WorldWideScience

Sample records for band materials progress

  1. VIBRONIC PROGRESSIONS IN SEVERAL DIFFUSE INTERSTELLAR BANDS

    International Nuclear Information System (INIS)

    Duley, W. W.; Kuzmin, Stanislav

    2010-01-01

    A number of vibronic progressions based on low-energy vibrational modes of a large molecule have been found in the diffuse interstellar band (DIB) spectrum of HD 183143. Four active vibrational modes have been identified with energies at 5.18 cm -1 , 21.41 cm -1 , 31.55 cm -1 , and 34.02 cm -1 . The mode at 34.02 cm -1 was previously recognized by Herbig. Four bands are associated with this molecule, with origins at 6862.61 A, 6843.64 A, 6203.14 A, and 5545.11 A (14589.1 cm -1 , 14608.08 cm -1 , 16116.41 cm -1 , and 18028.9 cm -1 , respectively). The progressions are harmonic and combination bands are observed involving all modes. The appearance of harmonic, rather than anharmonic, terms in these vibronic progressions is consistent with torsional motion of pendant rings, suggesting that the carrier is a 'floppy' molecule. Some constraints on the type and size of the molecule producing these bands are discussed.

  2. Computerized access to materials data. A progress report

    International Nuclear Information System (INIS)

    Rumble, J. Jr.

    1985-01-01

    As the effort to build a comprehensive computerized materials data system grows, it becomes more obvious that the benefits will be far-reaching. During this workshop, the enthusiasm of the participants grew steadily until the questions became not''What,'' but ''When?''. The engineering community within the United States has banded together many times to advance progress in engineering capability. The computerized materials data system requires such an effort, and the rewards will be substantial. Chapter 3 identifies changes in the use of materials data in the Nuclear Power Industry. Chapter 4 describes the EPRI experience in building computerized materials databases. In Chapter 5, the National Materials Property Data Network is discussed. The next four chapters present summaries of the workshop discussions and its conclusions. Chapter 6 discusses the content of the proposed system, Chapter 7 its size and the data sources, and Chapter 8 the user interfaces and system capabilities. In Chapter 9, ways of making further progress are outlined

  3. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    Science.gov (United States)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  4. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Fujimori, Shin-ichi

    2016-04-20

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ~ 7 eV) or high-energy synchrotron radiations (hν >/~ 400 eV) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of CeMIn5(M = Rh, Ir, and Co) and YbRh2Si2 with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant U5f compounds such as UFeGa5, their electronic structures can be well-described by the band-structure calculation assuming that all U5f electrons are itinerant. In contrast, the band structures of localized U5f compounds such as UPd3 and UO2 are essentially explained by the localized model that treats U5f electrons as localized core states. In regards to heavy fermion U-based compounds such as the hidden-order compound URu2Si2, their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of EF show some deviations due to electron correlation effects. Furthermore, the electronic structures of URu2Si2 in the paramagnetic and hidden-order phases are

  5. Progressive sample processing of band selection for hyperspectral imagery

    Science.gov (United States)

    Liu, Keng-Hao; Chien, Hung-Chang; Chen, Shih-Yu

    2017-10-01

    Band selection (BS) is one of the most important topics in hyperspectral image (HSI) processing. The objective of BS is to find a set of representative bands that can represent the whole image with lower inter-band redundancy. Many types of BS algorithms were proposed in the past. However, most of them can be carried on in an off-line manner. It means that they can only be implemented on the pre-collected data. Those off-line based methods are sometime useless for those applications that are timeliness, particular in disaster prevention and target detection. To tackle this issue, a new concept, called progressive sample processing (PSP), was proposed recently. The PSP is an "on-line" framework where the specific type of algorithm can process the currently collected data during the data transmission under band-interleavedby-sample/pixel (BIS/BIP) protocol. This paper proposes an online BS method that integrates a sparse-based BS into PSP framework, called PSP-BS. In PSP-BS, the BS can be carried out by updating BS result recursively pixel by pixel in the same way that a Kalman filter does for updating data information in a recursive fashion. The sparse regression is solved by orthogonal matching pursuit (OMP) algorithm, and the recursive equations of PSP-BS are derived by using matrix decomposition. The experiments conducted on a real hyperspectral image show that the PSP-BS can progressively output the BS status with very low computing time. The convergence of BS results during the transmission can be quickly achieved by using a rearranged pixel transmission sequence. This significant advantage allows BS to be implemented in a real time manner when the HSI data is transmitted pixel by pixel.

  6. W-Band Transmission MeasurementS and X-Band Dielectric Properties Measurements for a Radome Material Sample

    Science.gov (United States)

    Cravey, Robin L.; Tiemsin, Pacita I.

    1997-01-01

    This paper describes measurements which were performed on a sample of radome material in the Electromagnetic Properties Measurements Laboratory (EPML). The purpose of the measurements described in this paper was to determine the one-way transmission loss through the flat panel of radome material for a frequency range of 84 to 94 GHz, for varying incidence angles. The panel, which was manufactured by Norton Performance Plastics Corporation, was provided to the EPML by TRW. The size of the panel is 40 in x 36 in x 0.422 in and consists of a foam material with one side coated with a smooth white coating (this side will be referred to as the front side). The dielectric properties of the foam material from the inside of the panel were also determined at X-band (8.2-12.4 GHz). The W-band free space measurements are presented first, followed by the X-band dielectric properties measurements.

  7. Ultrawide low frequency band gap of phononic crystal in nacreous composite material

    International Nuclear Information System (INIS)

    Yin, J.; Huang, J.; Zhang, S.; Zhang, H.W.; Chen, B.S.

    2014-01-01

    The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results. - Highlights: • A Brick-and-Mortar structure is used to discuss wave propagation through nacreous materials. • A 1D Bloch wave solution of nacreous materials with a tension-shear chain model is obtained. • The band structure and transmission characteristics of nacreous materials with the FE model are examined. • An ultrawide low frequency band gap is found in nacreous materials with both theory and FE model

  8. Systematic design of phononic band-gap materials and structures by topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard

    2003-01-01

    Phononic band-gap materials prevent elastic waves in certain frequency ranges from propagating, and they may therefore be used to generate frequency filters, as beam splitters, as sound or vibration protection devices, or as waveguides. In this work we show how topology optimization can be used...... to design and optimize periodic materials and structures exhibiting phononic band gaps. Firstly, we optimize infinitely periodic band-gap materials by maximizing the relative size of the band gaps. Then, finite structures subjected to periodic loading are optimized in order to either minimize the structural...

  9. Modulational-instability gain bands in quasi-phase-matched materials

    International Nuclear Information System (INIS)

    Corney, J.F.; Bang, O.

    2002-01-01

    Full text: Quadratically nonlinear materials are of significant technological interest in optics because of their strong and fast cascaded nonlinearities, which are accessed most efficiently with quasi-phase-matching (QPM) techniques. We study the gain spectra of modulational instabilities (Ml) in quadratic materials where the linear and nonlinear properties are modulated with QPM gratings. The periods and intensity-dependence of the Ml can now be measured in the laboratory. Using an exact Floquet theory, we find that novel low- and high-frequency bands appear in the gain spectrum (gain versus transverse spatial frequency). The high-frequency gain bands are a general feature of gain spectra for QPM gratings. They form part of an extensive series of bands that correspond to Ml in the non-phase-matched, quickly varying components of the fields. The low-frequency bands correspond to Ml in the phase-matched DC components of the fields and are accurately predicted by a simple average theory. This theory includes the effect of the quickly varying components as induced cubic terms, which can be strong enough to suppress the low-frequency bands, in which case dark solitons and other broad beams may be effectively stable, since the high-frequency bands are typically small

  10. Anomalous electromagnetically induced transparency in photonic-band-gap materials

    International Nuclear Information System (INIS)

    Singh, Mahi R.

    2004-01-01

    The phenomenon of electromagnetically induced transparency has been studied when a four-level atom is located in a photonic band gap material. Quantum interference is introduced by driving the two upper levels of the atom with a strong pump laser field. The top level and one of the ground levels are coupled by a weak probe laser field and absorption takes place between these two states. The susceptibility due to the absorption for this transition has been calculated by using the master equation method in linear response theory. Numerical simulations are performed for the real and imaginary parts of the susceptibility for a photonic band gap material whose gap-midgap ratio is 21%. It is found that when resonance frequencies lie within the band, the medium becomes transparent under the action of the strong pump laser field. More interesting results are found when one of the resonance frequencies lies at the band edge and within the band gap. When the resonance frequency lies at the band edge, the medium becomes nontransparent even under a strong pump laser field. On the other hand, when the resonance frequency lies within the band gap, the medium becomes transparent even under a weak pump laser field. In summary, we found that the medium can be transformed from the transparent state to the nontransparent state just by changing the location of the resonance frequency. We call these two effects anomalous electromagnetically induced transparency

  11. Band inversion mechanism in topological insulators: A guideline for materials design

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2012-01-01

    Alteration of the topological order by band inversion is a key ingredient of a topologically nontrivial material. Using first-principles calculations for HgTe, PtScBi, and Bi2Se3, we argue that it is not accurate to ascribe the band inversion to the spin-orbit coupling. Instead, scalar relativistic effects and/or lattice distortions are found to be essential. Therefore, the search for topologically nontrivial materials should focus on band shifts due to these mechanisms rather than spin-orbit coupling. We propose an effective scheme to search for new topological insulators.

  12. Band inversion mechanism in topological insulators: A guideline for materials design

    KAUST Repository

    Zhu, Zhiyong

    2012-06-01

    Alteration of the topological order by band inversion is a key ingredient of a topologically nontrivial material. Using first-principles calculations for HgTe, PtScBi, and Bi2Se3, we argue that it is not accurate to ascribe the band inversion to the spin-orbit coupling. Instead, scalar relativistic effects and/or lattice distortions are found to be essential. Therefore, the search for topologically nontrivial materials should focus on band shifts due to these mechanisms rather than spin-orbit coupling. We propose an effective scheme to search for new topological insulators.

  13. Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles

    International Nuclear Information System (INIS)

    Aguilera, I.; Palacios, P.; Wahnon, P.

    2008-01-01

    The optical properties of a novel potential high-efficiency photovoltaic material have been studied. This material is based on a chalcopyrite-type semiconductor (CuGaS 2 ) with some Ga atom substituted by Ti and is characterized by the formation of an isolated transition-metal band between the valence band and the conduction band. We present a study in which ab-initio density functional theory calculations within the generalized gradient approximation are carried out to determine the optical reflectivity and absorption coefficient of the materials of interest. Calculations for the host semiconductor are in good agreement with experimental results within the limitations of the approach. We find, as desired, that because of the intermediate band, the new Ti-substituted material would be able to absorb photons of energy lower than the band-gap of the host chalcopyrite. We also analyze the partial contributions to the main peaks of its spectrum

  14. Photonic band gap materials: design, synthesis, and applications

    International Nuclear Information System (INIS)

    John, S.

    2000-01-01

    Full text: Unlike semiconductors which facilitate the coherent propagation of electrons, photonic band gap (PBG) materials execute their novel functions through the coherent localization of photons. I review and discuss our recent synthesis of a large scale three-dimensional silicon photonic crystal with a complete photonic band gap near 1.5 microns. When a PBG material is doped with impurity atoms which have an electronic transition that lies within the gap, spontaneous emission of light from the atom is inhibited. Inside the gap, the photon forms a bound state to the atom. Outside the gap, radiative dynamics in the colored vacuum is highly non Markovian. I discuss the influence of these memory effects on laser action. When spontaneous emission is absent, the next order radiative effect (resonance dipole dipole interaction between atoms) must be incorporated leading to anomalous nonlinear optical effects which occur at a much lower threshold than in ordinary vacuum. I describe the collective switching of two-level atoms near a photonic band edge, by external laser field, from a passive state to one exhibiting population inversion. This effect is forbidden in ordinary vacuum. However, in the context of a PBG material, this effect may be utilized for an all-optical transistor. Finally, I discuss the prospects for a phase sensitive, single atom quantum memory device, onto which information may be written by an external laser pulse

  15. Unsupervised progressive elastic band exercises for frail geriatric inpatients objectively monitored by new exercise-integrated technology

    DEFF Research Database (Denmark)

    Rathleff, Camilla Rams; Bandholm, T.; Spaich, Erika Geraldina

    2017-01-01

    the amount of supervised training, and unsupervised training could possibly supplement supervised training thereby increasing the total exercise dose during admission. A new valid and reliable technology, the BandCizer, objectively measures the exact training dosage performed. The purpose was to investigate...... feasibility and acceptability of an unsupervised progressive strength training intervention monitored by BandCizer for frail geriatric inpatients. Methods: This feasibility trial included 15 frail inpatients at a geriatric ward. At hospitalization, the patients were prescribed two elastic band exercises...... of 2-min pauses and a time-under-tension of 8 s. The feasibility criterion for the unsupervised progressive exercises was that 33% of the recommended number of sets would be performed by at least 30% of patients. In addition, patients and staff were interviewed about their experiences...

  16. Electronic materials with a wide band gap: recent developments

    Directory of Open Access Journals (Sweden)

    Detlef Klimm

    2014-09-01

    Full Text Available The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap Eg = 0.66 eV after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg = 1.12 eV. This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider Eg were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity.

  17. Photonic band structures in one-dimensional photonic crystals containing Dirac materials

    International Nuclear Information System (INIS)

    Wang, Lin; Wang, Li-Gang

    2015-01-01

    We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions

  18. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gladysiewicz, M.; Wartak, M. S. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Kudrawiec, R. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-08-07

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.

  19. 3D Progressive Damage Modeling for Laminated Composite Based on Crack Band Theory and Continuum Damage Mechanics

    Science.gov (United States)

    Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.

    2015-01-01

    A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.

  20. Band engineering and rational design of high-performance thermoelectric materials by first-principles

    Directory of Open Access Journals (Sweden)

    Lili Xi

    2016-06-01

    Full Text Available Understanding and manipulation of the band structure are important in designing high-performance thermoelectric (TE materials. Our recent work has involved the utilization of band structure in various topics of TE research, i.e., the band convergence, the conductive network, dimensionality reduction by quantum effects, and high throughput material screening. In non-cubic chalcopyrite compounds, we revealed the relations between structural factors and band degeneracy, and a simple unity-η rule was proposed for selecting high performance diamond-like TE materials. Based on the deep understanding of the electrical and thermal transport, we identified the conductive network in filled skutterudites with the “phonon glass-electron crystal” (PGEC paradigm, and extended this concept to caged-free Cu-based diamond-like compounds. By combining the band structure calculations and the Boltzmann transport theory, we conducted a high-throughput material screening in half-Heusler (HH systems, and several promising compositions with high power factors were proposed out of a large composition collection. At last, we introduced the Rashba spin-splitting effect into thermoelectrics, and its influence on the electrical transport properties was discussed. This review demonstrated the importance of the microscopic perspectives for the optimization and design of novel TE materials.

  1. Band Gap Optimization Design of Photonic Crystals Material

    Science.gov (United States)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  2. Experimental study of shear bands formation in a granular material

    Directory of Open Access Journals (Sweden)

    Nguyen Thai Binh

    2017-01-01

    Full Text Available We present an experimental investigation of the formation of shear bands in a granular sample submitted to a biaxial test. Our principal result is the direct observation of the bifurcation at the origin of the localization process in the material. At the bifurcation, the shear band is spatially extended: we observe a breaking of symmetry without any sudden localization of the deformation in a narrow band. Our work thus allows to clearly distinguish different phenomena: bifurcation which is a ponctual event which occurs before the peak, localization which is a process that covers a range of deformation of several percents during which the peak occurs and finally stationary shear bands which are well-defined permanent structures that can be observed at the end of the localization process, after the peak.

  3. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  4. Polarization catastrophe in nanostructures doped in photonic band gap materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)], E-mail: msingh@uwo.ca

    2008-11-30

    In the presence of the dipole-dipole interaction, we have studied a possible dielectric catastrophe in photonic band gap materials doped with an ensemble of four-level nanoparticles. It is found that the dielectric constant of the system has a singularity when the resonance energy lies within the bands. This phenomenon is known as the dielectric catastrophe. It is also found that this phenomenon depends on the strength of the dipole-dipole interaction.

  5. Band structure of comb-like photonic crystals containing meta-materials

    Science.gov (United States)

    Weng, Yi; Wang, Zhi-Guo; Chen, Hong

    2007-09-01

    We study the transmission properties and band structure of comb-like photonic crystals (PC) with backbones constructed of meta-materials (negative-index materials) within the frame of the interface response theory. The result shows the existence of a special band gap at low frequency. This gap differs from the Bragg gaps in that it is insensitive to the geometrical scaling and disorder. In comparison with the zero-average-index gap in one-dimensional PC made of alternating positive- and negative-index materials, the gap is obviously deeper and broader, given the same system parameters. In addition, the behavior of its gap-edges is also different. One gap-edge is decided by the average permittivity whereas the other is only subject to the changing of the permeability of the backbone. Due to this asymmetry of the two gap-edges, the broadening of the gap could be realized with much freedom and facility.

  6. Application of the photoreflectance technique to the characterization of quantum dot intermediate band materials for solar cells

    International Nuclear Information System (INIS)

    Canovas, E.; Marti, A.; Lopez, N.; Antolin, E.; Linares, P.G.; Farmer, C.D.; Stanley, C.R.; Luque, A.

    2008-01-01

    Intermediate band materials rely on the creation of a new electronic band within the bandgap of a conventional semiconductor that is isolated from the conduction and valence band by a true zero density of states. Due to the presence of the intermediate band, a solar cell manufactured using these materials is capable of producing additional photocurrent, thanks to the absorption of photons with energy lower than the conventional bandgap. In this respect, the characterization of these materials by suitable techniques becomes a key element in the development of the new photovoltaic devices called intermediate band solar cells. The technique of photoreflectance is particularly suited to this purpose because it is contact-less and allows the characterization of the material without the need of actually manufacturing a complete device. Using room temperature photoreflectance we have analyzed intermediate band materials based on quantum dots and have been able to identify the energy levels involved. Also, from the photoreflectance data we have demonstrated the overlap of the wave-functions defined by the quantum dots

  7. Wave propagation in ordered, disordered, and nonlinear photonic band gap materials

    Energy Technology Data Exchange (ETDEWEB)

    Lidorikis, Elefterios [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    Photonic band gap materials are artificial dielectric structures that give the promise of molding and controlling the flow of optical light the same way semiconductors mold and control the electric current flow. In this dissertation the author studied two areas of photonic band gap materials. The first area is focused on the properties of one-dimensional PBG materials doped with Kerr-type nonlinear material, while, the second area is focused on the mechanisms responsible for the gap formation as well as other properties of two-dimensional PBG materials. He first studied, in Chapter 2, the general adequacy of an approximate structure model in which the nonlinearity is assumed to be concentrated in equally-spaced very thin layers, or 6-functions, while the rest of the space is linear. This model had been used before, but its range of validity and the physical reasons for its limitations were not quite clear yet. He performed an extensive examination of many aspects of the model's nonlinear response and comparison against more realistic models with finite-width nonlinear layers, and found that the d-function model is quite adequate, capturing the essential features in the transmission characteristics. The author found one exception, coming from the deficiency of processing a rigid bottom band edge, i.e. the upper edge of the gaps is always independent of the refraction index contrast. This causes the model to miss-predict that there are no soliton solutions for a positive Kerr-coefficient, something known to be untrue.

  8. FY2011 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Patrick B. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Schutte, Carol L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gibbs, Jerry L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-12-01

    Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  9. Computational Design of Flat-Band Material

    Science.gov (United States)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  10. Artificial Material Integrated Ultra-wideband Tapered Slot Antenna for Gain Enhancement with Band Notch Characteristics

    Directory of Open Access Journals (Sweden)

    R. Singha

    2018-04-01

    Full Text Available The gain of the ultra-wideband tapered slot antenna (TSA is enhanced by using broadband artificial material with band notch characteristics. The proposed artificial material unit cell is designed by fabricating non-resonant three S-shaped parallel metallic line on single side of the dielectric substrate which provides a longer current path compared to the parallel-line structure. The proposed S-shaped structure is printed on the top side of the tapered slot antenna in the extended substrate periodically. The effective refractive index of the artificial material is lower than antenna substrate and phase velocity in the region of artificial material is much higher than the other region. Therefore, the proposed artificial material acts like a beam focusing lens. The band notch at 5.5 GHz is achieved by creating a split ring resonator (SRR slot near the balun. The basic and artificial material loaded TSAs are fabricated and the measurement results show that the gain of the basic antenna has been increased by 1.6 dBi. At the same time, the proposed antenna achieves a VSWR below 2 from 3 to 11 GHz except at 5.5 GHz with a notch band from 5.1 to 5.8 GHz for band rejection of wireless local area network (WLAN application.

  11. What are the factors that affect band 5 nurses' career development and progression?

    Science.gov (United States)

    Balls, Paula

    Continuing professional development (CPD) and career progression opportunities have been linked with job satisfaction and intent to remain in nursing. To provide an insight into band 5 registered nurses' perceptions of development opportunities and their ability to change posts. A hermeneutic phenomenological approach was used, collecting data through semi structured interviews with six RNs. Seven themes emerged, including the thirst for knowledge and the importance of structured learning and career advice. Barriers to career development were perceived as the working environment and the trust not enabling and facilitating development through funding and release time. Ward and team culture can inhibit career development and progression by failing to nurture staff and promote self confidence. In addition, organisational changes can facilitate career mobility.

  12. FY2016 Lightweight Materials Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.

  13. Optical band gaps of organic semiconductor materials

    Science.gov (United States)

    Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2016-08-01

    UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.

  14. Switching mechanism due to the spontaneous emission cancellation in photonic band gap materials doped with nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Canada N6A 3K7 (Canada)]. E-mail: msingh@uwo.ca

    2007-03-26

    We have investigated the switching mechanism due to the spontaneous emission cancellation in a photonic band gap (PBG) material doped with an ensemble of four-level nano-particles. The effect of the dipole-dipole interaction has also been studied. The linear susceptibility has been calculated in the mean field theory. Numerical simulations for the imaginary susceptibility are performed for a PBG material which is made from periodic dielectric spheres. It is predicted that the system can be switched between the absorbing state and the non-absorbing state by changing the resonance energy within the energy bands of the photonic band gap material.0.

  15. Controllable Absorption and Dispersion Properties of an RF-driven Five-Level Atom in a Double-Band Photonic-Band-Gap Material

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue

    2011-01-01

    The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-band-gap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by the upper and lower bands in such a PBG material, thus leading to some curious phenomena. Numerical simulations are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RF-induced quantum interference and the density of states (DOS) of the PBG reservoir. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Photonic band gap materials: Technology, applications and challenges

    International Nuclear Information System (INIS)

    Johri, M.; Ahmed, Y.A.; Bezboruah, T.

    2006-05-01

    Last century has been the age of Artificial Materials. One material that stands out in this regard is the semiconductor. The revolution in electronic industry in the 20th century was made possible by the ability of semiconductors to microscopically manipulate the flow of electrons. Further advancement in the field made scientists suggest that the new millennium will be the age of photonics in which artificial materials will be synthesized to microscopically manipulate the flow of light. One of these will be Photonic Band Gap material (PBG). PBG are periodic dielectric structures that forbid propagation of electromagnetic waves in a certain frequency range. They are able to engineer most fundamental properties of electromagnetic waves such as the laws of refraction, diffraction, and emission of light from atoms. Such PBG material not only opens up variety of possible applications (in lasers, antennas, millimeter wave devices, efficient solar cells photo-catalytic processes, integrated optical communication etc.) but also give rise to new physics (cavity electrodynamics, localization, disorder, photon-number-state squeezing). Unlike electronic micro-cavity, optical waveguides in a PBG microchip can simultaneously conduct hundreds of wavelength channels of information in a three dimensional circuit path. In this article we have discussed some aspects of PBG materials and their unusual properties, which provided a foundation for novel practical applications ranging from clinical medicine to information technology. (author)

  17. SINGLE-BAND, TRIPLE-BAND, OR MULTIPLE-BAND HUBBARD MODELS

    NARCIS (Netherlands)

    ESKES, H; SAWATZKY, GA

    1991-01-01

    The relevance of different models, such as the one-band t-J model and the three-band Emery model, as a realistic description of the electronic structure of high-T(c) materials is discussed. Starting from a multiband approach using cluster calculations and an impurity approach, the following

  18. Plant Materials Program: progress June 1981-May 1982

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.

    1983-02-01

    This is the second annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, steam generator tube attack and cracking, and cracking of nickel alloy springs, beams and pins. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic area: integranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  19. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    Science.gov (United States)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  20. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    Science.gov (United States)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  1. Terahertz optical-Hall effect for multiple valley band materials: n-type silicon

    International Nuclear Information System (INIS)

    Kuehne, P.; Hofmann, T.; Herzinger, C.M.; Schubert, M.

    2011-01-01

    The optical-Hall effect comprises generalized ellipsometry at long wavelengths on samples with free-charge carriers placed within external magnetic fields. Measurement of the anisotropic magneto-optic response allows for the determination of the free-charge carrier properties including spatial anisotropy. In this work we employ the optical-Hall effect at terahertz frequencies for analysis of free-charge carrier properties in multiple valley band materials, for which the optical free-charge carrier contributions originate from multiple Brillouin-zone conduction or valence band minima or maxima, respectively. We investigate exemplarily the room temperature optical-Hall effect in low phosphorous-doped n-type silicon where free electrons are located in six equivalent conduction-band minima near the X-point. We simultaneously determine their free-charge carrier concentration, mobility, and longitudinal and transverse effective mass parameters.

  2. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds

    International Nuclear Information System (INIS)

    Palacios, P.; Sanchez, K.; Conesa, J.C.; Fernandez, J.J.; Wahnon, P.

    2007-01-01

    Electronic structure calculations are carried out for CuGaS 2 partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics

  3. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, P [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Sanchez, K [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Conesa, J C [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain); Fernandez, J J [Dpt. de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, 28080, Madrid (Spain); Wahnon, P [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2007-05-31

    Electronic structure calculations are carried out for CuGaS{sub 2} partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics.

  4. Joint density of states of wide-band-gap materials by electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Fan, X.D.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Kramers-Kronig analysis for parallel electron energy loss spectroscopy (PEELS) data is developed as a software package. When used with a JEOL 4000EX high-resolution transmission electron microscope (HRTEM) operating at 100 keV this allows us to obtain the dielectric function of relatively wide band gap materials with an energy resolution of approx 1.4 eV. The imaginary part of the dielectric function allows the magnitude of the band gap to be determined as well as the joint-density-of-states function. Routines for obtaining three variations of the joint-density of states function, which may be used to predict the optical and dielectric response for angle-resolved or angle-integration scattering geometries are also described. Applications are presented for diamond, aluminum nitride (AlN), quartz (SiO 2 ) and sapphire (Al 2 O 3 ). The results are compared with values of the band gap and density of states results for these materials obtained with other techniques. (authors)

  5. Plant materials program. Progress report, June 1980-May 1981

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.; McIlree, A.

    1981-11-01

    This is the first annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have a high impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, and steam generator tube denting and cracking. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic areas: intergranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  6. FY2015 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-30

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.

  7. Plant Materials Program: progress June 1981 to May 1982

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.

    1983-02-01

    This is the second annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have a high impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, steam geerator tube attack and cracking, and cracking of nickel alloy springs, beams and pins. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic areas: intergranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  8. Recent Progress in Advanced Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2013-01-01

    Full Text Available The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed.

  9. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M. [Advanced Concepts Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30318 (United States)

    2016-05-15

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S{sub 21}) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S{sub 21} measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10{sup −3} for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  10. Research on the effects of geometrical and material uncertainties on the band gap of the undulated beam

    Science.gov (United States)

    Li, Yi; Xu, Yanlong

    2017-09-01

    Considering uncertain geometrical and material parameters, the lower and upper bounds of the band gap of an undulated beam with periodically arched shape are studied by the Monte Carlo Simulation (MCS) and interval analysis based on the Taylor series. Given the random variations of the overall uncertain variables, scatter plots from the MCS are used to analyze the qualitative sensitivities of the band gap respect to these uncertainties. We find that the influence of uncertainty of the geometrical parameter on the band gap of the undulated beam is stronger than that of the material parameter. And this conclusion is also proved by the interval analysis based on the Taylor series. Our methodology can give a strategy to reduce the errors between the design and practical values of the band gaps by improving the accuracy of the specially selected uncertain design variables of the periodical structures.

  11. Kaolinite: Defect defined material properties – A soft X-ray and first principles study of the band gap

    Energy Technology Data Exchange (ETDEWEB)

    Pietzsch, A., E-mail: annette.pietzsch@helmholtz-berlin.de [Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Nisar, J. [Pakistan Atomic Energy Commission (PAEC), P.O. Box 2151, Islamabad (Pakistan); Jämstorp, E. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Gråsjö, J. [Department of Pharmacy, Uppsala University, Box 580, 75123 Uppsala (Sweden); Århammar, C. [Coromant R& D, S-126 80 Stockholm (Sweden); Ahuja, R.; Rubensson, J.-E. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2015-07-15

    Highlights: • The respective electronic structure of synthetic and natural kaolinite is compared. • The size of the band gap and thus many important material properties are defined by defect states in the band gap. • The oxygen-based defect states are identified and analyzed. • The band gap of kaolinite decreases significantly due to the forming of defects. - Abstract: By combining X-ray absorption spectroscopy and first principles calculations we have determined the electronic structure of synthetic and natural kaolinite as a model system for engineered and natural clay materials. We have analyzed defect states in the band gap and find that both natural and synthetic kaolinite contain defects where oxygen replaces hydrogen in one of the Al (0 0 1)-hydroxyl groups of the kaolinite clay sheets. The band gap of both synthetic and natural kaolinite is found to decrease by about 3.2 eV as this defect is formed.

  12. Kaolinite: Defect defined material properties – A soft X-ray and first principles study of the band gap

    International Nuclear Information System (INIS)

    Pietzsch, A.; Nisar, J.; Jämstorp, E.; Gråsjö, J.; Århammar, C.; Ahuja, R.; Rubensson, J.-E.

    2015-01-01

    Highlights: • The respective electronic structure of synthetic and natural kaolinite is compared. • The size of the band gap and thus many important material properties are defined by defect states in the band gap. • The oxygen-based defect states are identified and analyzed. • The band gap of kaolinite decreases significantly due to the forming of defects. - Abstract: By combining X-ray absorption spectroscopy and first principles calculations we have determined the electronic structure of synthetic and natural kaolinite as a model system for engineered and natural clay materials. We have analyzed defect states in the band gap and find that both natural and synthetic kaolinite contain defects where oxygen replaces hydrogen in one of the Al (0 0 1)-hydroxyl groups of the kaolinite clay sheets. The band gap of both synthetic and natural kaolinite is found to decrease by about 3.2 eV as this defect is formed

  13. Real-time recursive hyperspectral sample and band processing algorithm architecture and implementation

    CERN Document Server

    Chang, Chein-I

    2017-01-01

    This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author’s books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016. Explores recursive structures in algorithm architecture Implements algorithmic recursive architecture in conjunction with progressive sample and band processing Derives Recursive Hyperspectral Sample Processing (RHSP) techniques according to Band-Interleaved Sample/Pixel (BIS/BIP) acquisition format Develops Recursive Hyperspectral Band Processing (RHBP) techniques according to Band SeQuential (BSQ) acquisition format for hyperspectral data.

  14. Quasiparticle excitations in valence-fluctuation materials: effects of band structure and crystal fields

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1985-01-01

    Evidence is now quite strong that the elementary hybridization model is the correct way to understand the lattice-coherent Fermi liquid regime at very low temperatures. Many-body theory leads to significant renormalizations of the input parameters, and many of the band-theoretic channels for hybridization are suppressed by the combined effects of Hund's-rule coupling, crystal-field splitting, and the f-f Coulomb repulsion U. Some exploratory calculations based on this picture are described, and some inferences are drawn about the band structures of several heavy-fermion materials. These inferences can and should be tested by suitably modified band-theoretic calculations. We find evidence for a significant Baber-scattering contribution in the very-low-temperature resistivity. A new mechanism is proposed for crossover from the coherent Fermi-liquid regime to the incoherent dense-Kondo regime. 28 refs

  15. Tinene: a two-dimensional Dirac material with a 72 meV band gap.

    Science.gov (United States)

    Cai, Bo; Zhang, Shengli; Hu, Ziyu; Hu, Yonghong; Zou, Yousheng; Zeng, Haibo

    2015-05-21

    Dirac materials have attracted great interest for both fundamental research and electronic devices due to their unique band structures, but the usual near zero bandgap of graphene results in a poor on-off ratio in the corresponding transistors. Here, we report on tinene, monolayer gray tin, as a new two-dimensional material with both Dirac characteristics and a remarkable 72 meV bandgap based on density functional theory calculations. Compared with silicene and germanene, tinene has a similar hexagonal honeycomb monolayer structure, but it has an obviously larger buckling height (∼0.70 Å). Interestingly, such a moderate buckling structure results in phonon dispersion without appreciable imaginary modes, indicating the strong dynamic stability of tinene. Significantly, a distinct transformation is discovered from the band structure that six Dirac cones would appear at high symmetry K points in the first Brillouin zone when gray tin is thinned from the bulk to monolayer, but a bandgap as large as 72 meV is still preserved. Considering the recent successful realization of silicene and germanene with a similar structure, the predicted stable tinene with Dirac characteristics and a suitable bandgap is a possibility for the "more than Moore" materials and devices.

  16. Body composition influenced by progressive elastic band resistance exercise of sarcopenic obesity elderly women: a pilot randomized controlled trial.

    Science.gov (United States)

    Huang, Shih-Wei; Ku, Jan-Wen; Lin, Li-Fong; Liao, Chun-De; Chou, Lin-Chuan; Liou, Tsan-Hon

    2017-08-01

    Sarcopenia involves age-related decreases in muscle strength and muscle mass, leading to frailty and disability in elderly people. When combined with obesity, it is defined as sarcopenic obesity (SO), which can result in more functional limitations and metabolic disorders than either disorder alone. The aim of this study was to investigate body composition changes after elastic band resistance training in elderly women with SO. Randomized single-blinded (assessor blinded) controlled pilot trial. Academic medical center. Thirty-five elderly (>60 years old) women with SO. This pilot randomized controlled trial focused on elderly women with SO. The study group underwent progressive elastic band resistance training for 12 weeks (3 times per week). The control group received only a 40-minute lesson about the exercise concept. Dual-energy X-ray absorptiometry was performed before and after intervention to evaluate body composition. Mann-Whitney U and Wilcoxon signed rank tests were used to analyze the differences within and between these groups. In total, 35 elderly women with SO were enrolled and divided into study (N.=18) and control groups (N.=17). No difference was observed in age, biochemical parameters, or Body Mass Index between both groups. After the intervention, the fat proportion of body composition in the right upper extremity (P=0.03), left upper extremity (P=0.04), total fat (P=0.035), and fat percentage (P=0.012) had decreased, and bone mineral density (BMD) (P=0.026), T-score (P=0.028), and Z-score (P=0.021) had increased in the study group. Besides, statistical difference was observed in outcome measurements of right upper extremity (P=0.013), total fat (P=0.023), and fat percentage (P=0.012) between the groups. Our study demonstrated that progressive elastic band resistance exercise can reduce fat mass and increase BMD in elderly women with SO, and that this exercise program is feasible for this demographic. Additional studies with larger sample sizes

  17. Fe/Co doped molybdenum diselenide: a promising two-dimensional intermediate-band photovoltaic material

    International Nuclear Information System (INIS)

    Zhang, Jiajia; He, Haiyan; Pan, Bicai

    2015-01-01

    An intermediate-band (IB) photovoltaic material is an important candidate in developing the new-generation solar cell. In this paper, we propose that the Fe-doped or the Co-doped MoSe 2 just meets the required features in IB photovoltaic materials. Our calculations demonstrate that when the concentration of the doped element reaches 11.11%, the doped MoSe 2 shows a high absorptivity for both infrared and visible light, where the photovoltaic efficiency of the doped MoSe 2 is as high as 56%, approaching the upper limit of photovoltaic efficiency of IB materials. So, the Fe- or Co-doped MoSe 2 is a promising two-dimensional photovoltaic material. (paper)

  18. Chemical synthesis of Cd-free wide band gap materials for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Sartale, S.D.; Ennaoui, A. [Hahn-Meitner-Institut, Berlin (Germany). Department of Solar Energy Research; Lokhande, C.D. [Shivaji University, Kolhapur (India). Department of Physics

    2004-07-01

    Chemical methods are nowadays very attractive, since they are relatively simple, low cost and convenient for larger area deposition of thin films. In this paper, we outline our work related to the synthesis and characterization of some wide band gap semiconducting material thin films prepared by using solution methods, namely, chemical bath deposition and successive ionic layer adsorption and reaction (SILAR). The optimum preparative parameters are given and respective structural, surface morphological, compositional, optical, and electrical properties are described. Some materials we used in solar cells as buffer layers and achieved remarkable results, which are summarized. (author)

  19. Uncertainty relations and topological-band insulator transitions in 2D gapped Dirac materials

    International Nuclear Information System (INIS)

    Romera, E; Calixto, M

    2015-01-01

    Uncertainty relations are studied for a characterization of topological-band insulator transitions in 2D gapped Dirac materials isostructural with graphene. We show that the relative or Kullback–Leibler entropy in position and momentum spaces, and the standard variance-based uncertainty relation give sharp signatures of topological phase transitions in these systems. (paper)

  20. Complex layered materials and periodic electromagnetic band-gap structures: Concepts, characterizations, and applications

    Science.gov (United States)

    Mosallaei, Hossein

    The main objective of this dissertation is to characterize and create insight into the electromagnetic performances of two classes of composite structures, namely, complex multi-layered media and periodic Electromagnetic Band-Gap (EBG) structures. The advanced and diversified computational techniques are applied to obtain their unique propagation characteristics and integrate the results into some novel applications. In the first part of this dissertation, the vector wave solution of Maxwell's equations is integrated with the Genetic Algorithm (GA) optimization method to provide a powerful technique for characterizing multi-layered materials, and obtaining their optimal designs. The developed method is successfully applied to determine the optimal composite coatings for Radar Cross Section (RCS) reduction of canonical structures. Both monostatic and bistatic scatterings are explored. A GA with hybrid planar/curved surface implementation is also introduced to efficiently obtain the optimal absorbing materials for curved structures. Furthermore, design optimization of the non-uniform Luneburg and 2-shell spherical lens antennas utilizing modal solution/GA-adaptive-cost function is presented. The lens antennas are effectively optimized for both high gain and suppressed grating lobes. The second part demonstrates the development of an advanced computational engine, which accurately computes the broadband characteristics of challenging periodic electromagnetic band-gap structures. This method utilizes the Finite Difference Time Domain (FDTD) technique with Periodic Boundary Condition/Perfectly Matched Layer (PBC/PML), which is efficiently integrated with the Prony scheme. The computational technique is successfully applied to characterize and present the unique propagation performances of different classes of periodic structures such as Frequency Selective Surfaces (FSS), Photonic Band-Gap (PBG) materials, and Left-Handed (LH) composite media. The results are

  1. Introduction to the viewpoint set on shear bands

    International Nuclear Information System (INIS)

    Hutchinson, J.W.

    1984-01-01

    Recent work aimed at improving our understanding of shear banding and flow localization as modes of deformation and failure is summarized in the six viewpoint articles which follow. For the most part, the emphasis here is on the observation and analysis of shear banding in metals, but active efforts are also underway to understand the role of shear bands in the deformation and failure of soils and rocks. There is a tendency to regard shear bands as a failure mode, as indeed they often are. But extensive straining under highly constrained conditions such as rolling can give rise to profuse flow localization into shear bands which can be regarded as microscopic in the sense that their extent is on the scale of the grains rather than the overall dimensions of the block of material being deformed. Hatherly and Malin describe in detail the observation of such bands and emphasize that they should be considered as a mode of deformation under these circumstances. They relate the formation of the bands to microstructural aspects and discuss their role in the development of recrystallization textures. It will be clear from reading the articles in this viewpoint set that the beginnings of a quantitative theory of shear banding is in place. Continued progress will require parallel developments in constitutive theory and experimental observation. Moreover, basic questions remain to be explored related to the spatial development of the shear bands, their mutual interaction, their development into a failure mode, and how these are influenced by factors such as overall deformational constraint, rate of straining, and temperature

  2. Fusion materials semiannual progress report for period ending December 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G.

    2000-03-01

    This is the twenty-seventh in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components.

  3. Fusion materials semiannual progress report for period ending December 31, 1999

    International Nuclear Information System (INIS)

    Burn, G.

    2000-01-01

    This is the twenty-seventh in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components

  4. Reducing mechanical cross-coupling in phased array transducers using stop band material as backing

    Science.gov (United States)

    Henneberg, J.; Gerlach, A.; Storck, H.; Cebulla, H.; Marburg, S.

    2018-06-01

    Phased array transducers are widely used for acoustic imaging and surround sensing applications. A major design challenge is the achievement of low mechanical cross-coupling between the single transducer elements. Cross-coupling induces a loss of imaging resolution. In this work, the mechanical cross-coupling between acoustic transducers is investigated for a generic model. The model contains a common backing with two bending elements bonded on top. The dimensions of the backing are small; thus, wave reflections on the backing edges have to be considered. This is different to other researches. The operating frequency in the generic model is set to a low kHz range. Low operating frequencies are typical for surround sensing applications. The influence of the backing on cross-coupling is investigated numerically. In order to reduce mechanical cross-coupling a stop band material is designed. It is shown numerically that a reduction in mechanical cross-coupling can be achieved by using stop band material as backing. The effect is validated with experimental testing.

  5. Correlated band magnetism of cerium and actinide materials

    International Nuclear Information System (INIS)

    Cooper, B.R.; Lin, Y.; Sheng, Q.G.

    1997-01-01

    We discuss (1) the effects to be expected by the introduction into the electronic structure of locally-based two-electron correlations between the f electrons and bonding electrons of p and d atomic origin centered off-site as well as f-f correlations, (2) the expected observable consequences of these two-electron correlations, and (3) how to perform electronic structure calculations including the two-electron correlations. We first review certain general features of the physics associated with capturing the dual energetically localized-delocalized nature of the f electron spectral density; and review model calculations involving a single on-site f electron and a single ligand p/d electron of off-site parentage which lead to the possibility of a narrow singlet and triplet (magnetic) band picture explaining heavy fermion phenomenology. We then show that the same singlet/magnetic state picture arises when we include two-electron f-l and f-f correlations for actinides, which have atomic f n configurations with n>1; and we describe a practical electronic structure scheme for real materials based on a sequence in which a conventional one-electron linearized combination of muffin-tin orbitals (LMTO) LDA+U calculation is followed by a calculation for the lattice with a helium like two-electron Hamiltonian at the f atom sites, i.e., two-electron atoms where initially for the core two electrons worth of charge are removed from the LMTO f-site atom. This procedure will reconstruct the LMTO bands to include two-electron texturing. copyright 1997 American Institute of Physics

  6. Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor

    KAUST Repository

    Lan, Yann Wen

    2016-09-05

    The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.

  7. A Dual Band Slotted Patch Antenna on Dielectric Material Substrate

    Directory of Open Access Journals (Sweden)

    M. Habib Ullah

    2014-01-01

    Full Text Available A low profile, compact dual band slotted patch antenna has been designed using finite element method-based high frequency full-wave electromagnetic simulator. The proposed antenna fabricated using LPKF printed circuit board (PCB fabrication machine on fiberglass reinforced epoxy polymer resin material substrate and the performance of the prototype has been measured in a standard far-field anechoic measurement chamber. The measured impedance bandwidths of (reflection coefficient <-10 dB 12.26% (14.3–16.2 GHZ, 8.24% (17.4–18.9 GHz, and 3.08% (19.2–19.8 have been achieved through the proposed antenna prototype. 5.9 dBi, 3.37 dBi, and 3.32 dBi peak gains have been measured and simulated radiation efficiencies of 80.3%, 81.9%, and 82.5% have been achieved at three resonant frequencies of 15.15 GHz, 18.2 GHz, and 19.5 GHz, respectively. Minimum gain variation, symmetric, and almost steady measured radiation pattern shows that the proposed antenna is suitable for Ku and K band satellite applications.

  8. Fusion reactor materials. Semiannual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.; Burn, G.L.; Knee`, S.S.; Dowker, C.L. [comps.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  9. Decay of superdeformed bands

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-01-01

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs

  10. Fusion reactor materials semiannual progress report for period ending September 30, 1990

    International Nuclear Information System (INIS)

    1991-04-01

    This is the ninth in series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development of Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  11. Fusion reactor materials: Semiannual progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    1988-03-01

    This is the third in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development for Irradiation Performances; Damage Analysis and Fundamental Studies; Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  12. Progress on research of materials science and biotechnology by ion beam application

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Isao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Research of materials science and biotechnology by ion beam application in Takasaki Establishment was reviewed. Especially, the recent progresses of research on semiconductors in space, creation of new functional materials and topics in biotechnology were reported. (author)

  13. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    Science.gov (United States)

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  14. Infrared photonic bandgap materials and structures

    Science.gov (United States)

    Sundaram, S. K.; Keller, P. E.; Riley, B. J.; Martinez, J. E.; Johnson, B. R.; Allen, P. J.; Saraf, L. V.; Anheier, N. C., Jr.; Liau, F.

    2006-02-01

    Three-dimensional periodic dielectric structure can be described by band theory, analogous to electron waves in a crystal. Photonic band gap (PBG) structures were introduced in 1987. The PBG is an energy band in which optical modes, spontaneous emission, and zero-point fluctuations are all absent. It was first theoretically predicted that a three-dimensional photonic crystal could have a complete band gap. E. Yablonovitch built the first three-dimensional photonic crystal (Yablonovite) on microwave length scale, with a complete PBG. In nature, photonic crystals occur as semiprecious opal and the microscopic structures on the wings of some tropical butterflies, which are repeating structures (PBG structure/materials) that inhibit the propagation of some frequencies of light. Pacific Northwest National Laboratory (PNNL) has been developing tunable (between 3.5 and 16 μm) quantum cascade lasers (QCL), chalcogenides, and all other components for an integrated approach to chemical sensing. We have made significant progress in modeling and fabrication of infrared photonic band gap (PBG) materials and structures. We modeled several 2-D designs and defect configurations. Transmission spectra were computed by the Finite Difference Time Domain Method (with FullWAVE TM). The band gaps were computed by the Plane Wave Expansion Method (with BandSOLVE TM). The modeled designs and defects were compared and the best design was identified. On the experimental front, chalcogenide glasses were used as the starting materials. As IIS 3, a common chalcogenide, is an important infrared (IR) transparent material with a variety of potential applications such as IR sensors, waveguides, and photonic crystals. Wet-chemical lithography has been extended to PBG fabrication and challenges identified. An overview of results and challenges will be presented.

  15. Wide band design on the scaled absorbing material filled with flaky CIPs

    Science.gov (United States)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  16. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials.

    Science.gov (United States)

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-10-27

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed.

  17. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    Directory of Open Access Journals (Sweden)

    Yunfei Shang

    2015-10-01

    Full Text Available Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous, gallium arsenide (GaAs solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed

  18. Calculating the optical properties of defects and surfaces in wide band gap materials

    Science.gov (United States)

    Deák, Peter

    2018-04-01

    The optical properties of a material critically depend on its defects, and understanding that requires substantial and accurate input from theory. This paper describes recent developments in the electronic structure theory of defects in wide band gap materials, where the standard local or semi-local approximations of density functional theory fail. The success of the HSE06 screened hybrid functional is analyzed in case of Group-IV semiconductors and TiO2, and shown that it is the consequence of error compensation between semi-local and non-local exchange, resulting in a proper derivative discontinuity (reproduction of the band gap) and a total energy which is a linear function of the fractional occupation numbers (removing most of the electron self-interaction). This allows the calculation of electronic transitions with accuracy unseen before, as demonstrated on the single-photon emitter NV(-) center in diamond and on polaronic states in TiO2. Having a reliable tool for electronic structure calculations, theory can contribute to the understanding of complicated cases of light-matter interaction. Two examples are considered here: surface termination effects on the blinking and bleaching of the light-emission of the NV(-) center in diamond, and on the efficiency of photocatalytic water-splitting by TiO2. Finally, an outlook is presented for the application of hybrid functionals in other materials, as, e.g., ZnO, Ga2O3 or CuGaS2.

  19. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  20. Present status of intermediate band solar cell research

    International Nuclear Information System (INIS)

    Cuadra, L.; Marti, A.; Luque, A.

    2004-01-01

    The intermediate band solar cell is a theoretical concept with the potential for exceeding the performance of conventional single-gap solar cells. This novel photovoltaic converter bases its superior theoretical efficiency over single-gap solar cells by enhancing its photogenerated current, via the two-step absorption of sub-band gap photons, without reducing its output voltage. This is achieved through a material with an electrically isolated and partially filled intermediate band located within a higher forbidden gap. This material is commonly named intermediate band material. This paper centres on summarising the present status of intermediate band solar cell research. A number of attempts, which aim to implement the intermediate band concept, are being followed: the direct engineering of the intermediate band material, its implementation by means of quantum dots and the highly porous material approach. Among other sub-band gap absorbing proposals, there is a renewed interest on the impurity photovoltaic effect, the quantum well solar cells and the particularly promising proposal for the use of up- and down-converters

  1. Recent progress in InAs/InP quantum dash nanostructures and devices

    KAUST Repository

    Ooi, Boon S.; Khan, Mohammed Zahed Mustafa; Ng, Tien Khee

    2016-01-01

    In this talk, we will give an outline and introduction to the broad inter-band emission devices focusing on the InAs/InP quantum dash material system, device physics and establishment of ultrabroad stimulated emission behavior. In addition, technologies for growing these nanostructures as well as engineer the bandgap of quantum dash based system using epitaxy growth techniques and postgrowth intermixing methods will be presented. At device level, we will focus our discussion on our recent progress in extending the ultra-broad lasing emission from quantum dash lasers, and achievements in broad gain semiconductor optical amplifiers (SOA), mode locked lasers, comb-lasers, wide band superluminsect diodes fabricated on this material system. © 2015 IEEE.

  2. Recent progress in InAs/InP quantum dash nanostructures and devices

    KAUST Repository

    Ooi, Boon S.

    2016-03-24

    In this talk, we will give an outline and introduction to the broad inter-band emission devices focusing on the InAs/InP quantum dash material system, device physics and establishment of ultrabroad stimulated emission behavior. In addition, technologies for growing these nanostructures as well as engineer the bandgap of quantum dash based system using epitaxy growth techniques and postgrowth intermixing methods will be presented. At device level, we will focus our discussion on our recent progress in extending the ultra-broad lasing emission from quantum dash lasers, and achievements in broad gain semiconductor optical amplifiers (SOA), mode locked lasers, comb-lasers, wide band superluminsect diodes fabricated on this material system. © 2015 IEEE.

  3. Fusion materials semiannual progress report for the period ending September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This is the sixteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following Progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide. The individual papers in this paper have been cataloged separately elsewhere.

  4. Thermal stability of intermediate band behavior in Ti implanted Si

    Energy Technology Data Exchange (ETDEWEB)

    Olea, J.; Pastor, D.; Martil, I.; Gonzalez-Diaz, G. [Dpto. De Fisica Aplicada III (Electricidad y Electronica), Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2010-11-15

    Ti implantation in Si with very high doses has been performed. Subsequent Pulsed Laser Melting (PLM) annealing produces good crystalline lattice with electrical transport properties that are well explained by the Intermediate Band (IB) theory. Thermal stability of this new material is analyzed by means of isochronal annealing in thermodynamic equilibrium conditions at increasing temperature. A progressive deactivation of the IB behavior is shown during thermal annealing, and structural and electrical measurements are reported in order to find out the origin of this result. (author)

  5. Unsupervised progressive elastic band exercises for frail geriatric inpatients objectively monitored by new exercise-integrated technology-a feasibility trial with an embedded qualitative study

    DEFF Research Database (Denmark)

    Rathleff, C R; Bandholm, T; Spaich, E G

    2017-01-01

    feasibility and acceptability of an unsupervised progressive strength training intervention monitored by BandCizer for frail geriatric inpatients. Methods: This feasibility trial included 15 frail inpatients at a geriatric ward. At hospitalization, the patients were prescribed two elastic band exercises......Background: Frailty is a serious condition frequently present in geriatric inpatients that potentially causes serious adverse events. Strength training is acknowledged as a means of preventing or delaying frailty and loss of function in these patients. However, limited hospital resources challenge...... the amount of supervised training, and unsupervised training could possibly supplement supervised training thereby increasing the total exercise dose during admission. A new valid and reliable technology, the BandCizer, objectively measures the exact training dosage performed. The purpose was to investigate...

  6. Omnidirectional Photonic Band Gap Using Low Refractive Index Contrast Materials and its Application in Optical Waveguides

    KAUST Repository

    Vidal Faez, Angelo

    2012-07-01

    Researchers have argued for many years that one of the conditions for omnidirectional reflection in a one-dimensional photonic crystal is a strong refractive index contrast between the two constituent dielectric materials. Using numerical simulations and the theory of Anderson localization of light, in this work we demonstrate that an omnidirectional band gap can indeed be created utilizing low refractive index contrast materials when they are arranged in a disordered manner. Moreover, the size of the omnidirectional band gap becomes a controllable parameter, which now depends on the number of layers and not only on the refractive index contrast of the system, as it is widely accepted. This achievement constitutes a major breakthrough in the field since it allows for the development of cheaper and more efficient technologies. Of particular interest is the case of high index contrast one-dimensional photonic crystal fibers, where the propagation losses are mainly due to increased optical scattering from sidewall roughness at the interfaces of high index contrast materials. By using low index contrast materials these losses can be reduced dramatically, while maintaining the confinement capability of the waveguide. This is just one of many applications that could be proven useful for this discovery.

  7. Fusion Reactor Materials semiannual progress report for the period ending March 31, 1992

    International Nuclear Information System (INIS)

    1992-07-01

    This is the twelfth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  8. Fusion Reactor Materials semiannual progress report for the period ending March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This is the twelfth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  9. Fusion reactor materials semiannual progress report for the period ending March 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1991-07-01

    This is the tenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: alloy development for irradiation performance; damage analysis and fundamental studies; special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of program participants, and to provide a means of communicating the efforts of materials scientists to the test of the fusion community, both nationally and worldwide.

  10. Fusion reactor materials semiannual progress report for the period ending March 31, 1991

    International Nuclear Information System (INIS)

    1991-07-01

    This is the tenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: alloy development for irradiation performance; damage analysis and fundamental studies; special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of program participants, and to provide a means of communicating the efforts of materials scientists to the test of the fusion community, both nationally and worldwide

  11. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Pedersen, Steffen Hindborg

    2017-01-01

    Widespread application of thermoelectric devices for waste heat recovery requires low-cost high-performance materials. The currently available n-type thermoelectric materials are limited either by their low efficiencies or by being based on expensive, scarce or toxic elements. Here we report a low-cost...... because of the multi-valley band behaviour dominated by a unique near-edge conduction band with a sixfold valley degeneracy. This makes Te-doped Mg3Sb1.5Bi0.5 a promising candidate for the low- and intermediate-temperature thermoelectric applications....

  12. Progress on laboratory studies of the immobilisation of plutonium contaminated materials (pcm)

    International Nuclear Information System (INIS)

    Awmack, A.F.; Hemingway, K.

    1984-09-01

    This report describes progress on laboratory scale investigations into immobilisation of Plutonium Contaminated Materials for the year ending August 1984. The work is a continuation of that previously reported though some new work is also included. The samples tested were shredded plastic materials and latex. Three areas of work are covered (1) ISO Leach Tests (2) Radiolysis and degradation of organic materials (3) Equilibrium Leach Tests. (author)

  13. Fusion Materials Semiannual Progress Report for Period Ending December 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliff, A.F.; Burn, G.

    1999-04-01

    This is the twenty-fifth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the U.S. Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately.

  14. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  15. Progress Report of the Materials Department. First Quarter 1971. RCN Report

    International Nuclear Information System (INIS)

    Sens, P.F.

    1971-06-01

    A description of the progress in the various projects concerning the materials development of water cooled reactors, sodium cooled fast reactors and gas cooled reactors. Similar reports have been issued regularly with an internal distribution only. (author)

  16. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  17. Fusion materials semiannual progress report for the period ending March 31, 1995

    International Nuclear Information System (INIS)

    1995-07-01

    This is the eighteenth in a series of semiannual technical progress reports on fusion materials. This report combines research and development activities which were previously reported separately in the following progress reports: sm-bullet Alloy Development for Irradiation Performance. sm-bullet Damage Analysis and Fundamental Studies. sm-bullet Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide. This report has been compiled and edited under the guidance of A.F. Rowcliffe by Gabrielle Burn, Oak Ridge National Laboratory. Their efforts, and the efforts of the many persons who made technical contributions, are gratefully acknowledged

  18. Fusion materials semiannual progress report for the period ending March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This is the eighteenth in a series of semiannual technical progress reports on fusion materials. This report combines research and development activities which were previously reported separately in the following progress reports: {sm_bullet} Alloy Development for Irradiation Performance. {sm_bullet} Damage Analysis and Fundamental Studies. {sm_bullet} Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide. This report has been compiled and edited under the guidance of A.F. Rowcliffe by Gabrielle Burn, Oak Ridge National Laboratory. Their efforts, and the efforts of the many persons who made technical contributions, are gratefully acknowledged.

  19. Ultra Wide Band RFID Neutron Tags for Nuclear Materials Monitoring

    International Nuclear Information System (INIS)

    Nekoogar, F.; Dowla, F.; Wang, T.

    2010-01-01

    Recent advancements in the ultra-wide band Radio Frequency Identification (RFID) technology and solid state pillar type neutron detectors have enabled us to move forward in combining both technologies for advanced neutron monitoring. The LLNL RFID tag is totally passive and will operate indefinitely without the need for batteries. The tag is compact, can be directly mounted on metal, and has high performance in dense and cluttered environments. The LLNL coin-sized pillar solid state neutron detector has achieved a thermal neutron detection efficiency of 20% and neutron/gamma discrimination of 1E5. These performance values are comparable to a fieldable 3 He based detector. In this paper we will discuss features about the two technologies and some potential applications for the advanced safeguarding of nuclear materials.

  20. Discrete Analysis of Damage and Shear Banding in Argillaceous Rocks

    Science.gov (United States)

    Dinç, Özge; Scholtès, Luc

    2018-05-01

    A discrete approach is proposed to study damage and failure processes taking place in argillaceous rocks which present a transversely isotropic behavior. More precisely, a dedicated discrete element method is utilized to provide a micromechanical description of the mechanisms involved. The purpose of the study is twofold: (1) presenting a three-dimensional discrete element model able to simulate the anisotropic macro-mechanical behavior of the Callovo-Oxfordian claystone as a particular case of argillaceous rocks; (2) studying how progressive failure develops in such material. Material anisotropy is explicitly taken into account in the numerical model through the introduction of weakness planes distributed at the interparticle scale following predefined orientation and intensity. Simulations of compression tests under plane-strain and triaxial conditions are performed to clarify the development of damage and the appearance of shear bands through micromechanical analyses. The overall mechanical behavior and shear banding patterns predicted by the numerical model are in good agreement with respect to experimental observations. Both tensile and shear microcracks emerging from the modeling also present characteristics compatible with microstructural observations. The numerical results confirm that the global failure of argillaceous rocks is well correlated with the mechanisms taking place at the local scale. Specifically, strain localization is shown to directly result from shear microcracking developing with a preferential orientation distribution related to the orientation of the shear band. In addition, localization events presenting characteristics similar to shear bands are observed from the early stages of the loading and might thus be considered as precursors of strain localization.

  1. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress

    Directory of Open Access Journals (Sweden)

    Jin Min Wang

    2010-11-01

    Full Text Available The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO3, crystalline WO3 nanoparticles and nanorods, mesoporous WO3 and TiO2, poly(3,4-ethylenedioxythiophene nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed.

  2. Intruder bands in Z = 51 nuclei

    International Nuclear Information System (INIS)

    LaFosse, D.R.

    1993-01-01

    Recent investigations of h 11/2 proton intruder bands in odd 51 Sb nuclei are reported. In addition to experiments performed at SUNY Stony Brook and Chalk River, data from Early Implementation of GAMMASPHERE (analysis in progress) are presented. In particular, the nuclei 109 Sb and 111 Sb are discussed. Rotational bands based on the πh 11/2 orbital coupled to a 2p2h deformed state of the 50 Sn core have been observed. These bands have been observed to high spin, and in the case of 109 Sb to a rotational frequency of 1.4 MeV, the highest frequency observed in a heavy nucleus. The dynamic moments of inertia in these bands decrease slowly with frequency, suggesting a gradual band termination. The systematics of such bands in 109-119 Sb will be discussed

  3. Fusion materials semiannual progress report for period ending June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This is the twenty-second in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Topics covered here are: vanadium alloys; silicon carbide composites; ferritic/martensitic steels; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects mechanistic studies and experimental methods; dosimetry damage parameters; activation calculations; materials engineering and design requirements; irradiation facilities; test matrices; and experimental methods.

  4. Fusion materials semiannual progress report for period ending June 30, 1997

    International Nuclear Information System (INIS)

    1997-08-01

    This is the twenty-second in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Topics covered here are: vanadium alloys; silicon carbide composites; ferritic/martensitic steels; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects mechanistic studies and experimental methods; dosimetry damage parameters; activation calculations; materials engineering and design requirements; irradiation facilities; test matrices; and experimental methods

  5. A Duration Prediction Using a Material-Based Progress Management Methodology for Construction Operation Plans

    Directory of Open Access Journals (Sweden)

    Yongho Ko

    2017-04-01

    Full Text Available Precise and accurate prediction models for duration and cost enable contractors to improve their decision making for effective resource management in terms of sustainability in construction. Previous studies have been limited to cost-based estimations, but this study focuses on a material-based progress management method. Cost-based estimations typically used in construction, such as the earned value method, rely on comparing the planned budget with the actual cost. However, accurately planning budgets requires analysis of many factors, such as the financial status of the sectors involved. Furthermore, there is a higher possibility of changes in the budget than in the total amount of material used during construction, which is deduced from the quantity take-off from drawings and specifications. Accordingly, this study proposes a material-based progress management methodology, which was developed using different predictive analysis models (regression, neural network, and auto-regressive moving average as well as datasets on material and labor, which can be extracted from daily work reports from contractors. A case study on actual datasets was conducted, and the results show that the proposed methodology can be efficiently used for progress management in construction.

  6. Progress report for 1984/85 from the Plutonium Contaminated Materials Working Party

    International Nuclear Information System (INIS)

    Higson, S.G.

    1985-01-01

    The progress report for 1984/5 from the 'Plutonium Contaminated Materials Working Party' is presented. The report is divided into eight main topics, each discussed separately, and include: reduction of arisings, plutonium measurement, sorting and packaging, washing of shredded combustible plutonium contaminated materials (PCM), decommissioning and non-combustible PCM treatment, PCM immobilization, treatment of alpha bearing liquid wastes, and engineering objectives. (U.K.)

  7. Progress of flame gunning materials; Yosha hoshuzai no shinpo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kakuichi [Harima Ceramic Corp., Hyogo (Japan)

    1999-04-01

    This report concerns to progress in the thermal spraying for repairing refractory, to say more precisely the flame-gunning materials. Gunning method using wet-slurry materials, in spite of its simplicity in execution, possesses a shortcoming of forming the porous deposit around spraying spot. Contrarily, the flame-gunning method is becoming popular in Japan because this method provides us with the minutely organized deposit having high tenacity and corrosion-resisting property. Flame is made from propane/oxygen mixture to assure the efficient melting of powdered clay. Magnesia/Dromite/slag system is preferable to converter furnace to produce a deposit layer less than 10% porosity. Materials based on alumina are preferable, although giving a relatively elevated porosity, to vacuum degassing vessel, converter furnace of stainless steel, hot stove for blast furnace, etc. Silca-rich system is characterized by the resistivity to recycled thermal procedure which brings about application to coke furnace. (NEDO)

  8. Fusion Materials Semiannual Progress Report for the Period Ending June 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.

    1999-09-01

    This is the twenty-sixth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and its reported separately.

  9. Low band gap polymers for organic photovoltaics

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2007-01-01

    Low band gap polymer materials and their application in organic photovoltaics (OPV) are reviewed. We detail the synthetic approaches to low band gap polymer materials starting from the early methodologies employing quinoid homopolymer structures to the current state of the art that relies...

  10. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Taeho [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A., E-mail: kanelson@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Kandyla, Maria [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 116-35 (Greece)

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  11. Progress report for 1982/83 from the Plutonium Contaminated Materials Working Party

    International Nuclear Information System (INIS)

    Higson, S.G.

    1983-01-01

    The report falls under the headings: introduction (definitions of plutonium contaminated materials (PCM)); organisation and role of the Plutonium Contaminated Materials Working Party; management practices in relation to PCM; 1982/1983 Progress Report (engineering objectives; reduction of PCM arisings; plutonium measurement; development of treatment processes; decommissioning and non-combustible PCM treatment; washing of shredded combustible PCM; PCM immobilisation; liquid effluent treatment; actinide chemistry); programme management. (U.K.)

  12. Fusion materials semiannual progress report for the period ending June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G. [ed.] [comp.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  13. Fusion materials semiannual progress report for the period ending June 30, 1998

    International Nuclear Information System (INIS)

    Burn, G.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  14. Progress in the US program to develop low-activation structural materials for fusion

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Jones, R.H.; Bloom, E.E.; Rowcliffe, A.F.; Smith, D.L.; Odette, G.R.; Wiffen, F.W.

    1999-01-01

    It has long been recognized that attainment of the safety and environmental potential of fusion energy requires the successful development of low-activation materials for the first wall, blanket and other high heat flux structural components. Only a limited number of materials potentially possess the physical, mechanical and low-activation characteristics required for this application. The current US structural materials research effort is focused on three candidate materials: advanced ferritic steels, vanadium alloys, and silicon carbide composites. Recent progress has been made in understanding the response of these materials to neutron irradiation. (author)

  15. Transport in bilayer and trilayer graphene: band gap engineering and band structure tuning

    Science.gov (United States)

    Zhu, Jun

    2014-03-01

    Controlling the stacking order of atomically thin 2D materials offers a powerful tool to control their properties. Linearly dispersed bands become hyperbolic in Bernal (AB) stacked bilayer graphene (BLG). Both Bernal (ABA) and rhombohedral (ABC) stacking occur in trilayer graphene (TLG), producing distinct band structures and electronic properties. A symmetry-breaking electric field perpendicular to the sample plane can further modify the band structures of BLG and TLG. In this talk, I will describe our experimental effort in these directions using dual-gated devices. Using thin HfO2 film deposited by ALD as gate dielectric, we are able to apply large displacement fields D > 6 V/nm and observe the opening and saturation of the field-induced band gap Eg in bilayer and ABC-stacked trilayer graphene, where the conduction in the mid gap changes by more than six decades. Its field and temperature dependence highlights the crucial role played by Coulomb disorder in facilitating hopping conduction and suppressing the effect of Eg in the tens of meV regime. In contrast, mid-gap conduction decreases with increasing D much more rapidly in clean h-BN dual-gated devices. Our studies also show the evolution of the band structure in ABA-stacked TLG, in particular the splitting of the Dirac-like bands in large D field and the signatures of two-band transport at high carrier densities. Comparison to theory reveals the need for more sophisticated treatment of electronic screening beyond self-consistent Hartree calculations to accurately predict the band structures of trilayer graphene and graphenic materials in general.

  16. Signature effects in 2-qp rotational bands

    International Nuclear Information System (INIS)

    Jain, A.K.; Goel, A.

    1992-01-01

    The authors briefly review the progress in understanding the 2-qp rotational bands in odd-odd nuclei. Signature effects and the phenomenon of signature inversion are discussed. The Coriolis coupling appears to have all the ingredients to explain the inversion. Some recent work on signature dependence in 2-qp bands of even-even nuclei is also discussed; interesting features are pointed out

  17. Structural analysis, electronic properties, and band gaps of a graphene nanoribbon: A new 2D materials

    Science.gov (United States)

    Dass, Devi

    2018-03-01

    Graphene nanoribbon (GNR), a new 2D carbon nanomaterial, has some unique features and special properties that offer a great potential for interconnect, nanoelectronic devices, optoelectronics, and nanophotonics. This paper reports the structural analysis, electronic properties, and band gaps of a GNR considering different chirality combinations obtained using the pz orbital tight binding model. In structural analysis, the analytical expressions for GNRs have been developed and verified using the simulation for the first time. It has been found that the total number of unit cells and carbon atoms within an overall unit cell and molecular structure of a GNR have been changed with the change in their chirality values which are similar to the values calculated using the developed analytical expressions thus validating both the simulation as well as analytical results. Further, the electronic band structures at different chirality values have been shown for the identification of metallic and semiconductor properties of a GNR. It has been concluded that all zigzag edge GNRs are metallic with very small band gaps range whereas all armchair GNRs show both the metallic and semiconductor nature with very small and high band gaps range. Again, the total number of subbands in each electronic band structure is equal to the total number of carbon atoms present in overall unit cell of the corresponding GNR. The semiconductors GNRs can be used as a channel material in field effect transistor suitable for advanced CMOS technology whereas the metallic GNRs could be used for interconnect.

  18. Health Risks Faced by Public School Band Directors

    Science.gov (United States)

    Woolery, Danielle N.; Woolery, Jesse A.

    2013-01-01

    Public school band directors face many work-related hazards in their grueling, yet rewarding job. As a school year progresses, directors are expected to work long hours, while trying to balance professional and personal responsibilities. A band director whose career spans multiple decades can potentially face a number of serious medical problems.…

  19. Advances in materials science, Metals and Ceramics Division. Triannual progress report, October 1979-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-31

    Progress is summarized concerning magnetic fusion energy materials, laser fusion energy, aluminium-air battery and vehicle, geothermal research, oil-shale research, nuclear waste management, office of basic energy sciences research, and materials research notes. (FS)

  20. Fusion reactor materials semiannual progress report for the period ending March 31, 1993

    International Nuclear Information System (INIS)

    1993-07-01

    This is the fourteenth in a series of semiannual technical progress reports on fusion reactor materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Depart of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Separate abstracts were prepared for each individual section

  1. Fusion reactor materials semiannual progress report for the period ending March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This is the fourteenth in a series of semiannual technical progress reports on fusion reactor materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Depart of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Separate abstracts were prepared for each individual section.

  2. Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum

    Science.gov (United States)

    Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei

    2018-05-01

    Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.

  3. Fusion materials semiannual progress report for the period ending December 31, 1996

    International Nuclear Information System (INIS)

    1997-04-01

    This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods

  4. Fusion materials semiannual progress report for the period ending December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.

  5. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials

    International Nuclear Information System (INIS)

    Palacios, P.; Aguilera, I.; Wahnon, P.

    2008-01-01

    In this work, we present frozen phonon and linear response ab-initio research into the vibrational properties of the CuGaS 2 chalcopyrite and transition metal substituted (CuGaS 2 )M alloys. These systems are potential candidates for developing a novel solar-cell material with enhanced optoelectronic properties based in the implementation of the intermediate-band concept. We have previously carried out ab-initio calculations of the electronic properties of these kinds of chalcopyrite metal alloys showing a narrow transition metal band isolated in the semiconductor band gap. The substitutes used in the present work are the 3d metal elements, Titanium and Chromium. For the theoretical calculations we use standard density functional theory at local density and generalized gradient approximation levels. We found that the optical phonon branches of the transition metal chalcopyrite, are very sensitive to the specific bonding geometry and small changes in the transition metal environment

  6. Plutonium contaminated materials research programme. Progress Report for 1983/84 from the Plutonium Contaminated Materials Working Party

    International Nuclear Information System (INIS)

    Higson, S.G.

    1984-01-01

    Plutonium contaminated material (PCM) is a generic term applied to a wide variety of materials which have become contaminated by plutonium compounds, by virtue of their use inside the primary containment of fuel cycle plants, but which generally have low beta gamma content. The report falls under the headings: introduction; organisation and role of the PCMWP; management practices; 1983/84 progress report (a) reduction of arisings; (b) plutonium measurement; (c) treatment of solid PCM; (d) treatment of alpha bearing liquid wastes; (e) actinide chemistry; (f) engineering objectives. (U.K.)

  7. Recent progress in the development of anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cowin, Peter I.; Petit, Christophe T.G.; Lan, Rong; Tao, Shanwen [Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Irvine, John T.S. [School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST (United Kingdom)

    2011-05-15

    The field of research into solid oxide fuel cell (SOFC) anode materials has been rapidly moving forward. In the four years since the last in-depth review significant advancements have been made in the reduction of the operating temperature and improvement of the performance of SOFCs. This progress report examines the developments in the field and looks to draw conclusions and inspiration from this research. A brief introduction is given to the field, followed by an overview of the principal previous materials. A detailed analysis of the developments of the last 4 years is given using a selection of the available literature, concentrating on metal-fluorite cermets and perovskite-based materials. This is followed by a consideration of alternate fuels for use in SOFCs and their associated problems and a short discussion on the effect of synthesis method on anode performance. The concluding remarks compile the significant developments in the field along with a consideration of the promise of future research. The recent progress in the development of anode materials for SOFCs based on oxygen ion conducting electrolytes is reviewed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity

    Science.gov (United States)

    Thurston, Cameron

    Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.

  9. Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods

    Directory of Open Access Journals (Sweden)

    Zhengqi Shi

    2018-05-01

    Full Text Available With the rapid increase of efficiency up to 22.1% during the past few years, hybrid organic-inorganic metal halide perovskite solar cells (PSCs have become a research “hot spot” for many solar cell researchers. The perovskite materials show various advantages such as long carrier diffusion lengths, widely-tunable band gap with great light absorption potential. The low-cost fabrication techniques together with the high efficiency makes PSCs comparable with Si-based solar cells. But the drawbacks such as device instability, J-V hysteresis and lead toxicity reduce the further improvement and the future commercialization of PSCs. This review begins with the discussion of crystal and electronic structures of perovskite based on recent research findings. An evolution of PSCs is also analyzed with a greater detail of each component, device structures, major device fabrication methods and the performance of PSCs acquired by each method. The following part of this review is the discussion of major barriers on the pathway for the commercialization of PSCs. The effects of crystal structure, fabrication temperature, moisture, oxygen and UV towards the stability of PSCs are discussed. The stability of other components in the PSCs are also discussed. The lead toxicity and updated research progress on lead replacement are reviewed to understand the sustainability issues of PSCs. The origin of J-V hysteresis is also briefly discussed. Finally, this review provides a roadmap on the current needs and future research directions to address the main issues of PSCs.

  10. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material.

    Science.gov (United States)

    Todorov, Teodor K; Singh, Saurabh; Bishop, Douglas M; Gunawan, Oki; Lee, Yun Seog; Gershon, Talia S; Brew, Kevin W; Antunez, Priscilla D; Haight, Richard

    2017-09-25

    Selenium was used in the first solid state solar cell in 1883 and gave early insights into the photoelectric effect that inspired Einstein's Nobel Prize work; however, the latest efficiency milestone of 5.0% was more than 30 years ago. The recent surge of interest towards high-band gap absorbers for tandem applications led us to reconsider this attractive 1.95 eV material. Here, we show completely redesigned selenium devices with improved back and front interfaces optimized through combinatorial studies and demonstrate record open-circuit voltage (V OC ) of 970 mV and efficiency of 6.5% under 1 Sun. In addition, Se devices are air-stable, non-toxic, and extremely simple to fabricate. The absorber layer is only 100 nm thick, and can be processed at 200 ˚C, allowing temperature compatibility with most bottom substrates or sub-cells. We analyze device limitations and find significant potential for further improvement making selenium an attractive high-band-gap absorber for multi-junction device applications.Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.

  11. Progress in the U.S. program to develop low-activation structural materials for fusion

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Jones, R.H.; Bloom, E.E.; Rowcliffe, A.F.; Smith, D.L.; Odette, G.R.; Wiffen, F.W.

    2001-01-01

    It has long been recognized that attainment of the safety and environmental potential of fusion energy requires the successful development of low-activation materials for the first wall, blanket and other high heat flux structural components. Only a limited number of materials potentially possess the physical, mechanical and low-activation characteristics required for this application. The current U.S. structural materials research effort is focused on three candidate materials: advanced ferritic steels, vanadium alloys, and silicon carbide composites. Recent progress has been made in understanding the response of these materials to neutron irradiation. (author)

  12. Synchrotron Studies of Narrow Band and Low-Dimensional Materials. Final Report for July 1, 1990 --- December 31, 2002

    International Nuclear Information System (INIS)

    Allen, J. W.

    2003-01-01

    This report summarizes a 12-year program of various kinds of synchrotron spectroscopies directed at the electronic structures of narrow band and low-dimensional materials that display correlated electron behaviors such as metal-insulator transitions, mixed valence, superconductivity, Kondo moment quenching, heavy Fermions, and non-Fermi liquid properties

  13. Thermoelectric band engineering: The role of carrier scattering

    Science.gov (United States)

    Witkoske, Evan; Wang, Xufeng; Lundstrom, Mark; Askarpour, Vahid; Maassen, Jesse

    2017-11-01

    Complex electronic band structures, with multiple valleys or bands at the same or similar energies, can be beneficial for thermoelectric performance, but the advantages can be offset by inter-valley and inter-band scattering. In this paper, we demonstrate how first-principles band structures coupled with recently developed techniques for rigorous simulation of electron-phonon scattering provide the capabilities to realistically assess the benefits and trade-offs associated with these materials. We illustrate the approach using n-type silicon as a model material and show that intervalley scattering is strong. This example shows that the convergence of valleys and bands can improve thermoelectric performance, but the magnitude of the improvement depends sensitively on the relative strengths of intra- and inter-valley electron scattering. Because anisotropy of the band structure also plays an important role, a measure of the benefit of band anisotropy in the presence of strong intervalley scattering is presented.

  14. Effect of Spindle Parameters of Woodworking Band Saw on the AE Value of Crack Band Saw Blade in Compound Material Processing (1)

    Science.gov (United States)

    Gao, Jin-gui; Jiang, Zhao-fang; Luo, Lai-peng

    2017-04-01

    Taking the MJ3210A motion band saw as the research object, the AE value of the band saw blade vibration was obtained by analyzing the VIBSYS vibration signal acquisition and analysis software system in Beijing, and the change of the AE value of the band saw and the crack was found out. The experimental results show that in the MJ3210A sports car sawing machine, the band saw blade with width of 130 mm is used, and the AE value of the cracked band saw blade is well in the high band saw blade AE value. Under the best working condition of the band saw, the band saw blade AE If the value exceeds 104.7 dB (A) above, it means that the band saw blade has at least one crack length greater than 1.38 mm for the crack defect and the need to replace the band saw blade in time. Different species with saw blade of the AE value is different, white pine wood minimum, the largest oak wood; according to a variety of wood processing AE instrument value to determine the band saw blade crack to the situation; so as to fully rational use of band saw blade, The failure and the degree of development to find a new method.

  15. Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes

    Science.gov (United States)

    Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.

    2017-07-01

    Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).

  16. Photonic band gap materials in butterfly scales: A possible source of 'blueprints'

    International Nuclear Information System (INIS)

    Kertesz, K.; Molnar, G.; Vertesy, Z.; Koos, A.A.; Horvath, Z.E.; Mark, G.I.; Tapaszto, L.; Balint, Zs.; Tamaska, I.; Deparis, O.; Vigneron, J.P.; Biro, L.P.

    2008-01-01

    The color generating nanoarchitectures in the cover scales of the blue (dorsal)-green (ventral) wing surfaces of the butterfly Albulina metallica were investigated by scanning electron microscopy and cross-sectional transmission electron microscopy. A layered, quasiordered structure was revealed in both the dorsal and ventral scales, with different order parameters, associated with their different colors. A successful attempt was made to reproduce the biological structure in the form of a quasiordered composite (SiO/(In and SiO)) multilayer structure using standard thin film deposition techniques. The position of the reflectance maxima of this artificial structure could be tailored by controlling the size of the In inclusions through oxidation. Our results show that photonic band gap materials of biologic origin may constitute valuable blueprints for artificial structures

  17. Progress report for 1986 from the Plutonium Contaminated Materials Working Party

    International Nuclear Information System (INIS)

    Higson, S.G.

    1987-11-01

    The paper covers progress during 1986 under the joint BNFL/MOD/DoE funded PCM Working Party studying the management, treatment and immobilization of plutonium contaminated materials. Development is reported under each of seven main programme headings including reduction of arisings, Pu measurement, decommissioning and non-combustible PCM treatment, liquid effluent treatment, sorting and packaging, PCM immobilisation and engineering objectives. (author)

  18. Designing broad phononic band gaps for in-plane modes

    Science.gov (United States)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  19. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Science.gov (United States)

    Rieth, M.; Dudarev, S. L.; Gonzalez de Vicente, S. M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D. E. J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W. W.; Battabyal, M.; Becquart, C. S.; Blagoeva, D.; Boldyryeva, H.; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J. B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M. R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, N.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matejicek, J.; Mishra, T. P.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, T.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Ureña, A.; van der Laan, J. G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M. A.; You, J. H.; Zivelonghi, A.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  20. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    International Nuclear Information System (INIS)

    Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W.W.; Battabyal, M.; Becquart, C.S.; Blagoeva, D.; Boldyryeva, H.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme’s main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  1. Band gap of two-dimensional fiber-air photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shu, E-mail: yangshu5678@163.com; Li, Masha

    2016-04-15

    A two-dimensional photonic crystal (PC) composed of textile fiber and air is initially discussed in this paper. Textile materials are so called soft materials, which are different from the previous PCs composed of rigid materials. The plain wave expansion method is used to calculate band structure of different PCs by altering component properties or structural parameters. Results show that the dielectric constant of textile fibers, fiber filling ratio and lattice arrangement are effective factors which influence PCs' band gap. Yet lattice constant and fiber diameter make inconspicuous influence on the band gap feature.

  2. Elastic band prediction equations for combined free-weight and elastic band bench presses and squats.

    Science.gov (United States)

    Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C

    2010-01-01

    Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.

  3. The progress of the electrode materials development for lithium ion battery

    International Nuclear Information System (INIS)

    Kang Kai; Dai Shouhui; Wan Yuhua

    2001-01-01

    The structure and the charge-discharge principle of Li-ion battery are briefly discussed; the progress of electrode materials for Li-ion battery is reviewed in detail. Graphite has found wide applications in commercial Li-ion batteries, however, the hard carbon, especially the carbon with hydrogen is the most promising anode material for Li-ion battery owing to its high capacity, which has now become hot spot of investigation. Following the LiCoO 2 , LiMn 2 O 4 spinel compound becomes the most powerful contestant. On the basis of the authors' results, the synthesis methods of LiMn 2 O 4 and its characterizations are compared. Moreover, the structural properties of intercalation electrode materials that are related to the rechargeable capacity and stability during cycling of lithium ions are also discussed

  4. The Volpe Center GPS Adjacent Band Compatibility Program Plan : GPS Adjacent Band Compatibility Workshop, Volpe Center, Cambridge MA

    Science.gov (United States)

    2014-09-18

    Approach to DOT GPS Adjacent Band Compatibility Assessment. Identify forums and provide public outreach to make sure the progress and work are as open and transparent as possible. Develop an implementation plan that incorporates aspects from the DOT ...

  5. Cladding and structural materials. Semi-annual progress report, July 1975--January 1976

    International Nuclear Information System (INIS)

    Claudson, T.T.

    1976-04-01

    Progress on experimental programs and evaluation of results is given for radiation damage studies to LMFBR cladding and structural materials. The primary material being studied is 316 SS in various conditions of cold work and in the welded condition. Tensile, creep, and swelling property data on unirradiated and irradiated 316 SS cladding and duct specimens at various test conditions are provided. The importance of stress on the properties of 316 SS is highlighted. Results on core dosimetry and damage analysis indicate the increasing value of detailed core characterization. 105 figures, 21 tables

  6. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rieth, M., E-mail: Michael.rieth@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Dudarev, S.L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Gonzalez de Vicente, S.M. [EFDA-Close Support Unit, Garching (Germany); Aktaa, J. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Ahlgren, T. [University of Helsinki, Department of Physics, Helsinki (Finland); Antusch, S. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Armstrong, D.E.J. [Department of Materials, University of Oxford (United Kingdom); Balden, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Baluc, N. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Barthe, M.-F. [CNRS, UPR3079 CEMHTI, 1D Avenue, de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Universite d' Orleans, Polytech ou Faculte des Sciences, Avenue du Parc Floral, BP 6749, 45067 Orleans cedex 2 (France); Basuki, W.W. [Karlsruhe Institute of Technology, Institute for Applied Materials, Karlsruhe (Germany); Battabyal, M. [Centre de Recherches en Physique des Plasmas, CRPP EPFL - Materials, 5232 Villigen/PSI (Switzerland); Becquart, C.S. [Unite Materiaux et Transformations, UMR 8207, 59655 Villeneuve d' Ascq (France); Blagoeva, D. [NRG, Nuclear Research and consultancy Group, Petten (Netherlands); Boldyryeva, H. [Institute of Plasma Physics, Za Slovankou 3, 18200 Praha (Czech Republic); and others

    2013-01-15

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  7. Optoelectronic Characterization by Advanced Ab-Initio Methods of Novel Photovoltaic Intermediate Band Materials = Caracterización optoelectrónica por métodos ab-initio avanzados de nuevos materiales fotovoltaicos de banda intermedia

    OpenAIRE

    Aguilera Bonet, Irene

    2011-01-01

    Intermediate-band materials represent nowadays one of the most promising proposals in the quest for more efficient, lower-cost solar cells. In this thesis we present a deep study of transition-metal substituted semiconductors based on their optoelectronic properties. These materials were proposed as high efficiency photovoltaic absorbers for intermediate-band solar cells for showing a partiallyfilled band placed inside the band gap of the parent semiconductor which enables the absorption of p...

  8. Progress in materials research and applications of high-Tc Superconductors

    International Nuclear Information System (INIS)

    Tanaka, S.

    1991-01-01

    Research on high-T c superconductivity covers most of the fields of materials science, and therefore, interdisciplinary investigations are necessary by scientists with diverse backgrounds in physics, chemistry, ceramics, metallurgy and so on. At present, after much research on the physical properties of materials, the creation of a theory of high-T c superconductivity is extremely urgent. If a theory can be successfully established, its effects must be very wide and deep. solid state physics may be transformed, and the search for new superconducting materials will be accelerated. Furthermore, many applications will be greatly advanced by understanding the phenomena of high-T c materials, and especially concepts for new electronic devices may be forthcoming. In the past, interactions between science and technology have been very clear. They sometimes resonate with each other and exhibit rapid progress in a very short period and give a big impact on society. The research and developments of high-T c superconductivity will hopefully retrace the brilliant history of the great success of the science and technology of semiconductors in the near future. The author is very optimistic about this

  9. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    Science.gov (United States)

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  10. Science of materials. Progress report, July 1, 1977--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    Progress is reported in research which includes studies of the deformation, stress corrosion and fracture of alloys and geologic materials with emphasis on hydrogen embrittlement of metals; the mechanism of heat transfer across interfaces; catalytic properties of surfaces; and erosion of surfaces by fluid suspended particles. The structure of liquids, polymers and disordered solids is under investigation with emphasis on ionic conduction, phase transitions and radiation damage. Ferro- and pyroelectric materials with potential for solar energy applications are under development. The study of optical properties includes the mechanism of luminescence and new semiconductor materials for photovoltaic devices. The electronic properties of crystals are the subject of a continued effort to resolve current problems of magnetic behavior and photon-solid interactions. Specific quantum properties of matter are explored with emphasis on superconductivity, diffusion of hydrogen in metals and the properties of solid helium.

  11. Unsupervised progressive elastic band exercises for frail geriatric inpatients objectively monitored by new exercise-integrated technology-a feasibility trial with an embedded qualitative study.

    Science.gov (United States)

    Rathleff, C R; Bandholm, T; Spaich, E G; Jorgensen, M; Andreasen, J

    2017-01-01

    Frailty is a serious condition frequently present in geriatric inpatients that potentially causes serious adverse events. Strength training is acknowledged as a means of preventing or delaying frailty and loss of function in these patients. However, limited hospital resources challenge the amount of supervised training, and unsupervised training could possibly supplement supervised training thereby increasing the total exercise dose during admission. A new valid and reliable technology, the BandCizer, objectively measures the exact training dosage performed. The purpose was to investigate feasibility and acceptability of an unsupervised progressive strength training intervention monitored by BandCizer for frail geriatric inpatients. This feasibility trial included 15 frail inpatients at a geriatric ward. At hospitalization, the patients were prescribed two elastic band exercises to be performed unsupervised once daily. A BandCizer Datalogger enabling measurement of the number of sets, repetitions, and time-under-tension was attached to the elastic band. The patients were instructed in performing strength training: 3 sets of 10 repetitions (10-12 repetition maximum (RM)) with a separation of 2-min pauses and a time-under-tension of 8 s. The feasibility criterion for the unsupervised progressive exercises was that 33% of the recommended number of sets would be performed by at least 30% of patients. In addition, patients and staff were interviewed about their experiences with the intervention. Four (27%) out of 15 patients completed 33% of the recommended number of sets. For the total sample, the average percent of performed sets was 23% and for those who actually trained ( n  = 12) 26%. Patients and staff expressed a general positive attitude towards the unsupervised training as an addition to the supervised training sessions. However, barriers were also described-especially constant interruptions. Based on the predefined criterion for feasibility, the

  12. Topological Magnon Bands in a Kagome Lattice Ferromagnet.

    Science.gov (United States)

    Chisnell, R; Helton, J S; Freedman, D E; Singh, D K; Bewley, R I; Nocera, D G; Lee, Y S

    2015-10-02

    There is great interest in finding materials possessing quasiparticles with topological properties. Such materials may have novel excitations that exist on their boundaries which are protected against disorder. We report experimental evidence that magnons in an insulating kagome ferromagnet can have a topological band structure. Our neutron scattering measurements further reveal that one of the bands is flat due to the unique geometry of the kagome lattice. Spin wave calculations show that the measured band structure follows from a simple Heisenberg Hamiltonian with a Dzyaloshinkii-Moriya interaction. This serves as the first realization of an effectively two-dimensional topological magnon insulator--a new class of magnetic material that should display both a magnon Hall effect and protected chiral edge modes.

  13. Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report

    Science.gov (United States)

    2016-04-01

    Exploiting Novel Radiation -Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report Distribution...assess the effects of ionizing radiation on at least three classes of electromagnetic materials. The proposed approach for radiation detection was...that was desired to be monitored remotely. Microwave or low millimeter wave electromagnetic radiation would be used to interrogate the device

  14. Fusion materials semiannual progress report for the period ending March 31, 1994

    International Nuclear Information System (INIS)

    1994-09-01

    This is the sixteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. This report is divided into the following areas: (1) irradiation facilities, test matrices, and experimental methods; (2) dosimetry, damage parameters, transmutation, and activation calculations; (3) materials engineering and design requirements; (4) fundamental mechanical behavior; (5) radiation effects, mechanistic studies, theory and modelings; (6) development of structural alloys; (7) solid breeding materials and beryllium; and (8) ceramics. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database

  15. Progress and Strategies for Testing of Materials for Solar Panels

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah

    2017-04-25

    Accelerated testing is key to confident launch of a new product. However, for new products like solar panels, the best approach is not always clear. The challenge for materials manufacturers is that test times can be long. Also, small-coupon testing may not predict the behavior in the full-size module, but testing of the full-size module is too expensive. As a result, solar panel test standards like IEC 61215 are useful, but are not sufficient. Material manufacturers have needed to define their own test protocols. This presentation will review some historical data (e.g., data show that manufacturers are making great progress toward reducing encapsulant discoloration) and describe advances in material testing (for example, new techniques are being demonstrated on how to more quantitatively assess adhesion, detect tendency for delamination, and understand how encapsulant properties affect other properties like cracking of cells). The International PV Quality Assurance Task Force has been researching climate-specific weathering tests toward the goal of defining international standards that would simplify qualification and quality assurance testing for materials. The status of these tests and the strategies for how to organize these standards to best meet the needs of the industry will be discussed.

  16. Fusion materials semiannual progress report for the period ending December 31, 1997

    International Nuclear Information System (INIS)

    Burn, G.

    1998-03-01

    This is the twenty-third in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. A large fraction of this work, particularly in relation to fission reactor experiments, is carried out collaboratively with their partners in Japan, Russia, and the European Union. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  17. Metallic photonic band-gap materials

    International Nuclear Information System (INIS)

    Sigalas, M.M.; Chan, C.T.; Ho, K.M.; Soukoulis, C.M.

    1995-01-01

    We calculate the transmission and absorption of electromagnetic waves propagating in two-dimensional (2D) and 3D periodic metallic photonic band-gap (PBG) structures. For 2D systems, there is substantial difference between the s- and p-polarized waves. The p-polarized waves exhibit behavior similar to the dielectric PBG's. But, the s-polarized waves have a cutoff frequency below which there are no propagating modes. For 3D systems, the results are qualitatively the same for both polarizations but there are important differences related to the topology of the structure. For 3D structures with isolated metallic scatterers (cermet topology), the behavior is similar to that of the dielectric PBG's, while for 3D structures with the metal forming a continuous network (network topology), there is a cutoff frequency below which there are no propagating modes. The systems with the network topology may have some interesting applications for frequencies less than about 1 THz where the absorption can be neglected. We also study the role of the defects in the metallic structures

  18. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials.

    Science.gov (United States)

    Akimov, A V; Tanaka, Y; Pevtsov, A B; Kaplan, S F; Golubev, V G; Tamura, S; Yakovlev, D R; Bayer, M

    2008-07-18

    The elastic coupling between the a-SiO2 spheres composing opal films brings forth three-dimensional periodic structures which besides a photonic stop band are predicted to also exhibit complete phononic band gaps. The influence of elastic crystal vibrations on the photonic band structure has been studied by injection of coherent hypersonic wave packets generated in a metal transducer by subpicosecond laser pulses. These studies show that light with energies close to the photonic band gap can be efficiently modulated by hypersonic waves.

  19. Recent Progress in First-Principles Methods for Computing the Electronic Structure of Correlated Materials

    Directory of Open Access Journals (Sweden)

    Fredrik Nilsson

    2018-03-01

    Full Text Available Substantial progress has been achieved in the last couple of decades in computing the electronic structure of correlated materials from first principles. This progress has been driven by parallel development in theory and numerical algorithms. Theoretical development in combining ab initio approaches and many-body methods is particularly promising. A crucial role is also played by a systematic method for deriving a low-energy model, which bridges the gap between real and model systems. In this article, an overview is given tracing the development from the LDA+U to the latest progress in combining the G W method and (extended dynamical mean-field theory ( G W +EDMFT. The emphasis is on conceptual and theoretical aspects rather than technical ones.

  20. Active Multispectral Band Selection and Reflectance Measurement System

    National Research Council Canada - National Science Library

    Rennich, Bradley

    1999-01-01

    .... To aid in the selection of these bands, a novel multispectral band selection technique is presented based on the cross-correlation of the material class reflectance spectra over a wavelength range of 1 - 5 microns...

  1. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  2. Cerebrospinal fluid oligoclonal bands and progression of disability in multiple sclerosis

    NARCIS (Netherlands)

    Koch, M.; Heersema, D.; Mostert, J.; Teelken, A.; De Keyser, J.

    Antibody-mediated inflammation is believed to contribute to tissue injury in multiple sclerosis (MS). The majority of patients with MS have oligoclonal bands (OCB), corresponding to antibodies against a variety of antigens, in their cerebrospinal fluid (CSF). The relation of CSF OCB and disease

  3. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  4. Cladding and structural materials semi-annual progress report, January 1975--July 1975

    International Nuclear Information System (INIS)

    Claudson, T.T.

    1975-10-01

    Theoretical and experimental programs are in progress to determine the effects of fast neutron radiation on the mechanical properties and swelling of 3C4 and 316SS cladding and duct materials. Detailed specimen characterization and detailed test conditions are required in order to provide the 2 to 5 percent accuracy of results at 1γ. Preliminary swelling tests show that swelling in stressed assemblies is much larger than in unstressed structural components. Correlation of swelling data from high exposure cladding (11.4 at. percent burnup) agrees with previous data and with the current design equation for 20 percent CW 316 stainless steel. Improved techniques for TEM specimen preparation are described along with recent results on crack propagation. Initial results are given for the effects of aging on Inconel 718 base and weld materials. Compilations of these design values of materials properties have been issued in the form of the Nuclear Systems Materials Handbook

  5. Modeling charged defects inside density functional theory band gaps

    International Nuclear Information System (INIS)

    Schultz, Peter A.; Edwards, Arthur H.

    2014-01-01

    Density functional theory (DFT) has emerged as an important tool to probe microscopic behavior in materials. The fundamental band gap defines the energy scale for charge transition energy levels of point defects in ionic and covalent materials. The eigenvalue gap between occupied and unoccupied states in conventional DFT, the Kohn–Sham gap, is often half or less of the experimental band gap, seemingly precluding quantitative studies of charged defects. Applying explicit and rigorous control of charge boundary conditions in supercells, we find that calculations of defect energy levels derived from total energy differences give accurate predictions of charge transition energy levels in Si and GaAs, unhampered by a band gap problem. The GaAs system provides a good theoretical laboratory for investigating band gap effects in defect level calculations: depending on the functional and pseudopotential, the Kohn–Sham gap can be as large as 1.1 eV or as small as 0.1 eV. We find that the effective defect band gap, the computed range in defect levels, is mostly insensitive to the Kohn–Sham gap, demonstrating it is often possible to use conventional DFT for quantitative studies of defect chemistry governing interesting materials behavior in semiconductors and oxides despite a band gap problem

  6. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures.

    Science.gov (United States)

    Lo, Shun S; Mirkovic, Tihana; Chuang, Chi-Hung; Burda, Clemens; Scholes, Gregory D

    2011-01-11

    The development of elegant synthetic methodologies for the preparation of monocomponent nanocrystalline particles has opened many possibilities for the preparation of heterostructured semiconductor nanostructures. Each of the integrated nanodomains is characterized by its individual physical properties, surface chemistry, and morphology, yet, these multicomponent hybrid particles present ideal systems for the investigation of the synergetic properties that arise from the material combination in a non-additive fashion. Of particular interest are type-II heterostructures, where the relative band alignment of their constituent semiconductor materials promotes a spatial separation of the electron and hole following photoexcitation, a highly desirable property for photovoltaic applications. This article highlights recent progress in both synthetic strategies, which allow for material and architectural modulation of novel nanoheterostructures, as well as the experimental work that provides insight into the photophysical properties of type-II heterostructures. The effects of external factors, such as electric fields, temperature, and solvent are explored in conjunction with exciton and multiexciton dynamics and charge transfer processes typical for type-II semiconductor heterostructures.

  7. Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials

    International Nuclear Information System (INIS)

    Lidorikis, E.; Sigalas, M. M.; Economou, E. N.; Soukoulis, C. M.

    2000-01-01

    By using two ab initio numerical methods, we study the effects that disorder has on the spectral gaps and on wave localization in two-dimensional photonic-band-gap materials. We find that there are basically two different responses depending on the lattice realization (solid dielectric cylinders in air or vice versa), the wave polarization, and the particular form under which disorder is introduced. Two different pictures for the photonic states are employed, the ''nearly free'' photon and the ''strongly localized'' photon. These originate from the two different mechanisms responsible for the formation of the spectral gaps, i.e., multiple scattering and single scatterer resonances, and they qualitatively explain our results. (c) 2000 The American Physical Society

  8. Composite Beam Theory with Material Nonlinearities and Progressive Damage

    Science.gov (United States)

    Jiang, Fang

    Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping

  9. Progress in piezo-phototronic effect modulated photovoltaics.

    Science.gov (United States)

    Que, Miaoling; Zhou, Ranran; Wang, Xiandi; Yuan, Zuqing; Hu, Guofeng; Pan, Caofeng

    2016-11-02

    Wurtzite structured materials, like ZnO, GaN, CdS, and InN, simultaneously possess semiconductor and piezoelectric properties. The inner-crystal piezopotential induced by external strain can effectively tune/control the carrier generation, transport and separation/combination processes at the metal-semiconductor contact or p-n junction, which is called the piezo-phototronic effect. This effect can efficiently enhance the performance of photovoltaic devices based on piezoelectric semiconductor materials by utilizing the piezo-polarization charges at the junction induced by straining, which can modulate the energy band of the piezoelectric material and then accelerate or prevent the separation process of the photon-generated electrons and vacancies. This paper introduces the fundamental physics principles of the piezo-phototronic effect, and reviews recent progress in piezo-phototronic effect enhanced solar cells, including solar cells based on semiconductor nanowire, organic/inorganic materials, quantum dots, and perovskite. The piezo-phototronic effect is suggested as a suitable basis for the development of an innovative method to enhance the performance of solar cells based on piezoelectric semiconductors by applied extrinsic strains, which might be appropriate for fundamental research and potential applications in various areas of optoelectronics.

  10. Metals and Ceramics Division materials science annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    McHargue, C.J.

    1977-09-01

    Progress is reported for research programs in the metals and ceramics division of ORNL. In structure of materials, theoretical research, x-ray diffraction studies, studies of erosion of ceramics, preparation and synthesis of high temperature and special service materials, and studies of stabilities of microphases in high-temperature structural materials. Research into deformation and mechanical properties included physical metallurgy, and grain boundary segregation and embrittlement. Physical properties and transport phenomena were studied and included mechanisms of surface and solid state reactions, and properties of superconducting materials. The radiation effects program, directed at understanding the effects of composition and microstructure on the structure and properties of materials irradiated at elevated temperatures, is also described

  11. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  12. Formation of Degenerate Band Gaps in Layered Systems

    Directory of Open Access Journals (Sweden)

    Alexey P. Vinogradov

    2012-06-01

    Full Text Available In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed.

  13. GaN and ZnO-based materials and devices

    CERN Document Server

    2012-01-01

    The AlInGaN and ZnO materials systems have proven to be one of the scientifically and technologically important areas of development over the past 15 years, with applications in UV/visible optoelectronics and in high-power/high-frequency microwave devices. The pace of advances in these areas has been remarkable and the wide band gap community relies on books like the one we are proposing to provide a review and summary of recent progress.

  14. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Directory of Open Access Journals (Sweden)

    F. L. Freitas

    2016-08-01

    Full Text Available We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal AlxGayIn1–x–yN semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  15. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F. L., E-mail: felipelopesfreitas@gmail.com; Marques, M.; Teles, L. K. [Grupo de Materiais Semicondutores e Nanotecnologia, Instituto Tecnológico de Aeronáutica, 12228-900 São José dos Campos, SP (Brazil)

    2016-08-15

    We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal Al{sub x}Ga{sub y}In{sub 1–x–y}N semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  16. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.

  17. Fundamentals and applications of magnetic materials

    CERN Document Server

    Krishnan, Kannan M

    2016-01-01

    Students and researchers looking for a comprehensive textbook on magnetism, magnetic materials and related applications will find in this book an excellent explanation of the field. Chapters progress logically from the physics of magnetism, to magnetic phenomena in materials, to size and dimensionality effects, to applications. Beginning with a description of magnetic phenomena and measurements on a macroscopic scale, the book then presents discussions of intrinsic and phenomenological concepts of magnetism such as electronic magnetic moments and classical, quantum, and band theories of magnetic behavior. It then covers ordered magnetic materials (emphasizing their structure-sensitive properties) and magnetic phenomena, including magnetic anisotropy, magnetostriction, and magnetic domain structures and dynamics. What follows is a comprehensive description of imaging methods to resolve magnetic microstructures (domains) along with an introduction to micromagnetic modeling. The book then explores in detail size...

  18. Experimental Evaluation of Cold-Sprayed Copper Rotating Bands for Large-Caliber Projectiles

    Science.gov (United States)

    2015-05-01

    process parameters used during the initial deposition of copper material, given the observation that these initial copper rotating bands tended to “ flake ...ARL-TR-7299 ● MAY 2015 US Army Research Laboratory Experimental Evaluation of Cold-Sprayed Copper Rotating Bands for Large...Experimental Evaluation of Cold-Sprayed Copper Rotating Bands for Large-Caliber Projectiles by Michael A Minnicino Weapons and Materials Research

  19. Nanoscale measurements of unoccupied band dispersion in few-layer graphene.

    Science.gov (United States)

    Jobst, Johannes; Kautz, Jaap; Geelen, Daniël; Tromp, Rudolf M; van der Molen, Sense Jan

    2015-11-26

    The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only.

  20. Astrobiology Learning Progressions: Linking Astrobiology Concepts with the 3D Learning Paradigm of NGSS

    Science.gov (United States)

    Scalice, D.; Davis, H. B.; Leach, D.; Chambers, N.

    2016-12-01

    The Next Generation Science Standards (NGSS) introduce a Framework for teaching and learning with three interconnected "dimensions:" Disciplinary Core Ideas (DCI's), Cross-cutting Concepts (CCC's), and Science and Engineering Practices (SEP's). This "3D" Framework outlines progressions of learning from K-12 based on the DCI's, detailing which parts of a concept should be taught at each grade band. We used these discipline-based progressions to synthesize interdisciplinary progressions for core concepts in astrobiology, such as the origins of life, what makes a world habitable, biosignatures, and searching for life on other worlds. The final product is an organizing tool for lesson plans, learning media, and other educational materials in astrobiology, as well as a fundamental resource in astrobiology education that serves both educators and scientists as they plan and carry out their programs for learners.

  1. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  2. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application

    Science.gov (United States)

    Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-10-01

    Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.

  3. Review on recent progress of nanostructured anode materials for Li-ion batteries

    KAUST Repository

    Goriparti, Subrahmanyam

    2014-07-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  4. Review on recent progress of nanostructured anode materials for Li-ion batteries

    KAUST Repository

    Goriparti, Subrahmanyam; Miele, Ermanno; De Angelis, Francesco; Di Fabrizio, Enzo M.; Proietti Zaccaria, Remo; Capiglia, Claudio

    2014-01-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  5. Progress of Terahertz Devices Based on Graphene

    Institute of Scientific and Technical Information of China (English)

    Mai-Xia Fu; Yan Zhang

    2013-01-01

    Graphene is a one-atom-thick planar sheet of sp2-hybridized orbital bonded honeycomb carbon crystal. Its gapless and linear energy spectra of electrons and holes lead to the unique carrier transport and optical properties, such as giant carrier mobility and broadband flat optical response. As a novel material, graphene has been regarded to be extremely suitable and competent for the development of terahertz (THz) optical devices. In this paper, the fundamental electronic and optic properties of graphene are described. Based on the energy band structure and light transmittance properties of graphene, many novel graphene based THz devices have been proposed, including modulator, generator, detector, and imaging device. This progress has been reviewed. Future research directions of the graphene devices for THz applications are also proposed.

  6. Strain gradient drives shear banding in metallic glasses

    Science.gov (United States)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  7. Band-gap creation by icosahedral symmetry in nearly-free-electron materials

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1993-01-01

    A series of numerical electronic density-of-states calculations is performed for rational approximants to a model one-electron potential based on icosahedrally arranged plane-wave components. It is found that high-order approximants can have band gaps even if the low-order approximants do not; furthermore, the magnitude of the gap increases with the order of the approximant. The results are interpreted via a two- and three-wave analysis of the energy eigenvalues at the pseudo-Jones-zone faces and edges. It is also found that the mechanism of band-gap reduction in the rational approximants is the presence of a small density of gap states. An analytic calculation shows that these gap states result from a splitting of threefold and pseudothreefold states at the valence-band edge when the icosahedral symmetry is broken. The splitting is proportional to the error with which the ratio between the approximant indices approximates τ, the golden mean. Finally, an application to the AlCuLi system is presented

  8. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu 5Ta11O30 materials

    KAUST Repository

    Harb, Moussab

    2014-01-01

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu 5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta 11O30. It is confirmed that the Cu(i)-based multi-metal oxides possess a strong contribution of filled Cu(i) states in the valence band and of empty d0 metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications. © the Partner Organisations 2014.

  9. Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc.

    Science.gov (United States)

    Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon

    2015-07-24

    Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between d(x(2)-y(2)) and d(3z(2)-r(2)) is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc.

  10. Controlled thermonuclear materials technology program. Annual progress report for period ending June 30, 1975

    International Nuclear Information System (INIS)

    Scott, J.L.

    1975-10-01

    Detailed descriptions are given of research progress in the following areas: (1) microstructure of irradiated 316 stainless steel containing high helium concentrations, (2) temperature and fluence limitations for a type 316 stainless steel CTR first wall, (3) swelling and microstructural changes in irradiated vanadium alloys, (4) mechanical properties of irradiated V-20 wt percent Ti, (5) radiation damage calculations, (6) evaluation of irradiation facilities for CTR materials development, (7) surface studies, compatibility studies, (8) magnet development, (9) EPR design support, and (10) the influence of structural materials on fusion-reactor blanket response. (MOW)

  11. Progress of research on plasma facing materials in University of Science and Technology Beijing

    International Nuclear Information System (INIS)

    Ge, Chang-Chun; Zhou, Zhang-Jian; Song, Shu-Xiang; Du, Juan; Zhong, Zhi-Hong

    2007-01-01

    In this paper, we report some new progress on plasma facing materials in University of Science and Technology Beijing (USTB), China. They include fabrication of tungsten coating with ultra-fine grain size by atmosphere plasma spraying; fabrication of tungsten with ultra-fine grain size by a newly developed method named as resistance sintering under ultra-high pressure; using the concept of functionally graded materials to join tungsten to copper based heat sink; joining silicon doped carbon to copper by brazing using a Ti based amorphous filler and direct casting

  12. Quarterly progress report on the evaluation of critical materials for photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Pawlewicz, W.W.; Gurwell, W.E.; Jamieson, W.M.; Long, L.W.; Smith, S.A.; Teeter, R.R.

    1979-09-01

    The scope of the activities included in this program are as follows: (1) characterize new and improved photovoltaic cell designs and production processes for subsequent analysis; (2) review or screen these designs for potential material shortages or other constraints; (3) carry out investigations of the probable costs of new sources of materials potentially in short supply, concentrating on gallium and indium; and (4) identify options for coping with or mitigating the problems identified. The methodology and data base used in the CMAP (Critical Material Analysis Program) computer program were developed as part of a broad scale DOE program to review the potential material constraints of all solar programs. The photovoltaic report screened 13 cells in 15 systems and assumed 100% material utilization (process efficiency) in producing the photovoltaic cells. This study emphasizes the availability of cell fabrication feedstock materials and the effects of process efficiencies on material availability by adding characterizations of photovoltaic production processes. This quarterly report presents the results of work with emphasis on Task I, the characterization of photovoltaic cells and their production processes. Task IIA, CMAP Modification, Data Base Development and Operation has been initiated. Task IIB, Review, Integration, Interpretation and Analysis of Screening will begin once the baseline screening has been completed in Task IIA. Work on Task IIIA, the Assessment of Future Costs and Supplies of Gallium and Indium and Task IIIB, Economics of Coal Derived PV Materials have been initiated. Progress and initial results are reported. (WHK)

  13. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.

    Science.gov (United States)

    Linderälv, Christopher; Lindman, Anders; Erhart, Paul

    2018-01-04

    Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.

  14. Materials testing and requirements for the ERDA nuclear-powered artificial heart. Technical progress report, July 15, 1974--May 1, 1975

    International Nuclear Information System (INIS)

    Andrade, J.D.; Coleman, D.L.; Leigh, A.; Hufferd, W.L.

    1975-01-01

    Progress on the materials research and development effort for the ERDA-sponsored nuclear-powered artificial heart program is presented. Progress made during the first three years on hydrogel grafting and biological studies is summarized. Progress during the fourth year on studies of implanted artificial hearts, development of albumin surfaces, and in vitro mechanical studies is presented. (U.S.)

  15. Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications

    International Nuclear Information System (INIS)

    Harris, James S. Jr.; Kudrawiec, R.; Yuen, H.B.; Bank, S.R.; Bae, H.P.; Wistey, M.A.; Jackrel, D.; Pickett, E.R.; Sarmiento, T.; Goddard, L.L.; Lordi, V.; Gugov, T.

    2007-01-01

    In the past few years, GaInNAsSb has been found to be a potentially superior material to both GaInNAs and InGaAsP for communications wavelength laser applications. It has been observed that due to the surfactant role of antimony during epitaxy, higher quality material can be grown over the entire 1.2-1.6 μm range on GaAs substrates. In addition, it has been discovered that antimony in GaInNAsSb also works as a constituent that significantly modifies the valence band. These findings motivated a systematic study of GaInNAsSb alloys with widely varying compositions. Our recent progress in growth and materials development of GaInNAsSb alloys and our fabrication of 1.5-1.6 μm lasers are discussed in this paper. We review our recent studies of the conduction band offset in (Ga,In) (N,As,Sb)/GaAs quantum wells and discuss the growth challenges of GaInNAsSb alloys. Finally, we report record setting long wavelength edge emitting lasers and the first monolithic VCSELs operating at 1.5 μm based on GaInNAsSb QWs grown on GaAs. Successful development of GaInNAsSb alloys for lasers has led to a much broader range of potential applications for this material including: solar cells, electroabsorption modulators, saturable absorbers and far infrared optoelectronic devices and these are also briefly discussed in this paper. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Harris, James S. Jr.; Kudrawiec, R.; Yuen, H.B.; Bank, S.R.; Bae, H.P.; Wistey, M.A.; Jackrel, D.; Pickett, E.R.; Sarmiento, T.; Goddard, L.L.; Lordi, V.; Gugov, T. [Solid State and Photonics Laboratory, Stanford University, CIS-X 328, Via Ortega, Stanford, California 94305-4075 (United States)

    2007-08-15

    In the past few years, GaInNAsSb has been found to be a potentially superior material to both GaInNAs and InGaAsP for communications wavelength laser applications. It has been observed that due to the surfactant role of antimony during epitaxy, higher quality material can be grown over the entire 1.2-1.6 {mu}m range on GaAs substrates. In addition, it has been discovered that antimony in GaInNAsSb also works as a constituent that significantly modifies the valence band. These findings motivated a systematic study of GaInNAsSb alloys with widely varying compositions. Our recent progress in growth and materials development of GaInNAsSb alloys and our fabrication of 1.5-1.6 {mu}m lasers are discussed in this paper. We review our recent studies of the conduction band offset in (Ga,In) (N,As,Sb)/GaAs quantum wells and discuss the growth challenges of GaInNAsSb alloys. Finally, we report record setting long wavelength edge emitting lasers and the first monolithic VCSELs operating at 1.5 {mu}m based on GaInNAsSb QWs grown on GaAs. Successful development of GaInNAsSb alloys for lasers has led to a much broader range of potential applications for this material including: solar cells, electroabsorption modulators, saturable absorbers and far infrared optoelectronic devices and these are also briefly discussed in this paper. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Complete theory of symmetry-based indicators of band topology.

    Science.gov (United States)

    Po, Hoi Chun; Vishwanath, Ashvin; Watanabe, Haruki

    2017-06-30

    The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.

  18. Oxide bipolar electronics: materials, devices and circuits

    International Nuclear Information System (INIS)

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; Von Wenckstern, Holger

    2016-01-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo 2 O 4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization. (topical review)

  19. Analytical methods for fissionable materials in the nuclear fuel cycle. Progress report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1976-12-01

    Progress continued on development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for determinations of plutonium and uranium, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, and measurement of plutonium isotope half-lives. Gas-solid reactions at elevated temperatures using reactive gases such as chlorine continue to show promise for separating uranium from refractory materials. An extensive study of nonaqueous solvents for the dissolution of refractory materials is in progress. An extraction-separation procedure, highly specific for microgram amounts of uranium, has been developed, and its adaptation to the Los Alamos Scientific Laboratory (LASL) automated spectrophotometer is being evaluated. Development of an electrometric analysis method for plutonium is nearing completion, and design of an automated instrument using the method has been started. Batches of plutonium oxide and mixed uranium--plutonium, intended for issue as Secondary Reference and Calibration Test Materials, are being recharacterized for assay and isotopic contents. The half-life of 239 Pu has been determined by isotope-dilution mass-spectrometric measurement of 235 U grow-in as a function of time

  20. Analytical methods for fissionable materials in the nuclear fuel cycle. Progress report, July 1, 1975--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Waterbury, G.R. (comp.)

    1976-12-01

    Progress continued on development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for determinations of plutonium and uranium, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, and measurement of plutonium isotope half-lives. Gas-solid reactions at elevated temperatures using reactive gases such as chlorine continue to show promise for separating uranium from refractory materials. An extensive study of nonaqueous solvents for the dissolution of refractory materials is in progress. An extraction-separation procedure, highly specific for microgram amounts of uranium, has been developed, and its adaptation to the Los Alamos Scientific Laboratory (LASL) automated spectrophotometer is being evaluated. Development of an electrometric analysis method for plutonium is nearing completion, and design of an automated instrument using the method has been started. Batches of plutonium oxide and mixed uranium--plutonium, intended for issue as Secondary Reference and Calibration Test Materials, are being recharacterized for assay and isotopic contents. The half-life of /sup 239/Pu has been determined by isotope-dilution mass-spectrometric measurement of /sup 235/U grow-in as a function of time.

  1. Development of a Control Banding Tool for Nanomaterials

    OpenAIRE

    Riediker, M.; Ostiguy, C.; Triolet, J.; Troisfontaine, P.; Vernez, D.; Bourdel, G.; Thieriet, N.; Cadène, A.

    2012-01-01

    Control banding (CB) can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial t...

  2. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  3. Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure

    Science.gov (United States)

    Chen, Yanyu; Wang, Lifeng

    2014-08-01

    Periodic composite materials have many promising applications due to their unique ability to control the propagation of waves. Here, we report the existence and frequency tunability of complete elastic wave band gaps in bio-inspired periodic composites with nacre-like, brick-and-mortar microstructure. Numerical results show that complete band gaps in these periodic composites derive from local resonances or Bragg scattering, depending on the lattice angle and the volume fraction of each phase in the composites. The investigation of elastic wave propagation in finite periodic composites validates the simulated complete band gaps and further reveals the mechanisms leading to complete band gaps. Moreover, our results indicate that the topological arrangement of the mineral platelets and changes of material properties can be utilized to tune the evolution of complete band gaps. Our finding provides new opportunities to design mechanically robust periodic composite materials for wave absorption under hostile environments, such as for deep water applications.

  4. Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Lohaus, Christian [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Reiser, Patrick [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); InnovationLab GmbH, Speyerer Straße 4, 69115 Heidelberg (Germany); Dimesso, Lucangelo [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Wang, Xiucai; Yang, Tongqing [Tongji University, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Functional Materials Research Laboratory, College of Materials Science and Engineering, Cao’an Road 4800, Shanghai 201804 (China)

    2017-06-15

    Highlights: • Energy band alignment of antiferroelectric PLZST studied by XPS. • A deconvolution procedure is applied to study band alignment of insulating materials. • Contribution of Pb 6s orbitals leads to higher valence band maximum. • Ferroelectric polarization does not contribute to valence band maximum energy. • The variation of Schottky barrier heights indicates no Fermi level pinning in PLZST. - Abstract: The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3} is studied with photoelectron spectroscopy using interfaces with high work function RuO{sub 2} and low work function Sn-doped In{sub 2}O{sub 3} (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O{sub 3} is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO{sub 3}. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O{sub 3} should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.

  5. CdSe/CdTe interface band gaps and band offsets calculated using spin-orbit and self-energy corrections

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M. [Centro de Pesquisas Avancadas Wernher von Braun, Av. Alice de Castro P.N. Mattosinho 301, CEP 13098-392 Campinas, SP (Brazil); Ferreira, L.G. [Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil); Fonseca, L.R.C. [Center for Semiconductor Components, State University of Campinas, R. Pandia Calogeras 90, 13083-870 Campinas, SP (Brazil); Ramprasad, R. [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 (United States)

    2012-09-20

    We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications.

  6. Research progress on organic-inorganic halide perovskite materials and solar cells

    Science.gov (United States)

    Ono, Luis K.; Qi, Yabing

    2018-03-01

    Owing to the intensive research efforts across the world since 2009, perovskite solar cell power conversion efficiencies (PCEs) are now comparable or even better than several other photovoltaic (PV) technologies. In this topical review article, we review recent progress in the field of organic-inorganic halide perovskite materials and solar cells. We associate these achievements with the fundamental knowledge gained in the perovskite research. The major recent advances in the fundamental perovskite material and solar cell research are highlighted, including the current efforts in visualizing the dynamical processes (in operando) taking place within a perovskite solar cell under operating conditions. We also discuss the existing technological challenges. Based on a survey of recently published works, we point out that to move the perovskite PV technology forward towards the next step of commercialization, what perovskite PV technology need the most in the coming next few years is not only further PCE enhancements, but also up-scaling, stability, and lead-toxicity.

  7. Phononic band gap structures as optimal designs

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in...

  8. Metals and ceramics division materials science program. Aunnual progress report for period ending June 30, 1979

    International Nuclear Information System (INIS)

    McHargue, C.J.; b.

    1979-10-01

    Progress is reported concerning theoretical studies of metals and alloys, deformation and mechanical properties, physical properties and transport phenomena, radiation effects, and engineering materials. During this period emphasis was shifted from support of nuclear technologies to support of nonnuclear energy systems

  9. Band structures in the nematic elastomers phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuai [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); School of Civil Engineering and Architecture, Anyang Normal University, Anyang 455000 (China); Liu, Ying, E-mail: yliu5@bjtu.edu.cn [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liang, Tianshu [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2017-02-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  10. Band structures in the nematic elastomers phononic crystals

    International Nuclear Information System (INIS)

    Yang, Shuai; Liu, Ying; Liang, Tianshu

    2017-01-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  11. Metals and ceramics division materials science program. Aunnual progress report for period ending June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J.

    1979-10-01

    Progress is reported concerning theoretical studies of metals and alloys, deformation and mechanical properties, physical properties and transport phenomena, radiation effects, and engineering materials. During this period emphasis was shifted from support of nuclear technologies to support of nonnuclear energy systems. (FS)

  12. Location of the valence band maximum in the band structure of anisotropic 1 T'-ReSe2

    Science.gov (United States)

    Eickholt, P.; Noky, J.; Schwier, E. F.; Shimada, K.; Miyamoto, K.; Okuda, T.; Datzer, C.; Drüppel, M.; Krüger, P.; Rohlfing, M.; Donath, M.

    2018-04-01

    Transition-metal dichalcogenides (TMDCs) are a focus of current research due to their fascinating optical and electronic properties with possible technical applications. ReSe2 is an interesting material of the TMDC family, with unique anisotropic properties originating from its distorted 1 T structure (1 T '). To develop a fundamental understanding of the optical and electric properties, we studied the underlying electronic structure with angle-resolved photoemission (ARPES) as well as band-structure calculations within the density functional theory (DFT)-local density approximation (LDA) and GdW approximations. We identified the Γ ¯M¯1 direction, which is perpendicular to the a axis, as a distinct direction in k space with the smallest bandwidth of the highest valence band. Using photon-energy-dependent ARPES, two valence band maxima are identified within experimental limits of about 50 meV: one at the high-symmetry point Z , and a second one at a non-high-symmetry point in the Brillouin zone. Thus, the position in k space of the global valence band maximum is undecided experimentally. Theoretically, an indirect band gap is predicted on a DFT-LDA level, while quasiparticle corrections lead to a direct band gap at the Z point.

  13. Bands and chromosome arrangement in interphase nuclei

    International Nuclear Information System (INIS)

    Bianchi, N.O.; Bianchi, M.A.; Matayoshi, T.

    1977-01-01

    Chromosomes from the vole mouse Akodon dolores and from laboratory mouse showed the presence of G-bands after 3 minutes digestion with trypsin and Giemsa stain. Simultaneously, 30- to 40% of the interphase nuclei exhibited a dark ring parallel to the nuclear contour and a radial array of the chromatin in the internal and external regions of the ring. The origin and meaning of this ring image was analyzed by combining progressive trypsinizations with other methods such as C-banding procedures, autoradiography with 3 HTdR, staining with quinacrine mustard and 33258 Hoechst fluorochromes. Moreover, the presence of the dark ring was also investigated in cells treated with actinomycin and in control cells not subjected to any treatment. The results obtained allowed to assume that in interphase nuclei the chromosomes have chromatin bridges which connect the dark G-bands and that these bridges are probably involved in maintaining an ordered architecture of the nucleus with fixed chromosome positions in regard to the nuclear envelope and in regard to other chromosomes. Trypsinization produces a disruption of the interphase chromatin arrangement and the subsequent appearance of a dark ring formed by the combination of constitutive heterochromatin and dark G-bands. (auth.)

  14. Measuring the band structures of periodic beams using the wave superposition method

    Science.gov (United States)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in

  15. Tight-Binding Parametrization for Photonic Band Gap Materials

    International Nuclear Information System (INIS)

    Lidorikis, E.; Sigalas, M.M.; Soukoulis, C.M.; Economou, E.N.; Soukoulis, C.M.

    1998-01-01

    The idea of the linear combination of atomic orbitals method, well known from the study of electrons, is extended to the classical wave case. The Mie resonances of the isolated scatterer in the classical wave case are analogous to the atomic orbitals in the electronic case. The matrix elements of the two-dimensional tight-binding (TB) Hamiltonian are obtained by fitting to ab initio results. The transferability of the TB model is tested by reproducing accurately the band structure of different 2D lattices, with and without defects, and at two different dielectric contrasts. copyright 1998 The American Physical Society

  16. Compressive Failure of Fibre Reinforced Materials

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2003-01-01

    Compressive failure of uni-directional fibre composites by the kink band mechanism is analysed taking into account effects of residual stresses. Two criteria for determining the strength of the composite material have been investigated: Kink band formation at a bifurcation stress in a composite...... with perfectly aligned fibres, and kink band formation at a peak stress in a composite with a band of imperfect material....

  17. Partially filled intermediate band of Cr-doped GaN films

    International Nuclear Information System (INIS)

    Sonoda, S.

    2012-01-01

    We investigated the band structure of sputtered Cr-doped GaN (GaCrN) films using optical absorption, photoelectron yield spectroscopy, and charge transport measurements. It was found that an additional energy band is formed in the intrinsic band gap of GaN upon Cr doping, and that charge carriers in the material move in the inserted band. Prototype solar cells showed enhanced short circuit current and open circuit voltage in the n-GaN/GaCrN/p-GaN structure compared to the GaCrN/p-GaN structure, which validates the proposed concept of an intermediate-band solar cell.

  18. Electronic structures and valence band splittings of transition metals doped GaNs

    International Nuclear Information System (INIS)

    Lee, Seung-Cheol; Lee, Kwang-Ryeol; Lee, Kyu-Hwan

    2007-01-01

    For a practical viewpoint, presence of spin splitting of valence band in host semiconductors by the doping of transition metal (TM) ions is an essential property when designing a diluted magnetic semiconductors (DMS) material. The first principle calculations were performed on the electronic and magnetic structure of 3d transition metal doped GaN. V, Cr, and Mn doped GaNs could not be candidates for DMS materials since most of their magnetic moments is concentrated on the TM ions and the splittings of valence band were negligible. In the cases of Fe, Co, Ni, and Cu doped GaNs, on the contrary, long-ranged spin splitting of valence band was found, which could be candidates for DMS materials

  19. Wild Band Edges: The Role of Bandgap Grading and Band-Edge Fluctuations in High-Efficiency Chalcogenide Devices: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana; Jensen, Soren A.; Kuciauskas, Darius; Glynn, Stephen; Barnes, Teresa; Metzger, Wyatt; Burst, James; Jiang, Chun-Sheng; Dippo, Patricia; Harvey, Steve; Teeter, Glenn; Perkins, Craig; Egaas, Brian; Zakutayev, Andriy; Alsmeier, J.-H.; Lussky, T.; Korte, L.; Wilks, R. G.; Bar, M.; Yan, Y.; Lany, Stephan; Zawadzki, Pawel; Park, Ji-Sang; Wei, Suhuai

    2016-06-16

    Band-edge effects -- including grading, electrostatic fluctuations, bandgap fluctuations, and band tails -- affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In,Ga)Se2 devices, recent increases in diffusion length imply changes to optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties and defect formation energies, is examined.

  20. Nuclear measurements and reference materials annual progress report, january - december 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 progress report of the Central Bureau for Nuclear Measurements (CBNM) is presented. The major changes in the role and orientation of the Joint Research Center, of which CBNM is an institute, are included. The main tasks of CBNM, which involve the program on Nuclear Measurements and Reference Materials, are given. Technical activities concerning the GELINA electron beam and Van de Graaff accelerators are reported. The study of transition radiation at linear electron accelerators, and the development of isotope dilution mass spectrometry, for trace analysis and isotope abundance measurements in iron and gallium, are summarized. The scientific and technical support to the commission, work for third parties, and contribution to conferences are presented

  1. Surface correlation effects in two-band strongly correlated slabs.

    Science.gov (United States)

    Esfahani, D Nasr; Covaci, L; Peeters, F M

    2014-02-19

    Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.

  2. Predicting superdeformed rotational band-head spin in A ∼ 190 ...

    Indian Academy of Sciences (India)

    PACS No. 21.60.−n. 1. Introduction. Superdeformed (SD) nuclei are one of the most challenging and ... like A ∼ 60, 80, 130, 150 and 190 [2,3]. ..... work and the research is progressing to give systematic features of rotational bands of SD.

  3. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12.

    Science.gov (United States)

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-04-21

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices.

  4. Human Immunodeficiency Virus (HIV types Western blot (WB band profiles as potential surrogate markers of HIV disease progression and predictors of vertical transmission in a cohort of infected but antiretroviral therapy naïve pregnant women in Harare, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Chirenje Mike Z

    2011-01-01

    Full Text Available Abstract Background Expensive CD4 count and viral load tests have failed the intended objective of enabling access to HIV therapy in poor resource settings. It is imperative to develop simple, affordable and non-subjective disease monitoring tools to complement clinical staging efforts of inexperienced health personnel currently manning most healthcare centres because of brain drain. Besides accurately predicting HIV infection, sequential appearance of specific bands of WB test offers a window of opportunity to develop a less subjective tool for monitoring disease progression. Methods HIV type characterization was done in a cohort of infected pregnant women at 36 gestational weeks using WB test. Student-t test was used to determine maternal differences in mean full blood counts and viral load of mothers with and those without HIV gag antigen bands. Pearson Chi-square test was used to assess differences in lack of bands appearance with vertical transmission and lymphadenopathy. Results Among the 64 HIV infected pregnant women, 98.4% had pure HIV-1 infection and one woman (1.7% had dual HIV-1/HIV-2 infections. Absence of HIV pol antigen bands was associated with acute infection, p = 0.002. All women with chronic HIV-1 infection had antibody reactivity to both the HIV-1 envelope and polymerase antigens. However, antibody reactivity to gag antigens varied among the women, being 100%, 90%, 70% and 63% for p24, p17, p39 and p55, respectively. Lack of antibody reactivity to gag p39 antigen was associated with disease progression as confirmed by the presence of lymphadenopathy, anemia, higher viral load, p = 0.010, 0.025 and 0.016, respectively. Although not statistically significant, women with p39 band missing were 1.4 times more likely to transmit HIV-1 to their infants. Conclusion Absence of antibody reactivity to pol and gag p39 antigens was associated with acute infection and disease progression, respectively. Apart from its use in HIV disease

  5. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    Science.gov (United States)

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  6. An attenuation Layer for Electromagnetic Shielding in X- Band Frequency

    Directory of Open Access Journals (Sweden)

    Vida Zaroushani

    2015-06-01

    Full Text Available Uncontrolled exposure to X-band frequency leads to health damage. One of the principles of radiation protection is shielding. But, conventional shielding materials have disadvantages. Therefore, studies of novel materials, as an alternative to conventional shielding materials, are required to obtain new electromagnetic shielding material. Therefore, this study investigated the electromagnetic shielding of two component epoxy thermosetting resin for the X - band frequency with workplace approach. Two components of epoxy resin mixed according to manufacturing instruction with the weight ratio that was 100:10 .Epoxy plates fabricated in three different thicknesses (2, 4 and 6mm and shielding effectiveness measured by Vector Network Analyzer. Then, shielding effectiveness measured by the scattering parameters.The results showed that 6mm thickness of epoxy had the highest and 2mm had the lowest average of shielding effectiveness in X-band frequency that is 4.48 and 1.9 dB, respectively. Also, shielding effectiveness increased by increasing the thickness. But this increasing is useful up to 4mm. Percentage shielding effectiveness of attenuation for 6, 4 and 2mm thicknesses is 64.35%, 63.31% and 35.40%. Also, attenuation values for 4mm and 6mm thicknesses at 8.53 GHz and 8.52 GHz frequency are 77.15% and 82.95%, respectively, and can be used as favourite shields for the above frequency. 4mm-Epoxy is a suitable candidate for shielding application in X-band frequency range but, in the lower section, 6mm thickness is recommended. Finely, the shielding matrix can be used for selecting the proper thickness for electromagnetic shielding in X- Band frequency.

  7. Band-to-band tunneling distance analysis in the heterogate electron–hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Palomares, A. [Departamento de Matemática Aplicada, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2016-01-28

    In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron–hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinement holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.

  8. Measurement of valence band structure in arbitrary dielectric films

    International Nuclear Information System (INIS)

    Uhm, Han S.; Choi, Eun H.

    2012-01-01

    A new way of measuring the band structure of various dielectric materials using the secondary electron emission from Auger neutralization of ions is introduced. The first example of this measurement scheme is the magnesium oxide (MgO) films with respect to the application of the films in the display industries. The density of state in the valence bands of MgO film and MgO film with a functional layer (FL) deposited over a dielectric surface reveals that the density peak of film with a FL is considerably less than that of film, thereby indicating a better performance of MgO film with functional layer in display devices. The second example of the measurement is the boron-zinc oxide (BZO) films with respect to the application of the films to the development of solar cells. The measurement of density of state in BZO film suggests that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film. Secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials.

  9. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    International Nuclear Information System (INIS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of “ten stacks” of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy

  10. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    Science.gov (United States)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  11. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    International Nuclear Information System (INIS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-01-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z_2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  12. Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions

    KAUST Repository

    Chiu, Ming-Hui

    2016-09-20

    It is critically important to characterize the band alignment in semiconductor heterojunctions (HJs) because it controls the electronic and optical properties. However, the well-known Anderson\\'s model usually fails to predict the band alignment in bulk HJ systems due to the presence of charge transfer at the interfacial bonding. Atomically thin 2D transition metal dichalcogenide materials have attracted much attention recently since the ultrathin HJs and devices can be easily built and they are promising for future electronics. The vertical HJs based on 2D materials can be constructed via van der Waals stacking regardless of the lattice mismatch between two materials. Despite the defect-free characteristics of the junction interface, experimental evidence is still lacking on whether the simple Anderson rule can predict the band alignment of HJs. Here, the validity of Anderson\\'s model is verified for the 2D heterojunction systems and the success of Anderson\\'s model is attributed to the absence of dangling bonds (i.e., interface dipoles) at the van der Waal interface. The results from the work set a foundation allowing the use of powerful Anderson\\'s rule to determine the band alignments of 2D HJs, which is beneficial to future electronic, photonic, and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  14. Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band.

    Science.gov (United States)

    Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H

    2017-08-22

    Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.

  15. Workshop: Western hemisphere network of bird banding programs

    Science.gov (United States)

    Celis-Murillo, A.

    2007-01-01

    Purpose: To promote collaboration among banding programs in the Americas. Introduction: Bird banding and marking provide indispensable tools for ornithological research, management, and conservation of migratory birds on migratory routes, breeding and non-breeding grounds. Many countries and organizations in Latin America and the Caribbean are in the process of developing or have expressed interest in developing national banding schemes and databases to support their research and management programs. Coordination of developing and existing banding programs is essential for effective data management, reporting, archiving and security, and most importantly, for gaining a fuller understanding of migratory bird conservation issues and how the banding data can help. Currently, there is a well established bird-banding program in the U.S.A. and Canada, and programs in other countries are being developed as well. Ornithologists in many Latin American countries and the Caribbean are interested in using banding and marking in their research programs. Many in the ornithological community are interested in establishing banding schemes and some countries have recently initiated independent banding programs. With the number of long term collaborative and international initiatives increasing, the time is ripe to discuss and explore opportunities for international collaboration, coordination, and administration of bird banding programs in the Western Hemisphere. We propose the second ?Western Hemisphere Network of Bird Banding Programs? workshop, in association with the SCSCB, to be an essential step in the progress to strengthen international partnerships and support migratory bird conservation in the Americas and beyond. This will be the second multi-national meeting to promote collaboration among banding programs in the Americas (the first meeting was held in October 8-9, 2006 in La Mancha, Veracruz, Mexico). The Second ?Western Hemisphere Network of Bird Banding Programs

  16. Proceedings of wide band gap semiconductors

    International Nuclear Information System (INIS)

    Moustakas, T.D.; Pankove, J.I.; Hamakawa, Y.

    1992-01-01

    This book contains the proceedings of wide band gap semiconductors. Wide band gap semiconductors are under intense study because of their potential applications in photonic devices in the visible and ultraviolet part of the electromagnetic spectrum, and devices for high temperature, high frequency and high power electronics. Additionally, due to their unique mechanical, thermal, optical, chemical, and electronic properties many wide band gap semiconductors are anticipated to find applications in thermoelectric, electrooptic, piezoelectric and acoustooptic devices as well as protective coatings, hard coatings and heat sinks. Material systems covered in this symposium include diamond, II-VI compounds, III-V nitrides, silicon carbide, boron compounds, amorphous and microcrystalline semiconductors, chalcopyrites, oxides and halides. The various papers addressed recent experimental and theoretical developments. They covered issues related to crystal growth (bulk and thin films), structure and microstructure, defects, doping, optoelectronic properties and device applications. A theoretical session was dedicated to identifying common themes in the heteroepitaxy and the role of defects in doping, compensation and phase stability of this unique class of materials. Important experimental milestones included the demonstrations of bright blue injection luminescence at room temperatures from junctions based on III-V nitrides and a similar result from multiple quantum wells in a ZnSe double heterojunction at liquid nitrogen temperatures

  17. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    Directory of Open Access Journals (Sweden)

    Avanish Pratap Singh

    2011-06-01

    Full Text Available β–Naphthalene sulphonic acid (β–NSA doped polyaniline (PANI–flyash (FA composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37–21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D–VRH model. SEM images demonstrate that β–NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ′- iɛ″ and permeability (μ*=μ′- iμ″ of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21 using theoretical calculations given in Nicholson–Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 – 12.4 GHz & Ku–Band (12.4 – 18 GHz frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  18. DOE progress in assessing the long term performance of waste package materials

    International Nuclear Information System (INIS)

    Berusch, A.; Gause, E.

    1987-01-01

    Under the Nuclear Waste Policy Act of 1982 (NWPA)[1], the US Dept. of Energy (DOE) is conducting activities to select and characterize candidate sites suitable for the construction and operation of a geologic repository for the disposal of high-level nuclear wastes. DOE is funding three first repository projects: Basalt Waste Isolation Project, BWIP; Nevada Nuclear Waste Isolation Project, NNWSI; and Salt Repository Project Office, SRPO. It is essential in the licensing process that DOE demonstrate to the NRC that the long-term performance of the materials and design will be in compliance with the requirements of 10 CFR 60.113 on substantially complete containment within the waste packages for 300 to 1000 years and a controlled release rate from the engineered barrier system (EBS) for 10,000 years of 1 part in 10 5 per year for radionuclides present in defined quantities 100 years after permanent closure. Obviously, the time spans involved make it impractical to base the assessment of the long term performance of waste package materials on real time, prototypical testing. The assessment of performance will be implemented by the use of models that are supported by real time field and laboratory tests, monitoring, and natural analog studies. Each of the repository projects is developing a plan for demonstrating long-term waste package material performance depending on the particular materials and the package-perturbed, time-dependent environment under which the materials must function. An overview of progress in each of these activities for each of the projects is provided in the following

  19. From lattice Hamiltonians to tunable band structures by lithographic design

    Science.gov (United States)

    Tadjine, Athmane; Allan, Guy; Delerue, Christophe

    2016-08-01

    Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.

  20. Band Alignment Determination of Two-Dimensional Heterojunctions and Their Electronic Applications

    KAUST Repository

    Chiu, Ming-Hui

    2018-05-09

    Two-dimensional (2D) layered materials such as MoS2 have been recognized as high on-off ratio semiconductors which are promising candidates for electronic and optoelectronic devices. In addition to the use of individual 2D materials, the accelerated field of 2D heterostructures enables even greater functionalities. Device designs differ, and they are strongly controlled by the electronic band alignment. For example, photovoltaic cells require type II heterostructures for light harvesting, and light-emitting diodes benefit from multiple quantum wells with the type I band alignment for high emission efficiency. The vertical tunneling field-effect transistor for next-generation electronics depends on nearly broken-gap band alignment for boosting its performance. To tailor these 2D layered materials toward possible future applications, the understanding of 2D heterostructure band alignment becomes critically important. In the first part of this thesis, we discuss the band alignment of 2D heterostructures. To do so, we firstly study the interlayer coupling between two dissimilar 2D materials. We conclude that a post-anneal process could enhance the interlayer coupling of as-transferred 2D heterostructures, and heterostructural stacking imposes similar symmetry changes as homostructural stacking. Later, we precisely determine the quasi particle bandgap and band alignment of the MoS2/WSe2 heterostructure by using scan tunneling microscopy/spectroscopy (STM/S) and micron-beam X-ray photoelectron spectroscopy (μ-XPS) techniques. Lastly, we prove that the band alignment of 2D heterojunctions can be accurately predicted by Anderson’s model, which has previously failed to predict conventional bulk heterostructures. In the second part of this thesis, we develop a new Chemical Vapor Deposition (CVD) method capable of precisely controlling the growth area of p- and n-type transition metal dichalcogenides (TMDCs) and further form lateral or vertical 2D heterostructures. This

  1. Supplemental Journal Article Materials: A progress report on an information industry initiative

    Science.gov (United States)

    Schwarzman, A. B.

    2011-12-01

    also intend to address roles and responsibilities of authors, editors, peer reviewers, publishers, libraries, abstracting and indexing services, and official data centers and institutional repositories. Finally, the document is going to contain broad principles and detailed technical implementation related to metadata, linking, packaging, and accessibility of supplemental materials. In this presentation, a co-chair of the NISO/NFAIS Working Group will report on the Group's latest progress in developing the Recommended Practices for Supplemental Journal Article Materials.

  2. A study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prelas, M.A.

    1996-01-24

    This report describes progress made to develop a high bandgap photovoltaic materials for direct conversion to electricity of excimer radiation produced by fission energy pumped laser. This report summarizes the major achievements in sections. The first section covers n-type diamond. The second section covers forced diffusion. The third section covers radiation effects. The fourth section covers progress in Schottky barrier and heterojunction photovoltaic cells. The fifth section covers cell and reactor development.

  3. Enhancement of phononic band gaps in ternary/binary structure

    International Nuclear Information System (INIS)

    Aly, Arafa H.; Mehaney, Ahmed

    2012-01-01

    Based on the transfer matrix method (TMM) and Bloch theory, the interaction of elastic waves (normal incidence) with 1D phononic crystal had been studied. The transfer matrix method was obtained for both longitudinal and transverse waves by applying the continuity conditions between the consecutive unit cells. Dispersion relations are calculated and plotted for both binary and ternary structures. Also we have investigated the corresponding effects on the band gaps values for the two types of phononic crystals. Furthermore, it can be observed that the complete band gaps are located in the common frequency stop-band regions. Numerical simulations are performed to investigate the effect of different thickness ratios inside each unit cell on the band gap values, as well as unit cells thickness on the central band gap frequency. These phononic band gap materials can be used as a filter for elastic waves at different frequencies values.

  4. Material and component progress within ARCHER for advanced high temperature reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.; Davies, M.; Pra, F.; Bonnamy, P.; Fokkens, J.; Heijna, M.; Bout, N. de; Vreeling, A.; Bourlier, F.; Lhachemi, D.; Woayehune, A.; Dubiez-le-Goff, S.; Hahner, P.; Futterer, M.; Berka, J.; Kalivodora, J.; Pouchon, M.A.; Schmitt, R.; Homerin, P.; Marsden, B.; Mummery, P.; Mutch, G.; Ponca, D.; Buhl, P.; Hoffmann, M.; Rondet, F.; Pecherty, A.; Baurand, F.; Alenda, F.; Esch, M.; Kohlz, N.; Reed, J.; Fachinger, J.; Klower, Dr.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R and D) integrated project started in 2011 as part of the European Commission 7. Framework Programme (FP7) for a period of four years to perform High Temperature Reactor technology R and D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research and Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on materials and component technologies within ARCHER over the first two years of the project. (authors)

  5. Investigation of photonic band gaps with special emphasis on hyperuniform structures

    OpenAIRE

    Siedentop, Lukas

    2016-01-01

    A toolbox of considerable size was collected within the course of this work that enables the study of photonic meta materials. It is now possible to successfully simulate, fabricate and moreover characterise meta materials with a photonic band gap. This is of great interest for applications, where waveguides are one possible object of interest, as well as fundamental theoretical investigations, namely identify the properties a pattern needs to posses to form such a photonic band gap, for exam...

  6. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    KAUST Repository

    Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, Dalaver H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.

    2013-01-01

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  7. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    KAUST Repository

    Waterhouse, G. I. N.

    2013-10-10

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  8. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    Science.gov (United States)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  9. Forecasting of Radiation Belts: Results From the PROGRESS Project.

    Science.gov (United States)

    Balikhin, M. A.; Arber, T. D.; Ganushkina, N. Y.; Walker, S. N.

    2017-12-01

    Forecasting of Radiation Belts: Results from the PROGRESS Project. The overall goal of the PROGRESS project, funded in frame of EU Horizon2020 programme, is to combine first principles based models with the systems science methodologies to achieve reliable forecasts of the geo-space particle radiation environment.The PROGRESS incorporates three themes : The propagation of the solar wind to L1, Forecast of geomagnetic indices, and forecast of fluxes of energetic electrons within the magnetosphere. One of the important aspects of the PROGRESS project is the development of statistical wave models for magnetospheric waves that affect the dynamics of energetic electrons such as lower band chorus, hiss and equatorial noise. The error reduction ratio (ERR) concept has been used to optimise the set of solar wind and geomagnetic parameters for organisation of statistical wave models for these emissions. The resulting sets of parameters and statistical wave models will be presented and discussed. However the ERR analysis also indicates that the combination of solar wind and geomagnetic parameters accounts for only part of the variance of the emissions under investigation (lower band chorus, hiss and equatorial noise). In addition, advances in the forecast of fluxes of energetic electrons, exploiting empirical models and the first principles IMPTAM model achieved by the PROGRESS project is presented.

  10. Comparison and fit of the two and six band k.p models for the band edge structure of Pbsub(1-x)Snsub(x)Te

    International Nuclear Information System (INIS)

    Weissman, Y.

    1975-10-01

    The band edge structure of Pbsub(1-x)Snsub(x)Te is derived in detail using a two band ellipsoidal model and compared with a more rigorous calculation based on six bands. A quantitative comparison is made for two values of the energy gap, corresponding to the cases where x=0 and x=0.17. It was found that, for the occupied states in nondegenerate materials, both models are practically equivalent. Discrepancies may occur only in high degeneracies or deep inversion layers. The agreement between both models was significantly improved by introducing an effective energy gap in the two band model. It is suggested that the use of the effective energy gap may improve the agreement between the two band model and experiment whenever the details of the band edge structure enter the interpretation of the experimental results. (author)

  11. Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells

    KAUST Repository

    Qin, Peng

    2014-07-15

    Novel low band gap oligothiophenes incorporating S,N-heteropentacene central units were developed and used as hole-transport materials (HTMs) in solid-state perovskite-based solar cells. In addition to appropriate electronic energy levels, these materials show high photo-absorptivity in the low energy region, and thus can contribute to the light harvesting of the solar spectrum. Solution-processed CH3NH3PbI3-based devices using these HTMs achieved power conversion efficiencies of 9.5-10.5% in comparison with 7.6% obtained by reference devices without HTMs. Photoinduced absorption spectroscopy gave further insight into the charge transfer behavior between photoexcited perovskites and the HTMs. This journal is © the Partner Organisations 2014.

  12. Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells

    KAUST Repository

    Qin, Peng; Kast, Hannelore; Nazeeruddin, Mohammad K.; Zakeeruddin, Shaik M.; Mishra, Amaresh; Bä uerle, Peter; Grä tzel, Michael

    2014-01-01

    Novel low band gap oligothiophenes incorporating S,N-heteropentacene central units were developed and used as hole-transport materials (HTMs) in solid-state perovskite-based solar cells. In addition to appropriate electronic energy levels, these materials show high photo-absorptivity in the low energy region, and thus can contribute to the light harvesting of the solar spectrum. Solution-processed CH3NH3PbI3-based devices using these HTMs achieved power conversion efficiencies of 9.5-10.5% in comparison with 7.6% obtained by reference devices without HTMs. Photoinduced absorption spectroscopy gave further insight into the charge transfer behavior between photoexcited perovskites and the HTMs. This journal is © the Partner Organisations 2014.

  13. Recent progresses in materials for the direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, C; Leger, J M [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1998-12-31

    Research programs are being conducted worldwide to develop a clean, zero emissions electric vehicle. However, even with the most advanced batteries, such as nickel/metal hydride, or lithium ion batteries, the driving range is limited and the recharging time is long. Only fuel cells which can convert chemical energy directly into electrical energy can compete with internal combustion engines. This paper reviewed the recent progress made in the development of a direct methanol fuel cell using the concept developed for the proton exchange membrane fuel cell (PEMFC). It was noted that the electrode materials, at the methanol anode and oxygen cathode need to be improved by using multifunctional electrocatalysts. The development of new temperature resistant proton exchange membranes with good ionic conductivity and low methanol cross-over, which resulted from the need to increase operating temperatures above 100 degrees C was also reviewed. 35 refs., 1 tab., 2 figs.

  14. Band structure analysis in SiGe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Michele [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy); Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy); Palummo, Maurizia [European Theoretical Spectroscopy Facility (ETSF) (Italy); CNR-INFM-SMC, Dipartimento di Fisica, Universita di Roma, ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Roma (Italy); Ossicini, Stefano, E-mail: stefano.ossicini@unimore.it [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy) and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy) and European Theoretical Spectroscopy Facility - ETSF (Italy) and Centro Interdipartimentale ' En and Tech' , Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy)

    2012-06-05

    One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.

  15. Band structure analysis in SiGe nanowires

    International Nuclear Information System (INIS)

    Amato, Michele; Palummo, Maurizia; Ossicini, Stefano

    2012-01-01

    One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.

  16. Electron and hole states in quantum dot quantum wells within a spherical eight-band model

    NARCIS (Netherlands)

    Pokatilov, E.P.; Fonoberov, V.A.; Fomin, V.; Devreese, J.T.

    2001-01-01

    In order to study heterostructures composed both of materials with strongly different parameters and of materials with narrow band gaps, we have developed an approach [E. P. Pokatilov [etal], Phys. Rev. B 64, 245328 (2001), (preceding paper)], which combines the spherical eight-band effective-mass

  17. Hypersonic band gap in an AlN-TiN bilayer phononic crystal slab

    Czech Academy of Sciences Publication Activity Database

    Hemon, S.; Akjouj, A.; Soltani, A.; Pennec, Y.; El Hassouani, Y.; Talbi, A.; Mortet, Vincent; Djafari-Rouhani, B.

    2014-01-01

    Roč. 104, č. 6 (2014), , "063101-1"-"063101-5" ISSN 0003-6951 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : band gap * III-V semiconductors * AIN films * photonic bandgap materials * thin film deposition * band structure * surface acoustic waves * bulk materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014

  18. Annual progress report 1981

    International Nuclear Information System (INIS)

    1982-01-01

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a brief description of the progress made in each section of the Institut. Research activities of the Protection department include, radiation effects on man, radioecology and environment radioprotection techniques. Research activities of the Nuclear Safety department include, reactor safety analysis, fuel cycle facilities safety analysis, safety research programs. The third section deals with nuclear material security including security of facilities, security of nuclear material transport and monitoring of nuclear material management [fr

  19. Experimental determination of conduction and valence bands of semiconductor nanoparticles using Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Zhang Wen; Chen Yongsheng

    2013-01-01

    The ability to determine a semiconductor’s band edge positions is important for the design of new photocatalyst materials. In this paper, we introduced an experimental method based on Kelvin probe force microscopy to determine the conduction and valence band edge energies of semiconductor nanomaterials, which has rarely been demonstrated. We tested the method on six semiconductor nanoparticles (α-Fe 2 O 3 , CeO 2 , Al 2 O 3 , CuO, TiO 2 , and ZnO) with known electronic structures. The experimentally determined band edge positions for α-Fe 2 O 3 , Al 2 O 3 , and CuO well matched the literature values with no statistical difference. Except CeO 2 , all other metal oxides had a consistent upward bias in the experimental measurements of band edge positions because of the shielding effect of the adsorbed surface water layer. This experimental approach may outstand as a unique alternative way of probing the band edge energy positions of semiconductor materials to complement the current computational methods, which often find limitations in new synthetic or complex materials. Ultimately, this work provides scientific foundation for developing experimental tools to probe nanoscale electronic properties of photocatalytic materials, which will drive breakthroughs in the design of novel photocatalytic systems and advance the fundamental understanding of material properties.

  20. Optical and electronic properties of 2 H -Mo S2 under pressure: Revealing the spin-polarized nature of bulk electronic bands

    Science.gov (United States)

    Brotons-Gisbert, Mauro; Segura, Alfredo; Robles, Roberto; Canadell, Enric; Ordejón, Pablo; Sánchez-Royo, Juan F.

    2018-05-01

    Monolayers of transition-metal dichalcogenide semiconductors present spin-valley locked electronic bands, a property with applications in valleytronics and spintronics that is usually believed to be absent in their centrosymmetric (as the bilayer or bulk) counterparts. Here we show that bulk 2 H -Mo S2 hides a spin-polarized nature of states determining its direct band gap, with the spin sequence of valence and conduction bands expected for its single layer. This relevant finding is attained by investigating the behavior of the binding energy of A and B excitons under high pressure, by means of absorption measurements and density-functional-theory calculations. These results raise an unusual situation in which bright and dark exciton degeneracy is naturally broken in a centrosymmetric material. Additionally, the phonon-assisted scattering process of excitons has been studied by analyzing the pressure dependence of the linewidth of discrete excitons observed at the absorption coefficient edge of 2 H -Mo S2 . Also, the pressure dependence of the indirect optical transitions of bulk 2 H -Mo S2 has been analyzed by absorption measurements and density-functional-theory calculations. These results reflect a progressive closure of the indirect band gap as pressure increases, indicating that metallization of bulk Mo S2 may occur at pressures higher than 26 GPa.

  1. 1996 Progress report on energies and raw materials; 1996 rapport d`activite energies et matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The 1996 annual progress report, from the French Department of Energy, reviews the key points of the French policy for energy and raw materials: competitiveness, environmental protection, long term supply safety, and public service. 1996 was marked by positive results for the French energy industry, difficulties for the oil refining industry, and a new impetus for renewable energies. Five surveys are presented: nuclear safety in Eastern Europe, the european directive on electric power domestic market, evolution of the oil market, conditions of refining in France, and restructuring of the Mine bureau (BRGM). 40 prominent facts are briefly reviewed, concerning sustainable energy development, nuclear energy, electric power and gas, coal, oil products, raw materials. Diagrams on energy and raw materials are also included

  2. 1996 Progress report on energies and raw materials; 1996 rapport d`activite energies et matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The 1996 annual progress report, from the French Department of Energy, reviews the key points of the French policy for energy and raw materials: competitiveness, environmental protection, long term supply safety, and public service. 1996 was marked by positive results for the French energy industry, difficulties for the oil refining industry, and a new impetus for renewable energies. Five surveys are presented: nuclear safety in Eastern Europe, the european directive on electric power domestic market, evolution of the oil market, conditions of refining in France, and restructuring of the Mine bureau (BRGM). 40 prominent facts are briefly reviewed, concerning sustainable energy development, nuclear energy, electric power and gas, coal, oil products, raw materials. Diagrams on energy and raw materials are also included

  3. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, JeeYeon N., E-mail: jplohr@lanl.gov; Plohr, Bradley J. [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM 87545 (United States)

    2016-02-15

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands). This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  4. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Directory of Open Access Journals (Sweden)

    JeeYeon N. Plohr

    2016-02-01

    Full Text Available We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands. This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  5. Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-05-01

    Full Text Available This work reviews the current progress of tight-binding methods and the recent edge-modified mean-field Hubbard model. Undercoordinated atoms (atoms not fully coordinated exist at a high rate in nanomaterials with their impact overlooked. A quantum theory was proposed to calculate electronic structure of nanomaterials by incorporating bond order-length-strength (BOLS correlation to mean-field Hubbard model, i.e., BOLS-HM. Consistency between the BOLS-HM calculation and density functional theory (DFT calculation on 2D materials verified that (i bond contractions and potential well depression occur at the edge of graphene, phosphorene, and antimonene nanoribbons; (ii the physical origin of the band gap opening of graphene, phosphorene, and antimonene nanoribbons lays in the enhancement of edge potentials and hopping integrals due to the shorter and stronger bonds between undercoordinated atoms; (iii the band gap of 2D material nanoribbons expand as the width decreases due to the increasing under-coordination effects of edges which modulates the conductive behaviors; and (iv non-bond electrons at the edges and atomic vacancies of 2D material accompanied with the broken bond contribute to the Dirac-Fermi polaron (DFP with a local magnetic moment.

  6. Development of III-Sb Quantum Dot Systems for High Efficiency Intermediate Band Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huffaker, Diana [Univ. of California, Los Angeles, CA (United States); Hubbard, Seth [Rochester Inst. of Technology, NY (United States); Norman, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-31

    This project aimed to develop solar cells that can help reduce cost per watt. This work focused on developing solar cells that utilize quantum dot (QD) nanomaterials to provide multijunction solar cell efficiency at the cost of single junction solar cell. We focused on a novel concept known as intermediate band solar cells (IBSC) where an additional energy band is inserted in a single solar cell to accommodate sub-bandgap photons absorption which otherwise are lost through transmission. The additional energy band can be achieved by growing QDs within a solar cell p-n junction. Though numerous studies have been conducted to develop such QD systems, very small improvements in solar energy conversion efficiency have been reported. This is mainly due to non-optimal material parameters such as band gap, band offset etc. In this work, we identified and developed a novel QD material system that meets the requirements of IBSC more closely than the current state-of-the-art technology. To achieve these goals, we focused on three important areas of solar cell design: band structure calculations of new materials, efficient device design for high efficiency, and development of new semiconductor materials. In this project, we focused on III-Sb materials as they possess a wide range of energy bandgaps from 0.2 eV to 2eV. Despite the difficulty involved in realizing these materials, we were successfully developed these materials through a systematic approach. Materials studied in this work are AlAsSb (Aluminum Arsenide Antimonide), InAlAs (Indium Aluminum Arsenide) and InAs (Indium Arsenide). InAs was used to develop QD layers within AlAsSb and InAlAs p-n junctions. As the QDs have very small volume, up to 30 QD layers been inserted into the p-n junction to enhance light absorption. These QD multi-stack devices helped in understanding the challenges associated with the development of quantum dot solar cells. The results from this work show that the quantum dot solar cells indeed

  7. Strain sensitivity of band gaps of Sn-containing semiconductors

    DEFF Research Database (Denmark)

    Li, Hong; Castelli, Ivano Eligio; Thygesen, Kristian Sommer

    2015-01-01

    Tuning of band gaps of semiconductors is a way to optimize materials for applications within photovoltaics or as photocatalysts. One way to achieve this is through applying strain to the materials. We investigate the effect of strain on a range of Sn-containing semiconductors using density...

  8. The possible mass region for shears bands and chiral doublets

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Frauendorf, S

    1998-03-01

    The Tilted Axis Cranking (TAC) theory is reviewed. The recent progress of TAC for triaxial deformed nuclei is reported. More emphasis has been paid to the new discovered phenomena - chiral doublets and their explanation. The possible mass region for the shears bands and chiral doublets and their experimental signature are discussed. (author)

  9. 1985. Annual progress report

    International Nuclear Information System (INIS)

    1986-01-01

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a description of the progress made in each sections of the Institut Research activities of the different departments include: reactor safety analysis, fuel cycle facilities analysis; and associated safety research programs (criticality, sites, transport ...), radioecology and environmental radioprotection techniques; data acquisition on radioactive waste storage sites; radiation effects on man, studies on radioprotection techniques; nuclear material security including security of facilities, security of nuclear material transport, and monitoring of nuclear material management; nuclear facility decommissioning; and finally the public information [fr

  10. Efficient many-body calculations for two-dimensional materials using exact limits for the screened potential: Band gaps of MoS2, h-BN, and phosphorene

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Schmidt, Per Simmendefeldt; Winther, Kirsten Trøstrup

    2016-01-01

    Calculating the quasiparticle (QP) band structure of two-dimensional (2D) materials within the GW self-energy approximation has proven to be a rather demanding computational task. The main reason is the strong q dependence of the 2D dielectric function around q = 0 that calls for a much denser...

  11. Estimation of photonic band gap in the hollow core cylindrical multilayer structure

    Science.gov (United States)

    Chourasia, Ritesh Kumar; Singh, Vivek

    2018-04-01

    The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.

  12. High performance p-type half-Heusler thermoelectric materials

    Science.gov (United States)

    Yu, Junjie; Xia, Kaiyang; Zhao, Xinbing; Zhu, Tiejun

    2018-03-01

    Half-Heusler compounds, which possess robust mechanical strength, good high temperature thermal stability and multifaceted physical properties, have been verified as a class of promising thermoelectric materials. During the last two decades, great progress has been made in half-Heusler thermoelectrics. In this review, we summarize some representative work of p-type half-Heusler materials, the thermoelectric performance of which has been remarkably enhanced in recent years. We introduce the features of the crystal and electronic structures of half-Heusler compounds, and successful strategies for optimizing electrical and thermal transport in the p-type RFeSb (R  =  V, Nb, Ta) and MCoSb (M  =  Ti, Zr, Hf) based systems, including band engineering, the formation of solid solutions and hierarchical phonon scattering. The outlook for future research directions of half-Heusler thermoelectrics is also presented.

  13. Sub-band/transform compression of video sequences

    Science.gov (United States)

    Sauer, Ken; Bauer, Peter

    1992-01-01

    The progress on compression of video sequences is discussed. The overall goal of the research was the development of data compression algorithms for high-definition television (HDTV) sequences, but most of our research is general enough to be applicable to much more general problems. We have concentrated on coding algorithms based on both sub-band and transform approaches. Two very fundamental issues arise in designing a sub-band coder. First, the form of the signal decomposition must be chosen to yield band-pass images with characteristics favorable to efficient coding. A second basic consideration, whether coding is to be done in two or three dimensions, is the form of the coders to be applied to each sub-band. Computational simplicity is of essence. We review the first portion of the year, during which we improved and extended some of the previous grant period's results. The pyramid nonrectangular sub-band coder limited to intra-frame application is discussed. Perhaps the most critical component of the sub-band structure is the design of bandsplitting filters. We apply very simple recursive filters, which operate at alternating levels on rectangularly sampled, and quincunx sampled images. We will also cover the techniques we have studied for the coding of the resulting bandpass signals. We discuss adaptive three-dimensional coding which takes advantage of the detection algorithm developed last year. To this point, all the work on this project has been done without the benefit of motion compensation (MC). Motion compensation is included in many proposed codecs, but adds significant computational burden and hardware expense. We have sought to find a lower-cost alternative featuring a simple adaptation to motion in the form of the codec. In sequences of high spatial detail and zooming or panning, it appears that MC will likely be necessary for the proposed quality and bit rates.

  14. Maximizing band gaps in plate structures

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard

    2006-01-01

    periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated......Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... theoretically and experimentally and the issue of finite size effects is addressed....

  15. Low-cycle fatigue-cracking mechanisms in fcc crystalline materials

    Science.gov (United States)

    Zhang, P.; Qu, S.; Duan, Q. Q.; Wu, S. D.; Li, S. X.; Wang, Z. G.; Zhang, Z. F.

    2011-01-01

    The low-cycle fatigue (LCF) cracking behavior in various face-centered-cubic (fcc) crystalline materials, including Cu single crystals, bicrystals and polycrystals, Cu-Al and Cu-Zn alloys, ultrafine-grained (UFG) Al-Cu and Cu-Zn alloys, was systematically investigated and reviewed. In Cu single crystals, fatigue cracking always nucleates along slip bands and deformation bands. The large-angle grain boundary (GB) becomes the preferential site in bicrystals and polycrystals. In addition, fatigue cracking can also nucleate along slip bands and twin boundaries (TBs) in polycrystalline materials. However, shear bands and coarse deformation bands are observed to the preferential sites for fatigue cracking in UFG materials with a large number of GBs. Based on numerous observations on fatigue-cracking behavior, the fatigue-cracking mechanisms along slip bands, GBs, TBs, shear bands and deformation bands were systematically compared and classified into two types, i.e. shear crack and impingement crack. Finally, these fatigue-cracking behaviors are discussed in depth for a better understanding of their physical nature and the transition from intergranular to transgranular cracking in various fcc crystalline materials. These comprehensive results for fatigue damage mechanisms should significantly aid in obtaining the optimum design to further strengthen and toughen metallic materials in practice.

  16. Cellophane banding for the gradual attenuation of single extrahepatic portosystemic shunts in eleven dogs.

    Science.gov (United States)

    Youmans, K R; Hunt, G B

    1998-08-01

    To evaluate the efficacy and short term effects of a cellophane banding technique for progressive attenuation of canine single extrahepatic portosystemic shunts. A prospective trial of 11 dogs with single congenital extrahepatic shunts. Rectal ammonia tolerance testing and routine biochemical tests were performed preoperatively on all dogs. In seven dogs, preoperative abdominal Doppler ultrasonography was also performed. Exploratory laparotomy revealed a single extrahepatic portocaval shunt in each animal, which was attenuated using a cellophane band with an internal diameter of 2 to 3 mm. The abdomen was closed routinely. Follow-up biochemical analysis and abdominal Doppler ultrasonography or splenoportography were performed postoperatively. The shunt was not amenable to total ligation in 11 dogs, based upon reported criteria. All dogs recovered uneventfully from surgery without evidence of portal hypertension, and showed clinical improvement thereafter. Shunt occlusion was deemed to have occurred in 10 dogs based on resolution of biochemical and/or sonographic abnormalities. One dog continued to have sonographic evidence of portosystemic shunting when evaluated 3 weeks after surgery, despite normal ammonia tolerance, but was lost to subsequent follow-up. Two dogs, in which 3 mm cellophane bands were placed, experienced delayed shunt occlusion. Cellophane banding is simple to perform, and causes progressive attenuation of single extrahepatic shunts in dogs. Further work is needed to determine the maximum diameter of a cellophane band which will produce total attenuation, and the long-term safety and reliability of the treatment.

  17. Materials Science | NREL

    Science.gov (United States)

    microscopy and imaging science, interfacial and surface science, materials discovery, and thin-film material Science Materials Science Illustration with bottom row showing a ball-and-stick model and top row dense black band. State-of-the-art advances in materials science come from a combination of experiments

  18. Study of III-V semiconductor band structure by synchrotron photoemission

    International Nuclear Information System (INIS)

    Williams, G.P.; Cerrina, F.; Anderson, J.; Lapeyre, G.J.; Smith, R.J.; Hermanson, J.; Knapp, J.A.

    1982-01-01

    Angle-resolved synchrotron photoemission studies of six III-V semiconductors have been carried out. For emission normal to the (110) plane of these materials, peaks in the experimental spectra were identified with the bands involved in the transitions, and the critical point energies X 3 , X 5 , and Σ 1 /sup min/, were determined. The data indicate that k perpendicular is conserved in the transitions. Comparison of the data with theoretical bands permits an evaluation of k perpendicular associated with the experimentally observed transition, and from this information the bands were plotted out

  19. Electric-dipole effect of defects on the energy band alignment of rutile and anatase TiO₂.

    Science.gov (United States)

    Zhang, Daoyu; Yang, Minnan; Dong, Shuai

    2015-11-21

    Titanium dioxide materials have been studied intensively and extensively for photocatalytic applications. A long-standing open question is the energy band alignment of rutile and anatase TiO2 phases, which can affect the photocatalytic process in the composite system. There are basically two contradictory viewpoints about the alignment of these two TiO2 phases supported by the respective experiments: (1) straddling type and (2) staggered type. In this work, our DFT plus U calculations show that the perfect rutile(110) and anatase(101) surfaces have the straddling type band alignment, whereas the surfaces with defects can turn the band alignment into the staggered type. The electric dipoles induced by defects are responsible for the reversal of band alignment. Thus the defects introduced during the preparation and post-treatment processes of materials are probably the answer to the above open question regarding the band alignment, which can be considered in real practice to tune the photocatalytic activity of materials.

  20. L-band brightness temperature disaggregation for use with S-band and C-band radiometer data for WCOM

    Science.gov (United States)

    Yao, P.; Shi, J.; Zhao, T.; Cosh, M. H.; Bindlish, R.

    2017-12-01

    There are two passive microwave sensors onboard the Water Cycle Observation Mission (WCOM), which includes a synthetic aperture radiometer operating at L-S-C bands and a scanning microwave radiometer operating from C- to W-bands. It provides a unique opportunity to disaggregate L-band brightness temperature (soil moisture) with S-band C-bands radiometer data. In this study, passive-only downscaling methodologies are developed and evaluated. Based on the radiative transfer modeling, it was found that the TBs (brightness temperature) between the L-band and S-band exhibit a linear relationship, and there is an exponential relationship between L-band and C-band. We carried out the downscaling results by two methods: (1) downscaling with L-S-C band passive measurements with the same incidence angle from payload IMI; (2) downscaling with L-C band passive measurements with different incidence angle from payloads IMI and PMI. The downscaling method with L-S bands with the same incident angle was first evaluated using SMEX02 data. The RMSE are 2.69 K and 1.52 K for H and V polarization respectively. The downscaling method with L-C bands is developed with different incident angles using SMEX03 data. The RMSE are 2.97 K and 2.68 K for H and V polarization respectively. These results showed that high-resolution L-band brightness temperature and soil moisture products could be generated from the future WCOM passive-only observations.

  1. Band structure analysis on olivine LiMPO4 and delithiated MPO4 (M = Fe, Mn) cathode materials

    International Nuclear Information System (INIS)

    Yi, Ting-Feng; Fang, Zi-Kui; Xie, Ying; Zhu, Yan-Rong; Dai, Changsong

    2014-01-01

    Highlights: • The conductivity of Li x MPO 4 were discussed relying on first principles technique. • Relationship between structure properties and microscopic bonding was addressed. • A mechanism responsible for the structural instability of MnPO 4 was proposed. - Abstract: Olivine compounds, i.e. Li x MPO 4 (M = Fe, Mn), are now regarded as the most competitive positive-electrode materials for future applications of large-scale rechargeable lithium batteries. There are significant interests in their electronic structures, because the microscopic information is very important for elucidating the structural stability, electrochemical performance, and electronic conductivity issues of batteries for high-rate applications. The structure stabilities of LiMPO 4 and MPO 4 (M = Fe, Mn) cathode materials are analyzed according to first principles calculations. The result shows that LiMPO 4 (M = Fe, Mn) materials exhibit good structure stability, which is mainly contributed to the extremely strong P-O covalent bonds. Furthermore, the introduction of P ions is also helpful for the chemical potential decrease of the materials. The band structure analysis reveals that the electronic conductance of LiFePO 4 , LiMnPO 4 , and FePO 4 is poor, while MnPO 4 possesses half metallic property. According to the electron distribution, it can be confirmed that Mn-O(II) bonds are weakened after Li + extractions, which is different from the variation trend of Fe-O(II) bonds. The decrease of Mn-O(II) bond strength is thus favorable for the phase transformation observed in experiments

  2. Observations of banding in first-year Arctic sea ice

    Science.gov (United States)

    Cole, David M.; Eicken, Hajo; Frey, Karoline; Shapiro, Lewis H.

    2004-08-01

    Horizontal banding features, alternating dark and bright horizontal bands apparent in ice cores and stratigraphic cross sections have long been observed in first-year sea ice and are frequently associated with bands of high and low brine or gas porosity. Observations on the land-fast ice near Barrow, Alaska, in recent years have revealed particularly striking banding patterns and prompted a study of their macroscopic and microscopic characteristics. The banding patterns are quantified from photographs of full-depth sections of the ice, and examples are presented from the Chukchi Sea and Elson Lagoon. Statistics on band spacing are presented, and the growth records for three seasons are employed to estimate their time of formation. These data provide insight into the periodicity of the underlying phenomena. Micrographs are used to examine the microstructural variations associated with various banding features and to quantify the geometry of the constituent brine inclusions associated with high- and low-porosity bands. The micrography revealed that the area fraction of brine inclusions varied by a factor of nearly 3 through the more pronounced high- and low-porosity bands. Vertical micrographs obtained shortly after the materials' removal from the ice sheet showed that significantly larger inclusions form abruptly at the start of the high-porosity bands and frequently terminate abruptly at the end of the band. Crystallographic observations indicated that the high-porosity bands supported the nucleation and growth of crystals having substantially different orientations from the very well aligned columnar structure that characterized the bulk of the sheet.

  3. Idea Bank: Progress through Incentives: How One Music Program Helps Students Progress to Higher Levels of Musicianship

    Science.gov (United States)

    Boyd, Joshua

    2013-01-01

    Students are motivated when they have a constant system of rewards. They have a desire to please others and be recognized. It was with this idea in mind that the Smokey Road Middle School Band in Newman, Georgia, started using the "Power in the Progress System" in 2011. This system, created by H. Dwight Satterwhite, a professor of music…

  4. Development of shear bands in amorphous-crystalline metallic alloys

    International Nuclear Information System (INIS)

    Pozdnyakov, V.A.

    2004-01-01

    A theoretical study is made into conditions of shear band evolution in amorphous-crystalline alloys with various morphological types of structural constituents. The condition of shear band evolution in thin amorphous alloys in the interior of the crystalline matrix is obtained. It is shown that a scale effect exists which manifests itself in suppression of the process of localized plastic flow with amorphous alloy thickness decreasing down to the limit. The analysis of the condition for shear band evolution in an amorphous alloy with nanocrystalline inclusions is accomplished. The relationship of a critical stress of shear band evolution to a volume fraction of disperse crystal inclusions is obtained. A consideration is also given to the evolution of shear bands in the material containing amorphous and crystalline areas of micro meter size. For the alloy with the structure of this type conditions for propagation of localized flows by a relay race type mechanism are determined [ru

  5. [Theoretical studies of dynamics and correlations in heavy electron materials:]: Progress report, August 15, 1987-August 15, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This paper discusses progress in heavy electron research and high temperature superconductivity research. Particular topics discussed are: quadrupolar Kondo effect; coherence in the Anderson Lattice; Hall effect in heavy electron systems, suppression of supeconductivity by disorder in strongly correlated electronic materials; and charge transfer mechanisms for high temperature superconductivity

  6. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...... in the present paper that such an a priori assumption is not necessary since, in general, just the maximization of the gap between two consecutive natural frequencies leads to significant design periodicity. The aim of this paper is to maximize frequency gaps by shape optimization of transversely vibrating...

  7. DISCOVERY OF SiO BAND EMISSION FROM GALACTIC B[e] SUPERGIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, M. [Astronomický ústav, Akademie věd České republiky, Fričova 298, 251 65 Ondřejov (Czech Republic); Oksala, M. E. [LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen, F-92190, Meudon (France); Cidale, L. S.; Arias, M. L.; Torres, A. F. [Departamento de Espectroscopía Estelar, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata (Argentina); Fernandes, M. Borges, E-mail: michaela.kraus@asu.cas.cz [Observatório Nacional, Rua General José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro (Brazil)

    2015-02-20

    B[e] supergiants (B[e]SGs) are evolved massive stars in a short-lived transition phase. During this phase, these objects eject large amounts of material, which accumulate in a circumstellar disk-like structure. The expelled material is typically dense and cool, providing the cradle for molecule and dust condensation and for a rich, ongoing chemistry. Very little is known about the chemical composition of these disks, beyond the emission from dust and CO revolving around the star on Keplerian orbits. As massive stars preserve an oxygen-rich surface composition throughout their life, other oxygen-based molecules can be expected to form. As SiO is the second most stable oxygen compound, we initiated an observing campaign to search for first-overtone SiO emission bands. We obtained high-resolution near-infrared L-band spectra for a sample of Galactic B[e]SGs with reported CO band emission. We clearly detect emission from the SiO first-overtone bands in CPD-52 9243 and indications for faint emission in HD 62623, HD 327083, and CPD-57 2874. From model fits, we find that in all these stars the SiO bands are rotationally broadened with a velocity lower than observed in the CO band forming regions, suggesting that SiO forms at larger distances from the star. Hence, searching for and analyzing these bands is crucial for studying the structure and kinematics of circumstellar disks, because they trace complementary regions to the CO band formation zone. Moreover, since SiO molecules are the building blocks for silicate dust, their study might provide insight in the early stage of dust formation.

  8. FY2016 Propulsion Materials Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  9. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  10. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.

    Science.gov (United States)

    Warmuth, Franziska; Körner, Carolin

    2015-12-02

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.

  11. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  12. Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory

    Science.gov (United States)

    Zahedifar, Maedeh; Kratzer, Peter

    2018-01-01

    Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0

  13. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  14. Optic nerve compression as a late complication of a hydrogel explant with silicone encircling band.

    Science.gov (United States)

    Crama, Niels; Kluijtmans, Leo; Klevering, B Jeroen

    2018-06-01

    To present a complication of compressive optic neuropathy caused by a swollen hydrogel explant and posteriorly displaced silicone encircling band. A 72-year-old female patient presented with progressive visual loss and a tilted optic disc. Her medical history included a retinal detachment in 1993 that was treated with a hydrogel explant under a solid silicone encircling band. Visual acuity had decreased from 6/10 to 6/20 and perimetry showed a scotoma in the temporal superior quadrant. On Magnetic Resonance Imaging (MRI), compression of the optic nerve by a displaced silicone encircling band inferior nasally in combination with a swollen episcleral hydrogel explant was observed. Surgical removal of the hydrogel explant and silicone encircling band was uneventful and resulted in improvement of visual acuity and visual field loss. This is the first report on compressive optic neuropathy caused by swelling of a hydrogel explant resulting in a dislocated silicone encircling band. The loss of visual function resolved upon removal of the explant and encircling band.

  15. Material challenges for solar cells in the twenty-first century: directions in emerging technologies.

    Science.gov (United States)

    Almosni, Samy; Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka; Guillemoles, Jean-François

    2018-01-01

    Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan-French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.

  16. Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection.

    Science.gov (United States)

    Li, Guowei; Blake, Graeme R; Palstra, Thomas T M

    2017-03-21

    Vacancies exist throughout nature and determine the physical properties of materials. By manipulating the density and distribution of vacancies, it is possible to influence their physical properties such as band-gap, conductivity, magnetism, etc. This can generate exciting applications in the fields of water treatment, energy storage, and physical devices such as resistance-change memories. In this review, we focus on recent progress in vacancy engineering for the design of materials for energy harvesting applications. A brief discription of the concept of vacancies, the way to create and control them, as well as their fundamental properties, is first provided. Then, emphasis is placed on the strategies used to tailor vacancies for metal-insulator transitions, electronic structures, and introducing magnetism in non-magnetic materials. Finally, we present representative applications of different structures with vacancies as active electrode materials of lithium or sodium ion batteries, catalysts for water splitting, and hydrogen evolution.

  17. Progress report on fast breeder reactor development in Japan, October - December 1976

    International Nuclear Information System (INIS)

    1977-03-01

    As for the fast breeder experimental reactor ''Joyo'', the remodeling works for the bearings of primary main circulation pump and the support bands of hanger support have finished. Preparatory arrangement was made for the second performance test, such as preheating the primary cooling system and filling sodium in it. Construction, installation and adjustment of test and inspection apparatuses required after the criticality experiment are in progress. The lining work for the temporary storage pool for solid wastes, the enlarging work for the operation control building, and construction of the brake equipment for cooler blower were over. As for the operation control, operation, inspection and maintenance of each system required for the modeling work are being carried out, and new parts to take the place of old ones were provided. The analysis of the core characteristics and the development of operation-monitoring codes are in progress. The coordination design work (4) for the fast breeder prototype reactor ''Monju'' has been started, and the preliminary design work (2) for the demonstration reactor is going on. Geological, meteorological and seismic researches carried out at the proposed construction site for ''Monju''. The researches and developments on reactor physics, structural components, instrumentation and control, sodium technology, fuel materials, safety and steam generators are in progress. (Kako, I.)

  18. Kinetics of singlet and triplet excitons in a wide-band-gap copolymer

    NARCIS (Netherlands)

    Loi, MA; Gadermaier, C; List, EJW; Leising, G; Graupner, W; Bongiovanni, G; Mura, A; Pireaux, JJ; Kaeriyama, K

    2000-01-01

    Transient and photomodulation spectroscopy is used in order to determine decay times and densities of both emitting and absorbing species in the wide band-gap semiconductor poly-2,5-diheptyl-1,4-phenylene-alt-2, S-thienylene (PDHPT). The wide band gap of this material is a consequence of the large

  19. Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials

    International Nuclear Information System (INIS)

    Zhang Lan-Ying; Gao Yan-Zi; Song Ping; Yuan Xiao; He Bao-Feng; Yang Huai; Wu Xiao-Juan; Chen Xing-Wu; Hu Wang; Guo Ren-Wei; Ding Hang-Jun; Xiao Jiu-Mei

    2016-01-01

    Cholesteric liquid crystals (CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship. Nowadays, by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution, extensive work has already been performed to obtain CLC films with a broad reflection band. Based on authors’ many years’ research experience, this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics, methods to obtain broadband reflection of CLCs, as well as the application in the field of intelligent optical modulation materials. Combined with the research status and the advantages in the field, the important basic and applied scientific problems in the research direction are also introduced. (topical review)

  20. Recent progress in MBE grown HgCdTe materials and devices at UWA

    Science.gov (United States)

    Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.

    2016-05-01

    HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.

  1. Experimental study of energy harvesting in UHF band

    International Nuclear Information System (INIS)

    Bernacki, Ł; Gozdur, R; Salamon, N

    2016-01-01

    A huge progress of down-sizing technology together with trend of decreasing power consumption and, on the other hand, increasing efficiency of electronics give the opportunity to design and to implement the energy harvesters as main power sources. This paper refers to the energy that can be harvested from electromagnetic field in the unlicensed frequency bands. The paper contains description of the most popular techniques and transducers that can be applied in energy harvesting domain. The overview of current research and commercial solutions was performed for bands in ultra-high frequency range, which are unlicensed and where transmission is not limited by administrative arrangements. During the experiments with Powercast’s receiver, the same bands as sources of electromagnetic field were taken into account. This power source is used for conducting radio-communication process and excess energy could be used for powering the extra electronic circuits. The paper presents elaborated prototype of energy harvesting system and the measurements of power harvested in ultra-high frequency range. The evaluation of RF energy harvesters for powering ultra-low power (ULP) electronic devices was performed based on survey and results of the experiments. (paper)

  2. Building blocks of topological quantum chemistry: Elementary band representations

    Science.gov (United States)

    Cano, Jennifer; Bradlyn, Barry; Wang, Zhijun; Elcoro, L.; Vergniory, M. G.; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The link between chemical orbitals described by local degrees of freedom and band theory, which is defined in momentum space, was proposed by Zak several decades ago for spinless systems with and without time reversal in his theory of "elementary" band representations. In a recent paper [Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268] we introduced the generalization of this theory to the experimentally relevant situation of spin-orbit coupled systems with time-reversal symmetry and proved that all bands that do not transform as band representations are topological. Here we give the full details of this construction. We prove that elementary band representations are either connected as bands in the Brillouin zone and are described by localized Wannier orbitals respecting the symmetries of the lattice (including time reversal when applicable), or, if disconnected, describe topological insulators. We then show how to generate a band representation from a particular Wyckoff position and determine which Wyckoff positions generate elementary band representations for all space groups. This theory applies to spinful and spinless systems, in all dimensions, with and without time reversal. We introduce a homotopic notion of equivalence and show that it results in a finer classification of topological phases than approaches based only on the symmetry of wave functions at special points in the Brillouin zone. Utilizing a mapping of the band connectivity into a graph theory problem, we show in companion papers which Wyckoff positions can generate disconnected elementary band representations, furnishing a natural avenue for a systematic materials search.

  3. Band Gap Modulated by Electronic Superlattice in Blue Phosphorene.

    Science.gov (United States)

    Zhuang, Jincheng; Liu, Chen; Gao, Qian; Liu, Yani; Feng, Haifeng; Xu, Xun; Wang, Jiaou; Zhao, Jijun; Dou, Shi Xue; Hu, Zhenpeng; Du, Yi

    2018-05-22

    Exploring stable two-dimensional materials with appropriate band gaps and high carrier mobility is highly desirable due to the potential applications in optoelectronic devices. Here, the electronic structures of phosphorene on a Au(111) substrate are investigated by scanning tunneling spectroscopy, angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations. The substrate-induced phosphorene superstructure gives a superlattice potential, leading to a strong band folding effect of the sp band of Au(111) on the band structure. The band gap could be clearly identified in the ARPES results after examining the folded sp band. The value of the energy gap (∼1.1 eV) and the high charge carrier mobility comparable to that of black phosphorus, which is engineered by the tensile strain, are revealed by the combination of ARPES results and DFT calculations. Furthermore, the phosphorene layer on the Au(111) surface displays high surface inertness, leading to the absence of multilayer phosphorene. All these results suggest that the phosphorene on Au(111) could be a promising candidate, not only for fundamental research but also for nanoelectronic and optoelectronic applications.

  4. Experimental performance assessment of the sub-band minimum variance beamformer for ultrasound imaging

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Greenaway, Alan H.; Anderson, Tom

    2017-01-01

    Recent progress in adaptive beamforming techniques for medical ultrasound has shown that current resolution limits can be surpassed. One method of obtaining improved lateral resolution is the Minimum Variance (MV) beamformer. The frequency domain implementation of this method effectively divides...... the broadband ultrasound signals into sub-bands (MVS) to conform with the narrow-band assumption of the original MV theory. This approach is investigated here using experimental Synthetic Aperture (SA) data from wire and cyst phantoms. A 7 MHz linear array transducer is used with the SARUS experimental...

  5. Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy

    DEFF Research Database (Denmark)

    Gilbert, B.; Frandsen, Cathrine; Maxey, E.R.

    2009-01-01

    Chemical and photochemical processes at semiconductor surfaces are highly influenced by the size of the band gap, and ability to control the band gap by particle size in nanomaterials is part of their promise. The combination of soft x-ray absorption and emission spectroscopies provides band......-gap determination in bulk and nanoscale itinerant electron semiconductors such as CdS and ZnO, but this approach has not been established for materials such as iron oxides that possess band-edge electronic structure dominated by electron correlations. We performed soft x-ray spectroscopy at the oxygen K...

  6. Materials Department annual progress report for 1993

    International Nuclear Information System (INIS)

    Horsewell, A.; Hansen, N.

    1994-06-01

    Selected activities of the Materials Department at Risoe National Laboratory during 1993 are described. The work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given of the Department's participation in international collaboration and of its activities within education and training. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists, publications, lectures and poster presentations are included. (au) (220 refs.)

  7. Band gap determination of Ni–Zn ferrites

    Indian Academy of Sciences (India)

    Nanocomposites of Ni–Zn with copolymer matrix of aniline and formaldehyde in presence of varying concentrations of zinc ions have been studied at room temperature and normal pressure. The energy band gap of these materials are determined by reflection spectra in the wavelength range 400–850 nm by ...

  8. Band Alignment at GaN/Single-Layer WSe2 Interface

    KAUST Repository

    Tangi, Malleswararao

    2017-02-21

    We study the band discontinuity at the GaN/single-layer (SL) WSe2 heterointerface. The GaN thin layer is epitaxially grown by molecular beam epitaxy on chemically vapor deposited SL-WSe2/c-sapphire. We confirm that the WSe2 was formed as an SL from structural and optical analyses using atomic force microscopy, scanning transmission electron microscopy, micro-Raman, absorbance, and microphotoluminescence spectra. The determination of band offset parameters at the GaN/SL-WSe2 heterojunction is obtained by high-resolution X-ray photoelectron spectroscopy, electron affinities, and the electronic bandgap values of SL-WSe2 and GaN. The valence band and conduction band offset values are determined to be 2.25 ± 0.15 and 0.80 ± 0.15 eV, respectively, with type II band alignment. The band alignment parameters determined here provide a route toward the integration of group III nitride semiconducting materials with transition metal dichalcogenides (TMDs) for designing and modeling of their heterojunction-based electronic and optoelectronic devices.

  9. Band Alignment at GaN/Single-Layer WSe2 Interface

    KAUST Repository

    Tangi, Malleswararao; Mishra, Pawan; Tseng, Chien-Chih; Ng, Tien Khee; Hedhili, Mohamed N.; Anjum, Dalaver H.; Alias, Mohd Sharizal; Wei, Nini; Li, Lain-Jong; Ooi, Boon S.

    2017-01-01

    We study the band discontinuity at the GaN/single-layer (SL) WSe2 heterointerface. The GaN thin layer is epitaxially grown by molecular beam epitaxy on chemically vapor deposited SL-WSe2/c-sapphire. We confirm that the WSe2 was formed as an SL from structural and optical analyses using atomic force microscopy, scanning transmission electron microscopy, micro-Raman, absorbance, and microphotoluminescence spectra. The determination of band offset parameters at the GaN/SL-WSe2 heterojunction is obtained by high-resolution X-ray photoelectron spectroscopy, electron affinities, and the electronic bandgap values of SL-WSe2 and GaN. The valence band and conduction band offset values are determined to be 2.25 ± 0.15 and 0.80 ± 0.15 eV, respectively, with type II band alignment. The band alignment parameters determined here provide a route toward the integration of group III nitride semiconducting materials with transition metal dichalcogenides (TMDs) for designing and modeling of their heterojunction-based electronic and optoelectronic devices.

  10. Band Gap Properties of Magnetoelectroelastic Grid Structures with Initial Stress

    International Nuclear Information System (INIS)

    Wang Yi-Ze; Li Feng-Ming

    2012-01-01

    The propagation of elastic waves in magnetoelectroelastic grid structures is studied. Band gap properties are presented and the effects of the magnetoelectroelastic coupling and initial stress are considered. Numerical calculations are performed using the plane-wave expansion method. The results show that the band gap width can be tuned by the initial stress. It is hoped that our results will be helpful for designing acoustic filters with magnetoelectroelastic materials and grid structures

  11. Materials testing and requirement for the ERDA nuclear-powered artificial heart. Technical progress report, July 15, 1975--May 30, 1976

    International Nuclear Information System (INIS)

    Andrade, J.D.; Hufferd, W.L.; Lyman, D.J.

    1976-01-01

    The two materials currently being used for the artificial heart fabrication are BIOMER and AVCOTHANE. BIOMER is a polyether urethane polymer. AVCOTHANE is a proprietary polyurethane/polydimethylsiloxane polymer blend. Research progress on the chemical degradation, mechanical strength, and blood compatibility is reported

  12. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    Science.gov (United States)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  13. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  14. Theoretical evaluation of maximum electric field approximation of direct band-to-band tunneling Kane model for low bandgap semiconductors

    Science.gov (United States)

    Dang Chien, Nguyen; Shih, Chun-Hsing; Hoa, Phu Chi; Minh, Nguyen Hong; Thi Thanh Hien, Duong; Nhung, Le Hong

    2016-06-01

    The two-band Kane model has been popularly used to calculate the band-to-band tunneling (BTBT) current in tunnel field-effect transistor (TFET) which is currently considered as a promising candidate for low power applications. This study theoretically clarifies the maximum electric field approximation (MEFA) of direct BTBT Kane model and evaluates its appropriateness for low bandgap semiconductors. By analysing the physical origin of each electric field term in the Kane model, it has been elucidated in the MEFA that the local electric field term must be remained while the nonlocal electric field terms are assigned by the maximum value of electric field at the tunnel junction. Mathematical investigations have showed that the MEFA is more appropriate for low bandgap semiconductors compared to high bandgap materials because of enhanced tunneling probability in low field regions. The appropriateness of the MEFA is very useful for practical uses in quickly estimating the direct BTBT current in low bandgap TFET devices.

  15. A Mathematical Study of the One-Dimensional Keller and Rubinov Model for Liesegang Bands

    NARCIS (Netherlands)

    Hilhorst, D.; van der Hout, R.; Mimura, M.; Ohnishi, I.

    2009-01-01

    Our purpose is to start understanding from a mathematical viewpoint experiments in which regularized structures with spatially distinct bands or rings of precipitated material are exhibited, with clearly visible scaling properties. Such patterns are known as Liesegang bands or rings. In this paper,

  16. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Hanae Shimo

    2015-06-01

    Full Text Available Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.

  17. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes.

    Science.gov (United States)

    Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi

    2015-06-01

    Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.

  18. Tuning of band gap due to fluorination of graphyne and graphdiyne

    International Nuclear Information System (INIS)

    Bhattacharya, B; Singh, N B; Sarkar, U

    2014-01-01

    The electronic properties of graphyne and graphdiyne consisting of sp and sp 2 hybridized carbon atom have been investigated within the density functional theory (DFT) method. The corresponding changes in the electronic properties due to systematic functionalization by fluorine at different possible sites are reported. Our band structure calculations clearly infer that all fluorographyne are wide band gap semiconductor and the band gap can be tuned by fluorination and the possibility of modulating the band gap provides flexibility for its use in nanoelectronic devices. Projected density of state (PDOS) analysis provides the clear idea about the bonding nature of these novel materials in details and Crystal Orbital Hamilton Population (-COHP) analysis shed insight on the orbital participating in bonding and antibonding

  19. Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease

    Science.gov (United States)

    Chong-Seng, K. M.; Cole, A. J.; Pratchett, M. S.; Willis, B. L.

    2011-06-01

    Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes ( Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.

  20. Reconfigurable dual-band metamaterial antenna based on liquid crystals

    Science.gov (United States)

    Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Wu, Qun

    2018-05-01

    In this paper, a novel reconfigurable dual-band metamaterial antenna with a continuous beam that is electrically steered in backward to forward directions is first proposed by employing a liquid crystal (LC)-loaded tunable extended composite right-/left-handed (E-CRLH) transmission line (TL). The frequency-dependent property of the E-CRLH TL is analyzed and a compact unit cell based on the nematic LC is proposed to realize the tunable dual band characteristics. The phase constant of the proposed unit cell can be dynamically continuously tuned from negative to positive values in two operating bands by changing the bias voltage of the loaded LC material. A resulting dual band fixed-frequency beam steering property has been predicted by numerical simulations and experimentally verified. The measured results show that the fabricated reconfigurable antenna features an electrically controlled continuous beam steering from backward  ‑16° to forward  +13° at 7.2 GHz and backward  ‑9° to forward  +17° at 9.4 GHz, respectively. This electrically controlled beam steering range turns out to be competitive with the previously reported single band reconfigurable antennas. Besides, the measured and simulated results of the proposed reconfigurable dual-band metamaterial antenna are in good agreement.

  1. Design and analysis of X-band femtosecond linac

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, M; Kozawa, T; Takeshita, A; Kobayashi, T; Ueda, T; Miya, K [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1997-03-01

    Femtosecond quantum phenomena research project is proposed at Nuclear Engineering Research Laboratory, University of Tokyo. The research facility consists of an X-band (11.424GHz) femtosecond electron linac, a femtosecond wavelength tunable laser, two S-band (2.856GHz) picosecond electron linacs and measuring equipments. Especially, we aim to generate a 100 fs (FWHM) electron single bunch with more than 1 nC at the X-band femtosecond linac. Ultrafast processes in radiation physics, chemistry, material science and microscopic electromagnetic phenomena are going to be analyzed there. Here the design and analysis of an X-band femtosecond linac is presented. The simulation of electron dynamics is carried out including magnetic pulse compression by using PARMELA and SUPERFISH. It is found by the simulation that the 600 ps (tail-to-tail) electron emission from a 200 kV thermionic gun can be bunched and compressed to 110 fs (FWHM) with the charge of 0.8 nC which gives 7.3 kA. We plan to use one high power X-band klystron which can supply 60 MW with more than 200 ns pulse duration. The flatness of plateau of the pulse should be 0.2% for stable ultrashort bunch generation. (author)

  2. Development of a Control Banding Tool for Nanomaterials

    Directory of Open Access Journals (Sweden)

    M. Riediker

    2012-01-01

    Full Text Available Control banding (CB can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial toxicology: translocation across biological barriers, fibrous nature, solubility, and reactivity. Already existing classifications specific to the nanomaterial can be used “as is.” Otherwise, the toxicity of bulk or analogous substances gives an initial hazard band, which is increased if the substance is not easily soluble or if it has a higher reactivity than the substance. The emission potential bands are defined by the nanomaterials' physical form and process characteristics. Quantities, frequencies, and existing control measures are taken into account during the definition of the action plan. Control strategies range from room ventilation to full containment with expert advice. This CB approach, once validated, can be easily embedded in risk management systems. It allows integrating new toxicity data and needs no exposure data.

  3. Progression in vowel production: comparing deaf and hearing children

    NARCIS (Netherlands)

    van der Stelt, J.; Pols, L.C.W.; Wempe, T.G.

    2003-01-01

    An interesting but so far neglected topic in the development of infant sound production is the hypothesized progression toward adult vowel quality. Likely, this process is quite different for normally hearing babies and for deaf babies. A band filtering analysis method is used to measure the

  4. Dosimetry of narrow band UVB treatments

    International Nuclear Information System (INIS)

    Goode, D.H.; Mannering, D.M.

    1996-01-01

    narrow band treatment schedule has been developed which is based on the patient' s MED. Before commencing treatments the patient is given an MED test using untanned skin on the inner surface of the forearm. The initial dose is 70% of the MED and each subsequent exposure is increased by a constant increment, namely 21.4% of the initial dose. This progression continues until the dose reaches three times the MED at which time it is held constant. Treatments are given twice per week up to a maximum of 30 treatments or until the psoriasis clears. If mild erythema occurs the next treatment is held at the previous dose while for more severe erythema it is missed entirely. This schedule is similar to the one in use at The Royal Victoria Infirmary, Newcastle upon Tyne, but with two minor exceptions. In Newcastle the increments are larger (on average 45% of the initial dose) but they only occur once a week. The transfer from broad band to narrow band was accomplished successfully without any incidence of erythema. After four months experience the 31 patients who were currently following the MED based protocol were reviewed. The lowest MED measured was 500 mJ/cm 2 while the highest (three in number) exceeded 1110 mJ/cm 2 . Eleven of the patients exhibited erythema at some point in their treatment but it was only necessary to reduce the dose increment in one case. Of the remaining 20 patients, 13 who showed poor clearing of their psoriasis were placed on a dose schedules in which the dose increments were increased by between 20 % to 33%. In view of the fact almost equal numbers of patients received too large or too small a dose the schedule can be considered to be a good compromise

  5. Dendrometer bands made easy: using modified cable ties to measure incremental growth of trees

    Science.gov (United States)

    Anemaet, Evelyn R.; Middleton, Beth A.

    2013-01-01

    Dendrometer bands are a useful way to make sequential repeated measurements of tree growth, but traditional dendrometer bands can be expensive, time consuming, and difficult to construct in the field. An alternative to the traditional method of band construction is to adapt commercially available materials. This paper describes how to construct and install dendrometer bands using smooth-edged, stainless steel, cable tie banding and attachable rollerball heads. As a performance comparison, both traditional and cable tie dendrometer bands were installed on baldcypress trees at the National Wetlands Research Center in Lafayette, Louisiana, by both an experienced and a novice worker. Band installation times were recorded, and growth of the trees as estimated by the two band types was measured after approximately one year, demonstrating equivalence of the two methods. This efficient approach to dendrometer band construction can help advance the knowledge of long-term tree growth in ecological studies.

  6. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    Science.gov (United States)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  7. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  8. Material challenges for solar cells in the twenty-first century: directions in emerging technologies

    Science.gov (United States)

    Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka

    2018-01-01

    Abstract Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan–French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots. PMID:29707072

  9. Reward banding to determine reporting rate of recovered mourning dove bands

    Science.gov (United States)

    Tomlinson, R.E.

    1968-01-01

    Reward bands placed on the other leg of certain regularly banded immature mourning doves (Zenaidura macroura) were used to develop information on reporting rates of recovered dove bands. Reports from 15 widely separated sections of the United States showed considerable variation in recovery rate of doves both with and without reward bands. The overall percentages of banded doves that were reported as recovered were 9.69% for those with reward bands and 3.83% for controls. The bandreporting rate for states influenced by publicity was 66%; that for states not influenced was 32%.

  10. Coupled polaritonic band gaps in the anisotropic piezoelectric superlattices

    Science.gov (United States)

    Tang, Zheng-Hua; Jiang, Zheng-Sheng; Chen, Tao; Jiang, Chun-Zhi; Lei, Da-Jun; Huang, Jian-Quan; Qiu, Feng; Yao, Min; Huang, Xiao-Yi

    2018-01-01

    Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of 5.1% can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices.

  11. Optic nerve compression as a late complication of a hydrogel explant with silicone encircling band

    Directory of Open Access Journals (Sweden)

    Niels Crama

    2018-06-01

    Full Text Available Purpose: To present a complication of compressive optic neuropathy caused by a swollen hydrogel explant and posteriorly displaced silicone encircling band. Observations: A 72-year-old female patient presented with progressive visual loss and a tilted optic disc. Her medical history included a retinal detachment in 1993 that was treated with a hydrogel explant under a solid silicone encircling band. Visual acuity had decreased from 6/10 to 6/20 and perimetry showed a scotoma in the temporal superior quadrant. On Magnetic Resonance Imaging (MRI, compression of the optic nerve by a displaced silicone encircling band inferior nasally in combination with a swollen episcleral hydrogel explant was observed. Surgical removal of the hydrogel explant and silicone encircling band was uneventful and resulted in improvement of visual acuity and visual field loss. Conclusions and importance: This is the first report on compressive optic neuropathy caused by swelling of a hydrogel explant resulting in a dislocated silicone encircling band. The loss of visual function resolved upon removal of the explant and encircling band. Keywords: Retinal detachment, Tilted disc, Optic neuropathy, Miragel, Explant, Encircling band

  12. The CoSMOS L-band experiment in Southeast Australia

    DEFF Research Database (Denmark)

    Saleh, K.; Kerr, Y.H.; Boulet, G.

    2007-01-01

    The CoSMOS (Campaign for validating the Operation of the Soil Moisture and Ocean Salinity mission) campaign was conducted during November of 2005 in the Goulburn River Catchment, in SE Australia. The main objective of CoSMOS was to obtain a series of L-band measurements from the air in order...... the importance of dew and interception for soil moisture retrievals. This paper summarises the campaign activities, and presents progress on the analysis of the CoSMOS data set....

  13. Electrical properties and band structures of Pb1-x Snx Te alloys

    International Nuclear Information System (INIS)

    Ocio, Miguel

    1972-01-01

    Both p type alloys Pb 0.72 Sn 0.28 Te and Pb 0.53 Sn 0.47 Te have been studied in the present work. The main obtained results are the following: the materials have a two-valence band structure, the first band following non-parabolic Cohen's dispersion law; at low temperatures, carriers are scattered by ionized impurities; the Coulomb potentials being screened almost completely, impurities act like neutral centers. At room temperature, scattering by acoustic modes can explain lattice mobility behavior; reversing of the thermo-power, for samples with carrier densities of about 10 20 cm -3 , is possibly due to inter-band scattering between both valence bands; a very simple picture of the band parameters variations as a function of alloy fraction is suggested. (author) [fr

  14. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    International Nuclear Information System (INIS)

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-01-01

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  15. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  16. Dirac Cones, Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry

    Directory of Open Access Journals (Sweden)

    E. Kalesaki

    2014-01-01

    Full Text Available We study theoretically two-dimensional single-crystalline sheets of semiconductors that form a honeycomb lattice with a period below 10 nm. These systems could combine the usual semiconductor properties with Dirac bands. Using atomistic tight-binding calculations, we show that both the atomic lattice and the overall geometry influence the band structure, revealing materials with unusual electronic properties. In rocksalt Pb chalcogenides, the expected Dirac-type features are clouded by a complex band structure. However, in the case of zinc-blende Cd-chalcogenide semiconductors, the honeycomb nanogeometry leads to rich band structures, including, in the conduction band, Dirac cones at two distinct energies and nontrivial flat bands and, in the valence band, topological edge states. These edge states are present in several electronic gaps opened in the valence band by the spin-orbit coupling and the quantum confinement in the honeycomb geometry. The lowest Dirac conduction band has S-orbital character and is equivalent to the π-π^{⋆} band of graphene but with renormalized couplings. The conduction bands higher in energy have no counterpart in graphene; they combine a Dirac cone and flat bands because of their P-orbital character. We show that the width of the Dirac bands varies between tens and hundreds of meV. These systems emerge as remarkable platforms for studying complex electronic phases starting from conventional semiconductors. Recent advancements in colloidal chemistry indicate that these materials can be synthesized from semiconductor nanocrystals.

  17. Relativistic band-structure calculations for CeTIn sub 5 (T=Ir and Co) and analysis of the energy bands by using tight-binding method

    CERN Document Server

    Maehira, T; Ueda, K; Hasegawa, A

    2003-01-01

    In order to investigate electronic properties of recently discovered heavy fermion superconductors CeTIn sub 5 (T=Ir and Co), we employ the relativistic linear augmented-plane-wave (RLAPW) method to clarify the energy band structures and Fermi surfaces of those materials. The obtained energy bands mainly due to the large hybridization between Ce 4 f and In 5 p states well reproduce the Fermi surfaces consistent with the de Haas-van Alphen experimental results. However, when we attempt to understand magnetism and superconductively in CeTIn sub 5 from the microscopic viewpoint, the energy bands obtained in the RLAPW method are too complicated to analyze the system by further including electron correlations. Thus, it is necessary to prepare a more simplified model, keeping correctly the essential characters of the energy bands obtained in the band-structure calculation. For the purpose, we construct a tight-binding model for CeTIn sub 5 by including f-f and p-p hoppings as well as f-p hybridization, which are ex...

  18. New half-metallic materials with an alkaline earth element

    International Nuclear Information System (INIS)

    Kusakabe, Koichi; Geshi, Masaaki; Tsukamoto, Hidekazu; Suzuki, Naoshi

    2004-01-01

    New candidates for half-metallic materials were theoretically designed recently by Geshi et al. The materials are calcium pnictides, i.e. CaP, CaAs and CaSb. When the zinc-blende structure was assumed, these compounds showed half-metallic electronic band-structure, in which a curious flat band was found. To explain this magnetism, we investigated characters of orbitals on this flat band of CaAs. The hybridization of p states of As with d states of Ca is shown to be essential for formation of a flat band made of localized orbitals. The appearance of complete spin polarization in the flat band suggests that the flat-band mechanism is relevant for the ferromagnetism. A connection from the first-principles result to a solvable Hubbard model with a flat band is discussed

  19. Effects of texture on shear band formation in plane strain tension/compression and bending

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2007-01-01

    In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain ...... shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed....

  20. High Thermoelectric Performance by Convergence of Bands in IV-VI Semiconductors, Heavily Doped PbTe, and Alloys/Nanocomposites

    Science.gov (United States)

    Snyder, G. Jeffrey (Inventor); Pei, Yanzhong (Inventor)

    2015-01-01

    The present invention teaches an effective mechanism for enhancing thermoelectric performance through additional conductive bands. Using heavily doped p-PbTe materials as an example, a quantitative explanation is disclosed, as to why and how these additional bands affect the figure of merit. A high zT of approaching 2 at high temperatures makes these simple, likely more stable (than nanostructured materials) and Tl-free materials excellent for thermoelectric applications.

  1. Impact ionisation rate calculations in wide band gap semiconductors

    International Nuclear Information System (INIS)

    Harrison, D.

    1998-09-01

    Calculations of band-to-band impact ionisation rates performed in the semi-classical Fermi's Golden Rule approximation are presented here for the semiconductors GaAs, In 0.53 Ga 0.47 As and Si 0.5 Ge 0.5 at 300K. The crystal band structure is calculated using the empirical pseudopotential method. To increase the speed with which band structure data at arbitrary k-vectors can be obtained, an interpolation scheme has been developed. Energies are quadratically interpolated on adapted meshes designed to ensure accuracy is uniform throughout the Brillouin zone, and pseudowavefunctions are quadratically interpolated on a regular mesh. Matrix elements are calculated from the pseudowavefunctions, and include the terms commonly neglected in calculations for narrow band gap materials and an isotropic approximation to the full wavevector and frequency dependent dielectric function. The numerical integration of the rate over all distinct energy and wavevector conserving transitions is performed using two different algorithms. Results from each are compared and found to be in good agreement, indicating that the algorithms are reliable. The rates for electrons and holes in each material are calculated as functions of the k-vector of the impacting carriers, and found to be highly anisotropic. Average rates for impacting carriers at a given energy are calculated and fitted to Keldysh-type expressions with higher than quadratic dependence of the rate on energy above threshold being obtained in all cases. The average rates calculated here are compared to results obtained by other workers, with reasonable agreement being obtained for GaAs, and poorer agreement obtained for InGaAs and SiGe. Possible reasons for the disagreement are investigated. The impact ionisation thresholds are examined and k-space and energy distributions of generated carriers are determined. The role of threshold anisotropy, variation in the matrix elements and the shape of the bands in determining

  2. A comprehensive evaluation of the toxicology of experimental cigarettes manufactured with banded papers.

    Science.gov (United States)

    Werley, Michael S; Jerome, Ann M; DeSoi, Darren J; Coggins, Christopher R E; Oldham, Michael J; McKinney, Willie J

    2013-01-01

    To comply with state requirements, cigarette manufacturers have added low-permeability bands to the cigarette paper. These bands can extinguish the cigarette when it is no longer being puffed by a smoker. This study was conducted to evaluate the toxicology resulting from the addition of different types of bands to experimental cigarettes. A battery of assays that are typically used in toxicology studies with cigarette smoke, namely smoke chemistry, in vitro mutagenicity and cytotoxicity, and inhalation studies with rats, were used to evaluate different band characteristics added to cigarette paper. Although differences in the amount of band material was associated with an increase in some metals measured in mainstream tobacco smoke, it was not dose responsive to any band design parameter (base paper permeability, band width, band spacing, band chalk amount, or citrate). Occasional, minor differences were produced by the different types of bands; overall, there was no increased toxicity. Although there were increases and decreases in some mainstream smoke constituents, the in vitro and in vivo testing performed demonstrated that low-permeability bands on cigarettes do not modify the toxicity of smoke inhaled by smokers.

  3. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available Circularly polarized (CP dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz for lower band and 40 MHz (3.29 GHz to 3.33 GHz for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.

  4. Conduction-band valley spin splitting in single-layer H-T l2O

    Science.gov (United States)

    Ma, Yandong; Kou, Liangzhi; Du, Aijun; Huang, Baibiao; Dai, Ying; Heine, Thomas

    2018-02-01

    Despite numerous studies, coupled spin and valley physics is currently limited to two-dimensional (2D) transition-metal dichalcogenides (TMDCs). Here, we predict an exceptional 2D valleytronic material associated with the spin-valley coupling phenomena beyond 2D TMDCs—single-layer (SL) H-T l2O . It displays large valley spin splitting (VSS), significantly larger than that of 2D TMDCs, and a finite band gap, which are both critically attractive for the integration of valleytronics and spintronics. More importantly, in sharp contrast to all the experimentally confirmed 2D valleytronic materials, where the strong valence-band VSS (0.15-0.46 eV) supports the spin-valley coupling, the VSS in SL H-T l2O is pronounced in its conduction band (0.61 eV), but negligibly small in its valence band (21 meV), thus opening a way for manipulating the coupled spin and valley physics. Moreover, SL H-T l2O possesses extremely high carrier mobility, as large as 9.8 ×103c m2V-1s-1 .

  5. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  6. Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device.

    Science.gov (United States)

    Saha, Sanjit; Jana, Milan; Khanra, Partha; Samanta, Pranab; Koo, Hyeyoung; Murmu, Naresh Chandra; Kuila, Tapas

    2015-07-08

    Nanostructured hexagonal boron nitride (h-BN)/reduced graphene oxide (RGO) composite is prepared by insertion of h-BN into the graphene oxide through hydrothermal reaction. Formation of the super lattice is confirmed by the existence of two separate UV-visible absorption edges corresponding to two different band gaps. The composite materials show enhanced electrical conductivity as compared to the bulk h-BN. A high specific capacitance of ∼824 F g(-1) is achieved at a current density of 4 A g(-1) for the composite in three-electrode electrochemical measurement. The potential window of the composite electrode lies in the range from -0.1 to 0.5 V in 6 M aqueous KOH electrolyte. The operating voltage is increased to 1.4 V in asymmetric supercapacitor (ASC) device where the thermally reduced graphene oxide is used as the negative electrode and the h-BN/RGO composite as the positive electrode. The ASC exhibits a specific capacitance of 145.7 F g(-1) at a current density of 6 A g(-1) and high energy density of 39.6 W h kg(-1) corresponding to a large power density of ∼4200 W kg(-1). Therefore, a facile hydrothermal route is demonstrated for the first time to utilize h-BN-based composite materials as energy storage electrode materials for supercapacitor applications.

  7. High-order harmonic generation from a two-dimensional band structure

    Science.gov (United States)

    Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You

    2018-04-01

    In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.

  8. Band gap engineering of BC2N for nanoelectronic applications

    Science.gov (United States)

    Lim, Wei Hong; Hamzah, Afiq; Ahmadi, Mohammad Taghi; Ismail, Razali

    2017-12-01

    The BC2N as an example of boron-carbon-nitride (BCN), has the analogous structure as the graphene and boron nitride. It is predicted to have controllable electronic properties. Therefore, the analytical study on the engineer-able band gap of the BC2N is carried out based on the schematic structure of BC2N. The Nearest Neighbour Tight Binding (NNTB) model is employed with the dispersion relation and the density of state (DOS) as the main band gap analysing parameter. The results show that the hopping integrals having the significant effect on the band gap, band structure and DOS of BC2N nanowire (BC2NNW) need to be taken into consideration. The presented model indicates consistent trends with the published computational results around the Dirac points with the extracted band gap of 0.12 eV. Also, it is distinguished that wide energy gap of boron nitride (BN) is successfully narrowed by this carbon doped material which assures the application of BC2N on the nanoelectronics and optoelectronics in the near future.

  9. What band rocks the MTB? (Invited)

    Science.gov (United States)

    Kind, J.; García-Rubio, I.; Gehring, A. U.

    2013-12-01

    Magnetotactic bacteria (MTB) are a polyphyletic group of bacteria that have been found in marine and lacustrine environments and soils [e.g. 1]. The hallmark of MTB is their intracellular formation of magnetosomes, single-domain ferrimagnetic particles that are aligned in chains. The chain configuration generates a strong magnetic dipole, which is used as magnetic compass to move the MTB into their favorable habit. The term band corresponds to a frequency window of microwaves in the gigahertz (GHz) range. Ferromagnetic resonance (FMR) spectroscopy uses the microwave absorption in a magnetic field to analyze the anisotropy properties and the domain state of magnetic materials. Specific microwave frequency causes absorption in a characteristic magnetic field range. For the investigation of MTB we use S-band (4.02 GHz), X-band (9.47 GHz), and Q-band (34.16 GHz). Experiments on cultured MTB and on sediment samples of Holocene age showed that absorption in X- and Q-band occurs when the sample is in a saturated or nearly saturated state [2, 3]. By contrast, absorption in the S-band appears in lower magnetic fields, where the sample is far from saturation. All FMR spectra show two distinct low-field features that can be assigned to magnetite particles in chains, aligned parallel and perpendicular to the external magnetic field. The detailed separation of the parallel and perpendicular components in the bulk samples is hampered, because of the random orientation of the chains in the sample. The comparison of S-, X-, and Q-band shows that the lower the frequency the better the separation of the components. In the S-band FMR spectroscopy, the separation of chains parallel to the external magnetic field is supported by the internal field of the sample. This field is caused by the remanence that contributes to the external magnetic field to fulfill the resonance condition [3,4]. Considering the different FMR responses, it can be postulated that a lower microwave frequency

  10. Progress in III-V materials technology

    Science.gov (United States)

    Grant, Ian R.

    2004-12-01

    Compound semiconductors, in the form of GaAs and InP have achieved major commercial significance in areas of application such as mobile communications, displays and telecoms and offer a versatility of function beyond the capabilities of Si. III-V compounds, and in particular GaAs, have since their early development been the subject of defence related interest. Support from this sector established the basic materials technologies and nurtured development up until their commercial breakthrough into consumer products. GaAs, for example, now provides essential components for mobile phones and CD / DVD players. An overview is presented of the crystal growth and processing methods used in the manufacture of these materials. Current state of the art characteristics on crystal form and quality are discussed, together with the evolution of single crystal growth techniques. Consideration is given to how these principal compounds together with the minor materials, InSb, GaSb and InAs are employed in diverse applications over a broad spectral range, together with information on markets and future perspectives.

  11. Band structure analysis on olivine LiMPO{sub 4} and delithiated MPO{sub 4} (M = Fe, Mn) cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ting-Feng, E-mail: tfyihit@163.com [School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002 (China); Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Fang, Zi-Kui [School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002 (China); Xie, Ying, E-mail: xieying@hlju.edu.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Zhu, Yan-Rong [School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002 (China); Dai, Changsong [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2014-12-25

    Highlights: • The conductivity of Li{sub x}MPO{sub 4} were discussed relying on first principles technique. • Relationship between structure properties and microscopic bonding was addressed. • A mechanism responsible for the structural instability of MnPO{sub 4} was proposed. - Abstract: Olivine compounds, i.e. Li{sub x}MPO{sub 4} (M = Fe, Mn), are now regarded as the most competitive positive-electrode materials for future applications of large-scale rechargeable lithium batteries. There are significant interests in their electronic structures, because the microscopic information is very important for elucidating the structural stability, electrochemical performance, and electronic conductivity issues of batteries for high-rate applications. The structure stabilities of LiMPO{sub 4} and MPO{sub 4} (M = Fe, Mn) cathode materials are analyzed according to first principles calculations. The result shows that LiMPO{sub 4} (M = Fe, Mn) materials exhibit good structure stability, which is mainly contributed to the extremely strong P-O covalent bonds. Furthermore, the introduction of P ions is also helpful for the chemical potential decrease of the materials. The band structure analysis reveals that the electronic conductance of LiFePO{sub 4}, LiMnPO{sub 4}, and FePO{sub 4} is poor, while MnPO{sub 4} possesses half metallic property. According to the electron distribution, it can be confirmed that Mn-O(II) bonds are weakened after Li{sup +} extractions, which is different from the variation trend of Fe-O(II) bonds. The decrease of Mn-O(II) bond strength is thus favorable for the phase transformation observed in experiments.

  12. One-stage release of congenital constriction band in lower limb from new born to 3 years

    Directory of Open Access Journals (Sweden)

    Das Sakti

    2010-01-01

    Full Text Available Background: Congenital constriction band is the most common cause of terminal congenital malformation of a limb and lymphoedema. Superficial bands do not need any treatment, but deeper bands are managed with excision and Z-plasty. The circumferential bands are released in two to three stages to prevent vascular compromise. The purpose of this study was to present the outcome of one-stage release. Materials and Methods: Nineteen children, 12 boys and 7 girls, with 24 congenital constriction bands constituted the clinical material. The mean age at presentation was 57 days (range 12 hours to 3 years Band was unilateral in 14 and bilateral in five limbs. In unilateral cases, right side was involved in nine cases and left side in five. The constriction band is seen at the junction of middle and distal third. The patients having constriction bands in lower limbs and age less than 3 years were included in the study. One stage circumferential release of congenital constriction band was performed. Our youngest patient was operated at the age of six months. Club feet, (n=8 and lymphedema (n=7 were associated anomalies. Club feet and band were released in one stage in three limbs. The results were evaluated by criteria described by Joseph Upton and Cissy Tan. Results: There were 18 excellent, six satisfactory results. No wound problem occurred. No vascular compromise was noted during or after the procedure. On follow-up, distal swelling reduced. Conclusion: One-stage circumferential release of congenital constriction band in lower limbs with or without lymphodema is a safe and easy procedure.

  13. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  14. Convergence of valence bands for high thermoelectric performance for p-type InN

    International Nuclear Information System (INIS)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-01-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of Z e T is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  15. Dual-band frequency selective surface with large band separation and stable performance

    Science.gov (United States)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  16. One-stage release of congenital constriction band in lower limb from new born to 3 years

    OpenAIRE

    Das, Sakti Prasad; Sahoo, PK; Mohanty, RN; Das, SK

    2010-01-01

    Background: Congenital constriction band is the most common cause of terminal congenital malformation of a limb and lymphoedema. Superficial bands do not need any treatment, but deeper bands are managed with excision and Z-plasty. The circumferential bands are released in two to three stages to prevent vascular compromise. The purpose of this study was to present the outcome of one-stage release. Materials and Methods: Nineteen children, 12 boys and 7 girls, with 24 congenital constriction...

  17. FY2009 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-16

    The Propulsion Materials program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines. Projects within the Propulsion Materials Program address materials concerns that directly impact the critical technical barriers in each of these programs—barriers such as fuel efficiency, thermal management, emissions reduction, and reduced manufacturing costs.

  18. Classification of intelligence quotient via brainwave sub-band power ratio features and artificial neural network.

    Science.gov (United States)

    Jahidin, A H; Megat Ali, M S A; Taib, M N; Tahir, N Md; Yassin, I M; Lias, S

    2014-04-01

    This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Observation of large photonic band gaps and defect modes in one-dimensional networked waveguides

    CERN Document Server

    Mir, A; Vasseur, J O; Djafari-Rouhani, B; Fettouhi, N; Boudouti, E H E; Dobrzynski, L; Zemmouri, J

    2003-01-01

    The photonic band structures and transmission spectra of serial loop structures (SLSs), made of loops pasted together with segments of finite length, are investigated experimentally and theoretically. These monomode structures, composed of one-dimensional dielectric materials, may exhibit large stop bands where the propagation of electromagnetic waves is forbidden. The width of these band gaps depends on the geometrical and compositional parameters of the structure and may be drastically increased in a tandem geometry made up of several successive SLSs which differ in their physical characteristics. These SLSs may have potential applications as ultrawide-band filters.

  20. Surface composition of pull-apart bands in Argadnel Regio, Europa: Evidence of localized cryovolcanic resurfacing during basin formation

    Science.gov (United States)

    Prockter, Louise M.; Shirley, James H.; Dalton, James B.; Kamp, L.

    2017-03-01

    We combine Galileo Solid State Imager (SSI) and Near-Infrared Mapping Spectrometer (NIMS) data to investigate the composition of pull-apart bands in Europa's Argadnel Regio. Using spectral linear mixture modeling employing cryogenic laboratory reference spectra, we find that bands of intermediate age ("grey" bands) are compositionally distinct from bands that are stratigraphically younger ("dark" bands). The grey bands have higher abundances of larger ice grains and lower abundances of hydrated salts than the dark bands; both of these tendencies are statistically significant at the 1% level. The grey and dark bands have similar abundances of hexahydrite, a material which is relatively stable under irradiation; however, the derived abundances of frozen magnesium sulfate brine and of mirabilite, which are more susceptible to fragmentation by radiation, are significantly higher in the dark bands than in the grey bands. These results are consistent with a physical model in which the differences in composition and in ice grain sizes are linked to space weathering and radiolytic processing levels; the grey bands have presumably undergone higher levels of processing, due to being exposed on Europa's surface for a longer period of time. One prominent wedge-shaped band exhibits an anomalous albedo variation across its northern portion, appearing dark in its top third, and grey in its southernmost two-thirds. We find that the dark part of the band has a modeled composition that is in-family with other dark bands, while the grey portion has a modeled composition that is indistinguishable from other grey bands in the study area. Because these variations cannot easily be attributed to the band's formation mechanism (bands open sequentially along a central axis), we surmise that the northern part has been resurfaced, probably in response to the formation of a large topographic basin that cuts through the band. Faulting accompanying basin formation may provide conduits allowing

  1. SHARPENDING OF THE VNIR AND SWIR BANDS OF THE WIDE BAND SPECTRAL IMAGER ONBOARD TIANGONG-II IMAGERY USING THE SELECTED BANDS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2018-04-01

    Full Text Available The Tiangong-II space lab was launched at the Jiuquan Satellite Launch Center of China on September 15, 2016. The Wide Band Spectral Imager (WBSI onboard the Tiangong-II has 14 visible and near-infrared (VNIR spectral bands covering the range from 403–990 nm and two shortwave infrared (SWIR bands covering the range from 1230–1250 nm and 1628–1652 nm respectively. In this paper the selected bands are proposed which aims at considering the closest spectral similarities between the VNIR with 100 m spatial resolution and SWIR bands with 200 m spatial resolution. The evaluation of Gram-Schmidt transform (GS sharpening techniques embedded in ENVI software is presented based on four types of the different low resolution pan band. The experimental results indicated that the VNIR band with higher CC value with the raw SWIR Band was selected, more texture information was injected the corresponding sharpened SWIR band image, and at that time another sharpened SWIR band image preserve the similar spectral and texture characteristics to the raw SWIR band image.

  2. Tunable band gap emission and surface passivation of germanium nanocrystals synthesized in the gas phase

    NARCIS (Netherlands)

    Wheeler, LM; Levij, L.M.; Kortshagen, U.R.

    2013-01-01

    The narrow bulk band gap and large exciton Bohr radius of germanium (Ge) make it an attractive material for optoelectronics utilizing band-gap-tunable photoluminescence (PL). However, realization of PL due to quantum confinement remains scarcely reported. Instead, PL is often observed from surface

  3. Dual-band frequency selective surface with large band separation and stable performance

    International Nuclear Information System (INIS)

    Zhou Hang; Qu Shao-Bo; Lin Bao-Qin; Wang Jia-Fu; Ma Hua; Zhang Jie-Qiu; Peng Wei-Dong; Bai Peng; Wang Xu-Hua; Xu Zhuo

    2012-01-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Development and studies of Cd_1_−_xMg_xTe thin films with varying band gaps to understand the Mg incorporation and the related material properties

    International Nuclear Information System (INIS)

    Palomera, Roger C.; Martínez, Omar S.; Pantoja-Enriquez, J.; Mathews, N.R.; Reyes-Banda, Martín G.; Krishnan, B.; Mathew, X.

    2017-01-01

    Highlights: • Cd_1_−_xMg_xTe films with band gap in the range 1.47–2.41 eV is obtained. • Cd substitution by Mg was confirmed with SIMS and XPS analysis. • Cd_1_−_xMg_xTe films maintained CdTe structural features but with higher band gap. • Mg incorporation in CdTe inhibited grain growth. - Abstract: In this paper we report a systematic work involving the development of Cd_1_−_xMg_xTe thin films by co-evaporation of CdTe and Mg. The evaporation rate of both materials were adjusted to obtain ternary films of varying stoichiometry and hence the band gap. We have deposited films with band gap ranging from 1.47 to 2.41 eV. The films were characterized for structural, morphological, optical, opto-electronic, and spectroscopic properties. The film stoichiometry was studied across the thickness using SIMS data. SEM images showed that the grain size has a dependence on Mg content in the film, which inhibits the grain growth. The structural parameters showed a systematic dependence on Mg content in the film, however, there was no noticeable change in the XRD reflections with respect that of pure CdTe for lower concentrations of Mg. XPS analysis shed light on the incorporation of Mg further supporting the band gap variations observed with the UV–Vis spectroscopic studies. The photoresponse of the film was affected by Mg incorporation. Prototype devices of the type Cd_1_−_XMg_xTe/CdS were fabricated and the results are discussed.

  5. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, J. Thomas [Washington State Univ., Pullman, WA (United States)

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  6. Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors

    International Nuclear Information System (INIS)

    Shih, Chun-Hsing; Dang Chien, Nguyen

    2014-01-01

    Low-bandgap semiconductors, such as InAs and InSb, are widely considered to be ideal for use in tunnel field-effect transistors to ensure sufficient on-current boosting at low voltages. This work elucidates the physical and mathematical considerations of applying conventional band-to-band tunneling models in low-bandgap semiconductors, and presents a new analytical alternative for practical use. The high-bandgap tunneling generates most at maximum field region with shortest tunnel path, whereas the low-bandgap generations occur dispersedly because of narrow tunnel barrier. The local electrical field associated with tunneling-electron numbers dominates in low-bandgap materials. This work proposes decoupled electric-field terms in the pre-exponential factor and exponential function of generation-rate expressions. Without fitting, the analytical results and approximated forms exhibit great agreements with the sophisticated forms both in high- and low-bandgap semiconductors. Neither nonlocal nor local field is appropriate to be used in numerical simulations for predicting the tunneling generations in a variety of low- and high-bandgap semiconductors

  7. Band structure, band offsets, substitutional doping, and Schottky barriers of bulk and monolayer InSe

    Science.gov (United States)

    Guo, Yuzheng; Robertson, John

    2017-09-01

    We present a detailed study of the electronic structure of the layered semiconductor InSe. We calculate the band structure of the monolayer and bulk material using density functional theory, hybrid functionals, and G W . The band gap of the monolayer InSe is calculated to be 2.4 eV in screened exchange hybrid functional, close to the experimental photoluminescence gap. The electron affinities and band offsets are calculated for vertical stacked-layer heterostructures, and are found to be suitable for tunnel field effect transistors (TFETs) in combination with WS e2 or similar. The valence-band edge of InSe is calculated to lie 5.2 eV below the vacuum level, similar to that for the closed shell systems HfS e2 or SnS e2 . Hence InSe would be suitable to act as a p -type drain in the TFET. The intrinsic defects are calculated. For Se-rich layers, the Se adatom (interstitial) is found to be the most stable defect, whereas for In-rich layers, the Se vacancy is the most stable for the neutral state. Antisites tend to have energies just above those of vacancies. The Se antisite distorts towards a bond-breaking distortion as in the EL2 center of GaAs. Both substitutional donors and acceptors are calculated to be shallow, and effective dopants. They do not reconstruct to form nondoping configurations as occurs in black phosphorus. Finally, the Schottky barriers of metals on InSe are found to be strongly pinned by metal induced gap states (MIGS) at ˜0.5 eV above the valence-band edge. Any interfacial defects would lead to a stronger pinning at a similar energy. Overall, InSe is an effective semiconductor combining the good features of 2D (lack of dangling bonds, etc.) with the good features of 3D (effective doping), which few others achieve.

  8. Ab initio calculations of cross luminescence materials

    International Nuclear Information System (INIS)

    Kanchana, V.

    2016-01-01

    Abintio calculations have been performed to study the structural, electronic, and optical properties of ABX 3 (A=alkali, B=alkaline-earth, and X=halide) compounds. The ground state properties are calculated using the pseudopotential method with the inclusion of van der Waals interaction, which we find inevitable in reproducing the experimental structure properties in alkali iodides because of its layered structure. All calculations were performed using the Full-Potential Linearized Augmented Plane Wave method. The band structures are plotted with various functionals and we find the newly developed Tran and Blaha modified Becke-Johnson potential to improve the band gap significantly. The optical properties such as complex dielectric function, refractive index, and absorption spectra are calculated which clearly reveal the optically isotropic nature of these materials though being structurally anisotropic, which is the key requirement for ceramic scintillators. Cross luminescence materials are very interesting because of its fast decay. One of the major criteria for the cross luminescence to happen is the energy difference between valence band and next deeper core valence band being lesser when compared to energy gap of the compound, so that radiative electronic transition may occur between valence band and core valence band. We found this criteria to be satisfied in all the studied compounds leading to cross luminescence except for KSrI 3 , RbSrI 3 . The present study suggest that among the six compounds studied, CsSrI 3 , CsMgCl 3 , CsCaCl 3 , and CsSrCl 3 compounds are cross luminescence materials, which is well explained from the band structure, optical properties calculations. Chlorides are better scintillators that iodides and CsMgCl 3 is found to be promising one among the studied compounds. Apart from these materials we have also discussed electronic structure and optical properties of other scintillator compounds. (author)

  9. Electron Band Alignment at Interfaces of Semiconductors with Insulating Oxides: An Internal Photoemission Study

    Directory of Open Access Journals (Sweden)

    Valeri V. Afanas'ev

    2014-01-01

    Full Text Available Evolution of the electron energy band alignment at interfaces between different semiconductors and wide-gap oxide insulators is examined using the internal photoemission spectroscopy, which is based on observations of optically-induced electron (or hole transitions across the semiconductor/insulator barrier. Interfaces of various semiconductors ranging from the conventional silicon to the high-mobility Ge-based (Ge, Si1-xGex, Ge1-xSnx and AIIIBV group (GaAs, InxGa1-xAs, InAs, GaP, InP, GaSb, InSb materials were studied revealing several general trends in the evolution of band offsets. It is found that in the oxides of metals with cation radii larger than ≈0.7 Å, the oxide valence band top remains nearly at the same energy (±0.2 eV irrespective of the cation sort. Using this result, it becomes possible to predict the interface band alignment between oxides and semiconductors as well as between dissimilar insulating oxides on the basis of the oxide bandgap width which are also affected by crystallization. By contrast, oxides of light elements, for example, Be, Mg, Al, Si, and Sc exhibit significant shifts of the valence band top. General trends in band lineup variations caused by a change in the composition of semiconductor photoemission material are also revealed.

  10. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    International Nuclear Information System (INIS)

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R.

    2016-01-01

    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectra of Sn-doped In 2 O 3 (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In 2 O 3 single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.

  11. TASCC Division progress report

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1992-10-01

    The TASCC (Tandem Accelerator-Superconducting Cyclotron) facility is devoted to developing and providing beams for an experimental program of basic nuclear research. Beam was on target for 2901 hours during the period of interest. The cyclotron provided beam for 524 hours, and tandem beams were used for a total of 3940 hours. The most exciting experimental result was the first evidence of a rotational band with the characteristics of hyperdeformation: a ridge-valley structure in 152 Dy. This progress report details experimental results and instrumentation and facility development over the period. (L.L.) (refs., tabs., figs.)

  12. FY2010 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Patrick B. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Schutte, Carol L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gibbs, Jerry L. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-01-01

    The Propulsion Materials Technology actively supports the energy security and reduction of greenhouse emissions goals of the Vehicle Technologies Program by developing advanced materials that enable development of higher efficiency powertrains for ground transportation. Propulsion Materials works closely with the other disciplines within the VT Program to identify the materials properties essential for the development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light duty powertrains.

  13. Conduction band edge effective mass of La-doped BaSnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    James Allen, S., E-mail: allen@itst.ucsb.edu; Law, Ka-Ming [Physics Department, University of California, Santa Barbara, California 93106-5100 (United States); Raghavan, Santosh; Schumann, Timo; Stemmer, Susanne [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-06-20

    BaSnO{sub 3} has attracted attention as a promising material for applications requiring wide band gap, high electron mobility semiconductors, and moreover possesses the same perovskite crystal structure as many functional oxides. A key parameter for these applications and for the interpretation of its properties is the conduction band effective mass. We measure the plasma frequency of La-doped BaSnO{sub 3} thin films by glancing incidence, parallel-polarized resonant reflectivity. Using the known optical dielectric constant and measured electron density, the resonant frequency determines the band edge electron mass to be 0.19 ± 0.01. The results allow for testing band structure calculations and transport models.

  14. The geochemistry of banded iron formations in the sukumaland ...

    African Journals Online (AJOL)

    The geochemistry of banded iron formations in the sukumaland greenstone belt of Geita, northern Tanzania: evidence for mixing of hydrothermal and clastic ... the hydrothermal deposits have been contaminated, by up to 20% by weight, with detrital material having a composition similar to modern deep-sea pelagic clays.

  15. Safety Audit of Band Saw in Manufacturing Organization

    Directory of Open Access Journals (Sweden)

    Martin Kotus

    2016-01-01

    Full Text Available This paper deals with the verifying of safety status for a selected device in the manufacturing organization. The safety audit of band saw was realized in the manufacturing process. Safety requirements of the machinery for cutting material are given in the standard STN 20 0723. This standard from the point of view of the work safety defines selected requirements for sawing, cutting compounds and the using of prevention to work with cutting compounds. Among the basic requirements belong material clamping and security services for cut, band saws and jaws wear, as well as the required protective cover. The efficiency of audit in percentage was evaluated by the level of fulfilment as follows: fulfilled (A mostly fulfilled (AB, conditionally fulfilled (B or unfulfilled (C. Through safety audit, were defined the weaknesses that increase the degree of employee health hazard. There were proposed corrective actions to eliminate weaknesses and retraining employees. It is still needed to perform the safety audit due to reduction of the probability of occupational injury.

  16. Design and analysis of doped left-handed materials

    International Nuclear Information System (INIS)

    Zhang Hongxin; Bao Yongfang; Chen Tianming; Lü Yinghua; Wang Haixia

    2008-01-01

    We devise three sorts of doped left-handed materials (DLHMs) by introducing inductors and capacitors into the traditional left-handed material (LHM) as heterogeneous elements. Some new properties are presented through finite-difference time-domain (FDTD) simulations. On the one hand, the resonance in the traditional LHM is weakened and the original pass band is narrowed by introducing inductors. On the other hand, the original pass band of the LHM can be shifted and a new pass band can be generated by introducing capacitors. When capacitors and inductors are introduced simultaneously, the resonance of traditional LHM is somewhat weakened and the number of original pass bands as well as its bandwidth can be changed

  17. A numerical model for adiabatic shear bands with application to a thick-walled cylinder in 304 stainless steel

    International Nuclear Information System (INIS)

    Liu, Mingtao; Li, Yongchi; Hu, Xiuzhang; Hu, Haibo

    2014-01-01

    The formation of an adiabatic shear band (ASB) experiences three stages: stable plastic flow, nucleation and a fluid-like stage. For different stages, the microstructures of the material undergo great changes. The mechanical behavior of the material in each stage has its own unique characteristics. To describe these characteristics, a multi-stage model for the shear band is proposed. For the stable plastic flow stage, a modified adiabatic J–C constitutive relationship is used. For the nucleation stage, the effects of work hardening and temperature softening are described by a power function of plastic strain. A Newtonian fluid model is used for the fluid-like stage. The formation of a shear band is an instability process. Various defects in the material are perturbation sources, which change the local yield stress. To describe the disturbances, a probability factor is introduced into the macroscopic constitutive relationship. The yield stress in the material is assumed to obey a Gaussian distribution. The multi-stage model combined with a probability factor is applied to simulate the rupture of thick-walled cylinder in 304 Stainless Steel (304SS). A close agreement is found between the simulation and experimental results, such as the failure mechanism, shear band spacing and propagating velocity of the shear band. By combining the experimental results with the simulation results, the importance of the nucleation stage is emphasized. (paper)

  18. Evaluation of caries progression in dentin treated by fluoride-containing materials using an in-air micro-PIGE and micro-PIXE measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H., E-mail: yhiroko@dent.osaka-u.ac.jp [Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita 565-0871 (Japan); Iwami, Y.; Yagi, K.; Hayashi, M. [Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita 565-0871 (Japan); Komatsu, H.; Okuyama, K.; Matsuda, Y. [Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586 (Japan); Yasuda, K. [The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga 914-0192 (Japan)

    2015-04-01

    It is well-known that fluorine (F) is involved in the progression of caries. The evaluation of caries progression has conventionally been based on the change in mineral content using transverse microradiography (TMR). The purpose of this study was to evaluate the progression of dentinal caries by the change in calcium (Ca) content using Particle-Induced Gamma-ray Emission/Particle-Induced X-ray Emission (PIGE/PIXE) techniques at the Wakasa Wan Energy Research Center. We also assessed the relationship between caries progression rate and the concentration of F penetration into dentin from dental fluoride-containing materials (FCMs). Dentin sections of six extracted human teeth were prepared to obtain various amounts of F uptake using three types of FCMs. F and Ca distribution of specimens were obtained using PIGE/PIXE techniques. After evaluation, the specimens were immersed in 10 ml of demineralizing solution (pH 4.5) to simulate caries attack. To estimate caries progression rates, the same portions of the specimens were evaluated after caries attack treatment using PIGE/PIXE. A negative correlation between the F uptake in dentin and the rate of caries progression was observed. Therefore, caries progression in dentin was reduced by increasing the amount of F uptake from FCMs. This demonstrates that PIGE/PIXE techniques are valuable for estimating caries progression rates.

  19. Evaluation of caries progression in dentin treated by fluoride-containing materials using an in-air micro-PIGE and micro-PIXE measurement system

    International Nuclear Information System (INIS)

    Yamamoto, H.; Iwami, Y.; Yagi, K.; Hayashi, M.; Komatsu, H.; Okuyama, K.; Matsuda, Y.; Yasuda, K.

    2015-01-01

    It is well-known that fluorine (F) is involved in the progression of caries. The evaluation of caries progression has conventionally been based on the change in mineral content using transverse microradiography (TMR). The purpose of this study was to evaluate the progression of dentinal caries by the change in calcium (Ca) content using Particle-Induced Gamma-ray Emission/Particle-Induced X-ray Emission (PIGE/PIXE) techniques at the Wakasa Wan Energy Research Center. We also assessed the relationship between caries progression rate and the concentration of F penetration into dentin from dental fluoride-containing materials (FCMs). Dentin sections of six extracted human teeth were prepared to obtain various amounts of F uptake using three types of FCMs. F and Ca distribution of specimens were obtained using PIGE/PIXE techniques. After evaluation, the specimens were immersed in 10 ml of demineralizing solution (pH 4.5) to simulate caries attack. To estimate caries progression rates, the same portions of the specimens were evaluated after caries attack treatment using PIGE/PIXE. A negative correlation between the F uptake in dentin and the rate of caries progression was observed. Therefore, caries progression in dentin was reduced by increasing the amount of F uptake from FCMs. This demonstrates that PIGE/PIXE techniques are valuable for estimating caries progression rates

  20. The plastic flow localization effect on crystalline material

    International Nuclear Information System (INIS)

    Pajot, A.

    2011-01-01

    Irradiation affects the mechanical properties of materials. In particular, an increase of yield strength followed by a decrease of ductility and a reduction of the elongation to fracture are observed above a threshold irradiation dose. The last two phenomena are correlated with the appearance of bands free of defects (clear bands) in which plastic deformation is confined. These bands also determine accumulation of dislocations at grain boundaries, thereby favouring local grain decohesion and possibly initiating fracture. Clear bands have an important impact on metal resistance, nevertheless our level of understanding is not sufficient to evaluate quantitatively their effect on the loss of ductility and reduction of elongation to fracture that are observed experimentally. A clear band is a microstructural defect, created when loading an irradiated material. Its complex interaction with defects on the nano scale affects the behaviour of the metal at the macroscopic scale. A full understanding implies the application of a multi scale modeling approach. This explains why, even though clear bands have first been

  1. Band 3 Erythrocyte Membrane Protein Acts as Redox Stress Sensor Leading to Its Phosphorylation by p72 Syk

    Directory of Open Access Journals (Sweden)

    Antonella Pantaleo

    2016-01-01

    Full Text Available In erythrocytes, the regulation of the redox sensitive Tyr phosphorylation of band 3 and its functions are still partially defined. A role of band 3 oxidation in regulating its own phosphorylation has been previously suggested. The current study provides evidences to support this hypothesis: (i in intact erythrocytes, at 2 mM concentration of GSH, band 3 oxidation, and phosphorylation, Syk translocation to the membrane and Syk phosphorylation responded to the same micromolar concentrations of oxidants showing identical temporal variations; (ii the Cys residues located in the band 3 cytoplasmic domain are 20-fold more reactive than GSH; (iii disulfide linked band 3 cytoplasmic domain docks Syk kinase; (iv protein Tyr phosphatases are poorly inhibited at oxidant concentrations leading to massive band 3 oxidation and phosphorylation. We also observed that hemichromes binding to band 3 determined its irreversible oxidation and phosphorylation, progressive hemolysis, and serine hyperphosphorylation of different cytoskeleton proteins. Syk inhibitor suppressed the phosphorylation of band 3 also preventing serine phosphorylation changes and hemolysis. Our data suggest that band 3 acts as redox sensor regulating its own phosphorylation and that hemichromes leading to the protracted phosphorylation of band 3 may trigger a cascade of events finally leading to hemolysis.

  2. Modulation of EEG Theta Band Signal Complexity by Music Therapy

    Science.gov (United States)

    Bhattacharya, Joydeep; Lee, Eun-Jeong

    The primary goal of this study was to investigate the impact of monochord (MC) sounds, a type of archaic sounds used in music therapy, on the neural complexity of EEG signals obtained from patients undergoing chemotherapy. The secondary goal was to compare the EEG signal complexity values for monochords with those for progressive muscle relaxation (PMR), an alternative therapy for relaxation. Forty cancer patients were randomly allocated to one of the two relaxation groups, MC and PMR, over a period of six months; continuous EEG signals were recorded during the first and last sessions. EEG signals were analyzed by applying signal mode complexity, a measure of complexity of neuronal oscillations. Across sessions, both groups showed a modulation of complexity of beta-2 band (20-29Hz) at midfrontal regions, but only MC group showed a modulation of complexity of theta band (3.5-7.5Hz) at posterior regions. Therefore, the neuronal complexity patterns showed different changes in EEG frequency band specific complexity resulting in two different types of interventions. Moreover, the different neural responses to listening to monochords and PMR were observed after regular relaxation interventions over a short time span.

  3. Metal-induced gap states in ferroelectric capacitors and its relationship with complex band structures

    Science.gov (United States)

    Junquera, Javier; Aguado-Puente, Pablo

    2013-03-01

    At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.

  4. Importance of non-parabolic band effects in the thermoelectric properties of semiconductors

    Science.gov (United States)

    Chen, Xin; Parker, David; Singh, David J.

    2013-01-01

    We present an analysis of the thermoelectric properties of of n-type GeTe and SnTe in relation to the lead chalcogenides PbTe and PbSe. We find that the singly degenerate conduction bands of semiconducting GeTe and SnTe are highly non-ellipsoidal, even very close to the band edges. This leads to isoenergy surfaces with a strongly corrugated shape that is clearly evident at carrier concentrations well below 0.005 e per formula unit (7–9 × 1019 cm−3 depending on material). Analysis within Boltzmann theory suggests that this corrugation may be favorable for the thermoelectric transport. Our calculations also indicate that values of the power factor for these two materials may well exceed those of PbTe and PbSe. As a result these materials may exhibit n-type performance exceeding that of the lead chalcogenides. PMID:24196778

  5. Progress on the development of NbZr Radio frequency band reject filters

    International Nuclear Information System (INIS)

    Hudak, J.J.; Alper, M.; Cotte, D.; Gardner, C.G.; Harvey, A.

    1983-01-01

    This chapter reports on the design and testing of a tunable superconducting filter element fabricated from Nb25%Zr having a transition temperature of 11 K. The filter element will serve as a component in a multielement filter bank to be cooled to less than 10 K by a two stage Gifford-McMahon refrigerator. A radio frequency (RF) interference rejection system composed of a set of tunable superconducting filter elements is being developed to supplement conventional interference rejection tehcniques. The thermal loading performance of the 8.5 K Gifford-McMahon refrigerator is found to exceed 2 watts at 10 K on the second stage with a 10 watt loading on the first stage. A superconducting filter bank consisting of tunable narrow band RF filters applied to strong interfering signals can be used to match the dynamic range of the RF signal environment to that of the receiving system

  6. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    International Nuclear Information System (INIS)

    Saleh, Navid B.; Milliron, Delia J.; Aich, Nirupam; Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo

    2016-01-01

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  7. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Navid B., E-mail: navid.saleh@utexas.edu [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States); Milliron, Delia J. [McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712 (United States); Aich, Nirupam [Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 (United States); Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States)

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  8. Calculation of the band gap energy of ionic crystals

    International Nuclear Information System (INIS)

    Aguado, A.; Lopez, J.M.; Alonso, J.A.; Ayuela, A.; Rivas S, J.F.; Berrondo, M.

    1998-01-01

    The band gap of alkali halides, alkaline-earth oxides, Al 2 O 3 and SiO 2 crystals has been calculated using the perturbed-ion model supplemented with some assumptions for the treatment of excited states. The gap is calculated in several ways: as a difference between one-electron energy eigenvalues and as a difference between the total energies of appropriate electronic states of the crystal, both at the HF level and with inclusion of Coulomb correlation effects. The results compare well with experimental band gap energies and with other theoretical calculations, suggesting that the picture of bonding and excitation given by the model can be useful in ionic materials. (Author)

  9. Special Purpose Materials annual progress report, October 1, 1979

    International Nuclear Information System (INIS)

    1980-04-01

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (> 10-T) superconducting magnets. It is recognized that there will be numerous materials problems that will arise during the design and construction of large magnetic-fusion energy devices such as the Engineering Test Facility (ETF) and Demonstration Reactor (DEMO). Most of these problems will be specific to a particular design or project and are the responsibility of the project, not the Materials and Radiation Effects Branch. Consequently, the Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  10. Organic Material in the ISM

    Science.gov (United States)

    Pendleton, Yvonne; Morrison, David (Technical Monitor)

    1994-01-01

    Spectra of objects which lie along several lines of sight through the diffuse interstellar medium (ISM) all contain an absorption feature near 3.4 micrometers which has been attributed to saturated aliphatic hydrocarbons on interstellar grains. The similarity of the absorption bands near 3.4 micrometers along different lines of sight reveal that the carrier of this band lies in the diffuse dust. Several materials have been proposed as "fits" to the 3.4 micrometers feature over the years. A comparison of these identifications is presented. A remarkable similarity between the spectrum of the diffuse dust and an organic extract from the Murchison meteorite suggests that some of the interstellar organic material may be preserved in primitive solar system bodies. The optical depth/extinction tau /A(sub v) ratio for the 3.4 micrometers band is higher toward the Galactic center than toward sources which sample the interstellar medium in the local neighborhood. A similar trend has been observed previously for silicates, indicating that the two materials may be simultaneously enhanced in the Galactic center.

  11. Topological magnon bands in ferromagnetic star lattice

    International Nuclear Information System (INIS)

    Owerre, S A

    2017-01-01

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1–3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii–Moriya (DM) spin–orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases. (paper)

  12. Topological magnon bands in ferromagnetic star lattice.

    Science.gov (United States)

    Owerre, S A

    2017-05-10

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.

  13. Recent Progress in Some Amorphous Materials for Supercapacitors.

    Science.gov (United States)

    Li, Qing; Xu, Yuxia; Zheng, Shasha; Guo, Xiaotian; Xue, Huaiguo; Pang, Huan

    2018-05-14

    A breakthrough in technologies having "green" and sustainable energy storage conversion is urgent, and supercapacitors play a crucial role in this area of research. Owing to their unique porous structure, amorphous materials are considered one of the best active materials for high-performance supercapacitors due to their high specific capacity, excellent cycling stability, and fast charging rate. This Review summarizes the synthesis of amorphous materials (transition metal oxides, carbon-based materials, transition metal sulfides, phosphates, hydroxides, and their complexes) to highlight their electrochemical performance in supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain.

    Science.gov (United States)

    Song, Chaoyu; Fan, Fengren; Xuan, Ningning; Huang, Shenyang; Zhang, Guowei; Wang, Chong; Sun, Zhengzong; Wu, Hua; Yan, Hugen

    2018-01-31

    Because of the strong quantum confinement effect, few-layer γ-InSe exhibits a layer-dependent band gap, spanning the visible and near infrared regions, and thus recently has been drawing tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structures. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain and observe a salient shift of photoluminescence peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for four- to eight-layer samples, which is much larger than that for the widely studied MoS 2 monolayer. Density functional theory calculations well reproduce the observed layer-dependent band gaps and the strain effect and reveal that the shift rate decreases with the increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile two-dimensional electronic and optoelectronic material, which is suitable for tunable light emitters, photodetectors, and other optoelectronic devices.

  15. Physically Functional Materials

    DEFF Research Database (Denmark)

    2002-01-01

    acids or peptides having azobenzenes or other physicially functional groups, e.g., photoresponsive groups, as side chains. These compounds may be synthesized using solid phase peptide synthesis techniques. Materials, e.g., thin films, comprising such compounds may be used for optical storage...... of information (holographic data storage), nonlinear optics (NLO), as photoconductors, photonic band-gap materials, electrically conducting materials, electroluminescent materials, piezo-electric materials, pyroelectric materials, magnetic materials, ferromagnetic materials, ferroelectric materials......, photorefractive materials, or materials in which light-induced conformational changes can be produced. Optical anisotropy may reversibly be generated with polarized laser light whereby a hologram is formed. First order diffraction efficiencies of up to around 80% have been obtained....

  16. Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2006-01-01

    We have simulated plastic deformation of a model Mg-Cu metallic glass in order to study shear banding. In uniaxial tension, we find a necking instability occurs rather than shear banding. We can force the latter to occur by deforming in plane strain, forbidding the change of length in one...... of the transverse directions. Furthermore, in most of the simulations a notch is used to initiate shear bands, which lie at a 45 degrees angle to the tensile loading direction. The shear bands are characterized by the Falk and Langer local measure of plastic deformation D-min(2), averaged here over volumes...... observe a slight decrease in density, up to 1%, within the shear band, which is consistent with notions of increased free volume or disorder within a plastically deforming amorphous material....

  17. Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    Yuandong Sun

    2017-01-01

    Full Text Available Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D, compared with bulky silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. In this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs applications is listed and discussed.

  18. Compaction dynamics of crunchy granular material

    Directory of Open Access Journals (Sweden)

    Guillard François

    2017-01-01

    Full Text Available Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  19. Compaction dynamics of crunchy granular material

    Science.gov (United States)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  20. Direct evidence for a systematic evolution of optical band gap and local disorder in Ag, in doped Sb{sub 2}Te phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Krishna Dayal; Sahu, Smriti [Discipline of Electrical Engineering, Indian Institute of Technology Indore (India); Manivannan, Anbarasu [Discipline of Electrical Engineering, Indian Institute of Technology Indore (India); Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Indore (India); Deshpande, Uday Prabhakarrao [UGC-DAE Consortium for Scientific Research, Indore (India)

    2017-12-15

    Rapid and reversible switching properties of Ag, In doped Sb{sub 2}Te (AIST) phase change material is widely used in re-writable optical data storage applications. We report here a systematic evolution of optical band gap (E{sub g}), local disorder (Tauc parameter, β), and Urbach energy (E{sub U}) of AIST material during amorphous to crystalline transition using in situ UV-Vis-NIR spectroscopy. Unlike GeTe-Sb{sub 2}Te{sub 3} (GST) family, AIST material is found to show unique characteristics as evidenced by the presence of direct forbidden transitions. Crystallization is accompanied by a systematic reduction in E{sub g} from 0.50 eV (as-deposited amorphous at 300 K) to 0.18 eV (crystalline at 300 K). Moreover, decrease in E{sub U} (from 272 to 212 meV) and β is also observed during increasing the temperature in the amorphous phase, revealing direct observation of enhancement of the medium-range order and distortion in short range order, respectively. These findings of optical transition would be helpful for distinguishing the unique behavior of AIST material from GST family. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Computational 2D Materials Database

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition-metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin-orbit coupling are calculated in the G(0)W(0) approximation...... and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on trends and correlations in the electronic structure rather than detailed analysis of specific materials. All the computed data is available in an open database......., and comparison is made with different density functional theory descriptions. Pitfalls related to the convergence of GW calculations for two-dimensional (2D) materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment...

  2. Anomalous electrical resistivity and Hall constant of Anderson lattice with finite f-band width

    International Nuclear Information System (INIS)

    Panwar, Sunil; Singh, Ishwar

    2002-01-01

    We study here an extension of the periodic Anderson model by considering finite f-band width. A variational method is used to study the temperature dependence of electronic transport properties of Anderson lattice for different values of the f-band width. The electrical resistivity ρ(T) and Hall constant R H (T) calculated show qualitatively the features experimentally observed in heavy fermion materials. We find that as f-band width increases, the low temperature peak in ρ(T) disappears, while the low-temperature peak in R H (T) becomes sharper. (author)

  3. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have

  4. ARCHER Project: Progress on Material and component activities for the Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) integrated project is a four year project which was started in 2011 as part of the European Commission 7th Framework Programme (FP7) to perform High Temperature Reactor technology R&D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research & Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on ARCHER materials and component activities since the start of the project and underlines some of the main conclusions reached. (author)

  5. On the simulation of kink bands in fiber reinforced composites

    DEFF Research Database (Denmark)

    Sørensen, K.D.; Mikkelsen, Lars Pilgaard; Jensen, H.M.

    2007-01-01

    Simulations of kink band formation in fiber reinforced composites are carried out using the commercial finite element program ABAQUS. A smeared-out, plane constitutive model for fiber reinforced materials is implemented as a user subroutine, and effects of fiber misalignment on elastic and plastic...

  6. Impurity band Mott insulators: a new route to high Tc superconductivity

    Directory of Open Access Journals (Sweden)

    Ganapathy Baskaran

    2008-01-01

    Full Text Available Last century witnessed the birth of semiconductor electronics and nanotechnology. The physics behind these revolutionary developments is certain quantum mechanical behaviour of 'impurity state electrons' in crystalline 'band insulators', such as Si, Ge, GaAs and GaN, arising from intentionally added (doped impurities. The present article proposes that certain collective quantum behaviour of these impurity state electrons, arising from Coulomb repulsions, could lead to superconductivity in a parent band insulator, in a way not suspected before. Impurity band resonating valence bond theory of superconductivity in boron doped diamond, recently proposed by us, suggests possibility of superconductivity emerging from impurity band Mott insulators. We use certain key ideas and insights from the field of high-temperature superconductivity in cuprates and organics. Our suggestion also offers new possibilities in the field of semiconductor electronics and nanotechnology. The current level of sophistication in solid state technology and combinatorial materials science is very well capable of realizing our proposal and discover new superconductors.

  7. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  8. Band offsets in ITO/Ga2O3 heterostructures

    Science.gov (United States)

    Carey, Patrick H.; Ren, F.; Hays, David C.; Gila, B. P.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito

    2017-11-01

    The valence band offsets in rf-sputtered Indium Tin Oxide (ITO)/single crystal β-Ga2O3 (ITO/Ga2O3) heterostructures were measured with X-Ray Photoelectron Spectroscopy using the Kraut method. The bandgaps of the component materials in the heterostructure were determined by Reflection Electron Energy Loss Spectroscopy as 4.6 eV for Ga2O3 and 3.5 eV for ITO. The valence band offset was determined to be -0.78 ± 0.30 eV, while the conduction band offset was determined to be -0.32 ± 0.13 eV. The ITO/Ga2O3 system has a nested gap (type I) alignment. The use of a thin layer of ITO between a metal and the Ga2O3 is an attractive approach for reducing contact resistance on Ga2O3-based power electronic devices and solar-blind photodetectors.

  9. Demosaicking for full motion video 9-band SWIR sensor

    Science.gov (United States)

    Kanaev, Andrey V.; Rawhouser, Marjorie; Kutteruf, Mary R.; Yetzbacher, Michael K.; DePrenger, Michael J.; Novak, Kyle M.; Miller, Corey A.; Miller, Christopher W.

    2014-05-01

    Short wave infrared (SWIR) spectral imaging systems are vital for Intelligence, Surveillance, and Reconnaissance (ISR) applications because of their abilities to autonomously detect targets and classify materials. Typically the spectral imagers are incapable of providing Full Motion Video (FMV) because of their reliance on line scanning. We enable FMV capability for a SWIR multi-spectral camera by creating a repeating pattern of 3x3 spectral filters on a staring focal plane array (FPA). In this paper we present the imagery from an FMV SWIR camera with nine discrete bands and discuss image processing algorithms necessary for its operation. The main task of image processing in this case is demosaicking of the spectral bands i.e. reconstructing full spectral images with original FPA resolution from spatially subsampled and incomplete spectral data acquired with the choice of filter array pattern. To the best of author's knowledge, the demosaicking algorithms for nine or more equally sampled bands have not been reported before. Moreover all existing algorithms developed for demosaicking visible color filter arrays with less than nine colors assume either certain relationship between the visible colors, which are not valid for SWIR imaging, or presence of one color band with higher sampling rate compared to the rest of the bands, which does not conform to our spectral filter pattern. We will discuss and present results for two novel approaches to demosaicking: interpolation using multi-band edge information and application of multi-frame super-resolution to a single frame resolution enhancement of multi-spectral spatially multiplexed images.

  10. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-30

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enabling R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.

  11. Progress in the materials science of silicene.

    Science.gov (United States)

    Yamada-Takamura, Yukiko; Friedlein, Rainer

    2014-12-01

    In its freestanding, yet hypothetical form, the Si counterpart of graphene called silicene is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Such interesting electronic properties are not realized in two-dimensional (2D) Si honeycomb lattices prepared recently on metallic substrates where the crystal and hybrid electronic structures of these 'epitaxial silicene' phases are strongly influenced by the substrate, and thus different from those predicted for isolated 2D structures. While the realization of such low-dimensional Si π materials has hardly been imagined previously, it is evident that the materials science behind silicene remains challenging. In this contribution, we will review our recent results that lead to an enhanced understanding of epitaxial silicene formed on diboride thin films, and discuss the remaining challenges that must be addressed in order to turn Si 2D nanostructures into technologically interesting nanoelectronic materials.

  12. Determination of optical band gap of powder-form nanomaterials with improved accuracy

    Science.gov (United States)

    Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul

    2017-10-01

    Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.

  13. Shear bands as growing instabilities in viscoanelastic media with memory

    Directory of Open Access Journals (Sweden)

    Marina Dolfin

    2013-09-01

    Full Text Available In this paper we investigate the critical conditions under which a small perturbation in an homogeneous continuum can possibly grows into a shear band instability. In particular, we analyze from a thermodynamical viewpoint the phenomenon of shear bands in viscoanelastic media with memory. It is emphasized, in the scientific literature, that the specific adopted rheology strongly affects the results so that a special attention has to be paid, also for engineering purposes, to the accuracy of the rheological model. Several well-known rheological model (for instance the so called Maxwell or Jeffreys media are particular cases of the general model we adopt in the paper to analyze shear bands. Instability conditions, giving rise to shear bands formation, are obtained by introducing small perturbations around an homogeneous deformation into the system of differential equations governing the problem of homogeneous deformations in the considered continuous medium; as a result a non-homogeneous linear dynamical system is obtained whose stability is analyzed. A research perspective in view of a possible comparison with experimental results is proposed; in particular the simple methodology proposed in the paper should be applied in view of using the phenomenon of the initiation of shear bands to calculate the thermomechanical coefficients of real materials.

  14. Diffusion properties of band 3 in human erythrocytes

    Science.gov (United States)

    Spector, Jeffrey O.

    The plasma membrane of the human erythrocyte (RBC) is a six fold symmetric network held together at various pinning points by several multi-protein complexes. This unique architecture is what gives the RBC its remarkable material properties and any disruptions to the network can have severe consequences for the cell. Band 3 is a major transmembrane protein that plays the role of linking the fluid lipid bilayer to the cytoskeletal network. To interrogate the structural integrity of the RBC membrane we have tracked individual band 3 molecules in RBCs displaying a variety of pathologies that are all a consequence of membrane or network related defects. These diseases are spherocytosis, elliptocytosis, and pyropokilocytosis. We have also investigated the protein related diseases sickle cell, and south east asian ovalocytosis. To assess the impact that the network has on the dynamic organization of the cell we have also studied the mobility of band 3 in RBC progenitor cells. Individual band 3 molecules were imaged at 120 frames/second and their diffusion coefficients and compartment sizes recorded. The distributions of the compartment sizes combined with the information about the short and long time diffusion of band 3 has given us insight into the architecture of the membrane in normal and diseased cells. The observation that different membrane pathologies can be distinguished, even to the point of different molecular origins of the same disease, implies that the mobility of transmembrane proteins may be a useful tool for characterizing the "health" of the membrane.

  15. Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells.

    Science.gov (United States)

    Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining

    2017-12-13

    Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss  smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.

  16. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    Directory of Open Access Journals (Sweden)

    Xie Yiwei

    2017-12-01

    Full Text Available Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  17. Evaluating progressive-rendering algorithms in appearance design tasks.

    Science.gov (United States)

    Jiawei Ou; Karlik, Ondrej; Křivánek, Jaroslav; Pellacini, Fabio

    2013-01-01

    Progressive rendering is becoming a popular alternative to precomputational approaches to appearance design. However, progressive algorithms create images exhibiting visual artifacts at early stages. A user study investigated these artifacts' effects on user performance in appearance design tasks. Novice and expert subjects performed lighting and material editing tasks with four algorithms: random path tracing, quasirandom path tracing, progressive photon mapping, and virtual-point-light rendering. Both the novices and experts strongly preferred path tracing to progressive photon mapping and virtual-point-light rendering. None of the participants preferred random path tracing to quasirandom path tracing or vice versa; the same situation held between progressive photon mapping and virtual-point-light rendering. The user workflow didn’t differ significantly with the four algorithms. The Web Extras include a video showing how four progressive-rendering algorithms converged (at http://youtu.be/ck-Gevl1e9s), the source code used, and other supplementary materials.

  18. Band gaps from the Tran-Blaha modified Becke-Johnson approach: A systematic investigation

    Science.gov (United States)

    Jiang, Hong

    2013-04-01

    The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha (TB-mBJ) have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators. In this work, we have investigated the performance of the TB-mBJ potential for the description of electronic band structures in a comprehensive set of semiconductors and insulators. We point out that a perturbative use of the TB-mBJ potential can give overall better results. By investigating a set of IIB-VI and III-V semiconductors, we point out that although the TB-mBJ approach can describe the band gap of these materials quite well, the binding energies of semi-core d-states in these materials deviate strongly from experiment. The difficulty of the TB-mBJ potential to describe the localized states is likely the cause for the fact that the electronic band structures of Cu2O and La2O3 are still poorly described. Based on these observations, we propose to combine the TB-mBJ approach with the Hubbard U correction for localized d/f states, which is able to provide overall good descriptions for both the band gaps and semi-core states binding energies. We further apply the approach to calculate the band gaps of a set of Ti(IV)-oxides, many of which have complicated structures so that the more advanced methods like GW are expensive to treat directly. An overall good agreement with experiment is obtained, which is remarkable considering its little computational efforts compared to GW.

  19. FY2008 Annual Progress Report for Propulsion Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-01-01

    This program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines providing enabling materials support for combustion, hybrid, and power electronics development.

  20. Design of a New ENG Metamaterial for S-Band Microwave Applications

    Directory of Open Access Journals (Sweden)

    ISLAM Sikder Sunbeam

    2014-10-01

    Full Text Available In this paper we propose a new metamaterial unit cell structure on FR-4 substrate material that shows resonance in the microwave S-Band frequency range and also shows negative permittivity at that frequency. The material shows better performances with two resonances and Double Negative characteristics if Rogers RT 6010 substrate material is used. In this design two separate split ring resonators is used. We have used the CST Microwave Studio simulation software to get the reflection and transmission parameters for this unit cell.

  1. Research Progress of Building Materials Used in Construction Land

    Science.gov (United States)

    Niu, Yan

    2018-01-01

    Construction land preparation is an important aspect of land remediation project. The research of materials in the process of land improvement is the foundation and the core. Therefore, it is necessary to study the materials that may be involved in the process of building land preparation. In this paper, the research on the construction materials such as recycled concrete, geosynthetics, soil stabilizers, soil improvers, building insulation materials and inorganic fibrous insulation materials, which are commonly used in construction sites, is reviewed and discussed in this paper. Land remediation project involved in the construction of land materials to provide reference.

  2. Materials testing and requirement for the ERDA nuclear-powered artificial heart. Technical progress report, July 15, 1975--May 30, 1976. [BIOMER and AVCOTHANE

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J. D.; Hufferd, W. L.; Lyman, D. J.

    1976-01-01

    The two materials currently being used for the artificial heart fabrication are BIOMER and AVCOTHANE. BIOMER is a polyether urethane polymer. AVCOTHANE is a proprietary polyurethane/polydimethylsiloxane polymer blend. Research progress on the chemical degradation, mechanical strength, and blood compatibility is reported. (TFD)

  3. Propulsion System Materials Program semiannual progress report for April 1995 through September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    Significant accomplishments in fabricating ceramic components for the DOE, NASA, and DOD advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a 5-year program plan was developed with extensive input from private industry. During the course of the Propulsion System Materials Program, remarkable progress has been made in the development of reliable structural ceramics. However, further work is needed to reduce the cost of ceramics to facilitate their commercial introduction, especially in the highly cost-sensitive automotive market. To this end, the direction of the Propulsion System Materials Program is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported to include near-term (5--10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned. The work elements are as follows: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, low-expansion ceramics, and testing and data base development.

  4. Congenital Constriction Band Syndrome

    OpenAIRE

    Rajesh Gupta, Fareed Malik, Rishabh Gupta, M.A.Basit, Dara Singh

    2008-01-01

    Congenital constriction bands are anomalous bands that encircle a digit or an extremity. Congenitalconstriction band syndrome is rare condition and is mostly associated with other musculoskeletaldisorders.We report such a rare experience.

  5. Neutrino-electron scattering. Progress report

    International Nuclear Information System (INIS)

    White, D.H.

    1982-01-01

    We present here a progress report on an experiment to measure the cross section for nu/sub μ/e scattering at the Brookhaven AGS. A wide band focussing horn is used with a neutrino beam energy centered at 1.5 GeV. We have in hand measurements with nu/sub μ/ and anti nu/sub μ/ beams but we present preliminary data on the nu/sub μ/ beam running only. We also measure the reactions: nu/sub μ/ + n → μ - + p and nu/sub e/ + n → e - + p which will be used in normalization and in background estimation

  6. Imaging the Nanoscale Band Structure of Topological Sb

    OpenAIRE

    Soumyanarayanan, Anjan; Yee, Michael M.; He, Yang; Lin, Hsin; Gardner, Dillon R.; Bansil, Arun; Lee, Young S.; Hoffman, Jennifer E.

    2013-01-01

    Many promising building blocks of future electronic technology - including non-stoichiometric compounds, strongly correlated oxides, and strained or patterned films - are inhomogeneous on the nanometer length scale. Exploiting the inhomogeneity of such materials to design next-generation nanodevices requires a band structure probe with nanoscale spatial resolution. To address this demand, we report the first simultaneous observation and quantitative reconciliation of two candidate probes - La...

  7. Band structure and unconventional electronic topology of CoSi

    Science.gov (United States)

    Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.

    2018-04-01

    Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \

  8. FY2014 Propulsion Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  9. The proposals on cooperation to foreign centers of science on thermophysical properties of reactor materials in a broad band of pressure and temperatures realized at normal transient and emergency operation activity of nuclear power plants

    International Nuclear Information System (INIS)

    Fortov, V.E.

    1996-01-01

    The proposals on cooperation in the area of thermophysical properties of reactor materials in a broad band of pressure and temperature realized at normal transient and emergency operation activity of nuclear power plants are discussed. 1 fig

  10. A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators

    Directory of Open Access Journals (Sweden)

    M. M. Islam

    2014-01-01

    Full Text Available A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.

  11. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    International Nuclear Information System (INIS)

    Aly, Arafa H; Mehaney, Ahmed

    2016-01-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification. (paper)

  12. M-type barium hexa ferrite magnetic material for anti radar materials at s band frequency

    International Nuclear Information System (INIS)

    Priyono; Azwar Manaf

    2010-01-01

    In this paper, preparation and characteristic evaluation of microwave absorber materials of BaFe_1_2_-_2_x Mn_x Ti _xO_1_9 (x = 0,0 - 1,5) compositions are discussed. The absorber material was obtained by a co-substitution of Mn and Ti to Fe in a Barium Hexaferrite (BaO.6Fe_2O_3 ) basic compound through a mechanical alloying process. In this respect, a co-substitution of Mn and Ti ions for Fe was applied to Fe_2O_3 component at a temperature ~ 1,300 °C. The substituted alloy component was further alloyed mechanically with BaCO_3 to form M-Type hexaferrite after the solid state reaction. Identification of X-ray diffraction peaks for the mechanically alloyed materials indicates confidently that a single phase BaFe_1_2_-_x_-_yMn_x Ti_yO_1_9 material was formed. Materials characterization is covering the average grain sizes and absorption of microwaves in the frequency range 1-6 GHz. Absorption with a relatively high coefficient at frequencies ~ 2,000 MHz and ~ 3,500 MHz within the available frequency range was obtained. It is shown that the co-substitution of Mn and Ti ion able to widen the absorption frequency especially in the frequencies of about 3,500 MHz. (author)

  13. Single-Band and Dual-Band Infrared Detectors

    Science.gov (United States)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2017-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  14. Is Bare Band Description of Carrier Transport Appropriate in Pentacene?

    Science.gov (United States)

    Andersen, John D.; Giuggioli, Luca; Kenkre, V. M.

    2002-03-01

    Experiments on injected charges in pentacene single crystals reveal mobilities typical of inorganic semiconductors and temperature dependence (for TSchein, C. B. Duke, and A.R. McGhie, Phys. Rev. Lett. 40, 197 (1978); L. B. Schein, W. Warta, and N. Karl, Chem. Phys. Lett. 100, 34 (1983)) Because the low temperature mobility values in pentacene suggest moderately large bandwidths, we address two questions. Does a bare wide (effectively infinite) band description work for pentacene for T<400K? And, is a bare finite band description compatible with those data? These questions are answered by modifications of a theory originally constructed for inorganic materials and a newly developed mobility theory.

  15. Raman band intensities of tellurite glasses.

    Science.gov (United States)

    Plotnichenko, V G; Sokolov, V O; Koltashev, V V; Dianov, E M; Grishin, I A; Churbanov, M F

    2005-05-15

    Raman spectra of TeO2-based glasses doped with WO3, ZnO, GeO2, TiO2, MoO3, and Sb2O3 are measured. The intensity of bands in the Raman spectra of MoO3-TeO2 and MoO3-WO3-TeO2 glasses is shown to be 80-95 times higher than that for silica glass. It is shown that these glasses can be considered as one of the most promising materials for Raman fiber amplifiers.

  16. Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

    International Nuclear Information System (INIS)

    D. Ray Johnson; Sidney Diamond

    2001-01-01

    The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given

  17. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    Science.gov (United States)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  18. FY2010 Annual Progress Report for Lightweighting Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-01-15

    The Lightweight Materials activity (LM) within the Vehicle Technologies Program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  19. Recent Progress on PEDOT-Based Thermoelectric Materials.

    Science.gov (United States)

    Wei, Qingshuo; Mukaida, Masakazu; Kirihara, Kazuhiro; Naitoh, Yasuhisa; Ishida, Takao

    2015-02-16

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.

  20. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    International Nuclear Information System (INIS)

    D. Ray Johnson; Sidney Diamond

    2000-01-01

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given

  1. Development of Coatings for Radar Absorbing Materials at X-band

    Science.gov (United States)

    Kumar, Abhishek; Singh, Samarjit

    2018-03-01

    The present review gives a brief account on some of the technical features of radar absorbing materials (RAMs). The paper has been presented with a concentrated approach towards the material aspects for achieving enhanced radar absorption characteristics for its application as a promising candidate in stealth technology and electromagnetic interference (EMI) minimization problems. The effect of metal particles doping/dispersion in the ferrites and dielectrics has been discussed for obtaining tunable radar absorbing characteristics. A short theoretical overview on the development of absorber materials, implementation of genetic algorithm (GA) in multi-layering and frequency selective surfaces (FSSs) based multi-layer has also been presented for the development of radar absorbing coatings for achieving better absorption augmented with broadband features in order to counter the radar detection systems.

  2. Empirical relationship of ultraviolet extinction and the interstellar diffuse bands

    International Nuclear Information System (INIS)

    Wu, C.; York, D.G.; Snow, T.P.

    1981-01-01

    New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (lambdalambda4430, 5780, 6284) to the overall extinction curve. Equivalent widths of lambdalambda5780 and 6284 are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in our sample. The central depth of lambda4430 is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. lambda4430 is strongly correlated with the strength of the 2200-A bump. Our data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. lambda4430 may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as we are attempting

  3. Progressively expanded neural network for automatic material identification in hyperspectral imagery

    Science.gov (United States)

    Paheding, Sidike

    The science of hyperspectral remote sensing focuses on the exploitation of the spectral signatures of various materials to enhance capabilities including object detection, recognition, and material characterization. Hyperspectral imagery (HSI) has been extensively used for object detection and identification applications since it provides plenty of spectral information to uniquely identify materials by their reflectance spectra. HSI-based object detection algorithms can be generally classified into stochastic and deterministic approaches. Deterministic approaches are comparatively simple to apply since it is usually based on direct spectral similarity such as spectral angles or spectral correlation. In contrast, stochastic algorithms require statistical modeling and estimation for target class and non-target class. Over the decades, many single class object detection methods have been proposed in the literature, however, deterministic multiclass object detection in HSI has not been explored. In this work, we propose a deterministic multiclass object detection scheme, named class-associative spectral fringe-adjusted joint transform correlation. Human brain is capable of simultaneously processing high volumes of multi-modal data received every second of the day. In contrast, a machine sees input data simply as random binary numbers. Although machines are computationally efficient, they are inferior when comes to data abstraction and interpretation. Thus, mimicking the learning strength of human brain has been current trend in artificial intelligence. In this work, we present a biological inspired neural network, named progressively expanded neural network (PEN Net), based on nonlinear transformation of input neurons to a feature space for better pattern differentiation. In PEN Net, discrete fixed excitations are disassembled and scattered in the feature space as a nonlinear line. Each disassembled element on the line corresponds to a pattern with similar features

  4. Band offsets of n-type electron-selective contacts on cuprous oxide (Cu{sub 2}O) for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Riley E., E-mail: rbrandt@alum.mit.edu, E-mail: buonassisi@mit.edu; Lee, Yun Seog; Buonassisi, Tonio, E-mail: rbrandt@alum.mit.edu, E-mail: buonassisi@mit.edu [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Young, Matthew; Dameron, Arrelaine; Teeter, Glenn [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Park, Helen Hejin; Chua, Danny; Gordon, Roy G. [Harvard University, Cambridge, Massachusetts 02139 (United States)

    2014-12-29

    The development of cuprous oxide (Cu{sub 2}O) photovoltaics (PVs) is limited by low device open-circuit voltages. A strong contributing factor to this underperformance is the conduction-band offset between Cu{sub 2}O and its n-type heterojunction partner or electron-selective contact. In the present work, a broad range of possible n-type materials is surveyed, including ZnO, ZnS, Zn(O,S), (Mg,Zn)O, TiO{sub 2}, CdS, and Ga{sub 2}O{sub 3}. Band offsets are determined through X-ray photoelectron spectroscopy and optical bandgap measurements. A majority of these materials is identified as having a negative conduction-band offset with respect to Cu{sub 2}O; the detrimental impact of this on open-circuit voltage (V{sub OC}) is evaluated through 1-D device simulation. These results suggest that doping density of the n-type material is important as well, and that a poorly optimized heterojunction can easily mask changes in bulk minority carrier lifetime. Promising heterojunction candidates identified here include Zn(O,S) with [S]/[Zn] ratios >70%, and Ga{sub 2}O{sub 3}, which both demonstrate slightly positive conduction-band offsets and high V{sub OC} potential. This experimental protocol and modeling may be generalized to evaluate the efficiency potential of candidate heterojunction partners for other PV absorbers, and the materials identified herein may be promising for other absorbers with low electron affinities.

  5. A class of monolayer metal halogenides MX{sub 2}: Electronic structures and band alignments

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Feng; Wang, Weichao; Luo, Xiaoguang; Cheng, Yahui; Dong, Hong; Liu, Hui; Wang, Wei-Hua, E-mail: whwangnk@nankai.edu.cn [Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071 (China); Xie, Xinjian [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-03-28

    With systematic first principles calculations, a class of monolayer metal halogenides MX{sub 2} (M = Mg, Ca, Zn, Cd, Ge, Pb; M = Cl, Br, I) has been proposed. Our study indicates that these monolayer materials are semiconductors with the band gaps ranging from 2.03 eV of ZnI{sub 2} to 6.08 eV of MgCl{sub 2}. Overall, the band gap increases with the increase of the electronegativity of the X atom or the atomic number of the metal M. Meanwhile, the band gaps of monolayer MgX{sub 2} (X = Cl, Br) are direct while those of other monolayers are indirect. Based on the band edge curvatures, the derived electron (m{sub e}) and hole (m{sub h}) effective masses of MX{sub 2} monolayers are close to their corresponding bulk values except that the m{sub e} of CdI{sub 2} is three times larger and the m{sub h} for PbI{sub 2} is twice larger. Finally, the band alignments of all the studied MX{sub 2} monolayers are provided using the vacuum level as energy reference. These theoretical results may not only introduce the monolayer metal halogenides family MX{sub 2} into the emerging two-dimensional materials, but also provide insights into the applications of MX{sub 2} in future electronic, visible and ultraviolet optoelectronic devices.

  6. Recent progress of atomic layer deposition on polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong Chen; Ye, Enyi [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Li, Zibiao, E-mail: lizb@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Han, Ming-Yong [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Loh, Xian Jun, E-mail: lohxj@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore); Singapore Eye Research Institute, 20 College Road, Singapore 169856 (Singapore)

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. - Highlights: • ALD deposition on different natural and synthetic polymer materials • Reaction mechanism based on the surface functional groups of polymers • Application of ALD-modified polymers in different fields.

  7. Noise exposure in marching bands

    Science.gov (United States)

    Keefe, Joseph

    2005-09-01

    Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.

  8. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Yijie Zeng

    2014-10-01

    Full Text Available The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs with a diameter of 1.1–2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap significantly. The partial charge distribution diagram shows that the conduction band maximum (CBM is confined in Si, while the valence band maximum (VBM is mainly distributed around the interface. Our findings also show that the band gap and conductivity type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the core-shell material, respectively.

  9. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy and Implications for Composite Structures

    Science.gov (United States)

    Waller, J. M.; Nichols, C. T.; Wentzel, D. J.; Saulsberry R. L.

    2010-01-01

    Broad-band modal acoustic emission (AE) data was used to characterize micromechanical damage progression in uniaxial IM7 and T1000 carbon fiber-epoxy tows and an IM7 composite overwrapped pressure vessel (COPV) subjected to an intermittent load hold tensile stress profile known to activate the Felicity ratio (FR). Damage progression was followed by inspecting the Fast Fourier Transforms (FFTs) associated with acoustic emission events. FFT analysis revealed the occurrence of cooperative micromechanical damage events in a frequency range between 100 kHz and 1 MHz. Evidence was found for the existence of a universal damage parameter, referred to here as the critical Felicity ratio, or Felicity ratio at rupture (FR*), which had a value close to 0.96 for the tows and the COPV tested. The implications of using FR* to predict failure in carbon/epoxy composite materials and related composite components such as COPVs are discussed. Trends in the FFT data are also discussed; namely, the difference between the low and high energy events, the difference between early and late-life events, comparison of IM7 and T1000 damage progression, and lastly, the similarity of events occurring at the onset of significant acoustic emission used to calculate the FR.

  10. Determination of band offsets at GaN/single-layer MoS2 heterojunction

    KAUST Repository

    Tangi, Malleswararao

    2016-07-25

    We report the band alignment parameters of the GaN/single-layer (SL) MoS2 heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS2/c-sapphire. We confirm that the MoS2 is an SL by measuring the separation and position of room temperature micro-Raman E1 2g and A1 g modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS2 heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS2 and GaN. The valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.

  11. Determination of band offsets at GaN/single-layer MoS2 heterojunction

    KAUST Repository

    Tangi, Malleswararao; Mishra, Pawan; Ng, Tien Khee; Hedhili, Mohamed N.; Janjua, Bilal; Alias, Mohd Sharizal; Anjum, Dalaver H.; Tseng, Chien-Chih; Shi, Yumeng; Joyce, Hannah J.; Li, Lain-Jong; Ooi, Boon S.

    2016-01-01

    We report the band alignment parameters of the GaN/single-layer (SL) MoS2 heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS2/c-sapphire. We confirm that the MoS2 is an SL by measuring the separation and position of room temperature micro-Raman E1 2g and A1 g modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS2 heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS2 and GaN. The valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.

  12. Hybrid functional band gap calculation of SnO6 containing perovskites and their derived structures

    International Nuclear Information System (INIS)

    Lee, Hyewon; Cheong, S.W.; Kim, Bog G.

    2015-01-01

    We have studied the properties of SnO 6 octahedra-containing perovskites and their derived structures using ab initio calculations with different density functionals. In order to predict the correct band gap of the materials, we have used B3LYP hybrid density functional, and the results of B3LYP were compared with those obtained using the local density approximation and generalized gradient approximation data. The calculations have been conducted for the orthorhombic ground state of the SnO 6 containing perovskites. We also have expended the hybrid density functional calculation to the ASnO 3 /A'SnO 3 system with different cation orderings. We propose an empirical relationship between the tolerance factor and the band gap of SnO 6 containing oxide materials based on first principles calculation. - Graphical abstract: (a) Structure of ASnO 3 for orthorhombic ground state. The green ball is A (Ba, Sr, Ca) cation and the small (red) ball on edge is oxygen. SnO 6 octahedrons are plotted as polyhedron. (b) Band gap of ASnO 3 as a function of the tolerance factor for different density functionals. The experimental values of the band gap are marked as green pentagons. (c) ASnO 3 /A'SnO 3 superlattices with two types cation arrangement: [001] layered structure and [111] rocksalt structure, respectively. (d) B3LYP hybrid functional band gaps of ASnO 3 , [001] ordered superlattices, and [111] ordered superlattices of ASnO 3 /A'SnO 3 as a function of the effective tolerance factor. Note the empirical linear relationship between the band gap and effective tolerance factor. - Highlights: • We report the hybrid functional band gap calculation of ASnO 3 and ASnO 3 /A'SnO 3 . • The band gap of ASnO 3 using B3LYP functional reproduces the experimental value. • We propose the linear relationship between the tolerance factor and the band gap

  13. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    Science.gov (United States)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-01

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO2), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  14. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    International Nuclear Information System (INIS)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-01

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO 2 ), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO 2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance

  15. Recent progress in material technology on RE-Ba-Cu-O bulk superconductors

    International Nuclear Information System (INIS)

    Teshima, Hidekazu; Morita, Mitsuru

    2011-01-01

    The current status of large-grained RE-Ba-Cu-O (RE: Y or rare earth elements) bulk superconductors with excellent superconducting properties is described. Gd-Ba-Cu-O bulk superconductors can trap a very high magnetic field even if they are melt-processed in air. Although the electromagnetic force caused by the trapped field is larger for a larger sample and may break the sample, a large sample of Gd-Ba-Cu-O 46 mm in diameter has the potential of trapped magnetic fields greater than 10 T at around 40 K. In addition, single-grained bulk superconductors as large as 150 mm can be obtained using the RE compositional gradient method. Dy-Ba-Cu-O is an ideal material for current leads because it has low thermal conductivity and high critical current density at 77 K in high magnetic fields. Eu-Ba-Cu-O has low magnetic permeability, and is therefore suitable for bulk NMR applications. Progress in machining technology has made possible various bulk superconductors with complicated shapes such as coils, leading to small and strong electromagnets by stacking several coil-shaped bulk superconductors together. (author)

  16. Molding of L band niobium superconductor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hitoshi; Funahashi, Yoshisato; Saito, Kenji; Noguchi, Shuichi; Koizumi, Susumu [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1995-07-01

    A cavity to produce high accelerating electron field was developed. The L-band (1.3 GHz) niobium superconductor unit cell cavity was ellipsoid with {phi}217.3 mm outer diameter and 2.5 mm thickness and consisted of two pieces of half cell, two beam pipes and flange. A deep drawing process was adapted. In spite of the first trial manufacture, each good cavity was obtained. Characteristic properties of niobium materials, molding method of cavity, extension of sheet after molding, production of beam pipe, accuracy and the cost were explained. Niobium materials. showed tensile strength 15.6 kg/mm{sup 2}, load-carrying capacity 4.1 kg/mm{sup 2}, density 8.57, extension 42.5% and RRR (resistance residual ratio){>=}200. (S.Y.)

  17. B(M1) values in the band-crossing of shears bands in 197Pb

    Science.gov (United States)

    Krücken, R.; Cooper, J. R.; Beausang, C. W.; Novak, J. R.; Dewald, A.; Klug, T.; Kemper, G.; von Brentano, P.; Carpenter, M.; Wiedenhöver, I.

    We present details of the band crossing mechanism of shears bands using the example of 197Pb. Absolute reduced matrix elements B(M1) were determined by means of a RDM lifetime measurement in one of the shears bands in 197Pb. The experiment was performed using the New Yale Plunger Device (NYPD) in conjunction with the Gammasphere array. Band mixing calculations on the basis of the semi-classical model of the shears mechanism are used to describe the transition matrix elements B(M1) and energies throughout the band-crossing regions. Good agreement with the data was obtained and the detailed composition of the states in the shears band are discussed.

  18. Valence band photoemission studies of clean metals

    International Nuclear Information System (INIS)

    Wehner, P.S.

    1978-04-01

    The application of Angle-Resolved Photoelectron Spectroscopy (ARPES) to crystalline solids and the utilization of such studies to illuminate several questions concerning the detailed electronic structure of such materials, are discussed. Specifically, by construction of a Direct Transition (DT) model and the utilization of energy-dependent angle-resolved normal photoemission in the photon energy range 32 eV < or = hν < or = 200 eV, the bulk band structure of copper is experimentally mapped out along three different directions in the Brillouin Zone; GAMMA to K, GAMMA to L, and GAMMA to X. In addition, various effects which influence the obtainable resolution in vector k-space, namely, thermal disorder, momentum broadening, and band mixing, are discussed and are shown to place severe limitations on the applicability of the DT model. Finally, a model for Angle-Resolved X-ray Photoelectron Spectroscopy (ARXPS) based on the symmetry of the initial-state wavefunctions is presented and compared to experimental results obtained from copper single crystals

  19. Clinical Relevance of Trace Bands on Serum Electrophoresis in Patients Without a History of Gammopathy

    Science.gov (United States)

    Gwathmey, TanYa M.; Willis, Monte S.; Tatreau, Jason; Wang, Shaobin; McCudden, Christopher R.

    2015-01-01

    Serum protein electrophoresis (SPE) and immunofixation is commonly used to screen for plasma cell dyscrasias. Interpretation of these tests is qualitative by nature and can yield trace, faint, or scarcely visible immunoglobulin bands (TFS), which can be difficult to classify. Whether these bands should be reported at all is challenging given their unknown clinical significance. In the present study, we retrospectively analyzed 14,036 physician-ordered protein SPE and immunofixation electrophoresis (IFE) tests on serum and urine specimens (from 4,091 patients) during the period of 2000-2010. We found that 17% of all IFE results evaluated for the presence of monoclonal gammopathies (2,389 out of 14,036) contained TFS bands, representing 4.2% (173 out of 4091) of all patients evaluated. Sixty of these patients (42%) had no previous history of gammopathy, and were clinically evaluated over a mean period of up to five years from the original diagnosis of plasma cell pathology. None of these patients had progressed to multiple myeloma, lymphoplasmacytic lymphoma, plasmacytoma, or leukemia. The remaining 82 patients (58%) had a previous history of gammopathy, but had not progressed to any symptomatic plasma cell dyscrasia. Evaluation of these patients was followed for a median period of 4.3 years, with a mean of 21.5 IFE tests per individual. These data suggest that for patients without a previous history of gammopathy, the presence of TFS bands on serum protein electrophoresis does not warrant frequent follow up investigation as commonly practiced. Routine follow up of patients with a prior history of gammopathy, conversely, are warranted and may contribute to overall survival with multiple treatment options now available. For those interpreting IFE results, it may be worth considering these data when composing comments regarding suggested repeat testing frequency by SPE/IFE or alternate test methods. PMID:27683487

  20. Efficacy of carvedilol versus propranolol versus variceal band ligation for primary prevention of variceal bleeding.

    Science.gov (United States)

    Abd ElRahim, Ayman Yosry; Fouad, Rabab; Khairy, Marwa; Elsharkawy, Aisha; Fathalah, Waleed; Khatamish, Haytham; Khorshid, Omayma; Moussa, Mona; Seyam, Moataz

    2018-01-01

    Band ligation and propranolol are the current therapies for primary prevention of variceal bleeding. Carvedilol is a rising nonselective beta-blocker used for reducing portal pressure with favorable outcome. The aim of this study to assess the efficacy of carvedilol, propranolol, and band ligation for primary prevention of variceal bleeding based on the effect of each regimen on progression of Child score and portal hypertensive gastropathy after 1 year. The study included 264 cirrhotic patients with medium/large-sized varices who were candidates for primary prophylaxis of variceal bleeding. Patients were randomly divided into three groups: group I: band ligation; group II: propranolol; group III: carvedilol. Group I showed higher success rate of 75 %, followed by group III with 70.2 % and group II with 65.2 %. Risk of bleeding was comparable between the three groups, with group II carrying the highest rate of complications (34.7 %) followed by group III (14.2 %) and finally group I (5.7 %). After 1 year of follow-up, Child score did not improve in any of the studied groups, while portal hypertensive gastropathy significantly increased in group I but decreased in groups II and III. Band ligation is the best treatment option for primary prevention of variceal bleeding with minimal complications. Carvedilol is a good pharmaceutical alternative medicine to propranolol with lesser side-effects. Progress of liver disease as represented by Child score is not affected by any of the primary variceal prophylactic regimens, although medical treatment reduces portal hypertensive gastropathy. Choice of treatment depends on patient will, compliance with treatment, and endoscopist competence.

  1. Progress report 1979

    International Nuclear Information System (INIS)

    1980-12-01

    This progress report deals with technical and research work done at the AAEC Research Establishment in the twelve month period ending September 30, 1979. Work done in the following research divisions is reported: Applied Maths and Computing, Chemical Technology, Engineering Research, Environmental Science, Instrumentation and Control, Isotope, Materials and Physics

  2. Halogenation of SiC for band-gap engineering and excitonic functionalization

    Science.gov (United States)

    Drissi, L. B.; Ramadan, F. Z.; Lounis, S.

    2017-11-01

    The optical excitation spectra and excitonic resonances are investigated in systematically functionalized SiC with Fluorine and/or Chlorine utilizing density functional theory in combination with many-body perturbation theory. The latter is required for a realistic description of the energy band-gaps as well as for the theoretical realization of excitons. Structural, electronic and optical properties are scrutinized and show the high stability of the predicted two-dimensional materials. Their realization in laboratory is thus possible. Large band-gaps of the order of 4 eV are found in the so-called GW approximation, with the occurrence of bright excitons, optically active in the four investigated materials. Their binding energies vary from 0.9 eV to 1.75 eV depending on the decoration choice and in one case, a dark exciton is foreseen to exist in the fully chlorinated SiC. The wide variety of opto-electronic properties suggest halogenated SiC as interesting materials with potential not only for solar cell applications, anti-reflection coatings or high-reflective systems but also for a possible realization of excitonic Bose-Einstein condensation.

  3. Progress on type-II InAs/GaSb superlattice (T2SL) infrared photodetector : from MWIR to VLWIR spectral domains

    Science.gov (United States)

    Christol, P.; Rodriguez, J.-B.

    2017-11-01

    Infrared photodetectors based on type-II InAs/GaSb superlattice (T2SL) material has been given a lot of attention this past decade, in particular by U.S. laboratories. Among the advantages of this material system, one can cite the possibility to span a large Infrared (IR) range (3μm to 30 μm) by tailoring the band-gap independently from the lattice constant, allowing addressing many applications by the same fabrication process and the realization of multi-color IR sensors for high performance imaging systems. Recently, the maturity of the growth of the quantum structure by molecular beam epitaxy (MBE) and progress on the processing resulted in the demonstration of high-performance mega-pixel focal plane arrays (FPA) in both the mid-wavelength (MWIR) and the long-wavelength (LWIR) infrared spectral bands [1]. Consequently, InAs/GaSb T2SL photodetector can be now considered as a new infrared technology which can be complementary to InSb, MCT or QWIPs technologies. After some reminders on InAs/GaSb T2SL quantum structure properties, we present in this communication the results obtained by the IES laboratory, from Montpellier University, France, for photodiodes operating in the MWIR spectral domains. We then complete the paper by the main results reached by others laboratories for T2SL detectors operating from MWIR to VLWIR spectral ranges.

  4. Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals

    Science.gov (United States)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-01-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to approximately100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  5. Band structure engineering and vacancy induced metallicity at the GaAs-AlAs interface

    KAUST Repository

    Upadhyay Kahaly, M.

    2011-09-20

    We study the epitaxial GaAs-AlAs interface of wide gap materials by full-potential density functional theory. AlAsthin films on a GaAs substrate and GaAsthin films on an AlAs substrate show different trends for the electronic band gap with increasing film thickness. In both cases, we find an insulating state at the interface and a negligible charge transfer even after relaxation. Differences in the valence and conduction band edges suggest that the energy band discontinuities depend on the growth sequence. Introduction of As vacancies near the interface induces metallicity, which opens great potential for GaAs-AlAs heterostructures in modern electronics.

  6. A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.

    Science.gov (United States)

    Islam, M M; Faruque, M R I; Islam, M T

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR WLAN band.

  7. Development of small-bore, high-current-density railgun as testbed for study of plasma-materials interaction. Progress report for October 16, 2000 - May 13, 2003

    International Nuclear Information System (INIS)

    Kyekyoon, Kim-Kevin

    2003-01-01

    The present document is a final technical report summarizing the progress made during 10/16/2000 - 05/13/2003 toward the development of a small-bore railgun with transaugmentation as a testbed for investigating plasma-materials interaction

  8. Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering

    Directory of Open Access Journals (Sweden)

    Ning Cui

    2012-06-01

    Full Text Available Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs. In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.

  9. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development: Study of the Optical Setup of a Wide-Band Optical Modulation Spectrometer

    Science.gov (United States)

    Tolls, Volker; Stringfellow, Guy (Technical Monitor)

    2001-01-01

    The purpose of this study is to advance the design of the optical setup for a wide-band Optical Modulation Spectrometer (OMS) for use with astronomical heterodyne receiver systems. This report describes the progress of this investigation achieved from March until December 2001.

  10. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Science.gov (United States)

    Plohr, Jeeyeon

    2017-06-01

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation. This method employs the Generalized Method of Cells to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  11. Experimental study of the 2p-2h band in 111Sn

    International Nuclear Information System (INIS)

    Ganguly, S.; Banerjee, P.; Ray, I.; Kshetri, R.; Raut, R.; Bhattacharya, S.; Saha-Sarkar, M.; Goswami, A.; Basu, S. K.

    2008-01-01

    The ΔI=2 intruder band in 111 Sn, built upon the 4074.3 keV state, was studied. The states were populated in the 100 Mo( 20 Ne, α5n) reaction at a beam energy of 136 MeV. Mean lifetimes of five states up to 8737.2 keV (spin 43/2 - ) have been measured for the first time using the Doppler shift attenuation method. In addition, an upper limit of mean lifetime has been estimated for the 9860.0 keV (spin 47/2 - ) state. The B(E2) values, derived from the present lifetime results, indicate a quadrupole deformation of β 2 =0.28±0.02 for the 31/2 - state and decrease progressively with spin, suggesting a reduction in collectivity. The dynamic moment of inertia for the band also decreases continuously up to the highest observed frequencies. These results, along with the predictions of a total Routhian surface calculation, suggest that the ΔI=2 band in 111 Sn undergoes a change of shape from collective prolate to triaxial with increase in spin and possibly terminates in a noncollective oblate state at a high spin

  12. ISM band to U-NII band frequency transverter and method of frequency transversion

    Science.gov (United States)

    Stepp, Jeffrey David [Grandview, MO; Hensley, Dale [Grandview, MO

    2006-09-12

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz 6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  13. Analytical solution for shear bands in cold-rolled 1018 steel

    Science.gov (United States)

    Voyiadjis, George Z.; Almasri, Amin H.; Faghihi, Danial; Palazotto, Anthony N.

    2012-06-01

    Cold-rolled 1018 (CR-1018) carbon steel has been well known for its susceptibility to adiabatic shear banding under dynamic loadings. Analysis of these localizations highly depends on the selection of the constitutive model. To deal with this issue, a constitutive model that takes temperature and strain rate effect into account is proposed. The model is motivated by two physical-based models: the Zerilli and Armstrong and the Voyiadjis and Abed models. This material model, however, incorporates a simple softening term that is capable of simulating the softening behavior of CR-1018 steel. Instability, localization, and evolution of adiabatic shear bands are discussed and presented graphically. In addition, the effect of hydrostatic pressure is illustrated.

  14. Progress in the activities on prevention and combating of illicit trafficking of nuclear material in Lithuania

    International Nuclear Information System (INIS)

    Kurselis, S.; Stadalnikas, A.

    2001-01-01

    Full text: The paper gives a general overview of the progress which has been made in the activities on prevention and combating of illicit trafficking of nuclear material in Lithuania. It describes the measures which were taken to strengthen nuclear material accounting and control and physical protection. The current status of the national legislation and the functions of institutions involved in control of nuclear material and combating of illicit trafficking are discussed. Lithuania, similar to many countries, did not avoid a new type of a crime - smuggling of nuclear materials - which was observed in the 1990's. The most serious case in Lithuania happened in 1993 when fresh fuel assembly was stolen from Ignalina NPP. This assembly contains approximately 124 kg of UO 2 (enrichment 2%). 100 kg of the pellets from this assembly was found later in several pieces at different places. This case served as a strong stimulus to strengthen prevention measures of Illicit trafficking. The legal basis was created and governmental institutions were obliged with special duties related with nuclear material. The laws and regulations set the order for the shipment and handling of nuclear material. The penalties for violation of these laws and regulations specified in Penal Code and Administrative Code were made stricter. The State system of accounting for and control of nuclear material (SSAC) is a very important element in prevention of the illicit trafficking. The Regulations of Accounting for and Control of Nuclear Material at Nuclear Facilities and LOFs was issued by the State Nuclear Power Safety Inspectorate (VATESI) on 10 December 1997 following the provisions of the Law on Nuclear Energy. Lithuania extended its international obligations by ratifying the Protocol Additional to the Safeguards Agreement (entered into force on 5 July 2000). The fully computerized nuclear material accountancy system was created at Ignalina NPP. The system gives the possibility to find the

  15. Progressive technologies in furniture design

    OpenAIRE

    Šebková, Martina

    2014-01-01

    Šebková, M. Progressive technologies in furniture design. Diploma thesis, Brno, Mendel University in Brno, 2014 Diploma thesis 'Progressive technologies in furniture design' is focused on the use of modern technologies in furniture production. The theoretical part explains the basic terms, technology and material options. It focuses mainly on the production of 3D printed furniture and possibilities of virtual testing, measurements, scanning and rapid prototyping. Practical part of diploma the...

  16. Prediction of the High Thermoelectric Performance of Pnictogen Dichalcogenide Layered Compounds with Quasi-One-Dimensional Gapped Dirac-like Band Dispersion

    Science.gov (United States)

    Ochi, Masayuki; Usui, Hidetomo; Kuroki, Kazuhiko

    2017-12-01

    Thermoelectric power generation has been recognized as one of the most important technologies, and high-performance thermoelectric materials have long been pursued. However, because of the large number of candidate materials, this quest is extremely challenging, and it has become clear that a firm theoretical concept from the viewpoint of band-structure engineering is needed. We theoretically demonstrate that pnictogen dichalcogenide layered compounds, which originally attracted attention as a family of superconductors and have recently been investigated as thermoelectric materials, can exhibit very high thermoelectric performance with elemental substitution. Specifically, we clarify a promising guiding principle for material design and find that LaOAsSe2, a material that has yet to be synthesized, has a power factor that is 6 times as large as that of the known compound LaOBiS2 and can exhibit a very large Z T under some plausible assumptions. This large enhancement of the thermoelectric performance originates from the quasi-one-dimensional gapped Dirac-like band dispersion, which is realized by the square-lattice network. We offer one ideal limit of the band structure for thermoelectric materials. Because our target materials have high controllability of constituent elements and feasibility of carrier doping, experimental studies along this line are eagerly awaited.

  17. Design of a side-band-separating heterodyne mixer for band 9 of ALMA

    NARCIS (Netherlands)

    Baryshev, AM; Kooi, J; Mena, FR; Lodewijk, CRJ; Wild, W

    2005-01-01

    A side-band-separating (SBS) heterodyne mixer has been designed for the Atacama Large Millimeter Array (ALMA) 602-720 GHz band, as it will present a great improvement over the current double-side-band configuration under development at the moment. Here we present design details and the results of

  18. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  19. Tuning and switching of band gap of the periodically undulated beam by the snap through buckling

    Directory of Open Access Journals (Sweden)

    Y. Li

    2017-05-01

    Full Text Available We propose highly tuning and switching band gaps of phononic crystals through the snap through buckling by investigating wave propagation in a designed tractable undulated beam with single material and periodically arched shape. A series of numerical analyses are conducted to offer a thorough understanding of the evolution of the band gaps as a function of the vertical applied load. We find out that the interesting snap through buckling induced by the vertical load can alter the width of the band gap of the undulated beam dramatically, even switch them on and off. Our researches show an effective strategy to tune the band gaps of phononic crystals through the snap through buckling behavior.

  20. Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Wimberger, Sandro [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 19, 69120 Heidelberg (Germany); Madronero, Javier, E-mail: ploetz@thphys.uni-heidelberg.d [Physik Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany)

    2010-04-28

    We study the effect of a many-body interaction on inter-band oscillations in a two-band Bose-Hubbard model with an external Stark force. Weak and strong inter-band oscillations are observed, where the latter arise from a resonant coupling of the bands. These oscillations collapse and revive due to a weak two-body interaction between the atoms. Effective models for oscillations in and out of resonance are introduced that provide predictions for the system's behaviour, particularly for the time scales for the collapse and revival of the resonant inter-band oscillations. (fast track communication)

  1. Nuts and Bolts of the Ion Band State Theory

    Science.gov (United States)

    Chubb, Scott R.

    2005-12-01

    The nuts and bolts of our ion band state theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdHx, this bonding is strongly correlated with loading. In ambient loading conditions (x ≲ 0.6), bonding inhibits ion band state occupation. As x → 1, slight increases and decreases in loading can induce "vibrations" (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi energy have negligible overlap with the nucleus of either D or H. In the past, implicitly, we have used these facts to justify our ion band state theory. Here, we present a more formal justification, based on the relationship between H(D) ion band states (IBS's) and H(D) phonons that includes a microscopic picture that explains why occupation of IBS's can occur in PdD and PdH and how this can lead to nuclear reactions.

  2. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  3. f-band narrowing in uranium intermetallics

    International Nuclear Information System (INIS)

    Dunlap, B.D.; Litterst, F.J.; Malik, S.K.; Kierstead, H.A.; Crabtree, G.W.; Kwok, W.; Lam, D.J.; Mitchell, A.W.

    1987-01-01

    Although the discovery of heavy fermion behavior in uranium compounds has attracted a great deal of attention, relatively little work has been done which is sufficiently systematic to allow an assessment of the relationship of such behavior to more common phenomena, such as mixed valence, narrow-band effects, etc. In this paper we report bulk property measurements for a number of alloys which form a part of such a systematic study. The approach has been to take relatively simple and well-understood materials and alter their behavior by alloying to produce heavy fermion or Kondo behavior in a controlled way

  4. Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Lars [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Smythe, Louisa [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Sarquilla, Lindsey [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Ferguson, Kelly [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States)

    2015-03-27

    This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costs for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for

  5. Side-band-separating heterodyne mixer for band 9 of ALMA.

    NARCIS (Netherlands)

    Mena, F. P.; Baryshev, A. M.; Kooi, J.; Lodewijk, C. F. J.; Gerlofsma, G.; Hesper, R.; Wild, W.; Shen, XC; Lu, W; Zhang, J; Dou, WB

    2006-01-01

    Here we present the realization of a side-band-separating (2SB) heterodyne mixer for the frequency range from 602 to 720 GHz (corresponding to ALMA band 9). The mixer, in brief, consists of a quadrature hybrid, two LO injectors, two SIS junctions, and three dumping loads. All the parts were modeled

  6. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    Science.gov (United States)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  7. Special purpose materials. Annual progress report, October 1, 1979

    International Nuclear Information System (INIS)

    1980-04-01

    Fusion reactor materials problems other than the first-wall and blanket structural materials are investigated. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, grahite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. Radiation-induced conductivity of three forms of Al 2 O 3 was measured as a function of ionizing dose rate and temperature. Increases observed are large enough to affect performance of insulators under some fusion reactor operating conditions. Single-crystal MgAl 2 O 4 was shown to exhibit zero swelling when irradiated to approx. 2 x 10 26 n/m 2 at 925 and 1100 K. This ceramic is resistant to nucleation and growth of defect aggregates, and is not characterized by those microstructural conditions which lead to void formation and swelling in Al 2 O 3 . Fracture toughness of single-crystal Al 2 O 3 was significantly increased by elevated-temperature irradiation to approx. 2 x 10 26 n/m 2 , while that for MgAl 2 O 4 and Y 3 Al 5 O 12 showed little or no change. These results show that ceramics can retain their original resistance to crack propagation after high-dose neutron irradiation

  8. Study on severe fuel damage and in-vessel melt progression

    International Nuclear Information System (INIS)

    Kim, Hee Dong; Kim, Sang Baik; Lee, Gyu Jung

    1992-06-01

    In-vessel core melt progression describes the progression of the state of a reactor core from core uncovery up to reactor vessel melt through in uncovered accidents or through temperature stabilization in accidents recovered by core reflooding. Melt progression can be thought as two parts; early melt progression and late melt progression. Early phase of core melt progression includes the progression of core material melting and relocation, which mostly consist of metallic materials. On the other hand, the late phase of core melt progression involves ceramic material melt and relocation to the lower plenum and heat-up the reactor vessel lower head. A large number of information are available for the early melt progression through experiments such as SFD, DF, FLHT test and utilized in the severe accident analysis codes. However, understanding of the late phase melt progression phenomenology is based primary on TMI-2 core examinations and not much experimental information is available. Especilally, the great uncertainties exist in vessel failure mode, melt composition, mass, and temperature. Further research is planned to perform to reduce the uncertainties in understanding of core melt down accidents as parts of long term melt progression research program. A study on the core melt progression at KAERI has been being performed through the Severe Accident Research Program with USNRC. KAERI staff had participated in the PBF SFD experiments at INEL and analyses of experiments were performed using SCDAP code. Experiments of core melt program have not been carried out at KAERI yet. It is planned that further research on core melt down accidents will be performed, which is related to design of future generations of nuclear reactors as parts of long-term project for improvement of nuclear reactor safety. (Author)

  9. Tunability of band structures in a two-dimensional magnetostrictive phononic crystal plate with stress and magnetic loadings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shunzu; Shi, Yang [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2017-03-26

    Considering the magneto-mechanical coupling of magnetostrictive material, the tunability of in-plane wave propagation in two-dimensional Terfenol-D/epoxy phononic crystal (PC) plate is investigated theoretically by the plane wave expansion method. Two Schemes, i.e. magnetic field is rotated in x–y plane and x–z plane, are studied, respectively. The effects of amplitude and direction of magnetic field, pre-stress and geometric parameters are discussed. For Scheme-I, band gap reaches the maximum at an optimal angle 45° of magnetic field. However, the optimal angle is 0° for Scheme-II, because band gap decreases monotonically until disappears with the increasing angle. For both cases, higher-order band gaps generate and become stronger as magnetic field amplitude increases, while increasing compressive pre-stress has the opposite effect. Meanwhile, filling fraction plays a key role in controlling band gaps. These results provide possibility for intelligent regulation and optimal design of PC plates. - Highlights: • The in-plane wave propagation in phononic crystal thin plate is tuned theoretically. • Magnetostrictive material is introduced in the study. • The effects of magnetic field and pre-stress are considered. • The variations of band gaps with external stimuli are discussed.

  10. Advanced Industrial Materials Program. Annual progress report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stooksbury, F. [comp.

    1994-06-01

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  11. Electron hybridization effects and the crystal structure of plutonium: Progress report, January 1, 1987--May 31, 1988

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1988-01-01

    The main research effort during the past year was on the theory of surface electronic behavior of plutonium. This research was described in last year's Progress Report and deals with both development of the resonant band-f scattering theory for the magnetic properties of highly correlated actinide systems and the synthesis of band and model Hamiltonian theory for actinide systems. A summary of the results for the surface electronic behavior of plutonium are included

  12. The DSS-14 C-band exciter

    Science.gov (United States)

    Rowan, D. R.

    1989-01-01

    The development and implementation of a C-band exciter for use with the Block IV Receiver-Exciter Subsystem at Deep Space Station 14 (DSS-14) has been completed. The exciter supplements the standard capabilities of the Block IV system by providing a drive signal for the C-band transmitter while generating coherent translation frequencies for C-band (5-GHz) to S-band (2.2- to 2.3-GHz) Doppler extraction, C-band to L-band (1.6-GHz) zero delay measurements, and a level calibrated L-band test signal. Exciter functions are described, and a general explanation and description of the C-band uplink controller is presented.

  13. Hybrid functional band gap calculation of SnO{sub 6} containing perovskites and their derived structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyewon [Department of Physics, Pusan National University, Pusan 609-735, Republic of South Korea (Korea, Republic of); Cheong, S.W. [Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Kim, Bog G., E-mail: boggikim@pusan.ac.kr [Department of Physics, Pusan National University, Pusan 609-735, Republic of South Korea (Korea, Republic of)

    2015-08-15

    We have studied the properties of SnO{sub 6} octahedra-containing perovskites and their derived structures using ab initio calculations with different density functionals. In order to predict the correct band gap of the materials, we have used B3LYP hybrid density functional, and the results of B3LYP were compared with those obtained using the local density approximation and generalized gradient approximation data. The calculations have been conducted for the orthorhombic ground state of the SnO{sub 6} containing perovskites. We also have expended the hybrid density functional calculation to the ASnO{sub 3}/A'SnO{sub 3} system with different cation orderings. We propose an empirical relationship between the tolerance factor and the band gap of SnO{sub 6} containing oxide materials based on first principles calculation. - Graphical abstract: (a) Structure of ASnO{sub 3} for orthorhombic ground state. The green ball is A (Ba, Sr, Ca) cation and the small (red) ball on edge is oxygen. SnO{sub 6} octahedrons are plotted as polyhedron. (b) Band gap of ASnO{sub 3} as a function of the tolerance factor for different density functionals. The experimental values of the band gap are marked as green pentagons. (c) ASnO{sub 3}/A'SnO{sub 3} superlattices with two types cation arrangement: [001] layered structure and [111] rocksalt structure, respectively. (d) B3LYP hybrid functional band gaps of ASnO{sub 3}, [001] ordered superlattices, and [111] ordered superlattices of ASnO{sub 3}/A'SnO{sub 3} as a function of the effective tolerance factor. Note the empirical linear relationship between the band gap and effective tolerance factor. - Highlights: • We report the hybrid functional band gap calculation of ASnO{sub 3} and ASnO{sub 3}/A'SnO{sub 3}. • The band gap of ASnO{sub 3} using B3LYP functional reproduces the experimental value. • We propose the linear relationship between the tolerance factor and the band gap.

  14. Materials Science Division progress report 1986-1988

    International Nuclear Information System (INIS)

    Kumar, Vijay; Vasumathi, D.; Chandra Sekhar, N.V.

    1990-01-01

    This is a report on the various Research and Developmental (R and D) activities carried out in the Materials Science Division during the period 1986-88. Most contributions have been presented in the form of abstracts and wherever possible results of several contributions on a related problem have been consolidated into one. The R and D activities covered the following areas: (1) quasicrystalline phase, (2) high temperature superconducting behaviour in metal oxides, (3) physics of colloidal suspensions, (4) behaviour of materials under high pressure, (5) radiation effects in complex alloy systems, (6) inert gas behaviour in metals, and production of crystals, particularly of volatile semiconducting compounds. The lists of publications by the members of the Division and seminars held during 1986-88 are given at the end of the report. (a uthor)

  15. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan, E-mail: alan.doolittle@ece.gatech.edu [Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  16. Advances in X-Band and S-Band Linear Accelerators for Security, NDT, and Other Applications

    CERN Document Server

    Mishin, Andrey V

    2005-01-01

    At AS&E High Energy Systems Division, we designed several new advanced high energy electron beam and X-ray sources. Our primary focus has always been in building the world's most portable commercial X-band accelerators. Today, our X-band systems frequently exceed performance of the similar S-band machines, while they are more portable compared to the latter. The new designs of the X-band accelerators in the most practical energy range from 1 MeV to 6 MeV have been tested delivering outstanding results. Seventy 6 MeV X-band linacs systems have been produced. The most compact linac for security is used by AS&E in a self-shielded, Shaped Energy™ cargo screening system. We pioneered using the X-band linear accelerators for CT, producing high quality images of oil pipes and wood logs. An X-band linear accelerator head on a robotic arm has been used for electron beam radiation curing of an odd-shaped graphite composite part. We developed the broad-range 4 MeV to over 10 MeV energy-regulated X-band ...

  17. Effect of elastic-band exercise on muscle damage and inflammatory responses in Taekwondo athletes

    Directory of Open Access Journals (Sweden)

    Keivan Gadruni

    2015-08-01

    Full Text Available INTRODUCTION: Elastic bands offer variable elastic resistance (ER throughout a range of motion and their incorporation with exercise movements has been used for variable strength training and rehabilitation purposes. Objective: Investigate the effect of acute bout of progressive elastic-band exercise on muscle damage and inflammatory response in Taekwondo athletes (TKD compared with untrained ones.METHODS: Fourteen (TKD, n = 7 and untrained, n = 7 men performed 3 sets of progressive resistance elastic exercise. Blood samples were taken pre-exercise and also immediately and 24h post exercise. Delayed onset muscle soreness (DOMS, creatine kinase (CK and lactate dehydrogenase (LDH activity, total leukocyte counts, interleukin-6 and C-reactive protein (CRP were analyzed.RESULTS: Only DOMS increased in untrained group, but elevation of DOMS was observed in both groups (TKD and untrained at 24h after exercise (p<0.05. CK and LDH activity increased in both groups significantly. Also TKD group only showed CK increasing 24h post exercise (p<0.05. Total circulating leukocyte counts increased immediately in post exercise experiments and decreased in 24h ones in both groups (p<0.05. Serum IL-6 immediately increased in both groups and 24h post exercises but there was no significant difference between immediate and 24h post exercise experiments in TKD group. Furthermore, CRP just increased 24h after exercise in both groups (p<0.05.CONCLUSION: Progressive resistance elastic exercise induced muscle damage and inflammation in TKD athletes, but also had smaller changes in comparison with untrained group and other forms of exercise.

  18. Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs

    DEFF Research Database (Denmark)

    Dankowski, S. U.; Streb, D.; Ruff, M.

    1996-01-01

    coefficients at the band gap are twice as high as for high temperature grown materials. By annealing the samples, we obtained a drastic reduced absorption coefficient below as well as above the band gap. We observed absorption changes up to 17 000 cm(-1) for LT-GaAs and 9000 cm(-1) for LT-AlGaAs taking place......Room temperature absorption spectra of low temperature molecular beam epitaxy grown GaAs (LT-GaAs) and AlGaAs (LT-AlGaAs) are reported. We performed measurements in an extended spectral range from 0.8 eV to photon energies of 2.8 eV far above the band gap. For as-grown LT-materials, the absorption...

  19. Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material

    Science.gov (United States)

    Huang, Bo; Zhou, Yaxun; Cheng, Pan; Zhou, Zizhong; Li, Jun; Jin, Wei

    2016-10-01

    Tm3+/Yb3+ co-doped tellurite glasses with different silver nanoparticles (Ag NPs) concentrations were prepared using the conventional melt-quenching technique and characterized by the UV/Vis/NIR absorption spectra, 1.85 μm band fluorescence emission spectra, transmission electron microscopy (TEM) images, differential scanning calorimeter (DSC) curves and X-ray diffraction (XRD) patterns to investigate the effects of Ag NPs on the 1.85 μm band spectroscopic properties of Tm3+ ions, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the 1.85 μm band fluorescence emission of Tm3+ ions enhances significantly in the presence of Ag NPs with average diameter of ∼8 nm and local surface Plasmon resonance (LSPR) band of ∼590 nm, which is mainly attributed to the increased local electric field induced by Ag NPs at the proximity of doped rare-earth ions on the basis of energy transfer from Yb3+ to Tm3+ ions. An improvement by about 110% of fluorescence intensity is observed in the Tm3+/Yb3+ co-doped tellurite glass containing 0.5 mol% amount of AgNO3 while the prepared glass samples possess good thermal stability and amorphous structural nature. Meanwhile, the Judd-Ofelt intensity parameters Ωt (t = 2,4,6), spontaneous radiative transition probabilities, fluorescence branching ratios and radiative lifetimes of relevant excited levels of Tm3+ ions were determined based on the Judd-Ofelt theory to reveal the enhanced effects of Ag NPs on the 1.85 μm band spectroscopic properties, and the energy transfer micro-parameters and phonon contribution ratios were calculated based on the non-resonant energy transfer theory to elucidate the energy transfer mechanism between Yb3+ and Tm3+ ions. The present results indicate that the prepared Tm3+/Yb3+ co-doped tellurite glass with an appropriate amount of Ag NPs is a promising lasing media applied for 1.85 μm band solid-state lasers and amplifiers.

  20. Tunable band gaps in graphene/GaN van der Waals heterostructures

    International Nuclear Information System (INIS)

    Huang, Le; Kang, Jun; Li, Yan; Li, Jingbo; Yue, Qu

    2014-01-01

    Van der Waals (vdW) heterostructures consisting of graphene and other two-dimensional materials provide good opportunities for achieving desired electronic and optoelectronic properties. Here, we focus on vdW heterostructures composed of graphene and gallium nitride (GaN). Using density functional theory, we perform a systematic study on the structural and electronic properties of heterostructures consisting of graphene and GaN. Small band gaps are opened up at or near the Γ point of the Brillouin zone for all of the heterostructures. We also investigate the effect of the stacking sequence and electric fields on their electronic properties. Our results show that the tunability of the band gap is sensitive to the stacking sequence in bilayer-graphene-based heterostructures. In particular, in the case of graphene/graphene/GaN, a band gap of up to 334 meV is obtained under a perpendicular electric field. The band gap of bilayer graphene between GaN sheets (GaN/graphene/graphene/GaN) shows similar tunability, and increases to 217 meV with the perpendicular electric field reaching 0.8 V Å  − 1 . (paper)