for the realization of the construction by methods of modern constructions and then are determined the drivers and barriers of traditional materials through using modern methods of construction. Considering the analysis of the achieved results, we can identify the gaps in the construction market in Slovakia and also to assess the perception of potential investors in the field of traditional building materials use, which is the purpose of submitted paper.

  2. The He+H-bar → Hep-bar +e+ rearrangement

    International Nuclear Information System (INIS)

    Todd, Allan C.; Armour, Edward A.G.

    2006-01-01

    In this paper, we present a summary of our work in progress on calculating cross sections for the He+H-bar ->Hep-bar +e + rearrangement process in HeH-bar scattering. This has involved a study of the system Hep-bar within the Born-Oppenheimer (BO) approximation using the Rayleigh-Ritz variational method. This work has been reported in [A.C. Todd, E.A.G. Armour, J. Phys. B 38 (2005) 3367] and is summarised here. Similar calculations are in progress for the He+H-bar entrance channel. We intend to use the entrance channel and rearrangement channel wave functions to obtain the cross sections for the rearrangement using the distorted wave Born approximation T-matrix method described elsewhere in these proceedings [E.A.G. Armour, S. Jonsell, Y. Liu, A.C. Todd, these Proceedings, doi:10.1016/j.nimb.2006.01.049

  3. EXPERIMENTAL DEVELOPMENT OF BIO-BASED POLYMER MATRIX BUILDING MATERIAL AND FISH BONE DIAGRAM FOR MATERIAL EFFECT ON QUALITY

    Directory of Open Access Journals (Sweden)

    Asmamaw Tegegne

    2014-06-01

    Full Text Available These days cost of building materials are continuously increasing and the conventional construction materials for this particular purpose become low and low. The weight of conventional construction materials particularly building block is heavy and costly due to particularly cement. Thus, the objective of this paper is to develop an alternative light weight, high strength and relatively cost effective building material that satisfy the quality standard used in the country. A bio-based polymer matrix composite material for residential construction was experimentally developed. Sugar cane bagasse, thermoplastics (polyethylene g roup sand and red ash were used as materials alternatively. Mixing of the additives,melting of the hermoplastics, molding and curing (dryingwere the common methods used on the forming process of the samples. Mechanical behavior evaluation (testing of the product was carried out. Totally 45 specimens were produced and three replicate tests were performed per each test type. Quality analysis was carried out for group B material using Ishikawa diagram. The tensile strength of group A specimen was approximately 3 times greater than that of group B specimens. The compression strength of group A specimens were nearly 2 times greater than group B. Comparing to the conventional building materials(concert block and agrostoneproduced in the country, which the compression strength is 7Mpa and 16Mpa respectively, the newly produced materials show much better results in which Group A is 25.66 Mpa and group B is 16.66 Mpa. energy absorption capacity of group A specimens was approximately 3 times better than that of group B. Water absorption test was carried out for both groups and both showed excellent resistivity. Group A composite material specimens, showed better results in all parameters.

  4. Plastic instability criteria for necking of bars and ballooning of tubes

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    Plastic instability criteria applicable to the necking of bars under tension and to the ballooning of thin-wall tubes under internal pressure were derived from basic geometrical considerations. In the case of bars under tension, plastic instability prevails if the percentage rate of decrease of the cross-sectional area in the (potential) necking region is greater than that in the bulk of the bar. When the loading characteristics and constitutive equation were taken into account, an instability criterion was deduced in terms of the stress, strain, strain rate, temperature and material properties. This criterion was shown to be reducible to the classical Considere condition for non-rate-sensitive materials. For rate-sensitive materials under isothermal conditions, a simple relationship among the strain, the strain-hardening and strain-rate-sensitivity parameters was also obtained. It was found that the uniform elongation decreases with increasing strainrate sensitivity, a conclusion which is in agreement with experimental measurements and some previous investigations. Finally, the relationship between the high strainrate sensitivity and the superplastic ductility of a material was explained without invoking any non-hardening arguments. (Auth.)

  5. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  6. Measurement of the asymmetry parameter for the decay $\\bar\\Lambda \\to \\bar p\\pi^+$

    OpenAIRE

    BES collaboration

    2009-01-01

    Based on a sample of $58\\times10^6J/\\psi$ decays collected with the BESII detector at the BEPC, the $\\bar\\Lambda$ decay parameter $\\alpha_{\\bar\\Lambda}$ for $\\bar\\Lambda\\to \\bar p \\pi^+$ is measured using about 9000 $J/\\psi\\to\\Lambda\\bar\\Lambda\\to p \\bar p \\pi^+\\pi^-$ decays. A fit to the joint angular distributions yields $\\alpha_{\\bar\\Lambda}(\\bar\\Lambda\\to \\bar p\\pi^+)=-0.755\\pm0.083\\pm0.063$, where the first error is statistical, and the second systematic.

  7. Relation of historical quarrying, material utilization and performance on buildings in Eastern Finland

    Science.gov (United States)

    Luodes, Nike M.; Pirinen, Heikki

    2016-04-01

    Finland might seem to have lower stone heritage compared to other southern European countries, but it has been the main exporter of dimension stone to the majestic buildings that made St.Petersburg a recognized cultural heritage. In Finland, though, the stone seems undervalued. The only dramatic and predominant stone buildings are those of agencies and administrations located in the towns, where the stone has been used to impress and symbolize value. Romantic style used massive bossy stone in building's full height and created fine traditional carvings. Otherwise the communities have mainly built settlements in contact with the nature, with materials easily available and of low cost, following architectonical trends of the periods and producing interesting stone details. During the past years, research has been conducted on historical buildings interconnecting scientific and artistic approach to evaluate material durability and cultural relevance of the artifacts. Generally until mid 20th century the stone has been traditionally used massive for basements and walls. The materials still present good mechanical characteristics and most often the weathering level after hundreds of years of exposure had reached only the first millimeters from the curst. Instead the old methodology for deposit exploitation has left visible signs on the buildings. Some examples are visible from Kuopio. The exploitation of small, easy-to-reach surface deposits, even if planned by local experts, has affected quality and appearance of historical buildings. As an example the excavation of shallow quarries where also weathered crop was kept as a product has characterized the basement of the Niirala school that presents change in colors due to original material more than to weathering on site. Fissuring is also visible on a couple of blocks while marks on the rocks depict the old excavation method. Most often the deposits had been in the vicinities, frequently hidden by further construction

  8. A Study of (bar B)0 --> D(*)0 (bar K)(*)0 Decays

    International Nuclear Information System (INIS)

    Aubert, B.

    2004-01-01

    The authors presented evidence for the decay (bar B) 0 --> D* 0 (bar K) 0 as well as new measurements of the branching fractions for the decays (bar B) 0 --> D 0 (bar K) 0 and D 0 (bar K)* 0 . Their measurements are in agreement with the expectation derived from a cited reference and with previous measurements. They use the central value of their measurement for B((bar B) 0 --> (bar D) 0 K* 0 ) and obtain τ < 0.8 at the 90% C.L. from a central value of τ = 0.4 ± 0.2 (stat.) ± 0.2 (syst.). The main contribution to the systematic uncertainty is from the estimated peaking background since most systematic uncertainties on the branching fractions cancel in the ratio

  9. Materials, used in historical buildings, analysis methods and solutions puroposals

    Science.gov (United States)

    Döndüren, M. Sami; Sişik, Ozlem

    2017-10-01

    Most of historical buildings are built with pressure principle and have the characteristics of masonry structures. Therefore, the structure components of buildings are constituted bearing walls, columns, buttresses, vaults and domes. Natural stone, cut stone, rubble stone brick or alternate materials were used in the bearing elements. Brick-dust and mortar with more binding feature were used as combination elements. In time, some problems were occurred in used materials and in structure as a result of various effects. Therefore, it is necessary to apply various applications in framework of repair and strengthening of buildings. In this study, restoration of historic buildings and the control of the adequacy of the bearing systems as one most important part of structure were examined. For this purpose, static analysis of Edirne-Merkez Demirtaş (Timurtaş) mosque located in Edirne was tested. Testes could give suggestions and be applied if buildings needed be revealed. The structure was modelled with finite element model of sap2000 package program and the forces generated under various loads and stresses, the occurred deformation due to that, overflow of allowable stress of this deformation and stresses were investigated. As the results of this study can be note that the maximum compressive stress at the construction is calculated as 1.1 MPa.

  10. Materials, used in historical buildings, analysis methods and solutions puroposals

    Directory of Open Access Journals (Sweden)

    Döndüren M.Sami

    2017-01-01

    Full Text Available Most of historical buildings are built with pressure principle and have the characteristics of masonry structures. Therefore, the structure components of buildings are constituted bearing walls, columns, buttresses, vaults and domes. Natural stone, cut stone, rubble stone brick or alternate materials were used in the bearing elements. Brick-dust and mortar with more binding feature were used as combination elements. In time, some problems were occurred in used materials and in structure as a result of various effects. Therefore, it is necessary to apply various applications in framework of repair and strengthening of buildings. In this study, restoration of historic buildings and the control of the adequacy of the bearing systems as one most important part of structure were examined. For this purpose, static analysis of Edirne-Merkez Demirtaş (Timurtaş mosque located in Edirne was tested. Testes could give suggestions and be applied if buildings needed be revealed. The structure was modelled with finite element model of sap2000 package program and the forces generated under various loads and stresses, the occurred deformation due to that, overflow of allowable stress of this deformation and stresses were investigated. As the results of this study can be note that the maximum compressive stress at the construction is calculated as 1.1 MPa.

  11. The Use Potential of Traditional Building Materials for the Realization of Structures by Modern Methods of Construction

    Directory of Open Access Journals (Sweden)

    Spišáková Marcela

    2015-11-01

    Full Text Available The sustainable building has taken off in recent years with many investors looking for new and different methods of construction. The traditional building materials can be made out of natural materials, while others can help to lower energy costs of the occupant once built. Regardless of what the goal of the investor is, traditional building materials and their use is on the rise. The submitted paper provides an overview of natural building materials and possible modern building systems using these construction materials. Based on the questionnaire survey is defined the use potential of traditional building materials for the realization of the construction by methods of modern constructions and then are determined the drivers and barriers of traditional materials through using modern methods of construction. Considering the analysis of the achieved results, we can identify the gaps in the construction market in Slovakia and also to assess the perception of potential investors in the field of traditional building materials use, which is the purpose of submitted paper.

  12. Damage of reactor buildings occurred at the Fukushima Daiichi accident. Focusing on sequence leading to hydrogen explosions

    International Nuclear Information System (INIS)

    Naito, Masanori

    2011-01-01

    Fukushima Daiichi accident discharged enormous radioactive materials confined inside into the environment due to hydrogen explosions occurred at reactor buildings and forced many people to live the refugee life. This article described overview of Great East Japan Earthquake, specifications of Fukushima Daiichi nuclear power plants, sequence of plant status after earthquake occurrence and computerized simulation of plant behavior of Unit 1 leading to core melt and hydrogen explosion. Simulation results with estimated and assumed conditions showed water level decreased to bottom of reactor core after 4 hrs and 15 minutes passed, core melt started after 6 hrs and 49 minutes passed, failure of core support plate after 7 hrs and 18 minutes passed and through failure of penetration at bottom of pressure vessel after 7 hrs and 25 minutes passed. Hydrogen concentration at operating floor of reactor building of Unit 1 would be 15% accumulated and the pressure would amount to about 5 bars after hydrogen explosion if reactor building did not rupture with leak-tight structure. Since reactor building was not pressure-proof structure, walls of operating floor would rupture before 5 bars attained. (T. Tanaka)

  13. The Effect of Mechanical Load on the Thermal Conductivity of Building Materials

    Directory of Open Access Journals (Sweden)

    J. Toman

    2000-01-01

    Full Text Available The effect of mechanical load on the thermal conductivity of building materials in the design of envelope parts of building structures is studied. A typical building material is chosen in the practical investigation of this effect, namely the cement mortar. It is concluded that in the range of hygroscopic moisture content, lower levels of mechanical load, typically up to 90 % of compressive strength (CS, are not dangerous from the point of view of worsening the designed thermal properties, but in the overhygroscopic region, the load as low as 57 % of CS may be dangerous. The higher levels of loading are found to be always significant because they lead to marked increase of thermal conductivity which is always a negative information for a building designer.

  14. Defining the formative discharge for alternate bars in alluvial rivers

    Science.gov (United States)

    Redolfi, M.; Carlin, M.; Tubino, M.; Adami, L.; Zolezzi, G.

    2017-12-01

    We investigate the properties of alternate bars in long straight reaches of channelized streams subject to an unsteady, irregular flow regime. To this aim we propose a novel integration of a statistical approach with the analytical perturbation model of Tubino (1991) which predicts the evolution of bar properties (namely amplitude and wavelength) as consequence of a flood. The outcomes of our integrated modelling approach are probability distribution of the bar properties, which depend essentially on two ingredients: (i) the statistical properties of the flow regime (duration, frequency and magnitude of the flood events, and (ii) the reach-averaged hydro-geomorphic characteristics of the channel (bed material, channel gradient and width). This allows to define a "bar-forming" discharge value as the flow value which would reproduce the most likely bar properties in a river reach under unsteady flow. Alternate bars are often migrating downstream and growing or declining during flood events. The timescale of bar growth and migration is often comparable with the duration of the floods: consequently, bar properties such as height and wavelength do not respond instantaneously to discharge variations (i.e. quasi-equilibrium response) but may depend on previous flood events. Theoretical results are compared with observations in three Alpine, channelized gravel bed rivers with encouraging outcomes.png" class="documentimage" >

  15. The Effect of Anisotropy of Building Materials on the Moisture Transfer

    Directory of Open Access Journals (Sweden)

    J. Drchalová

    2000-01-01

    Full Text Available The effect of anisotropy of building materials on the moisture transfer in the design of envelope parts of building structures is studied. Two typical fibre containing plate building materials produced in the Czech Republic, Dekalux and Dekalit P, are chosen for the demonstration of this effect. Experimental results show that while for lighter Dekalit P, an order of magnitude difference in the moisture diffusivities k for the two basic orientations, i.e. along and across the plate, is observed, for the heavier Dekalux the differences in k are within the errorbar of the experimental method. As follows from the experimental results, compacting of surface layers of the plates of light fibred materials is very favorable from the point of view of moisture penetration but one should keep in mind that any local damage of the surface layer can result in a considerably faster moisture transfer in the direction along the plate.

  16. Natural radionuclides in ceramic building materials available in Cuddalore district, Tamil Nadu, India.

    Science.gov (United States)

    Rajamannan, B; Viruthagiri, G; Suresh Jawahar, K

    2013-10-01

    The activity concentrations of radium, thorium and potassium can vary from material to material and they should be measured as the radiation is hazardous for human health. Thus, studies have been planned to obtain the radioactivity of ceramic building materials used in Cuddalore District, Tamilnadu, India. The radioactivity of some ceramic materials used in this region has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyzer. The specific activities of (226)Ra, (232)Th and (40)K, from the selected ceramic building materials, were in the range of 9.89-30.75, 24.68-70.4, 117.19-415.83 Bq kg(-1), respectively. The radium equivalent activity, absorbed gamma dose rate (D) and annual effective dose rate associated with the natural radionuclides are calculated to assess the radiation hazards of the natural radioactivity in the ceramic building materials. It was found that none of the results exceeds the recommended limit value.

  17. Luminescence dosimetry using building materials and personal objects

    International Nuclear Information System (INIS)

    Goeksu, H. Y.; Bailiff, I. K.

    2006-01-01

    There is a growing public awareness of the risk of accidental radiation exposure due to ageing nuclear power installations, illegal dumping of nuclear waste and terrorist activities, and of the consequential health risks to populations in addition to social and economic disturbance extending beyond national boundaries. In the event of catastrophic incidents where no direct radiation monitoring data are available, the application of retrospective dosimetry techniques such as luminescence may be employed with materials from the immediate environment to confirm values of cumulative gamma dose to compare with or augment computational modeling calculations. Application of the method to post-Chernobyl studies has resulted in the development of new procedures using fired building materials with the capability to measure cumulative doses owing to artificial sources of gamma radiation as low as 20 mGy. Combined with Monte Carlo simulations of photon transport, values of cumulative dose in brick can be presented in a form suitable for use in dose-reconstruction efforts. Recent investigations have also shown that certain types of cementitious building material, including concrete, mortar and plaster, and personal objects in the form of telephone cards containing microchips and dental ceramics have the potential to be used for retrospective dosimetry. Examples of the most recent research concerning new materials and examples of application to sites in the Former Soviet Union are discussed. (authors)

  18. Determination of Natural Radioactivity in Building Materials with Gamma Spectrometry

    International Nuclear Information System (INIS)

    Turki, Faten

    2010-01-01

    In the setting of this work, the natural radioactivity of building materials used in Tunisia has been measured by gamma spectrometry. These products have been ground and dried at 100 degree for 12 h. Then, they have been homogenized, weighed and finally conditioned during 23 days in order to reach the radioactive equilibrium. The measures' results proved that all building materials studied except bauxite and the ESC clay, possess doses lower than the acceptable limit (1 mSv.an-1). However, the possibility of reinforcement of the natural radioactivity in some industry of building can exist. To insure that the cement, the most used in the world, don't present any radiological risk on the workers' health, a survey has been made in the factory - les Ciments de Bizerte - about its manufacture's process. The results of this survey showed that this product can be considered like a healthy product.

  19. The Carnegie-Irvine Galaxy Survey. V. Statistical Study of Bars and Buckled Bars

    Science.gov (United States)

    Li, Zhao-Yu; Ho, Luis C.; Barth, Aaron J.

    2017-08-01

    Simulations have shown that bars are subject to a vertical buckling instability that transforms thin bars into boxy or peanut-shaped structures, but the physical conditions necessary for buckling to occur are not fully understood. We use the large sample of local disk galaxies in the Carnegie-Irvine Galaxy Survey to examine the incidence of bars and buckled bars across the Hubble sequence. Depending on the disk inclination angle (I), a buckled bar reveals itself as either a boxy/peanut-shaped bulge (at high I) or as a barlens structure (at low I). We visually identify bars, boxy/peanut-shaped bulges, and barlenses, and examine the dependence of bar and buckled bar fractions on host galaxy properties, including Hubble type, stellar mass, color, and gas mass fraction. We find that the barred and unbarred disks show similar distributions in these physical parameters. The bar fraction is higher (70%-80%) in late-type disks with low stellar mass (M * 1010.5 M ⊙), and decreases with higher gas mass ratio. These results suggest that bars are more difficult to grow in massive disks that are dynamically hotter than low-mass disks. However, once a bar forms, it can easily buckle in the massive disks, where a deeper potential can sustain the vertical resonant orbits. We also find a probable buckling bar candidate (ESO 506-G004) that could provide further clues to understand the timescale of the buckling process.

  20. Evaluation of alternative dowel bar materials and coatings : executive summary report.

    Science.gov (United States)

    2011-01-01

    The inclusion of steel dowel bars to transfer forces across sawed or formed transverse joints from one concrete pavement slab to another while permitting expansion and contraction movements of the concrete has been a basic design practice in most U.S...

  1. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  2. The Carnegie-Irvine Galaxy Survey. V. Statistical Study of Bars and Buckled Bars

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhao-Yu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Science, 80 Nandan Road, Shanghai 200030 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Barth, Aaron J., E-mail: lizy@shao.ac.cn [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA, 92697-4575 (United States)

    2017-08-10

    Simulations have shown that bars are subject to a vertical buckling instability that transforms thin bars into boxy or peanut-shaped structures, but the physical conditions necessary for buckling to occur are not fully understood. We use the large sample of local disk galaxies in the Carnegie-Irvine Galaxy Survey to examine the incidence of bars and buckled bars across the Hubble sequence. Depending on the disk inclination angle ( i ), a buckled bar reveals itself as either a boxy/peanut-shaped bulge (at high i ) or as a barlens structure (at low i ). We visually identify bars, boxy/peanut-shaped bulges, and barlenses, and examine the dependence of bar and buckled bar fractions on host galaxy properties, including Hubble type, stellar mass, color, and gas mass fraction. We find that the barred and unbarred disks show similar distributions in these physical parameters. The bar fraction is higher (70%–80%) in late-type disks with low stellar mass ( M {sub *} < 10{sup 10.5} M {sub ⊙}) and high gas mass ratio. In contrast, the buckled bar fraction increases to 80% toward massive and early-type disks ( M {sub *} > 10{sup 10.5} M {sub ⊙}), and decreases with higher gas mass ratio. These results suggest that bars are more difficult to grow in massive disks that are dynamically hotter than low-mass disks. However, once a bar forms, it can easily buckle in the massive disks, where a deeper potential can sustain the vertical resonant orbits. We also find a probable buckling bar candidate (ESO 506−G004) that could provide further clues to understand the timescale of the buckling process.

  3. Decays of Higgs bosons to bb-bar, ττ-bar, and cc-bar as signatures of supersymmetry and CP phases

    International Nuclear Information System (INIS)

    Ibrahim, Tarek; Nath, Pran

    2003-01-01

    The branching ratio of the lightest Higgs boson decay into bb(bar sign), ττ-bar and cc-bar is sensitive to supersymmetric effects. We include in this work the effects of CP phases on the Higgs boson decays. Specifically we compute the deviation of the CP phase dependent branching ratio from the standard model result. The analysis includes the full one loop corrections of fermion masses including CP phases involving the gluino, the chargino and the neutralino exchanges. The analysis shows that the supersymmetric effects with CP phases can change the branching ratios by as much as 100% for the lightest Higgs boson decay into bb(bar sign) and ττ-bar with similar results holding for the heavier Higgs boson decays. A detailed analysis is also given for the effects of CP phases on the Higgs boson decays into cc-bar. The deviations of R b/τ and R b/c from the standard model result are investigated as a possible signature of supersymmetry and CP effects. Thus a measurement of the decays of the Higgs boson into bb-bar, ττ-bar and cc-bar may provide important clues regarding the existence of supersymmetry and CP phases

  4. Deployable bamboo structure project: A building life-cycle report

    Science.gov (United States)

    Firdaus, Adrian; Prastyatama, Budianastas; Sagara, Altho; Wirabuana, Revian N.

    2017-11-01

    Bamboo is considered as a sustainable material in the world of construction, and it is vastly available in Indonesia. The general utilization of the material is increasingly frequent, however, its usage as a deployable structure-a recently-developed use of bamboo, is still untapped. This paper presents a report on a deployable bamboo structure project, covering the entire building life-cycle phase. The cycle encompasses the designing; fabrication; transportation; construction; operation and maintenance; as well as a plan for future re-use. The building is made of a configuration of the structural module, each being a folding set of bars which could be reduced in size to fit into vehicles for easy transportation. Each structural module was made of Gigantochloa apus bamboo. The fabrication, transportation, and construction phase require by a minimum of three workers. The fabrication and construction phase require three hours and fifteen minutes respectively. The building is utilized as cafeteria stands, the operation and maintenance phase started since early March 2017. The maintenance plan is scheduled on a monthly basis, focusing on the inspection of the locking mechanism element and the entire structural integrity. The building is designed to allow disassembly process so that it is reusable in the future.

  5. Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars

    Energy Technology Data Exchange (ETDEWEB)

    Lea, Lewis J., E-mail: ll379@cam.ac.uk; Jardine, Andrew P. [SMF Fracture and Shock Physics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-02-15

    Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion, and faster achievement of force equilibrium. Currently, these advantages are gained at the expense of all information about the striker impacted specimen face, preventing the experimental determination of force equilibrium, and requiring approximations to be made on the sample deformation history. In this paper, we discuss an experimental method and complementary data analysis for using photon Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system. We discuss extracting velocity and force measurements, and the precision of measurements. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains in fully dense metals, and improvement for all strains in slow and non-equilibrating materials.

  6. Measurements of radon exhalation from building materials under model climate conditions

    International Nuclear Information System (INIS)

    Jann, O.; Schneider, U.; Koeppke, J.; Lehmann, R.

    2003-01-01

    The inhalation of 222 Rn (radon) is the most important reason for lung cancer as a result of smoking. The cause for enhanced radon concentration in the air of buildings is mostly the building ground. But also building products can lead to increased radon concentrations in indoor air when the products contain raw materials or residues with higher contents of 226 Ra (radium), especially in combination with low air exchange rates. For a realistic estimation of radon concentrations it is helpful to perform emission tests on the basis of emission test chambers. Emissions test chambers are already used successfully for the measurement of volatile organic compounds (VOC) emitted from different materials and products. The analysis of radon in air was performed with a test device based on the principle of ionisation chamber (ATMOS 12 D). It could be show that radon concentrations emitted from building materials can be determined reliably if certain boundary conditions such as temperature, relative humidity and especially area specific air flow rate are met. It was also shown that reduced area specific air flow rates or reduced air exchange rates lead to higher radon concentrations. It is remarkable that no conclusion can be drawn from the activity concentration of radium to the radon concentration in the air. Therefore in some cases much higher radon concentrations in air were determined that had been expected. Obviously diffusion within the material plays an important role. (orig.)

  7. Hygrothermal Material Properties for Soils in Building Science

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferred and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing

  8. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    International Nuclear Information System (INIS)

    Shrestha, Som S.; Biswas, Kaushik; Desjarlais, Andre O.

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined

  9. Annual mean effective dose of Slovak population due to natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Cabanekova, H.

    2006-01-01

    Natural radiation is the main source of exposure to humans. The basic raw materials, generally used in the construction industry, contain natural radionuclides which reflects their natural origin and the geological conditions at the site of production. In the last time, most building materials are manufactured from secondary raw materials with higher concentration of natural radionuclides. The estimation of the 226 Ra content as well as the 232 Th and 40 K concentration in building materials and products is essential for the evaluation of the external x-ray contribution to the exposure. The building materials with high value of 226 Ra coupled with pronounced porosity of the final products make them potential indoor Rn sources. It means that external exposure and part of inhalation dose from radon and its progeny inside of building is caused to the radiation from the primordial radionuclides pres ent in building materials and products and can increase the indoor natural radiation exposure. For keeping the population exposure as low as reasonably achievable is in the Slovak legislation the radioactive content of primordial radionuclides in building materials and products regulated and the maximum of specific activity is 370 Bq.kg-1 of radium equivalent activity and 120 Bq.kg-1 of 226 Ra. The Health ministry and Slovak metrological institute nominated the department of Radiation Hygiene of Slovak medical university to investigate regularly the content of natural radionuclides and also the radon emanation in samples of raw and secondary building materials and products used in Slovak building industry. In the framework of the screening of building materials and products there were analyzed over 3 000 samples. The natural radionuclides are assessed through their progeny photo peaks. The specific activity of nuclides is determined as weighted average of their photo peaks. The obtained results are corrected to the background distribution and to the self absorption in the

  10. A matrix in life cycle perspective for selecting sustainable materials for buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Abeysundara, U.G. Yasantha [Ministry of Education, Isurupaya, Battaramulla (Sri Lanka); Babel, Sandhya [Environmental Technology Program, School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathumthani 12121 (Thailand); Gheewala, Shabbir [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand)

    2009-05-15

    This paper presents a matrix to select sustainable materials for buildings in Sri Lanka, taking into consideration environmental, economic and social assessments of materials in a life cycle perspective. Five building elements, viz., foundations, roofs, ceilings, doors and windows, and floors are analyzed based on materials used for these elements. Environmental burdens associated with these elements are analyzed in terms of embodied energy and environmental impacts such as global warming, acidification and nutrient enrichment. Economic analysis is based on market prices and affordability of materials. Social factors that are taken into account are thermal comfort, interior (aesthetics), ability to construct quickly, strength and durability. By compiling the results of analyses, two building types with minimum and maximum impacts are identified. These two cases along with existing buildings are compared in a matrix of environmental, economic and social scores. Analysis of the results also indicates need for higher consideration of environmental parameters in decision-making over social and economic factors, as social and economic scores do not vary much between cases. Hence, this matrix helps decision-makers to select sustainable materials for buildings, meaningfully, and thus helps to move towards a more sustainable buildings and construction sector. (author)

  11. Methods of measurement and evaluation of natural radionuclide contents in buildings, at building sites, and in building materials and water

    International Nuclear Information System (INIS)

    1998-01-01

    The recommendations should serve as guidelines for specifying the scope of measurement and ways of evaluating the measuring results when satisfying the relevant requirements laid down by the Czech Atomic Act (Act No. 18/1997) and Decree No. 184/1997 in the field of natural radiation sources occurring in the environment without deliberate use. The document consists of the following sections: Methodology for the measurement and assessment of natural exposure of persons in dwelling rooms of buildings; Methodology of determination of the radon risk of building sites; Principles of systematic measurement and evaluation of natural radionuclide contents of building materials; and Principles of systematic measurement and evaluation of natural radionuclide contents of supplied water. (P.A.)

  12. Advanced FRP for flooring in buildings: a low carbon material application in the construction industry

    OpenAIRE

    Gao, Yijian

    2013-01-01

    Fibre-reinforced polymers (FRP) are building materials that permit both the improvement of long-term building performance and the simplification of the construction process, thanks to their high specific strength, low thermal conductivity, good environmental resistance, and ability to be formed into complex shapes. FRP materials are well-suited to fulfilling many building functions. By integrating traditionally separate building systems and layers into single function-integrated components, a...

  13. Elevated radon and thoron concentrations from natural radioactivity in building materials

    International Nuclear Information System (INIS)

    Smith, D.; Vivyurka, A.

    1980-01-01

    Radon levels in excess of 20 mWL were observed in an apartment building under construction in Elliot Lake. Tracer studies showed ventilation periods as long as 29 hours since the ventilation system of the building was not yet working. It was concluded that, once the contribution from thoron daughters was taken into account, the natural radioactivity of the concrete and other building materials was sufficient to produce the observed levels of radioactivity

  14. Indoor Pollution Emissions from Building Materials; Case of Study: Gypsum Boards Indoor Pollution Emissions from Building Materials; Case of Study: Gypsum Boards

    Directory of Open Access Journals (Sweden)

    Silverio Hernández Moreno

    2012-02-01

    Full Text Available Este reporte presenta una evaluación de las emisiones de materiales de construcción, al interior de los edificios que pueden causar daño a la salud de los usuarios durante la ocupación, pues emiten sustancias tóxicas al interior de los edificios. Este reporte presenta un caso de studio que evalúa a los tableros de yeso, frecuentemente usados en la construcción de muros divisorios y falsos plafones. La parte experimental se basa en un espacio tridimensional el cual simula un cuarto de cualquier tipo de edificación; por ejemplo: un salón de clases u oficina. Las condiciones ambientales al interior, tales como: ventilación, temperatura y humedad, afectan directamente las emisiones de sustancias químicas por los materiales de construcción. La metodología se basa en la comparación de materiales convencionales y materiales alternativos con distinta composición y similares características, en donde usamos métodos de prueba, condiciones ambientales, instrumentos y herramientas similares. Este es un estudio muy importante para entender los problemas relacionadoscon la contaminación ambiental, específicamente del aire y sus efectos en el interior de los edificios, y que se relaciona directamente con la salud pública e indirectamente con los sistemas constructivos y la selección de materiales en los edificios. Las pruebas concluyen que los materiales alternativos (de contenido reciclado son mejores que los tradicionales, porque reducen la contaminación del aire al interior de los edificios. This report presents an evaluation of emissions from indoor building materials that may cause health damage to the people who occupy the building, since these materials emit toxic chemicals into the air and indoor surfaces. This report presents a case study which evaluates Gypsum Boards, frequently used in the construction of dividing walls and ceilings. The experimental part of this report is based on a three-dimensional space that simulates a

  15. Exploring the Importance of Employing Bio and Nano-Materials for Energy Efficient Buildings Construction

    Directory of Open Access Journals (Sweden)

    Mona Naguib

    2017-03-01

    Full Text Available The continued and increasing use of ordinary building materials to house the ever-growing world population ensures growing contributions of carbon (C to the active carbon cycle through carbon dioxide (C02 emissions from combustion and chemical reactions in the raw material to the atmosphere. To minimize this, materials should be conserved, reduce their unnecessary use, produce them more benignly and make them last longer, recycle and reuse materials. Thus, paper will focus on exploring alternative building materials and systems that can be developed in order to balance atmospheric carbon dioxide.  It also presents the Bio-inspired architecture approach that embraces the eco-friendly practices of using Biomaterials and Nano-materials for sustainable dwelling construction through a number of examples that shows how a building can be strongly related to its site.

  16. Effect of UV on building materials in New Zealand

    International Nuclear Information System (INIS)

    Bennett, A.F.

    1993-01-01

    Building materials can be divided into two main classes; organic or polymeric based and inorganic materials. Inorganic materials are in most cases largely unaffected by UV radiation. Many common polymers have bonds sensitive to radiation in the UV region. Absorption of radiation of these wavelengths will lead to excitation of electrons which can lead to isomerisation, chain scissors, cross linking and free radical formation. It is worth noting that the effects of UV radiation are always acting synergistically with other environmental effects. (author). 4 refs., 2 tabs

  17. Potentially harmful secondary metabolites produced by indoor Chaetomium species on artificially and naturally contaminated building materials

    DEFF Research Database (Denmark)

    Dosen, Ina; Nielsen, Kristian Fog; Clausen, Geo

    2017-01-01

    , have been screened for, and thus detected in buildings. In this study, we used a liquid chromatography-high resolution mass spectrometry approach to screen both artificially and naturally infected building materials for all the Chaetomium metabolites described in the literature. Pure agar cultures were...... also investigated in order to establish differences between metabolite production in vitro and on building materials as well as comparison to non-indoor reference strains. On building materials six different chaetoglobosins were detected in total concentrations of up to 950 mg/m2 from C. globosum along...... with three different chaetoviridins/chaetomugilins in concentrations up to 200 mg/m2. Indoor Chaetomium spp. preferred wood-based materials over gypsum, both in terms of growth rate and metabolite production. Cochliodones were detected for the first time on all building materials infected by both C. globosum...

  18. Studying W‧ boson contributions in \\bar{B} \\rightarrow {D}^{(* )}{{\\ell }}^{-}{\\bar{\

    Science.gov (United States)

    Wang, Yi-Long; Wei, Bin; Sheng, Jin-Huan; Wang, Ru-Min; Yang, Ya-Dong

    2018-05-01

    Recently, the Belle collaboration reported the first measurement of the τ lepton polarization P τ (D*) in \\bar{B}\\to {D}* {τ }-{\\bar{ν }}τ decay and a new measurement of the rate of the branching ratios R(D*), which are consistent with the Standard Model (SM) predictions. These could be used to constrain the New Physics (NP) beyond the SM. In this paper, we probe \\bar{B}\\to {D}(* ){{\\ell }}-{\\bar{ν }}{\\ell } (ℓ = e, μ, τ) decays in the model-independent way and in the specific G(221) models with lepton flavour universality. Considering the theoretical uncertainties and the experimental errors at the 95% C.L., we obtain the quite strong bounds on the model-independent parameters {C}{{LL}}{\\prime },{C}{{LR}}{\\prime },{C}{{RR}}{\\prime },{C}{{RL}}{\\prime },{g}V,{g}A,{g}V{\\prime },{g}A{\\prime } and the specific G(221) model parameter rates. We find that the constrained NP couplings have no obvious effects on all (differential) branching ratios and their rates, nevertheless, many NP couplings have very large effects on the lepton spin asymmetries of \\bar{B}\\to {D}(* ){{\\ell }}-{\\bar{ν }}{\\ell } decays and the forward–backward asymmetries of \\bar{B}\\to {D}* {{\\ell }}-{\\bar{ν }}{\\ell }. So we expect precision measurements of these observables would be researched by LHCb and Belle-II.

  19. Study of the {rho}-bar, {beta}-bar and {lambda} parameters of a light-water reactor; Etude des parametres {rho}-bar, {beta}-bar et {lambda} d'une pile a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Riche, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-09-01

    The kinetic and perturbation equations are derived from the time-dependent transport equation. Kinetic equations depend only on the ratios a = {rho}-bar/{beta}-bar and b = {beta}-bar/{lambda}, which are definite, while the reactivity {rho}-bar, the delayed neutron fraction ({beta}-bar and the generation time {lambda} are expressed in terms of an arbitrary function I. The 'static' definitions of these parameters, which reduce kinetic problems to a set of purely term dependent equations, introduce the effective fraction {beta}-bar. One way of determining experimentally the ratio b is presented; it consists in analysing the power transient after a rapid variation of the reactivity, caused by the implosion of an empty glass-bull. A simple interpretation is proposed. The apparatus can be transformed easily into a reactimeter. The value of the effective delayed neutron fraction {beta}-bar has been determined by averaging the reactivity effects of a copper sheet through out the reactor core. Experimental results: b = {beta}-bar/{lambda} = 129 s{sup -1} and {beta}-bar 795.10{sup -5}, have been determined on a light-water moderated, enriched-uranium fuelled reactor. The calculated values of the effectiveness of delayed neutrons {gamma} {beta}-bar/{beta} 1.23 and the generation time {lambda} 59.10{sup -6}s agrees fairly well with the experimental results. (author) [French] Les equations de la cinetique et de la perturbation sont deduites de la theorie du transport, par l'intermediaire de la 'notion' d'importance des neutrons. La cinetique ne depend que des rapports a = {rho}-bar/{beta}-bar et b = {beta}-bar/{lambda}, qui sont parfaitement definis; par contre, la reactivite {rho}-bar, la proportion de neutrons retardes {beta}-bar et le temps de generation des neutrons prompts {lambda} s'expriment a l'aide d'une meme fonction arbitraire I. Les definitions 'statiques' de ces parametres, qui permettent de rendre compte de la cinetique par des equations dependant purement du

  20. Measurement of natural radioactivity and radiation hazards for some natural and artificial building materials available in Romania

    International Nuclear Information System (INIS)

    Muntean, L.E.; Moldovan, D.V.

    2014-01-01

    As building materials are known to be the second source regarding high radon concentrations, it is very important to determine the amounts of natural radionuclides from every building material in use. In the present study the most frequently used Romanian natural (sand, gypsum, limestone) and artificial (portland cement, lime, clinker, electrofilter powder, fly ash, cement-lime plaster mortar, cement plaster mortar) building materials were analyzed. The absorbed dose rate and the annual effective dose equivalent rate for people living in dwelling buildings made of these building materials under investigation were also calculated. The analysis was performed with gamma-ray spectrometry, with two hyper-pure germanium detectors. The activity concentrations of natural radionuclides were in the ranges: 5.2-511.8 Bq kg - 21 for 226 Ra; 0.6-92.6 Bq kg -1 for 232 Th and -1 for 40 K, respectively. The radium equivalent activity in the fifty-one (51) samples varied from 9 to 603 Bq kg -1 . By calculating all the radioactivity indices (R aeq , H ext , I α , I yr ) it was found that all the building materials under investigation can be used to erect dwelling buildings. Except for sample SA6, SA7 and SA11 among the natural building materials and sample SG1, SG2, FAH1, CLM1, CM1 among the artificial building materials that are considered hazardous materials when are used in large quantities. (author)

  1. Comparative Study on the Cost of Building Public House Construction Using Red Brick and Interlock Brick Building Material in the City of Banda Aceh

    Science.gov (United States)

    Malahayati, Nurul; Hayati, Yulia; Nursaniah, Cut; Firsa, T.; Fachrurrazi; Munandar, Aris

    2018-05-01

    Red brick and interlocking brick are the building materials that are often used for wall installation work on houses construction. In the development of building materials technology and cost savings, interlocking brick can be alternative to replace red bricks. In Aceh Province, the use of interlocking bricks is less popular compared to other big cities in Indonesia. Interlocking brick is made from a mixture of clay, concrete sand and compacted cement and one of the environmentally friendly materials because it does not burn the process like red brick material. It is named interlocking brick because the installation method is locked together and it serves as a structural and partition wall of residential buildings. The aims of this study are to compare the cost of building a house in Banda Aceh City using red brick and interlock brick building materials. The data were obtained from interviews and questionnaires distributed to respondents who had built houses in Banda Aceh City. The results concluded that the house construction cost using interlock brick offer lower construction cost at comparable quality rather than using red brick.

  2. Human exposure to emissions from building materials

    DEFF Research Database (Denmark)

    Kjærgaard, S.; Hauschildt, P.; Pejtersen, Jan

    1999-01-01

    found on peak flow, eye foam formation, tear fluid cells, or conjunctival epithelial damage. Among subjective evaluations only sound intensity rating was significant. A correlation was found between acute nose irritation rating and change in nasal volume.Conclusions. The findings indicate physiological......Objectives. Reactions to emissions from building matrials were studied in a climate chamber as part of an intervention study in an office building. New and existing flooring materials were compared with regard to comfort and health.Methods. Twenty subjects were exposed four times for six hours...... respectively to clean air, to emissions from linoleum, from carpet, and from an alternative new vinyl. Measurements of objective and subjective effects were made.Results. Tear film stability decreased after exposure to linoleum. The nasal volume decreased near-significantly for all exposures. No effects were...

  3. H-bar and H-bar + production cross sections for the GBAR experiment

    International Nuclear Information System (INIS)

    Comini, P; Hervieux, P-A

    2013-01-01

    The production and cooling of the H-bar + ion is the key point of the GBAR experiment (Gravitational Behaviour of Antihydrogen at Rest), which aims at performing the free fall of antihydrogen atoms to measure g-bar , the acceleration of antimatter on Earth. H-bar + ions will be obtained from collisions between a positronium cloud and antiprotons delivered by the AD/ELENA facility at CERN, with intermediate formation of antihydrogen atoms. In order to optimise the experimental production of H-bar + ions, we computed the total cross sections of the two corresponding reactions, within the same theoretical framework of the Continuum Distorted Wave – Final State (CDW-FS) model. The different contributions of the H-bar excited states have been systematically investigated for different states of Ps. The results exhibit an increase of the H-bar production toward low kinetic energies, in agreement with experimental data and previous calculations, whereas the largest H-bar + production is obtained with low energy ground-state antihydrogen atoms. These theoretical predictions suggest that the overall production of H-bar + could be optimal for 2 keV antiproton impact energy, using positronium atoms prepared in the 2p state.

  4. Method for evaluating building materials with a high content of radioactivity

    International Nuclear Information System (INIS)

    Stranden, E.

    1979-01-01

    In order to avoid increased radiation doses to the population due to the introduction of building materials with an unusually high content of radioactivity, a method for evaluating building materials has been developed. An expression for the gamma radiation due to radium, thorium and potassium 40 has been proposed by a Scandinavian group. When this value for a given material does not exceed 1, then no restriction is placed. Should it exceed 1, then the material is subjected to further investigation. Similarly, since the radon concentration depends on the radium content, an expression for this is proposed. Should this be less than unity the material may be sold freely. Should it exceed unity, further investigations must be made. Measurements have also been made on the exhalation of radon from concrete, and the results are given. An expression including this exhalation rate and the ventilation rate, giving the radon concentration is given. (JIW)

  5. K-bar-mesic nuclei

    International Nuclear Information System (INIS)

    Dote, Akinobu; Akaishi, Yoshinori; Yamazaki, Toshimitsu

    2005-01-01

    New nuclei 'K-bar-Mesic Nuclei' having the strangeness are described. At first it is shown that the strongly attractive nature of K-bar N interaction is reasoned inductively from consideration of the relation between Kaonic hydrogen atom and Λ (1405) which is an excited state of hyperon Λ. The K-bar N interactions are reviewed and summarized into three categories: 1. Phenomenological approach with density dependent K-bar N interaction (DD), relativistic mean field (RMF) approach, and hybrid of them (RMF+DD). 2. Boson exchange model. 3. Chiral SU(3) theory. The investigation of some light K-bar-nuclei by Akaishi and Yamazaki using phenomenological K-bar N interaction is explained in detail. Studies by antisymmetrized molecular dynamics (AMD) approach are also presented. From these theoretical researches, the following feature of K-bar-mesic nuclei are revealed: 1) Ground state is discrete and bound by 100 MeV or more. 2) Density is very high in side the K-bar-mesic nuclei. 3) Strange structures develop which are not seen in ordinary nuclei. Finally some recent experiments to explore K-bar-mesic nuclei are reviewed. (S. Funahashi)

  6. Establishment of Low Energy Building materials and Equipment Database Based on Property Information

    Science.gov (United States)

    Kim, Yumin; Shin, Hyery; eon Lee, Seung

    2018-03-01

    The purpose of this study is to provide reliable service of materials information portal through the establishment of public big data by collecting and integrating scattered low energy building materials and equipment data. There were few cases of low energy building materials database in Korea have provided material properties as factors influencing material pricing. The framework of the database was defined referred with Korea On-line E-procurement system. More than 45,000 data were gathered by the specification of entities and with the gathered data, price prediction models for chillers were suggested. To improve the usability of the prediction model, detailed properties should be analysed for each item.

  7. Usability of Clay Mixed Red Mud as Building Material in Transdanubian (Hungary) Region

    International Nuclear Information System (INIS)

    Sas, Z.; Somlai, J.J.; Szeiler, G.; Kovacs, T.

    2014-01-01

    The most commonly used building materials in Hungary and in numerous country of the world are the bricks, which made from clays. Due to the congenial internal structure properties of the clays these raw materials can be mixed with other materials, provides great possibility to reuse industrial by-products as additive material. The production and inbuilt of new types of synthetic building materials based on NORM (naturally occurring radioactive materials) by-products is raising concerns among authorities, public and scientists. Several NORM residues produced in large quantity, such as: phospogypsum (phosphate industry), red mud (aluminium processing industry), fly ash, coal slag (coal burning and steelworks) and so on are presently under investigation. The aluminum manufacturing in Ajka (Hungary) started in 1943. As a result of the bauxite refining activities up to now approximately 30 Mt of red mud has been produced in Hungary, stored in reservoirs. The radionuclide content of the bauxite usually exceeds the world average in soils (WA), which entirely remains in the by-product during Bayer process. The exposure pathways in case of application of NORM residues have to be explored in order to reveal the potential risks of NORMs on residents. The gamma radiation originated from the primordial radionuclides (K-40; U-238; Th-232) and their daughter elements found in nature and in building materials as well increase the external dose of the human body. In the EU the Radiation Protection 112 (RP 112) guideline serves for classification of building material, wherein the gamma exposure is limited by I-index

  8. Mould growth on building materials under low water activities

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Holm, G.; Uttrup, L.P.

    2004-01-01

    The influence of relative humidity (RH) and temperature on growth and metabolism of eight microfungi on 21 different types of building material was investigated. The fungi were applied as a dry mixture to the materials, which were incubated at 5degreesC, 10degreesC, 20degreesC and 25degrees...... growth at RH > 90%, although 95% RH was needed to yield chemically detectable quantities of biomass. Almost exclusively only Penicillium, Aspergillus and Eurotium (contaminant) species grew on the materials. Production of secondary metabolites and mycotoxins decreased with humidity and the quantities...

  9. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry.

    Science.gov (United States)

    Ravisankar, R; Vanasundari, K; Chandrasekaran, A; Rajalakshmi, A; Suganya, M; Vijayagopal, P; Meenakshisundaram, V

    2012-04-01

    The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of (226)Ra, (232)Th and (40)K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Science.gov (United States)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  11. Characterization of historic mortars and earthen building materials in Abu Dhabi Emirate, UAE

    International Nuclear Information System (INIS)

    Marcus, Benjamin L

    2012-01-01

    The Abu Dhabi Authority for Culture and Heritage (ADACH) is responsible for the conservation and management of historic buildings and archaeological sites in the Emirate. Laboratory analysis has been critical for understanding the composition of historic materials and establishing appropriate conservation treatments across a wide variety of building types, ranging from Iron Age earthen archaeological sites to late-Islamic stone buildings. Analysis was carried out on historic sites in Al Ain, Delma Island and Liwa Oasis using techniques such as micro-x-ray fluorescence (MXRF), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM-EDX), polarized light microscopy (PLM), and x-ray diffraction (XRD). Testing was conducted through consultant laboratories and in collaboration with local universities. The initial aim of the analysis was to understand historic earthen materials and to confirm the suitability of locally sourced clays for the production of mud bricks and plasters. Another important goal was to characterize materials used in historic stone buildings in order to develop repair mortars, renders and grouts.

  12. Bar-tailed

    NARCIS (Netherlands)

    Duijns, S.; Hidayati, N.A.; Piersma, T.

    2013-01-01

    Capsule Across the European wintering range Bar-tailed Godwits Limosa lapponica lapponica selected polychaete worms and especially Ragworms Hediste diversicolor, with differences between areas due to variations in prey availability.Aims To determine the diet of Bar-tailed Godwits across their

  13. Bio-susceptibility of materials and thermal insulation systems used for historical buildings

    Science.gov (United States)

    Sterflinger, Katja; Ettenauer, Joerg; Pinar, Guadalupe

    2013-04-01

    In historical buildings of Northern countries high levels of energy are necessary to reach comfortable temperatures especially during the cold season. For this reason historical buildings are now also included in country specific regulations and ordinances to enhance the "energy - efficiency". Since an exterior insulation - as it is commonly used for modern architecture - is incompatible with monument protection, several indoor insulation systems based on historical and ecological materials, are on the market that should improve the thermic performance of a historical building. However, using organic materials as cellulose, loam, weed or wood, bears the risk of fungal growth and thus may lead to health problems in indoor environments. For this reason 5 different ecological indoor insulations systems were tested for their bio-susceptibility against various fungi both under natural conditions - after 2 years of installation in an historical building - and under laboratory conditions with high levels of relative humidity. Fungal growth was evaluated by classical isolation and cultivation as well as by molecular methods. The materials turned out to have a quite different susceptibility towards fungal contamination. Whereas insulations made of bloated Perlite (plaster and board) did not show any fungal growth after 2 years of exposition, the historical insulation made of loam and weed had high cell counts of various fungi. In laboratory experiments wooden softboard represented the best environment for fungal growth. As a result from this study, plaster and board made of bloated Perlite are presented as being the most appropriate materials for thermal insulation at least from the microbiological and hygienic point of view. For future investigations and for the monitoring of fungi in insulation and other building materials we suggest a molecular biology approach with a common protocol for quantitative DNA-extraction and amplification.

  14. Possible heavy tetraquarks qQq-barQ-bar, qqQ-barQ-bar and qQQ-barQ-bar

    International Nuclear Information System (INIS)

    Cui Ying; Chen Xiaolin; Deng Weizhen; Zhu Shilin

    2007-01-01

    Assuming X(3872) is a qcq-barc-bar tetraquark and using its mass as input, the authors perform a schematic study of the masses of possible heavy tetraquarks using the color-magnetic interaction with the flavor symmetry breaking corrections. (authors)

  15. Longevity of borehole and shaft sealing materials: characterization of ancient cement based building materials

    International Nuclear Information System (INIS)

    Langton, C.A.; Roy, D.M.

    1983-01-01

    Durability and long-term stability of cements in plasters, mortars, and/or concretes utilized as borehole plugging and shaft sealing materials are of present concern in the national effort to isolate nuclear waste within deep geological repositories. The present study consists of an examination of selected ancient building materials and provides insights into the durability of certain ancient structures. These data were combined with knowledge obtained from the behavior of modern portland cements and natural materials to evaluate the potential for longevity of such materials in a borehold environment. Analyses were conducted by petrographic, SEM, chemical, and x-ray diffraction techniques. 7 references, 5 figures, 2 tables

  16. Treatment of concrete bars from the dismantling of hot cells

    International Nuclear Information System (INIS)

    Graf, A.; Stutz, U.; Valencia, L.

    2002-01-01

    The Central Decontamination Operations Department (HDB) of the Karlsruhe Research Center operates facilities for the disposal of radioactive waste. In general, their objective is to decontaminate radioactive residues for unrestricted release in order to minimize the volume of waste products suitable for repository storage. In the case of about 120 concrete bars from the dismantling of hot cells, we reduce the volume of radioactive waste by sawing off the most contaminated parts of the bar. If there are no insertions such as cables or ventilation systems, the rest of the bar is sandblasted and its activity manually measured to ensure compliance with the release criteria. Otherwise, the bar is minced into small pieces by a power shovel. Afterwards, the rubble is filled into drums and its activity is measured by the clearance measurement facility. If the rubble and the sandblasted bars do not exceed the activity limit specified by the release criteria, the material is disposed of without further regulations for unrestricted use. Those parts of the bars which can not be released must be stored in special containers suitable for the KONRAD final disposal. Using this method, about 70 % of the total mass can be released. (author)

  17. A modified split Hopkinson pressure bar for toughness tests

    Science.gov (United States)

    Granier, N.; Grunenwald, T.

    2006-08-01

    In order to characterize material toughness or to study crack arrest under dynamic loading conditions, a new testing device has been developed at CEA/Valduc. A new Split Hopkinson Pressure Bar (SHPB) has been modified: it is now composed of a single incident bar and a double transmitter bar. With this facility, a notched specimen can be loaded under three points bending conditions. Qualification tests with titanium and steel notched samples are presented. Data treatment software has been adapted to estimate the sample deflection as a function of time and treat the energy balance. These results are compared with classical Charpy experiments. Effect of various contact areas between specimen and bars are studied to point out their influence on obtained measurements. The advantage of a “knife” contact compared to a plane one is then clearly demonstrated. All results obtained with this new testing device are in good agreement and show a reduced scattering.

  18. RING STAR FORMATION RATES IN BARRED AND NONBARRED GALAXIES

    International Nuclear Information System (INIS)

    Grouchy, R. D.; Buta, R. J.; Salo, H.; Laurikainen, E.

    2010-01-01

    Nonbarred ringed galaxies are relatively normal galaxies showing bright rings of star formation in spite of lacking a strong bar. This morphology is interesting because it is generally accepted that a typical galactic disk ring forms when material collects near a resonance, set up by the pattern speed of a bar or bar-like perturbation. Our goal in this paper is to examine whether the star formation properties of rings are related to the strength of a bar or, in the absence of a bar, to the non-axisymmetric gravity potential in general. For this purpose, we obtained Hα emission line images and calculated the line fluxes and star formation rates (SFRs) for 16 nonbarred SA galaxies and four weakly barred SAB galaxies with rings. For comparison, we combine our new observations with a re-analysis of previously published data on five SA, seven SAB, and 15 SB galaxies with rings, three of which are duplicates from our sample. With these data, we examine what role a bar may play in the star formation process in rings. Compared to barred ringed galaxies, we find that the inner ring SFRs and Hα+[N II] equivalent widths in nonbarred ringed galaxies show a similar range and trend with absolute blue magnitude, revised Hubble type, and other parameters. On the whole, the star formation properties of inner rings, excluding the distribution of H II regions, are independent of the ring shapes and the bar strength in our small samples. We confirm that the deprojected axis ratios of inner rings correlate with maximum relative gravitational force Q g ; however, if we consider all rings, a better correlation is found when a local bar forcing at the radius of the ring, Q r , is used. Individual cases are described and other correlations are discussed. By studying the physical properties of these galaxies, we hope to gain a better understanding of their placement in the scheme of the Hubble sequence and how they formed rings without the driving force of a bar.

  19. On Modified Bar recursion

    DEFF Research Database (Denmark)

    Oliva, Paulo Borges

    2002-01-01

    Modified bar recursion is a variant of Spector's bar recursion which can be used to give a realizability interpretation of the classical axiom of dependent choice. This realizability allows for the extraction of witnesses from proofs of forall-exists-formulas in classical analysis. In this talk I...... shall report on results regarding the relationship between modified and Spector's bar recursion. I shall also show that a seemingly weak form of modified bar recursion is as strong as "full" modified bar recursion in higher types....

  20. Quality and Sensorial Characteristics of Raw-Vegan Bars

    Directory of Open Access Journals (Sweden)

    Liana Claudia Salanţă

    2015-11-01

    Full Text Available Increased consumer interest in healthier food products is driven by a variety of factors including growing awareness of the link between diet and health, the desire to age ‘gracefully’ by maintaining good health, greater convenience in meeting nutritional needs and preventing chronic diseases. In raw food diet, food is consumed predominantly or exclusively as uncooked and unprocessed raw food; the main components of the diet are fruits, nuts, seeds, and sprouted grains and beans. The aim of this study was to obtain two raw-vegan bars using dry raw materials and to establish the physicochemical and sensory characteristics of the products. Raw-vegan bars were formulated using fruits and seeds (cranberries, figs, raisins, raspberries, cashew, chia seeds, etc. and binding agents (honey. Raw-vegan bars stands out among fast foods due to their balanced nutritional content and convenience.  

  1. The bridge technique for pectus bar fixation: a method to make the bar un-rotatable.

    Science.gov (United States)

    Park, Hyung Joo; Kim, Kyung Soo; Moon, Young Kyu; Lee, Sungsoo

    2015-08-01

    Pectus bar rotation is a major challenge in pectus repair. However, to date, no satisfactory technique to completely eliminate bar displacement has been introduced. Here, we propose a bar fixation technique using a bridge that makes the bar unmovable. The purpose of this study was to determine the efficacy of this bridge technique. A total of 80 patients underwent pectus bar repair of pectus excavatum with the bridge technique from July 2013 to July 2014. The technique involved connecting 2 parallel bars using plate-screws at the ends of the bars. To determine bar position change, the angles between the sternum and pectus bars were measured on postoperative day 5 (POD5) and 4 months (POM4) and compared. The mean patient age was 17.5 years (range, 6-38 years). The mean difference between POD5 and POM4 were 0.23° (P=.602) and 0.35° (P=.338) for the upper and lower bars, respectively. Bar position was virtually unchanged during the follow-up, and there was no bar dislocation or reoperation. A "bridge technique" designed to connect 2 parallel bars using plates and screws was demonstrated as a method to avoid pectus bar displacement. This approach was easy to implement without using sutures or invasive devices. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Optimum Installation of Sorptive Building Materials Using Contribution Ratio of Pollution Source for Improvement of Indoor Air Quality.

    Science.gov (United States)

    Park, Seonghyun; Seo, Janghoo

    2016-04-01

    Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index.

  3. Search for W→cs-bar, Z→cc-bar,bb-bar in muon-jet events at the CERN proton-antiproton collider

    International Nuclear Information System (INIS)

    Ransdell, J.

    1988-01-01

    A search for quark decays of the W and Z particles produced in proton-antiproton collisions at √s of 630 GeV in the UA1 experiment at the CERN collider is described. The search was made in the channels W→cs-bar, Z→cc-bar,bb-bar where b and c quarks were identified by the presence of a high-p/sub T/ muon in or near a jet. Although these decay channels avoid the copious background of QCD produced light quark and gluon jets, it was not possible to detect a W or Z signal because of the large cross section for strong cc-bar and bb-bar production

  4. The “Ruin” Bars of Budapest: Urban Decay and the Development of a Genre of Hospitality

    OpenAIRE

    Lugosi, Peter; Lugosi, K.

    2008-01-01

    This paper examines the development and management of “rom” (ruin) bars: eating and drinking venues operating in dilapidated, urban buildings in Budapest, Hungary. The paper reviews and interrogates the evolution of the rom phenomenon and discusses three issues: 1) the relationship between hospitality, urban regeneration and urban space, 2) entrepreneurship and the production of rom bars as particular hospitality spaces, and 3) the relationship between symbolic forms of capital and hospitalit...

  5. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Energy Technology Data Exchange (ETDEWEB)

    Md Din, Mohd Fadhil; Dzinun, Hazlini; Ponraj, M.; Chelliapan, Shreeshivadasan; Noor, Zainura Zainun [Institute of Environmental Water Resources and Management (IPASA), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Remaz, Dilshah [Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Iwao, Kenzo [Nagoya Institute of Technology, Nagoya (Japan)

    2012-07-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation) of the brick was 0.093 and produces high heat (51% compared to granite), confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  6. Study of the {rho}-bar, {beta}-bar and {lambda} parameters of a light-water reactor; Etude des parametres {rho}-bar, {beta}-bar et {lambda} d'une pile a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Riche, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-09-01

    The kinetic and perturbation equations are derived from the time-dependent transport equation. Kinetic equations depend only on the ratios a = {rho}-bar/{beta}-bar and b = {beta}-bar/{lambda}, which are definite, while the reactivity {rho}-bar, the delayed neutron fraction ({beta}-bar and the generation time {lambda} are expressed in terms of an arbitrary function I. The 'static' definitions of these parameters, which reduce kinetic problems to a set of purely term dependent equations, introduce the effective fraction {beta}-bar. One way of determining experimentally the ratio b is presented; it consists in analysing the power transient after a rapid variation of the reactivity, caused by the implosion of an empty glass-bull. A simple interpretation is proposed. The apparatus can be transformed easily into a reactimeter. The value of the effective delayed neutron fraction {beta}-bar has been determined by averaging the reactivity effects of a copper sheet through out the reactor core. Experimental results: b = {beta}-bar/{lambda} = 129 s{sup -1} and {beta}-bar 795.10{sup -5}, have been determined on a light-water moderated, enriched-uranium fuelled reactor. The calculated values of the effectiveness of delayed neutrons {gamma} {beta}-bar/{beta} 1.23 and the generation time {lambda} 59.10{sup -6}s agrees fairly well with the experimental results. (author) [French] Les equations de la cinetique et de la perturbation sont deduites de la theorie du transport, par l'intermediaire de la 'notion' d'importance des neutrons. La cinetique ne depend que des rapports a = {rho}-bar/{beta}-bar et b = {beta}-bar/{lambda}, qui sont parfaitement definis; par contre, la reactivite {rho}-bar, la proportion de neutrons retardes {beta}-bar et le temps de generation des neutrons prompts {lambda} s'expriment a l'aide d'une meme fonction arbitraire I. Les definitions 'statiques' de ces parametres, qui permettent de rendre compte de la

  7. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    Science.gov (United States)

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  8. Bar-spheroid interaction in galaxies

    Science.gov (United States)

    Hernquist, Lars; Weinberg, Martin D.

    1992-01-01

    N-body simulation and linear analysis is employed to investigate the secular evolution of barred galaxies, with emphasis on the interaction between bars and spheroidal components of galaxies. This interaction is argued to drive secular transfer of angular momentum from bars to spheroids, primarily through resonant coupling. A moderately strong bar, having mass within corotation about 0.3 times the enclosed spheroid mass, is predicted to shed all its angular momentum typically in less than about 10 exp 9 yr. Even shorter depletion time scales are found for relatively more massive bars. It is suggested either that spheroids around barred galaxies are structured so as to inhibit strong coupling with bars, or that bars can form by unknown processes long after disks are established. The present models reinforce the notion that bars can drive secular evolution in galaxies.

  9. Implementation and integration in the L3 experimentation of a level-2 trigger with event building, based on C104 data driven cross-bar switches and on T9000 transputers

    International Nuclear Information System (INIS)

    Masserot, A.

    1995-01-01

    This thesis describes the new level-2 trigger system. It has been developed to fit the L3 requirements induced by the LEP phase 2 conditions. At each beam crossing, the system memorizes the trigger data, builds-up the events selected by the level-1 hard-wired processors and finally rejects on-line the background identified by algorithms coded in Fortran. Based on T9000 Transputers and on C104 data driven cross-bar switches, the system uses prototypes designed by INMOS/SGS THOMSON for parallel processing applications. Emphasis is set on a new event building technic, on its integration in L3 and on performance. (author). 38 refs., 68 figs., 36 tabs

  10. Innovative Development of Building Materials Industry of the Region Based on the Cluster Approach

    Directory of Open Access Journals (Sweden)

    Mottaeva Asiiat

    2016-01-01

    Full Text Available The article discusses issues of innovative development of building materials industry of the region based on the cluster approach. Determined the significance of regional cluster development of the industry of construction materials as the effective implementation of the innovative breakthrough of the region as an important part of strategies for strengthening innovation activities may be to support the formation and development of cluster structures. Analyses the current situation with innovation in the building materials industry of the region based on the cluster approach. In the course of the study revealed a direct correlation between involvement in innovative activities on a cluster basis, and the level of development of industry of construction materials. The conducted research allowed identifying the factors that determine the innovation process, systematization and classification which determine the sustainable functioning of the building materials industry in the period of active innovation. The proposed grouping of innovations for the construction industry taking into account industry-specific characteristics that reflect modern trends of scientific and technological progress in construction. Significance of the study lies in the fact that the proposals and practical recommendations can be used in the formation mechanism of innovative development of building materials industry and the overall regional construction complex of Russian regions by creating clusters of construction.

  11. State of the art on historic building insulation materials and retrofit strategies

    DEFF Research Database (Denmark)

    Blumberga, Andra; Kass, Kristaps; Kamendere, Edite

    2016-01-01

    This report provides an analysis and evaluation of a state-of-the-art of internal insulation materials and methods for application in historic buildings, and review on methods, tools and guidelines used as decision making tools for implementation of internal insulation in historic buildings. Hist...

  12. Bar Coding the U. S. Government Bill of Lading and the Material Inspection and Receiving Report.

    Science.gov (United States)

    1984-12-01

    of respondents K because some of the replies did not respond to this question.) TABLE 3-2. DD 250 PROCESSING CAPABILITIES AUTOMiATED - BAR CODE...Proposed minimum data elements (both human readable and bar coded) required and why? (3) Proposed signature requirement changes and why? (4) Proposed

  13. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    Science.gov (United States)

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  14. THE MODEL CONSTRUCTIONS OF PRICE FORMING OF BUILDING MATERIALS MANUFACTURE IN BASHKORTOSTAN

    Directory of Open Access Journals (Sweden)

    H.N. Gizatullin

    2007-06-01

    Full Text Available In this work attempt has been done analyze the influence of the environmental factors, as outward, as inside to choice of the strategy and the pricing of the industry of the building materials of Bashkortostan. This article examines the competitive surroundings of enterprises and branches in a aspect of the regional market of the building industry’s production. The evaluation of the compatibility is given of the price and competitive strategy. As a result of the research and pricing majority of industry’s enterprises had no official document stating their per pose in a pricing area. In reason of analysis the general situation of the industry building materials the enterprises of Bashkortostan, the conception of pricing is determined on functional level.

  15. Plastic instability criteria for necking of bars and ballooning of tubes

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    Plastic-instability criteria applicable to the necking of bars under tension and to the ballooning of thin-wall tubes under internal pressure were derived from basic geometrical considerations. In the case of bars under tension, plastic instability prevails if the percentage rate of decrease of the cross-sectional area in the (potential) necking region is greater than that in the bulk of the bar. When the loading characteristics and constitutive equation were taken into account, an instability criterion was deduced in terms of the stress, strain, strain rate, temperature and material properties. This criterion was shown to be reducible to the classical Considere condition for non-rate-sensitive materials. For rate-sensitive materials under isothermal conditions, a simple relationship among the strain, the strain-hardening and strain-rate-sensitivity parameters was also obtained. In the case of thin-wall tubes under internal pressure (with or without imposed axial loading), plastic instability prevails if the percentage rate of increase of the diameter (or equivalently decrease of wall thickness) in the (potential) ballooning region is greater than that in the bulk of the tube. An instability criterion in terms of the axial strain rate and the axial derivatives of the hoop strain and hoop strain rate was first deduced. Then the loading characteristics, the constitutive equation, the thin-wall approximation, and the Prandtl-Reuss flow rules were taken into consideration. This resulted in a further statement of the criterion in terms of the state of strain, the material properties, and a ratio of the imposed axial stress to the circumferential stress. As in the case of necking of bars, the role of the hardening parameter is clear: i.e., a larger hardening parameter implies a more stable material and vice versa

  16. On the Relation between Spector's Bar Recursion and Modified Bar Recursion

    DEFF Research Database (Denmark)

    Oliva, Paulo Borges

    2002-01-01

    We introduce a variant of Spector's Bar Recursion in finite types to give a realizability interpretation of the classical axiom of dependent choice allowing for the extraction of witnesses from proofs of Sigma_1 formulas in classical analysis. We also give a bar recursive definition of the fan...... functional and study the relationship of our variant of Bar Recursion with others....

  17. Application of earth building materials for low-income housing in the ...

    African Journals Online (AJOL)

    The characteristics, properties, problems and other factors associated with earth materials for building houses, especially in the tropical regions of the world are identified. The inter-relationships among these factors which inhibit the adoption of earth materials and the recommendations for overcoming the problems in a ...

  18. Proposal for the use of new materials in the TOKAMAK building cover

    International Nuclear Information System (INIS)

    Chiva, L.

    2011-01-01

    It was considered relevant and innovative to apply new structural materials to the construction of the roof of the building that lodged the TOKAMAK reactor, with the aim of achieving a severe reduction of the weight of the roof structure that result in greater ease of mounting, minor charges on the walls and foundations of the building and a reduced impact on the distribution of masses of the building scheme.

  19. Measurement of Rn-222 concentrations in building materials used in jordan

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, A M; Abumyrad, K M; Kullab, M K; Albataina, B A [Physics Dept., Yarmouk University, 219-10 Irbid, (Jordan)

    1995-10-01

    In this work, the concentrations of the radiative inert gas Rn-222 emanated from the building materials that are commonly in jordan have been studied. For this purpose, samples of ten jordanian building materials of different masses were prepared in plastic cans sealed to passive integrated dosimeters containing CR-39 solid state nuclear track detectors which are very sensitive to alpha-particles. The Rn-222 concentrations in these samples range from 137 Bq/m{sup 3} to 267 Bq/m{sup 3} with an average of 189 Bq/m{sup 3}. These levels were found to be consistent with those measured by other workers in other countries. 4 figs., 2 tabs.

  20. Measurement of Rn-222 concentrations in building materials used in jordan

    International Nuclear Information System (INIS)

    Ismail, A.M.; Abumyrad, K.M.; Kullab, M.K.; Albataina, B.A.

    1995-01-01

    In this work, the concentrations of the radiative inert gas Rn-222 emanated from the building materials that are commonly in jordan have been studied. For this purpose, samples of ten jordanian building materials of different masses were prepared in plastic cans sealed to passive integrated dosimeters containing CR-39 solid state nuclear track detectors which are very sensitive to alpha-particles. The Rn-222 concentrations in these samples range from 137 Bq/m 3 to 267 Bq/m 3 with an average of 189 Bq/m 3 . These levels were found to be consistent with those measured by other workers in other countries. 4 figs., 2 tabs

  1. Radiological risk of building materials using homemade airtight radon chamber

    International Nuclear Information System (INIS)

    Norafatin Khalid; Amran Abdul Majid; Redzuwan Yahaya; Muhammad Samudi Yasir

    2013-01-01

    Full-text: Soil based building materials known to contain various amounts of natural radionuclide mainly 238 U and 232 Th series and 40 K. In general most individuals spend 80 % of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived 222 Radon and its progenies which arise from the decay of 226 Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m -3 , 192 Bq m -3 , 176 Bq m -3 and 28 Bq m -3 , respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m -3 for example higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y -1 , 4.85 mSv y -1 , 4.44 mSv y -1 and 0.72 mSv y -1 , respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels for example 3 - 10 mSv y -1 . As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively. (author)

  2. Radiological risk of building materials using homemade airtight radon chamber

    International Nuclear Information System (INIS)

    Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2014-01-01

    Soil based building materials known to contain various amounts of natural radionuclide mainly 238 U and 232 Th series and 40 K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived 222 Radon and its progenies which arise from the decay of 226 Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m −3 , 192 Bq m −3 , 176 Bq m −3 and 28 Bq m −3 , respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m −3 i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y −1 , 4.85 mSv y −1 , 4.44 mSv y −1 and 0.72 mSv y −1 , respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y −1 . As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively

  3. Review of Development Survey of Phase Change Material Models in Building Applications

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2014-01-01

    Full Text Available The application of phase change materials (PCMs in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.

  4. Dynamics of a stellar bar

    International Nuclear Information System (INIS)

    Miller, R.H.; Smith, B.F.

    1979-01-01

    The dynamical properties of a prolate bar have been studied by means of a three-dimensional computer model. The bar pattern rotates in the sense of the total angular momentum. The mean particle motion is a rapid streaming in the direction of pattern rotation as seen from a frame that rotates with the bar. Rotation rates that would be inferred from observation are significantly (2--3 times) faster than the pattern rotation speed. Velocity dispersions are anisotropic with the largest component along the bar. Particles oscillate in the bar potential significantly faster than pattern rotation: typical oscillation frequencies are around ω/sub z/=ω/sub y/=6Ω and ω/sub x/=3Ω where z is the direction of angular momentum, x lies along the bar, and Ω is the pattern angular velocity. About 25% of the star orbits are near 2:2:1 resonance with the slow motion along the bar. Particle motion is highly ordered in the bar:the ratio t=T/sub mean//vertical-barWvertical-bar is 0.21--0.24. Observable properties are described; where comparisons can be made, observable properties are in agreement with observations of brightness contours, velocity fields, and velocity dispersions. The bar has nearly exponential density profiles

  5. Cost-benefit analysis of decreased ventilation rates and radon exhalation from building materials

    International Nuclear Information System (INIS)

    Ericson, S.O.

    1984-01-01

    Decreased ventilation, achieved by weather stripping and other tightening measures, is the most cost effective way to energy conservation. A very low investment can result in a considerable decrease in ventilation rate. For a typical detached house in Sweden this can be equivalent to a decrease in oil consumption of 0.5 m 3 . At present price this corresponds to a saving of SEK 1200, 150 US dollars per annum. The contribution of the building materials to the concentration of radon in indoor air is approximately the inverse to air exchange rate. For a small change in ventilation rate and cost, in SEK/man Sv or US dollar/man Sv, is a function of ventilation rate, exhalation from building materials, the ratio between surface of walls, floor and ceiling to the volume of air. Thus, it is possible to find the specific ventilation rate where the marginal cost for a small increase in ventilation rate and the marginal reduction in radon concentration will give a specific amount of money for each man Sv. Examples are given. Conclusions are that for most building materials in a climate like the Swedish, there are other factors than exhalation of radon from building materials that sets the lower limit of recommendable ventilation rate. (Author)

  6. New results from Fermilab E866 (NuSea) for d-bar/u-bar

    International Nuclear Information System (INIS)

    Isenhower, L. D.

    1999-01-01

    The Fermilab dimuon experiment 866/NuSea measured Drell-Yan yields from an 800 GeV/c proton beam incident on liquid hydrogen and deuterium targets. Over 370,000 Drell-Yan muon pairs were recorded. From these data, the ratio of anti-down (d-bar) to anti-up (u-bar) quark distributions in the proton sea is determined over a wide range in Bjorken-x. A strong x dependence is observed in the ratio d-bar/u-bar, showing substantial enhancement of d-bar with respect to u-bar for x < 0.2. The results presented here for the full data sets confirm previously published results from E866 and are compared with parametrizations of parton distribution functions calculated both before and after the publication of the high-mass E866 data

  7. A model for the build-up of disordered material in ion bombarded Si

    International Nuclear Information System (INIS)

    Nelson, R.S.

    1977-01-01

    A new model based on experimental observation is developed for the build-up of disordered material in ion bombarded silicon. The model assumes that disordered zones are created in a background of migrating point defects, these zones then act as neutral sinks for such defects which interact with the zones and cause recrystallization. A simple steady state rate theory is developed to describe the build-up of disordered material with ion dose as a function of temperature. In general the theory predicts two distinct behaviour patterns depending on the temperature and the ion mass, namely a linear build-up with dose to complete disorder for heavy bombarding ions and a build-up to saturation at a relatively low level for light ions such as protons. However, in some special circumstances a transition region is predicted where the build-up of disorder approximately follows a (dose)sup(1/2) relationship before reverting to a linear behaviour at high dose. (author)

  8. Impartial Triangular Chocolate Bar Games

    OpenAIRE

    Miyadera, Ryohei; Nakamura, Shunsuke; Fukui, Masanori

    2017-01-01

    Chocolate bar games are variants of the game of Nim in which the goal is to leave your opponent with the single bitter part of the chocolate bar. The rectangular chocolate bar game is a thinly disguised form of classical multi-heap Nim. In this work, we investigate the mathematical structure of triangular chocolate bar games in which the triangular chocolate bar can be cut in three directions. In the triangular chocolate bar game, a position is a $\\mathcal{P}$-position if and only if $x \\oplu...

  9. Test of bar window with internal bars free from the glass surfaces

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1998-01-01

    A sealed glazing unit with 3 horisontal and 3 vertical bars and a reference glazing without bars have been tested in a guarded hotbox. The difference in measured heat loss coefficient between the two test objects is a measure of the thermal influence of the bars. The difference in heat loss...

  10. Cold storage with phase change material for building ventilation

    OpenAIRE

    Butala, Vincenc; Stritih, Uroš

    2015-01-01

    This paper presents an experimental and numerical analysis of building coolingusing night-time cold accumulation in phase change material (PCM), otherwise known as the "free-cooling" or "passive-cooling" principle. The phase change materials were used in ceilings and floors. The free-cooling principle is explained and some of the types of PCMs suitable for summer cooling are listed. An experiment was conducted using paraffin with a melting point of 22 °C as the PCM to store cold during the ni...

  11. The global warming potential of building materials : An application of life cycle analysis in Nepal

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Zanetti, Michela; Pierobon, Francesca; Gatto, Paola; Maskey, Ramesh Kumar; Cavalli, Raffaele

    2017-01-01

    This paper analyzes the global-warming potential of materials used to construct the walls of 3 building types - traditional, semimodern, and modern - in Sagarmatha National Park and Buffer Zone in Nepal, using the life-cycle assessment approach. Traditional buildings use local materials, mainly wood

  12. Microstructural changes in zirconium alloy bar due to multi-roll straightening

    International Nuclear Information System (INIS)

    Gouraharidas; Acharya, Swaroop; Pratap, Y.; Chaube, R.K.; Kiran Kumar, I.; Ramana Rao, A.V.; Saibaba, N.

    2010-01-01

    Zirconium alloy bar is the input material for making of end plugs required for encapsulating the uranium di-oxide pellets in the fuel tubes. These bars are manufactured through extrusion followed by multi-pass swaging with intermediate and final vacuum annealing. The straightened and ground bars are subjected to 100% Ultrasonic testing and Eddy current testing to identify flaws and micro-porosity in the material, which could otherwise affect the integrity of fuel element. The defect standards at ultrasonic and eddy current inspection have been made more stringent, in view of the importance of fuel pin integrity during reactor operation. Consequently, many of the rods have shown eddy current indications greater than the defect standard. Detailed microstructural examination was carried out at each process step to identify the cause for these indications. Characteristic variation in the grain size and microstructure were noticed from surface to the centre of the material. Correlation between residual stresses and the eddy current signals was established. The extent of residual stresses could be controlled by adopting improvised straightening method at the final stage. This paper deals with the various trials carried out and the conclusions arrived at. (author)

  13. Triple bar, high efficiency mechanical sealer

    Science.gov (United States)

    Pak, Donald J.; Hawkins, Samantha A.; Young, John E.

    2013-03-19

    A clamp with a bottom clamp bar that has a planar upper surface is provided. The clamp may also include a top clamp bar connected to the bottom clamp bar, and a pressure distribution bar between the top clamp bar and the bottom clamp bar. The pressure distribution bar may have a planar lower surface in facing relation to the upper surface of the bottom clamp bar. An object is capable of being disposed in a clamping region between the upper surface and the lower surface. The width of the planar lower surface may be less than the width of the upper surface within the clamping region. Also, the pressure distribution bar may be capable of being urged away from the top clamp bar and towards the bottom clamp bar.

  14. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    International Nuclear Information System (INIS)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D.

    2008-01-01

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years

  15. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D. [POSCO Technical Reseaarch Lab., Pohang (Korea, Republic of)

    2008-12-15

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years.

  16. The influence of surface treatment on mass transfer between air and building material

    DEFF Research Database (Denmark)

    Kwiatkowski, Jerzy; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    for the experiments: gypsum board and calcium silicate. The wallpaper and paint were used as finishing materials. Impact of the following parameters for changes of RH was studied: coating, temperature and air movement. The measurements showed that acryl paint (diffusion open) can significantly decrease mass uptake......The processes of mass transfer between air and building structure and in the material influence not only the conditions within the material but also inside the connected air spaces. The material which absorbs and desorbs water vapour can be used to moderate the amplitude of indoor relative humidity...... and therefore to participate in the improvement of the indoor air quality and energy saving. Many parameters influence water vapour exchange between indoor air and building material. The aim of this work is to present the change of mass transfer under different climatic and material conditions. The measurements...

  17. Observations of barred spirals

    International Nuclear Information System (INIS)

    Elmegreen, D.M.

    1990-01-01

    Observations of barred spiral galaxies are discussed which show that the presence of a bar increases the likelihood for grand design spiral structure only in early Hubble types. This result is contrary to the more common notion that grand design spiral structure generally accompanies bars in galaxies. Enhanced deprojected color images are shown which reveal that a secondary set of spiral arms commonly occurs in barred galaxies and also occasionally in ovally distorted galaxies. 6 refs

  18. Evaluation of stress distribution characteristics on various bar designs of three-implant-supported mandibular overdentures

    Directory of Open Access Journals (Sweden)

    Emre Tokar

    2017-01-01

    Full Text Available Objective: Implant-supported-overdentures, instead of conventional complete dentures, are frequently recommended to rehabilitate patients having edentulous mandible. The aim of this study was to evaluate the stress distribution characteristics of mandibular implant-supported overdentures with four different bar attachment designs. Materials and Method: A photoelastic mandibular model with three implants (3.75 mm - 13 mm placed at the interforaminal region was generated from a cast of an edentulous mandible. Four mandibular bar overdenture designs were fabricated: bar-clip, bar-galvano, bar-locator, and bar-ceka. Axial vertical loads (135 N were applied to the central fossa of the right first molar area for each overdenture design. Stress concentrations were recorded photographically and analyzed visually. Results: The tested bar attachment designs revealed low and moderate stress levels. The lowest stress was observed with the bar-clip design, followed by bar-locator, bar-ceka, and bar-galvano designs. Conclusion: The loads were distributed to all of the implants. Studied designs experienced moderate stress levels around the loaded side implant. Bars with distally placed stud attachments and surface treatment with electroforming seems to increase stress levels around the implants.

  19. vertical bar Vub vertical bar from exclusive semileptonic B→π decays

    International Nuclear Information System (INIS)

    Flynn, Jonathan M.; Nieves, Juan

    2007-01-01

    We use Omnes representations of the form factors f + and f 0 for exclusive semileptonic B→π decays, paying special attention to the treatment of the B* pole and its effect on f + . We apply them to combine experimental partial branching fraction information with theoretical calculations of both form factors to extract vertical bar V ub vertical bar. The precision we achieve is competitive with the inclusive determination and we do not find a significant discrepancy between our result, vertical bar V ub vertical bar=(3.90+/-0.32+/-0.18)x10 -3 , and the inclusive world average value (4.45+/-0.20+/-0.26)x10 -3 [Heavy Flavor Averaging Group (HFAG), hep-ex/0603003

  20. The application of entropy weight topsis method for optimal choice in low radiological decorative building materials

    International Nuclear Information System (INIS)

    Feng Guangwen; Hu Youhua; Liu Qian

    2010-01-01

    In this paper, the principle of TOPSIS method was introduced and applied to sorting the given indexes of glazed brick and granite respectively in different areas' decorative building materials in order to selecting the optimal low radiological decorative building materials. First, the entropy weight TOPSIS method was used for data processing about the sample numbers and radio nuclides content, and then different weights were given to different indexes. Finally, by using the SAS software for data analysis and sorting, we obtained that the optimal low radiological decorative building materials were Sichuan glazed brick and Henan granite. Through the results, it could be seen that the application of entropy weight TOPSIS method in selecting low radiological decorative building materials was feasible, and it will also provide the method reference. (authors)

  1. Determining vertical bar Vub vertical bar from the B-bar→Xulν-bar dilepton invariant mass spectrum

    International Nuclear Information System (INIS)

    Bauer, Christian W.; Ligeti, Zoltan; Luke, Michael

    2001-01-01

    The invariant mass spectrum of the lepton pair in inclusive semileptonic B-bar→X u lν-bar decay yields a model independent determination of vertical bar V ub vertical bar. Unlike the lepton energy and hadronic invariant mass spectra, nonperturbative effects are only important in the resonance region, and play a parametrically suppressed role when dΓ/dq 2 is integrated over q 2 >(m B -m D ) 2 , which is required to eliminate the B-bar→X c lν-bar background. We discuss these backgrounds for q 2 slightly below (m B -m D ) 2 , and point out that instead of q 2 >(m B -m D ) 2 =11.6 GeV 2 , the cut can be lowered to q 2 > or approx. 10.5 GeV 2 . This is important experimentally, particularly when effects of a finite neutrino reconstruction resolution are included

  2. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 1

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1998-06-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125 fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical systems. As part of the investigation of packaging techniques, a two phase study of shock mitigating materials is being conducted. The purpose of the first phase reported here is to examine the performance of a joint that consists of shock mitigating material sandwiched in between steel and to compare the performance of the shock mitigating materials. A split Hopkinson bar experimental configuration simulates this joint and has been used to study the shock mitigating characteristics of seventeen, unconfined materials. The nominal input for these tests is an incident compressive wave with 50 fps peak (1,500 micro var-epsilon peak) amplitude and a 100 micros duration (measured at 10% amplitude)

  3. Measurement of radon exhalation rate in various building materials and soil samples

    Science.gov (United States)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  4. Radiological aspects of the usability of red mud as building material additive

    International Nuclear Information System (INIS)

    Somlai, Janos; Jobbagy, Viktor; Kovacs, Jozsef; Tarjan, Sandor; Kovacs, Tibor

    2008-01-01

    Several researchers have examined and achieved favourable results in connection with the building industry's use of red mud extracted in large quantities from the processing of bauxite. These days more and more precedence is being given to limiting the radiological dose to the population. In this study carried out in Hungary, the use of red mud, bauxite, and clay additives recommended for the production of special cements, were examined from a radiological aspect. 226 Ra and 232 Th activity concentrations measured in Hungarian bauxite, red mud and clay samples were significantly similar with the levels for such raw materials mentioned in international literature. Taking radiation protection aspects into consideration, none of these products can be directly used for building construction. Taking Hungarian and international values into consideration, a small amount of red mud, not exceeding 15% could be used for brick production, for example as a colouring material. However, beyond this amount the standards for building materials would not be met. For the production of cements an even stricter limit needs to be determined when both bauxite and red mud are used

  5. Implementation of the P barANDA Planar-GEM tracking detector in Monte Carlo simulations

    Science.gov (United States)

    Divani Veis, Nazila; Ehret, Andre; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Nami; Saito, Takehiko R.; Voss, Bernd; PANDA Gem-Tracker Subgroup

    2018-02-01

    The P barANDA experiment at FAIR will be performed to investigate different aspects of hadron physics using anti-proton beams interacting with a fixed nuclear target. The experimental setup consists of a complex series of detector components covering a large solid angle. A detector with a gaseous active media equipped with gas electron multiplier (GEM) technique will be employed to measure tracks of charged particles at forward direction in order to achieve a high momentum resolution. In this work, a full setup of the GEM tracking detector has been implemented in the P barANDA Monte Carlo simulation package (PandaRoot) based on the current technical and conceptual design, and the expected performance of the P barANDA GEM-tracking detector has been investigated. Furthermore, material-budget studies in terms of the radiation length of the P barANDA GEM-tracking detector have been made in order to investigate the effect of the detector materials and its associated structures to particle measurements.

  6. Natural Radioactivity in some building materials from Spain

    Energy Technology Data Exchange (ETDEWEB)

    Miro, C. [Universidad de Extremadura (UEX), 10071-Caceres (Spain); Madruga, M.J.; Reis, M. [Instituto Superior Tecnico, Universidade de Lisboa, Campus Tecnologico e Nuclear, 2695-066 Bobadela LRS (Portugal)

    2014-07-01

    Studies of natural radiation are of great importance because it is the main source of exposure of human kind. Building materials is one of the sources which cause direct radiation exposure because of their radium, thorium and potassium content. The aim of this work is to measure gamma activity due to {sup 40}K, {sup 226}Ra and {sup 232}Th in samples of commonly used as a building materials in Spain. Cement, gypsum, plaster, marble, slates, granite and wood had been analysed. These materials are used for private and public building. Radium equivalent activities (Ra{sub eq}) and various hazard indices were also calculated to assess the radiation hazard. Results were also compared with the data available in the literature for other countries of the world. Cement, gypsum and plaster samples were collected from hardware stores. Marble, slates and granite samples were taken from different quarries. And the wood samples were taken from eucalyptus trees from forest. Activity concentrations {sup 40}K-, {sup 226}Ra- and {sup 232}Th-activity was determined by gamma spectrometry using a HPGe coaxial detector. The results show that the range of average values of the activity concentrations due to {sup 40}K, {sup 226}Ra and {sup 232}Th were found between 37 and 1340 Bq/kg, 0.007 and 104 Bq/kg, and <0.005 and 75 Bq/kg, respectively. Maxima values were obtained in granite. Radium equivalent activities range from 3.7 Bq/kg to 283 Bq/kg, calculated in wood and granite, respectively. Therefore all the samples showed Raeq activities within the limit, 370 Bq/kg, set by UNSCEAR. Values of external hazard index for all samples under investigation are below the unity, while the internal hazard index for granite exhibits a value around the unity. Acknowledgements to the financial support of the Junta de Extremadura (project PRI09A092 and FEDER-group GRU09053). (authors)

  7. Spectral Signatures of Surface Materials in Pig Buildings

    DEFF Research Database (Denmark)

    Zhang, GuoQiang; Strøm, Jan; Blanke, Mogens

    2006-01-01

    . In this study, the optical properties of different types of surfaces to be cleaned and the dirt found in finishing pig units were investigated in the visual and the near infrared (VIS-NIR) optical range. Four types of commonly used materials in pig buildings, i.e. concrete, plastic, wood and steel were applied...... and after high-pressure water cleaning. The spectral signatures of the surface materials and dirt attached to the surfaces showed that it is possible to make discrimination and hence to classify areas that are visually clean. When spectral bands 450, 600, 700 and 800 nm are chosen, there are at least two...

  8. Blue 450nm high power semiconductor continuous wave laser bars exceeding rollover output power of 80W

    Science.gov (United States)

    König, H.; Lell, A.; Stojetz, B.; Ali, M.; Eichler, C.; Peter, M.; Löffler, A.; Strauss, U.; Baumann, M.; Balck, A.; Malchus, J.; Krause, V.

    2018-02-01

    Industrial material processing like cutting or welding of metals is rather energy efficient using direct diode or diode pumped solid state lasers. However, many applications cannot be addressed by established infrared laser technology due to fundamental material properties of the workpiece: For example materials like copper or gold have too low absorption in the near infrared wavelength range to be processed efficiently by use of existing high power laser systems. The huge interest to enable high power kW systems with more suitable wavelengths in the blue spectral range triggered the German funded research project 'BLAULAS': Therein the feasibility and capability of CW operating high power laser bars based on the GaN material system was investigated by Osram and Laserline. High performance bars were enabled by defeating fundamental challenges like material quality as well as the chip processes, both of which differ significantly from well-known IR laser bars. The research samples were assembled on actively cooled heat sinks with hard solder technology. For the first time an output power of 98W per bar at 60A drive current was achieved. Conversion efficiency as high as 46% at 50W output power was demonstrated.

  9. Self-Organized Construction with Continuous Building Material

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Wahby, Mostafa; Divband Soorati, Mohammad

    2016-01-01

    Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an example...... investigation, we look at continuous filaments organized into braided structures, within the context of bio-hybrids constructing architectural artifacts. We report the result of an early swarm robot experiment. The robots successfully constructed a braid in a self-organized process. The construction process can...... be extended by using different materials and by embedding sensors during the self-organized construction directly into the braided structure. In future work, we plan to apply dedicated braiding robot hardware and to construct sophisticated 3-d structures with local variability in patterns of filament...

  10. Ultrasound-Guided Bar Edge Labeling in the Perioperative Assessment of Nuss Bar Removal.

    Science.gov (United States)

    Incerti, Filippo; Bertocchini, Alessia; Ghionzoli, Marco; Messineo, Antonio

    2017-12-01

    Nuss bar removal after minimally invasive repair of pectus excavatum in patients where bar ends are not palpable, can be a challenging procedure for the surgeon; a blind dissection toward the bar edges may lead to intercostal vessels or deep intercostal muscle injuries. In this article, we describe a fast, repeatable, low-cost technique to detect bar edge and stabilizers. A perioperative scan is performed by means of a portable ultrasonograph a few minutes before the operation. The bar edge stabilizer is detected as a hyperechogenic image with a concentric crescent while the bar edge is detected as a hyperechogenic dashed line with net edges. The scan is performed, and the actual projection on the skin of the metal plaque bulk is then labeled on the patient's chest by an ink marker. We believe that this method may improve morbidity, operative time, and consequently, hospitalization length and costs.

  11. An experimental setup for measuring generation and transport of radon in building materials

    NARCIS (Netherlands)

    van der Pal, M.; Hendriks, N.A.; de Meijer, R.J.; van der Graaf, E.R.; de Wit, M.H.

    2001-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  12. Experimental Setup for Measuring Diffusive and Advective Transport of Radon through Building Materials

    NARCIS (Netherlands)

    Pal, van der M.; Graaf, van der E.R.; Meijer, de R.J.; Wit, de M.H.; Hendriks, N.A.

    2000-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  13. Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses.

    Science.gov (United States)

    Turhan, S; Baykan, U N; Sen, K

    2008-03-01

    A total of 183 samples of 20 different commonly used structural and covering building materials were collected from housing and other building construction sites and from suppliers in Ankara to measure the natural radioactivity due to the presence of (226)Ra, (232)Th and (40)K. The measurements were carried out using gamma-ray spectrometry with two HPGe detectors. The specific activities of the different building materials studied varied from 0.5 +/- 0.1 to 144.9 +/- 4.9 Bq kg(-1), 0.6 +/- 0.2 to 169.9 +/- 6.6 Bq kg(-1) and 2.0 +/- 0.1 to 1792.3 +/- 60.8 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The results show that the lowest mean values of the specific activity of (226)Ra, (232)Th and (40)K are 0.8 +/- 0.5, 0.9 +/- 0.4 and 4.1 +/- 1.4 Bq kg(-1), respectively, measured in travertine tile while the highest mean values of the specific activity of the same radionuclides are 78.5 +/- 18.1 (ceramic wall tile), 77.4 +/- 53.0 (granite tile) and 923.4 +/- 161.0 (white brick), respectively. The radium equivalent activity (Ra(eq)), the gamma-index, the indoor absorbed dose rate and the corresponding annual effective dose were evaluated to assess the potential radiological hazard associated with these building materials. The mean values of the gamma-index and the estimated annual effective dose due to external gamma radiation inside the room for structural building materials ranged from 0.15 to 0.89 and 0.2 to 1.1 mSv, respectively. Applying criteria recently recommended for building materials in the literature, four materials meet the exemption annual dose criterion of 0.3 mSv, five materials meet the annual dose limit of 1 mSv and only one material slightly exceeds this limit. The mean values of the gamma-index for all building materials were lower than the upper limit of 1.

  14. Flexural strengthening of reinforced lightweight polystyrene aggregate concrete beams with near-surface mounted GFRP bars

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.C.; Balendran, R.V.; Nadeem, A.; Leung, H.Y. [City University of Hong Kong (China). Department of Building and Construction

    2006-10-15

    Application of near-surface mounted (NSM) fibre reinforced polymer (FRP) bars is emerging as a promising technology for increasing flexural and shear strength of deficient reinforced concrete (RC) members. In order for this technique to perform effectively, the structural behaviour of RC elements strengthened with NSM FRP bars needs to be fully characterized. This paper focuses on the characterization of flexural behaviour of RC members strengthened with NSM glass-FRP bars. Totally, 10 beams were tested using symmetrical two-point loads test. The parameters examined under the beam tests were type of concretes (lightweight polystyrene aggregate concrete and normal concrete), type of reinforcing bars (GFRP and steel), and type of adhesives. Flexural performance of the tested beams including modes of failure, moment-deflection response and ultimate moment capacity are presented and discussed in this paper. Results of this investigation showed that beams with NSM GFRP bars showed a reduction in ultimate deflection and an improvement in flexural stiffness and bending capacity, depending on the PA content of the beams. In general, beams strengthened with NSM GFRP bars overall showed a significant increase in ultimate moment ranging from 23% to 53% over the corresponding beams without NSM GFRP bars. The influence of epoxy type was found conspicuously dominated the moment-deflection response up to the peak moment. Besides, the ultimate moment of concrete beams reinforced with GFRP bars could be predicted satisfactorily using the equation provided in ACI 318-95 Building Code. (author)

  15. Measurement of natural radioactivity in building materials in Qena city, Upper Egypt

    International Nuclear Information System (INIS)

    Ahmed, Nour Khalifa

    2005-01-01

    Building materials cause direct radiation exposure because of their radium, thorium and potassium content. In this paper, samples of commonly used building materials (bricks, cement, gypsum, ceramics, marble, limestone and granite) in Qena city, Upper Egypt have been collected randomly over the city. The samples were tested for their radioactivity contents by using gamma spectroscopic measurements. The results show that the highest mean value of 226 Ra activity is 205 ± 83 Bq kg -1 measured in marble. The corresponding value of 232 Th is 118 ± 14 Bq kg -1 measured in granite. For 40 K this value is (8.7 ± 3.9) x 10 2 Bq kg -1 measured in marble. The average concentrations of the three radionuclides in the different building materials are 116 ± 54, 64 ± 34 and (4.8 ± 2.2) x 10 2 Bq kg -1 for 226 Ra, 232 Th and 40 K, respectively. Radium equivalent activities and various hazard indices were also calculated to assess the radiation hazard. The maximum mean of radium equivalent activity Ra eq is 436 ± 199 Bq kg -1 calculated in marble. The highest radioactivity level and dose rate in air from these materials were calculated in marble

  16. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    Science.gov (United States)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  17. Simulation of energy- efficient building prototype using different insulating materials

    Science.gov (United States)

    Ouhaibi, Salma; Belouaggadia, Naoual; Lbibb, Rachid; Ezzine, Mohammed

    2018-05-01

    The objective of this work is to analyze the energetic efficiency of an individual building including an area of 130 m2 multi-zone, located in the region of FEZ which is characterized by a very hot and dry climate in summer and a quite cold one in winter, by incorporating insulating materials. This study was performed using TRNSYS V16 simulation software during a typical year of the FEZ region. Our simulation consists in developing a comparative study of two types of polystyrene and silica-aerogel insulation materials, in order to determine the best thermal performance. The results show that the thermal insulation of the building envelope is among the most effective solutions that give a significant reduction in energy requirements. Similarly, the use of silica-aerogels gives a good thermal performance, and therefore a good energy gain.

  18. Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Tavio, Anggraini, Retno; Raka, I. Gede Putu; Agustiar

    2018-05-01

    The building codes such as American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013 require that the ratio of tensile strength (TS) and yield strength (YS) should not less than 1.25. The requirement is based on the assumption that a capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region. This paper reports an investigation on various steel grades, namely Grades 420, 550, 650, and 700 MPa, to examine the impact of different TS/YS ratios if it is less or greater than the required value. Grades 550, 650, and 700 MPa were purposely selected with the intention to examine if these higher grades are still promising to be implemented in special structural systems since they are prohibited by the building codes for longitudinal reinforcement, whereas Grade 420 MPa bars are the maximum limit of yield strength of reinforcing bars that is allowable for longitudinal reinforcement of special structural systems. Tensile tests of these steel samples were conducted under displacement controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. From the study, it can be concluded that Grade 420 performed higher TS/YS ratios and they were able to reach up to more than 1.25. However, the High Strength Still (HSS) bars (Grades 550, 600, and 700 MPa) resulted in lower TS/YS ratios (less than 1.25) compared with those of Grade 420 MPa.

  19. Radon concentration and exhalation rates in building material samples from crushing zone in Shivalik Foot Hills

    International Nuclear Information System (INIS)

    Pundir, Anil; Kamboj, Sunil; Bansal, Vakul; Chauhan, R.P.; Rana, Rajinder Singh

    2012-01-01

    Radon ( 222 Rn) is an inert radioactive gas in the decay chain of uranium ( 238 U). It continuously emanates from soil to the atmosphere. Radon and its progeny are the major natural radioactive sources for the ambient radioactivity on Earth. A number of studies on radon were performed in recent decades focusing on its transport and movement in the atmosphere under different meteorological conditions. Building materials are the main source of radon inside buildings. Some construction materials are naturally more radioactive and removal of such material from the earth's crust and their subsequent use in construction of buildings further enhances the radioactivity level. The knowledge of radioactivity level in the building materials makes us aware about the management, guidelines and standards in construction of buildings. The main objective of the present investigations is to measure radon Concentration and exhalation rates in the samples collected from the Crushing zone of Shivalik foot hills. Different types of materials are being used in Northern part of India for construction of dwellings. For the measurement of radon concentration and its exhalation rates in building materials, LR-115 detectors were exposed in closed plastic canisters for three months. At the end of the exposure time, the detectors were subjected to a chemical etching process in 2.5N NaOH solution. The tracks produced by the alpha particles were observed and counted under an optical Olympus microscope at 600X. The measured track density was converted into radon concentration using a calibration factor. The surface and mass exhalation rates of radon have also been calculated using present data. The results indicate that the radon concentration varies appreciably from sample to sample and they were found to satisfy the safety criteria. There are samples in which radon concentration is higher and may enhance the indoor radiation levels when used as building construction materials. (author)

  20. Effect of Material Variability and Mechanical Eccentricity on the Seismic Vulnerability Assessment of Reinforced Concrete Buildings

    Directory of Open Access Journals (Sweden)

    Mario Lucio Puppio

    2017-07-01

    Full Text Available The present paper deals with the influence of material variability on the seismic vulnerability assessment of reinforced concrete buildings. Existing r.c. buildings are affected by a strong dispersion of material strengths of both the base materials. This influences the seismic response in linear and nonlinear static analysis. For this reason, it is useful to define a geometrical parameter called “material eccentricity”. As a reference model, an analysis of a two storey building is presented with a symmetrical plan but asymmetrical material distribution. Furthermore, an analysis of two real buildings with a similar issue is performed. Experimental data generate random material distributions to carry out a probabilistic analysis. By rotating the vector that defines the position of the center of strength it is possible to describe a strength domain that is characterized by equipotential lines in terms of the Risk Index. Material eccentricity is related to the Ultimate Shear of non-linear static analyses. This relevant uncertainty, referred to as the variation of the center of strength, is not considered in the current European and Italian Standards. The “material eccentricity” therefore reveals itself to be a relevant parameter to considering how material variability affects such a variation.

  1. Measurement of $\\sigma_{t\\bar{t}b\\bar{b}}/\\sigma_{t\\bar{t}jj}$ ratio at 13 TeV with the CMS Detector

    CERN Document Server

    Jo, Young-kwon

    2016-01-01

    The measurement of the cross section ratio $\\sigma_{t\\bar{t}b\\bar{b}}/\\sigma_{t\\bar{t}jj}$ is presented using a data sample corresponding to an integrated luminosity of 2.3~$\\rm{fb}^{-1}$ collected in pp collisions at \\\\ $\\sqrt{s}$ = 13TeV with the CMS detector at the LHC. Events with two leptons and at least four reconstructed jets, including at least two identified as b quark jets, in the final state are selected. The measured ratio is $0.022 \\pm 0.003$(stat.)$\\pm0.006$(syst.) in the full phase space. The measured cross section $\\sigma_{t\\bar{t}b\\bar{b}}$ is $3.9 \\pm 0.6$(stat.)$\\pm1.3$(syst.) pb and $\\sigma_{t\\bar{t}jj}$ is $176 \\pm 5$(stat.)$ \\pm 33 $(syst.) pb.

  2. Building materials as a source of a possible radiation exposure of the population

    International Nuclear Information System (INIS)

    Pensko, J.; Burkart, W.

    1986-12-01

    Two main pathways of exposure contribute to the human radiation exposure indoors: external whole body irradiation from gamma-rays originating from the walls, and exposure of lung tissue by alpha-rays emitted by radon daughters present in the inhaled air. Natural radioactive elements present in building materials produce both kinds of radioactive exposure. Uranium, thorium and potassium are sources of gamma radiations. Materials containing radium can create an alpha-radiation hazard for the human respiratory system through the exhalation of radon from room surfaces. Measurements of the natural radioactivity of building materials made in several European countries are reviewed. A preliminary assessment of the radioactivity content of potentially hazardous materials on the Swiss market shows elevated levels in imported phosphogypsum and tuff. (author)

  3. Comparison of salt solution and air drying methods for moisture fixation in highly porous building materials

    DEFF Research Database (Denmark)

    Antonov, Yovko Ivanov; Jensen, Rasmus Lund; Møldrup, Per

    2017-01-01

    In recent years, research has identified some bio-based, porous building materials as good or excellent regulators of moisture in buildings. The ability of a material to absorb, release and store moisture is described by vapour sorption isotherms. It is necessary input to simulations of indoor...... building materials by a standardized testing method, using saturated salt solutions. Furthermore, results from the standard method are compared to values of moisture content for the same materials, obtained by air-drying at different relative humidity. This is done with the aim to compare the findings from...... the two methods with respect to time and repeatability of the results. Derived isotherms are further used as direct input in the building simulation software BSim, which is capable of predicting indoor environment parameters by solving coupled, transient heat and moisture transport equations using finite...

  4. Earth as Building Material – an overview of RILEM activities and recent Innovations in Geotechnics

    Directory of Open Access Journals (Sweden)

    Vyncke Johan

    2018-01-01

    Full Text Available This paper presents an overview of the different earth building techniques, the latest innovations and the normative aspects. The oldest man made earth constructions known to exist date back to 10 000 BC. Since then, earth has remained a popular building material throughout history. With time, different techniques evolved, starting from sundried adobe blocks to cob constructions, rammed earth walls and compressed earth bricks. Today these techniques are still being optimized and alternative binders, specifically adapted admixtures and surface treatments are being developed. Even though nearly one third of the world’s population lives in an earth construction, few specific building standards and testing methods exist. Many of the tests used today are based on tests for concrete and thus do not take into account the complex nature of earth constructions, such as their sensitivity to water. RILEM, the union of Laboratories and Experts in Construction Materials, Systems and Structures, set up a new Technical Committee in 2016: TC TCE (Testing and Characterisation of Earth-based building materials and elements. This committee, consisting of an international group of experts on the topic, aim to define testing procedures for earth as a building construction material. To end with, this paper also gives a short introduction to “Deep soil mixing”, an “earth” building technique dedicated to geotechnical engineering.

  5. The cc-bar and bb-bar spectroscopy in the two-step potential model

    International Nuclear Information System (INIS)

    Kulshreshtha, D.S.; Kaiserslautern Univ.

    1984-07-01

    We investigate the spectroscopy of the charmonium (cc-bar) and bottonium (bb-bar) bound states in a static flavour independent nonrelativistic quark-antiquark (qq-bar) two-step potential model proposed earlier. Our predictions are in good agreement with experimental data and with other theoretical predictions. (author)

  6. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    Science.gov (United States)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  7. People, Planet and Profit: Unintended Consequences of Legacy Building Materials

    Science.gov (United States)

    Although an explosion of new building materials are being introduced into today's market, adequate up-front research into their chemical and physical properties as well as their potential health and environmental consequences is lacking. History has provided us with several exam...

  8. Determination of natural radionuclides content in some building materials in Nigeria by gamma-ray spectrometry.

    Science.gov (United States)

    Ademola, J A

    2008-01-01

    This paper presents the findings of a study undertaken to determine the natural radioactivity present in some building materials in Nigeria using a gamma-ray spectrometer with a hyper pure germanium detector. A total of 118 samples of commonly used building materials were collected from manufacturers and suppliers of these materials. The mean radioactivity concentrations measured in the different building materials varied from 9.4 to 62.9, 1.3 to 88.4, and 21.5 to 762.4 Bq kg(-1), respectively, for 226Ra, 232Th, and 40K. The average contents of 226Ra, 232Th, and 40K for all the samples were 36.3, 46.5, and 320.9 Bq kg(-1), respectively, lower than the world average for building materials (50, 50, and 500 Bq kg(-1)). The calculated mean radium equivalent activity and external and internal hazard indices for the entire sample were lower than United Nation Scientific Committee on the Effects of Atomic Radiation recommended limits and comparable with results of similar studies undertaken in other countries. The mean annual gonadal equivalent doses of some of the samples were higher than the world average value for soil.

  9. Longevity of borehole and shaft sealing materials: characterization of cement-based ancient building materials

    International Nuclear Information System (INIS)

    Roy, D.M.; Langton, C.A.

    1982-09-01

    Durability and long-term stability of cements, mortars, and/or concretes utilized as borehole plugging and shaft sealing materials are of present concern in the national effort to isolate and contain nuclear waste within deep geological repositories. The present study consists of a preliminary examination of selected ancient, old, and modern building materials (14 specimens) and was intended to document and explain the remarkable durability of these portland cement-related materials. This study has provided insights into reasons for the durability of certain structures and also into the long-term stability of calcium silicate binders (cements) used in archaeologic materials. These data were combined with knowledge obtained from the behavior of modern portland cements and natural materials to evaluate the potential for longevity of such materials in a borehole environment. A multimethod analysis was used and included: macroscopic and microscopic (petrographic and SEM) analyses, chemical analyses, and x-ray diffraction analyses. 61 figures, 11 tables

  10. Development of an effective pinch bar

    CSIR Research Space (South Africa)

    Ottermann, RW

    2003-02-01

    Full Text Available . ....................................10 Figure 3-3: Layout of lightweight pinch bar extruded fibreglass tube. ..................................11 Figure 3-4: XDM lightweight pinch bar with manufactured glass fibre bar. ..........................12 Figure 3-5: XDM lightweight pinch... bar with extruded glass fibre tube. ................................12 Figure 3-6: Stiffness of a 2.8m lightweight pinch bar with an extruded glass fibre tube and a 25mm steel pinch bar...

  11. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials

    NARCIS (Netherlands)

    Ganendra, G; De Muynck, W; Ho, A.; Hoefman, S.; De Vos, P.; Boeckx, P.; Boon, N.

    2014-01-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (similar to 20 % (v/v)) and low (similar to 100 ppmv) methane

  12. Growing and testing mycelium bricks as building insulation materials

    Science.gov (United States)

    Xing, Yangang; Brewer, Matthew; El-Gharabawy, Hoda; Griffith, Gareth; Jones, Phil

    2018-02-01

    In order to improve energy performance of buildings, insulation materials (such as mineral glass and rock wools, or fossil fuel-based plastic foams) are being used in increasing quantities, which may lead to potential problem with materials depletions and landfill disposal. One sustainable solution suggested is the use of bio-based, biodegradable materials. A number of attempts have been made to develop biomaterials, such as sheep wood, hemcrete or recycled papers. In this paper, a novel type of bio insulation materials - mycelium is examined. The aim is to produce mycelium materials that could be used as insulations. The bio-based material was required to have properties that matched existing alternatives, such as expanded polystyrene, in terms of physical and mechanical characteristics but with an enhanced level of biodegradability. The testing data showed mycelium bricks exhibited good thermal performance. Future work is planned to improve growing process and thermal performance of the mycelium bricks.

  13. $\\chi^{\\vphantom\\dagger}_{c0}(3915)$ As the Lightest $c\\bar c s \\bar s$ State

    CERN Document Server

    Lebed, Richard F.

    2016-05-23

    The state $\\chi^{\\vphantom\\dagger}_{c0}(3915)$ has recently been demoted by the Particle Data Group from its previous status as the conventional $c\\bar c$ $2 {}^3P_0$ state, largely due to the absence of expected $D\\bar D$ decays. We propose that $\\chi^{\\vphantom\\dagger}_{c0}(3915)$ is actually the lightest $c\\bar c s \\bar s$ state, and calculate the spectrum of such states using the diquark model, identifying many of the observed charmoniumlike states that lack open-charm decay modes as $c\\bar c s \\bar s$. Among other results, we argue that $Y(4140)$ is a $J^{PC} = 1^{++}$ $c\\bar c s \\bar s$ state that has been not been seen in two-photon fusion largely as a consequence of the Landau-Yang theorem.

  14. Technological characteristics of compressed earth blocks for its use as a building material

    Science.gov (United States)

    Gomez-Villalba, Luz Stella; Camacho-Perez, Nancy; Alvarez de Buergo, Monica; Becerra-Becerra, Javier; Esmeralda Corredor-Pulido, Dery; Fort, Rafael

    2013-04-01

    We present here an innovative building technique, which uses ecological, inexpensive and environmentally friendly materials. These compressed earth blocks seem to be very good for building purposes and that is why we have characterized three types of compressed earth blocks (CEB, named by their color as yellow, grey and red) mineralogically by means of X ray diffraction XRD and scanning electron microscopy SEM (both blocks and raw materials), petrographically by polarizing optical light microscopy POLM, and SEM, and, mainly, petrophysically: their hydric, physical and physico-mechanical properties by means of determining their capillary water absorption, porosity (open or accessible to water, pore size distribution and micro/macroporosity), and densities, color and ultrasound velocity (together with anisotropy). The particularities of these analyzed materials show that some varieties are more durable than others, and that all of them can be used as building materials with some restrictions related to their appropriate placing in the structures and the exposure to water. Acknowledgements: This work is supported by the GEOMATERIALES (S2009/MAT-1629) and CONSOLIDER-TCP (CSD2007-0058) programmes. Thanks also to the UCM (Complutense University of Madrid) Research Group "Alteración y conservación de los materiales pétreos del patrimonio" / Alteration and conservation of heritage stone materials (ref. 921349).

  15. Study of the ρ-bar, β-bar and Λ parameters of a light-water reactor

    International Nuclear Information System (INIS)

    Riche, R.

    1965-09-01

    The kinetic and perturbation equations are derived from the time-dependent transport equation. Kinetic equations depend only on the ratios a = ρ-bar/β-bar and b = β-bar/Λ, which are definite, while the reactivity ρ-bar, the delayed neutron fraction (β-bar and the generation time Λ are expressed in terms of an arbitrary function I. The 'static' definitions of these parameters, which reduce kinetic problems to a set of purely term dependent equations, introduce the effective fraction β-bar. One way of determining experimentally the ratio b is presented; it consists in analysing the power transient after a rapid variation of the reactivity, caused by the implosion of an empty glass-bull. A simple interpretation is proposed. The apparatus can be transformed easily into a reactimeter. The value of the effective delayed neutron fraction β-bar has been determined by averaging the reactivity effects of a copper sheet through out the reactor core. Experimental results: b = β-bar/Λ = 129 s -1 and β-bar 795.10 -5 , have been determined on a light-water moderated, enriched-uranium fuelled reactor. The calculated values of the effectiveness of delayed neutrons γ β-bar/β 1.23 and the generation time Λ 59.10 -6 s agrees fairly well with the experimental results. (author) [fr

  16. Assessment of natural radioactivity and radiological hazards in building materials used in Yan'an, China.

    Science.gov (United States)

    Lu, Xinwei; Li, Nan; Yang, Guang; Zhao, Caifeng

    2013-03-01

    The concentration of natural radionuclides in commonly used building materials collected from Yan'an, China, was determined using gamma ray spectroscopy with a NaI(Tl) detector. The activity concentration of ²²⁶Ra, ²³²Th, and ⁴⁰K in the studied building materials ranges from 9.4-73.1, 11.5-86.9, and 258.9-1,055.1 Bq kg⁻¹, respectively. The concentrations for these natural radionuclides were compared with the reported data of other countries and the world mean values for soil. The radium equivalent activity (Raeq), external hazard index (Hex), internal hazard index (Hin), indoor air absorbed dose rate, and annual effective dose rate due to natural radionuclides in samples were estimated to assess radiological hazards for people living in dwellings made of the studied building materials. The calculated Raeq values of all building materials (75.7-222.1 Bq kg⁻¹) are lower than the limit of 370 Bq kg⁻¹. The values of Hex and Hin are less than unity. The mean values of indoor air absorbed dose rates of all building materials (101.0 ± 14.1-177.0 ± 6.8 nGy h⁻¹) are higher than the world population-weighted average of 84 nGy h⁻¹, while the mean values of annual effective dose range from 0.50 ± 0.07-0.87 ± 0.03 mSv y⁻¹, which are lower than the recommended limit of 1 mSv y⁻¹. It is found that these materials may be used safely as construction materials and do not pose significant radiation hazards to inhabitants.

  17. Measurement of Ra-226 in building materials, with a Na I (Tl) scintillation counter

    International Nuclear Information System (INIS)

    Vallejo, L.R.; Fuenteseca, J.W.; Rivera, C.A.; Aros, F.H.

    1992-01-01

    Ra-226 concentration in building materials is determined using gamma-ray spectrometry. Ra-226 contained in sundry materials employed in the construction of dwelling houses and public buildings in Antofagasta city is determined by counting the Pb-214 peaks at 295 KeV and 352 keV, and the Bi-214 peak at 609 keV recorded by means of a 7.5-cm Nal (TI) scintillation counter. (author)

  18. Measurement of vertical bar Vub vertical bar in semi-inclusive charmless B → πX decays

    International Nuclear Information System (INIS)

    Kim, C.S.; Lee, Jake; Oha, Sechul

    2002-01-01

    We study semi-inclusive charmless decays B → πX, where X does not contain a charm (anti)quark. The mode B-bar 0 → π - X turns out to be be particularly useful for determination of the CKM matrix element vertical bar V ub vertical bar. We present the branching ratio (BR) of B-bar 0 → π - X as a function of vertical bar V ub vertical bar, with an estimation of possible uncertainty. The BR is expected to be an order of 10 -4

  19. Bank pull or bar push: What drives scroll-bar formation in meandering rivers?

    NARCIS (Netherlands)

    van de Lageweg, W. I.; van Dijk, W. M.; Baar, A. W.; Rutten, J.; Kleinhans, M. G.

    2014-01-01

    One of the most striking features of meandering rivers are quasi-regular ridges of the point bar, evidence of a pulsed lateral migration of meander bends. Scroll bars formed on the inner bend are preserved on the point-bar surface as a series of ridges as meanders migrate, and in the subsurface of

  20. How accelerated biological aging can affect solar reflective polymeric based building materials

    Science.gov (United States)

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  1. Radioactivity of some domestic and imported building materials from South Eastern Europe

    International Nuclear Information System (INIS)

    Krstic, D.; Nikezic, D.; Stevanovic, N.; Vucic, D.

    2007-01-01

    Radioactivity of some building materials, gypsum, ceramic, marble, granite, etc., imported from some neighbour countries of South Eastern Europe (Macedonia, Greece and Bulgaria) or produced in Serbia is presented in this paper. Measurements were done with HpGe detector and multichannel analyser. Activity concentration index, I, defined in [EC 1999, 1999. European Commission. Radiation Protection Unit, Radiological protection principles concerning the natural radioactivity of building materials. Radiat. Prot. 112] was calculated for each investigated sample. The ranges of I are 0.0297-1.2545 and 0.0376-0.1521 for Macedonian and Bulgarian gypsum, respectively. The ranges of I for marble are 0.0124-0.6245, 0.0104-1.2089 and 0.0162-0.6747 for Macedonian, Greek and Bulgarian, respectively. The range of I for Greek ceramic and granite are 0.3508-1.0152 and 0.0438-1.0062, respectively. Concentration of natural radionuclides ( 226 Ra, 232 Th and 40 K) are in usual range (except few exceptions) and below maximal permitted values, so that examined materials could be used for construction of new buildings (for interior and external works) as well as for covering of pavements, floors, etc

  2. Radioactivity of some domestic and imported building materials from South Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Krstic, D. [Faculty of Science, University of Kragujevac, R. Domanovic 12, Kragujevac 34000 (Serbia); Nikezic, D. [Faculty of Science, University of Kragujevac, R. Domanovic 12, Kragujevac 34000 (Serbia)], E-mail: nikezic@kg.ac.yu; Stevanovic, N. [Faculty of Science, University of Kragujevac, R. Domanovic 12, Kragujevac 34000 (Serbia); Vucic, D. [Institute oF Occupational Health, Vojislav Ilic bb, Nis 18000 (Serbia)

    2007-11-15

    Radioactivity of some building materials, gypsum, ceramic, marble, granite, etc., imported from some neighbour countries of South Eastern Europe (Macedonia, Greece and Bulgaria) or produced in Serbia is presented in this paper. Measurements were done with HpGe detector and multichannel analyser. Activity concentration index, I, defined in [EC 1999, 1999. European Commission. Radiation Protection Unit, Radiological protection principles concerning the natural radioactivity of building materials. Radiat. Prot. 112] was calculated for each investigated sample. The ranges of I are 0.0297-1.2545 and 0.0376-0.1521 for Macedonian and Bulgarian gypsum, respectively. The ranges of I for marble are 0.0124-0.6245, 0.0104-1.2089 and 0.0162-0.6747 for Macedonian, Greek and Bulgarian, respectively. The range of I for Greek ceramic and granite are 0.3508-1.0152 and 0.0438-1.0062, respectively. Concentration of natural radionuclides ({sup 226}Ra, {sup 232}Th and {sup 40}K) are in usual range (except few exceptions) and below maximal permitted values, so that examined materials could be used for construction of new buildings (for interior and external works) as well as for covering of pavements, floors, etc.

  3. Non-destructive decontamination of building materials

    Science.gov (United States)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  4. Determination of the quark coupling strength vertical bar V-ub vertical bar using baryonic decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Older, A. A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.

    In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, vertical bar V-ub vertical bar and vertical bar V-ub vertical bar, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron

  5. What makes the family of barred disc galaxies so rich: damping stellar bars in spinning haloes

    Science.gov (United States)

    Collier, Angela; Shlosman, Isaac; Heller, Clayton

    2018-05-01

    We model and analyse the secular evolution of stellar bars in spinning dark matter (DM) haloes with the cosmological spin λ ˜ 0-0.09. Using high-resolution stellar and DM numerical simulations, we focus on angular momentum exchange between stellar discs and DM haloes of various axisymmetric shapes - spherical, oblate, and prolate. We find that stellar bars experience a diverse evolution that is guided by the ability of parent haloes to absorb angular momentum, J, lost by the disc through the action of gravitational torques, resonant and non-resonant. We confirm that dynamical bar instability is accelerated via resonant J-transfer to the halo. Our main findings relate to the long-term secular evolution of disc-halo systems: with an increasing λ, bars experience less growth and basically dissolve after they pass through vertical buckling instability. Specifically, with increasing λ, (1) the vertical buckling instability in stellar bars colludes with inability of the inner halo to absorb J - this emerges as the main factor weakening or destroying bars in spinning haloes; (2) bars lose progressively less J, and their pattern speeds level off; (3) bars are smaller, and for λ ≳ 0.06 cease their growth completely following buckling; (4) bars in λ > 0.03 haloes have ratio of corotation-to-bar radii, RCR/Rb > 2, and represent so-called slow bars without offset dust lanes. We provide a quantitative analysis of J-transfer in disc-halo systems, and explain the reasons for absence of growth in fast spinning haloes and its observational corollaries. We conclude that stellar bar evolution is substantially more complex than anticipated, and bars are not as resilient as has been considered so far.

  6. Salinization effects on the water sorption of porous building materials

    NARCIS (Netherlands)

    Brocken, H.J.P.; Rook, W.; Adan, O.C.G.

    1999-01-01

    The interaction of salt transport and moisture transport plays a crucial role in some deterioration mechanisms of porous building materials. For this reason it has been an important research subject for mant' years. Yet most research was still complicated by the lack of experimental techniques

  7. Modeling gamma radiation dose in dwellings due to building materials.

    Science.gov (United States)

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%.

  8. A review on the development of reinforced ice for use as a building material in cold regions

    NARCIS (Netherlands)

    Vasiliev, N.K.; Pronk, A.D.C.; Shatalina, I.N.; Janssen, F.H.M.E.; Houben, R.W.G.

    2015-01-01

    Carrying building materials into remote cold regions makes construction in these regions difficult and rather expensive. The need for such materials can be reduced by the use of both ice and ice-soil composites. In cold regions ice is abundant and cheap. However, using ice as a building material has

  9. Dowel Bar Retrofit Mix Design and Specification : Technical Report

    Science.gov (United States)

    2012-01-01

    Current INDOT specifications for repair materials to be used in dowel bar retrofit (DBR) applications (Sections 507.08 and 901.07 of INDOTs Book of Specifications) are based, in large part, on the requirements of ASTM C 928 and the manufacturer-pr...

  10. A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples

    International Nuclear Information System (INIS)

    Sahoo, B.K.; Sapra, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2011-01-01

    In recognition of the fact that building materials are an important source of indoor radon, second only to soil, surface radon exhalation fluxes have been extensively measured from the samples of these materials. Based on this flux data, several researchers have attempted to predict the inhalation dose attributable to radon emitted from walls and ceilings made up of these materials. However, an important aspect not considered in this methodology is the enhancement of the radon flux from the wall or the ceiling constructed using the same building material. This enhancement occurs mainly because of the change in the radon diffusion process from the former to the latter configuration. To predict the true radon flux from the wall based on the flux data of building material samples, we now propose a semi-empirical model involving radon diffusion length and the physical dimensions of the samples as well as wall thickness as other input parameters. This model has been established by statistically fitting the ratio of the solution to radon diffusion equations for the cases of three-dimensional cuboidal shaped building materials (such as brick, concrete block) and one dimensional wall system to a simple mathematical function. The model predictions have been validated against the measurements made at a new construction site. This model provides an alternative tool (substitute to conventional 1-D model) to estimate radon flux from a wall without relying on 226 Ra content, radon emanation factor and bulk density of the samples. Moreover, it may be very useful in the context of developing building codes for radon regulation in new buildings. - Research highlights: → A model is proposed to predict radon flux from wall using flux of building material. → It is established based on the diffusion mechanism in building material and wall. → Study showed a large difference in radon flux from building material and wall. → Model has been validated against the measurements made at

  11. Stone Dust Agglomeration for Utilizing as Building Material

    Directory of Open Access Journals (Sweden)

    Gabriel Borowski

    2017-12-01

    Full Text Available In the paper we discuss the possibility of using stone dust for utilizing as building material. The tested material was amphibolite, found in the Sudeten Mountains and the Tatra Mountains in Poland. The chemical composition of dust was determined by means of spectrometry methods. Moreover, the basic physical properties of the material were designated. Stone dust was mixed with starch or cement binder. The binder addition was from 5% to 20% by weight. The water content was adjusted to about 25% humidity. The mixture was then compressed in a hydraulic press at 50 MPa. The results of the mechanical toughness of agglomerates were shown. On the basis of the results, acceptable toughness of agglomerates was found, with the addition of cement in mass share 20% and seasoning for 48 hours. However, starch was not suitable as a binder for agglomeration of amphibolite.

  12. Assessment of the material properties of a fire damaged building

    Directory of Open Access Journals (Sweden)

    Oladipupo OLOMO

    2012-12-01

    Full Text Available This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concrete samples, tensile strength test on the steel samples and chemical tests involving the assessment of the quantities of cement, sulphates and chloride concentrations in the samples. A redesign of the building elements was also carried out and the results were compared with the existing design. The non-destructive test results indicated compressive strengths as low as 9.9 N/mm2, the tensile strength test indicated a maximum strength of 397.48 N/mm2 and the chemical test indicated chloride contents as high as 0.534 g per gramme of concrete. These properties deviated significantly from standard requirements. Based on these results, it was concluded that the remains of the building should be demolished.

  13. Quantitative method of X-ray diffraction phase analysis of building materials

    International Nuclear Information System (INIS)

    Czuba, J.; Dziedzic, A.

    1978-01-01

    Quantitative method of X-ray diffraction phase analysis of building materials, with use of internal standard, has been presented. The errors committed by determining the content of particular phases have been also given. (author)

  14. Stone material investigations of the Riga Stock Exchange building

    Science.gov (United States)

    Igaune-Blumberga, S.; Vitina, I.; Lindina, L.; Timma, I.; Barbane, I.

    2011-12-01

    This paper deals with the stone material investigation of former Riga Stock Exchange building and presents the following aspects: characterization of materials, analyses of mortars for sealing and cladding of artificial marble, decors, bricks, render of sealing, analyses of soluble salts, analyses of deteriorated granite surface of foundation. The last damage by fire was in 1979 which caused the collapse of the roof and consequently an infiltration of rain water. The conditions of the objects were found in very bad condition-deterioration represented by salt efflorescence's, cracking and in very large areas there was a complete loss of the artificial marble (stucco marble).

  15. Stone material investigations of the Riga Stock Exchange building

    International Nuclear Information System (INIS)

    Igaune-Blumberga, S; Vitina, I; Lindina, L; Timma, I; Barbane, I

    2011-01-01

    This paper deals with the stone material investigation of former Riga Stock Exchange building and presents the following aspects: characterization of materials, analyses of mortars for sealing and cladding of artificial marble, decors, bricks, render of sealing, analyses of soluble salts, analyses of deteriorated granite surface of foundation. The last damage by fire was in 1979 which caused the collapse of the roof and consequently an infiltration of rain water. The conditions of the objects were found in very bad condition-deterioration represented by salt efflorescence's, cracking and in very large areas there was a complete loss of the artificial marble (stucco marble).

  16. Torsion of a Cosserat elastic bar with square cross section: theory and experiment

    Science.gov (United States)

    Drugan, W. J.; Lakes, R. S.

    2018-04-01

    An approximate analytical solution for the displacement and microrotation vector fields is derived for pure torsion of a prismatic bar with square cross section comprised of homogeneous, isotropic linear Cosserat elastic material. This is accomplished by analytical simplification coupled with use of the principle of minimum potential energy together with polynomial representations for the desired field components. Explicit approximate expressions are derived for cross section warp and for applied torque versus angle of twist of the bar. These show that torsional rigidity exceeds the classical elasticity value, the difference being larger for slender bars, and that cross section warp is less than the classical amount. Experimental measurements on two sets of 3D printed square cross section polymeric bars, each set having a different microstructure and four different cross section sizes, revealed size effects not captured by classical elasticity but consistent with the present analysis for physically sensible values of the Cosserat moduli. The warp can allow inference of Cosserat elastic constants independently of any sensitivity the material may have to dilatation gradients; warp also facilitates inference of Cosserat constants that are difficult to obtain via size effects.

  17. External exposure doses due to gamma emitting natural radionuclides in some Egyptian building materials.

    Science.gov (United States)

    Moharram, B M; Suliman, M N; Zahran, N F; Shennawy, S E; El Sayed, A R

    2012-01-01

    Using of building materials containing naturally occurring radionuclides as (238)U, (232)Th and (40)K and their progeny results in an external exposures of the housing of such buildings. In the present study, indoor dose rates for typical Egyptian rooms are calculated using the analytical method and activity concentrations of natural radionuclides in some building materials. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling assumed. Different room models are assumed to discuss variation of indoor dose rates according to variation in room construction. Activity concentrations of (238)U, (232)Th and (40)K content in eight samples representative Clay soil and different building materials used in most recent Egyptian building were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The specific activity for (238)U, (232)Th and (40)K, from the selected samples, were in the range 14.15-60.64, 2.75-84.66 and 7.35-554.4Bqkg(-1), respectively. The average indoor absorbed dose rates in air ranged from 0.005μGyh(-1) to 0.071μGyh(-1) and the corresponding population-weighted annual effective dose due to external gamma radiation varies from 0.025 to 0.345mSv. An outdoor dose rate for typical building samples in addition to some radiological hazards has been introduced for comparison. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Concentration of radionuclides in building materials and soils in The Netherlands

    International Nuclear Information System (INIS)

    Ackers, J.G.

    1985-11-01

    About 150 samples of building materials used in the Netherlands have been analysed by gamma spectrometry for their Ra-226, Th-232 and K-40 concentrations. From 26 samples of soils the radioactivity concentration was measured. Calibration was performed by the use of a large volume standard source made as a mixture of monazite, pitchblende and silica. The results are reported in Bq.kg -1 ; the statistical error is within 5% (standard deviation) and for most of the results the systematic error is smaller than 15%. Most of the building materials and all soil samples revealed activity concentrations smaller than 100 Bq.kg -1 for Ra-226 and Th-232 and smaller than 1000 Bq.kg -1 for K-40. Part of the results is compared with data published elsewhere. (Auth.)

  19. Search for the decay of a B0 or B0bar meson to K*0bar K0 or K*0 K0bar

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2006-06-27

    The authors present a search for the decay of a B{sup 0} or {bar B}{sup 0} meson to a {bar K}*{sup 0} K{sup 0} or K*{sup 0} {bar K}{sup 0} final state, using a sample of approximately 232 million B{bar B} events collected with the BABAR detector at the PEP-II asymmetric energy e{sup +}e{sup -} collider at SLAC. The measured branching fraction is {Beta}(B{sup 0} {yields} {bar K}*{sup 0} K{sup 0}) + {Beta}(B{sup 0} {yields} K*{sup 0} {bar K}{sup 0}) = (0.2{sub -0.8, -0.3}{sup +0.9, +0.1}) x 10{sup -6}. They obtain the following upper limit for the branching fraction at 90% confidence level: {Beta}(B{sup 0} {yields} {bar K}*{sup 0} K{sup 0}) + {Beta}(B{sup 0} {yields} K*{sup 0} {bar K}{sup 0}) < 1.9 x 10{sup -6}. They use our result to constrain the Standard Model prediction for the deviation of the CP asymmetry in B{sup 0} {yields} {phi}K{sup 0} from sin 2{beta}.

  20. Regularities of radiation defects build up on oxide materials surface

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.; Tuseev, T.

    2005-01-01

    Analysis of experimental data by radiation defects study on different oxide elements (silicon, beryllium, aluminium, rare earth elements) irradiated by the photo-, gamma-, neutron-, alpha- radiation, protons and helium ions show, that gas adsorption process on the surface centers and radiation defects build up in metal oxide correlated between themselves. These processes were described by the equivalent kinetic equations for analysis of radiation defects build up in the different metal oxides. It was revealed in the result of the analysis: number of radiation defects are droningly increasing up to limit value with the treatment temperature growth. Constant of radicals death at ionizing radiation increases as well. Amount of surface defects in different oxides defining absorbing activity of these materials looks as: silicon oxide→beryllium oxide→aluminium oxide. So it was found, that most optimal material for absorbing system preparation is silicon oxide by it power intensity and berylium oxide by it adsorption efficiency

  1. Oriented strand board: new material for building construction

    International Nuclear Information System (INIS)

    Paridah Md Tahir; Ong, L.L.

    2001-01-01

    The paper will attempt to show the suitability and competitiveness of oriented strand board (OSB) in building construction. One important factor underlining the success of this product is the availability of the wood raw material. Plantation timbers such as rubberwood, paraserianthes falcataria, acacia crassicarpa, A. auriculiformis and A. mangium have been identified as the major source of this industry. We will focus on the domestic market as well as export market especially on the Asia Pacific region

  2. Determination of natural radioactivity in building materials used in Tunisian dwellings by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Hizem, N.; Fredj, A. B.; Ghedira, L.

    2005-01-01

    The radioisotopic content of 17 samples of natural and manufactured building materials collected in Tunisia have been analysed by using gamma spectrometry. From the measured gamma ray spectra, activity concentrations are determined for 232 Th, 226 Ra, 235 U and 40 K. The total effective dose and the activity concentration index are calculated applying the dose criteria recommended by the European Union for building materials. The results of 226 Ra, 232 Th and 40 K found in Tunisian building materials indicate that radium and thorium concentrations do not exceed 40 Bq kg -1 , but potassium concentration varies between 50 and 1215 Bq kg -1 . The total effective dose rates per person indoors are determined to be between 0.07 and 0.86 mSv y -1 . Only two materials exceed the reference level of 0.3 mSv y -1 . The activity concentration index is <1. (authors)

  3. Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application

    Science.gov (United States)

    An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg

    2015-03-01

    We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.

  4. Radon diffusion studies in some building materials using solid state nuclear track detectors

    CERN Document Server

    Singh, S; Singh, B; Singh, J

    1999-01-01

    LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.

  5. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  6. Old materials and techniques to improve the durability of earth buildings

    OpenAIRE

    Camões, Aires; Eires, R.; Jalali, Said

    2012-01-01

    Quite a big part of the world’s heritage is still made by earth constructions. The durability of the existent heritage, as well as the new earth buildings is particularly conditioned by erosion caused by water action, especially in countries with high rainfall index. With this research one intends to value the ancient knowledge in order to allow higher durability. Analysing the old building techniques to protect the earth material from the water action it is possible to understand how ear...

  7. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  8. Applying object-oriented software engineering at the BaBar collaboration

    International Nuclear Information System (INIS)

    Jacobsen, B.

    1997-01-01

    The BaBar experiment at SLAC will start taking data in 1999. We are attempting to build its reconstruction software using good software engineering practices, including the use of object-oriented technology. We summarize our experience to date with analysis and design activities, training, CASE and documentation tools, C++ programming practice and similar topics. The emphasis is on the practical issues of simultaneously introducing new techniques to a large collaboration while under a deadline for system delivery. (orig.)

  9. Calculation of coal power plant cost on agricultural and material building impact of emission

    International Nuclear Information System (INIS)

    Mochamad Nasrullah; Wiku Lulus Widodo

    2016-01-01

    Calculation for externally cost of Coal Power Plant (CPP) is very important. This paper is focus on CPP appear SO 2 impact on agricultural plant and material building. AGRIMAT'S model from International Atomic Energy Agency is model one be used to account environmental damage for air impact because SO 2 emission. Analysis method use Impact Pathways Assessment: Determining characteristic source, Exposure Response Functions (ERF), Impacts and Damage Costs, and Monetary Unit Cost. Result for calculate shows that SO 2 that issued CPP, if value of SO 2 is 19,3 μg/m3, damage cost begins valuably positive. It shows that the land around CPP has decrease prosperity, and it will disadvantage for agricultural plant. On material building, SO 2 resulting damage cost. The increase humidity price therefore damage cost on material building will increase cost. But if concentration SO 2 increase therefore damage cost that is appear on material building decrease. Expected this result can added with external cost on health impact of CPP. External cost was done at developed countries. If it is done at Indonesia, therefore generation cost with fossil as more expensive and will get implication on issue cut back gases greenhouse. On the other side, renewable energy and also alternative energy as nuclear have opportunity at national energy mix system. (author)

  10. Connection between radon emanation and some structural properties of coal-slag as building material

    International Nuclear Information System (INIS)

    Somlai, J.; Jobbagy, V.; Somlai, K.; Kovacs, J.; Nemeth, Cs.; Kovacs, T.

    2008-01-01

    Radionuclides of natural origin may accumulate in different industrial waste materials and by-products. The use of coal bottom ash or coal-slag as building material in Hungary is widespread. Because of the elevated radium content of coal-slag, high radon concentration has been detected in buildings containing coal-slag as building material. In two towns, where buildings contain coal-slag with almost the same radium concentration, the indoor radon concentrations have been found to differ significantly. In order to investigate the cause of the difference in the emanation coefficients, slag samples from the two locations were examined for grain-size distribution, density, pore volume, and specific surface. The applied methods were: gamma spectrometry for the radium concentration of the samples; Lucas cell method for the radon emanation; nitrogen absorption-desorption isotherms analyzed using the BET theory and mercury poremeter for the specific surface and pore volume. It was found that the great difference in the emanation coefficients (1.35±0.13% and 14.3±0.92%) of the coal-slag samples is primarily influenced by the pore volume and the specific surface

  11. The concentration of natural radionuclides in various types of building materials in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Cabanekova, H [Inst. of Peventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    The concentration of the natural radionuclides in various types of building materials was determined by the gamma spectrometry analysis using 130 cm{sup 3} high purity germanium detector and MCA LIVIUS 2000. Radium-226 and thorium-232 was assessed through their progeny photo peaks. The specific activity of both nuclides as weighted average of their photo peaks was determined. Potassium-40 was measured directly via its 1460 keV peak. The radium equivalent activity was calculate from specific activities of radium-226, thorium-232 and potassium-40. All samples were measured in 4{sup p}i{sup g}eometry. The building materials and products were milled and screened with 2-3 mm sieve. After drying the samples were stored in 450 cm{sup 3} sealed polyethylene container for 30 days ingrowing period. The results of analysis are corrected to the background distribution and to the self absorption in the volume of the samples. The efficiency calibration is realized using the reference sources distributed by IAEA in Vienna and by the Institute for Radionuclide Production in Prague The measured activity concentrations of the buildings materials are given. There are shown the minimum and maximum values for different investigated materials. (J.K.) 4 tabs., 5 refs.

  12. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    International Nuclear Information System (INIS)

    Andersen, C.E.

    1999-08-01

    This report describes a closed-chamber method for laboratory measurements of the rate at which radon-222 degasses (exhales) from small building material samples. The chamber is 55 L in volume and the main sample geometry is a slab of dimensions 5x30x30 cm 3 . Numerical modelling is used to assess (and partly remove) the bias of the method relative to an ideal measurement of the free exhalation rate. Experimental results obtained with the method are found to be in agreement with the results of an open-chamber method (which is subject to different sources of error). Results of radon-222 exhalation rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete, autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 mBq h -1 kg -1 . Under consideration of the specific applications of the investigated building materials, the contribution to the indoor radon-222 concentration in a single-family reference house is calculated. Numerical modelling is used to help extrapolate the laboratory measurements on small samples to full scale walls. Application of typical materials will increase the indoor concentration by less than 10 Bq m -3 . (au)

  13. Microbes on building materials - Evaluation of DNA extraction protocols as common basis for molecular analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ettenauer, Joerg D., E-mail: joerg.ettenauer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Pinar, Guadalupe, E-mail: Guadalupe.Pinar@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Lopandic, Ksenija, E-mail: Ksenija.Lopandic@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Spangl, Bernhard, E-mail: Bernhard.Spangl@boku.ac.at [University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Science, Institute of Applied Statistics and Computing (IASC), Gregor Mendel-Str. 33, A-1180 Vienna (Austria); Ellersdorfer, Guenther, E-mail: Guenther.Ellersdorfer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Voitl, Christian, E-mail: Christian.Voitl@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Sterflinger, Katja, E-mail: Katja.Sterflinger@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria)

    2012-11-15

    The study of microbial life in building materials is an emerging topic concerning biodeterioration of materials as well as health risks in houses and at working places. Biodegradation and potential health implications associated with microbial growth in our residues claim for more precise methods for quantification and identification. To date, cultivation experiments are commonly used to gain insight into the microbial diversity. Nowadays, molecular techniques for the identification of microorganisms provide efficient methods that can be applied in this field. The efficiency of DNA extraction is decisive in order to perform a reliable and reproducible quantification of the microorganisms by qPCR or to characterize the structure of the microbial community. In this study we tested thirteen DNA extraction methods and evaluated their efficiency for identifying (1) the quantity of DNA, (2) the quality and purity of DNA and (3) the ability of the DNA to be amplified in a PCR reaction using three universal primer sets for the ITS region of fungi as well as one primer pair targeting the 16S rRNA of bacteria with three typical building materials - common plaster, red brick and gypsum cardboard. DNA concentration measurements showed strong variations among the tested methods and materials. Measurement of the DNA yield showed up to three orders of magnitude variation from the same samples, whereas A260/A280 ratios often prognosticated biases in the PCR amplifications. Visualization of the crude DNA extracts and the comparison of DGGE fingerprints showed additional drawbacks of some methods. The FastDNA Spin kit for soil showed to be the best DNA extraction method and could provide positive results for all tests with the three building materials. Therefore, we suggest this method as a gold standard for quantification of indoor fungi and bacteria in building materials. -- Highlights: Black-Right-Pointing-Pointer Up to thirteen extraction methods were evaluated with three

  14. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction; FINAL

    International Nuclear Information System (INIS)

    Ostowari, Ken; Nosson, Ali

    2000-01-01

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction

  15. Hyperon polarisation in the reaction p-bar sup 1 sup 2 C -> LAMBDA-bar LAMBDA X

    CERN Document Server

    Pomp, S; Bröders, R; Bunker, B; Dennert, H; Eisenstein, R E; Eyrich, W; Fischer, H; Franklin, G; Franz, J; Geyer, R; Harris, P; Hauffe, J; Hertzog, D; Johansson, T; Jones, T; Kilian, K; Kraft, R A; Meyer, C; Oelert, W; Quinn, B; Röhrich, K; Rössle, E; Sachs, K; Schmitt, H; Schumacher, R; Sefzick, T; Stinzing, F; Tayloe, R; Todenhagen, R; Traneus, E; Wirth, S

    2000-01-01

    Data from the p-bar sup 1 sup 2 C -> LAMBDA-bar LAMBDA X reaction, collected by the PS185 experiment at antiproton momenta around 1.44 GeV/c, 1.66 GeV/c and 1.77 GeV/c, have been analyzed and the LAMBDA and LAMBDA-bar polarisations have been extracted. The events are classified as quasi-free or non-quasi-free and it is found that the polarisations for LAMBDA and LAMBDA-bar differ in the latter case. Such an effect comes from differences in the interaction of the outgoing LAMBDA and LAMBDA-bar with the residual nucleus and the measurement constitutes the first information on LAMBDA-bar interaction with nuclear matter.

  16. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  17. [Storage of cereal bars with mesquite cotyledon (Prosopis chilensis (Mol) Stuntz)].

    Science.gov (United States)

    Escobar, B; Estévez, A M; Guiñez, M A

    2000-06-01

    The use of walnut or peanut in the elaboration of cereal bars represents a possible risk of undesirable changes during their storage due to their high content of unsaturated fatty acids in the oil; oxidizing of the fatty acids is one of the main causes of deterioration. Development of new snack products implies the use of packages that should protect the food against the damage caused by light and reduce the oxygen concentration of in their interior. The objective of this investigation was to evaluate the physical, chemical and sensory changes in the storage of cereal bars with peanut or walnut and mezquite cotyledon subjected to two thermal treatments, packed in cellophane or milky polypropilene. Four types of bars were elaborated with 6% of mezquite cotyledon, treated by microwaves or toasted, and with 18% of peanut or walnut. The bars were stored for 90 days at room temperature; and each 30 days it was measured moisture content, peroxides index, water activity, sensory quality and acceptability. The peroxides values (4.9-13.8 meq/kg of oil) indicates that the shelf life of the bars in all the studied treatments was 90 days. The packaging materials used allows to maintain in good conditions, for 3 months, the cereals bars of moisture (7.4-11.2%), water activity (0.50-0.65) and sensory acceptability.

  18. On the complexity of smart buildings occupant behavior

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Mohamed, Nader

    2017-01-01

    Smart buildings are run by Cyber-Physical Systems (CPS), termed as Building Management Systems (BMS). Typical goals for the operation of BMS are increasing occupant comfort and decreasing buildings energy consumption. The central and critical figure, however, for achieving both goals are buildings......' occupants. In some BMS, occupants have a high level of interaction with the system, whereas in others this is limited to a large extent, barring occupants from even opening windows. Every interaction, however, is a form of feedback, which in some cases poses a risk, whereas in others, it is an opportunity...

  19. Reduction of Ambient Radon Activity by the use of Advanced Building Materials at King Saud University, Saudi Arabia

    International Nuclear Information System (INIS)

    Diab, H.M.; Abd-El Hafeez, A.I.

    2011-01-01

    The spatial variation of radon concentration within the building of the preparatory year located in Riyadh was studied. Nuclear track detectors (CR-39) were used to measure radon concentration for two consecutive six month periods in more than 40 rooms of the surveyed building. Coefficient of variation (CV) was calculated as a measure of relative variation of radon concentration between floors and between rooms on the same floor. Floor mean ratios, with ground floor as a reference level, were calculated also in order to study the correlation between radon concentration and floor levels in case of using advanced Italian granite building material. All the results of this study were investigated and compared with usual Indian granite building material and it was found that the k nowledgement building i s a healthy work place which may be due to uses of advanced building materials.

  20. CP violation in hyperon decays: the case p-bar p → Λ-bar Λ → p-bar π+ pπ-

    International Nuclear Information System (INIS)

    Hamann, N.; He, X.G.; Landua, R.; Ohlsson, S.; Steger, H.; Valencia, G.; Fischer, H.; Geyer, R.; Hertzog, D.; Kolo, B.; Miller, J.P.; Rohrich, K.

    1992-01-01

    An account is given of the experimental status of CP violation and of the phenomenology of hyperon non-leptonic decays. Updated information on the estimate of CP-violating observable in these decays is presented. An experimental programme is outlined, which aims to pursue the search for direct CP violation in hyperon-antihyperon decays by means of the reaction p-bar p → Λ-bar Λ → p-bar π + pπ - . The experiment as well as analysis methods are described. Alternative approaches employing hyperons are also discussed. 54 refs., 1 tab., 13 figs

  1. Dose and radon measurements inside houses containing ash as building material

    International Nuclear Information System (INIS)

    Bodnar, R.; Lendvai, Z.; Somlai, J.; Nemeth, C.

    1996-01-01

    Radon concentration and external dose have been measured in dwellings that contain by-products of coal burning for building materials. The concentrations of 40 K, 232 Th, 238 U and 226 Ra have been determined in the materials. The date are analyzed according to indices frequently used for decision of utilizing the by-products. The observed daily fluctuation of the radon concentration in dwellings might exceed a factor of 5. (author)

  2. Development of a Hopkinson Bar Apparatus for Testing Soft Materials: Application to a Closed-Cell Aluminum Foam

    Directory of Open Access Journals (Sweden)

    Marco Peroni

    2016-01-01

    Full Text Available An increasing interest in lightweight metallic foams for automotive, aerospace, and other applications has been observed in recent years. This is mainly due to the weight reduction that can be achieved using foams and for their mechanical energy absorption and acoustic damping capabilities. An accurate knowledge of the mechanical behavior of these materials, especially under dynamic loadings, is thus necessary. Unfortunately, metal foams and in general “soft” materials exhibit a series of peculiarities that make difficult the adoption of standard testing techniques for their high strain-rate characterization. This paper presents an innovative apparatus, where high strain-rate tests of metal foams or other soft materials can be performed by exploiting the operating principle of the Hopkinson bar methods. Using the pre-stress method to generate directly a long compression pulse (compared with traditional SHPB, a displacement of about 20 mm can be applied to the specimen with a single propagating wave, suitable for evaluating the whole stress-strain curve of medium-sized cell foams (pores of about 1–2 mm. The potential of this testing rig is shown in the characterization of a closed-cell aluminum foam, where all the above features are amply demonstrated.

  3. QCD corrections to leptonic and hadronic observables from p bar p→W+X→ bar τντX

    International Nuclear Information System (INIS)

    Baer, H.; Reno, M.H.

    1993-01-01

    We set up a formalism for calculating the O(α s ) corrections to the process p bar p→W + X→ bar τν τ X with spin-correlated τ decays to leptons and mesons. Our results are applicable to Monte Carlo integration, which allows easy construction of any desired observable at next-to-leading-log level, and the possibility to include experimental cuts. Our results are applied explicitly to the decay modes τ→ bar ν τ bar eν e , bar τ→ bar ν τ π + , and bar τ→ bar ν τ π + π 0 ; other decay modes may be included in a straightforward fashion. We show results for transverse momentum and rapidity variables in leading-log and next-to-leading-log approximations; the leptonic observables are compared to similar observables from direct W→ bar eν e

  4. Phase Change Materials as a solution to improve energy efficiency in Portuguese residential buildings

    Science.gov (United States)

    Araújo, C.; Pinheiro, A.; Castro, M. F.; Bragança, L.

    2017-10-01

    The buildings sector contributes to 30% of annual greenhouse gas emissions and consumes about 40% of energy. However, this consumption can be reduced by between 30% and 80% through commercially available technologies. The consumption of energy in the dwellings is mostly associated with the heating and cooling of the interior environment. One solution to reduce these consumptions is the implementation of technologies and Phase Change Materials (PCMs) for Thermal Energy Storage (TES). So, the aim of this work is to analyse the advantages, in terms of decreasing energy consumption, associated with the application of PCMs in Portuguese residential buildings. For this, eight PCMs with different melting ranges were analysed. These materials were analysed through a dynamic simulation performed with EnergyPlus software. The results achieved, showed that the materials studied allow to reduce up to 13% of the heating needs and up to 92% of the cooling needs of a building located in the North of Portugal, at an altitude higher than 100m.

  5. Bar quenching in gas-rich galaxies

    Science.gov (United States)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  6. Re-study of the contribution of scalar potential and spectra of cc-bar, bb-bar and bc-bar(b-bar c) families

    International Nuclear Information System (INIS)

    Yuan Xuhao; Ke Hongwei; Ding Yibing; Li Xueqian

    2012-01-01

    We indicated in our previous work that for QED the role of the scalar potential which appears at the loop level is much smaller than that of the vector potential and is in fact negligible. But the situation is different for QCD, one reason is that the loop effects are more significant because α s is much larger than α, and second the non-perturbative QCD effects may induce a sizable scalar potential. In this work, we study phenomenologically the contribution of the scalar potential to the spectra of charmonia, bottomonia and bc-bar (b-bar c) families. Taking into account both vector and scalar potentials, by fitting the well measured charmonia and bottomonia spectra, we re-fix the relevant parameters and test them by calculating other states of not only the charmonia and bottomonia families, but also the bc-bar family. We also consider the Lamb shift of the spectra. (authors)

  7. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material

    International Nuclear Information System (INIS)

    Valle-Zermeño, R. del; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I.

    2013-01-01

    Highlights: ► A concrete formulation was optimized using Bottom Ash and APC ash. ► 10% of APC ash achieves good compromise between economic and performance aspects. ► The crushed concrete was evaluated as secondary building granular material. ► The environmental behavior allows its use as secondary material. ► The abrasion resistance is not good enough for its use as a road sub-base material. - Abstract: The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured

  8. Star formation suppression and bar ages in nearby barred galaxies

    Science.gov (United States)

    James, P. A.; Percival, S. M.

    2018-03-01

    We present new spectroscopic data for 21 barred spiral galaxies, which we use to explore the effect of bars on disc star formation, and to place constraints on the characteristic lifetimes of bar episodes. The analysis centres on regions of heavily suppressed star formation activity, which we term `star formation deserts'. Long-slit optical spectroscopy is used to determine H β absorption strengths in these desert regions, and comparisons with theoretical stellar population models are used to determine the time since the last significant star formation activity, and hence the ages of the bars. We find typical ages of ˜1 Gyr, but with a broad range, much larger than would be expected from measurement errors alone, extending from ˜0.25 to >4 Gyr. Low-level residual star formation, or mixing of stars from outside the `desert' regions, could result in a doubling of these age estimates. The relatively young ages of the underlying populations coupled with the strong limits on the current star formation rule out a gradual exponential decline in activity, and hence support our assumption of an abrupt truncation event.

  9. Barred Owl [ds8

    Data.gov (United States)

    California Natural Resource Agency — These data define the current range of Barred and hybrid Barred/Spotted Owls in California. The current range includes the coastal mountains of northern California...

  10. Finite Element Analysis of IPS –Empress II Ceramic Bridge Reinforced by Zirconia Bar

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2012-01-01

    Full Text Available Objective: The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS –Empress II core ceramics.Material and Methods: The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB, zirconia bar with vertical trench (VZB, and zirconia bar with horizontal trench (HZB (cross sections of these bars were circular. The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component, and Von-Mises stresses were evaluated along a defined path.Result: In the connector area, VonMises stress in MPa were approximately identical in the specimens with ZB (at molar connector (MC: 4.75, and at premolar connector (PC: 6.40 and without ZB (MC: 5.50, PC: 6.68, and considerable differences were not recognized. Whereas, Von-Mises stress (MPa in the specimens with horizontal trenched Zirconia bar (HZB (MC: 3.91, PC: 2.44 and Vertical trenched Zirconia bar (VZB (MC: 2.53, PC: 2.56 was decreased considerably.Conclusion: Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  11. Microbes on building materials — Evaluation of DNA extraction protocols as common basis for molecular analysis

    International Nuclear Information System (INIS)

    Ettenauer, Jörg D.; Piñar, Guadalupe; Lopandic, Ksenija; Spangl, Bernhard; Ellersdorfer, Günther; Voitl, Christian; Sterflinger, Katja

    2012-01-01

    The study of microbial life in building materials is an emerging topic concerning biodeterioration of materials as well as health risks in houses and at working places. Biodegradation and potential health implications associated with microbial growth in our residues claim for more precise methods for quantification and identification. To date, cultivation experiments are commonly used to gain insight into the microbial diversity. Nowadays, molecular techniques for the identification of microorganisms provide efficient methods that can be applied in this field. The efficiency of DNA extraction is decisive in order to perform a reliable and reproducible quantification of the microorganisms by qPCR or to characterize the structure of the microbial community. In this study we tested thirteen DNA extraction methods and evaluated their efficiency for identifying (1) the quantity of DNA, (2) the quality and purity of DNA and (3) the ability of the DNA to be amplified in a PCR reaction using three universal primer sets for the ITS region of fungi as well as one primer pair targeting the 16S rRNA of bacteria with three typical building materials — common plaster, red brick and gypsum cardboard. DNA concentration measurements showed strong variations among the tested methods and materials. Measurement of the DNA yield showed up to three orders of magnitude variation from the same samples, whereas A260/A280 ratios often prognosticated biases in the PCR amplifications. Visualization of the crude DNA extracts and the comparison of DGGE fingerprints showed additional drawbacks of some methods. The FastDNA Spin kit for soil showed to be the best DNA extraction method and could provide positive results for all tests with the three building materials. Therefore, we suggest this method as a gold standard for quantification of indoor fungi and bacteria in building materials. -- Highlights: ► Up to thirteen extraction methods were evaluated with three building materials.

  12. Anti vibration bars replacement in Vandellos II steam generators

    International Nuclear Information System (INIS)

    Vinyes, R.; Leal, R.

    1994-01-01

    C.N. Vandellos II is equipped with three steam generators Westinghouse model F. The number of tubes is 5626 each SG and the material Inconel 600TT. During the first inservice inspection, in 1989, tube wall thickness reductions were observed due to fretting in zones of contact with the tubes anti vibration bars. In the 2 nd shutdown for refueling (1990) all the tubes subject to this type of degradation were inspected by eddy currents, occurring a significative increase in number of tubes affected as well as the quantity of plugged tubes for that reason. Additionally, Westinghouse performed visual inspection and dimensional control of gaps in the tube bundles. Taking in account the results, the replacement with AVBs of new design was decided. AVBs new design is more complex than the original due to the combination of flexible and expandable bars in order to eliminate gaps between tubes an bars an assure proper bundle support. Given that the installation has to be done under water for shielding, all unions are bolted so that no welding is required. Each one of the bars, 333 per SG, is attached to a support structure consisting in 6 retaining plates and 4 bridge plates. (Author)

  13. Galaxy Zoo: Observing secular evolution through bars

    International Nuclear Information System (INIS)

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-01-01

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  14. Field observations of nearshore bar formation

    DEFF Research Database (Denmark)

    Aagaard, Troels; Kroon, Aart; Greenwood, Brian

    2008-01-01

      The formation of an inner nearshore bar was observed during a high-energy event at the sandy beach of Vejers, Denmark. The bar accreted in situ during surf zone conditions and the growth of the bar was associated with the development of a trough landward of the bar. Measurements of hydrodynamics...

  15. Radiological impact assessment of building materials on ordinary houses dwellers

    International Nuclear Information System (INIS)

    Campos, M.P. de.

    1994-01-01

    The radiological impact due to building materials on habitants living in the Santo Andre district of Sao Paulo state, Brazil, was assessed through the total effective dose equivalent rate determination, for external and internal irradiation. The effective dose equivalent rate for external irradiation was calculated by the gamma spectrometry determination of natural radionuclides specific activity in the dwelling materials. The effective dose equivalent rate due to 222 Rn inhalation was calculated through the radon indoor activity determination by using solid state nuclear track detectors. (author). 46 refs, 6 figs, 14 tabs

  16. Bioinspired Design of Building Materials for Blast and Ballistic Protection

    Directory of Open Access Journals (Sweden)

    Yu-Yan Sun

    2016-01-01

    Full Text Available Nacre in abalone shell exhibits high toughness despite the brittle nature of its major constituent (i.e., aragonite. Its specific structure is a major contributor to the energy absorption capacity of nacre. This paper reviews the mechanisms behind the performance of nacre under shear, uniaxial tension, compression, and bending conditions. The remarkable combination of stiffness and toughness on nacre can motivate the development of bioinspired building materials for impact resistance applications, and the possible toughness designs of cement-based and clay-based composite materials with a layered and staggered structure were discussed.

  17. Bar and Theta Hyperoperations

    Directory of Open Access Journals (Sweden)

    Thomas Vougiouklis

    2011-12-01

    Full Text Available In questionnaires the replacement of the scale of Likert by a bar was suggested in 2008 by Vougiouklis & Vougiouklis. The use of the bar was rapidly accepted in social sciences. The bar is closely related with fuzzy theory and has several advantages during both the filling-in questionnaires and mainly in the research processing. In this paper we relate hyperstructure theory with questionnaires and we study the obtained hyperstructures which are used as an organising device of the problem.

  18. Natural radioactivity of building materials coming from a volcanic region

    International Nuclear Information System (INIS)

    Roca, V.; Pugliese, M.; Sabbarese, C.; D'Onofrio, A.; Lubritto, C.; Terrasi, F.; Ermice, A.; Inglima, I.; Migliore, G.

    2004-01-01

    Radioactivity was found to be very high in tuff and other materials originating from volcanic lava. Emanation of radon from such materials is appreciably higher than from materials of other origin. This work allowed us to obtain a first complete database of natural radioactivity concentrations in building materials from this region. Measurements were carried out by means of a gamma spectrometry system. Gamma emitting daughter products of 222 Rn were measured to determine 226 Ra. The samples, after a routine treatment, were accommodated in sealed metallic containers for a time sufficient for the equilibrium to establish. The determination of the radon emanation power was carried out by using an electrostatic monitor. Alpha spectroscopy of radon daughters was used to evaluate the content of radon coming from the sample

  19. Radioactivity measurement in different types of fabricated building materials used in Palestine

    International Nuclear Information System (INIS)

    Dabayneh, K.M.

    2007-01-01

    The natural radionuclides ( 238 U, 232 Th and 40 K) and the manmade radiation levels were measured in samples of different types of fabricated building materials in Palestine. Concentration of radionuclide in samples were determined by γ -ray spectrometry using hyper-pure germanium (HPGe) detector in Bq/Kg dry weight. In this paper samples of commonly building materials (granite, clay brick (karmeed), lime stone, marble, cement, white cement, sea sand, gravel powder, gravel, glue ceramic, gypsum powder and hydrated lime) used in Palestinian buildings were collected. the concentration values of 238 U, 232 Th and 40 K in these samples ranged between 13.9-97.3,7.2-78.6 and 2.0-1139.0 Bq/Kg.respectively. The 137 Cs isotope was detected in some samples. Radium equivalent activity (Ra e q) dose rate in air (Dr), external hazard index (Hex), radioactivity Level index (I y ) and annual gonadal equivalent dose (D) in all samples were calculated. The activity concentration data were discussed are compared with other experimental values in some countries

  20. Radiometric characterisation of more representative natural building materials in the province of Rome

    International Nuclear Information System (INIS)

    Trevisi, R.; Bruno, M.; Orlando, C.; Ocone, R.; Paolelli, C.; Amici, M.; Altieri, A.; Antonelli, B.

    2005-01-01

    Natural building materials, characterised by middle-low-activity concentrations of primordial radionuclides ( 40 K, 232 Th and 238 U series) are widely used in Italy. Since natural materials reflect the geological variability of their sites of origin, a systematic study was carried out in the province of Rome and the results are reported in this paper. In the present work, in order to evaluate average, minimum and maximum contents of primordial radionuclides, more representative lithologies outcropping on the territory of the province of Rome were identified and around 150 samples were collected. Also, these lithologies were characterised from a radioprotection point of view, by means of the evaluation of the index, I, when they are used as building materials. The results confirm the high-primordial radionuclide content within some materials used in Latium (central Italy). Although the study was carried out in a limited area, the results confirm considerable variation in the primordial radionuclide content depending on the sites of origin. (authors)

  1. Measurement of the $\\bar{p}p \\rightarrow \\bar{n}n$ Charge-Exchange Differential Cross-Section

    CERN Multimedia

    2002-01-01

    The aim of this proposal is a measurement of the differential cross-section of the $\\bar{p}$p $\\rightarrow$ $\\bar{n}$n charge-exchange reaction with a point-to-point precision of 1\\% in the forward direction, and an absolute normalization error of 3\\%. The high precision of the data should allow, inter alia, a determination of the $\\pi$NN coupling constant to better than 2\\%.\\\\ \\\\ The measurement will be done using the existing neutron and antineutron detectors built for experiment PS199 and liquid hydrogen target. In one week of running time, with a $\\bar{p}$ beam intensity of 3 $ 10 ^{5} $ $\\bar{p}$/sec, the reaction will be measured at a few $\\bar{p}$ momenta, in the range 500 to 900~MeV/c.

  2. Nuss bar migrations: occurrence and classification

    International Nuclear Information System (INIS)

    Binkovitz, Lauren E.; Binkovitz, Larry A.; Zendejas, Benjamin; Moir, Christopher R.

    2016-01-01

    Pectus excavatum results from dorsal deviation of the sternum causing narrowing of the anterior-posterior diameter of the chest. It can result in significant cosmetic deformities and cardiopulmonary compromise if severe. The Nuss procedure is a minimally invasive technique that involves placing a thin horizontally oriented metal bar below the dorsal sternal apex for correction of the pectus deformity. To identify the frequency and types of Nuss bar migrations, to present a new categorization of bar migrations, and to present examples of true migrations and pseudomigrations. We retrospectively reviewed the electronic medical records and all pertinent radiologic studies of 311 pediatric patients who underwent a Nuss procedure. We evaluated the frequency and type of bar migrations. Bar migration was demonstrated in 23 of 311 patients (7%) and occurred within a mean period of 26 days after surgery. Bar migrations were subjectively defined as deviation of the bar from the position demonstrated on the immediate postoperative radiographs and categorized as superior, inferior, rotation, lateral or flipped using a new classification system. Sixteen of the 23 migrations required re-operation. Nuss bar migration can be diagnosed with careful evaluation of serial radiographs. Nuss bar migration has a wide variety of appearances and requires exclusion of pseudomigration resulting from changes in patient positioning between radiologic examinations. (orig.)

  3. Nuss bar migrations: occurrence and classification

    Energy Technology Data Exchange (ETDEWEB)

    Binkovitz, Lauren E.; Binkovitz, Larry A. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Zendejas, Benjamin; Moir, Christopher R. [Mayo Clinic, Department of Surgery, Rochester, MN (United States)

    2016-12-15

    Pectus excavatum results from dorsal deviation of the sternum causing narrowing of the anterior-posterior diameter of the chest. It can result in significant cosmetic deformities and cardiopulmonary compromise if severe. The Nuss procedure is a minimally invasive technique that involves placing a thin horizontally oriented metal bar below the dorsal sternal apex for correction of the pectus deformity. To identify the frequency and types of Nuss bar migrations, to present a new categorization of bar migrations, and to present examples of true migrations and pseudomigrations. We retrospectively reviewed the electronic medical records and all pertinent radiologic studies of 311 pediatric patients who underwent a Nuss procedure. We evaluated the frequency and type of bar migrations. Bar migration was demonstrated in 23 of 311 patients (7%) and occurred within a mean period of 26 days after surgery. Bar migrations were subjectively defined as deviation of the bar from the position demonstrated on the immediate postoperative radiographs and categorized as superior, inferior, rotation, lateral or flipped using a new classification system. Sixteen of the 23 migrations required re-operation. Nuss bar migration can be diagnosed with careful evaluation of serial radiographs. Nuss bar migration has a wide variety of appearances and requires exclusion of pseudomigration resulting from changes in patient positioning between radiologic examinations. (orig.)

  4. Numerical Analysis of the Influence of Thermal Mass, Phase Change Materials and Furniture / Indoor Content on Building Energy Flexibility

    DEFF Research Database (Denmark)

    Johra, Hicham; Heiselberg, Per Kvols; Dreau, Jerome Le

    2017-01-01

    Many numerical models for building energy simulation assume empty rooms and do not account for the indoor content of occupied buildings. Furnishing elements and indoor items have complicated shapes and are made of various materials. Therefore, most of the people prefer to ignore them. However, th......, it is shown that the integration of phase change materials in wallboards or furniture elements can appreciably improve the energy flexibility of buildings.......Many numerical models for building energy simulation assume empty rooms and do not account for the indoor content of occupied buildings. Furnishing elements and indoor items have complicated shapes and are made of various materials. Therefore, most of the people prefer to ignore them. However...

  5. How wrong can we get? A review of machine learning approaches and error bars.

    Science.gov (United States)

    Schwaighofer, Anton; Schroeter, Timon; Mika, Sebastian; Blanchard, Gilles

    2009-06-01

    A large number of different machine learning methods can potentially be used for ligand-based virtual screening. In our contribution, we focus on three specific nonlinear methods, namely support vector regression, Gaussian process models, and decision trees. For each of these methods, we provide a short and intuitive introduction. In particular, we will also discuss how confidence estimates (error bars) can be obtained from these methods. We continue with important aspects for model building and evaluation, such as methodologies for model selection, evaluation, performance criteria, and how the quality of error bar estimates can be verified. Besides an introduction to the respective methods, we will also point to available implementations, and discuss important issues for the practical application.

  6. Natural radionuclide and radiological assessment of building materials in high background radiation areas of Ramsar, Iran.

    Science.gov (United States)

    Bavarnegin, Elham; Moghaddam, Masoud Vahabi; Fathabadi, Nasrin

    2013-04-01

    Building materials, collected from different sites in Ramsar, a northern coastal city in Iran, were analyzed for their natural radionuclide contents. The measurements were carried out using a high resolution high purity Germanium (HPGe) gamma-ray spectrometer system. The activity concentration of (226)Ra, (232)Th, and (40)K content varied from below the minimum detection limit up to 86,400 Bqkg(-1), 187 Bqkg(-1), and 1350 Bqkg(-1), respectively. The radiological hazards incurred from the use of these building materials were estimated through various radiation hazard indices. The result of this survey shows that values obtained for some samples are more than the internationally accepted maximum limits and as such, the use of them as a building material pose significant radiation hazard to individuals.

  7. Preliminary study on influences of radioactivity of residential granite building materials upon parent mice and their offspring

    International Nuclear Information System (INIS)

    Liang Minyi; Zhang Jinghong; Zhu Weiyun; Li Yinyan; Liang Yongqing; Zhang Songshuan; Zhu Daming; Li Jinlin; Lu Qingpu

    2006-01-01

    Objective: To observe the effects of radioactivity of the residential granite building materials on the survival and fertility of mice. Methods: The radioactivities of A, B, C, and D granite building materials were measured and screened by gamma-ray spectrometer, and then these materials were placed into the mice cages. The residential radon was measured with solid state nuclear track detector's and 24-hour continuous measurement. Ninety-six healthy and ablactated mice were randomly selected and put into the four animal cages with different levels of radioactivity, and fed for 120 days. Mice mated and bred naturally. The fertilities and survivals of P, F 1 , and F 2 generation were observed and analyzed. Results: External exposures in the four mice cages were higher than those from the internal exposure. The differences of rates of pregnancy, abortion, and infertility between the P and F 1 generations had no statistical significance among all the groups after being fed for 120 days (P>0.05). There was significant difference among each group in the fertility of F 1 generation (P< 0.001), and the survival rates of the offspring were decreased with increase of radioactivity in granite building materials (P<0.001). Conclusion: Compared with the residential radon, the gamma rays released from the granite building materials had a greater influence on animals. The study suggested that different granite building materials had different influences on the survival and fertility of mice. (authors)

  8. Non-destructive examination and estimation of radioactivity levels for decorative building materials

    International Nuclear Information System (INIS)

    Mao Yahong; Liu Yigang; Lin Libin

    2003-01-01

    Measurement of gamma ray intensity from building materials can be substituted by measuring alpha rays following outline of a radionuclide decay. Exposure levels of alpha ray from the surface of decorative materials can be measured non-destructively by placing a detector on the surface of the materials. Authors have studied the relationship between gamma specific activities of natural radionuclides and alpha and beta ray level in building materials used in interior decoration, and the saturated thickness of beta ray from the surface of different materials. The results showed that the range of beta ray with the maximum energy in natural radioactive series is longer than thickness of a piece of decorative materials. So the exposure level of beta ray cannot be used to estimate the limit of external and internal indexes. The polynomial between exposure level of alpha ray from surface (α) and external index (I γ ) for granite is: I γ =0.38 + 49.84α + 288.24α 2 . The measured values were in accordance with the values from the polynomial within 95%. The polynomial between exposure level of alpha ray from surface (α) and external index (Iγ) for polishing tiles is: I γ =0.42 + 343.55α-32999.66α 2 . The measured values were in accordance with the values from the polynomial within 90%

  9. Building Design Variables Usage as a Tool of Value Engineering During Designing

    Directory of Open Access Journals (Sweden)

    Sahid Nur

    2017-01-01

    Full Text Available The deployment of construction economics has become more desirable today, mainly due to need to establish how building costs are spent, and be able to come up with the most optimum alternatives. This research article therefore, explored 1 the various costs inputs called design variables used by design consultants, plus their underlying factors, 2 how the practice of value engineering (VE impacts on projects in Indonesia. A qualitative methodology, was used inform of a questionnaire, designed based on a 5 pointer liker scale approach, and distributed among 30 respondents consisting of consultants and clients in areas of Surakarta. The collected data was processed using statistical method of relative importance index, followed by descriptive analysis inform of bar and pie charts. The results obtained were that building plane shape (index 83.2, was mostly used, which itself depended on external features of building membrane and shape of building site (80.0 each, then other variables were building complexity (82.1; and building façade (77.9, meanwhile the least used was sharing walls (index 62.1, Lastly, VE was found to benefit the industry by producing designs which meet time, cost and quality targets, on the other hand material wastages and loss of confidence was reported once VE was neglected.

  10. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  11. Annual energy analysis of concrete containing phase change materials for building envelopes

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Jamet, Astrid; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Adding PCM to concrete walls can significantly reduce the cooling needs of buildings. • Climate, season, and wall orientation strongly affect energy and cost savings. • The PCM melting temperature should be near the desired indoor temperature. • Benefits are maximum for outdoor temperature oscillating around set indoor temperature. • Adding PCM had little effect on heating energy needs and associated cost savings. - Abstract: This paper examines the annual energy and cost savings potential of adding microencapsulated phase change material to the exterior concrete walls of an average-sized single family home in California climate zones 3 (San Francisco, CA) and 9 (Los Angeles, CA). The annual energy and cost savings were larger for South- and West-facing walls than for other walls. They were also the largest when the phase change temperature was near the desired indoor temperature. The addition of microencapsulated phase change material to the building walls reduced the cooling load in summer substantially more than the heating load in winter. This was attributed to the cold winter temperatures resulting in nearly unidirectional heat flux on many days. The annual cooling load reduction in an average-sized single family home in San Francisco and in Los Angeles ranged from 85% to 100% and from 53% to 82%, respectively, for phase change material volume fraction ranging from 0.1 to 0.3. The corresponding annual electricity cost savings ranged from $36 to $42 in San Francisco and from $94 to $143 in Los Angeles. From an energy standpoint, the best climate for using building materials containing uniformly distributed microencapsulated phase change material would have outdoor temperature oscillations centered around the desired indoor temperature for the entire year

  12. Barred spiral structure of galaxies

    International Nuclear Information System (INIS)

    Chen, Z.; Weng, s.; Xu, M.

    1982-01-01

    Observational data indicate the grand design of spiral or barred spiral structure in disk galaxies. The problem of spiral structure has been thoroughly investigated by C. C. Lin and his collaborators, but yet the problem of barred spiral structure has not been investigated systematically, although much work has been done, such as in Ref. 3--7. Using the gasdynamic model for galaxies and a method of integral transform presented in Ref. 1, we investigated the barred spiral structure and obtained an analytical solution. It gives the large-scale pattern of barred-spirals, which is in fairly good agreement with observational data

  13. Earth building materials in pre-historic domestic architectures on the south of Portugal

    OpenAIRE

    Bruno, Patrícia; Faria, Paulina

    2008-01-01

    HERITAGE 2008 - World Heritage and Sustainable Development. Barcelos: Green Lines Institute for Sustainable Development, Vol. 2, p. 571-579 Pre-historic architectures reveal a profound knowledge of building materials and their selection and application. Depending on each geographical context or functional needs, pre-historic man developed and applied different building techniques. Archaeological vestiges from several pre-historic settlements of southwest Iberia has shown that s...

  14. Project management in building industry management

    Directory of Open Access Journals (Sweden)

    Martin Nový

    2012-01-01

    Full Text Available The article deals with contents of the project management on general level first. It mentions the most widespread project management standards, which have historically developed in global scale, their parts and objectives. Further, it describes position of the building industry in national economy, its specific features distinguishing it from the other industrial production, contents of the building industry management and project management of structures. The importance of the role of project manager is documented by characteristics of construction projects, their course, contents of sub-phases, and individual types of managing activities. Attention is devoted to project planning – determination of realization costs, necessary resources, sequence and time course of individual works. The most frequently used graphic methods of schedule presentation – Gantt chart, network chart and frequency bar chart are applied on examples of constructions. These charts can be focused in time sequence on individual types of resources – workforce, finance, materials, energies, and machinery. In conclusion, necessity to manage the project management procedures is emphasized as a part of skills of a construction engineer in the role of preparation manager or construction project realization manager.

  15. Too Much Bar and Not Enough Mitzvah? A Proposed Research Agenda on Bar/Bat Mitzvah

    Science.gov (United States)

    Schoenfeld, Stuart

    2010-01-01

    Jewish educators are understandably interested in research on how bar/bat mitzvah affect Jewish education or research on what Jewish schools have done to avoid the distortions of a focus on bar/bat mitzvah. Research might also focus on the somewhat different and more ambitious topic of the role that bar/bat mitzvah play in contemporary Jewish…

  16. Spectral narrowing of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Gaëlle

    2011-01-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope...... been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order......, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation...

  17. A method for the complete analysis of NORM building materials by γ-ray spectrometry using HPGe detectors.

    Science.gov (United States)

    Quintana, B; Pedrosa, M C; Vázquez-Canelas, L; Santamaría, R; Sanjuán, M A; Puertas, F

    2018-04-01

    A methodology including software tools for analysing NORM building materials and residues by low-level gamma-ray spectrometry has been developed. It comprises deconvolution of gamma-ray spectra using the software GALEA with focus on the natural radionuclides and Monte Carlo simulations for efficiency and true coincidence summing corrections. The methodology has been tested on a range of building materials and validated against reference materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Measurement and Interpretation of Moments in Inclusive Semileptonic Decays (bar B) → Xc (ell)-(bar ν)

    International Nuclear Information System (INIS)

    Luth, Vera

    2011-01-01

    We present results for the moments of observed spectra in inclusive semileptonic B-meson decays to charm hadrons (bar B) → X c (ell) - (bar ν). Moments of the hadronic-mass and the combined mass-and-energy spectra for different minimum electron or muon momenta between 0.8 and 1.9 GeV/c are obtained from a sample of 232 x 10 6 Γ(4S) → B(bar B) events, collected with the BABAR detector at the PEP-II asymmetric-energy B-meson factory at SLAC. We also present a reevaluation of the moments of electron-energy spectra and partial decay fractions B((bar B) → X c e - (bar ν)) for minimum electron momenta between 0.6 and 1.5 GeV/c based on a sample of 51 x 10 6 Γ(4S) → B(bar B) events. The measurements are used for the extraction of the total decay fraction, the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V cb |, the quark masses m b and m c , and four heavy-quark QCD parameters in the framework of a Heavy-Quark Expansion (HQE). We find B((bar B) → X c (ell) - (bar ν)) = (10.64 ± 0.17 ± 0.06)% and |V cb | = (42.05 ± 0.45 ± 0.70) x 10 -3 .

  19. Neutron activation of building materials used in the reactor shield

    International Nuclear Information System (INIS)

    Hernandez, A.T.; Perez, G.; D'Alessandro, K.

    1993-01-01

    Cuban concretes and their main components (mineral aggregates and cement) were investigated through long-lived activation products induced by neutrons from a reactor. The multielemental content in the materials studied was obtained by neutron activation analysis in an IBR-2 reactor and gamma activation analysis in an MT-25 microtron from Join Institute of Nuclear Research of Dubna. After irradiation of building materials for 30 years by a neutron flow of unitary density, induced radioactivity was calculated according to experimental data. The comparative evaluation of different concretes aggregates and two types of cement related to the activation properties is discussed

  20. Safety distance for preventing hot particle ignition of building insulation materials

    Directory of Open Access Journals (Sweden)

    Jiayun Song

    2014-01-01

    Full Text Available Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle temperature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial temperatures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temperature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.

  1. Evaluation of three common green building materials for ozone removal, and primary and secondary emissions of aldehydes

    Science.gov (United States)

    Gall, Elliott; Darling, Erin; Siegel, Jeffrey A.; Morrison, Glenn C.; Corsi, Richard L.

    2013-10-01

    Ozone reactions that occur on material surfaces can lead to elevated concentrations of oxidized products in the occupied space of buildings. However, there is little information on the impact of materials at full scale, especially for green building materials. Experiments were completed in a 68 m3 climate-controlled test chamber with three certified green building materials that can cover large areas in buildings: (1) recycled carpet, (2) perlite-based ceiling tile and (3) low-VOC paint and primer on recycled drywall. Ozone deposition velocity and primary and secondary emission rates of C1 to C10 saturated carbonyls were determined for two chamber mixing conditions and three values of relative humidity. A direct comparison was made between ozone deposition velocities and carbonyl yields observed for the same materials analyzed in small (10 L) chambers. Total primary carbonyl emission rates from carpet, ceiling tile and painted drywall ranged from 27 to 120 μg m-2 h-1, 13 to 40 μg m-2 h-1, 3.9 to 42 μg m-2 h-1, respectively. Ozone deposition velocity to these three materials averaged 6.1 m h-1, 2.3 m h-1 and 0.32 m h-1, respectively. Total secondary carbonyl emissions from these materials ranged from 70 to 276 μg m-2 h-1, 0 to 12 μg m-2 h-1, and 0 to 30 μg m-2 h-1, respectively. Carbonyl emissions were determined with a transient approximation, and were found to be in general agreement with those found in the literature. These results suggest that care should be taken when selecting green building materials due to potentially large differences in primary and secondary emissions.

  2. Spectral narrowing of a 980 nm tapered diode laser bar

    Science.gov (United States)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Ga"lle; Petersen, Paul Michael; Thestrup, Birgitte

    2011-03-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tuneable in a range of 16 nm.

  3. Expandable antivibration bar for a steam generator

    International Nuclear Information System (INIS)

    Lagally, H.O.

    1986-01-01

    A steam generator tube support structure comprises expandable antivibration bars positioned between rows of tubes in the steam generator and attached to retaining rings surrounding the bundle of tubes. The antivibration bars have adjacent bar sections with mating surfaces formed as inclined planes which upon relative longitudinal motion between the upper and lower bars provides a means to increase the overall thickness across the structure to the required value. The bar section is retained against longitudinal movement in take-up assembly whereas the bar section is movable longitudinally by rotation of a nut. (author)

  4. Experimental evaluation of passive cooling using phase change materials (PCM) for reducing overheating in public building

    Science.gov (United States)

    Ahmed, Abdullahi; Mateo-Garcia, Monica; McGough, Danny; Caratella, Kassim; Ure, Zafer

    2018-02-01

    Indoor Environmental Quality (IEQ) is essential for the health and productivity of building users. The risk of overheating in buildings is increasing due to increased density of occupancy of people and heat emitting equipment, increase in ambient temperature due to manifestation of climate change or changes in urban micro-climate. One of the solutions to building overheating is to inject some exposed thermal mass into the interior of the building. There are many different types of thermal storage materials which typically includes sensible heat storage materials such as concrete, bricks, rocks etc. It is very difficult to increase the thermal mass of existing buildings using these sensible heat storage materials. Alternative to these, there are latent heat storage materials called Phase Change Materials (PCM), which have high thermal storage capacity per unit volume of materials making them easy to implement within retrofit project. The use of Passive Cooling Thermal Energy Storage (TES) systems in the form of PCM PlusICE Solutions has been investigated in occupied spaces to improve indoor environmental quality. The work has been carried out using experimental set-up in existing spaces and monitored through the summer the months. The rooms have been monitored using wireless temperature and humidity sensors. There appears to be significant improvement in indoor temperature of up to 5°K in the room with the PCM compared to the monitored control spaces. The success of PCM for passive cooling is strongly dependent on the ventilation strategy employed in the spaces. The use of night time cooling to purge the stored thermal energy is essential for improved efficacy of the systems to reduce overheating in the spaces. The investigation is carried within the EU funded RESEEPEE project.

  5. Study of J/psi -> p(p)over-bar and J/psi -> n(n)over-bar

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Calcaterra, A.; Cao, G. F.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Ding, W. M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Fava, L.; Feldbauer, F.; Feng, C. Q.; Ferroli, R. B.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Leung, J. K. C.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, N. B.; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K. Y.; Liu, Kai; Liu, Kun; Liu, P. L.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. Y.; Ma, Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Morales, C. Morales; Motzko, C.; Muchnoi, N. Yu.; Nefedov, Y.; Nicholson, C.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Prencipe, E.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Thorndike, E. H.; Tian, H. L.; Toth, D.; Ullrich, M.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. F.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Weidenkaff, P.; Wen, Q. G.; Wen, S. P.; Werner, M.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, S. X.; Wu, W.; Wu, Z.; Xia, L. G.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Y.; Xu, Z. R.; Xue, F.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yu, S. P.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. G.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, J. W.; Zhao, K. X.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. M.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.

    2012-01-01

    The decays J/psi -> p (p) over bar and J/psi -> n (n) over bar have been investigated with a sample of 225.2 x 10(6) J/psi events collected with the BESIII detector at the BEPCII e(+)e(-) collider. The branching fractions are determined to be B(J/psi -> p (p) over bar) = (2.112 +/- 0.004 +/- 0.031 x

  6. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-01-01

    Highlights: • Fractal theory is introduced into the prediction of VOC diffusion coefficient. • MSFC model of the diffusion coefficient is developed for porous building materials. • The MSFC model contains detailed pore structure parameters. • The accuracy of the MSFC model is verified by independent experiments. - Abstract: Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber.

  7. Use of bar-code technology in MC and A system

    International Nuclear Information System (INIS)

    Mykhaylov, V.; Odeychuk, N.; Tovkanetz, V.; Lapshin, V.; Ewing, T.

    2001-01-01

    Full text: Significant problem during the treatment with nuclear materials is the usage of reliable, rapid, integrant automated systems of nuclear material control and account. Thus the dose loading of attending technical personnel is essentially reduced. One of the directions of the solution of the indicated problems is the usage of bar-code technology. Such integrated system should include protection of materials, measuring of materials, and record of materials and drawing up of an inventory list. Especially it is important for the enterprises, on which the enriched uranium and other nuclear materials, which are under IAEA warranties, are utilized. According to US assistance program in the field of MC and A, NSC KIPT has been received indispensable equipment and software, including equipment of nondestructive analysis and automated inventory material accounting system (AIMAS), which was intended for modernizing of nuclear material account system in NSC KIPT. The purpose of operations was estimation of generalized procedures on both MC and A and nondestructive analysis, and updating them so that they might obey the specific conditions of the Enterprise and demands of the Ukraine Regulatory Administration. In NSC KIPT, which is the largest nuclear and physics research center in Ukraine, the measures on enactment of bar-code technology for nuclear materials control and account with the usage of equipment and software of US leading firms (Intermec, Prodigy Max, Tharo Systems, Inc) have been conducting since 1999. During the introduction of this technology, it has been installed the software on nuclear material control and account (AIMAS data base), which was intended for this activities, on NSC KIPT computers. The structure of the NSC KIPT's facility has been determined according to demands of the State and IAEA demands. The key measuring points of inventory quantity has been determined in nuclear material balance zone and the concrete computers, on which is kept

  8. Electrokinetic salt removal from porous building materials using ion exchange membranes

    NARCIS (Netherlands)

    Kamran, K.; Van Soestbergen, M.; Pel, L.

    The removal of salt from porous building materials under the influence of an applied voltage gradient normally results in high pH gradients due to the formation of protons and hydroxyl ions at the electrodes. The formed acidic and alkaline regions not only lead to disintegration of the porous

  9. Electrokinetic salt removal from porous building materials using ion exchange membranes

    NARCIS (Netherlands)

    Kamran, K.; Soestbergen, van M.; Pel, L.

    2012-01-01

    The removal of salt from porous building materials under the influence of an applied voltage gradient normally results in high pH gradients due to the formation of protons and hydroxyl ions at the electrodes. The formed acidic and alkaline regions not only lead to disintegration of the porous

  10. Natural radioactivity level and radiological hazard assessment of commonly used building material in Xining, China

    International Nuclear Information System (INIS)

    Shigang Chao; Xinwei Lu; Mengmeng Zhang; Long Pang

    2014-01-01

    Natural radioactivity of the commonly used building materials in Xining of China was measured using gamma-ray spectrometer system comprising a NaI(Tl) detector. Radioactivity concentrations of 226 Ra, 232 Th and 40 K in the studied samples range from 11.6 to 120.6, 10.2 to 107.1 and 228.0 to 1,036.2 Bq kg -1 , respectively. The concentrations for these natural radionuclides were compared with the reported data of other countries and the mean value for soil. Radium equivalent activity, indoor air absorbed dose rate, annual effective dose rate as well as external and internal hazard indices were calculated to assess radiological hazards for people living in dwelling made of the building materials. The radiological hazard assessment results show that the studied building materials, except for some aerated concrete block samples, are safe for use in construction of dwellings in the study area and do not pose any significant source of radiation hazard. (author)

  11. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    Science.gov (United States)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from

  12. Assessment of thermal damage to polymeric materials by hydrogen deflagration in the Three Mile Island Unit 2 Reactor Building

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1985-05-01

    Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, we assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. Simple hydrogen-fire-exposure tests and heat transfer calculations duplicate the degree of damage found on inspected materials from the containment building. These data support estimated 8% pre-fire hydrogen concentration predictions based on various hydrogen production mechanisms

  13. Membrane-sculpting BAR domains generate stable lipid microdomains

    DEFF Research Database (Denmark)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.

    2013-01-01

    Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR...... domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced...... phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved...

  14. Building materials. Structure and technology, types and properties, application and handlings. 2. rev. ed. Baustoffkunde. Aufbau und Technologie, Arten und Eigenschaften, Anwendung und Verarbeitung der Baustoffe

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffler, H

    1980-01-01

    Details are given on the large variety of structural and interior building materials. Reference is made to the relation between the structure and technology of building materials on one hand and the properties and handling of building materials on the other hand. The following subjects are dealt with: Fundamentals (historical development, systematy of building materials, regulations, properties, property warranties); natural stone; lumber and derived lumber products (properties, species of lumber, flaws, supply cuts); ceramic building materials and glass (brick, earthenware, refractory materials); building materials with mineral binders added, concrete and mortar (technology, setting); metals (properties, technology); bituminous building materials (technology, properties); plastics (thermoplasts, elastomers, duroplastics, paints, adhesives, synthetic-resin mortar and synthetic-resin concrete); insulating materials, organic floor coverings, papers and paperboard, paints, adhesives and sealing materials; damage to buildings (types, causes, responsibility, avoidance). (HWJ).

  15. Split-Hopkinson Pressure Bar: an experimental technique for high strain rate tests

    International Nuclear Information System (INIS)

    Sharma, S.; Chavan, V.M.; Agrawal, R.G.; Patel, R.J.; Kapoor, R.; Chakravartty, J.K.

    2011-06-01

    Mechanical properties of materials are, in general, strain rate dependent, i.e. they respond differently at quasi-static and higher strain rate condition. The Split-Hopkinson Pressure Bar (SHPB), also referred to as Kolsky bar is a commonly used setup for high strain rate testing. SHPB is suitable for high strain rate test in strain rate range of 10 2 to 10 4 s -1 . These high strain rate data are required for safety and structural integrity assessment of structures subjected to dynamic loading. As high strain rate data are not easily available in open literature need was felt for setting up such high strain rate testing machine. SHPB at BARC was designed and set-up inhouse jointly by Refuelling Technology Division and Mechanical Metallurgy Division, at Hall no. 3, BARC. A number of conceptual designs for SHPB were thought of and the optimized design was worked out. The challenges of precision tolerance, straightness in bars and design and proper functioning of pneumatic gun were met. This setup has been used extensively to study the high strain rate material behavior. This report introduces the SHPB in general and the setup at BARC in particular. The history of development of SHPB, the basic formulations of one dimensional wave propagation, the relations between the wave velocity, particle velocity and elastic strain in a one dimensional bar, and the equations used to obtain the final stress vs. strain curves are described. The calibration of the present setup, the pre-test calculations and the posttest analysis of data are described. Finally some of the experimental results on different materials such as Cu, SS305, SA516 and Zr, at room temperature and elevated temperatures are presented. (author)

  16. Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains

    Science.gov (United States)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060

  17. Assessment of natural radioactivity and the associated radiation hazards in some Cameroonian building materials

    International Nuclear Information System (INIS)

    Ngachin, M.; Garavaglia, M.; Giovani, C.; Kwato Njock, M.G.

    2005-09-01

    The concentration of 238 U, 232 Th, 40 K in natural and fabricated building materials used in Cameroon was investigated by a high-resolution γ-ray spectrometry system with a co-axial HPGe detector. Fourteen kinds of building materials were collected from factories and in the field. Each sample was therefore kept in a 500 ml plastic Marinelli beakers and measured in a very low-background laboratory. The measured activity concentrations range from 1.76 to 49.84 Bq kg -1 , from 0.32 to 147.2 Bq kg -1 and from 18.16 to 1226.29 Bq kg -1 for 238 U, 232 Th and 40 K respectively. The highest mean value of 238 U concentration was found in red compressed soil-brick type I (49.57±0.33 Bq kg -1 ) produced by MIPROMALO whereas the highest average concentration of 232 Th (138.89±12.51 Bq kg -1 ) and 40 K (1161.46±107.57 Bq kg -1 ) was found in gravel collected from an exploitation site in LOGBADJECK. The activity concentrations obtained were compared with available data from other investigations and with the world average value for soils. The radium equivalent activity Ra eq , the external hazard index H ex as well as the indoor absorbed dose rate D radical in air and the annual effective dose equivalent H radical E were evaluated to assess the radiation hazards for people living in dwellings made of studied materials. All building materials have shown Ra eq activity (range from 10.15 to 312.57 Bq kg -1 ) lower than the limit of 370 Bq kg -1 set in the Organization for Economic Cooperation and Development (OECD, 1979) report, and which is equivalent to a γ-dose of 1.5 mSv yr -1 All the examined materials are acceptable for use as building materials in accord with the OECD criterion. (author)

  18. The BaBar Mini

    International Nuclear Information System (INIS)

    Brown, David N.

    2003-01-01

    BaBar has recently deployed a new event data format referred to as the Mini. The mini uses efficient packing and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The Mini packs detector information into simple transient data objects, which are then aggregated into roughly 10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being ported to use Root persistence. The Mini contains enough information to support detailed detector studies, while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable, allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format covering all its needs

  19. The BaBar mini

    International Nuclear Information System (INIS)

    Brown, David N.; BaBar Collaboration

    2003-01-01

    BaBar has recently deployed a new event data format referred to as the Mini. The mini uses efficient packing and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The Mini packs detector information into simple transient data objects, which are then aggregated into roughly 10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being ported to use Root persistence. The Mini contains enough information to support detailed detector studies, while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable, allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format covering all its needs

  20. Effect of using low-polluting building materials and increasing ventilation on perceived indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Zuczek, P. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The potential of improving perceived air quality indoors was quantified when low-polluting materials are used and when building ventilation is increased. This was done by studying the relationships between ventilation rate and the perceived indoor air quality. A sensory panel assessed the air quality in test rooms ventilated with realistic outdoor air supply rates, where combinations of high- and low-polluting wall, floor and ceiling materials were set up. These materials were ranked as high- and low-polluting using sensory assessments of air quality in small-scale glass chambers, where they were tested individually. Substituting materials ranked as high-polluting with materials ranked as lower-polluting improved the perceived air quality in the test rooms. This improvement was greater than what was achieved by a realistic increase of the ventilation rate in the test rooms. Thus reducing pollution emitted from building materials that affects the perceived air quality has a considerable potential of limiting the energy for ventilation without compromising indoor air quality. (au)