WorldWideScience

Sample records for band quasi-simultaneous observations

  1. Table of members of quasi-bands

    International Nuclear Information System (INIS)

    Sakai, Mitsuo.

    1984-04-01

    The probable members of the quasi-bands in even-even nuclei for Z between 6 and 100 are listed in this table. The terms quasi-bands have been introduced in the so-called spherical regions as the counter parts of the collective bands in the deformed regions. In the present compilation, the data for deformed nuclei are classified for convenience under the same titles, Quasi-Ground Band, Quasi-Beta Band and Quasi-Gamma Band, as are used for other nuclear regions. The present edition covers the literature through September, 1983. Fifteen newly discovered nuclides are included. The classification of energy level into quasi-bands is made on the basis of the systematic trend in the data over large groups of nuclei. (Kato, T.)

  2. Quasi-simultaneous ultraviolet, optical, and infrared observations of the BL Lacertae object PKS 0048-09

    International Nuclear Information System (INIS)

    Falomo, R.; Bouchet, P.; Maraschi, L.; Treves, A.; Tanzi, E.G.

    1988-01-01

    This paper reports on quasi-simultaneous UV, optical, and IR observations of the BL Lac object PKS 0048-09, carried out on January 7-9, 1987, when the object was in a moderately high optical state. The data were used to derive a detailed energy distribution from about 10 to the 14th to about 2.5 x 10 to the 15th Hz. A comparison of observations obtained on January 7-9, 1987, with observations on September 12, 1986, pertaining to a lower state of the source, indicates spectral hardening with increasing intensity on time scales of months. 26 references

  3. Quasi-simultaneous ultraviolet, optical, and infrared observations of the BL Lacertae object PKS 0048-09

    Energy Technology Data Exchange (ETDEWEB)

    Falomo, R.; Bouchet, P.; Maraschi, L.; Treves, A.; Tanzi, E.G.

    1988-12-01

    This paper reports on quasi-simultaneous UV, optical, and IR observations of the BL Lac object PKS 0048-09, carried out on January 7-9, 1987, when the object was in a moderately high optical state. The data were used to derive a detailed energy distribution from about 10 to the 14th to about 2.5 x 10 to the 15th Hz. A comparison of observations obtained on January 7-9, 1987, with observations on September 12, 1986, pertaining to a lower state of the source, indicates spectral hardening with increasing intensity on time scales of months. 26 references.

  4. Simultaneous confidence bands for the integrated hazard function

    OpenAIRE

    Dudek, Anna; Gocwin, Maciej; Leskow, Jacek

    2006-01-01

    The construction of the simultaneous confidence bands for the integrated hazard function is considered. The Nelson--Aalen estimator is used. The simultaneous confidence bands based on bootstrap methods are presented. Two methods of construction of such confidence bands are proposed. The weird bootstrap method is used for resampling. Simulations are made to compare the actual coverage probability of the bootstrap and the asymptotic simultaneous confidence bands. It is shown that the equal--tai...

  5. Quasi-simultaneous observations of BL Lac object Mrk 501 in X-ray, UV, visible, IR, and radio frequencies

    International Nuclear Information System (INIS)

    Kondo, Y.; Worrall, D.M.; Mushotzky, R.F.; Hackney, R.L.; Hackney, K.R.H.; Oke, J.B.; Yee, H.K.C.; Neugebauer, G.; Matthews, K.; Feldman, P.A.; Brown, R.L.

    1981-01-01

    Quasi-simultaneous observations of the BL Lac object Mrk 501 were performed for the first time at X-ray, ultraviolet, visible infrared, and radio frequencies. As the BL Lac objects are known to vary in their flux, such a ''quasi-instantaneous'' spectral energy profile is necessary in order to describe properly the energy generation mechanism. The observed spectral slope from the X-ray to UV regions is positive and continuous, but that from the mid-UV to visible light region becomes gradually flat and possibly turns down toward lower frequencies; the optical-radio emission cannot be accounted for by a single power law. Several theoretical models have been considered for the emission mechanism. In some cases quantitative comparison with the data is not practical. However, most of the models are, at least, not inconsistent with the observations. A quantitative comparison has been peformed with the synchroton self-Compton model; the total spectrum is found consistent with this model. The spectrum from visible light to X-ray is consistent with synchrotron radiation or with inverse-Compton scattering by a hot thermal cloud of electrons. The continuity of the spectral slope from X-ray to UV implied by the current data suggests that the previous estimates of the total luminosity of this BL Lac object has been underestimated by a factor of about 3 or 4

  6. Quasi-Simultaneous Viscous-Inviscid Interaction for Transonic Airfoil Flow

    NARCIS (Netherlands)

    Veldman, Arthur E.P.

    2005-01-01

    Following Prandtl, a viscous-inviscid interaction (VII) method is presented, where the flow field is divided into a viscous shear layer and an inviscid outer region. Their coupling is performed with the quasi-simultaneous approach, making use of an appropriately chosen interaction law. Firstly, an

  7. Observation of magnetoelastic effects in a quasi-one-dimensional spiral magnet

    Science.gov (United States)

    Wang, Chong; Yu, Daiwei; Liu, Xiaoqiang; Chen, Rongyan; Du, Xinyu; Hu, Biaoyan; Wang, Lichen; Iida, Kazuki; Kamazawa, Kazuya; Wakimoto, Shuichi; Feng, Ji; Wang, Nanlin; Li, Yuan

    2017-08-01

    We present a systematic study of spin and lattice dynamics in the quasi-one-dimensional spiral magnet CuBr2, using Raman scattering in conjunction with infrared and neutron spectroscopy. Along with the development of spin correlations upon cooling, we observe a rich set of broad Raman bands at energies that correspond to phonon-dispersion energies near the one-dimensional magnetic wave vector. The low-energy bands further exhibit a distinct intensity maximum at the spiral magnetic ordering temperature. We attribute these unusual observations to two possible underlying mechanisms: (1) formation of hybrid spin-lattice excitations and/or (2) "quadrumerization" of the lattice caused by spin-singlet entanglement in competition with the spiral magnetism.

  8. Quasi-simultaneous observations of the BL Lac object MK 501 in X-ray, UV, visible, IR and radio frequencies

    Science.gov (United States)

    Kondo, D. M.; Worrall, D. M.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. H.; Oke, J. B.; Yee, H.; Neugebauer, G.; Matthews, K.; Feldman, P. A.

    1980-01-01

    Quasi-simultaneous observations of the BL Lacertae (Lac) objects MK 501 were performed for the first time at X-ray, ultraviolet, visible, infrared, and radio frequencies. The observed spectral slope from the X-ray to UV regions is positive and continuous, but that from the mid UV to visible light region becomes gradually flat and possibly turns down toward lower frequencies; the optical radio emission can not be accounted for by a single power law. Several theoretical models were considered for the emission mechanism. A quantitative comparison was performed with the synchrotron-self-Compton model; the total spectrum is found consistent with this model. The spectrum from visible light to X-ray is consistent with synchrotron radiation or with inverse-Compton scattering by a hot thermal cloud of electrons. The continuity of the spectral slope from X-ray to UV implied by the current data suggests that the previous estimates of the total luminosity of this BL Lac object is underestimated by a factor of about three or four.

  9. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.

    Science.gov (United States)

    Cheung, W M; Chan, K S

    2017-06-01

    We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index  =  -1 and the valence band with Floquet index  =  +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.

  10. Modulational-instability gain bands in quasi-phase-matched materials

    International Nuclear Information System (INIS)

    Corney, J.F.; Bang, O.

    2002-01-01

    Full text: Quadratically nonlinear materials are of significant technological interest in optics because of their strong and fast cascaded nonlinearities, which are accessed most efficiently with quasi-phase-matching (QPM) techniques. We study the gain spectra of modulational instabilities (Ml) in quadratic materials where the linear and nonlinear properties are modulated with QPM gratings. The periods and intensity-dependence of the Ml can now be measured in the laboratory. Using an exact Floquet theory, we find that novel low- and high-frequency bands appear in the gain spectrum (gain versus transverse spatial frequency). The high-frequency gain bands are a general feature of gain spectra for QPM gratings. They form part of an extensive series of bands that correspond to Ml in the non-phase-matched, quickly varying components of the fields. The low-frequency bands correspond to Ml in the phase-matched DC components of the fields and are accurately predicted by a simple average theory. This theory includes the effect of the quickly varying components as induced cubic terms, which can be strong enough to suppress the low-frequency bands, in which case dark solitons and other broad beams may be effectively stable, since the high-frequency bands are typically small

  11. Intra-Day Simultaneous Optical Monitoring of S5 0716+714

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Zhang

    2016-09-01

    Full Text Available We present the results of simultaneous optical multi-color observations of BL Lac object 0716+714 in November 2014 and February 2016. The intra-day variability (IDV varies from 0.04 to 0.3 mags. Both achromatic and bluer-when-brighter (BWB color behaviors were detected. A probable quasi-periodic oscillation overlapping on a significant flare was also observed. We used the interpolated cross-correlation function to calculate time lags between light curves in different bands. Variations in the B and R lagging behind that in the I band were found, which corresponds with anti-clockwise loops on the color-magnitude diagrams.

  12. Whistler Triggered Upper Band Chorus Observed in Alaska

    Science.gov (United States)

    Hosseini, P.; Golkowski, M.

    2017-12-01

    VLF radiation from lightning discharges is one of several sources of energy injection into the inner magnetosphere from the Earth. Lightning discharges initially produce a broadband impulse or `sferic' but after propagation in the dispersive magnetosphere this waveform soon becomes quasi narrow band with the characteristic spectrographic form of the whistler. Most of the lightning induced VLF wave energy injected into the magnetosphere will be unducted with a k-vector which becomes increasingly oblique. Although unducted radiation is ubiquitous throughout the inner magnetosphere, it is generally of a low amplitude due to Landau damping and is not expected to produce strong nonlinear phenomena such as triggered emissions and chorus waves. However, VLF wave energy ducted or trapped in field-aligned plasma density enhancements can have relatively large amplitudes due to focusing and also linear cyclotron resonance growth. Therefore high amplitude ducted whistler waves can trigger a number of complex nonlinear phenomena. These include the triggering of VLF emissions and triggering of VLF hiss or chorus. Such phenomena are generally considered to result from nonlinear electron cyclotron phase trapping. Observation of such VLF emissions triggered by natural whistlers have been reported since the 1970s in Antarctica. We present observations of whistlers triggered upper band chorus emission from Alaska. Dispersion analyze of whistlers determine the L-shell range to be 4.5 clear frequency band gap between upper and lower band of the observed chorus emissions. The observations point to ducted chorus generation in the vicinity of the plasmapause boundary.

  13. A simultaneous confidence band for sparse longitudinal regression

    KAUST Repository

    Ma, Shujie; Yang, Lijian; Carroll, Raymond J.

    2012-01-01

    Functional data analysis has received considerable recent attention and a number of successful applications have been reported. In this paper, asymptotically simultaneous confidence bands are obtained for the mean function of the functional regression model, using piecewise constant spline estimation. Simulation experiments corroborate the asymptotic theory. The confidence band procedure is illustrated by analyzing CD4 cell counts of HIV infected patients.

  14. Quasi-simultaneous observations of BL Lac object Mrk 501 in X-ray, UV, visible, IR, and radio frequencies

    Science.gov (United States)

    Kondo, Y.; Worrall, D. M.; Oke, J. B.; Yee, H. K. C.; Neugebauer, G.; Matthews, K.; Feldman, P. A.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. R. H.

    1981-01-01

    Observations in the X-ray, UV, visible, IR and radio regions of the BL Lac object Mrk 501 made over the course of two months are reported. The measurements were made with the A2 experiment on HEAO 1 (X-ray), the SWP and LWR cameras on IUE (UV), the 5-m Hale telescope (visible), the 2.5-m telescope at Mount Wilson (IR), the NRAO 92-m radio telescope at Green Bank (4750 MHz) and the 46-m radio telescope at the Algonquin Observatory (10275 and 10650 MHz). The quasi-simultaneously observed spectral slope is found to be positive and continuous from the X-ray to the UV, but to gradually flatten and possibly turn down from the mid-UV to the visible; the optical-radio emission cannot be accounted for by a single power law. The total spectrum is shown to be compatible with a synchrotron self-Compton emission mechanism, while the spectrum from the visible to the X-ray is consistent with synchrotron radiation or inverse-Compton scattering by a hot thermal electron cloud. The continuity of the spectrum from the UV to the X-ray is noted to imply a total luminosity greater than previous estimates by a factor of 3-4.

  15. Simultaneous observations of ESF irregularities over Indian region using radar and GPS

    Directory of Open Access Journals (Sweden)

    S. Sripathi

    2008-10-01

    Full Text Available In this paper, we present simultaneous observations of temporal and spatial variability of total electron content (TEC and GPS amplitude scintillations on L1 frequency (1.575 GHz during the time of equatorial spread F (ESF while the MST radar (53 MHz located at Gadanki (13.5° N, 79.2° E, Dip latitude 6.3° N, a low latitude station, made simultaneous observations. In particular, the latitudinal and longitudinal extent of TEC and L-band scintillations was studied in the Indian region for different types of ESF structures observed using the MST radar during the low solar activity period of 2004 and 2005. Simultaneous radar and GPS observations during severe ESF events in the pre-midnight hour reveal that significant GPS L band scintillations, depletions in TEC, and the double derivative of the TEC index (DROTI, which is a measure of fluctuations in TEC, obtained at low latitudes coincide with the appearance of radar echoes at Gadanki. As expected, when the irregularities reach higher altitudes as seen in the radar map during pre-midnight periods, strong scintillations on an L-band signal are observed at higher latitudes. Conversely, when radar echoes are confined to only lower altitudes, weak scintillations are found and their latitudinal extent is small. During magnetically quiet periods, we have recorded plume type radar echoes during a post-midnight period that is devoid of L-band scintillations. Using spectral slopes and cross-correlation index of the VHF scintillation observations, we suggest that these irregularities could be "dead" or "fossil" bubbles which are just drifting in from west. This scenario is consistent with the observations where suppression of pre-reversal enhancement (PRE in the eastward electric field is indicated by ionosonde observations of the height of equatorial F layer and also occurrence of low spectral width in the radar observations relative to pre-midnight period. However, absence of L-band scintillations during

  16. Wide applicability of high-Tc pairing originating from coexisting wide and incipient narrow bands in quasi-one-dimensional systems

    Science.gov (United States)

    Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko

    2018-01-01

    We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.

  17. XMM-Newton and NuSTAR Simultaneous X-Ray Observations of IGR J11215-5952

    International Nuclear Information System (INIS)

    Sidoli, L.; Tiengo, A.; Paizis, A.; Sguera, V.; Lotti, S.; Natalucci, L.

    2017-01-01

    We report the results of an XMM - Newton and NuSTAR coordinated observation of the Supergiant Fast X-ray Transient (SFXT) IGR J11215–5952, performed on 2016 February 14, during the expected peak of its brief outburst, which repeats every ∼165 days. Timing and spectral analysis were performed simultaneously in the energy band 0.4–78 keV. A spin period of 187.0 (±0.4) s was measured, consistent with previous observations performed in 2007. The X-ray intensity shows a large variability (more than one order of magnitude) on timescales longer than the spin period, with several luminous X-ray flares that repeat every 2–2.5 ks, some of which simultaneously observed by both satellites. The broadband (0.4–78 keV) time-averaged spectrum was well deconvolved with a double-component model (a blackbody plus a power law with a high energy cutoff) together with a weak iron line in emission at 6.4 keV (equivalent width, EW, of 40 ± 10 eV). Alternatively, a partial covering model also resulted in an adequate description of the data. The source time-averaged X-ray luminosity was 10 36 erg s −1 (0.1–100 keV; assuming 7 kpc). We discuss the results of these observations in the framework of the different models proposed to explain SFXTs, supporting a quasi-spherical settling accretion regime, although alternative possibilities (e.g., centrifugal barrier) cannot be ruled out.

  18. XMM-Newton and NuSTAR Simultaneous X-Ray Observations of IGR J11215-5952

    Energy Technology Data Exchange (ETDEWEB)

    Sidoli, L.; Tiengo, A.; Paizis, A. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via E. Bassini 15, I-20133 Milano (Italy); Sguera, V. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Gobetti 101, I-40129 Bologna (Italy); Lotti, S.; Natalucci, L., E-mail: sidoli@iasf-milano.inaf.it [INAF, Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-04-01

    We report the results of an XMM - Newton and NuSTAR coordinated observation of the Supergiant Fast X-ray Transient (SFXT) IGR J11215–5952, performed on 2016 February 14, during the expected peak of its brief outburst, which repeats every ∼165 days. Timing and spectral analysis were performed simultaneously in the energy band 0.4–78 keV. A spin period of 187.0 (±0.4) s was measured, consistent with previous observations performed in 2007. The X-ray intensity shows a large variability (more than one order of magnitude) on timescales longer than the spin period, with several luminous X-ray flares that repeat every 2–2.5 ks, some of which simultaneously observed by both satellites. The broadband (0.4–78 keV) time-averaged spectrum was well deconvolved with a double-component model (a blackbody plus a power law with a high energy cutoff) together with a weak iron line in emission at 6.4 keV (equivalent width, EW, of 40 ± 10 eV). Alternatively, a partial covering model also resulted in an adequate description of the data. The source time-averaged X-ray luminosity was 10{sup 36} erg s{sup −1} (0.1–100 keV; assuming 7 kpc). We discuss the results of these observations in the framework of the different models proposed to explain SFXTs, supporting a quasi-spherical settling accretion regime, although alternative possibilities (e.g., centrifugal barrier) cannot be ruled out.

  19. Full-Band Quasi-Harmonic Analysis and Synthesis of Musical Instrument Sounds with Adaptive Sinusoids

    Directory of Open Access Journals (Sweden)

    Marcelo Caetano

    2016-05-01

    Full Text Available Sinusoids are widely used to represent the oscillatory modes of musical instrument sounds in both analysis and synthesis. However, musical instrument sounds feature transients and instrumental noise that are poorly modeled with quasi-stationary sinusoids, requiring spectral decomposition and further dedicated modeling. In this work, we propose a full-band representation that fits sinusoids across the entire spectrum. We use the extended adaptive Quasi-Harmonic Model (eaQHM to iteratively estimate amplitude- and frequency-modulated (AM–FM sinusoids able to capture challenging features such as sharp attacks, transients, and instrumental noise. We use the signal-to-reconstruction-error ratio (SRER as the objective measure for the analysis and synthesis of 89 musical instrument sounds from different instrumental families. We compare against quasi-stationary sinusoids and exponentially damped sinusoids. First, we show that the SRER increases with adaptation in eaQHM. Then, we show that full-band modeling with eaQHM captures partials at the higher frequency end of the spectrum that are neglected by spectral decomposition. Finally, we demonstrate that a frame size equal to three periods of the fundamental frequency results in the highest SRER with AM–FM sinusoids from eaQHM. A listening test confirmed that the musical instrument sounds resynthesized from full-band analysis with eaQHM are virtually perceptually indistinguishable from the original recordings.

  20. Simultaneous observations of noctilucent clouds and polar mesosphere summer echoes at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Keisuke Hosokawa

    2013-11-01

    Full Text Available This paper reports simultaneous observations of visible noctilucent clouds (NLC and polar mesosphere summer echoes (PMSE at Syowa Station (69°01′S, 38°61′E in Antarctica. During a 1.5 h interval from 2000 to 2130 UT (2300 to 0030 LT on Feb. 11, 2009, visible NLC were observed south of Syowa Station. The oblique sounding HF radar of SuperDARN at Syowa Station simultaneously observed peculiar echoes in the closest two range gates. The echoes had a small Doppler velocity and a narrow spectral width, which are consistent with the characteristics of PMSE in the SuperDARN data. The simultaneous appearance of the visible NLC and peculiar near-range echoes observed by the HF radar suggests that the echoes were actually a signature of PMSE in the HF band. In addition, the data from the simultaneous measurements show that the spatial distributions of NLC and PMSE in the HF band were collocated with each other, which implies that oblique sounding HF radar is a useful tool for estimating the two-dimensional horizontal distribution of PMSE.

  1. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.

    Science.gov (United States)

    Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K

    2008-12-01

    Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.

  2. The quasi-continuum of gamma rays following the decay of superdeformed bands in the Hg region

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Janssens, R.V.F. [Argonne National Lab., IL (United States)] [and others

    1996-12-31

    The quasi-continuum part of the spectrum associated with the decay-out of the yrast superdeformed band in {sup 194}Hg has been extracted. It has for the first time been possible to compare the spin and excitation energy determined from the analysis of the quasi-continuum {gamma} rays to the exact result obtained from the one-step linking transitions.

  3. Band dependence of charge density wave in quasi-one-dimensional Ta2NiSe7 probed by orbital magnetoresistance

    Science.gov (United States)

    He, Jiaming; Zhang, Yiran; Wen, Libin; Yang, Yusen; Liu, Jinyu; Wu, Yueshen; Lian, Hailong; Xing, Hui; Wang, Shun; Mao, Zhiqiang; Liu, Ying

    2017-07-01

    Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structures. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray, and electron diffraction, whereas its transport property and the relation to the underlying electronic states remain to be explored. Here, we report our results of the magnetoresistance (MR) on Ta2NiSe7. A breakdown of Kohler's rule is found upon entering the CDW state. Concomitantly, a clear change in curvature in the field dependence of MR is observed. We show that the curvature change is well described by the two-band orbital MR, with the hole density being strongly suppressed in the CDW state, indicating that the p orbitals from Se atoms dominate the change in transport through CDW transition.

  4. Multi-Band Intra-Night Optical Variability of BL Lacertae

    Directory of Open Access Journals (Sweden)

    Haritma Gaur

    2017-12-01

    Full Text Available We monitored BL Lacertae frequently during 2014–2016 when it was generally in a high state. We searched for intra-day variability for 43 nights using quasi-simultaneous measurements in the B, V, R, and I bands (totaling 143 light curves; the typical sampling interval was about eight minutes. On hour-like timescales, BL Lac exhibited significant variations during 13 nights in various optical bands. Significant spectral variations are seen during most of these nights such that the optical spectrum becomes bluer when brighter. The amplitude of variability is usually greater for longer observations but is lower when BL Lac is brighter. No evidence for periodicities or characteristic variability time-scales in the light curves was found. The color variations are mildly chromatic on long timescales.

  5. QUASI-PERIODIC ACCELERATION OF ELECTRONS IN THE FLARE ON 2012 JULY 19

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing [Key Laboratory of Solar Activities, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Nakariakov, Valery M. [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Gao, Guannan, E-mail: huangj@bao.ac.cn [Yunnan Observatory, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2016-11-10

    Quasi-periodic pulsations (QPPs) of nonthermal emission in an M7.7 class flare on 2012 July 19 are investigated with spatially resolved observations at microwave and HXR bands and with spectral observations at decimetric, metric waves. Microwave emission at 17 GHz of two footpoints, HXR emission at 20–50 keV of the north footpoint and loop top, and type III bursts at 0.7–3 GHz show prominent in-phase oscillations at 270 s. The microwave emission of the loop leg has less pulsation but stronger emission. Through the estimation of plasma density around the loop top from EUV observations, we find that the local plasma frequency would be 1.5 GHz or even higher. Thus, type III bursts at 700 MHz originate above the loop top. Quasi-periodic acceleration or injection of energetic electrons is proposed to dominate these in-phase QPPs of nonthermal emission from footpoints, loop top, and above. In the overlying region, drifting pulsations (DPS) at 200–600 MHz oscillate at a distinct period (200 s). Its global structure drifts toward lower frequency, which is closely related to upward plasmoids observed simultaneously from EUV emission. Hence, nonthermal emission from overlying plasmoids and underlying flaring loops show different oscillating periods. Two individual systems of quasi-periodic acceleration of electrons are proposed to coincide in the bi-direction outflows from the reconnection region.

  6. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Science.gov (United States)

    Le Contel, O.; Roux, A.; Jacquey, C.; Robert, P.; Berthomier, M.; Chust, T.; Grison, B.; Angelopoulos, V.; Sibeck, D.; Chaston, C. C.; Cully, C. M.; Ergun, B.; Glassmeier, K.-H.; Auster, U.; McFadden, J.; Carlson, C.; Larson, D.; Bonnell, J. W.; Mende, S.; Russell, C. T.; Donovan, E.; Mann, I.; Singer, H.

    2009-06-01

    We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure) as predicted by Gary and Wang (1996). Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  7. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Directory of Open Access Journals (Sweden)

    O. Le Contel

    2009-06-01

    Full Text Available We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure as predicted by Gary and Wang (1996. Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  8. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals.

    Science.gov (United States)

    Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua

    2016-04-18

    We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.

  9. Quasi-bound states in continuum

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Hatano, Naomichi; Garmon, Sterling; Petrosky, Tomio

    2007-08-01

    We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)

  10. Existence and Hadamard well-posedness of a system of simultaneous generalized vector quasi-equilibrium problems

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    2017-03-01

    Full Text Available Abstract An existence result for the solution set of a system of simultaneous generalized vector quasi-equilibrium problems (for short, (SSGVQEP is obtained, which improves Theorem 3.1 of the work of Ansari et al. (J. Optim. Theory Appl. 127:27-44, 2005. Moreover, a definition of Hadamard-type well-posedness for (SSGVQEP is introduced and sufficient conditions for Hadamard well-posedness of (SSGVQEP are established.

  11. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Directory of Open Access Journals (Sweden)

    O. Le Contel

    2009-06-01

    Full Text Available We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=Te/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure as predicted by Gary and Wang (1996. Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  12. Simultaneous confidence bands for Cox regression from semiparametric random censorship.

    Science.gov (United States)

    Mondal, Shoubhik; Subramanian, Sundarraman

    2016-01-01

    Cox regression is combined with semiparametric random censorship models to construct simultaneous confidence bands (SCBs) for subject-specific survival curves. Simulation results are presented to compare the performance of the proposed SCBs with the SCBs that are based only on standard Cox. The new SCBs provide correct empirical coverage and are more informative. The proposed SCBs are illustrated with two real examples. An extension to handle missing censoring indicators is also outlined.

  13. Simultaneous microwave photonic and phononic band gaps in piezoelectric–piezomagnetic superlattices with three types of domains in a unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zheng-hua [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Jiang, Zheng-Sheng [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Chen, Tao [Laboratory of Quantum Information and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lei, Da-Jun [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Yan, Wen-Yan, E-mail: yanwenyan88@126.com [School of Software and Communication Engineering, Xiangnan University, Chenzhou 423000 (China); Qiu, Feng; Huang, Jian-Quan; Deng, Hai-Ming; Yao, Min [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China)

    2016-04-29

    A novel phoxonic crystal using the piezoelectric (PMN-PT) and piezomagnetic (CoFe{sub 2}O{sub 4}) superlattices with three types of domains in a unit cell (PPSUC) is present, in which dual microwave photonic and phononic band gaps can be obtained simultaneously. Two categories of phononic band gaps, originating from both the Bragg scattering of acoustic waves in periodic structures at the Brillouin zone boundary and the electromagnetic wave-lattice vibration couplings near the Brillouin zone center, can be observed in the phononic band structures. The general characteristics of the microwave photonic band structures are similar to those of pure piezoelectric or piezomagnetic superlattices, with the major discrepancy being the appearance of nearly dispersionless branches within the microwave photonic band gaps, which show an extremely large group velocity delay. Thus, the properties may also be applied to compact acoustic-microwave devices. - Highlights: • Dual microwave photonic and phononic band gaps can coexist in the PPSUC. • Two categories of phononic band gaps with different mechanism can be obtained. • Nearly dispersionless branches appear in the microwave photonic band gaps.

  14. Multi-quasi-particle states in 173Hf

    International Nuclear Information System (INIS)

    Fabricius, B.; Dracoulis, G.D.; Kibedi, T.; Stuchbery, A.E.; Baxter, A.M.

    1991-01-01

    Rotational bands built on 1, 3 and 5 quasi-particle (qp) states in 173 Hf have been populated to medium and high spins through the 160 Gd( 18 O, 5n) reaction. The 1qp bands, previously identified as the 1/2 - [521], 5/2 - [512] and 7/2 + [633] (mixed i 13/2 ) Nilsson configurations, have been extended past the first back-bend and show different alignment properties, possibly originating from deformation differences. The multi-particle states were identified from excitation energies, the properties of their associated band structures and decay patterns. The 3qp states are the previously known K π =19/2 + and 23/2 - isomeric states originating from the 7/2 + [633] quasi-neutron coupled to the 6 + and 8 - , 2-quasi-proton excitations and a K π =(13/2 + ) state possibly containing the three lowest quasi-neutrons. A 5qp state with K π =(29/2 - ) was identified as the same three lowest lying quasi-neutrons coupled to the 8 - , 2-quasi-proton excitation. The low excitation energies of these two related 3- and 5-quasi-particle states implies a reduced neutron pairing gap, which can be attributed to the effect of blocking. (orig.)

  15. Multi-band, multi-epoch observations of the transiting warm Jupiter WASP-80b

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Akihiko; Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Kawashima, Yui; Ikoma, Masahiro; Kurosaki, Kenji [Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033 (Japan); Narita, Norio; Nishiyama, Shogo; Takahashi, Yasuhiro H.; Nagayama, Shogo [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Onitsuka, Masahiro; Baba, Haruka; Ryu, Tsuguru [The Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ita, Yoshifusa; Onozato, Hiroki [Astronomical Institute, Graduate School of Science, Tohoku University, 6-3 Aramaki Aoba, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Hirano, Teruyuki; Kawauchi, Kiyoe [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Hori, Yasunori [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Nagayama, Takahiro [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Tamura, Motohide [Department of Astronomy, Graduate School of Science, The University of Tokyo, and National Astronomical Observatory of Japan (Japan); Kawai, Nobuyuki, E-mail: afukui@oao.nao.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1, Oookayama, Meguro, Tokyo 152-8551 (Japan); and others

    2014-08-01

    WASP-80b is a warm Jupiter transiting a bright late-K/early-M dwarf, providing a good opportunity to extend the atmospheric study of hot Jupiters toward the lower temperature regime. We report multi-band, multi-epoch transit observations of WASP-80b by using three ground-based telescopes covering from optical (g', R{sub c}, and I{sub c} bands) to near-infrared (NIR; J, H, and K{sub s} bands) wavelengths. We observe 5 primary transits, each in 3 or 4 different bands simultaneously, obtaining 17 independent transit light curves. Combining them with results from previous works, we find that the observed transmission spectrum is largely consistent with both a solar abundance and thick cloud atmospheric models at a 1.7σ discrepancy level. On the other hand, we find a marginal spectral rise in the optical region compared to the NIR region at the 2.9σ level, which possibly indicates the existence of haze in the atmosphere. We simulate theoretical transmission spectra for a solar abundance but hazy atmosphere, finding that a model with equilibrium temperature of 600 K can explain the observed data well, having a discrepancy level of 1.0σ. We also search for transit timing variations, but find no timing excess larger than 50 s from a linear ephemeris. In addition, we conduct 43 day long photometric monitoring of the host star in the optical bands, finding no significant variation in the stellar brightness. Combined with the fact that no spot-crossing event is observed in the five transits, our results confirm previous findings that the host star appears quiet for spot activities, despite the indications of strong chromospheric activities.

  16. Multi-quasi-particles states in 173Hf

    International Nuclear Information System (INIS)

    Fabricius, B.; Dracoulis, G.D.; Kibedi, T.; Stuchbery, A.E.; Baxter, A.M.

    1990-10-01

    Rotational bands built on 1, 3 and 5 quasi-particle (qp) states in 173 Hf have been populated to medium and high spins through the 160 Gd ( 18 O,5n) reaction. The 1qp bands, previously identified as the 1/2 - [521], 5/2 - [512] and 7/2 + [633] (mixed i 1 3 /2 ) Nilsson configurations, have been extended past the first back-bend and show different alignment properties, possibly originating from deformation differences. The multi-particle states were identified from excitation energies, the properties of their associated band structures and decay patterns. The 3 qp states are the previously known K π 19/2 + and 23/2 - isomeric states originating from the 7/2 + [633] quasi-neutron coupled to the 6 + and 8 - , 2-quasi-proton excitations and a K π = (13/2 + ) state possibly containing the three lowest quasi-neutrons. A 5 qp state with K π = (29/2 - ) was identified as the same three lowest lying quasi-neutrons coupled to the 8 - , 2-quasi-proton excitation. The low excitation energies of these two related 3- and 5-quasi-particle states implies a reduced neutron pairing gap, which can be attributed to the effect of blocking. 28 refs., 2 tabs., 9 figs

  17. Observational evidence of quasi-27-day oscillation propagating from the lower atmosphere to the mesosphere over 20° N

    Directory of Open Access Journals (Sweden)

    K. M. Huang

    2015-10-01

    Full Text Available By using meteor radar, radiosonde and satellite observations over 20° N and NCEP/NCAR reanalysis data during 81 days from 22 December 2004 to 12 March 2005, a quasi-27-day oscillation propagating from the troposphere to the mesosphere is reported. A pronounced 27-day periodicity is observed in the raw zonal wind from meteor radar. Spectral analysis shows that the oscillation also occurs in the meridional wind and temperature and propagates westward with wavenumber s = 1; thus the oscillation is of Rossby wave type. The oscillation attains a large amplitude of about 12 m s−1 in the eastward wind shear region of the troposphere. When the wind shear reverses, its amplitude rapidly decays, and the background wind gradually evolves to be westward. However, the oscillation can penetrate through the weak westward wind field due to its relatively large phase speed. After this, the oscillation restrengthens with its upward propagation and reaches about 20 m s−1 in the mesosphere. Reanalysis data show that the oscillation can propagate to the mid and high latitudes from the low latitudes and has large amplitudes over there. There is another interesting phenomenon that a quasi-46-day oscillation appears simultaneously in the troposphere, but it cannot penetrate through the westward wind field because of its smaller phase speed. In the observational interval, a quasi-27-day periodicity in outgoing long-wave radiation (OLR and specific humidity is found in a latitudinal zone of 5–20° N. Thus the quasi-27-day oscillation may be an atmospheric response to forcing due to the convective activity with a period of about 27 days in the tropical region.

  18. Quasi-simultaneous OCT en-face imaging with two different depth resolutions

    International Nuclear Information System (INIS)

    Podoleanu, Adrian Gh; Cucu, Radu G; Rosen, Richard B; Dobre, George M; Rogers, John A; Jackson, David A

    2003-01-01

    We report a system capable of acquiring two quasi-simultaneous en-face optical coherence tomography (OCT) images of different depth resolution (one better than 20 μm and the other between 80 and 330 μm) at a frame rate of 2 Hz. The larger depth resolution image makes it ideal for target positioning in the OCT imaging of moving organs, such as eye fundus and cornea, as well as in the alignment of stacks of en-face OCT images. This role is similar to that of the confocal channel in a previously reported dual channel OCT/confocal imaging instrument. The system presented operates as a dual channel imaging instrument, where both channels operate on the OCT principle. We illustrate the functionality of the system with examples from a coin, skin from a finger and optic nerve in vivo

  19. Early Changes in Alpha Band Power and DMN BOLD Activity in Alzheimer’s Disease: A Simultaneous Resting State EEG-fMRI Study

    Directory of Open Access Journals (Sweden)

    Katharina Brueggen

    2017-10-01

    Full Text Available Simultaneous resting state functional magnetic resonance imaging (rsfMRI–resting state electroencephalography (rsEEG studies in healthy adults showed robust positive associations of signal power in the alpha band with BOLD signal in the thalamus, and more heterogeneous associations in cortical default mode network (DMN regions. Negative associations were found in occipital regions. In Alzheimer’s disease (AD, rsfMRI studies revealed a disruption of the DMN, while rsEEG studies consistently reported a reduced power within the alpha band. The present study is the first to employ simultaneous rsfMRI-rsEEG in an AD sample, investigating the association of alpha band power and BOLD signal, compared to healthy controls (HC. We hypothesized to find reduced positive associations in DMN regions and reduced negative associations in occipital regions in the AD group. Simultaneous resting state fMRI–EEG was recorded in 14 patients with mild AD and 14 HC, matched for age and gender. Power within the EEG alpha band (8–12 Hz, 8–10 Hz, and 10–12 Hz was computed from occipital electrodes and served as regressor in voxel-wise linear regression analyses, to assess the association with the BOLD signal. Compared to HC, the AD group showed significantly decreased positive associations between BOLD signal and occipital alpha band power in clusters in the superior, middle and inferior frontal cortex, inferior temporal lobe and thalamus (p < 0.01, uncorr., cluster size ≥ 50 voxels. This group effect was more pronounced in the upper alpha sub-band, compared to the lower alpha sub-band. Notably, we observed a high inter-individual heterogeneity. Negative associations were only reduced in the lower alpha range in the hippocampus, putamen and cerebellum. The present study gives first insights into the relationship of resting-state EEG and fMRI characteristics in an AD sample. The results suggest that positive associations between alpha band power and BOLD

  20. Electronic band structure and charge density wave transition in quasi-2D KMo6O17 purple bronze

    Science.gov (United States)

    Valbuena, M. A.; Avila, J.; Vyalikh, D. V.; Guyot, H.; Laubschat, C.; Molodtsov, S. L.; Asensio, M. C.

    2008-03-01

    High resolution angle-resolved photoemission of quasi-2D KMo6O17 purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (Tc = 110 K), and down to 35 K (well below Tc). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities.

  1. Electronic band structure and charge density wave transition in quasi-2D KMo6O17 purple bronze

    International Nuclear Information System (INIS)

    Valbuena, M A; Avila, J; Asensio, M C; Vyalikh, D V; Laubschat, C; Molodtsov, S L; Guyot, H

    2008-01-01

    High resolution angle-resolved photoemission of quasi-2D KMo 6 O 17 purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (T c = 110 K), and down to 35 K (well below T c ). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities

  2. SIMULTANEOUS MULTI-BAND DETECTION OF LOW SURFACE BRIGHTNESS GALAXIES WITH MARKOVIAN MODELING

    International Nuclear Information System (INIS)

    Vollmer, B.; Bonnarel, F.; Louys, M.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; Van Driel, W.; Sabatini, S.; MacArthur, L. A.

    2013-01-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings—typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg 2 in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ∼20% more mock LSB galaxies and ∼40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is

  3. CONSTRAINING THE SOLAR CORONAL MAGNETIC FIELD STRENGTH USING SPLIT-BAND TYPE II RADIO BURST OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, P.; Ramesh, R.; Hariharan, K.; Kathiravan, C. [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore—560034 (India); Gopalswamy, N., E-mail: kishore@iiap.res.in [Code 671, Solar Physics Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2016-11-20

    We report on low-frequency radio (85–35 MHz) spectral observations of four different type II radio bursts, which exhibited fundamental-harmonic emission and split-band structure. Each of the bursts was found to be closely associated with a whitelight coronal mass ejection (CME) close to the Sun. We estimated the coronal magnetic field strength from the split-band characteristics of the bursts, by assuming a model for the coronal electron density distribution. The choice of the model was constrained, based on the following criteria: (1) when the radio burst is observed simultaneously in the upper and lower bands of the fundamental component, the location of the plasma level corresponding to the frequency of the burst in the lower band should be consistent with the deprojected location of the leading edge (LE) of the associated CME; (2) the drift speed of the type II bursts derived from such a model should agree closely with the deprojected speed of the LE of the corresponding CMEs. With the above conditions, we find that: (1) the estimated field strengths are unique to each type II burst, and (2) the radial variation of the field strength in the different events indicate a pattern. It is steepest for the case where the heliocentric distance range over which the associated burst is observed is closest to the Sun, and vice versa.

  4. Calculated high-pressure structural properties, lattice dynamics and quasi particle band structures of perovskite fluorides KZnF3, CsCaF3 and BaLiF3.

    Science.gov (United States)

    Vaitheeswaran, G; Kanchana, V; Zhang, Xinxin; Ma, Yanming; Svane, A; Christensen, N E

    2016-08-10

    A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent [Formula: see text] approximation. The [Formula: see text] calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.

  5. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiming; Chen, Zhiyong, E-mail: czysh@netease.com; Zhan, Congkun; Kuang, Lianjun; Shao, Jianbo; Wang, Renke; Liu, Chuming

    2017-04-13

    The mechanical behavior and microstructure characteristics of Ti-5Mo-5V-8Cr-3Al alloy were investigated with hat-shaped samples compressed under quasi-static and dynamic loading. Compared with the quasi-static loading, a higher shear stress peak and a shear instability stage were observed during the dynamic shear response. The results showed that an adiabatic shear band consisting of ultrafine equiaxed grains was only developed in the dynamic specimen, while a wider shear region was formed in the quasi-static specimen. The microhardness measurements revealed that shear region in the quasi-static specimen and adiabatic shear band in the dynamic specimen exhibited higher hardness than that of adjacent regions due to the strain hardening and grain refining, respectively. A stable orientation, in which the crystallographic {110} planes and <111> directions were respectively parallel to the shear plane and shear direction, developed in both specimens. And the microtexture of the adiabatic shear band was more well-defined than that of the shear region in the quasi-static specimen. Rotational dynamic recrystallization mechanism was suggested to explain the formation of ultrafine equiaxed grains within the adiabatic shear band by thermodynamic and kinetic calculations.

  6. Bulletin of International Simultaneous Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The publication of the Bulletin of International Simultaneous Observations, began July 1, 1875, with daily maps added in 1877. It was published for distribution...

  7. SIMULTANEOUS MULTI-BAND DETECTION OF LOW SURFACE BRIGHTNESS GALAXIES WITH MARKOVIAN MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, B.; Bonnarel, F.; Louys, M. [CDS, Observatoire Astronomique, UMR 7550, 11 rue de l' universite, F-67000 Strasbourg (France); Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch. [LSIIT, Universite de Strasbourg, 7, Rue Rene Descartes, F-67084 Strasbourg (France); Van Driel, W. [GEPI, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Sabatini, S. [INAF/IASF-Roma, via Fosso de Cavaliere 100, I-00133 Roma (Italy); MacArthur, L. A., E-mail: Bernd.Vollmer@astro.unistra.fr [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada)

    2013-02-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings-typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg{sup 2} in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered {approx}20% more mock LSB galaxies and {approx}40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of

  8. Observations of banding in first-year Arctic sea ice

    Science.gov (United States)

    Cole, David M.; Eicken, Hajo; Frey, Karoline; Shapiro, Lewis H.

    2004-08-01

    Horizontal banding features, alternating dark and bright horizontal bands apparent in ice cores and stratigraphic cross sections have long been observed in first-year sea ice and are frequently associated with bands of high and low brine or gas porosity. Observations on the land-fast ice near Barrow, Alaska, in recent years have revealed particularly striking banding patterns and prompted a study of their macroscopic and microscopic characteristics. The banding patterns are quantified from photographs of full-depth sections of the ice, and examples are presented from the Chukchi Sea and Elson Lagoon. Statistics on band spacing are presented, and the growth records for three seasons are employed to estimate their time of formation. These data provide insight into the periodicity of the underlying phenomena. Micrographs are used to examine the microstructural variations associated with various banding features and to quantify the geometry of the constituent brine inclusions associated with high- and low-porosity bands. The micrography revealed that the area fraction of brine inclusions varied by a factor of nearly 3 through the more pronounced high- and low-porosity bands. Vertical micrographs obtained shortly after the materials' removal from the ice sheet showed that significantly larger inclusions form abruptly at the start of the high-porosity bands and frequently terminate abruptly at the end of the band. Crystallographic observations indicated that the high-porosity bands supported the nucleation and growth of crystals having substantially different orientations from the very well aligned columnar structure that characterized the bulk of the sheet.

  9. Band crossings in mercury nuclei: effect of occupation of i13/2 neutron orbits

    International Nuclear Information System (INIS)

    Khadkikar, S.B.; Praharaj, C.R.

    1984-04-01

    The K=0 + ground band and two rotation-aligned bands (K=1 + or K2 + two quasi-particle band and K=2 + four quasi-particle band) are studied in 198 Hg, 194 Hg and 190 Hg by angular momentum projection from Hartree-Fock and particle-hole intrinsic states. There is a first anomaly in these three nuclei around 8(h/2π) due to the crossing of the ground band and the two quasi-particle band. Because of the nature of occupation of i13/2 orbitals the four quasi-particle band is too highlying in 198 Hg and does not cross the two quasi-particle bands, while such a second crossing occurs in 194 Hg and 190 Hg near 20 (h/2π). (author)

  10. Simultaneous ground-satellite observations of daytime traveling ionospheric disturbances over Japan using the GPS-TEC network and the CHAMP satellite

    Science.gov (United States)

    Moral, A. C.; Shiokawa, K.; Otsuka, Y.; Liu, H.; Nishioka, M.; Tsugawa, T.

    2017-12-01

    We report results of simultaneous ground-satellite measurements of daytime travelling ionospheric disturbances (TIDs) over Japan by using the GEONET GPS receiver network and the CHAMP satellite. For the two years of 2002 and 2008, we examined GPS measurements of TEC (Total Electron Content) and neutral and electron densities measured by CHAMP satellite. Total of fifteen TID events with clear southward moving structures in the GPS-TEC measurements are found by simultaneous ground-satellite measurements. On 2002, simultaneous events are only observed in January (1 event) and February (4 events). On 2008, ten events are observed around winter months (January (3 events), February (5), March (1), and October (1)). Neutral and electron densities measured by CHAMP show quasi-periodic fluctuations throughout the passages for all events. The CHAMP satellite crossed at least one clear TID phase front for all the events. We fitted a sinusoidal function to both ground and satellite data to obtain the frequencies and phase of the observed variations. We calculated the corresponding phase relationships between TEC variations and neutral and electron densities measured by CHAMP to categorize the events. In the presentations we report correspondence of these TID structures seen in the simultaneous ground-satellite observations by GPS-TEC and CHAMP, and discuss their phase relationship to identify the source of the daytime TIDs and specify how much of the observed variations are showing clear frequencies/or not in the nature at middle latitudes.

  11. Quasi-elastic Charm Production In Neutrino-nucleon Scattering

    CERN Document Server

    Bischofberger, M

    2005-01-01

    A study of quasi elastic charm production in charged current neutrino-nucleon scattering is presented. A sample of about 1.3 million interactions recorded with the NOMAD detector in the CERN SPS wide band neutrino beam has been searched for quasi elastically produced charmed baryons ( L+c,Sc and S*c ). The search has been performed in two exclusive decay channels of the L+c, both including a L . Also, the semi-inclusive decay channels L+c,Sc,S *c→L+X have been studied. Kinematic selection criteria have been chosen in order to obtain samples enriched with quasi elastic charm events. Signal efficiencies and background expectations have been estimated by Monte Carlo simulations. The observed number of events in each searched channel has been found to agree with the background expectation from charged and neutral current reactions and an upper limit for the cross section has been derived. For the quasi elastic charm production cross section averaged over the neutrino energy spectrum (&lan...

  12. Band structure and Fermi surface of UPd2Al3 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Fujimori, Shin-ichi; Saitoh, Yuji; Okane, Tetsuo; Yamagami, Hiroshi; Fujimori, Atsushi; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika

    2007-01-01

    We have observed the band structure and Fermi surfaces of the heavy Fermion superconductor UPd 2 Al 3 by angle-resolved photoemission experiments in the soft X-ray region. We observed renormalized quasi-particle bands in the vicinity of the Fermi level and strongly dispersive bands on the higher binding energy side. Our observation suggests that the structure previously assigned to contributions from localized states in the U 5f spectrum has strong energy dispersions

  13. Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors

    Science.gov (United States)

    Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.

    2018-01-01

    We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.

  14. Electronic band structure and charge density wave transition in quasi-2D KMo{sub 6}O{sub 17} purple bronze

    Energy Technology Data Exchange (ETDEWEB)

    Valbuena, M A [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Avila, J; Asensio, M C [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex (France); Vyalikh, D V; Laubschat, C; Molodtsov, S L [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Guyot, H [LEPES, CNRS, BP 166, 38042 Grenoble Cedex 9 (France)], E-mail: mvbuena@icmm.csic.es

    2008-03-15

    High resolution angle-resolved photoemission of quasi-2D KMo{sub 6}O{sub 17} purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (T{sub c} = 110 K), and down to 35 K (well below T{sub c}). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities.

  15. Quasi-two-year cycle in indices of geomagnetic and solar activity

    International Nuclear Information System (INIS)

    Nuzhdina, M.A.

    1986-01-01

    The spectral, amplitude and phase analysis of monthly standardized anomalies in the indices of planetary geomagnetic disturbance and Wolf numbers for the 100-year period and 18-year time ranges are carried out. There is a weak correlation between the monthly anomalies of fluctuations of the Wolf numbers and planetary indices of geomagnetic distubance manifesting quasi-two-year cyclic recurrence. There is the quasi-two-year cycle of 26 months average duration in the indices of geomagnetic disturbance and Wolf numbers. The quasi-two-year cycle is a rather wide band with the oscillation periods of 21 to 29 months having different amplitudes and phases. The quasi-two-year cycle in geomagnetism and the Wolf numbers is unstable: for 100 years of observations its components change in amplitude and phase

  16. Improving emission uniformity and linearizing band dispersion in nanowire arrays using quasi-aperiodicity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, P. Duke [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Univ. of Southern California, Los Angeles, CA (United States). Ming Hsieh Dept. of Electrical Engineering; Koleske, Daniel D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Povinelli, Michelle L. [Univ. of Southern California, Los Angeles, CA (United States). Ming Hsieh Dept. of Electrical Engineering; Subramania, Ganapathi [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    For this study, we experimentally investigate a new class of quasi-aperiodic structures for improving the emission pattern in nanowire arrays. Efficient normal emission, as well as lasing, can be obtained from III-nitride photonic crystal (PhC) nanowire arrays that utilize slow group velocity modes near the Γ-point in reciprocal space. However, due to symmetry considerations, the emitted far-field pattern of such modes are often ‘donut’-like. Many applications, including lighting for displays or lasers, require a more uniform beam profile in the far-field. Previous work has improved far-field beam uniformity of uncoupled modes by changing the shape of the emitting structure. However, in nanowire systems, the shape of nanowires cannot always be arbitrarily changed due to growth or etch considerations. Here, we investigate breaking symmetry by instead changing the position of emitters. Using a quasi-aperiodic geometry, which changes the emitter position within a photonic crystal supercell (2x2), we are able to linearize the photonic bandstructure near the Γ-point and greatly improve emitted far-field uniformity. We realize the III-nitride nanowires structures using a top-down fabrication procedure that produces nanowires with smooth, vertical sidewalls. Comparison of room-temperature micro-photoluminescence (µ-PL) measurements between periodic and quasi-aperiodic nanowire arrays reveal resonances in each structure, with the simple periodic structure producing a donut beam in the emitted far-field and the quasi-aperiodic structure producing a uniform Gaussian-like beam. We investigate the input pump power vs. output intensity in both systems and observe the simple periodic array exhibiting a non-linear relationship, indicative of lasing. We believe that the quasi-aperiodic approach studied here provides an alternate and promising strategy for shaping the emission pattern of nanoemitter systems.

  17. Simultaneous Ka-Band Site Characterization: Goldstone, CA, White Sands, NM, and Guam, USA

    Science.gov (United States)

    Acosta, Roberto; Morse, Jacquelynne; Zemba, Michael; Nessel, James; Morabito, David; Caroglanian, Armen

    2011-01-01

    To statistically characterize atmospheric effects on Ka-band links at NASA operational sites, NASA has constructed site test interferometers (STI s) which directly measure the tropospheric phase stability and rain attenuation. These instruments observe an unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2) and measure the phase difference between the signals received by the two antennas and its signal attenuation. Three STI s have been deployed so far: the first one at the NASA Deep Space Network Tracking Complex in Goldstone, California (May 2007); the second at the NASA White Sands Complex, in Las Cruses, New Mexico (February 2009); and the third at the NASA Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam (May 2010). Two station-years of simultaneous atmospheric phase fluctuation data have been collected at Goldstone and White Sands, while one year of data has been collected in Guam. With identical instruments operating simultaneously, we can directly compare the phase stability and rain attenuation at the three sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric induced time delay fluctuations over 10 minute blocks. For two years, the time delay fluctuations at the DSN site in Goldstone, CA, have been better than 2.5 picoseconds (ps) for 90% of the time (with reference to zenith), meanwhile at the White Sands, New Mexico site, the time delay fluctuations have been better than 2.2 ps with reference to zenith) for 90% of time. For Guam, the time delay fluctuations have been better than 12 ps (reference to zenith) at 90% of the time, the higher fluctuations are as expected from a high humidity tropical rain zone. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.) will be used to determine the suitability of all the sites for NASA s future communication services at Ka-band.

  18. Quasi-particle interference of heavy fermions in resonant x-ray scattering.

    Science.gov (United States)

    Gyenis, András; da Silva Neto, Eduardo H; Sutarto, Ronny; Schierle, Enrico; He, Feizhou; Weschke, Eugen; Kavai, Mariam; Baumbach, Ryan E; Thompson, Joe D; Bauer, Eric D; Fisk, Zachary; Damascelli, Andrea; Yazdani, Ali; Aynajian, Pegor

    2016-10-01

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound Ce M In 5 ( M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce- M 4 edge show a broad scattering enhancement that correlates with the appearance of heavy f -electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.

  19. Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone

    Science.gov (United States)

    Mottez, Fabrice

    2016-02-01

    There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.

  20. Towards simultaneous Talbot bands based optical coherence tomography and scanning laser ophthalmoscopy imaging.

    Science.gov (United States)

    Marques, Manuel J; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-05-01

    We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer's dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners' scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential "on-demand" mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented.

  1. Particle acceleration at quasi-perpendicular shock waves: Theory and observations at 1 AU

    International Nuclear Information System (INIS)

    Parker, L. Neergaard; Zank, G. P.; Hu, Q.

    2014-01-01

    The injection of particles into the diffusive shock acceleration mechanism at highly perpendicular (where θ Bn > 70°) interplanetary shocks is investigated. This extends the previous study of Neergaard Parker and Zank which focused on the injection problem at quasi-parallel interplanetary shocks. We use observations at 1 AU to construct upstream Maxwellian and κ-distributions that are then diffusively accelerated by the shock, thus yielding the downstream accelerated particle distribution. We compare the theoretical accelerated particle distribution to observations at 1 AU using Advanced Composition Explorer data. We classify our results for quasi-perpendicular shocks into three subcategories: those with ratios of the theoretical spectral index to observed power law of >1, ∼ 1, and <1, and compare the magnetic power spectral density plots of these categories. We find that in general the assumed upstream particle distribution that best fits the energetic particle observations is best represented by a κ-distribution, with κ = 4. The magnetic field fluctuations were representative of quasi-perpendicular shocks and showed no particular bias toward our spectral ratio subcategories. The subcategory with spectral ratio <0.9 yielded the largest injection energies for all groups. In all but two of the cases in this study, there were enough particles in the solar wind thermal core to account for the accelerated distribution, thereby giving a lower limit to the required injection energy needed to diffusively accelerate particles at a quasi-perpendicular interplanetary shock. In the remaining two cases, an additional population of particles was required to match the appropriate amplitude of the spectral index. For these cases, we used a low energy (1-50 keV) v –5 spectrum advocated by Fisk and Gloeckler.

  2. Fivefold Symmetric Photonic Quasi-Crystal Fiber for Dispersion Compensation from S- to L-Band and Optimized at 1.55 μm

    Directory of Open Access Journals (Sweden)

    Sivacoumar Rajalingam

    2015-01-01

    Full Text Available A highly dispersive dual core quasi-periodic photonic crystal fiber is proposed for chromatic dispersion compensation. The dispersion for the dual concentric core fiber is optimized to compensate the chromatic dispersion with a high negative dispersion, accomplishing the communication bandwidth from S-band (1460 nm to L-band (1625 nm. By precise control of structural parameter we have achieved a maximum dispersion of −18,838 ps/nm-km with the phase matching wavelength centred around 1.55 μm. We also numerically investigate the influence of structural parameter and doping effects and its response on peak dispersion parameter.

  3. The first multi-wavelength campaign of AXP 4U 0142+61 from radio to hard X-rays

    NARCIS (Netherlands)

    den Hartog, P.R.; Kuiper, L.; Hermsen, W.; Rea, N.; Durant, M.; Stappers, B.; Kaspi, V.M.; Dib, R.

    2007-01-01

    For the first time a quasi-simultaneous multi-wavelength campaign has been performed on an Anomalous X-ray Pulsar from the radio to the hard X-ray band. 4U 0142+61 was an INTEGRAL target for 1 Ms in July 2005. During these observations it was also observed in the X-ray band with Swift and RXTE, in

  4. LOW-FREQUENCY OBSERVATIONS OF TRANSIENT QUASI-PERIODIC RADIO EMISSION FROM THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Sasikumar Raja, K.; Ramesh, R., E-mail: sasikumar@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034 (India)

    2013-09-20

    We report low-frequency observations of quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was ≈5.2 s, and their average degree of circular polarization (dcp) was ≈0.12. We calculated the associated magnetic field B (1) using the empirical relationship between the dcp and B for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in B ≈ 4.2 G at the location of the 80 MHz plasma level (radial distance r ≈ 1.3 R{sub ☉}) in the active region corona.

  5. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels

    Energy Technology Data Exchange (ETDEWEB)

    Martin, May L.; Fenske, Jamey A.; Liu, Grace S.; Sofronis, Petros [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States); Robertson, Ian M., E-mail: ianr@illinois.edu [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States)

    2011-02-15

    Quasi-cleavage, a common feature of hydrogen-induced fracture surfaces, is generally taken as being cleavage-like but not along a known cleavage plane. Despite the frequency with which this surface is observed, the relationship to the underlying microstructure remains unknown. Through a combination of topographical reconstruction of secondary electron microscope fractographs and a transmission electron microscopy study of the microstructure from site-specific locations, it will be shown that the features on quasi-cleavage surfaces are ridges that can be correlated with sub-surface intense and highly localized deformation bands. It will be demonstrated that the fracture surface arises from the growth and coalescence of voids that initiate at and extend along slip band intersections. This mechanism and process is fully consistent with hydrogen enhancing and localizing plastic processes.

  6. Observation of dipole bands in 144Sm

    International Nuclear Information System (INIS)

    Raut, R.; Ganguly, S.; Kshetri, R.; Banerjee, P.; Bhattacharya, S.; Dasmahapatra, B.; Mukherjee, A.; Sahasarkar, M.; Goswami, A.; Basu, S.K.; Bhattacharjee, T.; Mukherjee, G.; Chakraborty, A.; Ghughre, S.S.; Krishichayan; Mukhopadhyay, S.; Gangopadhyay, G.; Singh, A.K.

    2007-01-01

    The nucleus 144 Sm (Z=62, N=82), with its proximity to the shell closure and possibilities of particles and holes occupying high j orbitals, following appropriate excitations, is a suitable system for observation of dipole (MR) bands

  7. PKS 2005-489 at VHE: four years of monitoring with HESS and simultaneous multi-wavelength observations

    Science.gov (United States)

    H.E.S.S. Collaboration; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Costamante, L.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fiasson, A.; Förster, A.; Fontaine, G.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Keogh, D.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Marandon, V.; Martineau-Huynh, O.; Marcowith, A.; Masbou, J.; Maurin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Renaud, M.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Superina, G.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.

    2010-02-01

    Aims: Our aim is to study the very high energy (VHE; E>100 GeV) γ-ray emission from BL Lac objects and the evolution in time of their broad-band spectral energy distribution (SED). Methods: VHE observations of the high-frequency peaked BL Lac object PKS 2005-489 were made with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Three simultaneous multi-wavelength campaigns at lower energies were performed during the HESS data taking, consisting of several individual pointings with the XMM-Newton and RXTE satellites. Results: A strong VHE signal, ~17σ total, from PKS 2005-489 was detected during the four years of HESS observations (90.3 h live time). The integral flux above the average analysis threshold of 400 GeV is ~3% of the flux observed from the Crab Nebula and varies weakly on time scales from days to years. The average VHE spectrum measured from ~300 GeV to ~5 TeV is characterized by a power law with a photon index, Γ = 3.20± 0.16_stat± 0.10_syst. At X-ray energies the flux is observed to vary by more than an order of magnitude between 2004 and 2005. Strong changes in the X-ray spectrum (ΔΓX ≈ 0.7) are also observed, which appear to be mirrored in the VHE band. Conclusions: The SED of PKS 2005-489, constructed for the first time with contemporaneous data on both humps, shows significant evolution. The large flux variations in the X-ray band, coupled with weak or no variations in the VHE band and a similar spectral behavior, suggest the emergence of a new, separate, harder emission component in September 2005. Supported by CAPES Foundation, Ministry of Education of Brazil.Now at Harvard-Smithsonian Center for Astrophysics, Cambridge, USA.Now at W.W. Hansen Experimental Physics Laboratory & Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA.

  8. Simultaneous observations of quasi-periodic ELF/VLF wave emissions and electron precipitation by DEMETER satellite: A case study

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; Pasmanik, D. L.; Demekhov, A. G.; Santolík, Ondřej; Parrot, M.; Titova, E. E.

    2013-01-01

    Roč. 118, č. 7 (2013), s. 4523-4533 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/11/2280; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : quasi-periodic ELF/VLF emission s in the magnetosphere * wave-particle interactions * demeter spacecraft measurements * whistler-mode waves Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50179/abstract

  9. RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT

    International Nuclear Information System (INIS)

    Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha; Chennamangalam, Jayanth; Rao, K. B. Raghavendra; Somashekar, R.; Ezhilarasi, M. S.; Sujatha, S.; Kasturi, S.; Sandhya, P.; Duraichelvan, R.; Amiri, Shahram; Aswathappa, H. A.; Sarabagopalan, G.; Ananda, H. M.; Anderson, Gary; Bauserman, Jonah; Beaudet, Carla; Bloss, Marty; Barve, Indrajit V.

    2013-01-01

    We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.

  10. RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha; Chennamangalam, Jayanth; Rao, K. B. Raghavendra; Somashekar, R.; Ezhilarasi, M. S.; Sujatha, S.; Kasturi, S.; Sandhya, P.; Duraichelvan, R.; Amiri, Shahram; Aswathappa, H. A.; Sarabagopalan, G.; Ananda, H. M. [Raman Research Institute, Bangalore (India); Anderson, Gary; Bauserman, Jonah; Beaudet, Carla; Bloss, Marty [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV (United States); Barve, Indrajit V. [Indian Institute of Astrophysics, Bangalore (India); and others

    2013-01-15

    We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.

  11. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2001-01-01

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of 20,22 Ne, 24 Mg and 28 Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed

  12. Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination

    Directory of Open Access Journals (Sweden)

    V. B. Yurchenko

    2015-08-01

    Full Text Available We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor that makes light-microwave interaction observable with an ordinary light (no laser at conventional brightness (like an office lighting in quasi-optical microwave structures at rather long (centimeter-scale wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

  13. Exact nonparametric confidence bands for the survivor function.

    Science.gov (United States)

    Matthews, David

    2013-10-12

    A method to produce exact simultaneous confidence bands for the empirical cumulative distribution function that was first described by Owen, and subsequently corrected by Jager and Wellner, is the starting point for deriving exact nonparametric confidence bands for the survivor function of any positive random variable. We invert a nonparametric likelihood test of uniformity, constructed from the Kaplan-Meier estimator of the survivor function, to obtain simultaneous lower and upper bands for the function of interest with specified global confidence level. The method involves calculating a null distribution and associated critical value for each observed sample configuration. However, Noe recursions and the Van Wijngaarden-Decker-Brent root-finding algorithm provide the necessary tools for efficient computation of these exact bounds. Various aspects of the effect of right censoring on these exact bands are investigated, using as illustrations two observational studies of survival experience among non-Hodgkin's lymphoma patients and a much larger group of subjects with advanced lung cancer enrolled in trials within the North Central Cancer Treatment Group. Monte Carlo simulations confirm the merits of the proposed method of deriving simultaneous interval estimates of the survivor function across the entire range of the observed sample. This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. It was begun while the author was visiting the Department of Statistics, University of Auckland, and completed during a subsequent sojourn at the Medical Research Council Biostatistics Unit in Cambridge. The support of both institutions, in addition to that of NSERC and the University of Waterloo, is greatly appreciated.

  14. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    Science.gov (United States)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  15. Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators

    DEFF Research Database (Denmark)

    Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe

    2008-01-01

    It is proved that for general, not necessarily periodic, quasi one-dimensional systems the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one-dimensional systems, and this proves the strong Marzari-Vanderbilt conjecture. If the system has some translation symmetries (e.g. usual translations, screw...

  16. Optimally localized Wannier functions for quasi one-dimensional nonperiodic insulators

    DEFF Research Database (Denmark)

    Cornean, Horia; Nenciu, A.; Nenciu, Gheorghe

    It is proved that for general, not necessarily periodic quasi one dimensional systems, the band position operator corresponding to an isolated part of the energy spectrum has discrete spectrum and its eigenfunctions have the same spatial localization as the corresponding spectral projection....... As a consequence, an eigenbasis of the band position operator provides a basis of optimally localized (generalized) Wannier functions for quasi one dimensional systems. If the system has some translation symmetries (e.g. usual translations, screw transformations), they are "inherited" bythe Wannier basis....

  17. Deformation bands in porous carbonate grainstones: Field and laboratory observations

    NARCIS (Netherlands)

    Cilona, A.; Baud, P.; Tondi, E.; Agosta, F.; Vinciguerra, S.; Rustichelli, A.; Spiers, C.J.

    2012-01-01

    Recent field-based studies documented deformation bands in porous carbonates; these structures accommodate volumetric and/or shear strain by means of pore collapse, grain rotation and/or sliding. Microstructural observations of natural deformation bands in carbonates showed that, at advanced stages

  18. Observation of symmetry-protected topological band with ultracold fermions

    Science.gov (United States)

    Song, Bo; Zhang, Long; He, Chengdong; Poon, Ting Fung Jeffrey; Hajiyev, Elnur; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2018-01-01

    Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems. PMID:29492457

  19. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  20. Analysis of the quasi-continuum band emitted by highly ionised tungsten atoms in the 4-7 nm range

    International Nuclear Information System (INIS)

    Madeira, T.I.; Amorim, P.; Marques, J.P.; Parente, F.; Indelicato, P.

    2013-01-01

    For the next upcoming generation of fusion experiments, such as ITER,Tungsten has been chosen as the materials for plasma facing components. Spectra emitted by highly ionized tungsten atoms from magnetically confined plasmas show a common feature: a narrow structured quasi-continuum emission band most prominent in the range 4-7 nm, which accounts for 40-80% of the radiated power. This band has been fairly well explained by unresolved transitions from groups 4d-4p, 4f-4d (Δn = 0) and 5d-4f, 5g-4f and 5p-4d (Δn = 1). In this work we use a Multi-Configuration Dirac-Fock code in Breit self-consistent field mode to compute level energies and transition probabilities for W 27+ to W 37+ ions contributing to this emission band. Intra-shell correlation was introduced in the calculation for both initial and final states and all dipole and quadrupole radiative transitions have been considered. The wavefunctions in the initial and final states are optimized separately and the resulting non-orthogonality effect is fully taken into account. The importance of some satellite lines was assessed. Together with the ionic distributions obtained by using the FLYCHK application and assuming that the initial states population depends statistically on the temperature we were able to synthesize plasma emission spectrum profiles for several electron temperatures. (authors)

  1. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, C.E. E-mail: cvargas@fis.cinvestav.mx; Hirsch, J.G. E-mail: hirsch@nuclecu.unam.mx; Draayer, J.P. E-mail: draayer@lsu.edu

    2001-07-30

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of {sup 20,22}Ne, {sup 24}Mg and {sup 28}Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed.

  2. Observations of large-amplitude MHD waves in Jupiter's foreshock in connection with a quasi-perpendicular shock structure

    Science.gov (United States)

    Bavassano-Cattaneo, M. B.; Moreno, G.; Scotto, M. T.; Acuna, M.

    1987-01-01

    Plasma and magnetic field observations performed onboard the Voyager 2 spacecraft have been used to investigate Jupiter's foreshock. Large-amplitude waves have been detected in association with the quasi-perpendicular structure of the Jovian bow shock, thus proving that the upstream turbulence is not a characteristic signature of the quasi-parallel shock.

  3. Surface correlation effects in two-band strongly correlated slabs.

    Science.gov (United States)

    Esfahani, D Nasr; Covaci, L; Peeters, F M

    2014-02-19

    Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.

  4. Simultaneous Out-of-band Interference Rejection and Radiation Enhancement in an Electronic Product via an EBG Structure

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2014-01-01

    to achieve simultaneously both the enhancement of the antenna radiation efficiency and the shrinking of its dimensions, while making the device more resilient to out-of-band electromagnetic interference (EMI). The patterning of the ground plane allows, in fact, to effectively suppress higher-order resonances......This work presents an application of a planar electromagnetic band gap (EBG) structure with a perspective product implementation in the back of the mind. The focus is on the integration of such structure under the constraint of space and system coexistence. It is discovered that it is possible...... (alternatively, parallel plate noise) and decrease the radiation efficiency of the structure forbidding higher-order modes to propagate and subsequently be diffracted by the ground plane....

  5. Proposed colour banded early warning observation charts for South ...

    African Journals Online (AJOL)

    Introduction of a colour banded observation chart should be combined with a clear communication strategy. The process should be used to change the organisational culture to be more proactive in initiating early intervention to reduce the burden of unintended complications. Keywords: Observation chart; Physiology; ...

  6. NARROW-K-BAND OBSERVATIONS OF THE GJ 1214 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Colón, Knicole D.; Gaidos, Eric, E-mail: colonk@hawaii.edu [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2013-10-10

    GJ 1214 is a nearby M dwarf star that hosts a transiting super-Earth-size planet, making this system an excellent target for atmospheric studies. Most studies find that the transmission spectrum of GJ 1214b is flat, which favors either a high mean molecular weight or cloudy/hazy hydrogen (H) rich atmosphere model. Photometry at short wavelengths (<0.7 μm) and in the K band can discriminate the most between these different atmosphere models for GJ 1214b, but current observations do not have sufficiently high precision. We present photometry of seven transits of GJ 1214b through a narrow K-band (2.141 μm) filter with the Wide Field Camera on the 3.8 m United Kingdom Infrared Telescope. Our photometric precision is typically 1.7 × 10{sup –3} (for a single transit), comparable with other ground-based observations of GJ 1214b. We measure a planet-star radius ratio of 0.1158 ± 0.0013, which, along with other studies, also supports a flat transmission spectrum for GJ 1214b. Since this does not exclude a scenario where GJ 1214b has an H-rich envelope with heavy elements that are sequestered below a cloud/haze layer, we compare K-band observations with models of H{sub 2} collision-induced absorption in an atmosphere for a range of temperatures. While we find no evidence for deviation from a flat spectrum (slope s = 0.0016 ± 0.0038), an H{sub 2}-dominated upper atmosphere (<60 mbar) cannot be excluded. More precise observations at <0.7 μm and in the K band, as well as a uniform analysis of all published data, would be useful for establishing more robust limits on atmosphere models for GJ 1214b.

  7. Prediction of the High Thermoelectric Performance of Pnictogen Dichalcogenide Layered Compounds with Quasi-One-Dimensional Gapped Dirac-like Band Dispersion

    Science.gov (United States)

    Ochi, Masayuki; Usui, Hidetomo; Kuroki, Kazuhiko

    2017-12-01

    Thermoelectric power generation has been recognized as one of the most important technologies, and high-performance thermoelectric materials have long been pursued. However, because of the large number of candidate materials, this quest is extremely challenging, and it has become clear that a firm theoretical concept from the viewpoint of band-structure engineering is needed. We theoretically demonstrate that pnictogen dichalcogenide layered compounds, which originally attracted attention as a family of superconductors and have recently been investigated as thermoelectric materials, can exhibit very high thermoelectric performance with elemental substitution. Specifically, we clarify a promising guiding principle for material design and find that LaOAsSe2, a material that has yet to be synthesized, has a power factor that is 6 times as large as that of the known compound LaOBiS2 and can exhibit a very large Z T under some plausible assumptions. This large enhancement of the thermoelectric performance originates from the quasi-one-dimensional gapped Dirac-like band dispersion, which is realized by the square-lattice network. We offer one ideal limit of the band structure for thermoelectric materials. Because our target materials have high controllability of constituent elements and feasibility of carrier doping, experimental studies along this line are eagerly awaited.

  8. The quasi-two-day wave studied using the Northern Hemisphere SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    S. B. Malinga

    2007-08-01

    Full Text Available Data from the Super Dual Radar Network (SuperDARN radars for 2002 were used to study the behaviour of the quasi-two-day wave (QTDW in the Northern Hemisphere auroral zone. The period of the QTDW is observed to vary in the range of ~42–56 h, with the most dominant period being ~48 h and secondary peaks at ~42- and ~52-h. The spectral power shows a seasonal variation with a peak power (max~70 in summer. The power shows variations of several days and there is also evidence of changes in wave strength with longitude. The 42-h and the 48-h components tend to be strongly correlated in summer. The onset of enhanced wave activity tends to coincide with the westward acceleration of the zonal mean flow and occurs at a time of strong southward meridional flow. The most frequent instantaneous hourly period is in the 40 to 50 h period band, in line with the simultaneous dominance of the 42-h and the 48-h components. The wave numbers are less variable and are around −2 to −4 during times of strong wave activity. For a period of ~48 h, the zonal wave number is about −3 to −4, using a negative value to indicate westward propagating waves. The 42-h and the 52-h components cover a wider band in the −4 to 1 range. The wide zonal wave number spectrum in our results may account for the observed longitudinal variation in the spectral power of the wave.

  9. Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene.

    Science.gov (United States)

    Shu, Huabing; Li, Yunhai; Wang, Shudong; Wang, Jinlan

    2015-02-14

    Using density functional theory, the G0W0 method and Bethe-Salpeter equation calculations, we systematically explore the structural, electronic and optical properties of hydrogenated and fluorinated germanene. The hydrogenated/fluorinated germanene tends to form chair and zigzag-line configurations and its electronic and optical properties show close geometry dependence. The chair hydrogenated/fluorinated and zigzag-line fluorinated germanene are direct band-gap semiconductors, while the zigzag-line hydrogenated germanene owns an indirect band-gap. Moreover, the quasi-particle corrections are significant and strong excitonic effects with large exciton binding energies are observed. Moreover, the zigzag-line hydrogenated/fluorinated germanene shows highly anisotropic optical responses, which may be used as a good optical linear polarizer.

  10. Quasi-Particle Relaxation and Quantum Femtosecond Magnetism in Non-Equilibrium Phases of Insulating Manganites

    Science.gov (United States)

    Perakis, Ilias; Kapetanakis, Myron; Lingos, Panagiotis; Barmparis, George; Patz, A.; Li, T.; Wang, Jigang

    We study the role of spin quantum fluctuations driven by photoelectrons during 100fs photo-excitation of colossal magneto-resistive manganites in anti-ferromagnetic (AFM) charge-ordered insulating states with Jahn-Teller distortions. Our mean-field calculation of composite fermion excitations demonstrates that spin fluctuations reduce the energy gap by quasi-instantaneously deforming the AFM background, thus opening a conductive electronic pathway via FM correlation. We obtain two quasi-particle bands with distinct spin-charge dynamics and dependence on lattice distortions. To connect with fs-resolved spectroscopy experiments, we note the emergence of fs magnetization in the low-temperature magneto-optical signal, with threshold dependence on laser intensity characteristic of a photo-induced phase transition. Simultaneously, the differential reflectivity shows bi-exponential relaxation, with fs component, small at low intensity, exceeding ps component above threshold for fs AFM-to-FM switching. This suggests the emergence of a non-equilibrium metallic FM phase prior to establishment of a new lattice structure, linked with quantum magnetism via spin/charge/lattice couplings for weak magnetic fields.

  11. Prepotential approach to exact and quasi-exact solvabilities

    International Nuclear Information System (INIS)

    Ho, C.-L.

    2008-01-01

    Exact and quasi-exact solvabilities of the one-dimensional Schroedinger equation are discussed from a unified viewpoint based on the prepotential together with Bethe ansatz equations. This is a constructive approach which gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature of the present work is the realization that both exact and quasi-exact solvabilities can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. Most of the well-known exactly and quasi-exactly solvable models, and many new quasi-exactly solvable ones, can be generated by appropriately choosing the two polynomials. This approach can be easily extended to the constructions of exactly and quasi-exactly solvable Dirac, Pauli, and Fokker-Planck equations

  12. Observations of the spatial and temporal structure of field-aligned beam and gyrating ring distributions at the quasi-perpendicular bow shock with Cluster CIS

    Directory of Open Access Journals (Sweden)

    E. Möbius

    2001-09-01

    Full Text Available During the early orbit phase, the Cluster spacecraft have repeatedly crossed the perpendicular Earth’s bow shock and provided the first multi-spacecraft measurements. We have analyzed data from the Cluster Ion Spectrometry experiment (CIS, which observes the 3D-ion distribution function of the major species in the energy range of 5 eV to 40 keV with a 4 s resolution. Beams of reflected ions were observed simultaneously at all spacecraft locations and could be tracked from upstream to the shock itself. They were found to originate from the same distribution of ions that constitutes the reflected gyrating ions, which form a ring distribution in the velocity space immediately upstream and downstream of the shock. This observation suggests a common origin of ring and beam populations at quasi-perpendicular shocks in the form of specular reflection and immediate pitch angle scattering. Generally, the spatial evolution across the shock is very similar on all spacecraft, but phased in time according to their relative location. However, a distinct temporal structure of the ion fluxes in the field-aligned beam is observed that varies simultaneously on all spacecraft. This is likely to reflect the variations in the reflection and scattering efficiencies.Key words. Interplanetary physics (planetary bow shocks; energetic particles; instruments and techniques

  13. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    Science.gov (United States)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  14. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    Science.gov (United States)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  15. Cosmological observables in the quasi-spherical Szekeres model

    Science.gov (United States)

    Buckley, Robert G.

    2014-10-01

    The standard model of cosmology presents a homogeneous universe, and we interpret cosmological data through this framework. However, structure growth creates nonlinear inhomogeneities that may affect observations, and even larger structures may be hidden by our limited vantage point and small number of independent observations. As we determine the universe's parameters with increasing precision, the accuracy is contingent on our understanding of the effects of such structures. For instance, giant void models can explain some observations without dark energy. Because perturbation theory cannot adequately describe nonlinear inhomogeneities, exact solutions to the equations of general relativity are important for these questions. The most general known solution capable of describing inhomogeneous matter distributions is the Szekeres class of models. In this work, we study the quasi-spherical subclass of these models, using numerical simulations to calculate the inhomogeneities' effects on observations. We calculate the large-angle CMB in giant void models and compare with simpler, symmetric void models that have previously been found inadequate to matchobservations. We extend this by considering models with early-time inhomogeneities as well. Then, we study distance observations, including selection effects, in models which are homogeneous on scales around 100 Mpc---consistent with standard cosmology---but inhomogeneous on smaller scales. Finally, we consider photon polarizations, and show that they are not directly affected by inhomogeneities. Overall, we find that while Szekeres models have some advantages over simpler models, they are still seriously limited in their ability to alter our parameter estimation while remaining within the bounds of current observations.

  16. Two Years of Simultaneous K(sub a)-Band Measurements: Goldstone, CA; White Sands, NM; and Guam, USA

    Science.gov (United States)

    Acosta, Roberto J.; Zemba, M.; Morse, J.; Nessel, J.

    2012-01-01

    In order to statistically characterize the effect of the Earth's atmosphere on Ka-Band links, site test interferometers (STIs) have been deployed at three of NASA s operational sites to directly measure each site's tropospheric phase stability and rain attenuation. These STIs are composed of two antennas on a short baseline (less than 1km) that observe the same unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2). The STIs are used to measure the differential phase between the two received signals as well as the individual signal attenuation at each terminal. There are currently three NASA sites utilizing STIs; the Goldstone Deep Space Communications Complex near Barstow, California; the White Sands Complex in Las Cruces, New Mexico; and the Guam Remote Ground Terminal on the island of Guam. The first two sites are both located in desert regions that have highly similar climates in terms of their seasonal temperatures, average humidity, and annual rain fall (the primary factors in determining phase stability). In contrast, Guam is in a tropical region with drastically higher annual rainfall and humidity. Five station years of data have been collected in Goldstone, three in White Sands, and two in Guam, yielding two years of simultaneous data collection across all three sites. During this period of simultaneous data collection, the root-mean-square (RMS) of the time delay fluctuations stayed under 2.40 picoseconds for 90% of the time in Goldstone, under 2.07 picoseconds for 90% of the time in White Sands, and under 10.13 picoseconds for 90% of the time in Guam. For the 99th percentile, the statistics were 6.32 ps, 6.03 ps, and 24.85 ps, respectively. These values, as well as various other site quality characteristics, will be used to determine the suitability of these sites for NASA s future communication services at Ka-Band.

  17. Optical flickering of the symbiotic star CH Cyg

    Science.gov (United States)

    Stoyanov, K. A.; Martí, J.; Zamanov, R.; Dimitrov, V. V.; Kurtenkov, A.; Sánchez-Ayaso, E.; Bujalance-Fernández, I.; Latev, G. Y.; Nikolov, G.

    2018-02-01

    Here we present quasi-simultaneous observations of the flickering of the symbiotic binary star CH Cyg in U, B and V bands. We calculate the flickering source parameters and discuss the possible reason for the flickering cessation in the period 2010-2013.

  18. Yrast four-quasi-particle states in 182W

    International Nuclear Information System (INIS)

    Regan, P.H.; Walker, P.M.; Dracoulis, G.D.; Anderssen, S.S.; Byrne, A.P.; Davidson, P.M.; Kibedi, T.; Lane, G.J.; Stuchbery, A.E.; Yeung, K.C.

    1994-01-01

    High-spin states of the stable isotope 182 W have been studied using the reactions 176 Yb( 13 C,α3n) 182 W and 176 Yb( 9 Be,3n) 182 W at beam energies of 65 and 40 MeV, respectively. Three, possibly four, new intrinsic states at high spins have been observed corresponding to different high-K four-quasi-particle structures. The K π =15 + and 17 - levels have lifetimes of 78(15) and 25(10) ns, respectively. Rotational bands are observed built on the K π =16 + and 17 - yrast states. The coupling of Nilsson orbitals which give rise to high-K states at the yrast line and the K-forbiddenness of the K π =15 + isomeric decay are discussed. (orig.)

  19. The electronic structure of quasi-one-dimensional disordered systems with parallel multi-chains

    International Nuclear Information System (INIS)

    Liu Xiaoliang; Xu Hui; Deng Chaosheng; Ma Songshan

    2006-01-01

    For the quasi-one-dimensional disordered systems with parallel multi-chains, taking a special method to code the sites and just considering the nearest-neighbor hopping integral, we write the systems' Hamiltonians as precisely symmetric matrixes, which can be transformed into three diagonally symmetric matrixes by using the Householder transformation. The densities of states, the localization lengths and the conductance of the systems are calculated numerically using the minus eigenvalue theory and the transfer matrix method. From the results of quasi-one-dimensional disordered systems with varied chains, we find, the energy band of the systems extends slightly, the energy gaps are observed and the distribution of the density of states changes obviously with the increase of the dimensionality. Especially, for the systems with four, five or six chains, at the energy band center, there exist extended states whose localization lengths are greater than the size of the systems, accordingly, there having great conductance. With the increasing of the number of the chains, the correlated ranges expand and the systems present the similar behavior to that with off-diagonal long-range correlation

  20. Multiple-wavelength Variability and Quasi-periodic Oscillation of PMN J0948+0022

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jin [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Zhang, Hai-Ming; Zhu, Yong-Kai; Lu, Rui-Jing; Liang, En-Wei [Guangxi Key Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004 (China); Yi, Ting-Feng [Department of Physics, Yunnan Normal University, Kunming 650500 (China); Yao, Su, E-mail: jinzhang@bao.ac.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-11-01

    We present a comprehensive analysis of multiple-wavelength observational data of the first GeV-selected narrow-line Seyfert 1 galaxy PMN J0948+0022. We derive its light curves in the γ -ray and X-ray bands from the data observed with Fermi /LAT and Swift /XRT, and generate the optical and radio light curves by collecting the data from the literature. These light curves show significant flux variations. With the LAT data we show that this source is analogous to typical flat spectrum radio quasars in the L {sub γ} –Γ {sub γ} plane, where L {sub γ} and Γ {sub γ} are the luminosity and spectral index in the LAT energy band. The γ -ray flux is correlated with the V-band flux with a lag of ∼44 days, and a moderate quasi-periodic oscillation (QPO) with a periodicity of ∼490 days observed in the LAT light curve. A similar QPO signature is also found in the V-band light curve. The γ -ray flux is not correlated with the radio flux in 15 GHz, and no similar QPO signature is found at a confidence level of 95%. Possible mechanisms of the QPO are discussed. We propose that gravitational-wave observations in the future may clarify the current plausible models for the QPO.

  1. Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Nakariakov, Valery M. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Cho, Kyung-Suk, E-mail: pankaj.kumar@nasa.gov [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of)

    2017-08-01

    This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s{sup −1}. Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of the flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s{sup −1}. The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.

  2. Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Nakariakov, Valery M.; Cho, Kyung-Suk

    2017-01-01

    This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s −1 . Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of the flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s −1 . The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.

  3. Solid argon as a possible substrate for quasi-freestanding silicene

    KAUST Repository

    Sattar, Shahid; Hoffmann, R.; Schwingenschlö gl, Udo

    2014-01-01

    We study the structural and electronic properties of silicene on solid Ar(111) substrate using ab initio calculations. We demonstrate that due to weak interaction, quasi-freestanding silicene is realized in this system. The small binding energy of only meV per Si atom also indicates the possibility to separate silicene from the solid Ar(111) substrate. In addition, a band gap of 11 meV and a significant splitting of the energy levels due to spin-orbit coupling are observed. 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

  4. Solid argon as a possible substrate for quasi-freestanding silicene

    KAUST Repository

    Sattar, Shahid

    2014-06-03

    We study the structural and electronic properties of silicene on solid Ar(111) substrate using ab initio calculations. We demonstrate that due to weak interaction, quasi-freestanding silicene is realized in this system. The small binding energy of only meV per Si atom also indicates the possibility to separate silicene from the solid Ar(111) substrate. In addition, a band gap of 11 meV and a significant splitting of the energy levels due to spin-orbit coupling are observed. 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

  5. Observation of superdeformation in 191Hg

    International Nuclear Information System (INIS)

    Moore, E.F.; Janssens, R.V.F.; Chasman, R.R.

    1989-01-01

    The first observation of superdeformation in the A ≅ 190 mass region is reported. A rotational band of 12 transitions with an average energy spacing of 37 keV, an average moment of inertia of 110 ℎ 2 MeV -1 , and an average quadrupole moment of 18 ± 3 eb has been observed in 191 Hg. These results are in excellent agreement with a calculation that predicts an ellipsoidal axis ratio of 1.65:1 for the superdeformed shape in this nucleus. Evidence for another discrete superdeformed band and superdeformed structures in the quasi-continuum was also found in the data. 19 refs., 6 figs

  6. Photonic quasi-crystal terahertz lasers

    Science.gov (United States)

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles

    2014-12-01

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.

  7. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination

    Energy Technology Data Exchange (ETDEWEB)

    Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk [Electrical Engineering Division, Cambridge University, J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Powell, M. J. [252, Valley Drive, Kendal LA9 7SL (United Kingdom)

    2014-04-07

    It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65–0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10{sup 6}−10{sup 7} s{sup −1}, which suggests a weak localization of carriers in band tail states over a 20–40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage

  8. QUASI-PERIODICITIES AT YEAR-LIKE TIMESCALES IN BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Sandrinelli, A.; Treves, A. [Università degli Studi dell’Insubria, Dipartimento di Scienza ed Alta Tecnologia, Via Valleggio 11, I-22100 Como (Italy); Covino, S. [INAF—Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy); Dotti, M. [Università degli Studi di Milano Bicocca, Dipartimento di Fisica G. Occhialini, Piazza della Scienza 3, I-20126 Milano (Italy)

    2016-03-15

    We searched for quasi-periodicities on year-like timescales in the light curves of six blazars in the optical—near-infrared bands and we made a comparison with the high energy emission. We obtained optical/NIR light curves from Rapid Eye Mounting photometry plus archival Small and Moderate Aperture Research Telescope System data and we accessed the Fermi light curves for the γ-ray data. The periodograms often show strong peaks in the optical and γ-ray bands, which in some cases may be inter-related. The significance of the revealed peaks is then discussed, taking into account that the noise is frequency dependent. Quasi-periodicities on a year-like timescale appear to occur often in blazars. No straightforward model describing these possible periodicities is yet available, but some plausible interpretations for the physical mechanisms causing periodic variabilities of these sources are examined.

  9. Projected Shell Model Description of Positive Parity Band of 130Pr Nucleus

    Science.gov (United States)

    Singh, Suram; Kumar, Amit; Singh, Dhanvir; Sharma, Chetan; Bharti, Arun; Bhat, G. H.; Sheikh, J. A.

    2018-02-01

    Theoretical investigation of positive parity yrast band of odd-odd 130Pr nucleus is performed by applying the projected shell model. The present study is undertaken to investigate and verify the very recently observed side band in 130Pr theoretically in terms of quasi-particle (qp) configuration. From the analysis of band diagram, the yrast as well as side band are found to arise from two-qp configuration πh 11/2 ⊗ νh 11/2. The present calculations are viewed to have qualitatively reproduced the known experimental data for yrast states, transition energies, and B( M1) / B( E2) ratios of this nucleus. The recently observed positive parity side band is also reproduced by the present calculations. The energy states of the side band are predicted up to spin 25+, which is far above the known experimental spin of 18+ and this could serve as a motivational factor for future experiments. In addition, the reduced transition probability B( E2) for interband transitions has also been calculated for the first time in projected shell model, which would serve as an encouragement for other research groups in the future.

  10. Quasi-particle and collective magnetism: Rotation, pairing and blocking in high-K isomers

    International Nuclear Information System (INIS)

    Stone, N.J.; Stone, J.R.; Walker, P.M.; Bingham, C.R.

    2013-01-01

    For the first time, a wide range of collective magnetic g-factors g R , obtained from a novel analysis of experimental data for multi-quasi-particle configurations in high-K isomers, is shown to exhibit a striking systematic variation with the relative number of proton and neutron quasi-particles, N p −N n . Using the principle of additivity, the quasi-particle contribution to magnetism in high-K isomers of Lu–Re, Z=71–75, has been estimated. Based on these estimates, band-structure branching ratio data are used to explore the behavior of the collective contribution as the number and proton/neutron nature (N p , N n ), of the quasi-particle excitations, change. Basic ideas of pairing, its quenching by quasi-particle excitation and the consequent changes to moment of inertia and collective magnetism are discussed. Existing model calculations do not reproduce the observed g R variation adequately. The paired superfluid system of nucleons in these nuclei, and their excitations, present properties of general physics interest. The new-found systematic behavior of g R in multi-quasi-particle excitations of this unique system, showing variation from close to zero for multi-neutron states to above 0.5 for multi-proton states, opens a fresh window on these effects and raises the important question of just which nucleons contribute to the ‘collective’ properties of these nuclei

  11. Quasi-periodic fluctuations of atmospheric pressure and cosmic rays observed in the stratosphere

    International Nuclear Information System (INIS)

    Kodama, Masahiro; Abe, Toshiaki; Sakai, Takasuke; Kato, Masato; Kogami, Shinichi.

    1976-01-01

    Quasi-periodicities of barometric pressure and cosmic ray intensity, with 5.5-minute period and one hour persistency, have been observed by means of a high-precision barometer and a large plastic scintillation counter in a balloon at an altitude of --18 km over the Pacific Ocean. From characteristics of such short period fluctuations, it is suggested that the observed pressure fluctuation may possibly be caused by the internal atmospheric gravity wave whose amplitude and wave length are --30 m and --30 km respectively. (auth.)

  12. Coupling of partitioned physics codes with quasi-Newton methods

    CSIR Research Space (South Africa)

    Haelterman, R

    2017-03-01

    Full Text Available , A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19, pp. 577–593 (1965) [3] C.G. Broyden, Quasi-Newton methods and their applications to function minimization. Math. Comp. 21, pp. 368–381 (1967) [4] J.E. Dennis, J.J. More...´, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, pp. 46–89 (1977) [5] J.E. Dennis, R.B. Schnabel, Least Change Secant Updates for quasi- Newton methods. SIAM Rev. 21, pp. 443–459 (1979) [6] G. Dhondt, CalculiX CrunchiX USER’S MANUAL Version 2...

  13. Estimating Coastal Turbidity using MODIS 250 m Band Observations

    Science.gov (United States)

    Davies, James E.; Moeller, Christopher C.; Gunshor, Mathew M.; Menzel, W. Paul; Walker, Nan D.

    2004-01-01

    Terra MODIS 250 m observations are being applied to a Suspended Sediment Concentration (SSC) algorithm that is under development for coastal case 2 waters where reflectance is dominated by sediment entrained in major fluvial outflows. An atmospheric correction based on MODIS observations in the 500 m resolution 1.6 and 2.1 micron bands is used to isolate the remote sensing reflectance in the MODIS 25Om resolution 650 and 865 nanometer bands. SSC estimates from remote sensing reflectance are based on accepted inherent optical properties of sediment types known to be prevalent in the U.S. Gulf of Mexico coastal zone. We present our findings for the Atchafalaya Bay region of the Louisiana Coast, in the form of processed imagery over the annual cycle. We also apply our algorithm to selected sites worldwide with a goal of extending the utility of our approach to the global direct broadcast community.

  14. Collective phenomena in a quasi-two-dimensional system of fermionic polar molecules: Band renormalization and excitons

    International Nuclear Information System (INIS)

    Babadi, Mehrtash; Demler, Eugene

    2011-01-01

    We theoretically analyze a quasi-two-dimensional system of fermionic polar molecules trapped in a harmonic transverse confining potential. The renormalized energy bands are calculated by solving the Hartree-Fock equation numerically for various trap and dipolar interaction strengths. The intersubband excitations of the system are studied in the conserving time-dependent Hartree-Fock (TDHF) approximation from the perspective of lattice modulation spectroscopy experiments. We find that the excitation spectrum consists of both intersubband particle-hole excitation continua and antibound excitons whose antibinding behavior is associated to the anisotropic nature of dipolar interactions. The excitonic modes are shown to capture the majority of the spectral weight. We evaluate the intersubband transition rates in order to investigate the nature of the excitonic modes and find that they are antibound states formed from particle-hole excitations arising from several subbands. We discuss the sum rules in the context of lattice modulation spectroscopy experiments and utilize them to check the consistency of the obtained results. Our results indicate that the excitonic effects persist for interaction strengths and temperatures accessible in the current experiments with polar molecules.

  15. A QUASAR CATALOG WITH SIMULTANEOUS UV, OPTICAL, AND X-RAY OBSERVATIONS BY SWIFT

    International Nuclear Information System (INIS)

    Wu Jian; Grupe, Dirk; Koch, Scott; Gelbord, Jonathan; Schneider, Donald P.; Gronwall, Caryl; Porterfield, Blair L.; Vanden Berk, Daniel; Wesolowski, Sarah

    2012-01-01

    We have compiled a catalog of optically selected quasars with simultaneous observations in UV/optical and X-ray bands by the Swift Gamma-ray Burst Explorer. Objects in this catalog are identified by matching the Swift pointings with the Sloan Digital Sky Survey Data Release 5 quasar catalog. The final catalog contains 843 objects, among which 637 have both Ultraviolet Optical Telescope (UVOT) and X-Ray Telescope (XRT) observations and 354 of which are detected by both instruments. The overall X-ray detection rate is ∼60% which rises to ∼85% among sources with at least 10 ks of XRT exposure time. We construct the time-averaged spectral energy distribution (SED) for each of the 354 quasars using UVOT photometric measurements and XRT spectra. From model fits to these SEDs, we find that the big blue bump contributes about ∼0.3 dex to the quasar luminosity. We re-visit the α ox -L 2500Å relation by selecting a clean sample with only Type 1 radio-quiet quasars; the dispersion of this relation is reduced by at least 15% compared with studies that use non-simultaneous UV/optical and X-ray data. We only found a weak correlation between L bol /L Edd and α UV . We do not find significant correlations between α x and α ox , α ox and α UV , and α x and log L(0.3-10 keV). The correlations between α UV and α x , α ox and α x , α ox and α UV , L bol /L Edd and α x , and L bol /L Edd and α ox are stronger among low-redshift quasars, indicating that these correlations are likely driven by the changes of SED shape with accretion state.

  16. Simultaneous measurements of the OH(8,3) band and 015577A airglow emissions

    International Nuclear Information System (INIS)

    Takahashi, H.; Sahai, Y.; Clemesha, B.R.; Simonich, D.M.; Batista, P.P.; Teixeira, N.R.

    1981-01-01

    Simultaneous measurements of the night airglow OH(8,3) band and OI 5577A have been made at Cachoeira Paulista (22.7 0 S, 45,2 0 W) during June-August 1976. Correlations between the nocturnal variations of these emissions and also with the OH rotational temperature are presented. It is found that OH (8,3) is correlated with the rotational temperature but with a time lag of about 1 hour. The variations of 5577A lead the OH (8,3) by about 2 to 3 hours. The rotational temperature co-varies with 5577A, rather than OH (8,3) and there is no significant time lag. Based on the correlation study, the nocturnal variations of the two emissions can be explained by the atmospheric density perturbation caused by solar tides and internal gravity waves. (Author) [pt

  17. Observations of a Cold Front at High Spatiotemporal Resolution Using an X-Band Phased Array Imaging Radar

    Directory of Open Access Journals (Sweden)

    Andrew Mahre

    2017-02-01

    Full Text Available While the vertical structure of cold fronts has been studied using various methods, previous research has shown that traditional methods of observing meteorological phenomena (such as pencil-beam radars in PPI/volumetric mode are not well-suited for resolving small-scale cold front phenomena, due to relatively low spatiotemporal resolution. Additionally, non-simultaneous elevation sampling within a vertical cross-section can lead to errors in analysis, as differential vertical advection cannot be distinguished from temporal evolution. In this study, a cold front from 19 September 2015 is analyzed using the Atmospheric Imaging Radar (AIR. The AIR transmits a 20-degree fan beam in elevation, and digital beamforming is used on receive to generate simultaneous receive beams. This mobile, X-band, phased-array radar offers temporal sampling on the order of 1 s (while in RHI mode, range sampling of 30 m (37.5 m native resolution, and continuous, arbitrarily oversampled data in the vertical dimension. Here, 0.5-degree sampling is used in elevation (1-degree native resolution. This study is the first in which a cold front has been studied via imaging radar. The ability of the AIR to obtain simultaneous RHIs at high temporal sampling rates without mechanical steering allows for analysis of features such as Kelvin-Helmholtz instabilities and feeder flow.

  18. Assimilation of time-averaged observations in a quasi-geostrophic atmospheric jet model

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, Helga S. [University of Washington, Department of Applied Mathematics, Seattle, WA (United States); University of Delaware, School of Marine Science and Policy, Newark, DE (United States); Hakim, Gregory J. [University of Washington, Department of Atmospheric Sciences, Seattle, WA (United States)

    2010-11-15

    The problem of reconstructing past climates from a sparse network of noisy time-averaged observations is considered with a novel ensemble Kalman filter approach. Results for a sparse network of 100 idealized observations for a quasi-geostrophic model of a jet interacting with a mountain reveal that, for a wide range of observation averaging times, analysis errors are reduced by about 50% relative to the control case without assimilation. Results are robust to changes to observational error, the number of observations, and an imperfect model. Specifically, analysis errors are reduced relative to the control case for observations having errors up to three times the climatological variance for a fixed 100-station network, and for networks consisting of ten or more stations when observational errors are fixed at one-third the climatological variance. In the limit of small numbers of observations, station location becomes critically important, motivating an optimally determined network. A network of fifteen optimally determined observations reduces analysis errors by 30% relative to the control, as compared to 50% for a randomly chosen network of 100 observations. (orig.)

  19. The Low Band Observatory (LOBO): Expanding the VLA Low Frequency Commensal System for Continuous, Broad-band, sub-GHz Observations

    Science.gov (United States)

    Kassim, Namir E.; Clarke, Tracy E.; Helmboldt, Joseph F.; Peters, Wendy M.; Brisken, Walter; Hyman, Scott D.; Polisensky, Emil; Hicks, Brian

    2015-01-01

    The Naval Research Laboratory (NRL) and the National Radio Astronomy Observatory (NRAO) are currently commissioning the VLA Low Frequency Ionosphere and Transient Experiment (VLITE) on a subset of JVLA antennas at modest bandwidth. Its bounded scientific goals are to leverage thousands of JVLA on-sky hours per year for ionospheric and transient studies, and to demonstrate the practicality of a prime-focus commensal system on the JVLA. Here we explore the natural expansion of VLITE to a full-antenna, full-bandwidth Low Band Observatory (LOBO) that would follow naturally from a successful VLITE experience. The new Low Band JVLA receivers, coupled with the existing primary focus feeds, can access two frequency bands: 4 band (54 - 86 MHz) and P band (236-492 MHz). The 4 band feeds are newly designed and now undergoing testing. If they prove successful then they can be permanently mounted at the primary focus, unlike their narrow band predecessors. The combination of Low Band receivers and fixed, primary-focus feeds could provide continuous, broad-band data over two complimentary low-frequency bands. The system would also leverage the relatively large fields-of-view of ~10 degrees at 4 band, and ~2.5 degrees at P band, coupling an excellent survey capability with a natural advantage for serendipitous discoveries. We discuss the compelling science case that flows from LOBO's robust imaging and time domain capabilities coupled with thousands of hours of wide-field, JVLA observing time each year. We also touch on the possibility to incorporate Long Wavelength Array (LWA) stations as additional 'dishes' through the LOBO backend, to improve calibration and sensitivity in LOBO's 4 band.

  20. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.

    Science.gov (United States)

    Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka

    2013-09-07

    The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance.

  1. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka

    2013-01-01

    The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance. (note)

  2. Participant observation of time allocation, direct patient contact and simultaneous activities in hospital physicians

    Directory of Open Access Journals (Sweden)

    Zupanc Andrea

    2009-06-01

    Full Text Available Abstract Background Hospital physicians' time is a critical resource in medical care. Two aspects are of interest. First, the time spent in direct patient contact – a key principle of effective medical care. Second, simultaneous task performance ('multitasking' which may contribute to medical error, impaired safety behaviour, and stress. There is a call for instruments to assess these aspects. A preliminary study to gain insight into activity patterns, time allocation and simultaneous activities of hospital physicians was carried out. Therefore an observation instrument for time-motion-studies in hospital settings was developed and tested. Methods 35 participant observations of internists and surgeons of a German municipal 300-bed hospital were conducted. Complete day shifts of hospital physicians on wards, emergency ward, intensive care unit, and operating room were continuously observed. Assessed variables of interest were time allocation, share of direct patient contact, and simultaneous activities. Inter-rater agreement of Kappa = .71 points to good reliability of the instrument. Results Hospital physicians spent 25.5% of their time at work in direct contact with patients. Most time was allocated to documentation and conversation with colleagues and nursing staff. Physicians performed parallel simultaneous activities for 17–20% of their work time. Communication with patients, documentation, and conversation with colleagues and nursing staff were the most frequently observed simultaneous activities. Applying logit-linear analyses, specific primary activities increase the probability of particular simultaneous activities. Conclusion Patient-related working time in hospitals is limited. The potential detrimental effects of frequently observed simultaneous activities on performance outcomes need further consideration.

  3. FIRST L-BAND INTERFEROMETRIC OBSERVATIONS OF A YOUNG STELLAR OBJECT: PROBING THE CIRCUMSTELLAR ENVIRONMENT OF MWC 419

    International Nuclear Information System (INIS)

    Ragland, S.; Armandroff, T.; Wizinowich, P. L.; Akeson, R. L.; Millan-Gabet, R.; Colavita, M. M.; Traub, W. A.; Vasisht, G.; Danchi, W. C.; Hillenbrand, L. A.; Ridgway, S. T.

    2009-01-01

    We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.

  4. First L-Band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419

    Science.gov (United States)

    Ragland, S.; Akeson, R. L.; Armandroff, T.; Colavita, M. M.; Danchi, W. C.; Hillenbrand, L. A.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W. A.; Vasisht, G.; Wizinowich, P. L.

    2009-09-01

    We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.

  5. Calculations of quasi-particle spectra of semiconductors under pressure

    DEFF Research Database (Denmark)

    Christensen, Niels Egede; Svane, Axel; Cardona, M.

    2011-01-01

    Different approximations in calculations of electronic quasiparticle states in semiconductors are compared and evaluated with respect to their validity in predictions of optical properties. The quasi-particle self-consistent GW (QSGW) approach yields values of the band gaps which are close...

  6. Subarcsecond bright points and quasi-periodic upflows below a quiescent filament observed by IRIS

    Science.gov (United States)

    Li, T.; Zhang, J.

    2016-05-01

    Context. The new Interface Region Imaging Spectrograph (IRIS) mission provides high-resolution observations of UV spectra and slit-jaw images (SJIs). These data have become available for investigating the dynamic features in the transition region (TR) below the on-disk filaments. Aims: The driver of "counter-streaming" flows along the filament spine is still unknown yet. The magnetic structures and the upflows at the footpoints of the filaments and their relations with the filament mainbody have not been well understood. We study the dynamic evolution at the footpoints of filaments in order to find some clues for solving these questions. Methods: Using UV spectra and SJIs from the IRIS, along with coronal images and magnetograms from the Solar Dynamics Observatory (SDO), we present the new features in a quiescent filament channel: subarcsecond bright points (BPs) and quasi-periodic upflows. Results: The BPs in the TR have a spatial scale of about 350-580 km and lifetimes of more than several tens of minutes. They are located at stronger magnetic structures in the filament channel with a magnetic flux of about 1017-1018 Mx. Quasi-periodic brightenings and upflows are observed in the BPs, and the period is about 4-5 min. The BP and the associated jet-like upflow comprise a "tadpole-shaped" structure. The upflows move along bright filament threads, and their directions are almost parallel to the spine of the filament. The upflows initiated from the BPs with opposite polarity magnetic fields have opposite directions. The velocity of the upflows in the plane of sky is about 5-50 km s-1. The emission line of Si IV 1402.77 Å at the locations of upflows exhibits obvious blueshifts of about 5-30 km s-1, and the line profile is broadened with the width of more than 20 km s-1. Conclusions: The BPs seem to be the bases of filament threads, and the upflows are able to convey mass for the dynamic balance of the filament. The "counter-streaming" flows in previous observations

  7. Band Subset Selection for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Chunyan Yu

    2018-01-01

    Full Text Available This paper develops a new approach to band subset selection (BSS for hyperspectral image classification (HSIC which selects multiple bands simultaneously as a band subset, referred to as simultaneous multiple band selection (SMMBS, rather than one band at a time sequentially, referred to as sequential multiple band selection (SQMBS, as most traditional band selection methods do. In doing so, a criterion is particularly developed for BSS that can be used for HSIC. It is a linearly constrained minimum variance (LCMV derived from adaptive beamforming in array signal processing which can be used to model misclassification errors as the minimum variance. To avoid an exhaustive search for all possible band subsets, two numerical algorithms, referred to as sequential (SQ and successive (SC algorithms are also developed for LCMV-based SMMBS, called SQ LCMV-BSS and SC LCMV-BSS. Experimental results demonstrate that LCMV-based BSS has advantages over SQMBS.

  8. Designed Er(3+)-singly doped NaYF4 with double excitation bands for simultaneous deep macroscopic and microscopic upconverting bioimaging.

    Science.gov (United States)

    Wen, Xuanyuan; Wang, Baoju; Wu, Ruitao; Li, Nana; He, Sailing; Zhan, Qiuqiang

    2016-06-01

    Simultaneous deep macroscopic imaging and microscopic imaging is in urgent demand, but is challenging to achieve experimentally due to the lack of proper fluorescent probes. Herein, we have designed and successfully synthesized simplex Er(3+)-doped upconversion nanoparticles (UCNPs) with double excitation bands for simultaneous deep macroscopic and microscopic imaging. The material structure and the excitation wavelength of Er(3+)-singly doped UCNPs were further optimized to enhance the upconversion emission efficiency. After optimization, we found that NaYF4:30%Er(3+)@NaYF4:2%Er(3+) could simultaneously achieve efficient two-photon excitation (2PE) macroscopic tissue imaging and three-photon excitation (3PE) deep microscopic when excited by 808 nm continuous wave (CW) and 1480 nm CW lasers, respectively. In vitro cell imaging and in vivo imaging have also been implemented to demonstrate the feasibility and potential of the proposed simplex Er(3+)-doped UCNPs as bioprobe.

  9. Multifrequency observations of the BL Lacertae object PKS 0537 - 441

    Science.gov (United States)

    Maraschi, L.; Treves, A.; Schwartz, D. A.; Tanzi, E. G.

    1985-01-01

    PKS 0537 - 441 was repeatedly observed in the UV band with the International Ultraviolet Explorer and in the X-ray with the Einstein Observatory. On September 27, 1980, simultaneous observations in the two bands were obtained. Near-infrared photometry preceding and following the simultaneous observations by about one month is available from the literature, as is radio monitoring at 408 and 5000 MHz. Comparison of the observed X-ray flux with that predicted by the standard synchrotron self-Compton formalism, with a source dimension deduced from radio variability at 5 GHz, indicates that this component of the radio emission must be moving at relativistic speed with an effective projected Doppler beaming factor of about 10.

  10. Multifrequency observations of the BL Lacertae object PKS 0537 - 441

    Energy Technology Data Exchange (ETDEWEB)

    Maraschi, L.; Treves, A.; Schwartz, D.A.; Tanzi, E.G.

    1985-07-01

    PKS 0537 - 441 was repeatedly observed in the UV band with the International Ultraviolet Explorer and in the X-ray with the Einstein Observatory. On September 27, 1980, simultaneous observations in the two bands were obtained. Near-infrared photometry preceding and following the simultaneous observations by about one month is available from the literature, as is radio monitoring at 408 and 5000 MHz. Comparison of the observed X-ray flux with that predicted by the standard synchrotron self-Compton formalism, with a source dimension deduced from radio variability at 5 GHz, indicates that this component of the radio emission must be moving at relativistic speed with an effective projected Doppler beaming factor of about 10. 28 references.

  11. Multifrequency observations of the BL Lacertae object PKS 0537 - 441

    International Nuclear Information System (INIS)

    Maraschi, L.; Treves, A.; Schwartz, D.A.; Tanzi, E.G.; CNR, Istituto di Fisica Cosmica, Milan, Italy; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1985-01-01

    PKS 0537 - 441 was repeatedly observed in the UV band with the International Ultraviolet Explorer and in the X-ray with the Einstein Observatory. On September 27, 1980, simultaneous observations in the two bands were obtained. Near-infrared photometry preceding and following the simultaneous observations by about one month is available from the literature, as is radio monitoring at 408 and 5000 MHz. Comparison of the observed X-ray flux with that predicted by the standard synchrotron self-Compton formalism, with a source dimension deduced from radio variability at 5 GHz, indicates that this component of the radio emission must be moving at relativistic speed with an effective projected Doppler beaming factor of about 10. 28 references

  12. Wide-banded NTC radiation: local to remote observations by the four Cluster satellites

    Directory of Open Access Journals (Sweden)

    P. M. E. Décréau

    2015-10-01

    Full Text Available The Cluster multi-point mission offers a unique collection of non-thermal continuum (NTC radio waves observed in the 2–80 kHz frequency range over almost 15 years, from various view points over the radiating plasmasphere. Here we present rather infrequent case events, such as when primary electrostatic sources of such waves are embedded within the plasmapause boundary far from the magnetic equatorial plane. The spectral signature of the emitted electromagnetic waves is structured as a series of wide harmonic bands within the range covered by the step in plasma frequency encountered at the boundary. Developing the concept that the frequency distance df between harmonic bands measures the magnetic field magnitude B at the source (df = Fce, electron gyrofrequency, we analyse three selected events. The first one (studied in Grimald et al., 2008 presents electric field signatures observed by a Cluster constellation of small size (~ 200 to 1000 km spacecraft separation placed in the vicinity of sources. The electric field frequency spectra display frequency peaks placed at frequencies fs = n df (n being an integer, with df of the order of Fce values encountered at the plasmapause by the spacecraft. The second event, taken from the Cluster tilt campaign, leads to a 3-D view of NTC waves ray path orientations and to a localization of a global source region at several Earth radii (RE from Cluster (Décréau et al., 2013. The measured spectra present successive peaks placed at fs ~ (n+ 1/2 df. Next, considering if both situations might be two facets of the same phenomenon, we analyze a third event. The Cluster fleet, configured into a constellation of large size (~ 8000 to 25 000 km spacecraft separation, allows us to observe wide-banded NTC waves at different distances from their sources. Two new findings can be derived from our analysis. First, we point out that a large portion of the plasmasphere boundary layer, covering a large range of magnetic

  13. Multiflash whistlers in ELF-band observed at low latitude

    Directory of Open Access Journals (Sweden)

    A. K. Singh

    2011-01-01

    Full Text Available Multiflash whistler-like event in the ELF-band, observed during March 1998 at low latitude station Jammu, is reported. The most prominent feature of these events is the multiflash nature along with the decrease in frequency within a very short span of time resembling similar to terrestrial whistlers. The events have a significantly smaller time duration (0.5–3.5 s than those reported earlier from high, mid and low latitudes and also display a diurnal maximum occurring around 09:30 h (IST. There have been similar reportings from other latitudes, but whistlers in the ELF-band with a multiflash nature along with a precursor emission have never been reported. Lightning seems to be the dominant source for the ELF whistlers reported here.

  14. Mini-RF S- and X-band Bistatic Observations of the Floor of Cabeus Crater

    Science.gov (United States)

    Patterson, Gerald Wesley; Stickle, Angela; Turner, Franklin; Jensen, James; Cahill, Joshua; Mini-RF Team

    2017-10-01

    The Mini-RF instrument aboard NASA’s Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) and operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34 meter antenna DSS-13 to collect S- and X-band bistatic radar data of the Moon. Bistatic radar data provide a means to probe the near subsurface for the presence of water ice, which exhibits a strong response in the form of a Coherent Backscatter Opposition Effect (CBOE). This effect has been observed in radar data for the icy surfaces of the Galilean satellites, the polar caps of Mars, polar craters on Mercury, and terrestrial ice sheets in Greenland. Previous work using Mini-RF S-band (12.6 cm) bistatic data suggests the presence of a CBOE associated with the floor of the lunar south polar crater Cabeus. The LRO spacecraft has begun its third extended mission. For this phase of operations Mini-RF is leveraging the existing AO architecture to make S-band radar observations of additional polar craters (e.g., Haworth, Shoemaker, Faustini). The purpose of acquiring these data is to determine whether other polar craters exhibit the response observed for Cabeus. Mini-RF has also initiated a new mode of operation that utilizes the X-band (4.2cm) capability of the instrument receiver and a recently commissioned X/C-band transmitter within the Deep Space Network’s (DSN) Goldstone complex to collect bistatic X-band data of the Moon. The purpose of acquiring these data is to constrain the depth/thickness of materials that exhibit a CBOE response - with an emphasis on observing the floor of Cabeus. Recent Mini-RF X-band observations of the floors of the craters Cabeus do not show evidence for a CBOE. This would suggest that the upper ~0.5 meters of the regolith for the floor of Cabeus do not harber water ice in a form detectable at 4.2 cm wavelengths.

  15. SIMULTANEOUS OBSERVATIONS OF GIANT PULSES FROM PULSAR PSR B0031-07 AT 38 AND 74 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Jr-Wei; Simonetti, John H.; Bear, Brandon [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Gough, Jonathan D. [Department of Chemistry, Lehman College, CUNY, Bronx, NY 10468 (United States); Newton, Joseph R. [Department of Chemistry and Physics, Augusta University, Augusta, GA 30912 (United States); Kavic, Michael [Department of Physics, Long Island University, Brooklyn, NY 11201 (United States)

    2016-03-15

    The first station of the Long Wavelength Array was used to study PSR B0031-07 with simultaneous observations at 38 and 74 MHz. We found that 158 (0.35%) of the observed pulses at 38 MHz and 221 (0.49%) of the observed pulses at 74 MHz qualified as giant pulses (GPs) in a total of 12 hr of observations. GPs are defined as having flux densities of a factor of ≥90 times that of an average pulse (AP) at 38 MHz and ≥80 times that of an AP at 74 MHz. The cumulative distribution of pulse strength follows a power law, with an index of −4.2 at 38 MHz and −4.9 at 74 MHz. This distribution has a much more gradual slope than would be expected if observing the tail of a Gaussian distribution of normal pulses. The dispersion measure (DM) value which resulted in the largest signal to noise for dedispersed pulses was DM = 10.9 pc cm{sup −3}. No other transient pulses were detected in the data in the wide DM range from 1 to 5000 pc cm{sup −3}. There were 12 GPs detected within the same period from both 38 and 74 MHz, meaning that the majority of them are not generated in a wide band.

  16. Computational Design of Flat-Band Material

    Science.gov (United States)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  17. A quasi-continuous observation of the α-transition of Fe1+xS by Moessbauer line tracking

    International Nuclear Information System (INIS)

    Mendoza Zelis, P.; Pasquevich, G. A.; Veiga, A.; Fernandez van Raap, M. B.; Sanchez, F. H.

    2010-01-01

    Moessbauer absorption line tracking methodology, under a constant velocity strategy, is used for a quasi-continuous observation of the α-transition on slightly non stoichiometric Fe 1+x S alloy. To this end, two strategies were applied: an intelligent absorption line tracking with a control algorithm that uses the data measured in the previous region to establish the position of the next partial spectral range; and a predetermined line tracking in which temperature evolution of a partial spectral region of interest (ROI) is programmed. The latter uses results from the former, in order to achieve a quasi-continuous partial spectral observation. These experiments clearly demonstrate that line tracking allows a more efficient use of the radioactive source, as the effort is concentrated in a partial region of the spectra from which the desired information can be obtained.

  18. A QUASAR CATALOG WITH SIMULTANEOUS UV, OPTICAL, AND X-RAY OBSERVATIONS BY SWIFT

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jian; Grupe, Dirk; Koch, Scott; Gelbord, Jonathan; Schneider, Donald P.; Gronwall, Caryl; Porterfield, Blair L. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Vanden Berk, Daniel; Wesolowski, Sarah, E-mail: jwu@astro.psu.edu [Department of Physics, Saint Vincent College, 300 Fraser Purchase Road, Latrobe, PA 15650 (United States)

    2012-08-01

    We have compiled a catalog of optically selected quasars with simultaneous observations in UV/optical and X-ray bands by the Swift Gamma-ray Burst Explorer. Objects in this catalog are identified by matching the Swift pointings with the Sloan Digital Sky Survey Data Release 5 quasar catalog. The final catalog contains 843 objects, among which 637 have both Ultraviolet Optical Telescope (UVOT) and X-Ray Telescope (XRT) observations and 354 of which are detected by both instruments. The overall X-ray detection rate is {approx}60% which rises to {approx}85% among sources with at least 10 ks of XRT exposure time. We construct the time-averaged spectral energy distribution (SED) for each of the 354 quasars using UVOT photometric measurements and XRT spectra. From model fits to these SEDs, we find that the big blue bump contributes about {approx}0.3 dex to the quasar luminosity. We re-visit the {alpha}{sub ox}-L{sub 2500A} relation by selecting a clean sample with only Type 1 radio-quiet quasars; the dispersion of this relation is reduced by at least 15% compared with studies that use non-simultaneous UV/optical and X-ray data. We only found a weak correlation between L{sub bol}/L{sub Edd} and {alpha}{sub UV}. We do not find significant correlations between {alpha}{sub x} and {alpha}{sub ox}, {alpha}{sub ox} and {alpha}{sub UV}, and {alpha}{sub x} and log L(0.3-10 keV). The correlations between {alpha}{sub UV} and {alpha}{sub x}, {alpha}{sub ox} and {alpha}{sub x}, {alpha}{sub ox} and {alpha}{sub UV}, L{sub bol}/L{sub Edd} and {alpha}{sub x}, and L{sub bol}/L{sub Edd} and {alpha}{sub ox} are stronger among low-redshift quasars, indicating that these correlations are likely driven by the changes of SED shape with accretion state.

  19. Calibration of VIIRS F1 Sensor Fire Detection Band Using lunar Observations

    Science.gov (United States)

    McIntire, Jeff; Efremova, Boryana; Xiong, Xiaoxiong

    2012-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) Fight 1 (Fl) sensor includes a fire detection band at roughly 4 microns. This spectral band has two gain states; fire detection occurs in the low gain state above approximately 345 K. The thermal bands normally utilize an on-board blackbody to provide on-orbit calibration. However, as the maximum temperature of this blackbody is 315 K, the low gain state of the 4 micron band cannot be calibrated in the same manner as the rest of the thermal bands. Regular observations of the moon provide an alternative calibration source. The lunar surface temperature has been recently mapped by the DIVINER sensor on the LRO platform. The periodic on-board high gain calibration along with the DIVINER surface temperatures was used to determine the emissivity and solar reflectance of the lunar surface at 4 microns; these factors and the lunar data are then used to fit the low gain calibration coefficients of the 4 micron band. Furthermore, the emissivity of the lunar surface is well known near 8.5 microns due to the Christiansen feature (an emissivity maximum associated with Si-O stretching vibrations) and the solar reflectance is negligible. Thus, the 8.5 micron band is used for relative calibration with the 4 micron band to de-trend any temporal variations. In addition, the remaining thermal bands are analyzed in a similar fashion, with both calculated emissivities and solar reflectances produced.

  20. Wave propagation in one-dimensional solid-fluid quasi-periodic and aperiodic phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ali, E-mail: alchen@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2012-02-01

    The propagation of the elastic waves in one-dimensional (1D) solid-fluid quasi-periodic phononic crystals is studied by employing the concept of the localization factor, which is calculated by the transfer matrix method. The solid-fluid interaction effect at the interfaces between the solid and the fluid components is considered. For comparison, the periodic systems and aperiodic Thue-Morse sequence are also analyzed in this paper. The splitting phenomenon of the pass bands and bandgaps are discussed for these 1D solid-fluid systems. At last the influences of the material impedance ratios on the band structures of the 1D solid-fluid quasi-periodic phononic crystals arranged as Fibonacci sequence are discussed.

  1. TIME DELAYS IN QUASI-PERIODIC PULSATIONS OBSERVED DURING THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15

    Energy Technology Data Exchange (ETDEWEB)

    Dolla, L.; Marque, C.; Seaton, D. B.; Dominique, M.; Berghmans, D.; Cabanas, C.; De Groof, A.; Verdini, A.; West, M. J.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Van Doorsselaere, T. [Centrum voor Plasma-Astrofysica, Department of Mathematics, KULeuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Schmutz, W. [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos Dorf (Switzerland); Zender, J., E-mail: dolla@sidc.be [European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2012-04-10

    We report observations of quasi-periodic pulsations (QPPs) during the X2.2 flare of 2011 February 15, observed simultaneously in several wavebands. We focus on fluctuations on timescale 1-30 s and find different time lags between different wavebands. During the impulsive phase, the Reuven Ramaty High Energy Solar Spectroscopic Imager channels in the range 25-100 keV lead all the other channels. They are followed by the Nobeyama RadioPolarimeters at 9 and 17 GHz and the extreme-ultraviolet (EUV) channels of the Euv SpectroPhotometer (ESP) on board the Solar Dynamic Observatory. The zirconium and aluminum filter channels of the Large Yield Radiometer on board the Project for On-Board Autonomy satellite and the soft X-ray (SXR) channel of ESP follow. The largest lags occur in observations from the Geostationary Operational Environmental Satellite, where the channel at 1-8 A leads the 0.5-4 A channel by several seconds. The time lags between the first and last channels is up to Almost-Equal-To 9 s. We identified at least two distinct time intervals during the flare impulsive phase, during which the QPPs were associated with two different sources in the Nobeyama RadioHeliograph at 17 GHz. The radio as well as the hard X-ray channels showed different lags during these two intervals. To our knowledge, this is the first time that time lags are reported between EUV and SXR fluctuations on these timescales. We discuss possible emission mechanisms and interpretations, including flare electron trapping.

  2. Complete modulational-instability gain spectrum of nonlinear quasi-phase-matching gratings

    DEFF Research Database (Denmark)

    Corney, Joel F.; Bang, Ole

    2004-01-01

    We consider plane waves propagating in quadratic nonlinear slab waveguides with nonlinear quasi-phasematching gratings. We predict analytically and verify numerically the complete gain spectrum for transverse modulational instability, including hitherto undescribed higher-order gain bands....

  3. Non-invasive imaging and monitoring of rodent retina using simultaneous dual-band optical coherence tomography

    Science.gov (United States)

    Cimalla, Peter; Burkhardt, Anke; Walther, Julia; Hoefer, Aline; Wittig, Dierk; Funk, Richard; Koch, Edmund

    2011-03-01

    Spectral domain dual-band optical coherence tomography for simultaneous imaging of rodent retina in the 0.8 μm and 1.3 μm wavelength region and non-invasive monitoring of the posterior eye microstructure in the field of retinal degeneration research is demonstrated. The system is illuminated by a supercontinuum laser source and allows three-dimensional imaging with high axial resolution better than 3.8 μm and 5.3 μm in tissue at 800 nm and 1250 nm, respectively, for precise retinal thickness measurements. A fan-shaped scanning pattern with the pivot point close to the eye's pupil and a contact lens are applied to obtain optical access to the eye's fundus. First in vivo experiments in a RCS (royal college of surgeons) rat model with gene-related degeneration of the photoreceptor cells show good visibility of the retinal microstructure with sufficient contrast for thickness measurement of individual retinal layers. An enhanced penetration depth at 1250 nm is clearly identifiable revealing sub-choroidal structures that are not visible at 800 nm. Furthermore, additional simultaneous imaging at 1250 nm improves image quality by frequency compounding speckle noise reduction. These results are encouraging for time course studies of the rodent retina concerning its development related to disease progression and treatment response.

  4. Detecting quasi-oscillations in the monthly precipitation regimes of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    L. Morala

    2003-03-01

    Full Text Available A spectral analysis of the time series corresponding to the main monthly precipitation regimes of the Iberian Peninsula was performed using two methods, the Multi-Taper Method and Monte Carlo Singular Spectrum Analysis. The Multi-Taper Method gave a preliminary view of the presence of signals in some of the time series. Monte Carlo Singular Spectrum Analysis discriminated between potential oscillations and noise. From the results of the two methods it is concluded that there exist three significant quasi-oscillations at the 95% level of confidence: a 5.0 year quasi-oscillation and a long-term trend in the Atlantic pattern of March, a 3.2 year quasi-oscillation in the Cantabrian pattern of January, and a 4.0 year quasi-oscillation in the Catalonian pattern of February. These quasi-oscillations might be related to climatic variations with similar periodicities over the North Atlantic Ocean. The possible simultaneity of high values of precipitation generated by the significant quasi-oscillations and high sea–level pressures was studied by means of composite maps. It was found that high values of precipitation generated by the oscillations of the Atlantic patterns of January and March exist simultaneously with a specific high pressure structure over the North Atlantic Ocean, that allow cyclonic perturbations to cross the Iberian Peninsula. During the non-wet years, this high pressure structure moves northwards, keeping the track of the low pressure centers to the north, far from the Iberian Peninsula. On the other hand, high values of precipitation generated by the oscillation of the Cantabrian pattern of January exist simultaneously with a high pressure structure over the Galicia region and the Cantabrian Sea, that allow a northerly flow over the region. Also, a positive trend in the NAO index for March has been found, starting in the sixties, which is not evident for other winter months. This trend agrees with the decreasing trend found in the

  5. Imaging the Nanoscale Band Structure of Topological Sb

    OpenAIRE

    Soumyanarayanan, Anjan; Yee, Michael M.; He, Yang; Lin, Hsin; Gardner, Dillon R.; Bansil, Arun; Lee, Young S.; Hoffman, Jennifer E.

    2013-01-01

    Many promising building blocks of future electronic technology - including non-stoichiometric compounds, strongly correlated oxides, and strained or patterned films - are inhomogeneous on the nanometer length scale. Exploiting the inhomogeneity of such materials to design next-generation nanodevices requires a band structure probe with nanoscale spatial resolution. To address this demand, we report the first simultaneous observation and quantitative reconciliation of two candidate probes - La...

  6. Radiometric cross-calibration of EO-1 ALI with L7 ETM+ and Terra MODIS sensors using near-simultaneous desert observations

    Science.gov (United States)

    Chander, Gyanesh; Angal, Amit; Choi, Taeyoung; Xiong, Xiaoxiong

    2013-01-01

    The Earth Observing-1 (EO-1) satellite was launched on November 21, 2000, as part of a one-year technology demonstration mission. The mission was extended because of the value it continued to add to the scientific community. EO-1 has now been operational for more than a decade, providing both multispectral and hyperspectral measurements. As part of the EO-1 mission, the Advanced Land Imager (ALI) sensor demonstrates a potential technological direction for the next generation of Landsat sensors. To evaluate the ALI sensor capabilities as a precursor to the Operational Land Imager (OLI) onboard the Landsat Data Continuity Mission (LDCM, or Landsat 8 after launch), its measured top-of-atmosphere (TOA) reflectances were compared to the well-calibrated Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors in the reflective solar bands (RSB). These three satellites operate in a near-polar, sun-synchronous orbit 705 km above the Earth's surface. EO-1 was designed to fly one minute behind L7 and approximately 30 minutes in front of Terra. In this configuration, all the three sensors can view near-identical ground targets with similar atmospheric, solar, and viewing conditions. However, because of the differences in the relative spectral response (RSR), the measured physical quantities can be significantly different while observing the same target. The cross-calibration of ALI with ETM+ and MODIS was performed using near-simultaneous surface observations based on image statistics from areas observed by these sensors over four desert sites (Libya 4, Mauritania 2, Arabia 1, and Sudan 1). The differences in the measured TOA reflectances due to RSR mismatches were compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of each sensor. For this study, the spectral profile of the target comes from the near-simultaneous EO-1

  7. The decay-out of superdeformed bands in the A = 190 region. What have we learned?

    International Nuclear Information System (INIS)

    Lauritsen, T.; Hackman, G.; Khoo, T.L.; Carpenter, M.P.; Janssens, R.V.F.; Ackermann, D.; Ahmad, I.; Blumenthal, D.J.; Lopez-Martens, A.

    1997-01-01

    One-step decay transitions linking the superdeformed (SD) bands 1 and 3 in 194 Hg to yrast levels are discussed. Inter-band transitions between bands 1 and 3 have also been identified. For the first time, the spin, parity and excitation energy have been determined for two SD bands in the same nucleus. The low excitation energy of the excited band supports the view that it is based on an octupole excitation. It is believed that Porter-Thomas fluctuations play a major role in determining the strength of the one-step transitions as suggested by the fact that only one other SD band has been linked in the A = 190 mass region ( 194 Pb) at the present time. When Porter-Thomas fluctuations prevent the observation of one-step or two-step linking transitions, as e.g. in the case of 192 Hg, the analysis of the quasi-continuous part of the decay-out spectrum provides an alternative method for the determination of the excitation energy and spin of an SD band. This method is discussed in detail. (author)

  8. Observations of 40-70 micron bands of ice in IRAS 09371 + 1212 and other stars

    Science.gov (United States)

    Omont, A.; Forveille, T.; Moseley, S. H.; Glaccum, W. J.; Harvey, P. M.; Likkel, L.; Loewenstein, R. F.; Lisse, C. M.

    1990-01-01

    IRAS 09371 + 1212 is still an absolutely unique object. This M giant star, with circumstellar CO and a spectacular bipolar nebula, displays unique IRAS FIR colors which had been attributed to strong emission in the 40-70-micron bands of ice, as subsequently supported by the observation of a strong 3.1-micron absorption band. The results of the KAO observations have confirmed its unusual nature: the far-infrared bands of ice are by far the strongest known. Its dust temperature, 50 K or less, is by far the lowest known for a late-type circumstellar envelope.

  9. Quasi-one-dimensional metals on semiconductor surfaces with defects

    International Nuclear Information System (INIS)

    Hasegawa, Shuji

    2010-01-01

    Several examples are known in which massive arrays of metal atomic chains are formed on semiconductor surfaces that show quasi-one-dimensional metallic electronic structures. In this review, Au chains on Si(557) and Si(553) surfaces, and In chains on Si(111) surfaces, are introduced and discussed with regard to the physical properties determined by experimental data from scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES) and electrical conductivity measurements. They show quasi-one-dimensional Fermi surfaces and parabolic band dispersion along the chains. All of them are known from STM and ARPES to exhibit metal-insulator transitions by cooling and charge-density-wave formation due to Peierls instability of the metallic chains. The electrical conductivity, however, reveals the metal-insulator transition only on the less-defective surfaces (Si(553)-Au and Si(111)-In), but not on a more-defective surface (Si(557)-Au). The latter shows an insulating character over the whole temperature range. Compared with the electronic structure (Fermi surfaces and band dispersions), the transport property is more sensitive to the defects. With an increase in defect density, the conductivity only along the metal atomic chains was significantly reduced, showing that atomic-scale point defects decisively interrupt the electrical transport along the atomic chains and hide the intrinsic property of transport in quasi-one-dimensional systems.

  10. Quasi-fractional approximation to the Bessel functions

    International Nuclear Information System (INIS)

    Guerrero, P.M.L.

    1989-01-01

    In this paper the authors presents a simple Quasi-Fractional Approximation for Bessel Functions J ν (x), (- 1 ≤ ν < 0.5). This has been obtained by extending a method published which uses simultaneously power series and asymptotic expansions. Both functions, exact and approximated, coincide in at least two digits for positive x, and ν between - 1 and 0,4

  11. Gamma bands in doubly odd rhenium and iridium nuclei

    Directory of Open Access Journals (Sweden)

    Balodis M.

    2015-01-01

    Full Text Available Structure of the |K ± 2| bands in doubly-odd nuclei belonging to the transitional deformation region at A∼190 is discussed. Relation of these quasi gamma-bands with the non-axial deformation of the parent two-quasiparticle configurations is studied. Using available experimental information, new tentative |K ± 2| bands are proposed in 188Re, and 192,194Ir nuclei. Coexistence of two-quasiparticle states with different deformation modes is considered in the case of 188Re and 194Ir.

  12. Electronic structure of C r2AlC as observed by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Ito, Takahiro; Pinek, Damir; Fujita, Taishi; Nakatake, Masashi; Ideta, Shin-ichiro; Tanaka, Kiyohisa; Ouisse, Thierry

    2017-11-01

    We investigate the electronic band structure and Fermi surfaces (FSs) of C r2AlC single crystals with angle-resolved photoemission spectroscopy. We evidence hole bands centered around the M points and electron bands centered around the Γ point in reciprocal space. Electron and hole bands exhibit an open, tubular structure along the c axis, confirming the quasi-two-dimensional character of this highly anisotropic, nanolamellar compound. Dependence of the photoionization cross sections on beam light polarization and orientation allows us to assess the orbital character of each observed band locally. Despite some differences, density functional theory calculations show a good agreement with experiment.

  13. A quasi-continuous observation of the {alpha}-transition of Fe{sub 1+x}S by Moessbauer line tracking

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Zelis, P., E-mail: pmendoza@fisica.unlp.edu.ar; Pasquevich, G. A.; Veiga, A.; Fernandez van Raap, M. B.; Sanchez, F. H. [Universidad Nacional de La Plata, CONICET, Depto. de Fisica, Fac. Ciencias Exactas, Instituto de Fisica La Plata (Argentina)

    2010-01-15

    Moessbauer absorption line tracking methodology, under a constant velocity strategy, is used for a quasi-continuous observation of the {alpha}-transition on slightly non stoichiometric Fe{sub 1+x}S alloy. To this end, two strategies were applied: an intelligent absorption line tracking with a control algorithm that uses the data measured in the previous region to establish the position of the next partial spectral range; and a predetermined line tracking in which temperature evolution of a partial spectral region of interest (ROI) is programmed. The latter uses results from the former, in order to achieve a quasi-continuous partial spectral observation. These experiments clearly demonstrate that line tracking allows a more efficient use of the radioactive source, as the effort is concentrated in a partial region of the spectra from which the desired information can be obtained.

  14. Computational study of packing a collagen-like molecule: quasi-hexagonal vs "Smith" collagen microfibril model.

    Science.gov (United States)

    Lee, J; Scheraga, H A; Rackovsky, S

    1996-01-01

    The lateral packing of a collagen-like molecule, CH3CO-(Gly-L-Pro-L-Pro)4-NHCH3, has been examined by energy minimization with the ECEPP/3 force field. Two current packing models, the Smith collagen microfibril twisted equilateral pentagonal model and the quasi-hexagonal packing model, have been extensively investigated. In treating the Smith microfibril model, energy minimization was carried out on various conformations including those with the symmetry of equivalent packing, i.e., in which the triple helices were arranged equivalently with respect to each other. Both models are based on the experimental observation of the characteristic axial periodicity, D = 67 nm, of light and dark bands, indicating that, if any superstructure exists, it should consist of five triple helices. The quasi-hexagonal packing structure is found to be energetically more favorable than the Smith microfibril model by as much as 31.2 kcal/mol of five triple helices. This is because the quasi-hexagonal packing geometry provides more nonbonded interaction possibilities between triple helices than does the Smith microfibril geometry. Our results are consistent with recent x-ray studies with synthetic collagen-like molecules and rat tail tendon, in which the data were interpreted as being consistent with either a quasi-hexagonal or a square-triangular structure.

  15. Loudness estimation of simultaneous sources using beamforming

    DEFF Research Database (Denmark)

    Song, Woo-keun; Ellermeier, Wolfgang; Minnaar, Pauli

    2006-01-01

    An algorithm is proposed for estimating the loudness of several simultaneous sound sources by means of microphone-array beamforming. The algorithm is derived from two listening experiments in which the loudness of two simultaneous sounds (narrow-band noises with 1-kHz and 3.15-kHz center...... frequencies) was matched to a single sound (2-kHz narrow-band noise). The simultaneous sounds were presented from either one sound source or two spatially separated sources, whereas the single sound was presented from the frontal direction. The results indicate that overall loudness can be calculated...... by summing the loudnesses of the individual sources according to a simple psychophysical relationship....

  16. A CPW-Fed Quasi-PIFA Antenna Using Quasi-Lumped Resonators for Mobile Phones

    Directory of Open Access Journals (Sweden)

    Majid Rafiee

    2015-01-01

    Full Text Available A novel single CPW-fed Quasi-Planar Inverted-F Antenna (PIFA using quasi-lumped elements is developed for mobile communication handheld terminals operating at 2.6 GHz. The antenna is composed of an inductor covered by a set of interdigital and parasitic capacitors. The proposed antenna achieves a measured bandwidth of 11% for return loss with the antenna gain of about 4 dBi. The antenna is designed in single layer (zero height which is appropriate to be used in thin devices where a small room is considered for the antenna. The proposed antenna is suitable for use in Long Term Evolution band 7. The operating frequency of introduced antenna depends on the number of interdigital fingers and inductor length rather than the total resonator patch only, so that the operating frequency can be altered while the total patch size remains unchanged. The calculated operating frequency is confirmed by simulation and measurement. Also the dipole-like simulated radiation pattern is confirmed by measurement.

  17. MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Becerra Gonzalez, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier (France); Bruel, P., E-mail: David.J.Thompson@nasa.gov, E-mail: sara.cutini@asdc.asi.it, E-mail: stefano.ciprini@asdc.asi.it, E-mail: stefan@astro.su.se, E-mail: stamerra@oato.inaf.it [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2015-11-10

    We report for the first time a γ-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 ± 0.08 year period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in ∼10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.

  18. MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

    International Nuclear Information System (INIS)

    Ackermann, M.; Buehler, R.; Ajello, M.; Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Atwood, W. B.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Buson, S.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Bonino, R.; Bregeon, J.; Bruel, P.

    2015-01-01

    We report for the first time a γ-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 ± 0.08 year period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in ∼10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity

  19. The VLA Low-band Ionosphere and Transient Experiment (VLITE)

    Science.gov (United States)

    Clarke, Tracy; Peters, Wendy; Brisken, Walter; Giacintucci, Simona; Kassim, Namir; Polisensky, Emil; Helmboldt, Joseph; Richards, Emily E.; Erickson, Alan; Ray, Paul S.; Kerr, Matthew T.; Deneva, Julia; Coburn, William; Huber, Robert; Long, Jeff

    2018-01-01

    The VLA Low-band Ionosphere and Transient Experiment (VLITE, http://vlite.nrao.edu/ ) is a commensal low-frequency observing system that has been operational on the National Radio Astronomy Observatory's Karl G. Jansky Very Large Array (VLA) since late 2014. The separate optical paths of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus 1-50 GHz feeds allow both systems to operate simultaneously with independent correlators. The initial 2.5 years of VLITE operation provided real-time correlation of 10 antennas across the 320-384 MHz band with a total observing time approaching 12,000 hours. During the summer of 2017, VLITE was upgraded to a total of 16 antennas (more than doubling the number of baselines) with enhanced correlator capabilities to enable correlation of the on-the-fly observing mode being used for the new NRAO VLA Sky Survey (VLASS).We present an overview of the VLITE system, including highlights of the complexities of a commensal observing program, sparse-array challenges, and scientific capabilities from our science-ready data pipeline. In the longer term, we seek a path to broadband expansion across all VLA antennas to develop a powerful new LOw Band Observatory (LOBO).

  20. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    Science.gov (United States)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  1. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    2001-08-01

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  2. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  3. Angle-resolved photoemission spectroscopy of band tails in lightly doped cuprates

    OpenAIRE

    Alexandrov, A. S.; Reynolds, K.

    2007-01-01

    We amend ab initio strongly-correlated band structures by taking into account the band-tailing phenomenon in doped charge-transfer Mott-Hubbard insulators. We show that the photoemission from band tails accounts for sharp "quasi-particle" peaks, rapid loss of their intensities in some directions of the Brillouin zone ("Fermi-arcs") and high-energy "waterfall" anomalies as a consequence of matrix-element effects of disorder-localised states in the charge-transfer gap of doped cuprates.

  4. Quasi-two-dimensional thermoelectricity in SnSe

    Science.gov (United States)

    Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.

    2018-01-01

    Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.

  5. An Observational Study of Intermediate Band Students' Self-Regulated Practice Behaviors

    Science.gov (United States)

    Miksza, Peter; Prichard, Stephanie; Sorbo, Diana

    2012-01-01

    The purpose of this study was to investigate intermediate musicians' self-regulated practice behaviors. Thirty sixth- through eighth-grade students were observed practicing band repertoire individually for 20 min. Practice sessions were coded according to practice frame frequency and duration, length of musical passage selected, most prominent…

  6. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.

    Science.gov (United States)

    Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali

    2016-01-13

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.

  7. Fluorescence enhancing under UV-NIR simultaneous-excitation in ZnS:Cu,Mn phosphors

    Directory of Open Access Journals (Sweden)

    L. J. Xie

    2012-12-01

    Full Text Available The fluorescence properties of a long-lasting phosphor, ZnS:Cu,Mn was studied for the first time under simultaneously excitation of both UV and NIR light. Up to 20% fluorescence enhancement of the phosphor was observed. In the present simultaneously-excitation process, broad-band NIR light was absorbed and converted to visible photons via a single-photon upconversion path. We propose that a novel kind of spectral-conversion material with the unique ability to simultaneously convert both UV and NIR photons can be developed and is promising in the application of enhancing the EQE of solar cells.

  8. Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization

    Science.gov (United States)

    Lin, Chuang; Wang, Binghui; Jiang, Ning; Farina, Dario

    2018-04-01

    Objective. This paper proposes a novel simultaneous and proportional multiple degree of freedom (DOF) myoelectric control method for active prostheses. Approach. The approach is based on non-negative matrix factorization (NMF) of surface EMG signals with the inclusion of sparseness constraints. By applying a sparseness constraint to the control signal matrix, it is possible to extract the basis information from arbitrary movements (quasi-unsupervised approach) for multiple DOFs concurrently. Main Results. In online testing based on target hitting, able-bodied subjects reached a greater throughput (TP) when using sparse NMF (SNMF) than with classic NMF or with linear regression (LR). Accordingly, the completion time (CT) was shorter for SNMF than NMF or LR. The same observations were made in two patients with unilateral limb deficiencies. Significance. The addition of sparseness constraints to NMF allows for a quasi-unsupervised approach to myoelectric control with superior results with respect to previous methods for the simultaneous and proportional control of multi-DOF. The proposed factorization algorithm allows robust simultaneous and proportional control, is superior to previous supervised algorithms, and, because of minimal supervision, paves the way to online adaptation in myoelectric control.

  9. Calculation of Energy Band Diagram of a Photoelectrochemical Water Splitting Cell

    OpenAIRE

    Cendula, P.; Tilley, S. D.; Gimenez, S.; Schmid, M.; Bisquert, J.; Graetzel, M.; Schumacher, J. O.

    2014-01-01

    A physical model is presented for a semiconductor electrode of a photoelectrochemical (PEC) cell, accounting for the potential drop in the Helmholtz layer. Hence both band edge pinning and unpinning are naturally included in our description. The model is based on the continuity equations for charge carriers and direct charge transfer from the energy bands to the electrolyte. A quantitative calculation of the position of the energy bands and the variation of the quasi-Fermi levels in the semic...

  10. Quasi-particle electronic band structure and alignment of the V-VI-VII semiconductors SbSI, SbSBr, and SbSeI for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); McKechnie, Scott; Azarhoosh, Pooya; Schilfgaarde, Mark van [Department of Physics, Kings College London, London WC2R 2LS (United Kingdom); Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-03-14

    The ternary V-VI-VII chalcohalides consist of one cation and two anions. Trivalent antimony—with a distinctive 5s{sup 2} electronic configuration—can be combined with a chalcogen (e.g., S or Se) and halide (e.g., Br or I) to produce photoactive ferroelectric semiconductors with similarities to the Pb halide perovskites. We report—from relativistic quasi-particle self-consistent GW theory—that these materials have a multi-valley electronic structure with several electron and hole basins close to the band extrema. We predict ionisation potentials of 5.3–5.8 eV from first-principles for the three materials, and assess electrical contacts that will be suitable for achieving photovoltaic action from these unconventional compounds.

  11. Non-stationarity of the quasi-perpendicular bow shock: comparison between Cluster observations and simulations

    Directory of Open Access Journals (Sweden)

    H. Comişel

    2011-02-01

    Full Text Available We have performed full particle electromagnetic simulations of a quasi-perpendicular shock. The shock parameters have been chosen to be appropriate for the quasi-perpendicular Earth's bow shock observed by Cluster on 24 January 2001 (Lobzin et al., 2007. We have performed two simulations with different ion to electron mass ratio: run 1 with mi/me=1840 and run 2 with mi/me=100. In run 1 the growth rate of the modified two-stream instability (MTSI is large enough to get excited during the reflection and upstream gyration of part of the incident solar wind ions. The waves due to the MTSI are on the whistler mode branch and have downstream directed phase velocities in the shock frame. The Poynting flux (and wave group velocity far upstream in the foot is also directed in the downstream direction. However, in the density and magnetic field compression region of the overshoot the waves are refracted and the Poynting flux in the shock frame is directed upstream. The MTSI is suppressed in the low mass ratio run 2. The low mass ratio run shows more clearly the non-stationarity of the shock with a larger time scale of the order of an inverse ion gyrofrequency (Ωci: the magnetic field profile flattens and steepens with a period of ~1.5Ωci−1. This non-stationarity is different from reformation seen in previous simulations of perpendicular or quasi-perpendicular shocks. Beginning with a sharp shock ramp the large electric field in the normal direction leads to high reflection rate of solar wind protons. As they propagate upstream, the ion bulk velocity decreases and the magnetic field increases in the foot, which results in a flattening of the magnetic field profile and in a decrease of the normal electric field. Subsequently the reflection rate decreases and the whole shock profile steepens again. Superimposed on this 'breathing' behavior are in the realistic mass ratio case the waves due to the MTSI. The simulations lead us to a re-interpretation of

  12. On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster

    Directory of Open Access Journals (Sweden)

    H. Kucharek

    2004-07-01

    Full Text Available Two distinct populations of reflected and accelerated ions are known to originate from quasi-perpendicular shocks, gyrating ions and reflected ion beams. Recent observations under such bow shock conditions with Cluster have shown strong evidence that both particle distributions appear to emerge from the same reflection process. In this paper the basic production mechanism of field-aligned beams has been investigated by using CLUSTER multi-spacecraft measurements. We have analyzed several quasi-perpendicular shocks with the Cluster Ion Spectrometry experiment (CIS and followed the spatial and temporal evolution of the reflected and transmitted ion populations across the shock. These observations show that the field-aligned beams most likely result from effective scattering in pitch angle during reflection in the shock ramp. Investigating a low Mach number shock, leakage of a fraction of the thermalized ion distribution in the downstream region does not appear to be the source as the volume in phase space occupied by beam ions is empty downstream of the shock ramp.

  13. Quasi-optical assessment of the ALMA band 9 front-end

    NARCIS (Netherlands)

    Candotti, Massimo; Baryshev, Andrey M.; Trappe, Neil

    The ALMA band 9 (600-720 GHz) receiver is a dual channel heterodyne system which is capable of detecting orthogonally polarised signals utilising a wire grid beam splitter. Two Superconductor-Insulator-Superconductor (SIS) mixers mounted behind hybrid mode corrugated horns are coupled to the 12 m

  14. Snow bands over the Gulf of Finland in wintertime

    Directory of Open Access Journals (Sweden)

    Jordi Mazon

    2015-01-01

    Full Text Available Large shore-parallel, quasi-stationary snow bands are occasionally observed over the Gulf of Finland during wintertime when the sea is not frozen. On the basis of Weather Research and Forecasting mesoscale model experiments and radar observations of snow bands formed in January 2006 and February 2012, we show that their dynamics share common characteristics: (1 the sea gulf that produces the known lake effect, (2 cold easterly large-scale flow along the gulf and (3 a cold local flow from the two near and opposite coastlines of Estonia and Finland in the form of two land-breeze cells which collide offshore. The associated fronts, which have strong rising motions, are maintained by the convergence of the land-breeze cells. In addition to these factors, the concave shape of the coast in the eastern part of the Gulf of Finland promotes offshore convergence and the formation of several secondary bands of precipitation that are adjacent to the eastern part of the main band. When the easterlies turn to southerlies, horizontal convective rolls appear over the sea. The Estonian land breeze is enhanced while the cold air remains stagnant inland over the Finnish coast, acting as an orographic barrier lifting the marine air mass upwards. Consequently, a line of convective precipitation composed of several cells is formed along the Finnish coast. In both events, the simulations also show two low-level jets generated by the combined effects of the land-breeze cells and baroclinicity over the coast of Finland and Estonia.

  15. MMS Observation of Shock-Reflected He++ at Earth's Quasi-Perpendicular Bow Shock

    Science.gov (United States)

    Broll, Jeffrey Michael; Fuselier, S. A.; Trattner, K. J.; Schwartz, S. J.; Burch, J. L.; Giles, B. L.; Anderson, B. J.

    2018-01-01

    Specular reflection of protons at Earth's supercritical quasi-perpendicular bow shock has long been known to lead to the thermalization of solar wind particles by velocity-space dispersion. The same process has been proposed for He++ but could not be confirmed previously due to insufficient time resolution for velocity distribution measurements. We present observations and simulations of a bow shock crossing by the Magnetospheric Multiscale (MMS) mission on 20 November 2015 indicating that a very similar reflection process for He++ is possible, and further that the part of the incoming distribution with the highest probability of reflecting is the same for H+ and He++. However, the reflection process for He++ is accomplished by deeper penetration into the downstream magnetic fields.

  16. Generation of acoustic phonons from quasi-two-dimensional hole gas

    International Nuclear Information System (INIS)

    Singh, J.; Oh, I.K.

    2002-01-01

    Full text: Generation of phonons from two dimensional electron and hole gases in quantum wells has attracted much attraction recently. The mechanism of phonon emission plays an important role in the phonon spectroscopy which enables us to study the angular and polarization dependence of phonon emission. The acoustic phonon emission from a quasi-two-dimensional hole gas (2DHG) in quantum wells is influenced by the anisotropic factors in the valence band structure, screening, elastic property, etc. The anisotropy in the valence band structure gives rise to anisotropic effective mass and deformation potential and that in the elastic constants leads to anisotropic sound velocity. Piezoelectric coupling in non-centrosymmetric materials such as GaAs is also anisotropic. In this paper, considering the anisotropy in the effective mass, deformation potential, piezoelectric coupling and screening effect, we present a theory to study the angular and polarization dependence of acoustic phonon emission from a quasi-2DHG in quantum wells. The theory is finally applied to calculate the rate of acoustic phonon emission in GaAs quantum wells

  17. Optimizing mesoscopic two-band superconductors for observation of fractional vortex states

    Energy Technology Data Exchange (ETDEWEB)

    Piña, Juan C. [Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901 Recife, PE (Brazil); Núcleo de Tecnologia, CAA, Universidade Federal de Pernambuco, 55002-970 Caruaru, PE (Brazil); Souza Silva, Clécio C. de, E-mail: clecio@df.ufpe [Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901 Recife, PE (Brazil); Milošević, Milorad V. [Departamento de Física, Universidade Federal do Ceará, 60455-900 Fortaleza, Ceará (Brazil); Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2014-08-15

    Highlights: • Observation of fractional vortices in two-band superconductors of broad size range. • There is a minimal sample size for observing each particular fractional state. • Optimal value for stability of each fractional state is determined. • A suitable magnetic dot enhances stability even further. - Abstract: Using the two-component Ginzburg–Landau model, we investigate the effect of sample size and magnitude and homogeneity of external magnetic field on the stability of fractional vortex states in a mesoscopic two-band superconducting disk. We found that each fractional state has a preferable sample size, for which the range of applied field in which the state is stable is pronouncedly large. Vice versa, there exists an optimal magnitude of applied field for which a large range of possible sample radii will support the considered fractional state. Finally, we show that the stability of fractional states can be enhanced even further by magnetic nanostructuring of the sample, i.e. by suitably chosen geometrical parameters and magnetic moment of a ferromagnetic dot placed on top of the superconducting disk.

  18. Observation of total electron content and irregularities in electron density using GHz band radiowaves emitted from satellite

    International Nuclear Information System (INIS)

    Ogawa, Tadahiko; Fujita, Masaharu; Awaka, Jun.

    1978-01-01

    The experiments to investigate the influence of troposphere on millimeter and sub-millimeter wave propagation were carried out, using the engineering test satellite -- 2 (ETS-2) which became the Japanese first stationary satellite and carries the transmitter emitting beacon waves of 1.7, 11.5 and 34.5 GHz coherent each other. By these experiments, it was found that the waves of 1.7 and 11.5 GHz were affected by the ionosphere. The measurement of total electron content using GHz band waves was the first trial in the world, and is capable of grasping its change with higher accuracy than conventional methods. Scintillation of 1.7 GHz is mainly the phenomenon during night, and it was revealed that it has a peak at 22.30 local time and occurred through the radiowave scattering owing to the irregularities of the ionosphere. It is also suggested that some plasma instability is generated in the place where electron density gradient in the ionosphere is large, and the irregularities of fine scale are produced, assuming from GHz band scintillations at the time of magnetic storm. The relations among wave number spectrum, scintillation frequency spectrum and S4 index (statistical quantity to give estimate for scintillation amplitude) can be derived by the weak scattering theory (Simple scattering theory). As seen above, the diagnosis of plasma disturbances in the ionosphere is feasible by the simultaneous observations of total electron content and scintillation. (Wakatsuki, Y.)

  19. Quasi-optical reflective polarimeter for wide millimeter-wave band

    Science.gov (United States)

    Shinnaga, Hiroko; Tsuboi, Masato; Kasuga, Takashi

    1998-11-01

    We constructed a new reflective-type polarimeter system at 35 - 250 GHz for the 45 m telescope at Nobeyama Radio Observatory (NRO). Using the system, we can measure both linear polarization and circular polarization for our needs. The new system has two key points. First is that we can tune the center frequency of the polarimeter in the available frequency range, second is that insertion loss is low (0.15 plus or minus 0.03 dB at 86 GHz). These characteristics extended achievable scientific aims. In this paper, we present the design and the performance of the system. Using the system, we measured linear polarizations of some astronomical objects at 86 GHz, with SiO (nu) equals 0,1 and 2 at J equals 2 - 1 and 29SiO (nu) equals 0 J equals 2 - 1 simultaneously. As a result, the observation revealed SiO (nu) equals 0 J equals 2 - 1 of VY Canis Majoris is highly linearly polarized, the degree of linear polarization is up to 64%, in spite of SiO J equals 2 - 1 (nu) equals 1 is not highly linearly polarized. The highly linearly polarized feature is a strong evidence that 28SiO J equals 2 - 1 transition at the ground vibrational state originate through maser action. This is the first detection of the cosmic maser emission of SiO (nu) equals 0 J equals 2 - 1 transition.

  20. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    International Nuclear Information System (INIS)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Khotyaintsev, Yuri V.; Dandouras, Iannis

    2013-01-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  1. Polarization Observables T and F in single π0- and η-Photoproduction off quasi-free Nucleons

    Directory of Open Access Journals (Sweden)

    Strub Thomas

    2014-01-01

    Single π0- and η-photoproduction off a transversally polarized d-butanol target has been measured with circularly polarized bremsstrahlung photons generated by the MAMI-C electron microtron. With the nearly 4π acceptance of the combined Crystal Ball/TAPS setup the double polarization observable F and the target asymmetry T can be extracted for the first time for polarized, quasi-free neutrons over a wide energy and angular range.

  2. Simultaneous observations of the quasar 3C 273 with INTEGRAL, XMM-Newton and RXTE

    DEFF Research Database (Denmark)

    Courvoisier, T.J.L.; Beckmann, V.; Bourban, G.

    2003-01-01

    INTEGRAL has observed the bright quasar 3C 273 on 3 epochs in January 2003 as one of the first observations of the open programme. The observation on January 5 was simultaneous with RXTE and XMM-Newton observations. We present here a first analysis of the continuum emission as observed by these 3...

  3. Correlations between Strong Range Spread-F and GPS L-Band Scintillations Observed in Hainan in 2004

    International Nuclear Information System (INIS)

    Guo-Jun, Wang; Jian-Kui, Shi; She-Ping, Shang; Xiao, Wang

    2009-01-01

    Data from the DPS-4 digisonde and the GPS L-band ionospheric scintillation monitor are employed to study the correlations between strong range spread-F (SSF) and GPS L-band scintillations observed in the ionosphere over Hainan Island, China (19.5°N, 109.1°E geogr., dip lat. 9°N) in 2004. The SSF in the ionogram is different from the general range spread-F because it extends in frequency well beyond FoF2 and makes FoF2 difficult to be determined. The observations show that the SSF phenomenon is frequently accompanied by the occurrence of GPS L-band scintillations. The SSF and GPS L-band scintillations occur frequently in the equinoctial months (March, April, September, and October), but rarely in the winter (January, February, November, and December) and summer (May–August); especially, occurrence variations of the SSF and GPS L-band scintillations nearly have a same trend. The SSF and scintillations may be associated with the occurrence of topside plasma bubbles and could be explained by the generalized Rayleigh–Taylor instability

  4. QUASI-PERIODIC FLUCTUATIONS AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE RIBBON OBSERVED BY HINODE /EIS, IRIS , AND RHESSI

    Energy Technology Data Exchange (ETDEWEB)

    Brosius, Jeffrey W.; Inglis, Andrew R. [Catholic University of America at NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States); Daw, Adrian N., E-mail: Jeffrey.W.Brosius@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States)

    2016-10-20

    The Hinode /Extreme-ultraviolet Imaging Spectrometer (EIS) obtained rapid cadence (11.2 s) EUV stare spectra of an M7.3 flare ribbon in AR 12036 on 2014 April 18. Quasi-periodic ( P ≈ 75.6 ± 9.2 s) intensity fluctuations occurred in emission lines of O iv, Mg vi, Mg vii, Si vii, Fe xiv, and Fe xvi during the flare's impulsive rise, and ended when the maximum intensity in Fe xxiii was reached. The profiles of the O iv–Fe xvi lines reveal that they were all redshifted during most of the interval of quasi-periodic intensity fluctuations, while the Fe xxiii profile revealed multiple components including one or two highly blueshifted ones. This indicates that the flare underwent explosive chromospheric evaporation during its impulsive rise. Fluctuations in the relative Doppler velocities were seen, but their amplitudes were too subtle to extract significant quasi-periodicities. RHESSI detected 25–100 keV hard-X-ray sources in the ribbon near the EIS slit's pointing position during the peaks in the EIS intensity fluctuations. The observations are consistent with a series of energy injections into the chromosphere by nonthermal particle beams. Electron densities derived with Fe xiv (4.6 × 10{sup 10} cm{sup −3}) and Mg vii (7.8 × 10{sup 9} cm{sup −3}) average line intensity ratios during the interval of quasi-periodic intensity fluctuations, combined with the radiative loss function of an optically thin plasma, yield radiative cooling times of 32 s at 2.0 × 10{sup 6} K, and 46 s at 6.3 × 10{sup 5} K (about half the quasi-period); assuming Fe xiv's density for Fe xxiii yields a radiative cooling time of 10{sup 3} s (13 times the quasi-period) at 1.4 × 10{sup 7} K.

  5. Mechanism of the quasi-zero axial acoustic radiation force experienced by elastic and viscoelastic spheres in the field of a quasi-Gaussian beam and particle tweezing.

    Science.gov (United States)

    Mitri, F G; Fellah, Z E A

    2014-01-01

    The present analysis investigates the (axial) acoustic radiation force induced by a quasi-Gaussian beam centered on an elastic and a viscoelastic (polymer-type) sphere in a nonviscous fluid. The quasi-Gaussian beam is an exact solution of the source free Helmholtz wave equation and is characterized by an arbitrary waist w₀ and a diffraction convergence length known as the Rayleigh range z(R). Examples are found where the radiation force unexpectedly approaches closely to zero at some of the elastic sphere's resonance frequencies for kw₀≤1 (where this range is of particular interest in describing strongly focused or divergent beams), which may produce particle immobilization along the axial direction. Moreover, the (quasi)vanishing behavior of the radiation force is found to be correlated with conditions giving extinction of the backscattering by the quasi-Gaussian beam. Furthermore, the mechanism for the quasi-zero force is studied theoretically by analyzing the contributions of the kinetic, potential and momentum flux energy densities and their density functions. It is found that all the components vanish simultaneously at the selected ka values for the nulls. However, for a viscoelastic sphere, acoustic absorption degrades the quasi-zero radiation force. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Methods for the Quasi-Periodic Variability Analysis in Blazars Y. Liu ...

    Indian Academy of Sciences (India)

    the variability analysis in blazars in optical and radio bands, to search for possible quasi-periodic signals. 2. Power spectral density (PSD). In statistical signal processing and physics, the power spectral density (PSD) is a positive real function of a frequency variable associated with a stationary stochas- tic process. Intuitively ...

  7. Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.

    Science.gov (United States)

    Keitel, Christian; Thut, Gregor; Gross, Joachim

    2017-02-01

    Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4-7Hz), alpha (8-13Hz) and beta bands (14-20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking ("entrainment") to quasi-rhythmic visual input and "frequency-tagging" experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Recent ARPES experiments on quasi-1D bulk materials and artificial structures.

    Science.gov (United States)

    Grioni, M; Pons, S; Frantzeskakis, E

    2009-01-14

    The spectroscopy of quasi-one-dimensional (1D) systems has been a subject of strong interest since the first experimental observations of unusual line shapes in the early 1990s. Angle-resolved photoemission (ARPES) measurements performed with increasing accuracy have greatly broadened our knowledge of the properties of bulk 1D materials and, more recently, of artificial 1D structures. They have yielded a direct view of 1D bands, of open Fermi surfaces, and of characteristic instabilities. They have also provided unique microscopic evidence for the non-conventional, non-Fermi-liquid, behavior predicted by theory, and for strong and singular interactions. Here we briefly review some of the remarkable experimental results obtained in the last decade.

  9. Nonlinear performance characterization in an eight-pole quasi-elliptic bandpass filter

    International Nuclear Information System (INIS)

    Mateu, J; Collado, C; Menendez, O; O'Callaghan, J M

    2004-01-01

    In this work we predict the nonlinear behaviour of an eight-pole quasi-elliptic bandpass high temperature superconducting (HTS) filter with an equivalent circuit extracted from intermodulation measurements performed at the centre of the filter passband. We present measurements that show that the equivalent circuit is able to predict the intermodulation products produced by the filter when driven by two in-band or out-of-band sinusoidal signals. Numerical techniques based on harmonic balance are used to extract the elements of the equivalent circuit and to simulate its nonlinear performance

  10. Linking partial and quasi dynamical symmetries in rotational nuclei and shell evolution in {sup 96}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Christoph

    2016-01-27

    The first part of this thesis revolves around symmetries in the sd-IBA-1. A region of approximate O(6) symmetry for the ground-state band, a partial dynamical symmetry (PDS) of type III, in the parameter space of the extended consistent-Q formalism is identified through quantum number fluctuations. The simultaneous occurrence of a SU(3) quasi dynamical symmetry for nuclei in the region of O(6) PDS is explained via the β=1, γ=0 intrinsic state underlying the ground-state band. The previously unrelated concepts of PDS and QDS are connected for the first time and many nuclei in the rare earth region that approximately satisfy both symmetry requirements are identified. Ground-state to ground-state (p, t) transfer reactions are presented as an experimental signature to identify pairs of nuclei that both exhibit O(6) PDS. In the second part of this thesis inelastic electron scattering off {sup 96}Zr is studied. The experiment was performed at the high resolution Lintott spectrometer at the S-DALINAC and covered a momentum-transfer range of 0.28 - 0.59 fm{sup -1}. Through a relative analysis using Plane Wave Born Approximation (PWBA) the B(E2;2{sup +}{sub 2}→0{sup +}{sub 1}) value is extracted without incurring the additional model dependence of a Distorted Wave Born Approximation (DWBA). By combining this result with known multipole mixing ratios and branching ratios all decay strengths of the 2{sup +}{sub 2} state are determined. A mixing calculation establishes very weak mixing (V{sub mix}=76 keV) between states of the ground-state band and those of the band build on top of the 0{sup +}{sub 2} state which includes the 2{sup +}{sub 2} state. The occurrence of these two isolated bands is interpreted within the shell model in terms of type II shell evolution.

  11. Photonic-band-gap gyrotron amplifier with picosecond pulses

    Science.gov (United States)

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; Shapiro, Michael A.; Temkin, Richard J.

    2017-12-01

    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  12. Quantum numbers and band topology of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Damnjanovic, M [Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade (Yugoslavia); Milosevic, I [Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade (Yugoslavia); Vukovic, T [Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade (Yugoslavia); Maultzsch, J [Institut fuer Festkoerper Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)

    2003-05-30

    Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities.

  13. Quantum numbers and band topology of nanotubes

    International Nuclear Information System (INIS)

    Damnjanovic, M; Milosevic, I; Vukovic, T; Maultzsch, J

    2003-01-01

    Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities

  14. Quantum numbers and band topology of nanotubes

    CERN Document Server

    Damnjanovic, M; Vukovic, T; Maultzsch, J

    2003-01-01

    Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities.

  15. On Riemannian manifolds (Mn, g) of quasi-constant curvature

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-07-01

    A Riemannian manifold (M n , g) of quasi-constant curvature is defined. It is shown that an (M n , g) in association with other class of manifolds gives rise, under certain conditions, to a manifold of quasi-constant curvature. Some observations on how a manifold of quasi-constant curvature accounts for a pseudo Ricci-symmetric manifold and quasi-umbilical hypersurface are made. (author). 10 refs

  16. Simultaneous observation of chemomechanical coupling of a molecular motor.

    Science.gov (United States)

    Nishizaka, Takayuki; Hasimoto, Yuh; Masaike, Tomoko

    2011-01-01

    F(1)-ATPase is the smallest rotary molecular motor ever found. Unidirectional rotation of the γ-shaft is driven by precisely coordinated sequential ATP hydrolysis reactions in three catalytic sites arranged 120° apart in the cylinder. Single-molecule observation allows us to directly watch the rotation of the shaft using micron-sized plastic beads. Additionally, an advanced version of "total internal reflection fluorescence microscope (TIRFM)" enables us to detect binding and release of energy currency through fluorescently labeled ATP. In this chapter, we describe how to set up the system for simultaneous observation of these two critical events. This specialized optical setup is applicable to a variety of research, not only molecular motors but also other single-molecule topics.

  17. [Absorption spectrum of Quasi-continuous laser modulation demodulation method].

    Science.gov (United States)

    Shao, Xin; Liu, Fu-Gui; Du, Zhen-Hui; Wang, Wei

    2014-05-01

    A software phase-locked amplifier demodulation method is proposed in order to demodulate the second harmonic (2f) signal of quasi-continuous laser wavelength modulation spectroscopy (WMS) properly, based on the analysis of its signal characteristics. By judging the effectiveness of the measurement data, filter, phase-sensitive detection, digital filtering and other processing, the method can achieve the sensitive detection of quasi-continuous signal The method was verified by using carbon dioxide detection experiments. The WMS-2f signal obtained by the software phase-locked amplifier and the high-performance phase-locked amplifier (SR844) were compared simultaneously. The results show that the Allan variance of WMS-2f signal demodulated by the software phase-locked amplifier is one order of magnitude smaller than that demodulated by SR844, corresponding two order of magnitude lower of detection limit. And it is able to solve the unlocked problem caused by the small duty cycle of quasi-continuous modulation signal, with a small signal waveform distortion.

  18. Observations of Multi-band Structures in Double Star TC-1 PEACE Electron and HIA Ion Data

    Science.gov (United States)

    Mohan Narasimhan, K.; Fazakerley, A. N.; Grimald, S.; Dandouras, I. S.; Mihaljcic, B.; Kistler, L. M.; Owen, C. J.

    2015-12-01

    Several authors have reported inner magnetosphere observations of proton distributions confined to narrow energy bands in the range 1 - 25 keV (Smith and Hoffman (1974), etc). These structures have been described as "nose structures", with reference to their appearance in energy-time spectrograms and are also known as "bands" if they occur for extended periods of time. Multi-nose structures have been observed if 2 or more noses appear at the same time (Vallat et al., 2007). Gaps between "noses" (or "bands") have been explained in terms of the competing corotation, convection and magnetic gradient drifts. Charge exchange losses in slow drift paths for steady state scenarios and the role of substorm injections have also been considered (Li et al., 2000; Ebihara et al., 2004). We analyse observations of electron and ion multi-band structures frequently seen in Double-Star TC1 PEACE and HIA data. We present results from statistical surveys conducted using data from the duration of the mission. Furthermore, using a combination of both statistics and simulations, we test previous theories as to possible formation mechanisms and explore other possible explanations.

  19. Elementary excitations and quasi-two-dimensional behaviour in a GaAs field effect transistor

    International Nuclear Information System (INIS)

    Tomak, M.; Sernelius, B.E.; Berggren, K.F.

    1983-09-01

    The elementary excitation modes in a narrow channel of conducting electrons in a special GaAs FET are evaluated within the RPA-approximation. The system is found to be quasi-two-dimensional when the width of the channel is small, i.e. there are collective excitations with a dispersion very close to the strictly 2D form. In addition to the low-lying quasi-2D-mode there are higher collective modes associated with the sub-band structure of the device. (author)

  20. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    Science.gov (United States)

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  1. Simultaneous retrieval of sea ice thickness and snow depth using concurrent active altimetry and passive L-band remote sensing data

    Science.gov (United States)

    Zhou, L.; Xu, S.; Liu, J.

    2017-12-01

    The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.

  2. The Drop of the Coherence of the Lower Kilohertz Quasi-periodic Brightness Variations is Also Observed in XTE J1701-462

    Science.gov (United States)

    Barret, D.; Bachetti, M.; Miller, M. Coleman

    2011-02-01

    We investigate the quality factor and root mean square (rms) amplitude of the lower kilohertz quasi-periodic brightness variations (kHz QPOs) from XTE J1701-462, a unique X-ray source which was observed in both the so-called Z and atoll states. Correcting for the frequency drift of the QPO, we show that, as in all sources for which such a correction can be applied, the quality factor and rms amplitude drops sharply above a critical frequency. For XTE J1701-462, this frequency is estimated to be ~800 Hz, where the quality factor reaches a maximum of ~200 (e.g., a value consistent with the one observed from more classical systems, such as 4U 1636-536). Such a drop has been interpreted as the signature of the innermost stable circular orbit, and that interpretation is consistent with the observations we report here. The kHz QPOs in the Z state are much less coherent and lower amplitude than they are in the atoll state. We argue that the change of the QPO properties between the two source states is related to the change of the scale height of the accretion disk; a prediction of the toy model proposed by Barret et al. As a by-product of our analysis, we also increased the significance of the upper kHz QPO detected in the atoll phase up to 4.8σ (single trial significance) and show that the frequency separation (266.5 ± 13.1 Hz) is comparable with the one measured from simultaneous twin QPOs in the Z phase.

  3. Generation of EMIC Waves Observed by Van Allen Probes at Low L-shells of Earth's Magnetosphere

    Science.gov (United States)

    Gamayunov, K. V.; Zhang, J.; Saikin, A.; Rassoul, H.

    2017-12-01

    In a multi-ion magnetospheric plasma, where the major species are H+, He+, and O+, the He-band of electromagnetic ion cyclotron (EMIC) waves is the dominant band observed in the inner magnetosphere, and waves are generally quasi-field-aligned inside the geostationary orbit. Almost all the satellite-based studies of EMIC waves before Van Allen Probes, however, have not reported waves below L 3.5. There is probably only one exception from the Akebono satellite where both the H-band and He-band EMIC waves were observed at L 2. The situation has changed dramatically after two Van Allen Probes spacecraft were launched on 30 August, 2012, and many EMIC wave events have been observed below L=4. The Van Allen Probes observations confirm that the He-band of EMIC waves is a dominant band in the inner magnetosphere, but the observation of the He-band waves below L=4 is a new and quite unexpected result compared to our knowledge about EMIC waves before the Van Allen Probes era. In addition, observations show that almost all the He-band EMIC waves are linearly polarized in the region L field, and energetic ion distribution functions will be taken from the Van Allen Probes observations during the EMIC wave event to calculate growth rates of EMIC waves. We will then identify the energetic ions responsible for instability, frequencies and normals generated, and physical mechanism of instability.

  4. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band.

    Science.gov (United States)

    Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu

    2012-08-07

    This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder-coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg(-1) was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest.

  5. Multiband Observations of the Quasar PKS 2326–502 during Active and Quiescent Gamma-Ray States in 2010–2012

    Energy Technology Data Exchange (ETDEWEB)

    Dutka, Michael S. [The Catholic University of America, 620 Michigan Avenue, NE, Washington, DC 20064 (United States); Carpenter, Bryce D.; Gehrels, Neil [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Ojha, Roopesh [UMBC/NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Finke, Justin D. [Naval Research Laboratory, Space Science Division, Code 7653, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); D’Ammando, Filippo [Università di Bologna Dipartimento di Fisica e Astronomia, INAF-IRA, Bologna (Italy); Kadler, Matthias [Lehrstuhl für Astronomie, Universität Würzburg, Emil -Fischer-Straße 31, D-97074 Würzburg (Germany); Edwards, Philip G. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW 1710 (Australia); Stevens, Jamie [CSIRO Astronomy and Space Science, 1828 Yarrie Lake Road, Narrabri NSW 2390 (Australia); Torresi, Eleonora; Grandi, Paola [Istituto Nazionale di Astrofisica, (National Institute of Astrophysics) INAF-IASFBO, via Gobetti 101, I-40129 Bologna (Italy); Nesci, Roberto [Istituto Nazionale di Astrofisica, (National Institute of Astrophysics) INAF-IAPS, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Krauß, Felicia [GRAPPA and Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Müller, Cornelia [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen (Netherlands); Wilms, Joern, E-mail: ditko86@gmail.com, E-mail: carpbr01@gmail.com [Remeis Observatory and ECAP, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2017-02-01

    Quasi-simultaneous observations of the Flat Spectrum Radio Quasar PKS 2326−502 were carried out in the γ -ray, X-ray, UV, optical, near-infrared, and radio bands. Using these observations, we are able to characterize the spectral energy distribution (SED) of the source during two flaring and one quiescent γ -ray states. These data were used to constrain one-zone leptonic models of the SEDs of each flare and investigate the physical conditions giving rise to them. While modeling one flare required only changes in the electron spectrum compared to the quiescent state, modeling the other flare required changes in both the electron spectrum and the size of the emitting region. These results are consistent with an emerging pattern of two broad classes of flaring states seen in blazars. Type 1 flares are explained by changes solely in the electron distribution, whereas type 2 flares require a change in an additional parameter. This suggests that different flares, even in the same source, may result from different physical conditions or different regions in the jet.

  6. Simultaneous multi-band channel sounding at mm-Wave frequencies

    DEFF Research Database (Denmark)

    Müller, Robert; Häfner, Stephan; Dupleich, Diego

    2016-01-01

    The vision of multi Gbit/s data rates in future mobile networks requires the change to millimeter wave (mm-Wave) frequencies for increasing bandwidth. As a consequence, new technologies have to be deployed to tackle the drawbacks of higher frequency bands, e.g. increased path loss. Development an...

  7. Measurement and quasi-states in quantum mechanics

    International Nuclear Information System (INIS)

    Harper, C.D.

    1987-01-01

    Part of the task of quantum logic is to account for the collapse of the state vector during measurement. A difficulty in this is that it is not obvious how to describe measurement quantum mechanically as the interaction of two or more systems; interacting quantum-mechanical systems do not possess states, so their states cannot collapse. This dissertation shows that component systems of a composite system possess families of state-like vectors. These are the quasi-projections of the state vector of the composite system, each associated with a family of commutable observables. Often these quasi-projections cluster so closely around a quasi-state that they are practically indistinguishable from it. A description of measurement based on quasi-projections reveals the apparent collapse of the state vector during measurement to be illusory. The continuous evolution of the state of the composite system give rise to abrupt changes in the quasi-projections which make it appear that the state has changed. The quasi-projections cease to cluster near one quasi-state, are momentarily scattered, and then cluster again near another quasi-state. The concept of quasi-projection is also used to generalize the quantum logic of Birkhoff and von Neumann in such a fashion that a proposition can always be assigned a truth value

  8. W-band spaceborne radar observations of atmospheric river events

    Science.gov (United States)

    Matrosov, S. Y.

    2010-12-01

    While the main objective of the world first W-band radar aboard the CloudSat satellite is to provide vertically resolved information on clouds, it proved to be a valuable tool for observing precipitation. The CloudSat radar is generally able to resolve precipitating cloud systems in their vertical entirety. Although measurements from the liquid hydrometer layer containing rainfall are strongly attenuated, special retrieval approaches can be used to estimate rainfall parameters. These approaches are based on vertical gradients of observed radar reflectivity factor rather than on absolute estimates of reflectivity. Concurrent independent estimations of ice cloud parameters in the same vertical column allow characterization of precipitating systems and provide information on coupling between clouds and rainfall they produce. The potential of CloudSat for observations atmospheric river events affecting the West Coast of North America is evaluated. It is shown that spaceborne radar measurements can provide high resolution information on the height of the freezing level thus separating areas of rainfall and snowfall. CloudSat precipitation rate estimates complement information from the surface-based radars. Observations of atmospheric rivers at different locations above the ocean and during landfall help to understand evolutions of atmospheric rivers and their structures.

  9. Solar flares observed simultaneously with SphinX, GOES and RHESSI

    Science.gov (United States)

    Mrozek, Tomasz; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kępa, Anna; Gryciuk, Magdalena

    2013-07-01

    In February 2009, during recent deepest solar minimum, Polish Solar Photometer in X-rays (SphinX) begun observations of the Sun in the energy range of 1.2-15 keV. SphinX was almost 100 times more sensitive than GOES X-ray Sensors. The silicon PIN diode detectors used in the experiment were carefully calibrated on the ground using Synchrotron Radiation Source BESSY II. The SphinX energy range overlaps with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) energy range. The instrument provided us with observations of hundreds of very small flares and X-ray brightenings. We have chosen a group of solar flares observed simultaneously with GOES, SphinX and RHESSI and performed spectroscopic analysis of observations wherever possible. The analysis of thermal part of the spectra showed that SphinX is a very sensitive complementary observatory for RHESSI and GOES.

  10. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    Science.gov (United States)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  11. Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators

    Science.gov (United States)

    Bagci, Fulya; Akaoglu, Baris

    2017-08-01

    We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.

  12. The EMIR multi-band mm-wave receiver for the IRAM 30-m telescope

    Science.gov (United States)

    Carter, M.; Lazareff, B.; Maier, D.; Chenu, J.-Y.; Fontana, A.-L.; Bortolotti, Y.; Boucher, C.; Navarrini, A.; Blanchet, S.; Greve, A.; John, D.; Kramer, C.; Morel, F.; Navarro, S.; Peñalver, J.; Schuster, K. F.; Thum, C.

    2012-02-01

    Aims: The prime motivation of this project was to design and build a state-of-art mm-wave heterodyne receiver system to enhance the observing throughput of the IRAM 30-m radiotelescope. More specifically, the requirements were i) state-of-art noise performance for spectroscopic observations; ii) simultaneous dual polarization and dual-frequency observing; iii) coverage of the atmospheric transmission windows from 83 to 360 GHz; iv) compact footprint and minimal maintenance. Methods: Key elements for low noise performance of heterodyne mixers are the superconducting Niobium junctions, operating at ≃4 K. These junctions are embedded in carefully designed coupling structures; furthermore, since atmospheric radiation is a significant contributor to the system noise budget, all mixers are either sideband separating or sideband rejecting. To achieve low noise, it is also essential to maximize the coupling of the receiver to the astronomical source, and to minimize the coupling to thermal radiation from the ground-based environment; this is achieved through mirror optics that realize a wavelength-independent coupling to the telescope. A flexible configuration of mirrors and frequency selective surfaces permits various combinations of frequency bands, as well as dual-load radiometric calibration. Low noise intermediate frequency amplifiers and bias electronics also play an important role in the system performance. Results: The EMIR receiver in operation at the 30 m telescope offers four frequency bands: B1: 83-117 GHz, B2: 129-174 GHz, B3: 200-267 GHz, and B4: 260-360 GHz. In each band, the two orthogonal polarizations are observed simultaneously. Dual-band combinations B1/2 B1/3, and B2/4 are available. Bands 1 and 4 (also 3 as of Nov.-2011) feature sideband separation. In dual-band configuration, including sideband separation and polarization diplexing, up to eight IF channels are delivered to the spectrometers, totaling up to 64 GHz of signal bandwidth (of which 32

  13. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu

    2012-01-01

    This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder–coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg −1 was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest. (paper)

  14. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor [Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical Institute, Sopron (Hungary); Agapitov, Oleksiy; Krasnoselskikh, Vladimir [LPC2E/CNRS, F-45071 Orleans (France); Khotyaintsev, Yuri V. [Swedish Institute of Space Physics, SE- 751 21 Uppsala (Sweden); Dandouras, Iannis, E-mail: akis@ggki.hu, E-mail: Kis.Arpad@csfk.mta.hu [CESR, F-31028 Toulouse (France)

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  15. Spectroscopy study after quasi-elastic collision in the system 208Pb+232Th at an incident energy of 17 MeV per nucleon

    International Nuclear Information System (INIS)

    Happ, T.

    1989-01-01

    In the present thesis by means of a particle-particle-γ and particle-particle-neutron coincidence experiment γ and neutron spectroscopic studies after quasi-elastic collisions at incident energies far above the Coulomb barrier were performed. For the study of the γ decay by the necessary correction of the Doppler shift the possibility results to study excitations in the projectile and in the target. So in the case of 232 Th beside the observation of the ground state band up to the spin 14 ℎ also a very large number of transitions from vibrational side bands. From the spectra the γ emission probabilities in dependence on the distance of closest approximation were extracted. (orig./HSI) [de

  16. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations

    Science.gov (United States)

    Zeng, Ke; Singisetti, Uttam

    2017-09-01

    The interface trap density (Dit) of the SiO2/β-Ga2O3 interface in ( 2 ¯ 01), (010), and (001) orientations is obtained by the Hi-Lo method with the low frequency capacitance measured using the Quasi-Static Capacitance-Voltage (QSCV) technique. QSCV measurements are carried out at higher temperatures to increase the measured energy range of Dit in the bandgap. At room temperature, higher Dit is observed near the band edge for all three orientations. The measurement at higher temperatures led to an annealing effect that reduced the Dit value for all samples. Comparison with the conductance method and frequency dispersion of the capacitance suggests that the traps at the band edge are slow traps which respond to low frequency signals.

  17. Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Claessen, R.; Sing, M.; Schwingenschlogl, U.

    2002-01-01

    The electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant discrepancies to band theory. We demonstrate that the measured dispersions can be consistently mapped onto...

  18. Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative......-dimensional Hubbard model for the low-energy spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction....

  19. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    Science.gov (United States)

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.

  20. Search for quasi bound η mesons

    International Nuclear Information System (INIS)

    Machner, H

    2015-01-01

    The search for a quasi bound η meson in atomic nuclei is reviewed. This tentative state is studied theoretically as well as experimentally. The theory starts from elastic η nucleon scattering which is derived from production data within some models. From this interaction the η nucleus interaction is derived. Model calculations predict binding energies and widths of the quasi bound state. Another method is to derive the η nucleus interaction from excitation functions of η production experiments. The s wave interaction is extracted from such data via final state interaction (FSI) theorem. We give the derivation of s wave amplitudes in partial wave expansion and in helicity amplitudes and their relation to observables. Different experiments extracting the FSI are discussed as are production experiments. So far only three experiments give evidence for the existence of the quasi bound state: a pion double charge exchange experiment, an effective mass measurement, and a transfer reaction at recoil free kinematics with observation of the decay of the state. (topical review)

  1. Simultaneous observations of SAO and QBO in winds, temperature and ozone in the tropical middle atmosphere over Thumba (8.5 N, 77 E)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Karanam Kishore; Swain, Debadatta; John, Sherine Rachel; Ramkumar, Geetha [Vikram Sarabhai Space Center, Space Physics Laboratory, Thiruvananthapuram (India)

    2011-11-15

    Owing to the importance of middle atmosphere, recently, a Middle Atmospheric Dynamics (MIDAS) program was carried out during the period 2002-2007 at Thumba (8.5 N, 77 E). The measurements under this program, involving regular radiosonde/rocket flights as well as atmospheric radars, provided long period observations of winds and temperature in the middle atmospheric region from which waves and oscillations as well as their forcing mechanisms particularly in the low-latitude middle atmosphere could be analyzed. However, a detailed analysis of the forcing mechanisms remains incomplete due to the lack of important measurements like ozone which is a significant contributor to atmospheric dynamics. Presently, profiles of ozone are available from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broad Emission Radiometry) satellite globally from about 15 to 100 km, over multiple years since 2002. In this regard, a comprehensive study has been carried out on ozone and its variability at Quasi Biennial Oscillation (QBO) and Semiannual Oscillation (SAO) scales using TIMED/SABER ozone observations during the MIDAS campaign period. Before using the TIMED/SABER ozone measurements, an inter-comparison has been carried out with in situ measurements of ozone obtained under the Southern Hemisphere Additional Ozonesondes (SHADOZ) campaign for the year 2007 at few stations. The inter-comparison showed very good agreement between SABER and ozonesonde derived ozone profiles. After validating the SABER observations, ozone profiles are used extensively to study the QBO and SAO along with temperature and winds in the 20-100 km height region. It is known that the SAO in mesosphere and stratosphere are in opposite phases, but the present study for the first time reports the aspect of opposite phases in the mesosphere itself. Thus, the present work attempts to study the long-period oscillations in stratosphere and mesosphere in ozone

  2. Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell

    International Nuclear Information System (INIS)

    Antolin, E.; Marti, A.; Stanley, C.R.; Farmer, C.D.; Canovas, E.; Lopez, N.; Linares, P.G.; Luque, A.

    2008-01-01

    Conceived to exceed the conversion efficiency of conventional photovoltaic devices, the intermediate band solar cell bases its operation on exploiting, besides the usual band-to-band optical transitions, the absorption of two sub-bandgap photons. For the present, the only technology used to implement an intermediate band in real devices has been the growth of an InAs/GaAs quantum dot superlattice. In practice, the obtained material shows two limitations: the narrow energy gap between conduction and intermediate band and the appearance of growth defects due to the lattice stress. The consequences are the presence of non-radiative recombination mechanisms and the thermal escape of electrons from the intermediate to the conduction band, hindering the splitting of the quasi-Fermi levels associated with the intermediate and conduction bands and the observation of photocurrent associated with the two-photon absorption. By reducing the temperature at which the devices are characterised we have suppressed the parasitic thermal mechanisms and have succeeded in measuring the photocurrent caused by the absorption of two below bandgap photons. In this work, the characterization of this photocurrent at low temperature is presented and discussed

  3. OPTICAL VARIABILITY OF THE ACCRETION DISK AROUND THE INTERMEDIATE-MASS BLACK HOLE ESO 243-49 HLX-1 DURING THE 2012 OUTBURST

    Energy Technology Data Exchange (ETDEWEB)

    Webb, N. A.; Godet, O.; Barret, D. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Wiersema, K. [University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Lasota, J.-P. [Institut d' Astrophysique de Paris, UMR 7095, CNRS, UPMC Université Paris 06, 98bis Boulevard Arago, F-75014 Paris (France); Farrell, S. A. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Maccarone, T. J. [Department of Physics, Box 41051, Texas Tech University, Lubbock TX 79409-1051 (United States); Servillat, M., E-mail: natalie.webb@irap.omp.eu [Laboratoire AIM (CEA/DSM/IRFU/SAp, CNRS, Université Paris Diderot), CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France)

    2014-01-01

    We present dedicated quasi-simultaneous X-ray (Swift) and optical (Very Large Telescope, V-, and R-band) observations of the intermediate-mass black hole candidate HLX-1 before and during the 2012 outburst. We show that the V-band magnitudes vary with time, thus proving that a portion of the observed emission originates in the accretion disk. Using the first quiescent optical observations of HLX-1, we show that the stellar population surrounding HLX-1 is fainter than V ∼ 25.1 and R ∼ 24.2. We show that the optical emission may increase before the X-ray emission consistent with the scenario proposed by Lasota et al. in which the regular outbursts could be related to the passage at periastron of a star circling the intermediate-mass black hole in an eccentric orbit, which triggers mass transfer into a quasi-permanent accretion disk around the black hole. Further, if there is indeed a delay in the X-ray emission we estimate the mass-transfer delivery radius to be ∼10{sup 11} cm.

  4. Laboratory observation of hot bands of H+3

    International Nuclear Information System (INIS)

    Bawendi, M.G.; Rehfuss, B.D.; Oka, T.

    1990-01-01

    The (2ν 2 ,l=2 left-arrow ν 2 ), (2ν 2 ,l=0 left-arrow ν 2 ), and (ν 1 +ν 2 left-arrow ν 1 ) hot bands of H + 3 were observed. The vibrationally hot ions were produced in a liquid nitrogen cooled 6 kHz ac discharge using gas mixtures of H 2 and He. The spectra were detected in direct absorption using a newly extended tunable difference frequency spectrometer using both LiNbO 3 and LiIO 3 crystals as nonlinear optical elements. The range of this spectrometer is now ∼5300--∼1900 cm -1 . The positions of the rovibrational transitions compare extremely well with the theoretical predictions of Miller and Tennyson. A vibrational temperature study of the discharge indicates a significant population inversion between the ν 1 and ν 2 levels

  5. Simultaneous recording of electroretinogram and visual evoked response. Focal stimulation under direct observation.

    Science.gov (United States)

    Hirose, T; Miyake, Y; Hara, A

    1977-07-01

    A system has been tested that allows simultaneous recording of the retinal response (electroretinogram [ERG]) and the occipital response (visual evoked response [VER]) with focal photic stimulation of the retina under direct observation of the fundus. A helium-neon gas laser is used as a stimulus source. The laser is chopped either by a pen motor or a rotating disc. The laser is attached to a biomicroscope through which the examiner can observe the fundus of the subject during the entire recording session. The optically clear contact lens is made with a flat surface that neutralizes refraction due to the cornea, thereby allowing fundus observation by microscope. Two metal wires mounted inside and outside of the lens serve as the electrode for the ERG. Graticules consisting of concentric circles and radial lines are projected onto the subject's fundus, providing a pattern that the examiner can use to determine the exact location to be stimulated in the fundus. With proper adjustment of stimulus and background illumination, local ERG and VER can be recorded simultaneously by stimulating the macula.

  6. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Hanae Shimo

    2015-06-01

    Full Text Available Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.

  7. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes.

    Science.gov (United States)

    Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi

    2015-06-01

    Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.

  8. ENERGY DISSIPATION THROUGH QUASI-STATIC TIDES IN WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Willems, B.; Deloye, C. J.; Kalogera, V.

    2010-01-01

    We present a formalism to study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides, in which the tidal forcing frequencies are small, compared to the inverse of the white dwarf's dynamical timescale. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 M sun helium white dwarf in binaries with orbital frequencies in the Laser Interferometer Space Antenna (LISA) gravitational wave frequency band and companion masses ranging from 0.3 M sun to 10 5 M sun . The resulting tidal evolution timescales for the orbital semimajor axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational wave templates of white dwarf binaries in the LISA band. Spin-up of the white dwarf, on the other hand, can occur on timescales of less than 10 Myr, provided that the white dwarf is initially rotating with a frequency much smaller than the orbital frequency. For semi-detached white dwarf binaries spin-up can occur on timescales of less than 1 Myr. Nevertheless, the timescales remain longer than the orbital inspiral timescales due to gravitational radiation, so that the degree of asynchronism in these binaries increases. As a consequence, tidal forcing eventually occurs at forcing frequencies beyond the quasi-static tide approximation. For the shortest period binaries, energy dissipation is therefore expected to take place through dynamic tides and resonantly excited g-modes.

  9. Evidence for several dipolar quasi-invariants in liquid crystals

    Science.gov (United States)

    Bonin, C. J.; González, C. E.; Segnorile, H. H.; Zamar, R. C.

    2013-10-01

    The quasi-equilibrium states of an observed quantum system involve as many constants of motion as the dimension of the operator basis which spans the blocks of all the degenerate eigenvalues of the Hamiltonian that drives the system dynamics, however, the possibility of observing such quasi-invariants in solid-like spin systems in Nuclear Magnetic Resonance (NMR) is not a strictly exact prediction. The aim of this work is to provide experimental evidence of several quasi-invariants, in the proton NMR of small spin clusters, like nematic liquid crystal molecules, in which the use of thermodynamic arguments is not justified. We explore the spin states prepared with the Jeener-Broekaert pulse sequence by analyzing the time-domain signals yielded by this sequence as a function of the preparation times, in a variety of dipolar networks, solids, and liquid crystals. We observe that the signals can be explained with two dipolar quasi-invariants only within a range of short preparation times, however at longer times liquid crystal signals show an echo-like behaviour whose description requires assuming more quasi-invariants. We study the multiple quantum coherence content of such signals on a basis orthogonal to the z-basis and see that such states involve a significant number of correlated spins. Therefore, we show that the NMR signals within the whole preparation time-scale can only be reconstructed by assuming the occurrence of multiple quasi-invariants which we experimentally isolate.

  10. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.

    2013-11-12

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice realizes the characteristic physical phenomena of free-standing silicene. In particular, we address by model calculations the combined effect of the intrinsic spin-orbit coupling and an external electric field, which induces a transition from a semimetal to a topological insulator and further to a band insulator.

  11. A risk-adjusted O-E CUSUM with monitoring bands for monitoring medical outcomes.

    Science.gov (United States)

    Sun, Rena Jie; Kalbfleisch, John D

    2013-03-01

    In order to monitor a medical center's survival outcomes using simple plots, we introduce a risk-adjusted Observed-Expected (O-E) Cumulative SUM (CUSUM) along with monitoring bands as decision criterion.The proposed monitoring bands can be used in place of a more traditional but complicated V-shaped mask or the simultaneous use of two one-sided CUSUMs. The resulting plot is designed to simultaneously monitor for failure time outcomes that are "worse than expected" or "better than expected." The slopes of the O-E CUSUM provide direct estimates of the relative risk (as compared to a standard or expected failure rate) for the data being monitored. Appropriate rejection regions are obtained by controlling the false alarm rate (type I error) over a period of given length. Simulation studies are conducted to illustrate the performance of the proposed method. A case study is carried out for 58 liver transplant centers. The use of CUSUM methods for quality improvement is stressed. Copyright © 2013, The International Biometric Society.

  12. Simultaneous high- and low-latitude reconnection: ESR and DMSP observations

    Directory of Open Access Journals (Sweden)

    F. Pitout

    2002-09-01

    Full Text Available We present EISCAT Svalbard Radar and DMSP observations of a double cusp during an interval of predominantly northward IMF on 26 November 2000. In the cusp region, the ESR dish, pointing northward, recorded sun-ward ionospheric flow at high latitudes (above 82° GL, indicating reconnection occuring in the magnetospheric lobe. Meanwhile, the same dish also recorded bursts of poleward flow, indicative of bursty reconnection at the subsolar magnetopause. Within this time interval, the DMSP F13 satellite passed in the close vicinity of the Svalbard archipelago. The particle measurement on board exhibited a double cusp structure in which two oppositely oriented ion dispersions are recorded. We interpret this set of data in terms of simultaneous merging at low- and high-latitude magnetopause. We discuss the conditions for which such simultaneous high-latitude and low-latitude reconnection can be anticipated. We also discuss the consequences of the presence of two X-lines in the dayside polar ionosphere.Key words. Magnetospheric physics (solar wind-magnetosphere interactions – Ionosphere (polar ionosphere; plasma convection

  13. Evidence for dipolar bands in mercury isotopes using EUROGAM multi-detector

    International Nuclear Information System (INIS)

    Le Coz, Y.

    1995-01-01

    This thesis is devoted to the study of nuclear structure around mass A 190 and in particular, to the search of oblate rotational dipole bands in mercury isotopes. The reactions used to populate high spin states in 192 Hg and 193 Hg were 160 Gd ( 36 S,n) 192 Hg and 150 Nd( 48 Ca, 5n) 193 Hg at beam energies of 159 and 213 MeV. Gamma-rays have been detected using the EUROGAM phase I array. Level schemes of those two nuclei have been extended up to an excitation energy of about 10 MeV and approximately spin 35h. In 192 Hg, two new dipole bands have been observed. Those two structures, as well as two similar structures in 193 Hg, have been connected to the low-lying states; so, excitation energy and bandhead spin of those bands have been deduced. Angular distribution and correlation analysis (specific to EUROGRAM phase I) have confirmed that the transitions are dipoles. After a general presentation of dipole bands in this A = 190 mass region, experimental results are compared with mean-field Hartree-Fock + BCS calculations, using the rotor plus quasi-particles model. The results are consistent with weakly oblate structures based on configurations which involve high-K proton orbitals driving the nucleus to an oblate shape. (author). 81 refs., 47 figs., 8 tabs., 4 ann

  14. L-band brightness temperature disaggregation for use with S-band and C-band radiometer data for WCOM

    Science.gov (United States)

    Yao, P.; Shi, J.; Zhao, T.; Cosh, M. H.; Bindlish, R.

    2017-12-01

    There are two passive microwave sensors onboard the Water Cycle Observation Mission (WCOM), which includes a synthetic aperture radiometer operating at L-S-C bands and a scanning microwave radiometer operating from C- to W-bands. It provides a unique opportunity to disaggregate L-band brightness temperature (soil moisture) with S-band C-bands radiometer data. In this study, passive-only downscaling methodologies are developed and evaluated. Based on the radiative transfer modeling, it was found that the TBs (brightness temperature) between the L-band and S-band exhibit a linear relationship, and there is an exponential relationship between L-band and C-band. We carried out the downscaling results by two methods: (1) downscaling with L-S-C band passive measurements with the same incidence angle from payload IMI; (2) downscaling with L-C band passive measurements with different incidence angle from payloads IMI and PMI. The downscaling method with L-S bands with the same incident angle was first evaluated using SMEX02 data. The RMSE are 2.69 K and 1.52 K for H and V polarization respectively. The downscaling method with L-C bands is developed with different incident angles using SMEX03 data. The RMSE are 2.97 K and 2.68 K for H and V polarization respectively. These results showed that high-resolution L-band brightness temperature and soil moisture products could be generated from the future WCOM passive-only observations.

  15. Theoretical study of band structure of odd-mass {sup 115,117}I isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dhanvir, E-mail: singh1472phy@gmail.com; Kumar, Amit, E-mail: akbcw2@gmail.com; Sharma, Chetan, E-mail: chetan24101985@gmail.com [Research Scholar, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India); Singh, Suram, E-mail: suramsingh@gmail.com [Assistant Professor, Department of Physics, Govt. Degree College, Kathua-184101 (India); Bharti, Arun, E-mail: arunbharti-2003@yahoo.co.in [Professor, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India)

    2016-05-06

    By using the microscopic approach of Projected Shell Model (PSM), negative-parity band structures of odd mass neutron-rich {sup 115,117}I nuclei have been studied with the deformed single-particle states generated by the standard Nilsson potential. For these isotopes, the band structures have been analyzed in terms of quasi-particles configurations. The phenomenon of back bending in moment of inertia is also studied in the present work.

  16. Fundamentals of Non-relativistic Collisionless Shock Physics: IV. Quasi-Parallel Supercritical Shocks

    OpenAIRE

    Treumann, R. A.; Jaroschek, C. H.

    2008-01-01

    1. Introduction, 2. The (quasi-parallel) foreshock; Ion foreshock, Ion foreshock boundary region; Diffuse ions;Low-frequency upstream waves; Ion beam waves; The expected wave modes; Observations; Diffuse ion waves; Electron foreshock; Electron beams; Langmuir waves; stability of the electron beam; Electron foreshock boundary waves; Nature of electron foreshock waves; Radiation; Observations; Interpretation; 3. Quasi-parallel shock reformation; Low-Mach number quasi-parallel shocks; Turbulent ...

  17. Applicability of quasi-Monte Carlo for lattice systems

    International Nuclear Information System (INIS)

    Ammon, Andreas; Deutsches Elektronen-Synchrotron; Hartung, Tobias; Jansen, Karl; Leovey, Hernan; Griewank, Andreas; Mueller-Preussker, Michael

    2013-11-01

    This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N -1/2 , where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N -1 , or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.

  18. Applicability of quasi-Monte Carlo for lattice systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hartung, Tobias [King' s College London (United Kingdom). Dept. of Mathematics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leovey, Hernan; Griewank, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Mathematics; Mueller-Preussker, Michael [Berlin Humboldt-Univ. (Germany). Dept. of Physics

    2013-11-15

    This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N{sup -1/2}, where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N{sup -1}, or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.

  19. High- and mid-latitude quasi-2-day waves observed simultaneouslyby four meteor radars during summer 2000

    Directory of Open Access Journals (Sweden)

    E. Merzlyakov

    2004-03-01

    Full Text Available Results from the analysis of MLT wind measurements at Dixon (73.5°N, 80°E, Esrange (68°N, 21°E, Castle Eaton (UK (53°N, 2°W, and Obninsk (55°N, 37°E during summer 2000 are presented in this paper. Using S-transform or wavelet analysis, quasi-two-day waves (QTDWs are shown to appear simultaneously at high- and mid-latitudes and reveal themselves as several bursts of wave activity. At first this activity is preceded by a 51–53h wave with S=3 observed mainly at mid-latitudes. After a short recess (or quiet time interval for about 10 days near day 205, we observe a regular sequence of three bursts, the strongest of them corresponding to a QTDW with a period of 47–48h and S=4 at mid-altitudes. We hypothesize that these three bursts may be the result of constructive and destructive interference between several spectral components: a 47–48h component with S=4; a 60-h component with S=3; and a 80-h component with S=2. The magnitudes of the lower (higher zonal wave-number components increase (decrease with increasing latitude. The S-transform or wavelet analysis indicates when these spectral components create the wave activity bursts and gives a range of zonal wave numbers for observed bursts from about 4 to about 2 for mid- and high-latitudes. The main spectral component at Dixon and Esrange latitudes is the 60-h oscillation with S=3. The zonal wave numbers and frequencies of the observed spectral components hint at the possible occurrence of the nonlinear interaction between the primary QTDWs and other planetary waves. Using a simple 3-D nonlinear numerical model, we attempt to simulate some of the observed features and to explain them as a consequence of the nonlinear interaction between the primary 47–48h and the 9–10day waves, and the resulting linear superposition of primary and secondary waves. In addition to the QTDW bursts, we also infer forcing of the 4-day wave with S=2 and the 6–7day wave with S=1, possibly arising from

  20. A Quasi-Experimental Evaluation of an On-Line Formative Assessment and Tutoring System

    Science.gov (United States)

    Koedinger, Kenneth R.; McLaughlin, Elizabeth A.; Heffernan, Neil T.

    2010-01-01

    ASSISTments is a web-based math tutor designed to address the need for timely student assessment while simultaneously providing instruction, thereby avoiding lost instruction time that typically occurs during assessment. This article presents a quasi-experiment that evaluates whether ASSISTments use has an effect on improving middle school…

  1. Simultaneous spectral and photometric observations of the beat Cepheid U TrA

    International Nuclear Information System (INIS)

    Niva, G.D.; Schmidt, E.G.

    1981-01-01

    It was suggested that U TrA was a Cepheid with a modulated light curve. Further photometric and radial-velocity observations have confirmed this behaviour. Unfortunately, the radial velocities are too few in number and too scattered to allow a detailed analysis. This paper presents further photometric and spectroscopic observations of U TrA. The original intent was to obtain enough simultaneous observations to perform a Wesselink analysis similar to the one made for another beat Cepheid, TU Cas. Unfortunately, this has not been possible. However, the data obtained are of high quality and are clearly useful in studies of the modal content and period stability of the star. (author)

  2. Spectroscopic evidence for two-gap superconductivity in the quasi-1D chalcogenide Nb2Pd0.81S5

    Science.gov (United States)

    Park, Eunsung; Lee, Sangyun; Ronning, Filip; Thompson, Joe D.; Zhang, Qiu; Balicas, Luis; Lu, Xin; Park, Tuson

    2018-04-01

    Low-dimensional electronic systems with confined electronic wave functions have attracted interest due to their propensity toward novel quantum phases and their use in wide range of nanotechnologies. The newly discovered chalcogenide Nb2PdS5 possesses a quasi-one-dimensional electronic structure and becomes superconducting. Here, we report spectroscopic evidence for two-band superconductivity, where soft point-contact spectroscopic measurements in the superconducting (SC) state reveal Andreev reflection in the differential conductance G. Multiple peaks in G are observed at 1.8 K and explained by the two-band Blonder–Tinkham–Klapwijk model with two gaps Δ1  =  0.61 meV and Δ2  =  1.20 meV. The progressive evolution of G with temperature and magnetic field corroborates the multiple nature of the SC gaps.

  3. Microstructural Changes of the Nanostructured Bainitic Steel Induced by Quasi-Static and Dynamic Deformation

    Directory of Open Access Journals (Sweden)

    Marcisz J.

    2017-12-01

    Full Text Available Changes in the microstructure of nanostructured bainitic steel induced by quasi-static and dynamic deformation have been shown in the article. The method of deformation and strain rate have important impact on the microstructure changes especially due to strain localization. Microstructure of nanostructured steel Fe-0.6%C-1.9Mn-1.8Si-1.3Cr-0.7Mo consists of nanometer size carbide-free bainite laths and 20-30% volume fraction of retained austenite. Quasi-static and dynamic (strain rate up to 2×102 s−1 compression tests were realized using Gleeble simulator. Dynamic deformation at the strain rate up to 9×103 s−1 was realized by the Split Hopkinson Pressure Bar method (SHPB. Moreover high energy firing tests of plates made of the nanostructured bainitic steel were carried out to produce dynamically deformed material for investigation. Adiabatic shear bands were found as a result of localization of deformation in dynamic compression tests and in firing tests. Microstructure of the bands was examined and hardness changes in the vicinity of the bands were determined. The TEM examination of the ASBs showed the change from the internal shear band structure to the matrix structure to be gradual. This study clearly resolved that the interior (core of the band has an extremely fine grained structure with grain diameter ranging from 100 nm to 200 nm. Martensitic twins were found within the grains. No austenite and carbide reflections were detected in the diffraction patterns taken from the core of the band. Hardness of the core of the ASBs for examined variants of isothermal heat treatment was higher about 300 HV referring to steel matrix hardness.

  4. Possible signature of the magnetic fields related to quasi-periodic oscillations observed in microquasars

    Science.gov (United States)

    Kološ, Martin; Tursunov, Arman; Stuchlík, Zdeněk

    2017-12-01

    The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10^{-5} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02-1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge.

  5. Possible signature of the magnetic fields related to quasi-periodic oscillations observed in microquasars

    Energy Technology Data Exchange (ETDEWEB)

    Kolos, Martin; Tursunov, Arman; Stuchlik, Zdenek [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic)

    2017-12-15

    The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10{sup -5} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02-1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge. (orig.)

  6. Observational test of shock drift and Fermi acceleration on a seed particle population upstream of earth's bow shock

    Science.gov (United States)

    Anagnostopoulos, G. C.; Sarris, E. T.; Krimigis, S. M.

    1988-01-01

    The efficiency of proposed shock acceleration mechanisms as they operate at the bow shock in the presence of a seed energetic particle population was examined using data from simultaneous observations of energetic solar-origin protons, carried out by the IMP 7 and 8 spacecraft in the vicinity of the quasi-parallel (dawn) and quasi-perpendicular (dusk) regions of the earth's bow shock, respectively. The results of observations (which include acceleration effects in the intensities of the energetic protons with energies as high as 4 MeV observed at the vicinity of the dusk bow shock, but no evidence for any particle acceleration at the energy equal to or above 50 keV at the dawn side of the bow shock) indicate that the acceleration of a seed particle population occurs only at the quasi-perpendicular bow shock through shock drift acceleration and that the major source of observed upstream ion populations is the leakage of magnetospheric ions of energies not less than 50 keV, rather than in situ acceleration.

  7. An improved technique for quasi-static C-V measurements

    International Nuclear Information System (INIS)

    Turan, R.; Finstad, T.G.

    1990-10-01

    A new automated quasi-static C-V measurement technique for MOS capacitors has been developed. This techniques uses an integrating electrometer to measure the charge accumulated on a MOS capacitor in response of a small voltage step. Making use of the internal data storage system of a commercial electrometer and a personal computer, the charge Q on the MOS capacitor is measured as a function of time t and stored. The capacitance is then obtained by analyzing this Q-t data set. A Si MOS sample is measured and analyzed in terms of interface charges as an example. Advantages over a commercial quasi-static meter which uses similar measurement technique are presented. It is also shown that this technique is potentially capable of measuring both high and low frequency C-V curves simultaneously. 9 refs. 5 figs

  8. Band structure and phonon properties of lithium fluoride at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, J. M., E-mail: amitjignesh@yahoo.co.in [Government Engineering College, Gandhinagar 382028, Gujarat (India); Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India); Joshi, Mitesh [Government Polytechnic for Girls, Athwagate, Surat395001, Gujarat (India); Gajjar, P. N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India)

    2016-05-23

    High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.

  9. Band structure and phonon properties of lithium fluoride at high pressure

    International Nuclear Information System (INIS)

    Panchal, J. M.; Joshi, Mitesh; Gajjar, P. N.

    2016-01-01

    High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.

  10. IR thermographic observation and shear bands plasticity analysis in Fe-based metallic glass

    International Nuclear Information System (INIS)

    Bouzakher, B.; Benameur, T.; Sidhom, H.

    2009-01-01

    Infrared thermography observation and in situ atomic force microscopy characterization were carried out to investigate the mechanical damage processes at the edge-notch region of large ribbons of Fe 78 Si 10 B 12 metallic glass. An obvious thermoelastic and inelastic degradation phenomenon was observed ahead at the notched region of the specimens, which probably result from free volume accumulation process and shear band activity during plane stress solicitations. Moreover, AFM topographic and frictional analysis of changes in the crack path during stable crack propagation regime revealed a periodic morphology evolution, formation of nanoscale damage cavity in the range of 20-140 nm and a maximum temperature rise ahead of the pre-crack tip was found in the order of 1.5 deg. C. The nanometer scaled shear offset, discreteness and shear bands density were determined. While these key parameters play a role in observing a large plastic zone in front of the crack, however they are unable to explain the distinct intrinsic ductility of some monolithic metallic glasses. A general Mohr-Coulomb-type constitutive description was used to deduce analytic expressions for prediction of the variation of hydrostatic component of the applied stress to the shear stress ratio as function of Poisson's ratio.

  11. Wide-band operation of quasi-optical distributed superconductor/insulator/superconductor mixers with epitaxial NbN/AlN/NbN junctions

    International Nuclear Information System (INIS)

    Kohjiro, S; Shitov, S V; Wang, Z; Uzawa, Y; Miki, S; Kawakami, A; Shoji, A

    2004-01-01

    For the optimum design of integrated receivers operating above the gap frequency of Nb, we have designed, fabricated and tested NbN-based quasi-optical superconductor/insulator/superconductor (SIS) mixers. The mixer chip incorporates a resonant half-wavelength epitaxial NbN/AlN/NbN junction, a twin-slot antenna and their coupling circuits. We adopted two kinds of coupling circuit between the antenna and the SIS junction: one is an in-phase feed with a length of 95 μm and the other is an anti-phase feed of 30 μm length. It was found that the anti-phase mixer reveals a 3 dB bandwidth of 43% of the centre frequency; the uncorrected double-sideband receiver noise temperature T RX = 691 K at 0.91 THz and T RX = 844 K at 0.80 THz, while 17% and T RX = 1250 K at 0.79 THz for the in-phase version. Possible reasons for this difference are discussed, which could be transmission loss and its robustness with respect to the variation of junction parameters. These experimental results suggest the NbN-based distributed mixer with the anti-phase feed is a better candidate for wide-band integrated receivers operating above 0.7 THz

  12. Simultaneous observations of Polar Mesosphere Summer Echoes at two different latitudes in Antarctica

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2008-11-01

    Full Text Available Simultaneous observations of Polar Mesosphere Summer Echoes (PMSE at Wasa and Davis in Antarctica have been compared. Data with simultaneous observations were obtained for 16 days between 18 January and 5 February 2007. Wasa is at a higher geographic latitude than Davis, but at lower geomagnetic latitude. PMSE strength and occurrence frequency were significantly higher at Wasa. The variation of daily PMSE occurrence over the measurement period was in agreement with temperature and frost-point estimates from the Microwave Limb Sounder on the Aura spacecraft for both Wasa and Davis. The diurnal variation of PMSE strength and occurrence frequency as well as the shape of the altitude profiles of average PMSE strength and occurrence frequency were similar for the two sites. The deepest part of the evening minimum in PMSE occurrence frequency occurred for the same magnetic local time at the two sites rather than for the same local solar time. The study indicates that PMSE strength and occurrence increase between 68.6° and 73° geographic latitude, consistent with observed differences in mesospheric temperatures and water vapor content. The average altitude distribution of PMSE varies relatively little with latitude in the same hemisphere.

  13. In-Sample Confidence Bands and Out-of-Sample Forecast Bands for Time-Varying Parameters in Observation Driven Models

    NARCIS (Netherlands)

    Blasques, F.; Koopman, S.J.; Lasak, K.A.; Lucas, A.

    2016-01-01

    We study the performances of alternative methods for calculating in-sample confidence and out-of-sample forecast bands for time-varying parameters. The in-sample bands reflect parameter uncertainty, while the out-of-sample bands reflect not only parameter uncertainty, but also innovation

  14. Simultaneous measurement of non-commuting observables

    NARCIS (Netherlands)

    Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M.

    2010-01-01

    A dynamical model of a quantum measurement process is introduced, where the tested system S, a spin 1/2, is simultaneously coupled with two apparatuses A and A'. Alone, A would measure the component (s) over cap (z) whereas A' alone would measure (s) over cap (x). The apparatus A simulates an Ising

  15. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Luo, Y. X. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, S. H. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and UNRIB/Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (United States); Rasmussen, J. O.; Lee, I. Y. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stone, N. J. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Daniel, A. V. [Flerov Laboratory of Nuclear Reactions, JINR, Dubna (Russian Federation); Zhu, S. J. [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  16. X-RAY AND EUV OBSERVATIONS OF SIMULTANEOUS SHORT AND LONG PERIOD OSCILLATIONS IN HOT CORONAL ARCADE LOOPS

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Cho, Kyung-Suk; Nakariakov, Valery M.

    2015-01-01

    We report decaying quasi-periodic intensity oscillations in the X-ray (6–12 keV) and extreme-ultraviolet (EUV) channels (131, 94, 1600, 304 Å) observed by the Fermi Gamma-ray Burst Monitor and Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), respectively, during a C-class flare. The estimated periods of oscillation and decay time in the X-ray channel (6–12 keV) were about 202 and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 Å channels. Simultaneously, AIA hot channels (94 and 131 Å) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km s −1 for about 115 Mm of loop length, which is roughly consistent with the sound speed at the temperature about 10–16 MK (480–608 km s −1 ). These EUV oscillations are consistent with the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Doppler-shift oscillations interpreted as the global standing slow magnetoacoustic wave excited by a flare. The flare occurred at one of the footpoints of the arcade loops, where the magnetic topology was a 3D fan-spine with a null-point. Repetitive reconnection at this footpoint could have caused the periodic acceleration of non-thermal electrons that propagated to the opposite footpoint along the arcade and that are precipitating there, causing the observed 202 s periodicity. Other possible interpretations, e.g., the second harmonics of the slow mode, are also discussed

  17. X-RAY AND EUV OBSERVATIONS OF SIMULTANEOUS SHORT AND LONG PERIOD OSCILLATIONS IN HOT CORONAL ARCADE LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Nakariakov, Valery M., E-mail: pankaj@kasi.re.kr [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom)

    2015-05-01

    We report decaying quasi-periodic intensity oscillations in the X-ray (6–12 keV) and extreme-ultraviolet (EUV) channels (131, 94, 1600, 304 Å) observed by the Fermi Gamma-ray Burst Monitor and Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), respectively, during a C-class flare. The estimated periods of oscillation and decay time in the X-ray channel (6–12 keV) were about 202 and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 Å channels. Simultaneously, AIA hot channels (94 and 131 Å) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km s{sup −1} for about 115 Mm of loop length, which is roughly consistent with the sound speed at the temperature about 10–16 MK (480–608 km s{sup −1}). These EUV oscillations are consistent with the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Doppler-shift oscillations interpreted as the global standing slow magnetoacoustic wave excited by a flare. The flare occurred at one of the footpoints of the arcade loops, where the magnetic topology was a 3D fan-spine with a null-point. Repetitive reconnection at this footpoint could have caused the periodic acceleration of non-thermal electrons that propagated to the opposite footpoint along the arcade and that are precipitating there, causing the observed 202 s periodicity. Other possible interpretations, e.g., the second harmonics of the slow mode, are also discussed.

  18. Electrostatic quasi-monochromatic waves in the downstream region of the Earth's bow shock based on Geotail observations

    Science.gov (United States)

    Shin, K.; Kojima, H.; Matsumoto, H.; Mukai, T.

    2007-02-01

    Geotail plasma wave observations show the existence of intense electrostatic quasi-monochromatic (EQM) waves in the downstream region of the Earth's bow shock. They oscillate parallel to the ambient magnetic field and appear at frequencies between the electron plasma and ion plasma frequencies. Although these waves have been believed to be Doppler-shifted ion acoustic waves, the typical plasma parameters observed in the downstream region do not support the generation conditions for ion acoustic waves. In this paper, the existence of cold electron beam-like components accompanying EQM waves is considered based on waveform and statistical analyses. Linear dispersion analyses using realistic plasma parameters revealed that the cold electron beams cause destabilization of electron acoustic waves at frequencies consistent with those of observed EQM waves. The results of observations and linear analyses suggest that EQM waves are generated by the destabilization of the electron acoustic mode.

  19. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    Science.gov (United States)

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  20. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  1. Quasi-seismic scaling processes in sea ice

    International Nuclear Information System (INIS)

    Chmel, A; Smirnov, V N

    2011-01-01

    The cracking, shearing and stick–slip motions in sea ice are similar to those in fracturing geostructures. In this work, the fracture-related, quasi-seismic activity in the Arctic ice pack was monitored during a large-scale ice cover fragmentation that occurred in March 2008. This fragmentation resulted in the formation of a two-dimensional 'fault' clearly seen in satellite images. The energy distribution in elastic waves detected by seismic tiltmeters follows the power law in pre- and post-faulting periods. The power exponent decreases as the 'catastrophe' approaches, and exhibits a trend to restore its initial value after the large-scale perturbation. The detected fracture events are correlated in time in the sense of a scaling relation. A quiescent period (very low quasi-seismic activity) was observed before 'faulting'. A close similarity in scaling characteristics between the crustal seismicity and quasi-seismic activity observed in the ice pack is discussed from the viewpoint of the role of heterogeneity in the behavior of large-scale critical systems

  2. POST-OUTBURST RADIO OBSERVATIONS OF THE HIGH MAGNETIC FIELD PULSAR PSR J1119-6127

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Walid A.; Pearlman, Aaron B.; Dobreva, Tatyana; Kocz, Jonathon; Prince, Thomas A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Horiuchi, Shinji [CSIRO Astronomy and Space Science, Canberra Deep Space Communications Complex, P.O. Box 1035, Tuggeranong, ACT 2901 (Australia); Lippuner, Jonas [TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-01-01

    We have carried out high-frequency radio observations of the high magnetic field pulsar PSR J1119-6127 following its recent X-ray outburst. While initial observations showed no evidence of significant radio emission, subsequent observations detected pulsed emission across a large frequency band. In this Letter, we report on the initial disappearance of the pulsed emission and its prompt reactivation and dramatic evolution over several months of observation. The periodic pulse profile at S -band (2.3 GHz) after reactivation exhibits a multi-component emission structure, while the simultaneous X -band (8.4 GHz) profile shows a single emission peak. Single pulses were also detected at S -band near the main emission peaks. We present measurements of the spectral index across a wide frequency bandwidth, which captures the underlying changes in the radio emission profile of the neutron star. The high-frequency radio detection, unusual emission profile, and observed variability suggest similarities with magnetars, which may independently link the high-energy outbursts to magnetar-like behavior.

  3. SIMULTANEOUS MULTIWAVELENGTH OBSERVATIONS OF MAGNETIC ACTIVITY IN ULTRACOOL DWARFS. IV. THE ACTIVE, YOUNG BINARY NLTT 33370 AB (= 2MASS J13142039+1320011)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P. K. G.; Berger, E.; Irwin, J.; Charbonneau, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Berta-Thompson, Z. K., E-mail: pwilliams@cfa.harvard.edu [MIT Kavli Institute, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2015-02-01

    We present multi-epoch simultaneous radio, optical, Hα, UV, and X-ray observations of the active, young, low-mass binary NLTT 33370 AB (blended spectral type M7e). This system is remarkable for its extreme levels of magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known, and here we show that it is also one of the most X-ray luminous UCDs known. We detect the system in all bands and find a complex phenomenology of both flaring and periodic variability. Analysis of the optical light curve reveals the simultaneous presence of two periodicities, 3.7859 ± 0.0001 and 3.7130 ± 0.0002 hr. While these differ by only ∼2%, studies of differential rotation in the UCD regime suggest that it cannot be responsible for the two signals. The system's radio emission consists of at least three components: rapid 100% polarized flares, bright emission modulating periodically in phase with the optical emission, and an additional periodic component that appears only in the 2013 observational campaign. We interpret the last of these as a gyrosynchrotron feature associated with large-scale magnetic fields and a cool, equatorial plasma torus. However, the persistent rapid flares at all rotational phases imply that small-scale magnetic loops are also present and reconnect nearly continuously. We present a spectral energy distribution of the blended system spanning more than 9 orders of magnitude in wavelength. The significant magnetism present in NLTT 33370 AB will affect its fundamental parameters, with the components' radii and temperatures potentially altered by ∼+20% and ∼–10%, respectively. Finally, we suggest spatially resolved observations that could clarify many aspects of this system's nature.

  4. Exchange correlation effects on plasmons and on charge-density wave instability in narrow-band quasi-one-dimensional metals

    International Nuclear Information System (INIS)

    Nobile, A.; Tosatti, E.

    1979-05-01

    The coexistence of tight-binding and exchange-correlation effects inside each chain of a model quasi-one-dimensional metal, on both plasmon and charge density wave properties have been studied. The results, while in qualitative agreement with other treatments of the problem at long wavelengths, indicate a strong tendency for plasmons to turn into excitons at larger momenta, and to exhibit an ''excitonic'' charge-density wave instability at k approximately 2ksub(F). The nature of the plasmon branches and of the excitonic charge distortion is examined. Relevance to existing quasi-one-dimensional materials is also discussed. (author)

  5. Backbendings of superdeformed bands in 36;40Ar

    Science.gov (United States)

    Xiang, Xu-Hui; He, Xiao-Tao

    2018-05-01

    Experimentally observed superdeformed (SD) rotational bands in 36Ar and 40Ar are studied by the cranked shell model (CSM) with the pairing correlations treated by a particle-number-conserving (PNC) method. This is the first time that PNC-CSM calculations have been performed on the light nuclear mass region around A=40. The experimental kinematic moments of inertia J (1) versus rotational frequency are reproduced well. The backbending of the SD band at frequency around ℏω=1.5 MeV in 36Ar is attributed to the sharp rise of the simultaneous alignments of the neutron and proton 1d 5/2[202]5/2 pairs and 1f 7/2[321]3/2 pairs, which is a consequence of the band crossing between the 1d 5/2[202]5/2 and 1f 7/2[321]3/2 configuration states. The gentle upbending at low frequency of the SD band in 40Ar is mainly affected by the alignments of the neutron 1f 7/2[321]3/2 pairs and proton 1d 5/2[202]5/2 pairs. The PNC-CSM calculations show that besides the diagonal parts, the off-diagonal parts of the alignments play an important role in the rotational behavior of the SD bands. Supported by National Natural Science Foundation of China (11775112 and 11275098) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

  6. Application of Quasi-Newton methods to the analysis of axisymmetric pressure vessels

    International Nuclear Information System (INIS)

    Parisi, D.A.C.

    1987-01-01

    This work studies the application of Quasi-Newton techniques to material nonlinear analysis of axisymmetrical pressure vessels by the finite element method. In the formulation the material bahavior is described by an isotropic elastoplastic model with strain hardening. The continum is discretized through triangular finite elements of axisymmetrical solids with linear interpolation of the displacement field. The incremental governing equations are derived by the virtual work. The solution of the system of simultaneous nonlinear equations is solved iteratively by the Quasi-Newton method employing the BFGS update. The numerical performance of the proposed method is compared with the Newton-Raphson method and some of its variants through some selected examples. (author) [pt

  7. Ka-band microwave generation using the Smith-Purcell effect

    International Nuclear Information System (INIS)

    Ekdahl, C.A.; Davis, H.A.

    1983-01-01

    The CERETRON microwave generator concept relies on the conversion of intense relativistic electron beam (REB) energy into highpower microwave emission through the Smith-Purcell effect. We report initial results from experiments with the production of Ka-band Smith-Purcell radiation generated by a 50-kA, 2.8-MeV beam propagated through a cylindrical transmission grating with lambda 0 = 1 cm. These experiments were performed without a quasi-optical resonator, and the output was limited by breakdown of the grating and by limited access through the 90-kG magnet coil. Nevertheless, the measured power output from these initial experiments was about 7 kW in the Ka band

  8. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  9. Confronting quasi-exponential inflation with WMAP seven

    International Nuclear Information System (INIS)

    Pal, Barun Kumar; Pal, Supratik; Basu, B.

    2012-01-01

    We confront quasi-exponential models of inflation with WMAP seven years dataset using Hamilton Jacobi formalism. With a phenomenological Hubble parameter, representing quasi exponential inflation, we develop the formalism and subject the analysis to confrontation with WMAP seven using the publicly available code CAMB. The observable parameters are found to fair extremely well with WMAP seven. We also obtain a ratio of tensor to scalar amplitudes which may be detectable in PLANCK

  10. Report of study meeting on nuclear physics of quasi-elastic scattering

    International Nuclear Information System (INIS)

    1992-10-01

    This meeting was held for three days from June 8 to 10, 1992, as one of the study meetings of Research Center for Nuclear Physics, Osaka University. The lectures were given on spin observables in quasi-elastic scattering, calculation of spin observables in 12 C, 40 Ca(p,n) reaction in quasifree scattering region, present state of quasi-elastic scattering, first results of (p,n) quasifree scattering with the new facility of the RCNP, spin-isospin response function and effect of Δ-hole configuration in finite nuclei, effective polarization of nuclei and observed amount of spin, (p,2p) measurement in the RCNP, quasi-elastic scattering in 2 H, 3 He and 4 He of polarized protons, quasifree Δ formation, 3 He(gamma, pπ ± ) reaction in Δ region, search for isobar components in 3 He by quasifree knockout studies, nonquasi-elastic process in photonuclear reaction, QF and NQF processes in gamma d→π + π - pn, coincidence scattering experiment in quasi-elastic scattering region, exclusive electron scattering of 3 He with full inclusion of final state interaction, quasi-elastic electron scattering and internucleon correlation and 13 other themes. (K.I.)

  11. The observation of quasi-molecular ions from a tiger snake venom component (Msub(r) 13309) using 252Cf-plasma desorption mass spectrometry

    International Nuclear Information System (INIS)

    Kamensky, I.; Haakansson, P.; Kjellberg, J.; Sundqvist, B.; Fohlman, J.; Peterson, P.A.

    1983-01-01

    A method involving fast heavy-ion bombardment of a solid sample called 252 Cf-plasma desorption mass spectrometry has been used to study a non-enzymatic, non-toxic phospholipase homolog from Australian tiger snake (Notechis scutatus) venom. The protein consists of 119 amino acids in a single polypeptide chain cross-linked by 7 disulfide bridges. The isotopically averaged molecular mass as determined by protein sequence analysis is 13309 atomic mass units (amu). The mass distributions were studied by means of time-of-flight measurements. Quasi-molecular ions associated to the molecule and its dimer were observed. The mass of the quasi-molecular ion corresponding to the molecule was determined to be 13285 +- 25 amu. (Auth.)

  12. Molecular dynamics simulations of quasi-brittle crack development in iron

    Energy Technology Data Exchange (ETDEWEB)

    Borodin, V.A., E-mail: borodin@dni.polin.kiae.su [Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); NRC Kurchatov Institute, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Vladimirov, P.V., E-mail: Pavel.Vladimirov@kit.edu [Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2011-08-31

    The paper presents the results of molecular dynamics (MD) simulations of three-dimensional kinetics of micro-crack propagation in alpha-iron and the accompanying lattice transformations at the crack tips. We show that crack initiation on {l_brace}0 0 1{r_brace} planes in iron is preceded with the emission of compact slip bands from the pre-crack tips, in agreement with the predictions of the earlier quasi-two-dimensional simulations. The application of Voronoi decomposition technique for atomic short-range order processing has allowed us to clarify the kinetics of structural transformations at the tips of nucleating and propagating cracks for three most common systems of crack propagation in iron. It is demonstrated that the compact slip bands emanating from the crack tips not only accompany crack nucleation, but remain an essential feature of the crack propagation on {l_brace}0 0 1{r_brace} planes. Due to the strong coupling between the crack tip and slip band propagation, the crack propagation can be limited by slip band interaction with microstructural obstacles, abundantly created in ferritic-martensitic steels in radiation environment of nuclear facilities.

  13. Quasi-molecular processes in dense plasmas

    International Nuclear Information System (INIS)

    Younger, S.M.

    1991-01-01

    Quasi-molecular phenomena occur in dense plasmas when the interatomic spacing is comparable to the characteristic wavelength of the electrons. If the electronic states are bound, covalent orbitals arise with different excitation energies, radiative rates, and collisional rates than for isolated ions. For continuum electrons, charge localization near transient clusters of nuclei can influence many scattering and transport processes. We identify several novel consequences of quasi-molecular phenomena in plasmas and give a possible explanation of high energy features associated with helium-like emissions lines observed in recent inertial fusion experiments. 7 refs

  14. Quasi-open inflation

    CERN Document Server

    García-Bellido, J; Montes, X; Garcia-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1998-01-01

    We show that a large class of two-field models of single-bubble open inflation do not lead to infinite open universes, as it was previously thought, but to an ensemble of very large but finite inflating `islands'. The reason is that the quantum tunneling responsible for the nucleation of the bubble does not occur simultaneously along both field directions and equal-time hypersurfaces in the open universe are not synchronized with equal-density or fixed-field hypersurfaces. The most probable tunneling trajectory corresponds to a zero value of the inflaton field; large values, necessary for the second period of inflation inside the bubble, only arise as localized fluctuations. The interior of each nucleated bubble will contain an infinite number of such inflating regions of comoving size of order $\\gamma^{-1}$, where $\\gamma$ depends on the parameters of the model. Each one of these islands will be a quasi-open universe. Since the volume of the hyperboloid is infinite, inflating islands with all possible values...

  15. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    Directory of Open Access Journals (Sweden)

    Xujun Han

    Full Text Available The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL; the other is observation localization (OL. Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  16. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    Science.gov (United States)

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  17. Elastic metamaterial with simultaneously negative refraction for longitudinal and transverse waves

    Directory of Open Access Journals (Sweden)

    Ji-En Wu

    2017-10-01

    Full Text Available We present a study of elastic metamaterial that possesses multiple local resonances. We demonstrated that the elastic metamaterial can have simultaneously three negative effective parameters, i.e., negative effective mass, effective bulk modulus and effective shear modulus at a certain frequency range. Through the analysis of the resonant field, it has been elucidated that the three negative parameters are induced by dipolar, monopolar and quadrupolar resonance respectively. The dipolar and monopolar resonances result into the negative band for longitudinal waves, while the dipolar and quadrupolar resonances cause the negative band for transverse waves. The two bands have an overlapping frequency regime. A simultaneously negative refraction for both longitudinal waves and transverse waves has been demonstrated in the system.

  18. A NEXT GENERATION MULTI-BEAM FOCAL PLANE ARRAY RECEIVER OF TRAO FOR 86-115 GHZ BAND

    Directory of Open Access Journals (Sweden)

    Moon-Hee Chung

    2006-03-01

    Full Text Available The noise temperature of existing millimeter-wave receivers is already within two or three times quantum noise limit. One of practical ways to increase the observation speed of single dish radio telescope without longer integration time is use of multi-beam focal plane array receiver as demonstrated in several large single dish radio telescopes. In this context the TRAO (Taeduk Radio Astronomy Observatory, which operates a 143n Cassegrain radio telescope, is planning to develop a 4 x 4 beams focal plane array SIS receiver system for 86-115 GHz band. Even though millimeter-wave HEMT LNA-based receivers approach the noise temperature comparable to the SIS receiver at W-band, it is believed that the receiver based on SIS mixer seems to offer a bit more advantages. The critical part of the multi-beam array receiver will be sideband separating SIS mixers. Employing such a type of SIS mixer makes it possible to simplify the quasi-optics of receiver. Otherwise, an SSB filter should be used in front of the mixer or some sophisticated post-processing of observation data is needed. In this paper we will present a preliminary design concept and components needed for the development of a new 3 mm band multi-beam focal plane array receiver.

  19. Partially Observable Markov Decision Process-Based Transmission Policy over Ka-Band Channels for Space Information Networks

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2017-09-01

    Full Text Available The Ka-band and higher Q/V band channels can provide an appealing capacity for the future deep-space communications and Space Information Networks (SIN, which are viewed as a primary solution to satisfy the increasing demands for high data rate services. However, Ka-band channel is much more sensitive to the weather conditions than the conventional communication channels. Moreover, due to the huge distance and long propagation delay in SINs, the transmitter can only obtain delayed Channel State Information (CSI from feedback. In this paper, the noise temperature of time-varying rain attenuation at Ka-band channels is modeled to a two-state Gilbert–Elliot channel, to capture the channel capacity that randomly ranging from good to bad state. An optimal transmission scheme based on Partially Observable Markov Decision Processes (POMDP is proposed, and the key thresholds for selecting the optimal transmission method in the SIN communications are derived. Simulation results show that our proposed scheme can effectively improve the throughput.

  20. Effect of quasi-particle injection on retrapping current of Josephson junction

    OpenAIRE

    Utsunomiya, K.; Yagi, Ryuta

    2006-01-01

    We report that the energy dissipation of Josephson junction can be controlled by quasi-particle injection. We fabricated two Josephson junctions on the narrow aluminum wire and controlled the energy dissipation of one junction by quasi-particle injection from the other. We observed the retrapping current increased as the quasi-particles were injected. We also studied the heating effect of our measurement.

  1. Quantum dynamical effects as a singular perturbation for observables in open quasi-classical nonlinear mesoscopic systems

    International Nuclear Information System (INIS)

    Berman, G.P.; Borgonovi, F.; Dalvit, D.A.R.

    2009-01-01

    We review our results on a mathematical dynamical theory for observables for open many-body quantum nonlinear bosonic systems for a very general class of Hamiltonians. We show that non-quadratic (nonlinear) terms in a Hamiltonian provide a singular 'quantum' perturbation for observables in some 'mesoscopic' region of parameters. In particular, quantum effects result in secular terms in the dynamical evolution, that grow in time. We argue that even for open quantum nonlinear systems in the deep quasi-classical region, these quantum effects can survive after decoherence and relaxation processes take place. We demonstrate that these quantum effects in open quantum systems can be observed, for example, in the frequency Fourier spectrum of the dynamical observables, or in the corresponding spectral density of noise. Estimates are presented for Bose-Einstein condensates, low temperature mechanical resonators, and nonlinear optical systems prepared in large amplitude coherent states. In particular, we show that for Bose-Einstein condensate systems the characteristic time of deviation of quantum dynamics for observables from the corresponding classical dynamics coincides with the characteristic time-scale of the well-known quantum nonlinear effect of phase diffusion.

  2. Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states

    Science.gov (United States)

    Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei

    2018-02-01

    The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.

  3. Comparing and Merging Observation Data from Ka-Band Cloud Radar, C-Band Frequency-Modulated Continuous Wave Radar and Ceilometer Systems

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2017-12-01

    Full Text Available Field experiment in South China was undertaken to improve understanding of cloud and precipitation properties. Measurements of the vertical structures of non-precipitating and precipitating clouds were obtained using passive and active remote sensing equipment: a Ka-band cloud radar (CR system, a C-band frequency modulated continuous wave vertical pointing radar (CVPR, a microwave radiometer and a laser ceilometer (CEIL. CR plays a key role in high-level cloud observation, whereas CVPR is important for observing low- and mid-level clouds and heavy precipitation. CEIL helps us diminish the effects of “clear-sky” in the planetary boundary layer. The experiment took place in Longmen, Guangdong Province, China from May to September of 2016. This study focuses on evaluating the ability of the two radars to deliver consistent observation data and develops an algorithm to merge the CR, CVPR and CEIL data. Cloud echo base, thickness, frequency of observed cloud types and reflectivity vertical distributions are analyzed in the radar data. Comparisons between the collocated data sets show that reflectivity biases between the CR three operating modes are less than 2 dB. The averaged difference between CR and CVPR reflectivity can be reduced with attenuation correction to 3.57 dB from the original 4.82 dB. No systemic biases were observed between velocity data collected in the three CR modes and CVPR. The corrected CR reflectivity and velocity data were then merged with the CVPR data and CEIL data to fill in the gaps during the heavy precipitation periods and reduce the effects of Bragg scattering and fog on cloud observations in the boundary layer. Meanwhile, the merging of velocity data with different Nyquist velocities and resolutions diminishes velocity folding to provide fine-grain information about cloud and precipitation dynamics. The three daily periods in which low-level clouds tended to occur were at sunrise, noon and sunset and large

  4. A High-resolution Multi-wavelength Simultaneous Imaging System with Solar Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Changhui; Zhu, Lei; Gu, Naiting; Rao, Xuejun; Zhang, Lanqiang; Bao, Hua; Kong, Lin; Guo, Youming; Zhong, Libo; Ma, Xue’an; Li, Mei; Wang, Cheng; Zhang, Xiaojun; Fan, Xinlong; Chen, Donghong; Feng, Zhongyi; Wang, Xiaoyun; Wang, Zhiyong, E-mail: gunaiting@ioe.ac.cn [The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, P.O. Box 350, Shuangliu, Chengdu 610209, Sichuan (China)

    2017-10-01

    A high-resolution multi-wavelength simultaneous imaging system from visible to near-infrared bands with a solar adaptive optics system, in which seven imaging channels, including the G band (430.5 nm), the Na i line (589 nm), the H α line (656.3 nm), the TiO band (705.7 nm), the Ca ii IR line (854.2 nm), the He i line (1083 nm), and the Fe i line (1565.3 nm), are chosen, is developed to image the solar atmosphere from the photosphere layer to the chromosphere layer. To our knowledge, this is the solar high-resolution imaging system with the widest spectral coverage. This system was demonstrated at the 1 m New Vaccum Solar Telescope and the on-sky high-resolution observational results were acquired. In this paper, we will illustrate the design and performance of the imaging system. The calibration and the data reduction of the system are also presented.

  5. Wannier–Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO_2 coatings

    International Nuclear Information System (INIS)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-01-01

    Highlights: • The IR absorption spectra of oxidized macroporous silicon were studied. • The Wannier–Stark electro-optical effect on Si-SiO_2 boundary was confirmed. • An additional electric field of quasi-guided optical modes was evaluated. • The photonic modes and band gaps were measured as peculiarities in absorption spectra. - Abstract: Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO_2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0–800 nm thick. The Wannier–Stark electro-optical effect due to strong electric field on Si-SiO_2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO_2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  6. Mars Global Surveyor Ka-Band Frequency Data Analysis

    Science.gov (United States)

    Morabito, D.; Butman, S.; Shambayati, S.

    2000-01-01

    for the feed and electronics equipment. A dichroic plate is used to reflect the X-band energy and pass the Ka-band energy to another mirror. The RF energy for each band is then focused onto a feed horn and low-noise amplifier package. After amplification and RF/IF downconversion, the IF signals are sent to the Experimental Tone Tracker (ETT), a digital phase-lock-loop receiver, which simultaneously tracks both X-band and Ka-band carrier signals. Once a signal is detected, the ETT outputs estimates of the SNR in a I -Hz bandwidth (Pc/No), baseband phase and frequency of the signals every I -sec. Between December 1996 and December 1998, the Ka-band and X-band signals from MGS were tracked on a regular basis using the ETT. The Ka-band downlink frequencies described here were referenced to the spacecraft's on-board USO which was also the X-band frequency reference (fka= 3.8 fx). The ETT estimates of baseband phase at I -second sampled time tags were converted to sky frequency estimates. Frequency residuals were then generated for each band by removing a model frequency from each observable frequency at each time tag. The model included Doppler and other effects derived from spacecraft trajectory files obtained from the MGS Navigation Team. A simple troposphere correction was applied to the data. In addition to residuals, the USO frequencies emitted by the spacecraft were estimated. For several passes, the USO frequencies were determined from X-band data and from Ka-band data (referred to X-band by dividing by 3.8) and were found to be in good agreement. In addition, X-band USO frequency estimates from MGS Radio Science data acquired from operational DSN stations were available for comparison and were found to agree within the I Hz level. The remaining sub-Hertz differences were attributed to the different models and software algorithms used by MGS Radio Science and KaBLE-11. A summary of the results of a linear fit of the USO frequency versus time (day of year) is

  7. In-Band full-duplex transceiver technology for 5G mobile networks

    NARCIS (Netherlands)

    Deballie, B.; van Liempd, B.; Hershberg, B.; Craninckx, J.; Rikkinen, K.; van den Broek, Dirk-Jan; Klumperink, Eric A.M.; Nauta, Bram

    2015-01-01

    In-band full-duplex is a promising air interface technique to tackle several of the key challenges of next generation (5G)mobile networks. Simultaneous transmission and reception in the same frequency band increases the throughput and spectral efficiency, and reduces the air interface delay. Its

  8. Quasi-equilibria in reduced Liouville spaces.

    Science.gov (United States)

    Halse, Meghan E; Dumez, Jean-Nicolas; Emsley, Lyndon

    2012-06-14

    The quasi-equilibrium behaviour of isolated nuclear spin systems in full and reduced Liouville spaces is discussed. We focus in particular on the reduced Liouville spaces used in the low-order correlations in Liouville space (LCL) simulation method, a restricted-spin-space approach to efficiently modelling the dynamics of large networks of strongly coupled spins. General numerical methods for the calculation of quasi-equilibrium expectation values of observables in Liouville space are presented. In particular, we treat the cases of a time-independent Hamiltonian, a time-periodic Hamiltonian (with and without stroboscopic sampling) and powder averaging. These quasi-equilibrium calculation methods are applied to the example case of spin diffusion in solid-state nuclear magnetic resonance. We show that there are marked differences between the quasi-equilibrium behaviour of spin systems in the full and reduced spaces. These differences are particularly interesting in the time-periodic-Hamiltonian case, where simulations carried out in the reduced space demonstrate ergodic behaviour even for small spins systems (as few as five homonuclei). The implications of this ergodic property on the success of the LCL method in modelling the dynamics of spin diffusion in magic-angle spinning experiments of powders is discussed.

  9. Simultaneous Planck, Swift, and Fermi Observations of X-ray and Gamma-ray Selected Blazars

    Science.gov (United States)

    Giommi, P.; Polenta, G.; Laehteenmaeki, A.; Thompson, D. J.; Capalbi, M.; Cutini, S.; Gasparrini, D.; Gonzalez, Nuevo, J.; Leon-Tavares, J.; Lopez-Caniego, M.; hide

    2012-01-01

    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands, with additional 5 GHz flux-density limits to ensure a good probability of a Planck detection. We compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set allows us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by the Fermi Large Area Telescope (LAT), whereas 30% to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with (alpha) approx 0 up to about 70GHz, above which it steepens to (alpha) approx -0.65. The BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (nu(sup s)(sub peak)) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with (nu(sup s)(sub peak)) = 10(exp 13.1 +/- 0.1) Hz, while the mean inverse Compton peak frequency, (nu(sup IC)(sub peak)), ranges from 10(exp 21) to 10(exp 22) Hz. The distributions of nu(sup s)(sub peak) and nu(sup IC)(sub peak) of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars. defined as the ratio of the inverse Compton to synchrotron peak luminosities, ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends

  10. Simultaneous Planck, Swift, and Fermi observations of X-ray and γ-ray selected blazars

    International Nuclear Information System (INIS)

    Giommi, P.; Polenta, G.; Lähteenmäki, A.; Thompson, D. J.; Capalbi, M.

    2012-01-01

    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and γ-ray bands, with additional 5GHz flux-density limits to ensure a good probability of a Planck detection. We compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set allows us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by the Fermi Large AreaTelescope (LAT), whereas 30% to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the γ-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with >α> ~ 0 up to about 70GHz, above which it steepens to ~ -0.65. The BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (ν_p_e_a_k"S) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with ν_p_e_a_k"I"C>, ranges from 1021 to 1022 Hz. The distributions of ν_p_e_a_k"S and ν_p_e_a_k"I"C of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars, defined as the ratio of the inverse Compton to synchrotron peak luminosities, ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends strongly on the selection method, with γ-ray selected blazars peaking at ~7 or more, and radio-selected blazars at values close to 1, thus implying that the common

  11. O2 atmospheric band measurements with WINDII: Performance of a narrow band filter/wide angle Michelson combination in space

    International Nuclear Information System (INIS)

    Ward, W.E.; Hersom, C.H.; Tai, C.C.; Gault, W.A.; Shepherd, G.G.; Solheim, B.H.

    1994-01-01

    Among the emissions viewed by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0-0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide-angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique will be outlined and the on-orbit behavior since launch summarized

  12. Simultaneous Chandra/Swift Observations of the RT Cru Symbiotic System

    Science.gov (United States)

    Kashyap, Vinay; Kennea, J. A.; Karovska, M.; Calibration, Chandra

    2013-04-01

    The symbiotic star RT Cru was observed simultaneously by the Chandra/HRC-I and Swift/XRT in Dec 2012. The observations were carried out as part of a program to calibrate the Chandra PSF. The Chandra light curve shows a number of brightenings by factors of 2, with strong indications of a softening of the spectrum at these times. Swift observations cover a brief part of the Chandra light curve, and the intensities over this duration are tightly correlated. The Swift spectral data confirm the anticorrelation between intensity and spectral hardness. However, there are differences in the correlations at different periods that are not understood. We report on our analysis of the data, with emphasis on the spectral modeling at different times and intensity levels, and discuss the implications of the results on the emission mechanisms on symbiotic stars. We also report our inferences on the structure and energy dependence of the Chandra PSF anomaly, and on the high-energy cross-calibration between the HRC-I and XRT. This work is supported by the NASA contract NAS8-03060 to the Chandra X-ray Center.

  13. Discrete-time nonlinear damping backstepping control with observers for rejection of low and high frequency disturbances

    Science.gov (United States)

    Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi

    2018-05-01

    A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.

  14. Highly miniaturised semi-loop meandered dual-band MIMO antenna system

    KAUST Repository

    Jehangir, Syed S.

    2017-12-05

    A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.

  15. Highly miniaturised semi-loop meandered dual-band MIMO antenna system

    KAUST Repository

    Jehangir, Syed S.; Sharawi, Mohammad S.; Shamim, Atif

    2017-01-01

    A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.

  16. Abrikosov flux-lines in two-band superconductors with mixed dimensionality

    International Nuclear Information System (INIS)

    Tanaka, K; Eschrig, M

    2009-01-01

    We study vortex structure in a two-band superconductor, in which one band is ballistic and quasi-two-dimensional (2D), and the other is diffusive and three-dimensional (3D). A circular cell approximation of the vortex lattice within the quasiclassical theory of superconductivity is applied to a recently developed model appropriate for such a two-band system (Tanaka et al 2006 Phys. Rev. B 73 220501(R); Tanaka et al 2007 Phys. Rev. B 75 214512). We assume that superconductivity in the 3D diffusive band is 'weak', i.e. mostly induced, as is the case in MgB 2 . Hybridization with the 'weak' 3D diffusive band has significant and intriguing influence on the electronic structure of the 'strong' 2D ballistic band. In particular, the Coulomb repulsion and the diffusivity in the 'weak' band enhance suppression of the order parameter and enlargement of the vortex core by magnetic field in the 'strong' band, resulting in reduced critical temperature and field. Moreover, increased diffusivity in the 'weak' band can result in an upward curvature of the upper critical field near the transition temperature. A particularly interesting feature found in our model is the appearance of additional bound states at the gap edge in the 'strong' ballistic band, which are absent in the single-band case. Furthermore, coupling with the 'weak' diffusive band leads to reduced bandgaps and van Hove singularities of energy bands of the vortex lattice in the 'strong' ballistic band. We find these intriguing features for parameter values appropriate for MgB 2 .

  17. DEEP U BAND AND R IMAGING OF GOODS-SOUTH: OBSERVATIONS, DATA REDUCTION AND FIRST RESULTS ,

    International Nuclear Information System (INIS)

    Nonino, M.; Cristiani, S.; Vanzella, E.; Dickinson, M.; Reddy, N.; Rosati, P.; Grazian, A.; Giavalisco, M.; Kuntschner, H.; Fosbury, R. A. E.; Daddi, E.; Cesarsky, C.

    2009-01-01

    We present deep imaging in the U band covering an area of 630 arcmin 2 centered on the southern field of the Great Observatories Origins Deep Survey (GOODS). The data were obtained with the VIMOS instrument at the European Southern Observatory (ESO) Very Large Telescope. The final images reach a magnitude limit U lim ∼ 29.8 (AB, 1σ, in a 1'' radius aperture), and have good image quality, with full width at half-maximum ∼0.''8. They are significantly deeper than previous U-band images available for the GOODS fields, and better match the sensitivity of other multiwavelength GOODS photometry. The deeper U-band data yield significantly improved photometric redshifts, especially in key redshift ranges such as 2 lim ∼ 29 (AB, 1σ, 1'' radius aperture), and image quality ∼0.''75. We discuss the strategies for the observations and data reduction, and present the first results from the analysis of the co-added images.

  18. Quasi-superplasticity of a banded-grained Al-Mg-Y alloy processed by continuous casting-extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Furong, E-mail: cfr-lff@163.com [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Zhu, Xiaotong [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Huaian Dekema Semiconductor Co., Ltd., Huaian 223300 (China); Wang, Shuncheng [Institute of Materials Processing and Forming Technology, Guangdong General Research Institute of Industrial Technology, Guangzhou 510650 (China); Shi, Lu [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Xu, Guangming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Wen, Jinglin [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2017-04-06

    The continuous casting-extrusion (CTE) process is a short-route technology for fabricating aluminum and aluminum alloy wires. A novel Al-1.44Mg-1.09Y alloy was prepared by CTE, and its mechanical properties and microstructure evolution were investigated at elevated temperatures to explore the hot tensile ductility of aluminum alloy wire. A true strain to failure of 1.159 was obtained at 773 K and 1.67×10{sup −2} s{sup −1}, and the present alloy exhibits high strain rate quasi-superplasticity. Microstructure observations reveal that it is difficult to realize the equiaxedness of elongated or textured grains through hot tensile deformation. A new deformation mechanism map (DMM) was constructed which predicts that dislocation climb at high stress dominates the high-temperature deformation process. This theoretical prediction using the DMM is in good agreement with experimental transmission-electron-microscopy results and with the estimated true stress exponent of 5 and the activation energy for deformation in the range 127.378―141.536 kJ mol{sup −1}. A new three-dimensional histogram containing a dynamic recovery (DRV) or dynamic recrystallization factor was constructed to demonstrate that the DRV mechanism dominates the deformation. Most experimental results are consistent with prediction using this histogram.

  19. Quasi-superplasticity of a banded-grained Al-Mg-Y alloy processed by continuous casting-extrusion

    International Nuclear Information System (INIS)

    Cao, Furong; Zhu, Xiaotong; Wang, Shuncheng; Shi, Lu; Xu, Guangming; Wen, Jinglin

    2017-01-01

    The continuous casting-extrusion (CTE) process is a short-route technology for fabricating aluminum and aluminum alloy wires. A novel Al-1.44Mg-1.09Y alloy was prepared by CTE, and its mechanical properties and microstructure evolution were investigated at elevated temperatures to explore the hot tensile ductility of aluminum alloy wire. A true strain to failure of 1.159 was obtained at 773 K and 1.67×10 −2 s −1 , and the present alloy exhibits high strain rate quasi-superplasticity. Microstructure observations reveal that it is difficult to realize the equiaxedness of elongated or textured grains through hot tensile deformation. A new deformation mechanism map (DMM) was constructed which predicts that dislocation climb at high stress dominates the high-temperature deformation process. This theoretical prediction using the DMM is in good agreement with experimental transmission-electron-microscopy results and with the estimated true stress exponent of 5 and the activation energy for deformation in the range 127.378―141.536 kJ mol −1 . A new three-dimensional histogram containing a dynamic recovery (DRV) or dynamic recrystallization factor was constructed to demonstrate that the DRV mechanism dominates the deformation. Most experimental results are consistent with prediction using this histogram.

  20. Simultaneous Determination of Source Wavelet and Velocity Profile Using Impulsive Point-Source Reflections from a Layered Fluid

    National Research Council Canada - National Science Library

    Bube, K; Lailly, P; Sacks, P; Santosa, F; Symes, W. W

    1987-01-01

    .... We show that a quasi-impulsive, isotropic point source may be recovered simultaneously with the velocity profile from reflection data over a layered fluid, in linear (perturbation) approximation...

  1. Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor

    KAUST Repository

    Lan, Yann Wen

    2016-09-05

    The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.

  2. Conjugate observations of quasi-periodic emissions by Cluster and DEMETER spacecraft

    Czech Academy of Sciences Publication Activity Database

    Němec, F.; Santolík, Ondřej; Parrot, M.; Pickett, J. S.; Hayosh, Mykhaylo; Cornilleau-Wehrlin, N.

    2013-01-01

    Roč. 118, č. 1 (2013), s. 198-208 ISSN 2169-9380 R&D Projects: GA ČR GAP205/10/2279; GA ČR(CZ) GAP209/11/2280 Grant - others:GA ČR(CZ) GPP209/12/P658 Program:GP Institutional support: RVO:68378289 Keywords : quasi-periodic * QP emissions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1029/2012JA018380/abstract

  3. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.

    Science.gov (United States)

    Owerre, S A

    2017-07-31

    In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L  ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM  magnon edge modes.

  4. Quasi-Monte Carlo methods for lattice systems. A first look

    International Nuclear Information System (INIS)

    Jansen, K.; Cyprus Univ., Nicosia; Leovey, H.; Griewank, A.; Nube, A.; Humboldt-Universitaet, Berlin; Mueller-Preussker, M.

    2013-02-01

    We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N -1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N -1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.

  5. Quasi-Monte Carlo methods for lattice systems. A first look

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Leovey, H.; Griewank, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Nube, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Mueller-Preussker, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2013-02-15

    We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N{sup -1/2}, where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N{sup -1}. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.

  6. Generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators with applications in non-compact settings and minimization problems

    Directory of Open Access Journals (Sweden)

    Chowdhury Molhammad SR

    2000-01-01

    Full Text Available Results are obtained on existence theorems of generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators in both compact and non-compact settings. We shall use the concept of escaping sequences introduced by Border (Fixed Point Theorem with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985 to obtain results in non-compact settings. Existence theorems on non-compact generalized bi-complementarity problems for quasi-semi-monotone and bi-quasi-semi-monotone operators are also obtained. Moreover, as applications of some results of this paper on generalized bi-quasi-variational inequalities, we shall obtain existence of solutions for some kind of minimization problems with quasi- semi-monotone and bi-quasi-semi-monotone operators.

  7. Quasi-normal modes from non-commutative matrix dynamics

    Science.gov (United States)

    Aprile, Francesco; Sanfilippo, Francesco

    2017-09-01

    We explore similarities between the process of relaxation in the BMN matrix model and the physics of black holes in AdS/CFT. Focusing on Dyson-fluid solutions of the matrix model, we perform numerical simulations of the real time dynamics of the system. By quenching the equilibrium distribution we study quasi-normal oscillations of scalar single trace observables, we isolate the lowest quasi-normal mode, and we determine its frequencies as function of the energy. Considering the BMN matrix model as a truncation of N=4 SYM, we also compute the frequencies of the quasi-normal modes of the dual scalar fields in the AdS5-Schwarzschild background. We compare the results, and we finda surprising similarity.

  8. On A Quasi-local Mass

    OpenAIRE

    Zhang, Xiao

    2009-01-01

    We modify previous quasi-local mass definition. The new definition provides expressions of the quasi-local energy, the quasi-local linear momentum and the quasi-local mass. And they are equal to the ADM expressions at spatial infinity. Moreover, the new quasi-local energy has the positivity property.

  9. Monitoring Chandra Observations of the Quasi-persistent Neutron Star X-Ray Transient MXB 1659-29 in Quiescence: The Cooling Curve of the Heated Neutron Star Crust

    NARCIS (Netherlands)

    Wijnands, R.A.D.; Homan, J.; Miller, J.M.; Lewin, W.H.G.

    2004-01-01

    We have observed the quasi-persistent neutron star X-ray transient and eclipsing binary MXB 1659-29 in quiescence on three occasions with Chandra. The purpose of our observations was to monitor the quiescent behavior of the source after its last prolonged (~2.5 yr) outburst that ended in 2001

  10. Alpha band cortico-muscular coherence occurs in healthy individuals during mechanically-induced tremor.

    Directory of Open Access Journals (Sweden)

    Francesco Budini

    Full Text Available The present work aimed at investigating the effects of mechanically amplified tremor on cortico-muscular coherence (CMC in the alpha band. The study of CMC in this specific band is of particular interest because this coherence is usually absent in healthy individuals and it is an aberrant feature in patients affected by pathological tremors; understanding its mechanisms is therefore important. Thirteen healthy volunteers (23±4 years performed elbow flexor sustained contractions both against a spring load and in isometric conditions at 20% of maximal voluntary isometric contraction (MVC. Spring stiffness was selected to induce instability in the stretch reflex servo loop. 64 EEG channels, surface EMG from the biceps brachii muscle and force were simultaneously recorded. Contractions against the spring resulted in greater fluctuations of the force signal and EMG amplitude compared to isometric conditions (p<.05. During isometric contractions CMC was systematically found in the beta band and sporadically observed in the alpha band. However, during the contractions against the spring load, CMC in the alpha band was observed in 12 out of 13 volunteers. Partial directed coherence (PDC revealed an increased information flow in the EMG to EEG direction in the alpha band (p<.05. Therefore, coherence in the alpha band between the sensory-motor cortex and the biceps brachii muscle can be systematically induced in healthy individuals by mechanically amplifying tremor. The increased information flow in the EMG to EEG direction may reflect enhanced afferent activity from the muscle spindles. These results may contribute to the understanding of the presence of alpha band CMC in tremor related pathologies by suggesting that the origin of this phenomenon may not only be at cortical level but may also be affected by spinal circuit loops.

  11. Experimental observation on asymmetric energy flux within the forbidden frequency band in the LC transmission line

    International Nuclear Information System (INIS)

    Tao Feng; Chen Weizhong; Pan Junting; Xu Wen; Du Sidan

    2012-01-01

    We study the energy flux in a nonlinear electrical transmission line consisting of two coupled segments which are identical in structure and different in parameters. The asymmetry of energy flux caused by nonlinear wave has been observed experimentally in the forbidden band of the line. The experiment shows whether the energy can flow through the transmission line depends on the amplitude of the boundary driving voltages, which can be well explained in the theoretical framework of nonlinear supratransmission. The numerical simulation based on Kirchhoff’s laws further verifies the existence of the asymmetric energy flux in the forbidden band.

  12. Observations of the initial stages of colloidal band formation

    Science.gov (United States)

    Li, Yanrong; Tagawa, Yoshiyuki; Yee, Andrew; Yoda, Minami

    2017-11-01

    A number of studies have shown that particles suspended in a conducting fluid near a wall are subject to wall-normal repulsive ``lift'' forces, even in the absence of interparticle interactions, in a flowing suspension. Evanescent-wave visualizations have shown that colloidal particles in a dilute (volume fractions negative zeta-potentials. Above a minimum ``threshold'' electric field magnitude |Emin | , the particles assemble into dense ``bands'' with cross-sectional dimensions of a few μm and length comparable to that of the channel (i.e., a few cm). The results suggest that the threshold field |Emin | is large enough so that there is a region of ``reverse'' flow, along the direction of the EO flow, near the wall. Visualization of a large segment of the channel (>300 hydraulic diameters) at frame rates as great as 1 kHz is used to determine banding maps for a variety of dilute colloidal suspensions and to investigate the initial stages of band formation over a wide range of flow conditions. Supported by US Army Research Office.

  13. Quasi-two-dimensional Fermi-liquid state in Sr2RhO4-δ

    International Nuclear Information System (INIS)

    Nagai, Ichiro; Shirakawa, Naoki; Umeyama, Norio; Ikeda, Shin-ichi

    2010-01-01

    Single crystals of layered perovskite Sr 2 RhO 4-δ (δ=0.0 and 0.1) are successfully grown by the floating-zone method. Stoichiometric single crystals (Sr 2 RhO 4.0 ) are obtained by O 2 -annealing the as-grown crystals (Sr 2 RhO 3.9 ). Sr 2 RhO 4.0 and Sr 2 RhO 3.9 show quasi-two-dimensional Fermi-liquid behavior at low temperatures, whereas there are large differences in the anisotropy of electrical resistivity ρ c (3 K)/ρ ab (3 K) and Wilson ratio R w between Sr 2 RhO 4.0 and Sr 2 RhO 3.9 : ρ c (3 K)/ρ ab (3 K)=2400 (19000) and R w =3.8 (6.4) for Sr 2 RhO 4.0 (Sr 2 RhO 3.9 ). The differences observed between the temperature dependence of the in-plane electrical resistivity (T 2 RhO 4.0 and Sr 2 RhO 3.9 are mainly derived from those between the density of states and band structure near the corresponding Fermi level. This indicates that the changes in these physical properties, which are accompanied by oxygen defects in the Sr 2 RhO 4-δ system, can be explained by the rigid band model. Moreover, these results suggest that t 2g band-filling can be controlled by adjusting the oxygen defect content δ in the Sr 2 RhO 4-δ system. Although many similarities are observed in this study between the physical properties of Sr 2 RhO 4.0 and Sr 2 RuO 4 . Sr 2 RhO 4.0 does not exhibit superconductivity down to 36 mK. (author)

  14. Simultaneous Solar Maximum Mission and Very Large Array (VLA) observations of solar active regions. Semiannual Progress Report, 1 February 1985-30 January 1986

    International Nuclear Information System (INIS)

    Lang, K.R.

    1985-08-01

    Simultaneous observations of solar active regions with the Solar Maximum Mission (SMM) Satellite and the Very Large Array (VLA) have been obtained and analyzed. Combined results enhance the scientific return for beyond that expeted from using either SMM or VLA alone. A total of two weeks of simultaneous SMM/VLA data were obtained. The multiple wavelength VLA observations were used to determine the temperature and magnetic structure at different heights within coronal loops. These data are compared with simultaneous SMM observations. Several papers on the subject are in progress. They include VLA observations of compact, transient sources in the transition region; simultaneous SMM/VLA observations of the coronal loops in one active region and the evolution of another one; and sampling of the coronal plasma using thermal cyclotron lines (magnetic field - VLA) and soft X ray spectral lines (electron density and electron temperaure-SMM)

  15. Multiwavelength Observations of the Powerful Gamma-ray Quasar PKS 1510-089: Clues on the Jet Composition

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; Madejski, G.; Sikora, M.; Roming, P.; Chester, M.M.; Grupe, D.; Tsubuku, Y.; Sato, R.; Kawai, N.; Tosti, G.; Impiombato, D.; Kovalev, Y.Y.; Kovalev, Y.A.; Edwards, Philip G.; Wagner, S.J.; Moderski, R.; Stawarz, L.; Takahashi, T.; Watanabe, S.

    2007-09-28

    We present the results from a multiwavelength campaign conducted in August 2006 of the powerful {gamma}-ray quasar PKS 1510--089 (z = 0.361). This campaign commenced with a deep Suzaku observation lasting three days for a total exposure time of 120 ks, and continued with Swift monitoring over 18 days. Besides Swift observations, which sampled the optical/UV flux in all 6 UVOT filters as well as the X-ray spectrum in the 0.3--10 keV energy range, the campaign included ground-based optical and radio data, and yielded a quasi-simultaneous broad-band spectral energy distribution from 109 Hz to 1019 Hz. Thanks to its low instrumental background, the Suzaku observation provided a high S/N X-ray spectrum, which is well represented by an extremely hard power-law with photon index {Gamma}{approx_equal}1.2, augmented by a soft component apparent below 1 keV, which is well described by a black-body model with temperature kT {approx_equal}0.2 keV. Monitoring by Suzaku revealed temporal variability which is different between the low and high energy bands, again suggesting the presence of a second, variable component in addition to the primary power-law emission. We model the broadband spectrum of PKS 1510--089 assuming that the high energy spectral component results from Comptonization of infrared radiation produced by hot dust located in the surrounding molecular torus. In the adopted internal shock scenario, the derived model parameters imply that the power of the jet is dominated by protons but with a number of electrons/positrons exceeding a number of protons by a factor {approx} 10. We also find that inhomogeneities responsible for the shock formation, prior to the collision may produce bulk-Compton radiation which can explain the observed soft X-ray excess and possible excess at {approx} 18 keV. We note, however, that the bulk-Compton interpretation is not unique, and the observed soft excess could arise as well via some other processes discussed briefly in the text.

  16. REFIR/BB initial observations in the water vapour rotational band: Results from a field campaign

    International Nuclear Information System (INIS)

    Esposito, F.; Grieco, G.; Leone, L.; Restieri, R.; Serio, C.; Bianchini, G.; Palchetti, L.; Pellegrini, M.; Cuomo, V.; Masiello, G.; Pavese, G.

    2007-01-01

    There is a growing interest in the far infrared spectral region 17-50 μm as a remote sensing tool in atmospheric sciences, since this portion of the spectrum contains the characteristic molecular rotational band for water vapour. Much of the Earth energy lost to space is radiated through this spectral region. The Radiation Explorer in the Far InfraRed Breadboard (REFIR/BB) spectrometer was born because of the quest to make observations in the far infrared. REFIR/BB is a Fourier Transform Spectrometer with a sampling resolution of 0.5 cm -1 and it was tested for the first time in the field to check its reliability and radiometric performance. The field campaign was held at Toppo di Castelgrande (40 o 49' N, 15 o 27' E, 1258 m a. s. l.), a mountain site in South Italy. The spectral and radiometric performance of the instrument and initial observations are shown in this paper. Comparisons to both (1) BOMEM MR100 Fourier Transform spectrometer observations and (2) line-by-line radiative transfer calculations for selected clear sky are presented and discussed. These comparisons (1) show a very nice agreement between radiance measured by REFIR/BB and by BOMEM MR100 and (2) demonstrate that REFIR/BB accurately observes the very fine spectral structure in the water vapour rotational band

  17. Simultaneous Observation of Hybrid States for Cyber-Physical Systems: A Case Study of Electric Vehicle Powertrain.

    Science.gov (United States)

    Lv, Chen; Liu, Yahui; Hu, Xiaosong; Guo, Hongyan; Cao, Dongpu; Wang, Fei-Yue

    2017-08-22

    As a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach. System models, including the electric powertrain and vehicle dynamics models, are established considering the drivetrain backlash and flexibility, and also calibrated and validated using vehicle road testing data. Based on the developed system models, the powertrain behavior is represented using hybrid automata according to the piecewise affine property of the backlash dynamics. A hybrid-state observer, which is comprised of a discrete-state observer and a continuous-state observer, is designed for the simultaneous estimation of the backlash position and half-shaft torque. In order to guarantee the stability and reachability, the convergence property of the proposed observer is investigated. The proposed observer are validated under highly dynamical transitions of vehicle states. The validation results demonstrates the feasibility and effectiveness of the proposed hybrid-state observer.

  18. FIRST SIMULTANEOUS OBSERVATION OF AN H{alpha} MORETON WAVE, EUV WAVE, AND FILAMENT/PROMINENCE OSCILLATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Ayumi; Isobe, Hiroaki [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Ishii, Takako T.; Kitai, Reizaburo; Ichimoto, Kiyoshi; UeNo, Satoru; Nagata, Shin' ichi; Morita, Satoshi; Nishida, Keisuke; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shiota, Daikou [Advanced Science Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Oi, Akihito [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Akioka, Maki, E-mail: asai@kwasan.kyoto-u.ac.jp [Hiraiso Solar Observatory, National Institute of Information and Communications Technology, Hitachinaka, Ibaraki 311-1202 (Japan)

    2012-02-15

    We report on the first simultaneous observation of an H{alpha} Moreton wave, the corresponding EUV fast coronal waves, and a slow and bright EUV wave (typical EIT wave). We observed a Moreton wave, associated with an X6.9 flare that occurred on 2011 August 9 at the active region NOAA 11263, in the H{alpha} images taken by the Solar Magnetic Activity Research Telescope at Hida Observatory of Kyoto University. In the EUV images obtained by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory we found not only the corresponding EUV fast 'bright' coronal wave, but also the EUV fast 'faint' wave that is not associated with the H{alpha} Moreton wave. We also found a slow EUV wave, which corresponds to a typical EIT wave. Furthermore, we observed, for the first time, the oscillations of a prominence and a filament, simultaneously, both in the H{alpha} and EUV images. To trigger the oscillations by the flare-associated coronal disturbance, we expect a coronal wave as fast as the fast-mode MHD wave with the velocity of about 570-800 km s{sup -1}. These velocities are consistent with those of the observed Moreton wave and the EUV fast coronal wave.

  19. Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band.

    Science.gov (United States)

    Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H

    2017-08-22

    Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.

  20. Enhanced optical transmission through a star-shaped bull's eye at dual resonant-bands in UV and the visible spectral range.

    Science.gov (United States)

    Nazari, Tavakol; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Kong, Byung-Joo; Oh, Kyunghwan

    2015-07-13

    Dual resonant bands in UV and the visible range were simultaneously observed in the enhanced optical transmission (EOT) through star-shaped plasmonic structures. EOTs through four types of polygonal bull's eyes with a star aperture surrounded by the concentric star grooves were analyzed and compared for 3, 4, 5, and 6 corners, using finite difference time domain (FDTD) method. In contrast to plasmonic resonances in the visible range, the UV-band resonance intensity was found to scale with the number of corners, which is related with higher order multipole interactions. Spectral positions and relative intensities of the dual resonances were analyzed parametrically to find optimal conditions to maximize EOT in UV-visible dual bands.

  1. Observations of a quasi-coherent fluctuation mode in the KT-5C tokamak during -90 deg. phase shift feedback

    International Nuclear Information System (INIS)

    Zhai Kan; Wen Yizhi; Yu Changxuan; Liu Wandong; Wan Shude; Zhuang Ge; Yu Wen; Xu Zhizhan

    1997-01-01

    A new fluctuation phenomenon is observed through Langmuir probe measurements at the edge plasma in the KT-5C tokamak by applying a -90 deg. phase shift feedback. Using a two point correlation technique, it is found that this fluctuation mode has a longer poloidal wavelength and a definite frequency when compared with the usual edge turbulence. It is also found through bispectral analysis that this mode is a spontaneously excited quasi-coherent mode, which has almost no contribution to the cross-field particle flux. (author)

  2. Convergence acceleration of quasi-periodic and quasi-periodic-rational interpolations by polynomial corrections

    OpenAIRE

    Lusine Poghosyan

    2014-01-01

    The paper considers convergence acceleration of the quasi-periodic and the quasi-periodic-rational interpolations by application of polynomial corrections. We investigate convergence of the resultant quasi-periodic-polynomial and quasi-periodic-rational-polynomial interpolations and derive exact constants of the main terms of asymptotic errors in the regions away from the endpoints. Results of numerical experiments clarify behavior of the corresponding interpolations for moderate number of in...

  3. Observation of dark-current signals from the S-band structures of the SLAC linac

    International Nuclear Information System (INIS)

    Assmann, R.; Decker, F.J.; Seidel, M.; Siemann, R.H.; Whittum, D.

    1997-07-01

    It is well known that the electro-magnetic fields in high-gradient RF structures can cause electron emission from the metallic structure walls. If the emitted electrons are captured and accelerated by the accelerating fields so-called dark-current is induced. Dark-currents have been measured and studied for various RF-structures. In this paper the authors present measurements of RF induced signals for the SLC S-band structures. For nominal gradients of 17 MV/m it is shown that the dark-current can be strong enough to significantly reduce the signal-to-noise ratio of the SLC beam wire scanners. They also show results from RF measurements in the dipole band. The measurements are compared to more direct observations of dark-current and it is tried to connect the results to possible effects on the accelerated particle beam

  4. Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials

    Science.gov (United States)

    Zhu, Weiwei; Ding, Ya-qiong; Ren, Jie; Sun, Yong; Li, Yunhui; Jiang, Haitao; Chen, Hong

    2018-05-01

    The Zak phase, which refers to Berry's phase picked up by a particle moving across the Brillouin zone, characterizes the topological properties of Bloch bands in a one-dimensional periodic system. Here the Zak phase in dimerized one-dimensional locally resonant metamaterials is investigated. It is found that there are some singular points in the bulk band across which the Bloch states contribute π to the Zak phase, whereas in the rest of the band the contribution is nearly zero. These singular points associated with zero reflection are caused by two different mechanisms: the dimerization-independent antiresonance of each branch and the dimerization-dependent destructive interference in multiple backscattering. The structure undergoes a topological phase-transition point in the band structure where the band inverts, and the Zak phase, which is determined by the numbers of singular points in the bulk band, changes following a shift in dimerization parameter. Finally, the interface state between two dimerized metamaterial structures with different topological properties in the first band gap is demonstrated experimentally. The quasi-one-dimensional configuration of the system allows one to explore topology-inspired new methods and applications on the subwavelength scale.

  5. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Atanu, E-mail: atanunandy1989@gmail.com; Chakrabarti, Arunava, E-mail: arunava_chakrabarti@yahoo.co.in

    2015-11-06

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign. - Highlights: • Exact construction of eigenstates with flat and dispersive bands is reported. • Competition between translational order and growth of aperiodicity is discussed. • The effect of magnetic field on the location of flat band states is shown. • Flux tunable re-entrant behavior of the effective mass of electron is studied.

  6. Dwarf novae in outburst: simultaneous ultraviolet and optical observations of VW Hydri

    International Nuclear Information System (INIS)

    Schwarzenberg-Czerny, A.; Jones, D.H.P.; Ward, M.; Pringle, J.E.; Verbunt, F.

    1985-01-01

    Simultaneous spectrophotometry of the dwarf nova VW Hydri in the range 1200-7000 A is presented. The main set of observations cover one complete outburst, including the rise and the decline. Comparing these data with data from other outbursts of VW Hyi it is found that all the data can be interleaved. This underlines the similarity in the behaviour of the continuum flux distribution from outburst to outburst. In particular the discovery by previous authors that the outburst starts at optical wavelengths and spreads later to the ultraviolet is confirmed. (author)

  7. Simultaneous Marine Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations from Naval vessels, primarily American, taken once daily at Greenwich Noon time. Forms are monthly and were captured from records held at the National...

  8. Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals

    Science.gov (United States)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-01-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to approximately100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  9. Perancangan Low Noise Amplifier dengan Teknik Non Simultaneous Conjugate Match untuk Aplikasi Radar S-Band

    Directory of Open Access Journals (Sweden)

    Yana Taryana

    2016-06-01

    Full Text Available Radar merupakan sistem pemancar dan penerima gelombang elektromagnetik untuk mendeteksi, mengukur jarak dan membuat peta benda benda seperti pesawat terbang, kapal laut, kendaran bermotor dan informasi cuaca. Salah satu kendala yang dihadapi pada sistem radar adalah sinyal pantulan yang memiliki daya yang rendah sehingga kualitas penerimaan menjadi kurang baik. Untuk mengatasi kendala tersebut dibutuhkan penguat daya pada sistem penerima yaitu Low Noise Amplifier (LNA. Oleh karena itu, tulisan ini memaparkan perancangan LNA dengan menggunakan teknik Non Simultaneous Conjugate Match (NSCM untuk aplikasi radar S-Band. Teknik ini memberikan kemudahan dalam menentukan nilai trade off (TO untuk nilai gain, noise figure (NF dan Voltage Standing Wave Ratio (VSWR yang diinginkan. Dalam proses perancangannya, perangkat lunak Agilent Design System (ADS 2011 digunakan untuk mendapatkan hubungan antara lingkaran gain, lingkaran NF, lingkaran VSWR, dan lingkaran mismatch factor (M. Dari hubungan tersebut diperoleh nilai impedansi masukan dan keluaran dari komponen aktif. Dalam tulisan ini, LNA dirancang dua tingkat untuk mendapatkan penguatan yang tinggi. Masing-masing tingkat menggunakan komponen aktif BJT BFP420 dengan penguatan dirancang sebesar 13,50 dB untuk tingkat pertama dan kedua, dan M sebesar 0,98. Sedangkan untuk saluran penyesuai impedansinya menggunakan substrat teflon fiberglass DiClad527. Hasil simulasi menunjukkan karakteristik LNA pada frekuensi 3 GHz yaitu gain sebesar 28,80 dB, NF sebesar 2,80 dB, VSWRin sebesar 1,05 dan VSWRout sebesar 1,1.

  10. A complete non-perturbative renormalization prescription for quasi-PDFs

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States). Dept. of Physics; Hadjiyiannakou, Kyriakos [The Cyprus Institute, Nicosia (Cyprus); Jansen, Karl; Steffens, Fernanda [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Panagopoulos, Haralambos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration

    2017-06-15

    In this work we present, for the first time, the non-perturbative renormalization for the unpolarized, helicity and transversity quasi-PDFs, in an RI{sup '} scheme. The proposed prescription addresses simultaneously all aspects of renormalization: logarithmic divergences, finite renormalization as well as the linear divergence which is present in the matrix elements of fermion operators with Wilson lines. Furthermore, for the case of the unpolarized quasi-PDF, we describe how to eliminate the unwanted mixing with the twist-3 scalar operator. We utilize perturbation theory for the one-loop conversion factor that brings the renormalization functions to the MS-scheme at a scale of 2 GeV. We also explain how to improve the estimates on the renormalization functions by eliminating lattice artifacts. The latter can be computed in one-loop perturbation theory and to all orders in the lattice spacing. We apply the methodology for the renormalization to an ensemble of twisted mass fermions with N{sub f}=2+1+1 dynamical quarks, and a pion mass of around 375 MeV.

  11. Intruder bands in Z = 51 nuclei

    International Nuclear Information System (INIS)

    LaFosse, D.R.

    1993-01-01

    Recent investigations of h 11/2 proton intruder bands in odd 51 Sb nuclei are reported. In addition to experiments performed at SUNY Stony Brook and Chalk River, data from Early Implementation of GAMMASPHERE (analysis in progress) are presented. In particular, the nuclei 109 Sb and 111 Sb are discussed. Rotational bands based on the πh 11/2 orbital coupled to a 2p2h deformed state of the 50 Sn core have been observed. These bands have been observed to high spin, and in the case of 109 Sb to a rotational frequency of 1.4 MeV, the highest frequency observed in a heavy nucleus. The dynamic moments of inertia in these bands decrease slowly with frequency, suggesting a gradual band termination. The systematics of such bands in 109-119 Sb will be discussed

  12. Dust bands in the asteroid belt

    International Nuclear Information System (INIS)

    Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs

  13. Electron energy-loss spectroscopy of quasi-one-dimensional cuprates and vanadates

    International Nuclear Information System (INIS)

    Atzkern, S.

    2001-01-01

    In a combination of experimental and theoretical methods in this thesis the electronic structures of quasi-one-dimensional cuprates and vanadates were studied. For this the momentum-dependent loss function was measured by means of the electron energy-loss spectroscopy in transmission on monocrystals of Li 2 CuO 2 , CuGeO 3 , V 2 O 5 and α'-NaVO 5 . The comparison of the experimental data with results from band-structure and cluster calculations allowed conclusions on the mobility and correlations of the electrons in these systems

  14. A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope

    Science.gov (United States)

    Zhong, Wei-Ye; Dong, Jian; Gou, Wei; Yu, Lin-Feng; Wang, Jin-Qing; Xia, Bo; Jiang, Wu; Liu, Cong; Zhang, Hui; Shi, Jun; Yin, Xiao-Xing; Shi, Sheng-Cai; Liu, Qing-Hui; Shen, Zhi-Qiang

    2018-04-01

    A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope (TMRT) has been developed, and it uses the independently-developed key microwave and millimeter-wave components operating from 35 to 50GHz with a fractional bandwidth of 35%. The Q-band receiver consists of three parts: optics, cold unit assembly and warm unit assembly, and it can receive simultaneously the left-handed and right-handed circularly polarized waves. The cold unit assembly of each beam is composed of a feed horn, a noise injection coupler, a differential phase shifter, an orthomode transducer and two low-noise amplifiers, and it works at a temperature range near 20 K to greatly improve the detection sensitivity of the receiving system. The warm unit assembly includes four radio-frequency amplifiers, four radio-frequency high-pass filters, four waveguide biased mixers, four 4–12 GHz intermediate-frequency amplifiers and one 31–38 GHz frequency synthesizer. The measured Q-band four-channel receiver noise temperatures are roughly 30–40 K. In addition, the single-dish spectral line and international very long baseline interferometry (VLBI) observations between the TMRT and East Asia VLBI Network at the Q-band have been successfully carried out, demonstrating the advantages of the TMRT equipped with the state-of-the-art Q-band receiver.

  15. Complicated Fermi-type vibronic resonance: Untangling of the single-site quasi-line fluorescence excitation spectra of a methylated dibenzoporphin

    International Nuclear Information System (INIS)

    Arabei, S.M.; Kuzmitsky, V.A.; Solovyov, K.N.

    2008-01-01

    The quasi-line low-temperature (4.2 K) fluorescence excitation spectra of 2,3,12,13-tetramethyldibenzo[g,q]porphin introduced into an n-octane matrix have been measured in the range of the S 2 0 electronic transition at selective fluorescence monitoring for the two main types of impurity centers (sites). A characteristic feature of these spectra is that a conglomerate of quasi-lines - a structured complex band - is observed instead of one 0-0 quasi-line of the S 2 0 transition. In this band, the intensity distributions for the two main sites considerably differ from each other. The occurrence of such conglomerates is interpreted as a result of nonadiabatic vibrational-electronic interaction between the vibronic S 2 and S 1 states (the complex vibronic analogue of the Fermi resonance). The frequencies and intensities of individual transitions determined from the deconvolution of complex conglomerates are used as the initial data for solving the inverse spectroscopic problem: the determination of the unperturbed electronic and vibrational levels of states involved in the resonance and the vibronic-interaction matrix elements between them. This problem is solved with a method developed previously. The experimental results and their analysis are compared to the analogous data obtained earlier for meso-tetraazaporphin and meso-tetrapropylporphin. The energy intervals between the S 2 and S 1 electronic levels (ΔE S 2 S 1 ) of the two main types of impurity centers formed by molecules of a given porphyrin in the crystal matrix are found to significantly differ from each other, the values of this difference (δΔE S 2 S 1 ) being considerably greater for tetramethyldibenzoporphin, δΔE S 2 S 1 =228cm -1 , than for the two other porphyrins. At the same time, the energies of the unperturbed vibrational states of the S 1 electronic level participating in the resonance are very close to each other for these two sites

  16. VizieR Online Data Catalog: TrES-2b multi-band transit observations (Mislis+, 2010)

    Science.gov (United States)

    Mislis, D.; Schroeter, S.; Schmitt, J. H. M. M.; Cordes, O.; Reif, K.

    2010-02-01

    The OLT data were taken on 11 April 2009 using a 3Kx3K CCD with a 1x1 FOV and an I-band filter as in our previous observing run (Paper I, Mislis & Schmitt, 2009, Cat. ). The Calar Alto data were taken on 28 May 2009 using BUSCA and the 2.2m telescope. (1 data file).

  17. Quasi-particles at finite temperatures

    International Nuclear Information System (INIS)

    Narnhofer, H.; Thirring, W.; Requardt, M.

    1983-01-01

    We study the consequences of the KMS-condition on the properties of quasi-particles, assuming their existence. We establish: (i) If the correlation functions decay sufficiently, we can create them by quasi-free field operators. (ii) There are many age-operators T conjugate to H. For special forms of the dispersion law epsilon(k) of the quasi-particles there is a T commuting with the; (iii) There are many age-operators T conjugate to H. For special forms of the dispersion law epsilon(k) of the quasi-particles there is a T commuting with the number of quasi-particles and its time-monotonicity describes how the quasi-particles travel to infinity. (orig.)

  18. Hole energy and momentum distributions in valence bands

    International Nuclear Information System (INIS)

    Laan, G. van der.

    1982-01-01

    In order to understand the electrical and magnetic properties of solids, the knowledge of the density of states and the dispersion relation of the valence bands is indispensable. This thesis offers some alternative methods to obtain information about the nature of the valence band. Part A deals with the energy distribution of the photoelectrons. A simple model, which explains the core hole satellite structure in compounds with large correlation effects between the valence band holes and the created photo-hole, is outlined. CuCl, CuX 2 (X = F Cl and Br) are studied, by photoemission and Auger electron spectroscopies in determining the valence band properties. Part B deals with the simultaneous measurement of the energy and the wave vector of the emitted electrons. A practical example is given for the determination of the dispersion relation in copper. The measurements of a surface resonance band and the distribution of the secondary electrons are also reported. (Auth.)

  19. Quasi-normal frequencies: Semi-analytic results for highly damped modes

    International Nuclear Information System (INIS)

    Skakala, Jozef; Visser, Matt

    2011-01-01

    Black hole highly-damped quasi-normal frequencies (QNFs) are very often of the form ω n = (offset) + in (gap). We have investigated the genericity of this phenomenon for the Schwarzschild-deSitter (SdS) black hole by considering a model potential that is piecewise Eckart (piecewise Poschl-Teller), and developing an analytic 'quantization condition' for the highly-damped quasi-normal frequencies. We find that the ω n = (offset) + in (gap) behaviour is common but not universal, with the controlling feature being whether or not the ratio of the surface gravities is a rational number. We furthermore observed that the relation between rational ratios of surface gravities and periodicity of QNFs is very generic, and also occurs within different analytic approaches applied to various types of black hole spacetimes. These observations are of direct relevance to any physical situation where highly-damped quasi-normal modes are important.

  20. Simultaneous NuSTAR/Chandra Observations of the Bursting Pulsar GRO J1744-28 During its Third Reactivation

    Science.gov (United States)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.; Tomsick, J. A.; Tennant, A.; Finger, M. H.; Furst, F.; Pottschmidt, K.; Bhalerao, V.; Boggs, S. E.; hide

    2015-01-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 x 10(exp 7) cm, which translates to a surface dipole field B approximately 9 x 10(exp 10) G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  1. SIMULTANEOUS NuSTAR/CHANDRA OBSERVATIONS OF THE BURSTING PULSAR GRO J1744-28 DURING ITS THIRD REACTIVATION

    Energy Technology Data Exchange (ETDEWEB)

    Younes, G.; Finger, M. H. [Universities Space Research Association, 6767 Old Madison Pike, Suite 450, Huntsville, AL 35806 (United States); Kouveliotou, C.; Tennant, A. [Astrophysics Office, ZP 12, NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Grefenstette, B. W.; Fürst, F. [Cahill Center for Astrophysics, 1216 East California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Tomsick, J. A.; Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Pottschmidt, K. [Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Bhalerao, V. [Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Boirin, L. [Observatoire Astronomique de Strasbourg, 11 Rue de l' Université, F-67000 Strasbourg (France); Chakrabarty, D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Degenaar, N. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Gandhi, P. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); and others

    2015-05-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)–Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5–70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 × 10{sup 7} cm, which translates to a surface dipole field B ≈ 9 × 10{sup 10} G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe xxv and Fe xxvi emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  2. Implications of the quasi-neutrality condition for neoclassical transport in stellarators

    International Nuclear Information System (INIS)

    Beidler, C.D.; Maassberg, H.

    2005-01-01

    In conventional stellarator neoclassical theory, the transport coefficients are determined so as to satisfy the so-called ambipolarity constraint on the radial particle fluxes but without regard to the additional requirement that the underlying solutions of the kinetic equation also fulfill local quasi-neutrality. This neglect is consistent with the assumption that density, n and electrostatic potential, Φ, are constant on a flux surface and is justified in the literature with analytic scaling arguments which demonstrate that quasi-neutrality introduces variations of n and Φ on a flux surface which have only a modest impact on bulk-plasma transport. The consequences for impurity transport have not been considered. In this contribution, the implications which the quasi-neutrality condition has for neoclassical transport in stellarators are investigated using a version of the General Solution of the Ripple-Averaged Kinetic Equation (GSRAKE) which accounts for the variation of Φ on flux surfaces. Solutions of the kinetic equation which simultaneously fulfill the ambipolarity and the quasi-neutrality conditions are determined iteratively using standard methods for solving systems of non-linear equations, given specified density and temperature profiles for pure hydrogen plasmas. For a conventional heliotron device, it is shown that quasi-neutrality significantly reduces the radial extent of the region in which multiple solutions of the ambipolarity condition can exist. Especially in the plasma periphery, where strong density and temperature gradients are found, the magnitude of the 'ion' root is reduced significantly leading to increased particle and energy fluxes. For strongly drift-optimized stellarators, on the other hand, bulk plasma transport is much less affected. In a small number of cases, the non-linear system of equations produces additional solutions which are not possible when only ambipolarity is enforced, but such cases are rare. Finally, it is

  3. Novel Faraday cup for the simultaneous observation and measurement of ion-beam currents

    International Nuclear Information System (INIS)

    Wei, C.; Seidman, D.N.

    1977-01-01

    A novel Faraday cup is described which allows the simultaneous observation and measurement of ion-beam currents. The Faraday cup is constructed around a Galileo channel electron multiplier array (CEMA), which serves as the basis of an internal image intensification system (a gain of >10 4 ) for the observation of the ion beam; the CEMA also acts as a collector for the ion current which is measured by a Keithley 602 electrometer. The ion current is integrated by a simple and inexpensive dosimeter; the electronic circuit for the dosimeter is described. The application of the Faraday cup to the observation and measurement of a 30-keV Ar + ion beam is presented as an illustrative example. We have also employed this Faraday cup to observe and measure 30-keV Cr + , Mo + , or W + , and 18-keV Au + ion beams employed for the in situ irradiation of field-ion microscope specimens

  4. Electron-phonon coupling in quasi free-standing graphene

    DEFF Research Database (Denmark)

    Christian Johannsen, Jens; Ulstrup, Søren; Bianchi, Marco

    2013-01-01

    Quasi free-standing monolayer graphene can be produced by intercalating species like oxygen or hydrogen between epitaxial graphene and the substrate crystal. If the graphene is indeed decoupled from the substrate, one would expect the observation of a similar electronic dispersion and many......-body effects, irrespective of the substrate and the material used to achieve the decoupling. Here we investigate the electron-phonon coupling in two different types of quasi free-standing monolayer graphene: decoupled from SiC via hydrogen intercalation and decoupled from Ir via oxygen intercalation. Both...

  5. Quantum oscillations in quasi-two-dimensional conductors

    CERN Document Server

    Galbova, O

    2002-01-01

    The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...

  6. Chen-Nester-Tung quasi-local energy and Wang-Yau quasi-local mass

    Science.gov (United States)

    Liu, Jian-Liang; Yu, Chengjie

    2017-10-01

    In this paper, we show that the Chen-Nester-Tung (CNT) quasi-local energy with 4D isometric matching references is closely related to the Wang-Yau (WY) quasi-local energy. As a particular example, we compute the second variation of the CNT quasi-local energy for axially symmetric Kerr-like spacetimes with axially symmetric embeddings at the obvious critical point (0 , 0) and find that it is a saddle critical point in most of the cases. Also, as a byproduct, we generalize a previous result about the coincidence of the CNT quasi-local energy and Brown-York mass for axially symmetric Kerr-like spacetimes by Tam and the first author Liu and Tam (2016) to general spacetimes.

  7. Electron-phonon heat exchange in quasi-two-dimensional nanolayers

    Science.gov (United States)

    Anghel, Dragos-Victor; Cojocaru, Sergiu

    2017-12-01

    We study the heat power P transferred between electrons and phonons in thin metallic films deposited on free-standing dielectric membranes. The temperature range is typically below 1 K, such that the wavelengths of the excited phonon modes in the system is large enough so that the picture of a quasi-two-dimensional phonon gas is applicable. Moreover, due to the quantization of the components of the electron wavevectors perpendicular to the metal film's surface, the electrons spectrum forms also quasi two-dimensional sub-bands, as in a quantum well (QW). We describe in detail the contribution to the electron-phonon energy exchange of different electron scattering channels, as well as of different types of phonon modes. We find that heat flux oscillates strongly with thickness of the film d while having a much smoother variation with temperature (Te for the electrons temperature and Tph for the phonons temperature), so that one obtains a ridge-like landscape in the two coordinates, (d, Te) or (d, Tph), with crests and valleys aligned roughly parallel to the temperature axis. For the valley regions we find P ∝ Te3.5 - Tph3.5. From valley to crest, P increases by more than one order of magnitude and on the crests P cannot be represented by a simple power law. The strong dependence of P on d is indicative of the formation of the QW state and can be useful in controlling the heat transfer between electrons and crystal lattice in nano-electronic devices. Nevertheless, due to the small value of the Fermi wavelength in metals, the surface imperfections of the metallic films can reduce the magnitude of the oscillations of P vs. d, so this effect might be easier to observe experimentally in doped semiconductors.

  8. Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations

    NARCIS (Netherlands)

    De Lannoy, G.J.M.; Reichle, R.H.; Vrugt, J.A.

    2014-01-01

    Uncertainties in L-band (1.4 GHz) microwave radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation

  9. Band structure engineering in van der Waals heterostructures via dielectric screening: the GΔW method

    DEFF Research Database (Denmark)

    Winther, Kirsten Trøstrup; Thygesen, Kristian Sommer

    2017-01-01

    precise magnitude is non-trivial to predict because of the non-local nature of the screening in quasi-2D crystals. Moreover, the effect is not captured by effective single-particle methods such as density functional theory. Here we present an efficient and general method for calculating the band gap...

  10. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    International Nuclear Information System (INIS)

    Habib Ullah, M; Islam, M T

    2014-01-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < −10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart. (paper)

  11. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    Science.gov (United States)

    Ullah, M. Habib; Islam, M. T.

    2014-08-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.

  12. Segregation in quasi-two-dimensional granular systems

    International Nuclear Information System (INIS)

    Rivas, Nicolas; Cordero, Patricio; Soto, Rodrigo; Risso, Dino

    2011-01-01

    Segregation for two granular species is studied numerically in a vertically vibrated quasi-two-dimensional (quasi-2D) box. The height of the box is smaller than two particle diameters so that particles are limited to a submonolayer. Two cases are considered: grains that differ in their density but have equal size, and grains that have equal density but different diameters, while keeping the quasi-2D condition. It is observed that in both cases, for vibration frequencies beyond a certain threshold-which depends on the density or diameter ratios-segregation takes place in the lateral directions. In the quasi-2D geometry, gravity does not play a direct role in the in-plane dynamics and gravity does not point to the segregation directions; hence, several known segregation mechanisms that rely on gravity are discarded. The segregation we observe is dominated by a lack of equipartition between the two species; the light particles exert a larger pressure than the heavier ones, inducing the latter to form clusters. This energy difference in the horizontal direction is due to the existence of a fixed point characterized by vertical motion and hence vanishing horizontal energy. Heavier and bigger grains are more rapidly attracted to the fixed point and the perturbations are less efficient in taking them off the fixed point when compared to the lighter grains. As a consequence, heavier and bigger grains have less horizontal agitation than lighter ones. Although limited by finite size effects, the simulations suggest that the two cases we consider differ in the transition character: one is continuous and the other is discontinuous. In the cases where grains differ in mass on varying the control parameter, partial segregation is first observed, presenting many clusters of heavier particles. Eventually, a global cluster is formed with impurities; namely lighter particles are present inside. The transition looks continuous when characterized by several segregation order

  13. The broad-band X-ray spectrum of IC 4329A from a joint NuSTAR/Suzaku observation

    Energy Technology Data Exchange (ETDEWEB)

    Brenneman, L. W.; Elvis, M. [Harvard-Smithsonian CfA, 60 Garden St., MS-67, Cambridge, MA 02138 (United States); Madejski, G. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Fuerst, F.; Harrison, F. A.; Grefenstette, B. W.; Madsen, K. K.; Rivers, E.; Walton, D. J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Matt, G.; Marinucci, A. [Dipartimento di Matematica e Fisica, Università Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Boggs, S. E. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E.; Craig, W. W. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, W. W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have obtained a deep, simultaneous observation of the bright, nearby Seyfert galaxy IC 4329A with Suzaku and NuSTAR. Through a detailed spectral analysis, we are able to robustly separate the continuum, absorption, and distant reflection components in the spectrum. The absorbing column is found to be modest (∼6×10{sup 21} cm{sup −2} ), and does not introduce any significant curvature in the Fe K band. We are able to place a strong constraint on the presence of a broadened Fe Kα line (E{sub rest}=6.46{sub −0.07}{sup +0.08} keV with σ=0.33{sub −0.07}{sup +0.08} keV and EW=34{sub −7}{sup +8} eV), though we are not able to constrain any of the parameters of a relativistic reflection model. These results highlight the range in broad Fe K line strengths observed in nearby, bright, active galactic nuclei (roughly an order of magnitude), and imply a corresponding range in the physical properties of the inner accretion disk in these sources. We have also updated our previously reported measurement of the high-energy cutoff of the hard X-ray emission using both observatories rather than just NuSTAR alone: E {sub cut} = 186 ± 14 keV. This high-energy cutoff acts as a proxy for the temperature of the coronal electron plasma, enabling us to further separate this parameter from the plasma's optical depth and to update our results for these parameters as well. We derive kT=50{sub −3}{sup +6} keV with τ=2.34{sub −0.11}{sup +0.16} using a spherical geometry, kT = 61 ± 1 keV with τ = 0.68 ± 0.02 for a slab geometry, with both having an equivalent goodness-of-fit.

  14. Observation of states beyond band termination in 156,157,158Er and strongly deformed structures in 173,174,175Hf

    International Nuclear Information System (INIS)

    Riley, M A; Djongolov, M K; Evans, A O

    2006-01-01

    High-spin terminating bands in heavy nuclei were first identified in nuclei around 158 Er 90 . While examples of terminating states have been identified in a number of erbium isotopes, almost nothing is known about the states lying beyond band termination. In the present work, the high-spin structure of 156,157,158 Er has been studied using the Gammasphere spectrometer. The subject of triaxial superdeformation and 'wobbling' modes in Lu nuclei has rightly attracted a great deal of attention. Very recently four strongly or superdeformed (SD) sequences have been observed in 174 Hf, and cranking calculations using the Ultimate Cranker code predict that such structures may have significant triaxial deformation. We have performed two experiments in an attempt to verify the possible triaxial nature of these bands. A lifetime measurement was performed to confirm the large (and similar) deformation of the bands. In addition, a high-statistics, thin-target experiment took place to search for linking transitions between the SD bands, possible wobbling modes, and new SD band structures

  15. Thermospheric Extension of the Quasi 6-day Wave Observed by the TIMED Satellite

    Science.gov (United States)

    Gan, Q.; Oberheide, J.

    2017-12-01

    The quasi 6-day wave is one of the most prevailing planetary waves in the mesosphere and lower thermosphere (MLT) region. Its peak amplitude can attain 20-30 m/s in low-latitude zonal winds at around equinoxes. Consequently, it is anticipated that the 6-day wave can induce not only significantly dynamic effects (via wave-mean flow and wave-wave interactions) in the MLT, but also have significant impacts on the Thermosphere and Ionosphere (T-I). The understanding of the 6-day wave impact on the T-I system has been advanced a lot due to the recent development of whole atmosphere models and new satellite observations. Three pathways were widely proposed to explain the upward coupling due to the 6-day wave: E-region dynamo modulation, dissipation and nonlinear interaction with thermal tides. The current work aims to show a comprehensive pattern of the 6-day wave from the mesosphere up to the thermosphere/ionosphere in neutral fields (temperature, 3-D winds and density) and plasma drifts. To achieve this goal, we carry out the 6-day wave diagnostics by two different means. Firstly, the output of a one-year WACCM+DART run with data assimilation is analyzed to show the global structure of the 6-day wave in the MLT, followed by E-P flux diagnostics to elucidate the 6-day wave source and wave-mean flow interactions. Secondly, we produce observation-based 6-day wave patterns throughout the whole thermosphere by constraining modeled (TIME-GCM) 6-day wave patterns with observed 6-day wave patterns from SABER and TIDI in the MLT region. This allows us to fill the 110-400 km gap between remote sensing and in-situ satellites, and to obtain more realistic 6-day wave plasma drift patterns.

  16. First observation of yrast band in odd-odd 162Lu

    International Nuclear Information System (INIS)

    Zhang, Y.H.; Yuan, G.J.; Liu, X.A.

    1996-01-01

    High spin states of the odd-odd 162 Lu nucleus have been studied via 147 Sm( 19 F, 4nγ) 162 Lu reaction at 95MeV beam energy. Level scheme for yrast band based on π[h 11/2 ] υ[i 13/2 ] quasiparticle configuration was established up to I π =(23 - ) for the first time. This band shows the signature inversion in energy before backbending generally appeared in this mass region. It is stressed that the signature splitting in 162 Lu is larger than that in the 160 Tm nucleus. (orig.)

  17. Status of a Novel 4-Band Submm/mm Camera for the Caltech Submillimeter Observatory

    Science.gov (United States)

    Noroozian, Omid; Day, P.; Glenn, J.; Golwala, S.; Kumar, S.; LeDuc, H. G.; Mazin, B.; Nguyen, H. T.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Zmuidzinas, J.

    2007-12-01

    Submillimeter observations are important to the understanding of galaxy formation and evolution. Determination of the spectral energy distribution in the millimeter and submillimeter regimes allows important and powerful diagnostics. To this end, we are undertaking the construction of a 4-band (750, 850, 1100, 1300 microns) 8-arcminute field of view camera for the Caltech Submillimeter Observatory. The focal plane will make use of three novel technologies: photolithographic phased array antennae, on-chip band-pass filters, and microwave kinetic inductance detectors (MKID). The phased array antenna design obviates beam-defining feed horns. On-chip band-pass filters eliminate band-defining metal-mesh filters. Together, the antennae and filters enable each spatial pixel to observe in all four bands simultaneously. MKIDs are highly multiplexable background-limited photon detectors. Readout of the MKID array will be done with software-defined radio (See poster by Max-Moerbeck et al.). This camera will provide an order-of-magnitude larger mapping speed than existing instruments and will be comparable to SCUBA 2 in terms of the detection rate for dusty sources, but complementary to SCUBA 2 in terms of wavelength coverage. We present results from an engineering run with a demonstration array, the baseline design for the science array, and the status of instrument design, construction, and testing. We anticipate the camera will be available at the CSO in 2010. This work has been supported by NASA ROSES APRA grants NNG06GG16G and NNG06GC71G, the NASA JPL Research and Technology Development Program, and the Gordon and Betty Moore Foundation.

  18. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  19. UNVEILING THE NATURE OF IGR J17177-3656 WITH X-RAY, NEAR-INFRARED, AND RADIO OBSERVATIONS

    International Nuclear Information System (INIS)

    Paizis, A.; Nowak, M. A.; Wilms, J.; Chaty, S.; Corbel, S.; Rodriguez, J.; Del Santo, M.; Ubertini, P.; Chini, R.

    2011-01-01

    We report on the first broadband (1-200 keV) simultaneous Chandra-INTEGRAL observations of the recently discovered hard X-ray transient IGR J17177-3656 that took place on 2011 March 22, about two weeks after the source discovery. The source had an average absorbed 1-200 keV flux of about 8 x 10 -10 erg cm -2 s -1 . We extracted a precise X-ray position of IGR J17177-3656, α J2000 = 17 h 17 m 42. s 62, δ J2000 = -36 0 56'04.''5 (90% uncertainty of 0.''6). We also report Swift, near-infrared, and quasi-simultaneous radio follow-up observations. With the multi-wavelength information at hand, we propose IGR J17177-3656 is a low-mass X-ray binary, seen at high inclination, probably hosting a black hole.

  20. A first look at Quasi-Monte Carlo for lattice field theory problems

    International Nuclear Information System (INIS)

    Jansen, K.; Leovey, H.; Griewank, A.; Nube, A.; Humboldt-Universitaet, Berlin; Mueller-Preussker, M.

    2012-11-01

    In this project we initiate an investigation of the applicability of Quasi-Monte Carlo methods to lattice field theories in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Monte Carlo simulation behaves like N -1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems to up to N -1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.

  1. A first look at quasi-Monte Carlo for lattice field theory problems

    International Nuclear Information System (INIS)

    Jansen, K; Nube, A; Leovey, H; Griewank, A; Mueller-Preussker, M

    2013-01-01

    In this project we initiate an investigation of the applicability of Quasi-Monte Carlo methods to lattice field theories in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Monte Carlo simulation behaves like N −1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems to up to N −1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling

  2. A first look at Quasi-Monte Carlo for lattice field theory problems

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leovey, H.; Griewank, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Nube, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Mueller-Preussker, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2012-11-15

    In this project we initiate an investigation of the applicability of Quasi-Monte Carlo methods to lattice field theories in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Monte Carlo simulation behaves like N{sup -1/2}, where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems to up to N{sup -1}. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.

  3. Observations of the Galaxy NGC 3077 in the Narrow-Band [S II] and Hα Filters

    Directory of Open Access Journals (Sweden)

    Andjelić M.

    2011-09-01

    Full Text Available We present observations of the H I tidal arm near a dwarf galaxy NGC 3077 (member of the M81 galaxy group in the narrow-band [S II] and Hα filters. Observations were carried out in 2011 March with the 2 m RCC telescope at the NAO Rozhen, Bulgaria. Our search for possible supernova remnant candidates (identified as sources with enhanced [S II] emission relative to their Hα emission in this region yielded no sources of this kind. Nevertheless, we found a number of objects with significant Hα emission that probably represent uncatalogued, low brightness H II regions.

  4. Performance Investigations of Quasi-Yagi Loop and Dipole Antennas on Silicon Substrate for 94 GHz Applications

    Directory of Open Access Journals (Sweden)

    Osama M. Haraz

    2014-01-01

    Full Text Available This paper introduces the design and implementation of two high gain Quasi-Yagi printed antennas developed on silicon substrate for 94 GHz imaging applications. The proposed antennas are based on either driven loop or dipole antennas fed by a coplanar waveguide (CPW feeding structure. For better matching with the driven antennas, a matching section has been added between the CPW feedline and the driven antenna element. To improve the gain of either loop or dipole antennas, a ground reflector and parasitic director elements have been added. Two Quasi-Yagi antenna prototypes based on loop and dipole antenna elements have been fabricated and experimentally tested using W-band probing station (75–110 GHz. The measured results show good agreement with simulated results and confirm that the proposed antennas are working. In addition, a feed and matching configuration is proposed to enable coupling a microbolometer element to the proposed Quasi-Yagi antenna designs for performing radiation pattern measurements.

  5. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, E.; Dueñas, S.; Castán, H.; García, H.; Bailón, L. [Dept. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid (Spain); Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G. [Dept. de Física Aplicada III (Electricidad y Electrónica), Univ. Complutense de Madrid, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Olea, J. [CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Instituto de Energía Solar, E.T.S.I. de Telecomunicación, Univ. Politécnica de Madrid, 28040 Madrid (Spain)

    2015-12-28

    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existence of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known

  6. Microphysical retrievals from simultaneous polarimetric and profiling radar observations

    Directory of Open Access Journals (Sweden)

    M. P. Morris

    2009-12-01

    Full Text Available The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD. This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009, in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009. Furthermore, the the study presents a method of investigating the time and height structure of DSDs.

  7. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2006-07-01

    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  8. Quasi-Lie algebras and Lie groups

    International Nuclear Information System (INIS)

    Momo Bangoura

    2006-07-01

    In this work, we define the quasi-Poisson Lie quasigroups, dual objects to the quasi-Poisson Lie groups and we establish the correspondence between the local quasi-Poisson Lie quasigoups and quasi-Lie bialgebras (up to isomorphism). (author) [fr

  9. A quasi-electrostatic trap for neutral atoms

    International Nuclear Information System (INIS)

    Engler, H.

    2000-01-01

    This thesis reports on the realization of a ''quasi-electrostatic trap'' (QUEST) for neutral atoms. Cesium ( 133 Cs) and Lithium ( 7 Li) atoms are stored, which represents for the first time a mixture of different species in an optical dipole trap. The trap is formed by the focused Gaussian beam of a 30 W cw CO 2 -laser. For a beam waist of 108 μm the resulting trap depth is κ B x 118 μK for Cesium and κ B x 48 μK for Lithium. We transfer up to 2 x 10 6 Cesium and 10 5 Lithium atoms from a magneto-optical trap into the QUEST. When simultaneously transferred, the atom number currently is reduced by roughly a factor of 10. Since photon scattering from the trapping light can be neglected, the QUEST represents an almost perfect conservative trapping potential. Atoms in the QUEST populate the electronic ground state sublevels. Arbitrary sublevels can be addressed via optical pumping. Due to the very low background gas pressure of 2 x 10 -11 mbar storage times of several minutes are realized. Evaporative cooling of Cesium is observed. In addition, laser cooling is applied to the trapped Cesium sample, which reduces the temperature from 25 μK to a value below 7 μK. If prepared in the upper hyper-fine ground state sublevel, spin changing collisions are observed not only within one single species, but also between the two different species. The corresponding relaxation rates are quantitatively analyzed. (orig.)

  10. Two-state ion heating at quasi-parallel shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.; Gosling, J.T.; Bame, S.J.; Onsager, T.G.; Russell, C.T.

    1990-01-01

    In a previous study of ion heating at quasi-parallel shocks, the authors showed a case in which the ion distributions downstream from the shock alternated between a cooler, denser, core/shoulder type and a hotter, less dense, more Maxwellian type. In this paper they further document the alternating occurrence of two different ion states downstream from several quasi-parallel shocks. Three separate lines of evidence are presented to show that the two states are not related in an evolutionary sense, but rather both are produced alternately at the shock: (1) the asymptotic downstream plasma parameters (density, ion temperature, and flow speed) are intermediate between those characterizing the two different states closer to the shock, suggesting that the asymptotic state is produced by a mixing of the two initial states; (2) examples of apparently interpenetrating (i.e., mixing) distributions can be found during transitions from one state to the other; and (3) examples of both types of distributions can be found at actual crossings of the shock ramp. The alternation between the two different types of ion distribution provides direct observational support for the idea that the dissipative dynamics of at least some quasi-parallel shocks is non-stationary and cyclic in nature, as demonstrated by recent numerical simulations. Typical cycle times between intervals of similar ion heating states are ∼2 upstream ion gyroperiods. Both the simulations and the in situ observations indicate that a process of coherent ion reflection is commonly an important part of the dissipation at quasi-parallel shocks

  11. Modeling L-band synthetic aperture radar observations through dielectric changes in soil moisture and vegetation over shrublands

    Science.gov (United States)

    L-band airborne synthetic aperture radar observations were made over California shrublands to better understand the effects by soil and vegetation parameters on backscatter. Temporal changes in radar backscattering coefficient (s0) of up to 3 dB were highly correlated to surface soil moisture but no...

  12. Simultaneous, multi-wavelength flare observations of nearby low-mass stars

    Science.gov (United States)

    Thackeray, Beverly; Barclay, Thomas; Quintana, Elisa; Villadsen, Jacqueline; Wofford, Alia; Schlieder, Joshua; Boyd, Patricia

    2018-01-01

    Low-mass stars are the most common stars in the Galaxy and have been targeted in the tens-of-thousands by K2, the re-purposed Kepler mission, as they are prime targets to search for and characterize small, Earth-like planets. Understanding how these fully convective stars drive magnetic activity that manifests as stochastic, short-term brightenings, or flares, provides insight into the prospects of planetary habitability. High energy radiation and energetic particle emission associated with these stars can erode atmospheres, and impact habitability. An innovative campaign to study low mass stars through simultaneous multi-wavelength observations is currently underway with observations ongoing in the X-ray, UV, optical, and radio. I will present early results of our pilot study of the nearby M-Dwarf star Wolf 359 (CN Leo) using K2, SWIFT, and ground based radio observatories, forming a comprehensive picture of flare activity from an M-Dwarf, and discuss the potential impact of these results on exoplanets. "This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1322106. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

  13. Strong RFI observed in protected 21 cm band at Zurich observatory, Switzerland

    Science.gov (United States)

    Monstein, C.

    2014-03-01

    While testing a new antenna control software tool, the telescope was moved to the most western azimuth position pointing to our own building. While de-accelerating the telescope, the spectrometer showed strong broadband radio frequency interference (RFI) and two single-frequency carriers around 1412 and 1425 MHz, both of which are in the internationally protected band. After lengthy analysis it was found out, that the Webcam AXIS2000 was the source for both the broadband and single-frequency interference. Switching off the Webcam solved the problem immediately. So, for future observations of 21 cm radiation, all nearby electronics has to be switched off. Not only the Webcam but also all unused PCs, printers, networks, monitors etc.

  14. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  15. Correlation versus surface effects in photoemission of quasi-1D organic conductors

    DEFF Research Database (Denmark)

    Claessen, R.; Schwingenschlogl, U.; Sing, M.

    2002-01-01

    The absence of spectral weight at the Fermi level in photoemission spectra of quasi-1D organic conductors has been interpreted as possible evidence for an unusual many-body state. We demonstrate that great care must be exercised to draw this conclusion exclusively on the basis of a pseudogap....... A detailed surface characterization of the charge transfer salts (TMTSF)(2)PFt(6) and TTF-TCNQ shows that signatures of electronic correlations in the valence band spectra are strongly affected by surface effects and may even be completely obscured....

  16. Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks

    Science.gov (United States)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1989-01-01

    The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.

  17. Deep absorption band in Cu(In,Ga)Se{sub 2} thin films and solar cells observed by transparent piezoelectric photothermal spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shirakata, Sho; Atarashi, Akiko [Faculty of Engineering, Ehime University, Matsuyama 790-8577 (Japan); Yagi, Masakazu [Kagawa National College of Technology, Mitoyo-shi 769-1192 (Japan)

    2015-06-15

    The photo-acoustic spectroscopy (PAS) using a transparent piezoelectric photo-thermal (Tr-PPT) method was carried out on Cu(In,Ga)Se{sub 2} (CIGS) thin films (both CIGS/Mo/SLG and CdS/CIGS/Mo/SLG) and solar cells (ZnO/CdS/CIGS/Mo/SLG). Using the Tr-PPT method, the high background absorption in the below gap region observed in both a microphone and a conventional transducer PAS spectra was strongly reduced. This high background absorption came from the CIGS/Mo interface. This result proves that the Tr-PPT PAS is the surface sensitive method. In the below-band region, a bell-shape deep absorption band has been observed at 0.76 eV, in which a full-width at the half-maximum value was 70-120 meV. This deep absorption band was observed for both CdS/CIGS/Mo/SLG and ZnO/CdS/CIGS/Mo/SLG structures. The peak energy of the absorption band was independent of the alloy composition for 0.25≤Ga/III≤0.58. Intensity of the PA signal was negatively correlated to the Na concentration at the CIGS film surface. The origin of the 0.76 eV peak is discussed with relation to native defects such as a Cu-vacancy-related defect (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Radiometric Evaluation of SNPP VIIRS Band M11 via Sub-Kilometer Intercomparison with Aqua MODIS Band 7 over Snowy Scenes

    Directory of Open Access Journals (Sweden)

    Mike Chu

    2018-03-01

    Full Text Available A refined intersensor comparison study is carried out to evaluate the radiometric stability of the 2257 nm channel (M11 of the first Visible Infrared Imaging Radiometer Suite (VIIRS aboard the Suomi National Polar-orbiting Partnership (SNPP satellite. This study is initiated as part of the examination into the performance of key shortwave infrared (SWIR bands for SNPP VIIRS ocean color data processing and applications, with Band M11 playing key role over turbid and inland waters. The evaluation utilizes simultaneous nadir overpasses (SNOs to compare SNPP VIIRS Band M11 against Band 7 of the MODerate-resolution Imaging Spectroradiometer (MODIS in the Aqua satellite over concurrently observed scenes. The standard result of the radiance comparison is a seemingly uncontrolled and inconsistent time series unsuitable for further analyses, in great contrast to other matching band-pairs whose radiometric comparisons are typically stable around 1.0 within 1% variation. The mismatching relative spectral response (RSR between the two respective bands, with SNPP VIIRS M11 at 2225 to 2275 nm and Aqua MODIS B7 at 2125 to 2175 nm, is demonstrated to be the cause of the large variation because of the different dependence of the spectral responses of the two bands over identical scenes. A consistent radiometric comparison time series, however, can be extracted from SNO events that occur over snowy surfaces. A customized selection and analysis procedure successfully identifies the snowy scenes within the SNO events and builds a stable comparison time series. Particularly instrumental for the success of the comparison is the use of the half-kilometer spatial resolution data of Aqua MODIS B7 that significantly enhances the statistics. The final refined time series of Aqua MODIS B7 radiance over the SNPP VIIRS M11 radiance is stable at around 0.39 within 2.5% showing no evidence of drift. The radiometric ratio near 0.39 suggests the strong presence of medium

  19. Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.; Torasso, R.; Ware, A.

    2003-01-01

    By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation

  20. Hermitian self-dual quasi-abelian codes

    Directory of Open Access Journals (Sweden)

    Herbert S. Palines

    2017-12-01

    Full Text Available Quasi-abelian codes constitute an important class of linear codes containing theoretically and practically interesting codes such as quasi-cyclic codes, abelian codes, and cyclic codes. In particular, the sub-class consisting of 1-generator quasi-abelian codes contains large families of good codes. Based on the well-known decomposition of quasi-abelian codes, the characterization and enumeration of Hermitian self-dual quasi-abelian codes are given. In the case of 1-generator quasi-abelian codes, we offer necessary and sufficient conditions for such codes to be Hermitian self-dual and give a formula for the number of these codes. In the case where the underlying groups are some $p$-groups, the actual number of resulting Hermitian self-dual quasi-abelian codes are determined.

  1. Synthetic profile analysis of the observed (0,0) Swan band of Comet Halley

    International Nuclear Information System (INIS)

    Krishna swamy, K.S.

    1991-01-01

    The time-dependent rotational population distribution for the (0,0) band of the Swan system was carried out. These population distributions are used to calculate the synthetic spectra over the wavelength region 5165-5132 A for comparing with the excellent spectra of Lambert et al. (1990) for Comet Halley. The synthetic spectra for the rotational population distribution corresponding to a time interval of about 8000 sec gives a good fit to the observed spectra over the whole special region. This seems to indicate that the level population does not appear to have reached the steady state values. 16 refs

  2. Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Wu, Zengyang

    2016-08-18

    In this paper, spray combustion of diesel (No. 2) and diesel-gasoline blend (dieseline: 80% diesel and 20% gasoline by volume) were investigated in an optically accessible constant volume combustion chamber. Effects of ambient conditions on flame emissions were studied. Ambient oxygen concentration was varied from 12% to 21% and three ambient temperatures were selected: 800 K, 1000 K and 1200 K. An intensified CCD camera coupled with bandpass filters was employed to capture the quasi-steady state flame emissions at 430 nm and 470 nm bands. Under non-sooting conditions, the narrow-band flame emissions at 430 nm and 470 nm can be used as indicators of CH∗ (methylidyne) and HCHO∗ (formaldehyde), respectively. The lift-off length was measured by imaging the OH∗ chemiluminescence at 310 nm. Flame emission structure and intensity distribution were compared between dieseline and diesel at wavelength bands. Flame emission images show that both narrow band emissions become shorter, thinner and stronger with higher oxygen concentration and higher ambient temperature for both fuels. Areas of weak intensity are observed at the flame periphery and the upstream for both fuels under all ambient conditions. Average flame emission intensity and area were calculated for 430 nm and 470 nm narrow-band emissions. At a lower ambient temperature the average intensity increases with increasing ambient oxygen concentration. However, at the 1200 K ambient temperature condition, the average intensity is not increasing monotonically for both fuels. For most of the conditions, diesel has a stronger average flame emission intensity than dieseline for the 430 nm band, and similar phenomena can be observed for the 470 nm band with 800 K and 1200 K ambient temperatures. However, for the 1000 K ambient temperature cases, dieseline has stronger average flame emission intensities than diesel for all oxygen concentrations at 470 nm band. Flame emissions for the two bands have a

  3. The quasi-equilibrium response of MOS structures: Quasi-static factor

    Science.gov (United States)

    Okeke, M.; Balland, B.

    1984-07-01

    The dynamic response of a MOS structure driven into a non-equilibrium behaviour by a voltage ramp is presented. In contrast to Khun's quasi-static technique it is shown that any ramp-driven MOS structure has some degree of non-equilibrium. A quasi staticity factor μAK which serves as a measure of the degree of quasi-equilibrium, has been introduced for the first time. The mathematical model presented in the paper allows a better explanation of the experimental recordings. It is shown that this model could be used to analyse the various features of the response of the structure and that such physical parameters as the generation-rate, trap activation energy, and the effective capture constants could be obtained.

  4. Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities

    Directory of Open Access Journals (Sweden)

    Qiuju Tuo

    2015-01-01

    Full Text Available In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities $$ u_{tt}+u_{xxxx}+(B+ \\varepsilon\\phi(tu^5=0 $$ under periodic boundary conditions, where B is a positive constant, $\\varepsilon$ is a small positive parameter, $\\phi(t$ is a real analytic quasi-periodic function in t with frequency vector $\\omega=(\\omega_1,\\omega_2,\\dots,\\omega_m$. It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.

  5. LOW-FREQUENCY QUASI-PERIODIC OSCILLATION FROM THE 11 Hz ACCRETING PULSAR IN TERZAN 5: NOT FRAME DRAGGING

    International Nuclear Information System (INIS)

    Altamirano, D.; Van der Klis, M.; Wijnands, R.; Ingram, A.; Linares, M.; Homan, J.

    2012-01-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480–2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broadband noise. Using well-known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations, which were previously suggested to be due to Lense-Thirring (LT) precession. As IGR J17480–2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO cannot be explained by frame dragging. By extension, this casts doubt on the LT precession model for other low-frequency QPOs in neutron stars and perhaps even black hole systems.

  6. Low-frequency Quasi-periodic Oscillation from the 11 Hz Accreting Pulsar in Terzan 5: Not Frame Dragging

    Science.gov (United States)

    Altamirano, D.; Ingram, A.; van der Klis, M.; Wijnands, R.; Linares, M.; Homan, J.

    2012-11-01

    We report on six RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broadband noise. Using well-known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations, which were previously suggested to be due to Lense-Thirring (LT) precession. As IGR J17480-2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO cannot be explained by frame dragging. By extension, this casts doubt on the LT precession model for other low-frequency QPOs in neutron stars and perhaps even black hole systems.

  7. Radial electric field and ion parallel flow in the quasi-symmetric and Mirror configurations of HSX

    Science.gov (United States)

    Kumar, S. T. A.; Dobbins, T. J.; Talmadge, J. N.; Wilcox, R. S.; Anderson, D. T.

    2018-05-01

    The radial electric field and the ion mean parallel flow are obtained in the helically symmetric experiment stellarator from toroidal flow measurements of C+6 ion at two locations on a flux surface, using the Pfirsch–Schlüter effect. Results from the standard quasi-helically symmetric magnetic configuration are compared with those from the Mirror configuration where the quasi-symmetry is deliberately degraded using auxiliary coils. For similar injected power, the quasi-symmetric configuration is observed to have significantly lower flows while the experimental observations from the Mirror geometry are in better agreement with neoclassical calculations. Indications are that the radial electric field near the core of the quasi-symmetric configuration may be governed by non-neoclassical processes.

  8. Quasi-linear score for capturing heterogeneous structure in biomarkers.

    Science.gov (United States)

    Omae, Katsuhiro; Komori, Osamu; Eguchi, Shinto

    2017-06-19

    Linear scores are widely used to predict dichotomous outcomes in biomedical studies because of their learnability and understandability. Such approaches, however, cannot be used to elucidate biodiversity when there is heterogeneous structure in target population. Our study was focused on describing intrinsic heterogeneity in predictions. Because heterogeneity can be captured by a clustering method, integrating different information from different clusters should yield better predictions. Accordingly, we developed a quasi-linear score, which effectively combines the linear scores of clustered markers. We extended the linear score to the quasi-linear score by a generalized average form, the Kolmogorov-Nagumo average. We observed that two shrinkage methods worked well: ridge shrinkage for estimating the quasi-linear score, and lasso shrinkage for selecting markers within each cluster. Simulation studies and applications to real data show that the proposed method has good predictive performance compared with existing methods. Heterogeneous structure is captured by a clustering method. Quasi-linear scores combine such heterogeneity and have a better predictive ability compared with linear scores.

  9. Quasi-periodic oscillations in accreting magnetic white dwarfs. II. The asset of numerical modelling for interpreting observations

    Science.gov (United States)

    Busschaert, C.; Falize, É.; Michaut, C.; Bonnet-Bidaud, J.-M.; Mouchet, M.

    2015-07-01

    Context. Magnetic cataclysmic variables are close binary systems containing a strongly magnetized white dwarf that accretes matter coming from an M-dwarf companion. The high magnetic field strength leads to the formation of an accretion column instead of an accretion disk. High-energy radiation coming from those objects is emitted from the column close to the white dwarf photosphere at the impact region. Its properties depend on the characteristics of the white dwarf and an accurate accretion column model allows the properties of the binary system to be inferred, such as the white dwarf mass, its magnetic field, and the accretion rate. Aims: We study the temporal and spectral behaviour of the accretion region and use the tools we developed to accurately connect the simulation results to the X-ray and optical astronomical observations. Methods: The radiation hydrodynamics code Hades was adapted to simulate this specific accretion phenomena. Classical approaches were used to model the radiative losses of the two main radiative processes: bremsstrahlung and cyclotron. Synthetic light curves and X-ray spectra were extracted from numerical simulations. A fast Fourier analysis was performed on the simulated light curves. The oscillation frequencies and amplitudes in the X-ray and optical domains are studied to compare those numerical results to observational ones. Different dimensional formulae were developed to complete the numerical evaluations. Results: The complete characterization of the emitting region is described for the two main radiative regimes: when only the bremsstrahlung losses and when both cyclotron and bremsstrahlung losses are considered. The effect of the non-linear cooling instability regime on the accretion column behaviour is analysed. Variation in luminosity on short timescales (~1 s quasi-periodic oscillations) is an expected consequence of this specific dynamic. The importance of secondary shock instability on the quasi-periodic oscillation

  10. DETECTION OF VERY LOW-FREQUENCY, QUASI-PERIODIC OSCILLATIONS IN THE 2015 OUTBURST OF V404 CYGNI

    Energy Technology Data Exchange (ETDEWEB)

    Huppenkothen, D. [Center for Data Science, New York University, 726 Broadway, 7th Floor, New York, NY 10003 (United States); Younes, G.; Kouveliotou, C. [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Ingram, A.; Van der Klis, M. [Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Bachetti, M. [INAF/Osservatorio Astronomico di Cagliari, via della Scienza 5, I-09047 Selargius (Italy); Sánchez-Fernández, C.; Kuulkers, E. [European Space Astronomy Centre (ESA/ESAC), Science Operations Department, E-28691 Villanueva de la Cañada, Madrid (Spain); Chenevez, J. [DTU Space—National Space Institute, Technical University of Denmark, Elektrovej 327-328, DK-2800 Lyngby (Denmark); Motta, S. [University of Oxford, Department of Physics, Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Raanana 43537 (Israel); Gehrels, N. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Tomsick, J. A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Walton, D. J., E-mail: daniela.huppenkothen@nyu.edu [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-01-01

    In 2015 June, the black hole X-ray binary (BHXRB) V404 Cygni went into outburst for the first time since 1989. Here, we present a comprehensive search for quasi-periodic oscillations (QPOs) of V404 Cygni during its recent outburst, utilizing data from six instruments on board five different X-ray missions: Swift /XRT, Fermi /GBM, Chandra /ACIS, INTEGRAL ’s IBIS/ISGRI and JEM-X, and NuSTAR . We report the detection of a QPO at 18 mHz simultaneously with both Fermi /GBM and Swift /XRT, another example of a rare but slowly growing new class of mHz-QPOs in BHXRBs linked to sources with a high orbital inclination. Additionally, we find a duo of QPOs in a Chandra /ACIS observation at 73 mHz and 1.03 Hz, as well as a QPO at 136 mHz in a single Swift /XRT observation that can be interpreted as standard Type-C QPOs. Aside from the detected QPOs, there is significant structure in the broadband power, with a strong feature observable in the Chandra observations between 0.1 and 1 Hz. We discuss our results in the context of current models for QPO formation.

  11. DuOCam: A Two-Channel Camera for Simultaneous Photometric Observations of Stellar Clusters

    Science.gov (United States)

    Maier, Erin R.; Witt, Emily; Depoy, Darren L.; Schmidt, Luke M.

    2017-01-01

    We have designed the Dual Observation Camera (DuOCam), which uses commercial, off-the-shelf optics to perform simultaneous photometric observations of astronomical objects at red and blue wavelengths. Collected light enters DuOCam’s optical assembly, where it is collimated by a negative doublet lens. It is then separated by a 45 degree blue dichroic filter (transmission bandpass: 530 - 800 nm, reflection bandpass: 400 - 475 nm). Finally, the separated light is focused by two identical positive doublet lenses onto two independent charge-coupled devices (CCDs), the SBIG ST-8300M and the SBIG STF-8300M. This optical assembly converts the observing telescope to an f/11 system, which balances maximum field of view with optimum focus. DuOCam was commissioned on the McDonald Observatory 0.9m, f/13.5 telescope from July 21st - 24th, 2016. Observations of three globular and three open stellar clusters were carried out. The resulting data were used to construct R vs. B-R color magnitude diagrams for a selection of the observed clusters. The diagrams display the characteristic evolutionary track for a stellar cluster, including the main sequence and main sequence turn-off.

  12. Quasi-linear magnetoresistance and the violation of Kohler's rule in the quasi-one-dimensional Ta₄Pd₃Te₁₆ superconductor.

    Science.gov (United States)

    Xu, Xiaofeng; Jiao, W H; Zhou, N; Guo, Y; Li, Y K; Dai, Jianhui; Lin, Z Q; Liu, Y J; Zhu, Zengwei; Lu, Xin; Yuan, H Q; Cao, Guanghan

    2015-08-26

    We report on the quasi-linear in field intrachain magnetoresistance in the normal state of a quasi-one-dimensional superconductor Ta4Pd3Te16 (Tc ~ 4.6 K). Both the longitudinal and transverse in-chain magnetoresistance shows a power-law dependence, Δρ∝B(α) with the exponent α close to 1 over a wide temperature and field range. The magnetoresistance shows no sign of saturation up to 50 T studied. The linear magnetoresistance observed in Ta4Pd3Te16 is found to be overall inconsistent with the interpretations based on the Dirac fermions in the quantum limit, charge conductivity fluctuations as well as quantum electron-electron interference. Moreover, it is observed that the Kohler's rule, regardless of the field orientations, is violated in its normal state. This result suggests the loss of charge carriers in the normal state of this chain-containing compound, due presumably to the charge-density-wave fluctuations.

  13. Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Wimberger, Sandro [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 19, 69120 Heidelberg (Germany); Madronero, Javier, E-mail: ploetz@thphys.uni-heidelberg.d [Physik Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany)

    2010-04-28

    We study the effect of a many-body interaction on inter-band oscillations in a two-band Bose-Hubbard model with an external Stark force. Weak and strong inter-band oscillations are observed, where the latter arise from a resonant coupling of the bands. These oscillations collapse and revive due to a weak two-body interaction between the atoms. Effective models for oscillations in and out of resonance are introduced that provide predictions for the system's behaviour, particularly for the time scales for the collapse and revival of the resonant inter-band oscillations. (fast track communication)

  14. Moyal products-a new perspective on quasi-Hermitian quantum mechanics

    International Nuclear Information System (INIS)

    Scholtz, F G; Geyer, H B

    2006-01-01

    The rationale for introducing non-Hermitian Hamiltonians and other observables is reviewed and open issues identified. We present a new approach based on Moyal products to compute the metric for quasi-Hermitian systems. This approach is not only an efficient method of computation, but also suggests a new perspective on quasi-Hermitian quantum mechanics which invites further exploration. In particular, we present some first results which link the Berry connection and curvature to non-perturbative properties and the metric

  15. Dynamics of Quasi-Electrostatic Whistler waves in Earth's Radiation belts

    Science.gov (United States)

    Goyal, R.; Sharma, R. P.; Gupta, D. N.

    2017-12-01

    A numerical model is proposed to study the dynamics of high amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with finite frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The quasi-electrostatic character of whistlers is narrated by dynamics of wave propagating near resonance cone. A high amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES instrument onboard STEREO. The numerical simulation technique employed to study the dynamics, leads to localization (channelling) of waves as well as turbulent spectrum suggesting the transfer of wave energy over a range of frequencies. The turbulent spectrum also indicates the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite relatively much lower frequency waves (KAWs). The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.

  16. From interstellar dust to comets - A unification of observational constraints

    International Nuclear Information System (INIS)

    Greenberg, J.M.; Hage, J.I.

    1990-01-01

    The interstellar dust model of comets is numerically worked out to satisfy simultaneously several basic constraints provided by observations of Comet Halley, and to derive the porosity of coma dust. The observational constraints are (1) the strengths of the 3.4 and 9.7 micron emission bands, (2) the shape of the 9.7 micron band, (3) the amount of silicates relative to organic materials, and (4) the mass distribution of the dust. The method used involves precise calculations of temperatures and the emission characteristics of porous aggregates of interstellar dust as a function of their mass, porosity, and distance to the sun and the wavelength. The results indicate that coma dust has a porosity in the range 0.93-0.975, i.e., a packing factor of 0.07 or less, consistent with independent observations of comet densities of 0.6 to 0.26 g/cu cm and meteor densities of less than 0.2 g/cu cm. 63 refs

  17. SDO/AIA Observations of Quasi-periodic Fast (~1000 km/s) Propagating (QFP) Waves as Evidence of Fast-mode Magnetosonic Waves in the Low Corona: Statistics and Implications

    Science.gov (United States)

    Liu, W.; Ofman, L.; Title, A. M.; Zhao, J.; Aschwanden, M. J.

    2011-12-01

    Recent EUV imaging observations from SDO/AIA led to the discovery of quasi-periodic fast (~2000 km/s) propagating (QFP) waves in active regions (Liu et al. 2011). They were interpreted as fast-mode magnetosonic waves and reproduced in 3D MHD simulations (Ofman et al. 2011). Since then, we have extended our study to a sample of more than a dozen such waves observed during the SDO mission (2010/04-now). We will present the statistical properties of these waves including: (1) Their projected speeds measured in the plane of the sky are about 400-2200 km/s, which, as the lower limits of their true speeds in 3D space, fall in the expected range of coronal Alfven or fast-mode speeds. (2) They usually originate near flare kernels, often in the wake of a coronal mass ejection, and propagate in narrow funnels of coronal loops that serve as waveguides. (3) These waves are launched repeatedly with quasi-periodicities in the 30-200 seconds range, often lasting for more than one hour; some frequencies coincide with those of the quasi-periodic pulsations (QPPs) in the accompanying flare, suggestive a common excitation mechanism. We obtained the k-omega diagrams and dispersion relations of these waves using Fourier analysis. We estimate their energy fluxes and discuss their contribution to coronal heating as well as their diagnostic potential for coronal seismology.

  18. Search for positive parity bands in 117Xe

    International Nuclear Information System (INIS)

    Liu, Z.; Sun, X.; Zhou, X.; Lei, X.; Zhang, Y.; Jin, H.; Pan, Q.; Guo, Y.; Chen, X.; Luo, Y.; Wen, S.; Yuan, G.; Yang, C.; Luo, W.; Chen, Y.S.; Xing, Z.; Chen, X.Q.

    1995-01-01

    Excited states of 117 Xe were populated via the reaction 28 Si+ 92 Mo at 100-120MeV. More than 40 new γ-transitions and three new positive parity bands have been observed by means of in-beam γ-ray spectroscopy. The previously known νh 11/2 bands were confirmed, and the νg 7/2 favored band was extended up to 47/2 + in which two bandcrossings have been observed at hω=0.33 and 0.44MeV, respectively. The band structures have been discussed by means of TRS and CSM calculations. A newly observed rotational band consisting of five γ-transitions has been considered as the πh 11/2 band of 117 Cs. ((orig.))

  19. Radarometer Sensor - Simultaneous Active and Passive Imaging Usin a Common Antenna

    National Research Council Canada - National Science Library

    Huddleston, Darryl

    1999-01-01

    ... ̂ frequency band at a nominal pixel scanning rate of 1,000 per second. The radarometer sensor is capable of operating in both the passive and active modes either individually, in time sequence, or simultaneously...

  20. A Wideband Dual-Polarized Antenna Using Planar Quasi-Open-Sleeve Dipoles for Base Station Applications

    Directory of Open Access Journals (Sweden)

    Guan-xi Zhang

    2015-01-01

    Full Text Available A wideband dual-polarized antenna for WLAN, WiMAX, and LTE base station applications is presented in this paper. The proposed antenna consists of two pairs of orthogonal planar quasi-open-sleeve dipoles along the centerlines, a balanced feeding structure and a square ground plane. The planar quasi-open-sleeve dipole comprises a pair of bowtie-shaped planar dipoles with two parallel curve parasitic elements. The introduced parallel curve parasitic elements change the path of the current of the original bowtie-shaped planar dipoles at high frequencies and hence wideband characteristic is achieved. Two pairs of the planar quasi-open-sleeve dipoles placed orthogonally further broaden the bandwidth of the antenna with dual-polarization characteristics. The proposed antenna achieves a 10-dB return loss bandwidth from 2.32 to 4.03 GHz (53.9% bandwidth using the planar quasi-open-sleeve dipole structures. The isolation between the two ports remains more than 32 dB in the whole bandwidth. Measured results show that the proposed antenna keeps the cross-polarization under −33 dB and the front-to-back ratio better than 15 dB in the operating band. The antenna has an area of 0.3λ  × 0.3λ at 2.32 GHz making it easy to be extended to an array element.

  1. Observation of an electron band above the Fermi level in FeTe0.55Se0.45 from in-situ surface doping

    International Nuclear Information System (INIS)

    Zhang, P.; Ma, J.; Qian, T.; Richard, P.; Ding, H.; Xu, N.; Xu, Y.-M.; Fedorov, A. V.; Denlinger, J. D.; Gu, G. D.

    2014-01-01

    We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe 0.55 Se 0.45 . The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily electron-doped KFe 2−x Se 2 compound.

  2. Dual band metamaterial perfect absorber based on Mie resonances

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bi, Ke [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhao, Qian [State Key Lab of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2016-08-08

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.

  3. Quasi-perpendicular/quasi-parallel divisions of Earth's bow shock

    International Nuclear Information System (INIS)

    Greenstadt, E.W.

    1991-01-01

    Computer-drawn diagrams of the boundaries between quasi-perpendicular and quasi-parallel areas of Earth's bow shock are displayed for a few selected cone angles of static interplanetary magnetic field (IMF). The effect on the boundary of variable IMF in the foreshock is also discussed and shown for one nominal case. The boundaries demand caution in applying them to the realistic, dynamic conditions of the solar wind and in interpreting the effects of small cone angles on the distributions of structures at the shock. However, the calculated, first-order boundaries are helpful in defining areas of the shock where contributions from active structures inherent in quasi-parallel geometry may be distinguishable from those derived secondarily from upstream reflected ion dynamics. The boundaries are also compatible with known behavior of daytime ULF geomagnetic waves and pulsations according to models postulating that cone angle-controlled, time-dependent ULF activity around the subsolar point of the bow shock provides the source of geomagnetic excitation

  4. High resolution emission Fourier transform infrared spectra of the 4p-5s and 5p-6s bands of ArH.

    Science.gov (United States)

    Baskakov, O I; Civis, S; Kawaguchi, K

    2005-03-15

    In the 2500-8500 cm(-1) region several strong emission bands of (40)ArH were observed by Fourier transform spectroscopy through a dc glow discharge in a mixture of argon and hydrogen. Rotational-electronic transitions of the two previously unstudied 4p-5s and 5p-6s,v = 0-0, bands of (40)ArH were measured and assigned in the 6060 and 3770 cm(-1) regions, respectively. A simultaneous fit of the emission transitions of the 4p-5s and 5p-6s bands and an extended set of transitions of the 6s-4p band observed by Dabrowski, Tokaryk, and Watson [J. Mol. Spectrosc. 189, 95 (1998)] and remeasured in the present work yielded consistent values of the spectroscopic parameters of the electronic states under investigation. In the branch of the 4p-5s band with transitions of type (Q)Q(f(3)e) we observed a narrowing in the linewidths with increasing rotational quantum number N. The rotational dependence of the linewidth is caused by predissociation of the 5s state by the repulsive ground 4s state through homogeneous coupling and changes in overlap integrals of the vibrational wave functions with the rotational level. Analysis was based on the Fermi's golden rule approximation model. In the 4p-5s band region a vibrational sequence ofv(')-v(")=1-1, 2-2, and 3-3 were recorded and a number of transitions belonging to the strongest (Q)Q(f(3)e) form branch of the 1-1 band were analyzed.

  5. Theoretical study of electronic absorption spectroscopy of propadienylidene molecule vis-â-vis the observed diffuse interstellar bands

    International Nuclear Information System (INIS)

    Reddy, Samala Nagaprasad; Mahapatra, S.

    2012-01-01

    Highlights: ► Theoretical study of spectroscopy and dynamics of electronically excited l-C 3 H 2 . ► Construction of ab initio electronic potential energy and diabatic coupling surfaces. ► First principles study of nuclear dynamics on excited electronic states. ► Findings reveal l-C 3 H 2 is a potential molecular carrier of diffuse interstellar bands. ► Electronically excited l-C 3 H 2 decays by ultrafast nonradiative internal conversion. -- Abstract: Observation of broad and diffuse interstellar bands (DIBs) at 4881 Å and 5440 Å assigned to the optical absorption spectrum of Y-shaped propadienylidene (H 2 C=C=C:) molecule is theoretically examined in this paper. This molecule apparently absorbs in the same wavelength region as the observed DIBs and was suggested to be a potential carrier of these DIBs. This assignment mostly relied on the experimental data from radioastronomy and laboratory measurements. Motivated by these available experimental data we attempt here a theoretical study and investigate the detailed electronic structure and nuclear dynamics underlying the electronic absorption bands of propadienylidene molecule. Our results show that this molecule indeed absorbs in the wavelength region of the recorded DIBs. Strong nonadiabatic coupling between its energetically low-lying electronic states plays major role, initiates ultrafast internal conversion and contributes to the spectral broadening. Theoretical findings are finally compared with the available experimental and theoretical data and discussed in connection with the recorded DIBs.

  6. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  7. Thermodynamics of quasi-topological cosmology

    International Nuclear Information System (INIS)

    Dehghani, M.H.; Sheykhi, A.; Dehghani, R.

    2013-01-01

    In this Letter, we study thermodynamical properties of the apparent horizon in a universe governed by quasi-topological gravity. Our aim is twofold. First, by using the variational method we derive the general form of Friedmann equation in quasi-topological gravity. Then, by applying the first law of thermodynamics on the apparent horizon, after using the entropy expression associated with the black hole horizon in quasi-topological gravity, and replacing the horizon radius, r + , with the apparent horizon radius, r -tilde A , we derive the corresponding Friedmann equation in quasi-topological gravity. We find that these two different approaches yield the same result which shows the profound connection between the first law of thermodynamics and the gravitational field equations of quasi-topological gravity. We also study the validity of the generalized second law of thermodynamics in quasi-topological cosmology. We find that, with the assumption of the local equilibrium hypothesis, the generalized second law of thermodynamics is fulfilled for the universe enveloped by the apparent horizon for the late time cosmology

  8. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    Science.gov (United States)

    McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.

    2018-02-01

    Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.

  9. Quasi-experimental study designs series-paper 13: realizing the full potential of quasi-experiments for health research.

    Science.gov (United States)

    Rockers, Peter C; Tugwell, Peter; Røttingen, John-Arne; Bärnighausen, Till

    2017-09-01

    Although the number of quasi-experiments conducted by health researchers has increased in recent years, there clearly remains unrealized potential for using these methods for causal evaluation of health policies and programs globally. This article proposes five prescriptions for capturing the full value of quasi-experiments for health research. First, new funding opportunities targeting proposals that use quasi-experimental methods should be made available to a broad pool of health researchers. Second, administrative data from health programs, often amenable to quasi-experimental analysis, should be made more accessible to researchers. Third, training in quasi-experimental methods should be integrated into existing health science graduate programs to increase global capacity to use these methods. Fourth, clear guidelines for primary research and synthesis of evidence from quasi-experiments should be developed. Fifth, strategic investments should be made to continue to develop new innovations in quasi-experimental methodologies. Tremendous opportunities exist to expand the use of quasi-experimental methods to increase our understanding of which health programs and policies work and which do not. Health researchers should continue to expand their commitment to rigorous causal evaluation with quasi-experimental methods, and international institutions should increase their support for these efforts. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Simultaneous Observations of p-mode Light Walls and Magnetic Reconnection Ejections above Sunspot Light Bridges

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-10-10

    Recent high-resolution observations from the Interface Region Imaging Spectrograph reveal bright wall-shaped structures in active regions (ARs), especially above sunspot light bridges. Their most prominent feature is the bright oscillating front in the 1400/1330 Å channel. These structures are named light walls and are often interpreted to be driven by p-mode waves. Above the light bridge of AR 12222 on 2014 December 06, we observed intermittent ejections superimposed on an oscillating light wall in the 1400 Å passband. At the base location of each ejection, the emission enhancement was detected in the Solar Dynamics Observatory 1600 Å channel. Thus, we suggest that in wall bases (light bridges), in addition to the leaked p-mode waves consistently driving the oscillating light wall, magnetic reconnection could happen intermittently at some locations and eject the heated plasma upward. Similarly, in the second event occurring in AR 12371 on 2015 June 16, a jet was simultaneously detected in addition to the light wall with a wave-shaped bright front above the light bridge. At the footpoint of this jet, lasting brightening was observed, implying magnetic reconnection at the base. We propose that in these events, two mechanisms, p-mode waves and magnetic reconnection, simultaneously play roles in the light bridge, and lead to the distinct kinetic features of the light walls and the ejection-like activities, respectively. To illustrate the two mechanisms and their resulting activities above light bridges, in this study we present a cartoon model.

  11. A comparative cepstral based analysis of simulated and measured S-band and X-band radar Doppler spectra of human motion

    CSIR Research Space (South Africa)

    Van Eeden, WD

    2015-10-01

    Full Text Available targets. It is also shown that, whereas the motion of most body parts of a human target can be observed in the X-band data, only the main torso sway can be observed at S-band. This implies that X-band data is well suited to cepstrum based human motion...

  12. Fluctuation diamagnetism in two-band superconductors

    Science.gov (United States)

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-04-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.

  13. Quasi-gas dynamic equations

    CERN Document Server

    Elizarova, Tatiana G

    2009-01-01

    This book presents two interconnected mathematical models generalizing the Navier-Stokes system. The models, called the quasi-gas-dynamic and quasi-hydrodynamic equations, are then used as the basis of numerical methods solving gas- and fluid-dynamic problems.

  14. Survey of coherent ion reflection at the quasi-parallel bow shock

    International Nuclear Information System (INIS)

    Onsager, T.G.; Thomsen, M.F.; Gosling, J.T.; Bame, S.J.; Russell, C.T.

    1990-01-01

    Ions coherently reflected off the Earth's bow shock have previously been observed both when the upstream geometry is quasi-perpendicular and when it is quasi-parallel. In the case of quasiperpendicular geometry, the ions are reflected in a nearly specular manner and are quickly carried back into the shock by the convecting magnetic field. In the quasi-parallel geometry, however, near-specularly reflected ions' guiding center velocities would on the average be directed away from the shock, allowing the ions to escape into the upstream region. The conditions under which coherent reflection occurs and the subsequent coupling of the reflected ions to the incoming solar wind plasma are important factors when assessing the contribution of the reflected ions to the downstream temperature increase and the shock structure. The survey presented in this paper, along with previously reported observations, suggests that near-specularly reflected ions are indeed an important aspect of energy dissipation at the Earth's quasi-parallel bow shock. The authors find that (1) cool, coherent, near-specularly reflected ion beams are detected over nearly the full range of upstream plasma paraameters commonly found at the Earth's bow shock; (2) the beams are typically observed only near the shock ramp or some shock-like feature; and (3) the observed beam velocities are almost always consistent with what one would expect for near-specularly reflected ions after only a small fraction of a gyroperiod following reflection. The second and third points indicate that the beams spread very quickly in velocity space. This spread in velocities could be due either to interactions between the beam and incoming solar wind ions or to some initially small velocity spread in the beam

  15. Observation of a Short Period Quasi-periodic Pulsation in Solar X-Ray, Microwave, and EUV Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Nakariakov, Valery M., E-mail: pankaj@kasi.re.kr [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom)

    2017-02-10

    This paper presents the multiwavelength analysis of a 13 s quasi-periodic pulsation (QPP) observed in hard X-ray (12–300 keV) and microwave (4.9–34 GHz) emissions during a C-class flare that occurred on 2015 September 21. Atmospheric Image Assembly (AIA) 304 and 171 Å images show an emerging loop/flux tube (L1) moving radially outward, which interacts with the preexisting structures within the active region (AR). The QPP was observed during the expansion of and rising motion of L1. The Nobeyama Radioheliograph microwave images in 17/34 GHz channels reveal a single radio source that was co-spatial with a neighboring loop (L2). In addition, using AIA 304 Å images, we detected intensity oscillations in the legs of L2 with a period of about 26 s. A similar oscillation period was observed in the GOES soft X-ray flux derivative. This oscillation period seems to increase with time. We suggest that the observed QPP is most likely generated by the interaction between L2 and L3 observed in the AIA hot channels (131 and 94 Å). The merging speed of loops L2 and L3 was ∼35 km s{sup −1}. L1 was destroyed possibly by its interaction with preexisting structures in the AR, and produced a cool jet with the speed of ∼106–118 km s{sup −1} associated with a narrow CME (∼770 km s{sup −1}). Another mechanism of the QPP in terms of a sausage oscillation of the loop (L2) is also possible.

  16. Possibilities of the observation of the discrete spectrum of the water dimer at equilibrium in millimeter-wave band

    International Nuclear Information System (INIS)

    Krupnov, A.F.; Tretyakov, M.Yu.; Leforestier, C.

    2009-01-01

    Attempts of experimental observations of the water dimer spectrum at equilibrium conditions have lasted for more than 40 years since the dimeric hypothesis for extra absorption, but have not yielded any positive confirmed result. In the present paper a new approach is considered: using a high-resolution millimeter-wave spectrum of the water dimer at equilibrium, calculated by a rigorous fully quantum method, we show the potential existence of discernible spectral series of discrete features of the water dimer, which correspond to J+1 1 symmetry, already observed in cold molecular beam experiments and having, therefore, well-defined positions. The intensity of spectral series and contrast to the remaining continuum-like spectrum of the dimer are calculated and compared with the monomer absorption. The suitability of two types of microwave spectrometers for observing these series is considered. The collisional line-width of millimeter lines of the dimer at equilibrium is estimated and the width of IR dimer bands is discussed. It is pointed out that the large width of IR dimer bands may pose difficulties for their reliable observation and conclusive separation from the rest of absorption in water vapor. This situation contrasts with the suggested approach of dimer detection in millimeter-waves.

  17. Field observations of mating behavior in the neck-banded snake Scaphiodontophis annulatus (Serpentes: Colubridae

    Directory of Open Access Journals (Sweden)

    Mahmood Sasa

    2006-06-01

    Full Text Available We observed the mating behavior of the neck-banded snake Scaphiodontophis annulatus (a common species of colubrid in the South Pacific of Costa Rica in the pre-montane wet forest of Las Cruces Biological Station (San Vito de Java, Costa Rica. Three S. annulatus were observed during courtship between 10-12 AM in a patch of primary forest. The two males were observed to interact with the female, but not signs of male-male agonistic interactions were observed. Their behavior includes grabbing and holding the female, copula, and biting during the copula. Rev. Biol. Trop. 54(2: 647-650. Epub 2006 Jun 01.El comportamiento de apareamiento es descrito para la serpiente Scaphiodontophis annulatus, una especie de colúbrido común en el Pacífico sur de Costa Rica. El comportamiento incluye capturar y sujetar a la hembra, mordiscos durante la cópula y coito. Dos machos fueron observados al interactuar con una sola hembra, pero no se detectó señales de interacciones antagónicas macho-macho.

  18. Dual Band Magnonic Crystals: Model System and Basic Spin Wave Dynamics

    Directory of Open Access Journals (Sweden)

    Federico Montoncello

    2016-01-01

    Full Text Available We investigate a special design of two-dimensional magnonic crystal, consisting of two superimposed lattices with different lattice constants, such that spin waves (SWs can propagate either in one or the other sublattice, depending on which of the two frequency bands they belong to. The SW bands are separated by a very large bandgap (in our model system, 6 GHz, easily tunable by changing the direction of an applied magnetic field, and the overlap of their spatial distribution, for any frequency of their bands, is always negligible. These properties make the designed system an ideal test system for a magnonic dual band waveguide, where the simultaneous excitation and subsequent propagation of two independent SW signals are allowed, with no mutual interference.

  19. Swift and INTEGRAL observations of SAX J1747.0-2853

    DEFF Research Database (Denmark)

    Campana, S.; Chenevez, Jérôme; Kuulkers, E.

    2009-01-01

    on radius expansion Type I bursts). The 2-10 absorbed (unabsorbed) flux is 2.1(3.4) E-11 erg/cm^2/s. At 8 kpc this corresponds to 2E35 erg/s. Simultaneous observations with INTEGRAL between 11:42 and 15:24 UT confirm the faintness of the source, providing only upper limits: 8.E-11 erg/cm2/s (3-10 keV), 2.E......10-11 erg/cm^2/s (10-25 keV) and 1.E-10 erg/cm^2/s (15-40 keV) adopting a Crab like spectrum. Further observations and monitoring will assess if the source, after the bright Type I burst, is going to start a new outburst, remains in this quasi-persistent state or turns down to quiescence. We thank...

  20. Optical observations of the nearby galaxy IC342 with narrow band [SII] and Hα filters. I

    Directory of Open Access Journals (Sweden)

    Vučetić M.M.

    2013-01-01

    Full Text Available We present observations of a portion of the nearby spiral galaxy IC342 using narrow band [SII] and Hα filters. These observations were carried out in November 2011 with the 2m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper we report coordinates, diameters, Hα and [SII] fluxes for 203 HII regions detected in two fields of view in IC342 galaxy. The number of detected HII regions is 5 times higher than previously known in these two parts of the galaxy. [Projekat Ministarstva nauke Republike Srbije, br. 176005: Emission nebulae: structure and evolution

  1. Performance Analysis of Downlink Inter-band Carrier Aggregation in LTE-Advanced

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus

    2011-01-01

    CC can be different. In this paper, we investigate the downlink resource allocation for inter-band CA, i.e., how to assign carrier(s) to different UEs. A simple yet effective G-factor based carrier selection algorithm, which takes both traffic load and radio channel characteristics......Carrier aggregation (CA) is one of the most distinct features for LTE-Advanced systems, which can support a much wider transmission bandwidth up to 100 MHz by aggregating two or more individual component carriers (CCs) belonging to the same (intra-band) or different (inter-band) frequency bands....... With CA, it is possible to schedule a user equipment (UE) on multiple CCs simultaneously. From radio resource management (RRM) perspective, CC selection plays an important role in optimizing the system performance, especially in the case of inter-band CA where the radio propagation characteristics of each...

  2. Simultaneous NuSTAR/Chandra Observations of The Bursting Pulsar GRO J1744-28 During Its Third Reactivation

    DEFF Research Database (Denmark)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.

    2015-01-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60...

  3. Valley-symmetric quasi-1D transport in ballistic graphene

    Science.gov (United States)

    Lee, Hu-Jong

    We present our recent studies on gate-defined valley-symmetric one-dimensional (1D) carrier guiding in ballistic monolayer graphene and valley-symmetry-protected topological 1D transport in ballistic bilayer graphene. Successful carrier guiding was realized in ballistic monolayer graphene even in the absence of a band gap by inducing a high distinction ( more than two orders of magnitude) in the carrier density between the region of a quasi-1D channel and the rest of the top-gated regions. Conductance of a channel shows quantized values in units of 4e2/ h, suggesting that the valley symmetry is preserved. For the latter, the topological 1D conduction was realized between two closely arranged insulating regions with inverted band gaps, induced under a pair of split dual gating with polarities opposite to each other. The maximum conductance along the boundary channel showed 4e2/ h, again with the preserved valley symmetry. The 1D topological carrier guiding demonstrated in this study affords a promising route to robust valleytronic applications and sophisticated valley-associated functionalities based on 2D materials. This work was funded by the National Research Foundation of Korea.

  4. Simultaneous VHF radar backscatter and ionosonde observations of low-latitude E region

    Directory of Open Access Journals (Sweden)

    A. K. Patra

    2005-03-01

    Full Text Available The first results of simultaneous observations made on the low-latitude field-aligned irregularities (FAI using the MST radar located at Gadanki (13.5° N, 79.2° E, dip 12.5° and the Es parameters using an ionosonde at a nearby station Sriharikota (13.7° N, 80.1° E, dip 12.6° are presented. The observations show that while the height of the most intense radar echoes is below the virtual height of Es (h'Es during daytime, it is found to be either below or above during nighttime. The strength of the FAI is better correlated with the top penetration frequency (ftEs and the blanketing frequency (fbEs during the night (r=0.4 in both cases as compared to the day (r=0.35 and -0.04, respectively. Furthermore, the signal strength of FAI is reasonably correlated with (ftEs-fbEs during daytime (r=0.59 while very poorly correlated during nighttime (r=0.18. While the radar observations in general appear to have characteristics close to that of mid-latitudes, the relationship of these with the Es parameters are poorer than that of mid-latitudes. The observations reported here, nevertheless, are quite consistent with the expectations based on the gradient drift instability mechanism.

  5. Positive Quasi Linear Operator Formulation

    International Nuclear Information System (INIS)

    Berry, L.A.; Jaeger, E.F.

    2005-01-01

    Expressions for the RF quasi-linear operator are biquadratic sums over the Fourier modes (or FLR equivalent) that describe the RF electric field with a kernel that is a function of the two wave vectors, k-vector L and k-vector R , in the sum. As a result of either an implicit or explicit average over field lines or flux surfaces, this kernel only depends on one parallel wave vector, conventionally k R -vector. When k-vector is an independent component of the representation for E, the sums are demonstrably positive. However, except for closed field line systems, k-vector is dependent on the local direction of the equilibrium magnetic field, and, empirically, the absorbed energy and quasi-linear diffusion coefficients are observed to have negative features. We have formally introduced an independent k-vector sum by Fourier transforming the RF electric field (assuming straight field lines) using a field-line-length coordinate. The resulting expression is positive. We have modeled this approach by calculating the quasi linear operator for 'modes' with fixed k-vector. We form these modes by discretizing k-vector and then assigning all of the Fourier components with k-vectorthat fall within a given k-vector bin to that k-vector mode. Results will be shown as a function of the number of bins. Future work will involve implementing the expressions derived from the Fourier transform and evaluating the dependence on field line length

  6. X-ray photoelectron spectra and electronic structure of quasi-one-dimensional SbSeI crystals

    Directory of Open Access Journals (Sweden)

    J.Grigas

    2007-01-01

    Full Text Available The paper presents the X-ray photoelectron spectra (XPS of the valence band (VB and of the principal core levels from the (110 and (001 crystal surfaces for the quasi-one-dimensional high permittivity SbSeI single crystal isostructural to ferroelectric SbSI. The XPS were measured with monochromatized Al Ka radiation in the energy range of 0-1400 eV at room temperature. The VB is located from 1.6 to 20 eV below the Fermi level. Experimental energies of the VB and core levels are compared with the results of theoretical ab initio calculations of the molecular model of the SbSeI crystal. The electronic structure of the VB is revealed. Shifts in the core-level binding energies of surface atoms relative to bulk ones, which show a dependency on surface crystallography, have been observed. The chemical shifts of the core levels (CL in the SbSeI crystal for the Sb, I and Se states are obtained.

  7. A SEARCH FOR SPECTRAL HYSTERESIS AND ENERGY-DEPENDENT TIME LAGS FROM X-RAY AND TeV GAMMA-RAY OBSERVATIONS OF Mrk 421

    International Nuclear Information System (INIS)

    Abeysekara, A. U.; Flinders, A.; Archambault, S.; Feng, Q.; Archer, A.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Bird, R.; Buchovecky, M.; Cardenzana, J. V; Eisch, J. D.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Finley, J. P.; Falcone, A.; Fleischhack, H.

    2017-01-01

    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three “target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi -Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4 × 10 −4 Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.

  8. A SEARCH FOR SPECTRAL HYSTERESIS AND ENERGY-DEPENDENT TIME LAGS FROM X-RAY AND TeV GAMMA-RAY OBSERVATIONS OF Mrk 421

    Energy Technology Data Exchange (ETDEWEB)

    Abeysekara, A. U.; Flinders, A. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Archambault, S.; Feng, Q. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Cardenzana, J. V; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Finley, J. P. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Fleischhack, H. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Collaboration: VERITAS Collaboration; MAGIC Collaboration; and others

    2017-01-01

    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three “target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi -Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4 × 10{sup −4} Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.

  9. Polyacene and a new class of quasi-one-dimensional conductors

    International Nuclear Information System (INIS)

    Kivelson, S.; Chapman, O.L.

    1983-01-01

    Most one-dimensional conductors are quite similar since the Fermi surface is a point and the electron energy dispersion relation near the Fermi surface is linear. It is pointed out that in polyacene the Fermi surface lies at the edge of the Brillouin zone, but that an accidental degeneracy between the valence and conduction bands makes it metallic nonetheless. The dispersion relation is therefore quadratic, and the density of states diverges at the Fermi surface. Thus, polyacene [(C 4 H 2 )/sub n/] and its possible derivatives represent a conceptually new class of quasi-one-dimensional conductors. Moreover, we find that this class of materials has the possibility of possessing interesting condensed phases including high-temperature superconductivity and ferromagnetism

  10. The new Wide-band Solar Neutrino Trigger for Super-Kamiokande

    Science.gov (United States)

    Carminati, Giada

    Super-Kamiokande observes low energy electrons induced by the elastic scattering of 8B solar neutrinos. The transition region between vacuum and matter oscillations, with neutrino energy near 3 MeV, is still partially unexplored by any detector. Super-Kamiokande can study this intermediate regime adding a new software trigger. The Wide-band Intelligent Trigger (WIT) has been developed to simultaneously trigger and reconstruct very low energy electrons (above 2.49 kinetic MeV) with an e_ciency close to 100%. The WIT system, comprising 256-Hyperthreaded CPU cores and one 10-Gigabit Ethernet network switch, has been recently installed and integrated in the online DAQ system of SK and the complete system is currently in an advanced status of online data testing.

  11. Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0 - 2014.5) of LASCO Observations

    Science.gov (United States)

    Barlyaeva, T.; Lamy, P.; Llebaria, A.

    2015-07-01

    We report on the analysis of the temporal evolution of the solar corona based on 18.5 years (1996.0 - 2014.5) of white-light observations with the SOHO/LASCO-C2 coronagraph. This evolution is quantified by generating spatially integrated values of the K-corona radiance, first globally, then in latitudinal sectors. The analysis considers time series of monthly values and 13-month running means of the radiance as well as several indices and proxies of solar activity. We study correlation, wavelet time-frequency spectra, and cross-coherence and phase spectra between these quantities. Our results give a detailed insight on how the corona responds to solar activity over timescales ranging from mid-term quasi-periodicities (also known as quasi-biennial oscillations or QBOs) to the long-term 11 year solar cycle. The amplitude of the variation between successive solar maxima and minima (modulation factor) very much depends upon the strength of the cycle and upon the heliographic latitude. An asymmetry is observed during the ascending phase of Solar Cycle 24, prominently in the royal and polar sectors, with north leading. Most prominent QBOs are a quasi-annual period during the maximum phase of Solar Cycle 23 and a shorter period, seven to eight months, in the ascending and maximum phases of Solar Cycle 24. They share the same properties as the solar QBOs: variable periodicity, intermittency, asymmetric development in the northern and southern solar hemispheres, and largest amplitudes during the maximum phase of solar cycles. The strongest correlation of the temporal variations of the coronal radiance - and consequently the coronal electron density - is found with the total magnetic flux. Considering that the morphology of the solar corona is also directly controlled by the topology of the magnetic field, this correlation reinforces the view that they are intimately connected, including their variability at all timescales.

  12. Quasi interpolation with Voronoi splines.

    Science.gov (United States)

    Mirzargar, Mahsa; Entezari, Alireza

    2011-12-01

    We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework. © 2011 IEEE

  13. Band gap engineering for graphene by using Na+ ions

    International Nuclear Information System (INIS)

    Sung, S. J.; Lee, P. R.; Kim, J. G.; Ryu, M. T.; Park, H. M.; Chung, J. W.

    2014-01-01

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E g ) at DP in a controlled way by depositing positively charged Na + ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na + ions is found to deplete the π* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E g . The band gap increases with increasing Na + coverage with a maximum E g ≥0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na + ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na + ions, which may play a vital role in utilizing graphene in future nano-electronic devices.

  14. A low-power current-reuse dual-band analog front-end for multi-channel neural signal recording.

    Science.gov (United States)

    Sepehrian, H; Gosselin, B

    2014-01-01

    Thoroughly studying the brain activity of freely moving subjects requires miniature data acquisition systems to measure and wirelessly transmit neural signals in real time. In this application, it is mandatory to simultaneously record the bioelectrical activity of a large number of neurons to gain a better knowledge of brain functions. However, due to limitations in transferring the entire raw data to a remote base station, employing dedicated data reduction techniques to extract the relevant part of neural signals is critical to decrease the amount of data to transfer. In this work, we present a new dual-band neural amplifier to separate the neuronal spike signals (SPK) and the local field potential (LFP) simultaneously in the analog domain, immediately after the pre-amplification stage. By separating these two bands right after the pre-amplification stage, it is possible to process LFP and SPK separately. As a result, the required dynamic range of the entire channel, which is determined by the signal-to-noise ratio of the SPK signal of larger bandwidth, can be relaxed. In this design, a new current-reuse low-power low-noise amplifier and a new dual-band filter that separates SPK and LFP while saving capacitors and pseudo resistors. A four-channel dual-band (SPK, LFP) analog front-end capable of simultaneously separating SPK and LFP is implemented in a TSMC 0.18 μm technology. Simulation results present a total power consumption per channel of 3.1 μw for an input referred noise of 3.28 μV and a NEF for 2.07. The cutoff frequency of the LFP band is fc=280 Hz, and fL=725 Hz and fL=11.2 KHz for SPK, with 36 dB gain for LFP band 46 dB gain for SPK band.

  15. Dipole Bands in 196Hg

    International Nuclear Information System (INIS)

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.

    2011-01-01

    High spin states in 196 Hg have been populated in the 198 Pt(α,6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  16. M-quasi-hyponormal composition operators

    Directory of Open Access Journals (Sweden)

    Pushpa R. Suri

    1987-01-01

    Full Text Available A necessary and sufficient condition is obtained for M-quasi-hyponormal composition operators. It has also been proved that the class of M-quasi-hyponormal composition operators coincides with the class of M-paranormal composition operators. Existence of M-hyponormal composition operators which are not hyponormal; and M-quasihyponormal composition operators which are not M-hyponormal and quasi-hyponormal are also shown.

  17. Band gap and band offset of (GaIn)(PSb) lattice matched to InP

    Science.gov (United States)

    Köhler, F.; Böhm, G.; Meyer, R.; Amann, M.-C.

    2005-07-01

    Metastable (GaxIn1-x)(PySb1-y) layers were grown on (001) InP substrates by gas source molecular beam epitaxy. Low-temperature photoluminescence spectroscopy was applied to these heterostructures and revealed spatially indirect band-to-band recombination of electrons localized in the InP with holes in the (GaxIn1-x)(PySb1-y). In addition, samples with layer thicknesses larger than 100nm showed direct PL across the band gap of (GaxIn1-x)(PySb1-y). Band-gap energies and band offset energies of (GaxIn1-x)(PySb1-y) relative to InP were derived from these PL data. A strong bowing parameter was observed.

  18. A microscopic study of the S band in the generator co-ordinate approach

    International Nuclear Information System (INIS)

    Wuest, E.; Ansari, A.

    1985-04-01

    Using particle number and spin projected cranked Hartree-Fock-Bogolubov (CHFB) wave functions in the generator co-ordinate method (GCM) with the cranking frequency as a GC the shortcomings of the usual CHFB theory are removed and the ground as well as the s band are studied simultaneously. In particular, low-spin properties of the s band are discussed for a backbending nucleus 158 Dy. (author)

  19. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2006-07-01

    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  20. Simultaneous EUV and radio observations of bidirectional plasmoids ejection during magnetic reconnection

    Science.gov (United States)

    Kumar, Pankaj; Cho, Kyung-Suk

    2013-09-01

    We present a multiwavelength study of the X-class flare, which occurred in active region (AR) NOAA 11339 on 3 November 2011. The extreme ultraviolet (EUV) images recorded by SDO/AIA show the activation of a remote filament (located north of the AR) with footpoint brightenings about 50 min prior to the flare's occurrence. The kinked filament rises up slowly, and after reaching a projected height of ~49 Mm, it bends and falls freely near the AR, where the X-class flare was triggered. Dynamic radio spectrum from the Green Bank Solar Radio Burst Spectrometer (GBSRBS) shows simultaneous detection of both positive and negative drifting pulsating structures (DPSs) in the decimetric radio frequencies (500-1200 MHz) during the impulsive phase of the flare. The global negative DPSs in solar flares are generally interpreted as a signature of electron acceleration related to the upward-moving plasmoids in the solar corona. The EUV images from AIA 94 Å reveal the ejection of multiple plasmoids, which move simultaneously upward and downward in the corona during the magnetic reconnection. The estimated speeds of the upward- and downward-moving plasmoids are ~152-362 and ~83-254 km s-1, respectively. These observations strongly support the recent numerical simulations of the formation and interaction of multiple plasmoids due to tearing of the current-sheet structure. On the basis of our analysis, we suggest that the simultaneous detection of both the negative and positive DPSs is most likely generated by the interaction or coalescence of the multiple plasmoids moving upward and downward along the current-sheet structure during the magnetic reconnection process. Moreover, the differential emission measure (DEM) analysis of the active region reveals a hot flux-rope structure (visible in AIA 131 and 94 Å) prior to the flare initiation and ejection of the multitemperature plasmoids during the flare impulsive phase. Movie is available in electronic form at http://www.aanda.org

  1. Quasi-ADS-B Based UAV Conflict Detection and Resolution to Manned Aircraft

    Directory of Open Access Journals (Sweden)

    Chin E. Lin

    2015-01-01

    Full Text Available A Conflict Detection and Resolution (CD&R system for manned/unmanned aerial vehicle (UAV based on Automatic Dependent Surveillance-Broadcast (ADS-B concept is designed and verified in this paper. The 900 MHz XBee-Pro is selected as data transponder to broadcast flight information among participating aircraft in omnirange. Standard Compact Position Report (CPR format packet data are automatically broadcasted by ID sequencing under Quasi-ADS-B mechanism. Time Division Multiple Access (TDMA monitoring checks the designated time slot and reallocates the conflict ID. This mechanism allows the transponder to effectively share data with multiple aircraft in near airspace. The STM32f103 microprocessor is designed to handle RF, GPS, and flight data with Windows application on manned aircraft and ground control station simultaneously. Different conflict detection and collision avoidance algorithms can be implemented into the system to ensure flight safety. The proposed UAV/CD&R using Quasi-ADS-B transceiver is tested using ultralight aircraft flying at 100–120 km/hr speed in small airspace for mission simulation. The proposed hardware is also useful to additional applications to mountain hikers for emergency search and rescue. The fundamental function by the proposed UAV/CD&R using Quasi-ADS-B is verified with effective signal broadcasting for surveillance and efficient collision alert and avoidance performance to low altitude flights.

  2. Quasi-particle excitations and dynamical structure function of trapped Bose-condensates in the WKB approximation

    OpenAIRE

    Csordás, András; Graham, Robert; Szépfalusy, Péter

    1997-01-01

    The Bogoliubov equations of the quasi-particle excitations in a weakly interacting trapped Bose-condensate are solved in the WKB approximation in an isotropic harmonic trap, determining the discrete quasi-particle energies and wave functions by torus (Bohr-Sommerfeld) quantization of the integrable classical quasi-particle dynamics. The results are used to calculate the position and strengths of the peaks in the dynamic structure function which can be observed by off-resonance inelastic light...

  3. Optical Frequency Mixing in Periodically-Patterned and in Quasi-Periodically-Patterned Nonlinear media

    International Nuclear Information System (INIS)

    Arie, A.

    1999-01-01

    Nonlinear frequency mixing processes, e.g. second harmonic generation, sum and difference frequency generation, etc., require matching of the phases of the interacting waves. The traditional method to achieve it is by selecting a specific angle of propagation in a birefringent nonlinear crystal. The main limitation of the birefringent phase matching method stems from the fact that for many interesting interactions, the phase matching condition cannot be satisfied in a specific crystal. This obstacle can be removed by the technique of quasi-phase-matching (QPM), where the nonlinear coefficient of the material is modulated at a fixed spatial frequency that equals the wave-vector phase mismatch between the interacting waves. An important development in recent years is the ability to periodically reverse the sign of the nonlinear coefficient in ferroelectric crystals by applying a high electric field through a periodic electrode. Some recent QPM interactions in periodically-poled KTP that were recently achieved at Tel-Aviv University include continuous-wave optical parametric oscillations, as well as generation of tunable mid-infrared radiation by difference frequency generation. Periodic patterning of the nonlinear coefficient enables to phase match only a single interaction. It would be advantageous to further extend the applications of this technique in order to simultaneously satisfy several interactions on a single crystal. This cannot be usually achieved in a periodic pattern, however more sophisticated quasi-periodic structures can be designed in this case. An interesting analogy can be drawn between artificially-made quasi-periodically-patterned nonlinear crystals and quasi-crystals found in nature, in rapidly-cooled metallic alloys

  4. Observations of magnetospheric ionization enhancements using upper-hybrid resonance noise band data from the RAE-1 satellite

    Science.gov (United States)

    Mosier, S. R.

    1975-01-01

    Noise bands associated with the upper-hybrid resonance were used to provide direct evidence for the existence of regions of enhanced density in the equatorial magnetosphere near L = 2. Density enhancements ranging from several percent to as high as 45 percent are observed with radial dimensions of several hundred kilometers. The enhancement characteristics strongly suggest their identification as magnetospheric whistler ducts.

  5. Bands and chromosome arrangement in interphase nuclei

    International Nuclear Information System (INIS)

    Bianchi, N.O.; Bianchi, M.A.; Matayoshi, T.

    1977-01-01

    Chromosomes from the vole mouse Akodon dolores and from laboratory mouse showed the presence of G-bands after 3 minutes digestion with trypsin and Giemsa stain. Simultaneously, 30- to 40% of the interphase nuclei exhibited a dark ring parallel to the nuclear contour and a radial array of the chromatin in the internal and external regions of the ring. The origin and meaning of this ring image was analyzed by combining progressive trypsinizations with other methods such as C-banding procedures, autoradiography with 3 HTdR, staining with quinacrine mustard and 33258 Hoechst fluorochromes. Moreover, the presence of the dark ring was also investigated in cells treated with actinomycin and in control cells not subjected to any treatment. The results obtained allowed to assume that in interphase nuclei the chromosomes have chromatin bridges which connect the dark G-bands and that these bridges are probably involved in maintaining an ordered architecture of the nucleus with fixed chromosome positions in regard to the nuclear envelope and in regard to other chromosomes. Trypsinization produces a disruption of the interphase chromatin arrangement and the subsequent appearance of a dark ring formed by the combination of constitutive heterochromatin and dark G-bands. (auth.)

  6. Observation of large photonic band gaps and defect modes in one-dimensional networked waveguides

    CERN Document Server

    Mir, A; Vasseur, J O; Djafari-Rouhani, B; Fettouhi, N; Boudouti, E H E; Dobrzynski, L; Zemmouri, J

    2003-01-01

    The photonic band structures and transmission spectra of serial loop structures (SLSs), made of loops pasted together with segments of finite length, are investigated experimentally and theoretically. These monomode structures, composed of one-dimensional dielectric materials, may exhibit large stop bands where the propagation of electromagnetic waves is forbidden. The width of these band gaps depends on the geometrical and compositional parameters of the structure and may be drastically increased in a tandem geometry made up of several successive SLSs which differ in their physical characteristics. These SLSs may have potential applications as ultrawide-band filters.

  7. Motor System Interactions in the Beta Band Decrease during Loss of Consciousness.

    Science.gov (United States)

    Swann, Nicole C; de Hemptinne, Coralie; Maher, Ryan B; Stapleton, Catherine A; Meng, Lingzhong; Gelb, Adrian W; Starr, Philip A

    2016-01-01

    Communication between brain areas and how they are influenced by changes in consciousness are not fully understood. One hypothesis is that brain areas communicate via oscillatory processes, utilizing network-specific frequency bands, that can be measured with metrics that reflect between-region interactions, such as coherence and phase amplitude coupling (PAC). To evaluate this hypothesis and understand how these interactions are modulated by state changes, we analyzed electrophysiological recordings in humans at different nodes of one well-studied brain network: the basal ganglia-thalamocortical loops of the motor system during loss of consciousness induced by anesthesia. We recorded simultaneous electrocorticography over primary motor cortex (M1) with local field potentials from subcortical motor regions (either basal ganglia or thalamus) in 15 movement disorder patients during anesthesia (propofol) induction as a part of their surgery for deep brain stimulation. We observed reduced coherence and PAC between M1 and the subcortical nuclei, which was specific to the beta band (∼18-24 Hz). The fact that this pattern occurs selectively in beta underscores the importance of this frequency band in the motor system and supports the idea that oscillatory interactions at specific frequencies are related to the capacity for normal brain function and behavior.

  8. Quasi-metrics, midpoints and applications

    Energy Technology Data Exchange (ETDEWEB)

    Valero, O.

    2017-07-01

    In applied sciences, the scientific community uses simultaneously different kinds of information coming from several sources in order to infer a conclusion or working decision. In the literature there are many techniques for merging the information and providing, hence, a meaningful fused data. In mostpractical cases such fusion methods are based on aggregation operators on somenumerical values, i.e. the aim of the fusion process is to obtain arepresentative number from a finite sequence of numerical data. In the aforementioned cases, the input data presents some kind of imprecision and for thisreason it is represented as fuzzy sets. Moreover, in such problems the comparisons between the numerical values that represent the information described by the fuzzy sets become necessary. The aforementioned comparisons are made by means of a distance defined on fuzzy sets. Thus, the numerical operators aggregating distances between fuzzy sets as incoming data play a central role in applied problems. Recently, J.J. Nieto and A. Torres gave some applications of the aggregation of distances on fuzzy sets to the study of real medical data in /cite{Nieto}. These applications are based on the notion of segment joining two given fuzzy sets and on the notion of set of midpoints between fuzzy sets. A few results obtained by Nieto and Torres have been generalized in turn by Casasnovas and Rossell/'{o} in /cite{Casas,Casas2}. Nowadays, quasi-metrics provide efficient tools in some fields of computer science and in bioinformatics. Motivated by the exposed facts, a study of segments joining two fuzzy sets and of midpoints between fuzzy sets when the measure, used for comparisons, is a quasi-metric has been made in /cite{Casas3, SebVal2013,TiradoValero}. (Author)

  9. On some classes of super quasi-Einstein manifolds

    International Nuclear Information System (INIS)

    Ozguer, Cihan

    2009-01-01

    Quasi-Einstein and generalized quasi-Einstein manifolds are the generalizations of Einstein manifolds. In this study, we consider a super quasi-Einstein manifold, which is another generalization of an Einstein manifold. We find the curvature characterizations of a Ricci-pseudosymmetric and a quasi-conformally flat super quasi-Einstein manifolds. We also consider the condition C ∼ .S=0 on a super quasi-Einstein manifold, where C ∼ and S denote the quasi-conformal curvature tensor and Ricci tensor of the manifold, respectively.

  10. The importance of band tail recombination on current collection and open-circuit voltage in CZTSSe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Moore, James E. [Naval Research Laboratory, Washington, DC 20375 (United States); Purdue University, West Lafayette, Indiana 47907 (United States); Hages, Charles J. [Purdue University, West Lafayette, Indiana 47907 (United States); Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Agrawal, Rakesh; Lundstrom, Mark S.; Gray, Jeffery L. [Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-07-11

    Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) solar cells typically exhibit high short-circuit current density (J{sub sc}), but have reduced cell efficiencies relative to other thin film technologies due to a deficit in the open-circuit voltage (V{sub oc}), which prevent these devices from becoming commercially competitive. Recent research has attributed the low V{sub oc} in CZTSSe devices to small scale disorder that creates band tail states within the absorber band gap, but the physical processes responsible for this V{sub oc} reduction have not been elucidated. In this paper, we show that carrier recombination through non-mobile band tail states has a strong voltage dependence and is a significant performance-limiting factor, and including these effects in simulation allows us to simultaneously explain the V{sub oc} deficit, reduced fill factor, and voltage-dependent quantum efficiency with a self-consistent set of material parameters. Comparisons of numerical simulations to measured data show that reasonable values for the band tail parameters (characteristic energy, capture rate) can account for the observed low V{sub oc}, high J{sub sc}, and voltage dependent collection efficiency. These results provide additional evidence that the presence of band tail states accounts for the low efficiencies of CZTSSe solar cells and further demonstrates that recombination through non-mobile band tail states is the dominant efficiency limiting mechanism.

  11. Plasma and energetic particle structure of a collisionless quasi-parallel shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.

    1983-01-01

    The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.

  12. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    Science.gov (United States)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  13. Warm-Up Activities of Middle and High School Band Directors Participating in State-Level Concert Band Assessments

    Science.gov (United States)

    Ward, Justin P.; Hancock, Carl B.

    2016-01-01

    The purpose of this study was to examine the warm-ups chosen by concert band directors participating in state-level performance assessments. We observed 29 middle and high school bands and coded the frequency and duration of warm-up activities and behaviors. Results indicated that most bands rehearsed music and played scales, long tones, and…

  14. Instantaneous band gap collapse in VO{sub 2} caused by photocarrier doping

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Marc; Wegkamp, Daniel; Wolf, Martin; Staehler, Julia [Fritz-Haber-Institut der MPG, Berlin (Germany); Xian, Lede; Cudazzo, Pierluigi [Univ. del Pais Vasco, San Sebastian (Spain); European Theoretical Spectroscopy Facility (ETSF) (France); Gatti, Matteo [European Theoretical Spectroscopy Facility (ETSF) (France); Ecole Polytechnique, Palaiseau (France); McGahan, Christina L.; Marvel, Robert E.; Haglund, Richard F. [Vanderbilt Univ., Nashville, Tennessee (United States); Rubio, Angel [Fritz-Haber-Institut der MPG, Berlin (Germany); Univ. del Pais Vasco, San Sebastian (Spain); European Theoretical Spectroscopy Facility (ETSF) (France); MPI for the Structure and Dynamics of Matter, Hamburg (Germany)

    2015-07-01

    We have investigated the controversially discussed mechanism of the insulator-to-metal transition (IMT) in VO{sub 2} by means of femtosecond time-resolved photoelectron spectroscopy (trPES). Our data show that photoexcitation transforms insulating monoclinic VO{sub 2} quasi-instantaneously into a metal without an 80 fs structural bottleneck for the photoinduced electronic phase transition. First-principles many-body perturbation theory calculations reveal an ultrahigh sensitivity of the VO{sub 2} band gap to variations of the dynamically screened Coulomb interaction thus supporting the fully electronically driven isostructural IMT indicated by our trPES results. We conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred.

  15. Near-infrared Spectroscopic Observations of Comet C/2013 R1 (Lovejoy) by WINERED: CN Red-system Band Emission

    Energy Technology Data Exchange (ETDEWEB)

    Shinnaka, Yoshiharu; Yasui, Chikako; Izumi, Natsuko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kawakita, Hideyo; Kondo, Sohei; Ikeda, Yuji; Kobayashi, Naoto; Hamano, Satoshi; Sameshima, Hiroaki; Fukue, Kei; Matsunaga, Noriyuki; Otsubo, Shogo; Takenaka, Keiichi; Watase, Ayaka; Kawanishi, Takafumi; Nakanishi, Kenshi; Nakaoka, Tetsuya [Laboratory of Infrared High-resolution Spectroscopy, Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Mizumoto, Misaki, E-mail: yoshiharu.shinnaka@nao.ac.jp, E-mail: kawakthd@cc.kyoto-su.ac.jp [Department of Astronomy, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-08-01

    Although high-resolution spectra of the CN red-system band are considered useful in cometary sciences, e.g., in the study of isotopic ratios of carbon and nitrogen in cometary volatiles, there have been few reports to date due to the lack of high-resolution ( R  ≡  λ /Δ λ  > 20,000) spectrographs in the near-infrared region around ∼1 μ m. Here, we present the high-resolution emission spectrum of the CN red-system band in comet C/2013 R1 (Lovejoy), acquired by the near-infrared high-resolution spectrograph WINERED mounted on the 1.3 m Araki telescope at the Koyama Astronomical Observatory, Kyoto, Japan. We applied our fluorescence excitation models for CN, based on modern spectroscopic studies, to the observed spectrum of comet C/2013 R1 (Lovejoy) to search for CN isotopologues ({sup 13}C{sup 14}N and {sup 12}C{sup 15}N). We used a CN fluorescence excitation model involving both a “pure” fluorescence excitation model for the outer coma and a “fully collisional” fluorescence excitation model for the inner coma region. Our emission model could reproduce the observed {sup 12}C{sup 14}N red-system band of comet C/2013 R1 (Lovejoy). The derived mixing ratio between the two excitation models was 0.94(+0.02/−0.03):0.06(+0.03/−0.02), corresponding to the radius of the collision-dominant region of ∼800–1600 km from the nucleus. No isotopologues were detected. The observed spectrum is consistent, within error, with previous estimates in comets of {sup 12}C/{sup 13}C (∼90) and {sup 14}N/{sup 15}N (∼150).

  16. Interlayer Excitons and Band Alignment in MoS2/hBN/WSe2 van der Waals Heterostructures

    DEFF Research Database (Denmark)

    Latini, Simone; Winther, Kirsten Trøstrup; Olsen, Thomas

    2017-01-01

    -emitting diodes. An important first step in describing such processes is to obtain the energies of the interlayer exciton states existing at the interface. Here we present a general first-principles method to compute the electronic quasi-particle (QP) band structure and excitonic binding energies...

  17. Non-yrast states and shape co-existence in 172Os

    International Nuclear Information System (INIS)

    Davidson, P.M.; Dracoulis, G.D.; Kibedi, T.; Byrne, A.P.; Anderssen, S.S.; Baxter, A.M.; Fabricius, B.; Lane, G.J.; Stuchbery, A.E.

    1994-01-01

    Previous studies of 172 Os noted an anomaly in the behaviour of the moment of inertia of the yrast band at low spin. A phenomenological model of shape coexistence based on interacting rotational bands was proposed to explain this anomaly and this model predicted low-lying non-yrast states. In order to test these predictions, the β-decay of 172 Ir has been used to populate 172 Os. Excited states have been observed and classified into positive-parity ''quasi-β'' and ''quasi-γ'' bands and a negative-parity band. The energies of the quasiband states are seen to be in general agreement with the predictions of the phenomenological model and the model is refined to take into account the new data. The bands involved are determined to have significantly different moments of inertia. (orig.)

  18. Observing pure effects of counter-rotating terms without ultrastrong coupling: A single photon can simultaneously excite two qubits

    Science.gov (United States)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2017-12-01

    The coherent process that a single photon simultaneously excites two qubits has recently been theoretically predicted by Garziano et al. [L. Garziano, V. Macrì, R. Stassi, O. Di Stefano, F. Nori, and S. Savasta, One Photon Can Simultaneously Excite two or More Atoms, Phys. Rev. Lett. 117, 043601 (2016), 10.1103/PhysRevLett.117.043601]. We propose a different approach to observe a similar dynamical process based on a superconducting quantum circuit, where two coupled flux qubits longitudinally interact with the same resonator. We show that this simultaneous excitation of two qubits (assuming that the sum of their transition frequencies is close to the cavity frequency) is related to the counter-rotating terms in the dipole-dipole coupling between two qubits, and the standard rotating-wave approximation is not valid here. By numerically simulating the adiabatic Landau-Zener transition and Rabi-oscillation effects, we clearly verify that the energy of a single photon can excite two qubits via higher-order transitions induced by the longitudinal couplings and the counter-rotating terms. Compared with previous studies, the coherent dynamics in our system only involves one intermediate state and, thus, exhibits a much faster rate. We also find transition paths which can interfere. Finally, by discussing how to control the two longitudinal-coupling strengths, we find a method to observe both constructive and destructive interference phenomena in our system.

  19. Duality and self-duality (energy reflection symmetry) of quasi-exactly solvable periodic potentials

    International Nuclear Information System (INIS)

    Dunne, Gerald V.; Shifman, M.

    2002-01-01

    A class of spectral problems with a hidden Lie-algebraic structure is considered. We define a duality transformation which maps the spectrum of one quasi-exactly solvable (QES) periodic potential to that of another QES periodic potential. The self-dual point of this transformation corresponds to the energy-reflection symmetry found previously for certain QES systems. The duality transformation interchanges bands at the bottom (top) of the spectrum of one potential with gaps at the top (bottom) of the spectrum of the other, dual, potential. Thus, the duality transformation provides an exact mapping between the weak coupling (perturbative) and semiclassical (nonperturbative) sectors

  20. Analysis, Design and Implementation of a Quasi-Proportional-Resonant Controller for a Multifunctional Capacitive-Coupling Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Ye, Tao; Dai, Ning-Yi; Lam, Chi-Seng

    2016-01-01

    to compensate reactive power and transfer active power simultaneously. It is a promising solution for micro-grid and building-integrated distributed generator systems. A quasiproportional- resonant (quasi-PR) controller is applied to reduce steady-state current tracking errors of the CGCI in this paper......The capacitive-coupling grid-connected inverter (CGCI) is coupled to the point of common coupling via a second-order LC branch. Its operational voltage is much lower than that of a conventional inductive-coupling grid-connected inverter (IGCI) when it serves as a multifunctional inverter...... tracking errors are greatly reduced when the quasi-PR controller rather than the proportional-integration controller is applied. Experimental results are also provided to validate the CGCI as a multifunctional grid-connected inverter....

  1. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers

    Science.gov (United States)

    Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen

    2018-04-01

    Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 μL, i.e. 3 mm diameter NMR tubes).

  2. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    Science.gov (United States)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  3. Outcome of band ligation in oesophageal varices

    International Nuclear Information System (INIS)

    Abbasi, A.; Bhutto, A.R.; Bhatti, K.I.; Mahmood, K.; Lal, K.

    2013-01-01

    Objective: To find out the outcome og band ligation of oesophageal varices in decompensated chronic liver disease patients. Methods: The quasi experimental study was conducted at the Jinnah Postgraduate Medical Centre, Karachi, and Civil Hospital, Karachi, unit from September 2007 to August 2011. Subjects were eligible if they had a diagnosis of cirrhosis based on history, physical examination, biochemical parameters and liver biopsy in some cases. Patients with advanced cirrhosis (Child-Pugh class C), antibodies against human immunodeficiency virus, hepatocellular carcinoma, portal vein thrombosis evident on ultrasonography, parenteral drug addiction, current alcohol abuse, previous or current treatment with β-blockers were excluded from the study. All patients were asked about alcohol intake and tested to determine the cause of liver cirrhosis. Tests for other causes of cirrhosis were carried out only if there was a suggestive clue. All patients under-went upper gastrointestinal endoscopy after consent. SPSS 15 was used for statistical analysis. Results: The age of the 173 patients who met the inclusion criteria ranged from 15 to 85 years, with a mean of 48.39+-13.38 years. There were 112 (64.7%) males. High-grade varices were seen in 130 (75.1%) patients, while low-grade varices were observed in 43 (24.9%) on first endoscopy. At initial endoscopy, 111 (64.2%) patients had portal hypertensive gastropathy. The patients were followed up for a mean period of 5.20+-2.67 months. Variceal obliteration was achieved in 138 (79.8%), while 33 (19.1%) cases developed re-bleeding. Mean number of endoscopy sessions for these patients were 2.28+-.918 with a maximum of 4. Conclusion: Band ligation eradicated oesophageal varices with less complications and a lower re-bleeding rate, but at the same time eradication was associated with more frequent development of portal hypertensive gastropathy. (author)

  4. Application of quasi-optical approach to construct RF power supply for TeV linear colliders

    International Nuclear Information System (INIS)

    Saldin, E.L.; Sarantsev, V.P.; Schneidmiller, E.A.; Ulyanov, Yu.N.; Yurkov, M.V.

    1995-01-01

    An idea to use a quasi-optical approach for constructing an RF power supply for TeV linear e + e - colliders is developed. The RF source of the proposed scheme is composed of a large number of low-power RF amplifiers commutated by quasi-optical elements. The RF power of this source is transmitted to the accelerating structure of the collider by means of quasi-optical waveguides and mirrors. Such an approach enables one not only to decrease the required peak RF power by several orders of magnitude with respect to the traditional approach based on standard klystron technique, but also to achieve the required level of reliability, as it is based on well-developed technology of serial microwave devices. To illustrate the proposed scheme, a conceptual project of 2x500 GeV X-band collider is considered. Accelerating structure of the collider is of the standard travelling wave type and the RF source is assumed to be composed of 0.7 MW klystrons. All equipment of such a collider is placed in a tunnel of 12x6 m 2 cross section. It is shown that such a collider may be constructed at the present level of accelerator technique. ((orig.))

  5. Observations of copolar correlation coefficient through a bright band at vertical incidence

    Science.gov (United States)

    Zrnic, D. S.; Raghavan, R.; Chandrasekar, V.

    1994-01-01

    This paper discusses an application of polarimetric measurements at vertical incidence. In particular, the correlation coefficients between linear copolar components are examined, and measurements obtained with the National Severe Storms Laboratory (NSSL)'s and National Center for Atmospheric Research (NCAR)'s polarimetric radars are presented. The data are from two well-defined bright bands. A sharp decrease of the correlation coefficient, confined to a height interval of a few hundred meters, marks the bottom of the bright band.

  6. Sub-second pulsations simultaneously observed at microwaves and hard X-rays in a solar burst

    International Nuclear Information System (INIS)

    Takakura, T.; Degaonkar, S.S.; Nitta, N.; Ohki, N.

    1982-11-01

    Sub-second time structures have been found in the emissions during solar bursts in mm-waves and, independently, in hard X-rays. However, simultaneous observations of such fast time structure in mm radio and X-ray ranges has not been available so far. Accordingly, coordinated observations of solar bursts in November 1981 with a high time resolution of a few milliseconds were planned. The hard X-rays (30-40 KeV were observed with hard X-ray monitor (HXM) aboard the Hinotori Satellite with a time resolution of 7.81 ms and the radio emissions were observed on the ground with 45ft dish at Itapetinga Radio Observatory with a high time resolution (1 ms) and high sensitivities at 22 GHz and 44 GHz, supplemented by a patrol observation at 7 GHz with time resolution of 100 ms. The pulsations repeated with a period of about 300 ms. The physical implication of the good correlation is not clear at this stage, but it may give a clue to the understanding of the high energy phenomena occuring during the solar flares. (Author) [pt

  7. Designing Phononic Crystals with Wide and Robust Band Gaps

    Science.gov (United States)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  8. Designing Phononic Crystals with Wide and Robust Band Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jia, Zian [State University of New York at Stony Brook; Yang, Haoxiang [State University of New York at Stony Brook; Wang, Lifeng [State University of New York at Stony Brook

    2018-04-16

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  9. Lattice relaxation theory of localized excitations in quasi-one-dimensional systems

    International Nuclear Information System (INIS)

    Wang Chuilin; Su Zhaobin; Yu Lu.

    1993-04-01

    The lattice relaxation theory developed earlier by Su and Yu for solitons and polarons in conducting polymers is applied to systems with both electron-phonon and electron-electron interactions, described by a single band Peierls-Hubbard model. The localized excitations in the competing bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW) systems show interesting new features in their dynamics. In particular, a non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory. The possible connection of this effect with photo-luminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 21 refs, 4 figs

  10. Weak completeness of the Bourbaki quasi-uniformity

    Directory of Open Access Journals (Sweden)

    M.A. Sánchez Granero

    2001-04-01

    Full Text Available The concept of semicompleteness (weaker than half-completeness is defined for the Bourbaki quasi-uniformity of the hyperspace of a quasi-uniform space. It is proved that the Bourbaki quasi-uniformity is semicomplete in the space of nonempty sets of a quasi-uniform space (X,U if and only if each stable filter on (X,U* has a cluster point in (X,U. As a consequence the space of nonempty sets of a quasi-pseudometric space is semicomplete if and only if the space itself is half-complete. It is also given a characterization of semicompleteness of the space of nonempty U*-compact sets of a quasi-uniform space (X,U which extends the well known Zenor-Morita theorem.

  11. Does the chromatic Mach bands effect exist?

    Science.gov (United States)

    Tsofe, Avital; Spitzer, Hedva; Einav, Shmuel

    2009-06-30

    The achromatic Mach bands effect is a well-known visual illusion, discovered over a hundred years ago. This effect has been investigated thoroughly, mainly for its brightness aspect. The existence of Chromatic Mach bands, however, has been disputed. In recent years it has been reported that Chromatic Mach bands are not perceived under controlled iso-luminance conditions. However, here we show that a variety of Chromatic Mach bands, consisting of chromatic and achromatic regions, separated by a saturation ramp, can be clearly perceived under iso-luminance and iso-brightness conditions. In this study, observers' eye movements were recorded under iso-brightness conditions. Several observers were tested for their ability to perceive the Chromatic Mach bands effect and its magnitude, across different cardinal and non-cardinal Chromatic Mach bands stimuli. A computational model of color adaptation, which predicted color induction and color constancy, successfully predicts this variation of Chromatic Mach bands. This has been tested by measuring the distance of the data points from the "achromatic point" and by calculating the shift of the data points from predicted complementary lines. The results suggest that the Chromatic Mach bands effect is a specific chromatic induction effect.

  12. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    Science.gov (United States)

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  13. The role of engineered materials in superconducting tunnel junction X-ray detectors - Suppression of quasiparticle recombination losses via a phononic band gap

    Science.gov (United States)

    Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.

    1992-01-01

    An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.

  14. Forward angle quasi-free proton-neutron analyzing powers at 0.8 GeV

    International Nuclear Information System (INIS)

    Barlett, M.L.

    1981-01-01

    As the first step in determining the nucleon-nucleon scattering amplitudes at small momentum transfers at 0.8 GeV, quasi-free p vector + n and p vector + p analyzing powers were obtained at laboratory scattering angles from 6 0 to 32.9 0 by scattering 800-MeV polarized protons from a liquid deuterium target. Forward-scattered protons were detected by the High Resolution Spectrometer (HRS), while recoil neutrons and protons were detected in coincidence with the event detected with the HRS by a 5 x 5 array of scintillators. A thin scintillator placed between the target and the array enabled discrimination of recoil particle type and facilitated the simultaneous measurement of both p vector n and n vector p analyzing powers. A comparison of the results with previously measured free p vector p and n vector p analyzing powers shows excellent agreement between the free and quasi-free p vector p analyzing powers. Poorer agreement is seen for the p vector n analyzing powers. The results of phase-shift analyses are presented in order to study the effects of the quasi-free analyzing power measurements on the determination of the pn scattering amplitudes. Amplitudes obtained from the phase-shift analyses are then used in KMT calculations. The results indicate that further nucleon-nucleon measurements are necessary in order to determine the nucleon-nucleon amplitudes unambiguously at 800 MeV

  15. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    Science.gov (United States)

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Quasi-monoenergetic proton acceleration from cryogenic hydrogen microjet by ultrashort ultraintense laser pulses

    Science.gov (United States)

    Sharma, A.; Tibai, Z.; Hebling, J.; Fülöp, J. A.

    2018-03-01

    Laser-driven proton acceleration from a micron-sized cryogenic hydrogen microjet target is investigated using multi-dimensional particle-in-cell simulations. With few-cycle (20-fs) ultraintense (2-PW) laser pulses, high-energy quasi-monoenergetic proton acceleration is predicted in a new regime. A collisionless shock-wave acceleration mechanism influenced by Weibel instability results in a maximum proton energy as high as 160 MeV and a quasi-monoenergetic peak at 80 MeV for 1022 W/cm2 laser intensity with controlled prepulses. A self-generated strong quasi-static magnetic field is also observed in the plasma, which modifies the spatial distribution of the proton beam.

  17. Simultaneous observations of sun-aligned polar cap arcs in both hemispheres by EXOS-C and viking

    International Nuclear Information System (INIS)

    Obara, T.; Kitayama, M.; Mukai, T.; Kaya, N.; Murphree, J.S.; Cogger, L.L.

    1988-01-01

    On September 25, 1986, the EXOS-C satellite traversed an intense electron precipitation in the southern polar cap, while the Viking satellite simultaneously obtained image data of the polar cap arc in the northern hemisphere. The energy spectrum of the precipitation, measured by instrumentation aboard EXOS-C, was very similar to that of adjacent (typical) auroral arcs, and the precipitation in the southern polar cap was observed in the same local time sector in which the arc was found in the northern polar cap. Observations seem to support the view that the polar cap arc occurs on closed field lines and is conjugate in both hemispheres. copyright American Geophysical Union 1988

  18. Spectral properties of a two dimensional photonic crystal with quasi-integrable geometry

    International Nuclear Information System (INIS)

    Cruz-Bueno, J J; Méndez-Bermúdez, J A; Arriaga, J

    2013-01-01

    In this paper we study the statistical properties of the allowed frequencies for electromagnetic waves propagating in two-dimensional photonic crystals with quasi-integrable geometry. We compute the level spacing, group velocity, and curvature distributions (P(s), P(v), and P(c), respectively) and compare them with the corresponding random matrix theory predictions. Due to the quasi-integrability of the crystal we observe signatures of intermediate statistics in P(s) and P(c) for high refractive index contrasts

  19. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.

    Science.gov (United States)

    Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan

    2013-08-15

    Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.

  20. Application of quasi-random numbers for simulation

    International Nuclear Information System (INIS)

    Kazachenko, O.N.; Takhtamyshev, G.G.

    1985-01-01

    Application of the Monte-Carlo method for multidimensional integration is discussed. The main goal is to check the statement that the application of quasi-random numbers instead of regular pseudo-random numbers provides more rapid convergency. The Sobol, Richtmayer and Halton algorithms of quasi-random sequences are described. Over 50 tests to compare these quasi-random numbers as well as pseudo-random numbers were fulfilled. In all cases quasi-random numbers have clearly demonstrated a more rapid convergency as compared with pseudo-random ones. Positive test results on quasi-random trend in Monte-Carlo method seem very promising

  1. Towards a generalized Landau theory of quasi-particles for hot dense matter

    International Nuclear Information System (INIS)

    Leermakers, R.

    1985-01-01

    In this thesis it is tried to construct a Landau quasi-particle theory for relativistic systems, using field-theoretical methods. It includes a perturbative calculation of the pressure of a quark-gluon plasma. It reports the existence of a hitherto unnoticed plasmon contribution of the order g 3 due to transverse quasi-gluons. A new and Lorentz covariant formulation of the Landau theory is being developed, for a general relativistic system. A detailed calculation is presented of the observables of a quantum electrodynamical (QED) plasma, in lowest orders of perturbation theory. A transverse plasmon effect is discovered, both analytically and numerically. In addition, the analysis shows quasi-electrons and positrons to be stable excitations at any temperature. This is proven in all orders of perturbation theory. Along with a Landau theory for quark-gluon matter, a linearized kinetic equation is derived for the singlet quark distribution function, with a collision term for soft encounters between quasi-quarks. (Auth.)

  2. Mars atmosphere studies with the SPICAM IR emission phase function observations

    Science.gov (United States)

    Trokhimovskiy, Alexander; Fedorova, Anna; Montmessin, Franck; Korablev, Oleg; Bertaux, Jean-Loup

    Emission Phase Function (EPF) observations is a powerful tool for characterization of atmosphere and surface. EPF sequence provides the extensive coverage of scattering angles above the targeted surface location which allow to separate the surface and aerosol scattering, study a vertical distribution of minor species and aerosol properties. SPICAM IR instrument on Mars Express mission provides continuous atmospheric observations in near IR (1-1.7 mu) in nadir and limb starting from 2004. For the first years of SPICAM operation only a very limited number of EPFs was performed. But from the mid 2013 (Ls=225, MY31) SPICAM EPF observations become rather regular. Based on the multiple-scattering radiative transfer model SHDOM, we analyze equivalent depths of carbon dioxide (1,43 mu) and water vapour (1,38 mu) absorption bands and their dependence on airmass during observation sequence to get aerosol optical depths and properties. The derived seasonal dust opacities from near IR can be used to retrieve the size distribution from comparison with simultaneous results of other instruments in different spectral ranges. Moreover, the EPF observations of water vapour band allow to access poorly known H2O vertical distribution for different season and locations.

  3. Simultaneous VHF radar backscatter and ionosonde observations of low-latitude E region

    Directory of Open Access Journals (Sweden)

    A. K. Patra

    2005-03-01

    Full Text Available The first results of simultaneous observations made on the low-latitude field-aligned irregularities (FAI using the MST radar located at Gadanki (13.5° N, 79.2° E, dip 12.5° and the Es parameters using an ionosonde at a nearby station Sriharikota (13.7° N, 80.1° E, dip 12.6° are presented. The observations show that while the height of the most intense radar echoes is below the virtual height of Es (h'Es during daytime, it is found to be either below or above during nighttime. The strength of the FAI is better correlated with the top penetration frequency (ftEs and the blanketing frequency (fbEs during the night (r=0.4 in both cases as compared to the day (r=0.35 and -0.04, respectively. Furthermore, the signal strength of FAI is reasonably correlated with (ftEs-fbEs during daytime (r=0.59 while very poorly correlated during nighttime (r=0.18. While the radar observations in general appear to have characteristics close to that of mid-latitudes, the relationship of these with the Es parameters are poorer than that of mid-latitudes. The observations reported here, nevertheless, are quite consistent with the expectations based on the gradient drift instability mechanism.

  4. Modifications of nucleons in nuclei in quasi-elastic electron-nucleus scattering

    International Nuclear Information System (INIS)

    Mulders, P.J.

    1988-01-01

    In inelastic electron scattering two scaling regions are observed in which the scattering is dominated by quasi-elastic scattering. For large momentum transfers, √Q 2 > 2 GeV/c, the scattering process is dominated by quasi-elastic scattering off quarks, whereas for √Q 2 ≅ 0.5 GeV/c the dominant contribution is quasi-elastic scattering off nucleons. This corresponds nicely to our first order picture of the nucleus consisting of nucleons, which in turn are composed of quarks. In the nucleon-scaling region, possible modifications of nucleon properties show up through a study of the Q 2 dependence and the relative strength of the transverse and longitudinal cross sections. Results of both inclusive (e,e') and exclusive (e,e'p) experiments in the quasi-elastic scattering region indeed show a behavior that could indicate modifications of intrinsic properties of individual nucleons in the nucleus, although the question remains if one has correctly disentangled the effects of the (long range) interactions between nucleons and those connected to the internal structure of nucleons. Even so, a simple (one-parameter) size rescaling for nucleons appears to be inconsistent with the data and also with some known conventional nuclear physics observables. Therefore the inclusion of two-nucleon correlations appears necessary in order to be able to understand the data. Such correlations can for instance be due to the effect of the Pauli principle on the quark level. (orig.)

  5. Revealing the Faraday depth structure of radio galaxy NGC 612 with broad-band radio polarimetric observations

    Science.gov (United States)

    Kaczmarek, J. F.; Purcell, C. R.; Gaensler, B. M.; Sun, X.; O'Sullivan, S. P.; McClure-Griffiths, N. M.

    2018-05-01

    We present full-polarization, broad-band observations of the radio galaxy NGC 612 (PKS B0131-637) from 1.3 to 3.1 GHz using the Australia Telescope Compact Array. The relatively large angular scale of the radio galaxy makes it a good candidate with which to investigate the polarization mechanisms responsible for the observed Faraday depth structure. By fitting complex polarization models to the polarized spectrum of each pixel, we find that a single polarization component can adequately describe the observed signal for the majority of the radio galaxy. While we cannot definitively rule out internal Faraday rotation, we argue that the bulk of the Faraday rotation is taking place in a thin skin that girts the polarized emission. Using minimum energy estimates, we find an implied total magnetic field strength of 4.2 μG.

  6. Real-time dual-band haptic music player for mobile devices.

    Science.gov (United States)

    Hwang, Inwook; Lee, Hyeseon; Choi, Seungmoon

    2013-01-01

    We introduce a novel dual-band haptic music player for real-time simultaneous vibrotactile playback with music in mobile devices. Our haptic music player features a new miniature dual-mode actuator that can produce vibrations consisting of two principal frequencies and a real-time vibration generation algorithm that can extract vibration commands from a music file for dual-band playback (bass and treble). The algorithm uses a "haptic equalizer" and provides plausible sound-to-touch modality conversion based on human perceptual data. In addition, we present a user study carried out to evaluate the subjective performance (precision, harmony, fun, and preference) of the haptic music player, in comparison with the current practice of bass-band-only vibrotactile playback via a single-frequency voice-coil actuator. The evaluation results indicated that the new dual-band playback outperforms the bass-only rendering, also providing several insights for further improvements. The developed system and experimental findings have implications for improving the multimedia experience with mobile devices.

  7. Triaxial energy relation to describe rotational band in 98-112Ru nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Varshney, Mani; Singh, M.; Gupta, D.K.

    2010-01-01

    In a broader perspective rotation vibration coupling parameter (b) is considered changing with the change in excitation energy (ε 1 ) and is evaluated on fitting experimental energy for 98-112 Ru isotopes in the frame work of general asymmetric rotor model. The moment of inertia parameter (a), common to yrast and quasiband, is calculated from deformation parameter (β) using general empirical relation. The present work is undertaken to suggest some suitable equation for the trajectories which are similar in shape in 98-112 Ru nuclei

  8. Fast integration using quasi-random numbers

    International Nuclear Information System (INIS)

    Bossert, J.; Feindt, M.; Kerzel, U.

    2006-01-01

    Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples

  9. Fast integration using quasi-random numbers

    Science.gov (United States)

    Bossert, J.; Feindt, M.; Kerzel, U.

    2006-04-01

    Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples.

  10. Band head spin assignment of superdeformed bands in Hg isotopes through power index formula

    Science.gov (United States)

    Sharma, Honey; Mittal, H. M.

    2018-05-01

    The power index formula has been used to obtain the band head spin (I 0) of all the superdeformed (SD) bands in Hg isotopes. A least squares fitting approach is used. The root mean square deviations between the determined and the observed transition energies are calculated by extracting the model parameters using the power index formula. Whenever definite spins are available, the determined and the observed transition energies are in accordance with each other. The computed values of dynamic moment of inertia J (2) obtained by using the power index formula and its deviation with the rotational frequency is also studied. Excellent agreement is shown between the calculated and the experimental results for J (2) versus the rotational frequency. Hence, the power index formula works very well for all the SD bands in Hg isotopes expect for 195Hg(2, 3, 4).

  11. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy.

    Science.gov (United States)

    Hill, Heather M; Rigosi, Albert F; Rim, Kwang Taeg; Flynn, George W; Heinz, Tony F

    2016-08-10

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we examine the electronic structure of transition metal dichalcogenide heterostructures (TMDCHs) composed of monolayers of MoS2 and WS2. STS data are obtained for heterostructures of varying stacking configuration as well as the individual monolayers. Analysis of the tunneling spectra includes the influence of finite sample temperature, yield information about the quasi-particle bandgaps, and the band alignment of MoS2 and WS2. We report the band gaps of MoS2 (2.16 ± 0.04 eV) and WS2 (2.38 ± 0.06 eV) in the materials as measured on the heterostructure regions and the general type II band alignment for the heterostructure, which shows an interfacial band gap of 1.45 ± 0.06 eV.

  12. Quasi parton distributions and the gradient flow

    International Nuclear Information System (INIS)

    Monahan, Christopher; Orginos, Kostas

    2017-01-01

    We propose a new approach to determining quasi parton distribution functions (PDFs) from lattice quantum chromodynamics. By incorporating the gradient flow, this method guarantees that the lattice quasi PDFs are finite in the continuum limit and evades the thorny, and as yet unresolved, issue of the renormalization of quasi PDFs on the lattice. In the limit that the flow time is much smaller than the length scale set by the nucleon momentum, the moments of the smeared quasi PDF are proportional to those of the lightfront PDF. Finally, we use this relation to derive evolution equations for the matching kernel that relates the smeared quasi PDF and the light-front PDF.

  13. Differential geometry of quasi-Sasakian manifolds

    International Nuclear Information System (INIS)

    Kirichenko, V F; Rustanov, A R

    2002-01-01

    The full system of structure equations of a quasi-Sasakian structure is obtained. The structure of the main tensors on a quasi-Sasakian manifold (the Riemann-Christoffel tensor, the Ricci tensor, and other tensors) is studied on this basis. Interesting characterizations of quasi-Sasakian Einstein manifolds are obtained. Additional symmetry properties of the Riemann-Christoffel tensor are discovered and used for distinguishing a new class of CR 1 quasi-Sasakian manifolds. An exhaustive description of the local structure of manifolds in this class is given. A complete classification (up to the B-transformation of the metric) is obtained for manifolds in this class having additional properties of the isotropy kind

  14. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    International Nuclear Information System (INIS)

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f NL in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology

  15. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  16. Quasi-16-day period oscillations observed in middle atmospheric ozone and temperature in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Demissie, T.D.; Hibbins, R.E.; Espy, P.J. [Norwegian Univ. of Science and Technology (NTNU), Trondheim (Norway); Birkeland Centre for Space Science, Bergen (Norway); Kleinknecht, N.H.; Straub, C. [Norwegian Univ. of Science and Technology (NTNU), Trondheim (Norway)

    2013-09-01

    Nightly averaged mesospheric temperature derived from the hydroxyl nightglow at Rothera station (67 34' S, 68 08' W) and nightly midnight measurements of ozone mixing ratio obtained from Troll station (72 01' S, 2 32' E) in Antarctica have been used to investigate the presence and vertical profile of the quasi-16-day planetary wave in the stratosphere and mesosphere during the Antarctic winter of 2009. The variations caused by planetary waves on the ozone mixing ratio and temperature are discussed, and spectral and cross-correlation analyses are performed to extract the wave amplitudes and to examine the vertical structure of the wave from 34 to 80 km. The results show that while planetary-wave signatures with periods 3-12 days are strong below the stratopause, the oscillations associated with the 16-day wave are the strongest and present in both the mesosphere and stratosphere. The period of the wave is found to increase below 42 km due to the Doppler shifting by the strong eastward zonal wind. The 16-day oscillation in the temperature is found to be correlated and phase coherent with the corresponding oscillation observed in O{sub 3} volume mixing ratio at all levels, and the wave is found to have vertical phase fronts consistent with a normal mode structure. (orig.)

  17. Performance Comparison of Orthogonal and Quasi-orthogonal Codes in Quasi-Synchronous Cellular CDMA Communication

    Science.gov (United States)

    Jos, Sujit; Kumar, Preetam; Chakrabarti, Saswat

    Orthogonal and quasi-orthogonal codes are integral part of any DS-CDMA based cellular systems. Orthogonal codes are ideal for use in perfectly synchronous scenario like downlink cellular communication. Quasi-orthogonal codes are preferred over orthogonal codes in the uplink communication where perfect synchronization cannot be achieved. In this paper, we attempt to compare orthogonal and quasi-orthogonal codes in presence of timing synchronization error. This will give insight into the synchronization demands in DS-CDMA systems employing the two classes of sequences. The synchronization error considered is smaller than chip duration. Monte-Carlo simulations have been carried out to verify the analytical and numerical results.

  18. A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE

    International Nuclear Information System (INIS)

    Monfardini, A.; Benoit, A.; Bideaud, A.; Swenson, L.; Cruciani, A.; Camus, P.; Hoffmann, C.; Desert, F. X.; Doyle, S.; Ade, P.; Mauskopf, P.; Tucker, C.; Roesch, M.; Leclercq, S.; Schuster, K. F.; Endo, A.; Baryshev, A.; Baselmans, J. J. A.; Ferrari, L.; Yates, S. J. C

    2011-01-01

    The Neel IRAM KIDs Array (NIKA) is a fully integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. The instrument includes dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz. The imaging sensors consist of two spatially separated arrays of KIDs. The first array, mounted on the 150 GHz branch, is composed of 144 lumped-element KIDs. The second array (220 GHz) consists of 256 antenna-coupled KIDs. Each of the arrays is sensitive to a single polarization; the band splitting is achieved by using a grid polarizer. The optics and sensors are mounted in a custom dilution cryostat, with an operating temperature of ∼70 mK. Electronic readout is realized using frequency multiplexing and a transmission line geometry consisting of a coaxial cable connected in series with the sensor array and a low-noise 4 K amplifier. The dual-band NIKA was successfully tested in 2010 October at the Institute for Millimetric Radio Astronomy (IRAM) 30 m telescope at Pico Veleta, Spain, performing in-line with laboratory predictions. An optical NEP was then calculated to be around 2 x 10 -16 W Hz -1/2 (at 1 Hz) while under a background loading of approximately 4 pW pixel -1 . This improvement in comparison with a preliminary run (2009) verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically relevant faint and extended objects were then imaged including the Galactic Center SgrB2 (FIR1), the radio galaxy Cygnus A, and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.

  19. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-10-04

    Arrays of gold quasi-3D nanoholes were proposed and fabricated as substrates for surface-enhanced Raman scattering (SERS). By detecting rhodamine 6G (R6G) molecules, the gold quasi-3D nanoholes demonstrated an SERS intensity that was 25-62 times higher than that of two-dimensional nanoholes with the same geometrical shapes and periodicities. The larger SERS enhancement of the quasi-3D nanoholes is attributed to the enhanced electromagnetic field on the top-layer nanohole, the bottom nanodiscs and the field coupling between the two layers. In addition, the investigation of the shape dependence of the SERS on the quasi-3D nanoholes demonstrated that the quadratic, circular, triangular and rhombic holes exhibited different SERS properties. Numerical simulations of the electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results agree with the experimental observations. © 2012 IOP Publishing Ltd.

  20. Toward a Principled Sampling Theory for Quasi-Orders.

    Science.gov (United States)

    Ünlü, Ali; Schrepp, Martin

    2016-01-01

    Quasi-orders, that is, reflexive and transitive binary relations, have numerous applications. In educational theories, the dependencies of mastery among the problems of a test can be modeled by quasi-orders. Methods such as item tree or Boolean analysis that mine for quasi-orders in empirical data are sensitive to the underlying quasi-order structure. These data mining techniques have to be compared based on extensive simulation studies, with unbiased samples of randomly generated quasi-orders at their basis. In this paper, we develop techniques that can provide the required quasi-order samples. We introduce a discrete doubly inductive procedure for incrementally constructing the set of all quasi-orders on a finite item set. A randomization of this deterministic procedure allows us to generate representative samples of random quasi-orders. With an outer level inductive algorithm, we consider the uniform random extensions of the trace quasi-orders to higher dimension. This is combined with an inner level inductive algorithm to correct the extensions that violate the transitivity property. The inner level correction step entails sampling biases. We propose three algorithms for bias correction and investigate them in simulation. It is evident that, on even up to 50 items, the new algorithms create close to representative quasi-order samples within acceptable computing time. Hence, the principled approach is a significant improvement to existing methods that are used to draw quasi-orders uniformly at random but cannot cope with reasonably large item sets.