WorldWideScience

Sample records for ballistic pressure waves

  1. Viscoelastic shock wave in ballistic gelatin behind soft body armor.

    Science.gov (United States)

    Liu, Li; Fan, Yurun; Li, Wei

    2014-06-01

    Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Kinetic treatment of magnetosonic wave reflection by minority gyroresonant ballistic waves in tokamak geometry

    International Nuclear Information System (INIS)

    Kaufman, A.N.; Brizard, A.J.; Cook, D.R.

    1993-01-01

    The analysis of the minority-ion gyroresonant heating process by a magnetosonic wave in a general magnetic field geometry with one ignorable spatial coordinate can be divided into several steps, each defined in terms of a precise mathematical problem to be solved. In this work, the authors focus their attention on the magnetosonic wave reflection problem in axisymmetric tokamak geometry; the conversion and absorption of the minority-ion gyroresonant ballistic waves are treated elsewhere. In contrast to their previous work, they employ a kinetic model based on the perturbation generating function S for the gyroresonant minority-ions. The bulk plasma response is represented by the perturbation magnetic vector potential A, corresponding to a shielded magnetosonic wave. The set of coupled equations for S and A can be derived from an action principle, which can also be used to derive explicit wave-action conservation laws in ray phase space. The reflection problem is solved in ray phase space by considering three separate steps. In the first step, the incident magnetosonic ray propagates towards the first linear mode conversion region, where action is transferred to the minority-ion gyroresonant ballistic waves. In the second step, the continuum of excited gyroresonant ballistic rays propagate towards the second linear mode conversion region. In the third step, the reflected magnetosonic wave field is excited by linear mode conversion from the minority gyroresonant ballistic rays

  3. Coupling between a Langmuir wave and a ballistic perturbation

    International Nuclear Information System (INIS)

    Gervais, F.; Olivain, J.; Quemeneur, A.; Trocheris, M.

    1980-01-01

    The study of the mode-mode coupling usually neglects the ballistic contribution associated with parent waves. If this approximation is not made, a new mode, resulting from the interaction between the ballistic perturbation of pulsation ω 2 associated with one launched wave and the Landau component of pulsation ω 1 of the second one appears if ω 1 >ω 2 . The problem is solved theoretically and experimental evidence of this mode from measurements performed on a D.C. plasma column, confirms the results of this analysis

  4. Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes

    International Nuclear Information System (INIS)

    Leppert, H.D.; Schuelter, H.; Wiesemann, K.

    1982-01-01

    The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)

  5. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    Science.gov (United States)

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  6. Ballistic transport of spin waves incident from cobalt leads across cobalt–gadolinium alloy nanojunctions

    International Nuclear Information System (INIS)

    Ashokan, V.; Abou Ghantous, M.; Ghader, D.; Khater, A.

    2014-01-01

    Calculations are presented for the scattering and ballistic transport of spin waves (SW) incident from cobalt leads, on ultrathin ferrimagnetic cobalt–gadolinium ‥Co][Co (1−c) Gd (c) ] ℓ [Co‥ nanojunction systems. The nanojunction [Co (1−c) Gd (c) ] ℓ itself is a randomly disordered alloy of thickness ℓ hcp lattice planes between matching hcp planes of the Co leads, at known stable concentrations c≤0.5 for this alloy system. To compute the spin dynamics, and the SW scattering and ballistic transport, this alloy nanojunction is modeled in the virtual crystal approximation (VCA), valid in particular at the length scale of the nanojunction for submicroscopic SW wavelengths. The phase field matching theory (PFMT) is applied to compute the localized and resonant magnons on the nanojunction. These magnons, characteristic of the embedded nanostructure, propagate in its symmetry plane with spin precession amplitudes that decay or match the spin wave states in the semi-infinite leads. The eigenvectors of these magnon modes are calculated for certain cases to illustrate the spin precession configurations on the nanojunction. The VCA-PFMT approach is also used to calculate the reflection and transmission spectra for the spin waves incident from the Co leads on the nanojunction. The results demonstrate resonance assisted maxima for the ballistic SW transmission spectra due to interactions between the incident spin waves and the nanojunction magnon modes. These properties are general for variable nanojunction thicknesses and alloy stable concentrations c≤0.5. In particular, the positions of the resonance assisted maxima of spin wave transmission can be modified with nanojunction thickness and alloy concentration. - Highlights: • Model is presented for spin wave scattering at CoGd disordered alloy nanojunctions. • Computations yield the localized and resonant magnon modes on the nanojunctions. • The spin waves ballistic reflection and transmission

  7. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.; Gundlach, David; Cheung, Kin. P., E-mail: Kin.Cheung@NIST.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Liu, Changze [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Institute of Microelectronics, Peking University, Beijing 100871 (China); Southwick, Richard G. [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); IBM Research, Albany, NY 12205 (United States); Oates, Anthony S. [Taiwan Semiconductor Manufacturing Corporation, Hsinchu 30844, Taiwan (China); Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)

    2016-06-15

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equation can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.

  8. Intracranial Pressure Response to Non-Penetrating Ballistic Impact: An Experimental Study Using a Pig Physical Head Model and Live Pigs

    Science.gov (United States)

    Liu, Hai; Kang, Jianyi; Chen, Jing; Li, Guanhua; Li, Xiaoxia; Wang, Jianmin

    2012-01-01

    This study was conducted to characterize the intracranial pressure response to non-penetrating ballistic impact using a "scalp-skull-brain" pig physical head model and live pigs. Forty-eight ballistic tests targeting the physical head model and anesthetized pigs protected by aramid plates were conducted with standard 9 mm bullets at low (279-297 m/s), moderate (350-372 m/s), and high (409-436 m/s) velocities. Intracranial pressure responses were recorded with pressure sensors embedded in similar brain locations in the physical head model and the anesthetized pigs. Three parameters of intracranial pressure were determined from the measured data: intracranial maximum pressure (Pmax), intracranial maximum pressure impulse (PImax), and the duration of the first positive phase (PPD). The intracranial pressure waves exhibited blast-like characteristics for both the physical model and l live pigs. Of all three parameters, Pmax is most sensitive to impact velocity, with means of 126 kPa (219 kPa), 178 kPa (474 kPa), and 241 kPa (751 kPa) for the physical model (live pigs) for low, moderate, and high impact velocities, respectively. The mean PPD becomes increasingly short as the impact velocity increases, whereas PImax shows the opposite trend. Although the pressure parameters of the physical model were much lower than those of the live pigs, good correlations between the physical model and the live pigs for the three pressure parameters, especially Pmax, were found using linear regression. This investigation suggests that Pmax is a preferred parameter for predicting the severity of the brain injury resulting from behind armor blunt trauma (BABT). PMID:23055817

  9. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    Science.gov (United States)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  10. The effect of high-pressure devitrification and densification on ballistic-penetration resistance of fused silica

    Science.gov (United States)

    Avuthu, Vasudeva Reddy

    Despite the clear benefits offered by more advanced transparent materials, (e.g. transparent ceramics offer a very attractive combination of high stiffness and high hardness levels, highly-ductile transparent polymers provide superior fragment-containing capabilities, etc.), ballistic ceramic-glass like fused-silica remains an important constituent material in a majority of transparent impact-resistant structures (e.g. windshields and windows of military vehicles, portholes in ships, ground vehicles and spacecraft) used today. Among the main reasons for the wide-scale use of glass, the following three are most frequently cited: (i) glass-structure fabrication technologies enable the production of curved, large surface-area, transparent structures with thickness approaching several inches; (ii) relatively low material and manufacturing costs; and (iii) compositional modifications, chemical strengthening, and controlled crystallization have been demonstrated to be capable of significantly improving the ballistic properties of glass. In the present work, the potential of high-pressure devitrification and densification of fused-silica as a ballistic-resistance-enhancement mechanism is investigated computationally. In the first part of the present work, all-atom molecular-level computations are carried out to infer the dynamic response and material microstructure/topology changes of fused silica subjected to ballistic impact by a nanometer-sized hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the microstructural changes such as the deformation of highly sheared and densified regions, and the conversion of amorphous fused silica to SiO2 crystalline allotropic modifications (in particular, alpha-quartz and stishovite). The microstructural changes in question were determined by carrying out a post-processing atom-coordination procedure. This procedure suggested the formation of high-density stishovite (and

  11. Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory

    International Nuclear Information System (INIS)

    Andriyash, A. V.; Astashkin, M. V.; Baranov, V. K.; Golubinskii, A. G.; Irinichev, D. A.; Kondrat’ev, A. N.; Kuratov, S. E.; Mazanov, V. A.; Rogozkin, D. B.; Stepushkin, S. N.; Khatunkin, V. Yu.

    2016-01-01

    The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wave pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.

  12. Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Andriyash, A. V. [All-Russia Research Institute of Automatics (Russian Federation); Astashkin, M. V.; Baranov, V. K.; Golubinskii, A. G.; Irinichev, D. A. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF) (Russian Federation); Kondrat’ev, A. N., E-mail: an.kondratev@physics.msu.ru; Kuratov, S. E. [All-Russia Research Institute of Automatics (Russian Federation); Mazanov, V. A. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF) (Russian Federation); Rogozkin, D. B. [All-Russia Research Institute of Automatics (Russian Federation); Stepushkin, S. N.; Khatunkin, V. Yu. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF) (Russian Federation)

    2016-06-15

    The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wave pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.

  13. Dense-plasma research using ballistic compressors

    International Nuclear Information System (INIS)

    Hess, H.

    1986-01-01

    An introduction is given to research on dense (or nonideal) plasmas which can be generated to advantage by ballistic compressors. Some properties of ballistic compressors are discussed especially in comparison with shock tubes. A short review is given on the history of these devices for high-pressure plasma generation. The present state of the art is reported including research on the two ZIE (Central Institute for Electron Physics) ballistic compressors. (author)

  14. Two distinct ballistic processes in graphene

    International Nuclear Information System (INIS)

    Lewkowicz, M; Rosenstein, B; Nghiem, D

    2012-01-01

    A dynamical approach to ballistic transport in mesoscopic graphene samples of finite length Land contact potential difference with leads U is developed. It is shown that at ballistic times shorter than both relevant time scales, t L = L/v g (v g - Fermi velocity) and t u = ħ/(eU), the major effect of electric field is to creates the electron - hole pairs, namely causes interband transitions. At ballistic times lager than the two scales the mechanism is very different. The conductivity has its “nonrelativistic” or intraband value equal to the one obtained within the Landauer-Butticker approach for the barrier Uresulting from evanescent waves tunneling through the barrier.

  15. Modeling and numerical simulation of interior ballistic processes in a 120mm mortar system

    Science.gov (United States)

    Acharya, Ragini

    by using a high-resolution Godunov-type shock-capturing approach was used where the discretization is done directly on the integral formulation of the conservation laws. A linearized approximate Riemann Solver was modified in this work for the two-phase flows to compute fully non-linear wave interactions and to directly provide upwinding properties in the scheme. An entropy fix based on Harten-Heyman method was used with van Leer flux limiter for total variation diminishing. The three dimensional effects were simulated by incorporating an unsplit multi-dimensional wave propagation method, which accounted for discontinuities traveling in both normal and oblique coordinate directions. For each component, the predicted pressure-time traces showed significant pressure wave phenomena, which closely simulated the measured pressure-time traces obtained at PSU. The pressure-time traces at the breech-end of the mortar tube were obtained at Aberdeen Test Center with 0, 2, and 4 charge increments. The 3D-MIB code was also used to simulate the effect of flash tube vent-hole pattern on the pressure-wave phenomenon in the ignition cartridge. A comparison of the pressure difference between primer-end and projectile-end locations of the original and modified ignition cartridges with each other showed that the early-phase pressure-wave phenomenon can be significantly reduced with the modified pattern. The flow property distributions predicted by the 3D-MIB for 0, 2, and 4 charge increment cases as well the projectile dynamics predictions provided adequate validation of theory by experiments.

  16. Modeling internal ballistics of gas combustion guns.

    Science.gov (United States)

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  17. Numerical simulation and optimized design of cased telescoped ammunition interior ballistic

    Directory of Open Access Journals (Sweden)

    Jia-gang Wang

    2018-04-01

    Full Text Available In order to achieve the optimized design of a cased telescoped ammunition (CTA interior ballistic design, a genetic algorithm was introduced into the optimal design of CTA interior ballistics with coupling the CTA interior ballistic model. Aiming at the interior ballistic characteristics of a CTA gun, the goal of CTA interior ballistic design is to obtain a projectile velocity as large as possible. The optimal design of CTA interior ballistic is carried out using a genetic algorithm by setting peak pressure, changing the chamber volume and gun powder charge density. A numerical simulation of interior ballistics based on a 35 mm CTA firing experimental scheme was conducted and then the genetic algorithm was used for numerical optimization. The projectile muzzle velocity of the optimized scheme is increased from 1168 m/s for the initial experimental scheme to 1182 m/s. Then four optimization schemes were obtained with several independent optimization processes. The schemes were compared with each other and the difference between these schemes is small. The peak pressure and muzzle velocity of these schemes are almost the same. The result shows that the genetic algorithm is effective in the optimal design of the CTA interior ballistics. This work will be lay the foundation for further CTA interior ballistic design. Keywords: Cased telescoped ammunition, Interior ballistics, Gunpowder, Optimization genetic algorithm

  18. Electron eigen-oscillations and ballistic modes of a stable plasma

    International Nuclear Information System (INIS)

    Jungwirth, K.

    1976-01-01

    The relation between plasma responses to singular and regular initial perturbations is established. Time scaling is introduced to separate time intervals for which eigen-oscillations (Landau solution) are dominant from such where ballistic modes prevail. The enhanced role is demonstrated of the ballistic modes for an initially perturbed field-free plasma including the phenomenon of plasma wave echoes. (author)

  19. Ballistic propagation of turbulence front in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Sugita, Satoru; Itoh, Kimitaka; Itoh, Sanae-I; Yagi, Masatoshi; Fuhr, Guillaume; Beyer, Peter; Benkadda, Sadruddin

    2012-01-01

    The flux-driven nonlinear simulation of resistive ballooning mode turbulence with tokamak edge geometry is performed to study the non-steady component in the edge turbulence. The large-scale and dynamical events in transport are investigated in a situation where the mean flow is suppressed. Two types of dynamics are observed. One is the radial propagation of the pulse of pressure gradient, the other is the appearance/disappearance of radially elongated global structure of turbulent heat flux. The ballistic propagation is observed in the pulse of pressure gradient, which is associated with the front of turbulent heat flux. We focus on this ballistic propagation phenomenon. Both of the bump of pressure gradient and the front of heat flux propagate inward and outward direction. It is confirmed that the strong fluctuation propagates with the pulse front. It is observed that the number of pulses going outward is close to those going inward. This ballistic phenomenon does not contradict to the turbulence spreading theory. Statistical characteristics of the ballistic propagation of pulses are evaluated and compared with scaling laws which is given by the turbulence spreading theory. It is found that they give qualitatively good agreement. (paper)

  20. Non linear interaction between a Langmuir wave and a ballistic perturbation

    International Nuclear Information System (INIS)

    Gervais, F.; Olivain, J.; Quemeneur, A.; Trocheris, M.

    1979-05-01

    The theoretical solutions of the Landau-Vlasov initial value problem giving mode-mode coupling usually neglect the free-streaming contribution. We solve theoretically this problem including the ballistic terms. We find that a new mode appears resulting from the nonlinear interaction between the Landau component and the ballistic perturbation. The amplitude of this mode is calculated as a function of distance and compared with experimental results in a plasma column

  1. Ballistic transport and quantum interference in InSb nanowire devices

    International Nuclear Information System (INIS)

    Li Sen; Huang Guang-Yao; Guo Jing-Kun; Kang Ning; Xu Hong-Qi; Caroff, Philippe

    2017-01-01

    An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in InSb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry–Pérot patterns which confirm the ballistic nature of charge transport. Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry–Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron’s wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of InSb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations. (paper)

  2. Elements of sub-quantum thermodynamics: quantum motion as ballistic diffusion

    International Nuclear Information System (INIS)

    Groessing, G; Fussy, S; Pascasio, J Mesa; Schwabl, H

    2011-01-01

    By modelling quantum systems as emerging from a (classical) sub-quantum thermodynamics, the quantum mechanical 'decay of the wave packet' is shown to simply result from sub-quantum diffusion with a specific diffusion coefficient varying in time due to a particle's changing thermal environment. It is thereby proven that free quantum motion strictly equals ballistic diffusion. The exact quantum mechanical trajectory distributions and the velocity field of the Gaussian wave packet are thus derived solely from classical physics. Moreover, also quantum motion in a linear (e.g., gravitational) potential is shown to equal said ballistic diffusion. Quantitative statements on the trajectories' characteristic behaviours are obtained which provide a detailed 'micro-causal' explanation in full accordance with momentum conservation.

  3. EVOLUTION of the Pressure Wave Supercharger Concept

    Science.gov (United States)

    Costiuc, Iuliana; Chiru, Anghel

    2017-10-01

    Born more than a century ago, the concept of exploiting the pressure wave phenomenon has evolved with rather small steps, experiencing an accelerated progress over the past decades. This paper aims an overview on the researchers’ results over time regarding the pressure wave technology and its applications, pointing out on the internal combustion engine’s supercharging application. This review complements the past reports on the subject, presenting the evolution of the concept and technology, as well as the researcher’s efforts on solving the specific shortcomings of this pressure wave technology. Undoubtedly, the pressure wave rotors have been a research goal over the years. At first, most of the researches were experimental and the theoretical calculations required to improve the technology were too arduous. Recently, new computer software dedicated to accurate simulation of the processes governing the wave rotor operation, altogether with modern experimental measurement instruments and well-developed diagnostic techniques have opened wide possibilities to innovate the pressure wave supercharging technology. This paper also highlights the challenges that specialists still have to overcome and aspects to become future preoccupations and research directions.

  4. Ballistic characteristics improving and maintenance of protective ballistic vests

    OpenAIRE

    RADONJIC VOJKAN M.; JOVANOVIC DANKO M.; ZIVANOVIC GORAN Z.; RESIMIC BRANKO V.

    2014-01-01

    The work presents research of the materials necessary for the maintenance of protective ballistic vests. In this paper is proposed a new construction design with modern materials for ballistic inserts producing. This paper also presents the results of laboratory tests of ballistic cartridges with new materials. Based on the test results, it can be concluded, the proposed technical solution for making ballistic inserts adequately meets current standards.

  5. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2009-04-01

    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  6. The influence of ALN-Al gradient material gradient index on ballistic performance

    International Nuclear Information System (INIS)

    Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang

    2013-01-01

    Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.

  7. Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.

    Science.gov (United States)

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2016-01-01

    This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower.

  8. Pressure wave propagation in sodium loop

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1989-01-01

    A study was done on the pressure wave propagation within the pipes and mixture vessel of a termohydraulic loop for thermal shock with sodium. It was used the characteristic method to solve the one-dimensional continuity and momentum equations. The numerical model includes the pipes and the effects of valves and other accidents on pressure losses. The study was based on designer informations and engineering tables. It was evaluated the pressure wave sizes, parametrically as a function of the draining valve closure times. (author) [pt

  9. Ballistic Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    Science.gov (United States)

    2016-04-01

    3mm) of diesel sprays from a high-pressure single-hole fuel injector . Ballistic imaging of dodecane and methyl oleate sprays are reported...Porter, Sean P. Duran, Terence E. Parker. Picosecond Ballistic Imaging of Ligament Structures in the Near- Nozzle Region of Diesel Sprays, ILASS...Experiments in Fluids (12 2014) Sean Duran, Jason Porter, Terence Parker. Ballistic Imaging of a Diesel Injector Spray at High Temperature and

  10. One-Dimensional Modelling of Internal Ballistics

    Science.gov (United States)

    Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.

    2017-10-01

    A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.

  11. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  12. Wave effects on a pressure sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; DeSa, E; Desa, E; McKeown, J.; Peshwe, V.B.

    Wave flume experiments indicated that for waves propagating on quiescent waters the sensor's performance improved (i.e. the difference Delta P between the average hydrostatic and measured pressures was small and positive) when the inlet...

  13. Corotating pressure waves without streams in the solar wind

    International Nuclear Information System (INIS)

    Burlaga, L.F.

    1983-01-01

    Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun

  14. Pneumatic pressure wave generator provides economical, simple testing of pressure transducers

    Science.gov (United States)

    Gaal, A. E.; Weldon, T. P.

    1967-01-01

    Testing device utilizes the change in pressure about a bias or reference pressure level produced by displacement of a center-driven piston in a closed cylinder. Closely controlled pneumatic pressure waves allow testing under dynamic conditions.

  15. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    International Nuclear Information System (INIS)

    Liu Zhiwei; Bao Weimin; Li Xiaoping; Liu Donglin; Zhou Hui

    2016-01-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. (paper)

  16. Wave Shape and Impact Pressure Measurements at a Rock Coast Cliff

    Science.gov (United States)

    Varley, S. J.; Rosser, N. J.; Brain, M.; Vann Jones, E. C.

    2016-02-01

    Rock coast research focuses largely on wave behaviour across beaches and shore platforms but rarely considers direct wave interaction with cliffs. Hydraulic action is one of the most important drivers of erosion along rock coasts. The magnitude of wave impact pressure has been shown by numerical and laboratory studies to be related to the wave shape. In deep water, a structure is only subjected to the hydrostatic pressure due to the oscillating clapotis. Dynamic pressures, related to the wave celerity, are exerted in shallower water when the wave is breaking at the point of impact; very high magnitude, short duration shock pressures are theorised to occur when the approaching wavefront is vertical. As such, wave shape may directly influence the potential of the impact to weaken rock and cause erosion. Measurements of impact pressure at coastal cliffs are limited, and the occurrence and influence of this phenomenon is currently poorly constrained. To address this, we have undertaken a field monitoring study on the magnitude and vertical distribution of wave impact pressures at the rocky, macro-tidal coastline of Staithes, North Yorkshire, UK. A series of piezo-resistive pressure transducers and a camera were installed at the base of the cliff during low tide. Transducers were deployed vertically up the cliff face and aligned shore-normal to capture the variation in static and dynamic pressure with height during a full spring tidal cycle. Five minute bursts of 5 kHz pressure readings and 4 Hz wave imaging were sampled every 30 minutes for six hours during high tide. Pressure measurements were then compensated for temperature and combined with wave imaging to produce a pressure time series and qualitative wave shape category for each wave impact. Results indicate the presence of a non-linear relationship between pressure impact magnitude, the occurrence of shock pressures, wave shape and tidal stage, and suggest that breaker type on impact (and controls thereof) may

  17. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Directory of Open Access Journals (Sweden)

    C. L. Gomez-Heredia

    2017-01-01

    Full Text Available Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen’s number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrpressure reduces. The obtained results show that the proposed methodology can be used to study the molecular dynamics in gases supporting diffusive and ballistic heat transport.

  18. Analysis of behind the armor ballistic trauma.

    Science.gov (United States)

    Wen, Yaoke; Xu, Cheng; Wang, Shu; Batra, R C

    2015-05-01

    The impact response of body armor composed of a ceramic plate with an ultrahigh molecular weight polyethylene (UHMWPE) fiber-reinforced composite and layers of UHMWPE fibers shielding a block of ballistic gelatin has been experimentally and numerically analyzed. It is a surrogate model for studying injuries to human torso caused by a bullet striking body protection armor placed on a person. Photographs taken with a high speed camera are used to determine deformations of the armor and the gelatin. The maximum depth of the temporary cavity formed in the ballistic gelatin and the peak pressure 40mm behind the center of the gelatin front face contacting the armor are found to be, respectively, ~34mm and ~15MPa. The Johnson-Holmquist material model has been used to simulate deformations and failure of the ceramic. The UHMWPE fiber-reinforced composite and the UHMWPE fiber layers are modeled as linear elastic orthotropic materials. The gelatin is modeled as a strain-rate dependent hyperelastic material. Values of material parameters are taken from the open literature. The computed evolution of the temporary cavity formed in the gelatin is found to qualitatively agree with that seen in experiments. Furthermore, the computed time histories of the average pressure at four points in the gelatin agree with the corresponding experimentally measured ones. The maximum pressure at a point and the depth of the temporary cavity formed in the gelatin can be taken as measures of the severity of the bodily injury caused by the impact; e.g. see the United States National Institute of Justice standard 0101.06-Ballistic Resistance of Body Armor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Changes in Cerebral Partial Oxygen Pressure and Cerebrovascular Reactivity During Intracranial Pressure Plateau Waves.

    Science.gov (United States)

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2015-08-01

    Plateau waves in intracranial pressure (ICP) are frequently recorded in neuro intensive care and are not yet fully understood. To further investigate this phenomenon, we analyzed partial pressure of cerebral oxygen (pbtO2) and a moving correlation coefficient between ICP and mean arterial blood pressure (ABP), called PRx, along with the cerebral oxygen reactivity index (ORx), which is a moving correlation coefficient between cerebral perfusion pressure (CPP) and pbtO2 in an observational study. We analyzed 55 plateau waves in 20 patients after severe traumatic brain injury. We calculated ABP, ABP pulse amplitude (ampABP), ICP, CPP, pbtO2, heart rate (HR), ICP pulse amplitude (ampICP), PRx, and ORx, before, during, and after each plateau wave. The analysis of variance with Bonferroni post hoc test was used to compare the differences in the variables before, during, and after the plateau wave. We considered all plateau waves, even in the same patient, independent because they are separated by long intervals. We found increases for ICP and ampICP according to our operational definitions for plateau waves. PRx increased significantly (p = 0.00026), CPP (p pressure remains stable in ICP plateau waves, while cerebral autoregulatory indices show distinct changes, which indicate cerebrovascular reactivity impairment at the top of the wave. PbtO2 decreases during the waves and may show a slight overshoot after normalization. We assume that this might be due to different latencies of the cerebral blood flow and oxygen level control mechanisms. Other factors may include baseline conditions, such as pre-plateau wave cerebrovascular reactivity or pbtO2 levels, which differ between studies.

  20. Nonlinear Modeling and Analysis of Pressure Wave inside CEUP Fuel Pipeline

    Directory of Open Access Journals (Sweden)

    Qaisar Hayat

    2014-01-01

    Full Text Available Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME for CEUP pipeline.

  1. Blast wave parameters at diminished ambient pressure

    Science.gov (United States)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  2. Determination of the propellant combustion law under ballistic experiment conditions

    Science.gov (United States)

    Ishchenko, A. N.; Diachkovskii, A. S.; Zykova, A. I.; Kasimov, VZ; Samorokova, N. M.

    2017-11-01

    The main characteristics of ballistic experiment are the maximum pressure in the combustion chamber P max and the projectile velocity at the time of barrel leaving U M. During the work the burning law of the new high-energy fuel was determined in a ballistic experiment. This burning law was used for a parametric study of depending P max and U M from a powder charge mass and a traveling charge at initial temperature of + 20 °C was carried out. The optimal conditions for loading were obtained for improving the muzzle velocity by 14.9 %. Under optimal loading, there is defined the conditions, which is possible to get the greatest value muzzle velocity projectile at pressures up to 600 MPa.

  3. Attenuation of blast pressure behind ballistic protective vests.

    Science.gov (United States)

    Wood, Garrett W; Panzer, Matthew B; Shridharani, Jay K; Matthews, Kyle A; Capehart, Bruce P; Myers, Barry S; Bass, Cameron R

    2013-02-01

    Clinical studies increasingly report brain injury and not pulmonary injury following blast exposures, despite the increased frequency of exposure to explosive devices. The goal of this study was to determine the effect of personal body armour use on the potential for primary blast injury and to determine the risk of brain and pulmonary injury following a blast and its impact on the clinical care of patients with a history of blast exposure. A shock tube was used to generate blast overpressures on soft ballistic protective vests (NIJ Level-2) and hard protective vests (NIJ Level-4) while overpressure was recorded behind the vest. Both types of vest were found to significantly decrease pulmonary injury risk following a blast for a wide range of conditions. At the highest tested blast overpressure, the soft vest decreased the behind armour overpressure by a factor of 14.2, and the hard vest decreased behind armour overpressure by a factor of 56.8. Addition of body armour increased the 50th percentile pulmonary death tolerance of both vests to higher levels than the 50th percentile for brain injury. These results suggest that ballistic protective body armour vests, especially hard body armour plates, provide substantial chest protection in primary blasts and explain the increased frequency of head injuries, without the presence of pulmonary injuries, in protected subjects reporting a history of blast exposure. These results suggest increased clinical suspicion for mild to severe brain injury is warranted in persons wearing body armour exposed to a blast with or without pulmonary injury.

  4. Shock Tunnel Studies of the Hypersonic Flowfield around the Hypervelocity Ballistic Models with Aerospikes

    Science.gov (United States)

    Balakalyani, G.; Saravanan, S.; Jagadeesh, G.

    Reduced drag and aerodynamic heating are the two basic design requirements for any hypersonic vehicle [1]. The flowfield around an axisymmetric blunt body is characterized by a bow shockwave standing ahead of its nose. The pressure and temperature behind this shock wave are very high. This increased pressure and temperature are responsible for the high levels of drag and aerodynamic heating over the body. In the past, there have been many investigations on the use of aerospikes as a drag reduction tool. These studies on spiked bodies aim at reducing both the drag and aerodynamic heating by modifying the hypersonic flowfield ahead of the nose of the body [2]. However, most of them used very simple configurations to experimentally study the drag reduction using spikes at hypersonic speeds [3] and therefore very little experimental data is available for a realistic geometric configuration. In the present study, the standard AGARD Hypervelocity Ballistic model 1 is used as the test model. The addition of the spike to the blunt body significantly alters the flowfield ahead of the nose, leading to the formation of a low pressure conical recirculation region, thus causing a reduction in drag and wall heat flux [4]. In the present investigation, aerodynamic drag force is measured over the Hypervelocity Ballistic model-1, with and without spike, at a flow enthalpy of 1.7 MJ/kg. The experiments are carried out at a Mach number of 8 and at zero angle of attack. An internally mountable accelerometer based 3-component force balance system is used to measure the aerodynamic forces on the model. Also computational studies are carried out to complement the experiments.

  5. Turbulent Spot Pressure Fluctuation Wave Packet Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.

  6. The Truth About Ballistic Coefficients

    OpenAIRE

    Courtney, Michael; Courtney, Amy

    2007-01-01

    The ballistic coefficient of a bullet describes how it slows in flight due to air resistance. This article presents experimental determinations of ballistic coefficients showing that the majority of bullets tested have their previously published ballistic coefficients exaggerated from 5-25% by the bullet manufacturers. These exaggerated ballistic coefficients lead to inaccurate predictions of long range bullet drop, retained energy and wind drift.

  7. On the pressure field of nonlinear standing water waves

    Science.gov (United States)

    Schwartz, L. W.

    1980-01-01

    The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.

  8. Investigation on utilization of liquid propellant in ballistic range experiments

    Energy Technology Data Exchange (ETDEWEB)

    Saso, Akihiro; Oba, Shinji; Takayama, Kazuyoshi [Tohoku University, Sendai (Japan)

    1999-10-31

    Experiments were conducted in a ballistic range using a HAN (hydroxylammonium nitrate)-based liquid monopropellant, LP1846. In a 25-mm-bore single-stage gun, using bulk-loaded propellant of 10 to 35 g, a muzzle speed up to 1.0 km/s was obtained. Time variations of propellant chamber pressures and in-tube projectile velocity profiles were measured. The liquid propellant combustion was initiated accompanying a delay time which was created due to the pyrolysis of the propellant. In order to obtain reliable ballistic range performance, the method of propellant loading was revealed to be critical. Since the burning rate of the liquid propellant is relatively low, the peak acceleration and the muzzle speed strongly depend on the rupture pressure of a diaphragm that was inserted between the launch tube and the propellant chamber. (author)

  9. Particle image velocimetry investigation of a finite amplitude pressure wave

    Science.gov (United States)

    Thornhill, D.; Currie, T.; Fleck, R.; Chatfield, G.

    2006-03-01

    Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.

  10. Measurements of Pressure of Extracorporeal Shock Wave Lithotripter Using Pressure-Sensitive Papers

    Science.gov (United States)

    Inose, Naoto; Ide, Masao

    1993-05-01

    This paper describes measurements of pressures at the focal region of the extracorporeal shock wave lithotripter (ESWL) using pressure-sensitive papers. At the focal region of ESWL, ordinary hydrophones are quickly damaged, because of very high pressures. Recently, measurements of pressure at the focal region of ESWL using pressure-sensitive paper have been advised. Therefore, we have studied the effectiveness of pressure-sensitive papers in the measurement of high acoustic pressures at the focal region of ESWL.

  11. The Effects of Ballistic and Non-Ballistic Bench Press on Mechanical Variables.

    Science.gov (United States)

    Moir, Gavin L; Munford, Shawn N; Moroski, Lindsey L; Davis, Shala E

    2017-02-21

    To investigate the effects of ballistic and non-ballistic bench press performed with loads equivalent to 30 and 90% 1-repetition maximum (1-RM) on mechanical variables. Eleven resistance-trained men (age: 23.0 ± 1.4 years; mass: 98.4 ± 14.4 kg) attended four testing sessions where they performed one of the following sessions: 1) three sets of five non-ballistic repetitions performed with a load equivalent to 30% 1-RM (30N-B), 2) three sets of five ballistic repetitions performed with a load equivalent to 30% 1-RM (30B), 3) three sets of four non-ballistic repetitions with a load equivalent to 90% 1-RM (90N-B), 4) three sets of four ballistic repetitions with a load equivalent to 90% 1-RM (90B). Force plates and a 3-D motion analysis system were used to determine the velocity, force, power output (PO) and work during each repetition. The heavier loads resulted in significantly greater forces applied to the barbell (mean differences: 472-783 N, pvelocities (mean differences: 0.85-1.20 m/s, pvelocity (mean difference: 0.33 m/s, pbench press may be an effective exercise for developing power output and multiple sets may elicit post-activation potentiation that enhances force production. However, these benefits may be negated at heavier loads.

  12. Is there ballistic transport in metallic nano-objects? Ballistic versus diffusive contributions

    International Nuclear Information System (INIS)

    Garcia, N; Bai Ming; Lu Yonghua; Munoz, M; Cheng Hao; Levanyuk, A P

    2007-01-01

    When discussing the resistance of an atomic-or nanometre-size contact we should consider both its ballistic and its diffusive contributions. But there is a contribution of the leads to the resistance of the contact as well. In this context, the geometry and the roughness of the surfaces limiting the system will contribute to the resistance, and these contributions should be added to the ideal ballistic resistance of the nanocontact. We have calculated, for metallic materials, the serial resistance of the leads arising from the roughness, and our calculations show that the ohmic resistance is as important as the ballistic resistance of the constriction. The classical resistance is a lower limit to the quantum resistance of the leads. Many examples of earlier experiments show that the mean free path of the transport electrons is of the order of the size of the contacts or the leads. This is not compatible with the idea of ballistic transport. This result may put in serious difficulties the current, existing interpretation of experimental data in metals where only small serial resistances compared with the ballistic component of the total resistance have been taken into account. The two-dimensional electron gas (2DEG) is also discussed and the serial corrections appear to be smaller than for metals. Experiments with these last systems are proposed that may reveal new interesting aspects in the physics of ballistic and diffusive transport

  13. High-speed Imaging of Global Surface Temperature Distributions on Hypersonic Ballistic-Range Projectiles

    Science.gov (United States)

    Wilder, Michael C.; Reda, Daniel C.

    2004-01-01

    The NASA-Ames ballistic range provides a unique capability for aerothermodynamic testing of configurations in hypersonic, real-gas, free-flight environments. The facility can closely simulate conditions at any point along practically any trajectory of interest experienced by a spacecraft entering an atmosphere. Sub-scale models of blunt atmospheric entry vehicles are accelerated by a two-stage light-gas gun to speeds as high as 20 times the speed of sound to fly ballistic trajectories through an 24 m long vacuum-rated test section. The test-section pressure (effective altitude), the launch velocity of the model (flight Mach number), and the test-section working gas (planetary atmosphere) are independently variable. The model travels at hypersonic speeds through a quiescent test gas, creating a strong bow-shock wave and real-gas effects that closely match conditions achieved during actual atmospheric entry. The challenge with ballistic range experiments is to obtain quantitative surface measurements from a model traveling at hypersonic speeds. The models are relatively small (less than 3.8 cm in diameter), which limits the spatial resolution possible with surface mounted sensors. Furthermore, since the model is in flight, surface-mounted sensors require some form of on-board telemetry, which must survive the massive acceleration loads experienced during launch (up to 500,000 gravities). Finally, the model and any on-board instrumentation will be destroyed at the terminal wall of the range. For these reasons, optical measurement techniques are the most practical means of acquiring data. High-speed thermal imaging has been employed in the Ames ballistic range to measure global surface temperature distributions and to visualize the onset of transition to turbulent-flow on the forward regions of hypersonic blunt bodies. Both visible wavelength and infrared high-speed cameras are in use. The visible wavelength cameras are intensified CCD imagers capable of integration

  14. Terminal Ballistics

    CERN Document Server

    Rosenberg, Zvi

    2012-01-01

    This book covers the important issues of terminal ballistics in a comprehensive way combining experimental data, numerical simulations and analytical modeling. The first chapter reviews the experimental equipment which are used for ballistic tests and the diagnostics for material characterization under impulsive loading conditions. The second chapter covers essential features of the codes which are used for terminal ballistics such as the Euler vs. Lagrange schemes and meshing techniques, as well as the most popular material models. The third chapter, devoted to the penetration mechanics of rigid penetrators, brings the update of modeling in this field. The fourth chapter deals with plate perforation and the fifth chapter deals with the penetration mechanics of shaped charge jets and eroding long rods. The last two chapters discuss several techniques for the disruption and defeating of the main threats in armor design. Throughout the book the authors demonstrate the advantages of numerical simulations in unde...

  15. Investigation of density-wave oscillation in parallel boiling channels under high pressure

    International Nuclear Information System (INIS)

    Ming Xiao; Xuejun Chen; Mingyuan Zhang

    1992-01-01

    This paper presents experimental results on density-wave instability in parallel boiling channels. Experiments have been done in a high pressure steam-water loop. Different types of two-phase flow instabilities have been observed, including density-wave oscillation, pressure-drop type oscillation, thermal oscillation and secondary density-wave oscillation. The secondary density-wave oscillation appears at very low exit steam quality (less than 0.1) and at the positive portion of Δ P-G curves with both channels' flow rate oscillating in phase. Density-wave oscillation can appear at pressure up to 192 bar and disappear over 207 bar. (6 figures) (Author)

  16. Influence of ambient air pressure on impact pressure caused by breaking waves

    NARCIS (Netherlands)

    Moutzouris, C.

    1979-01-01

    Engineers are interested in the dynamics of the interface waterstructure. In case of breaking of water waves on a structure high positive and sometimes negative pressures of very short duration occur. Not only the maxima and minima of the pressures on the structure are important to a designing

  17. The coexistence of pressure waves in the operation of quartz-crystal shear-wave sensors

    OpenAIRE

    Reddy, SM; Jones, JP; Lewis, TJ

    1998-01-01

    It is demonstrated that an AT-cut quartz crystal driven in the thickness-shear-wave mode and typically used as a sensor to monitor the viscoelastic shear-wave properties of a fluid also produce longitudinal pressure waves. Unlike the shear wave, these waves are capable of long-range propagation through the fluid and of reflection at its boundaries, notably at an outer fluid–air interface. They introduce a component into the measured electrical impedance and resonance frequency shift of the cr...

  18. Development of an Advanced Composite Material Model Suitable for Blast and Ballistic Impact Simulations

    National Research Council Canada - National Science Library

    Yen, C. F; Cheeseman, B. A

    2004-01-01

    A robust composite progressive failure model has been successfully developed to account for the strain-rate and pressure dependent behavior of composite materials subjected to high velocity ballistic impact...

  19. Surface acoustic wave oxygen pressure sensor

    Science.gov (United States)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  20. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders

    Science.gov (United States)

    Wu, Bin; Su, Yipin; Liu, Dongying; Chen, Weiqiu; Zhang, Chuanzeng

    2018-05-01

    Soft materials can be designed with a functionally graded (FG) property for specific applications. Such material inhomogeneity can also be found in many soft biological tissues whose functionality is only partly understood to date. In this paper, we analyze the axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder. The cylinder is subjected to a combined action of axial pre-stretch and pressure difference applied to the inner and outer cylindrical surfaces. We consider both torsional waves and longitudinal waves propagating in the FG cylinder made of incompressible isotropic elastomer, which is characterized by the Mooney-Rivlin strain energy function but with the material parameters varying with the radial coordinate in an affine way. The pressure difference generates an inhomogeneous deformation field in the FG cylinder, which dramatically complicates the superimposed wave problem described by the small-on-large theory. A particularly efficient approach is hence employed which combines the state-space formalism for the incremental wave motion with the approximate laminate or multi-layer technique. Dispersion relations for the two types of axisymmetric guided waves are then derived analytically. The accuracy and convergence of the proposed approach is validated numerically. The effects of the pressure difference, material gradient, and axial pre-stretch on both the torsional and the longitudinal wave propagation characteristics are discussed in detail through numerical examples. It is found that the frequency of axisymmetric waves depends nonlinearly on the pressure difference and the material gradient, and an increase in the material gradient enhances the capability of the pressure difference to adjust the wave behavior in the FG cylinder. This work provides a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nondestructive evaluation and for designing tunable waveguides via material tailoring along

  1. Mechanism of ballistic collisions

    International Nuclear Information System (INIS)

    Sindoni, J.M.; Sharma, R.D.

    1992-01-01

    Ballistic collisions is a term used to describe atom-diatom collisions during which a substantial fraction of the initial relative translational energy is converted into the internal energy of the diatom. An exact formulation of the impulse approach to atom-diatom collisions is shown to be in excellent agreement with the experimental results for the CsF-Ar system at 1.1 eV relative translational energy for laboratory scattering angles of 30 degree and 60 degree. The differential cross section for scattering of CsF peaks at two distinct recoil velocities. The peak centered at the recoil velocity corresponding to elastic scattering has been called the elastic peak. This peak is shown to consist of several hundred inelastic transitions, most involving a small change in internal energy. The peak near the center-of-mass (c.m.) velocity is called the ballistic peak and is shown to consist of highly inelastic (ballistic) transitions. It is shown that transitions comprising the ballistic (elastic) peak occur when an Ar atom strikes the F (Cs) end of CsF. When one is looking along the direction of the c.m. velocity, the signal from a single transition, which converts about 99.99% of the relative translational energy into internal energy, may be larger than the signal from any other ballistic transition by as much as an order of magnitude. This property may be used to prepare state-selected and velocity-selected beams for further studies. It is also pointed out that the ballistic peak may be observed for any atom-molecule system under appropriate circumstances

  2. Ballistic studies on layered structures

    International Nuclear Information System (INIS)

    Jena, P.K.; Ramanjeneyulu, K.; Siva Kumar, K.; Balakrishna Bhat, T.

    2009-01-01

    This paper presents the ballistic behavior and penetration mechanism of metal-metal and metal-fabric layered structures against 7.62 armour piercing projectiles at a velocity of 840 ± 15 m/s at 30 o angle of impact and compares the ballistic results with that of homogeneous metallic steel armour. This study also describes the effect of keeping a gap between the target layers. Experimental results showed that among the investigated materials, the best ballistic performance was attained with metal-fabric layered structures. The improvements in ballistic performance were analyzed in terms of mode of failure and fracture mechanisms of the samples by using optical and electron microscope, X-ray radiography and hardness measurement equipments.

  3. Conformable Self-Healing Ballistic Armor

    Science.gov (United States)

    2011-06-28

    public release, distribution unlimited 13. SUPPLEMENTARY NOTES Patent No: US 7,966,923 B2 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION...B2 5 Each unit of shell 10 of the ballistic annor of the subject invention further comprises fastening means 20 to attach each such shell IOta the...selectively affixing the conformable ballistic annor to the vehicle is a secure manner, both on a temporal)’ orpennanent basis. The ballistic

  4. Star-grain rocket motor - nonsteady internal ballistics

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, S.; Greatrix, D.R.; Fawaz, Z. [Ryerson University, Dept. of Aerospace Engineering, Toronto (Canada)

    2004-01-01

    The nonsteady internal ballistics of a star-grain solid-propellant rocket motor are investigated through a numerical simulation model that incorporates both the internal flow and surrounding structure. The effects of structural vibration on burning rate augmentation and wave development in nonsteady operation are demonstrated. The amount of damping plays a role in influencing the predicted axial combustion instability symptoms of the motor. The variation in oscillation frequencies about a given star grain section periphery, and along the grain with different levels of burn-back, also influences the means by which the local acceleration drives the combustion and flow behaviour. (authors)

  5. Forced wave induced by an atmospheric pressure disturbance moving towards shore

    Science.gov (United States)

    Chen, Yixiang; Niu, Xiaojing

    2018-05-01

    Atmospheric pressure disturbances moving over a vast expanse of water can induce different wave patterns, which can be determined by the Froude number Fr. Generally, Fr = 1 is a critical value for the transformation of the wave pattern and the well-known Proudman resonance happens when Fr = 1. In this study, the forced wave induced by an atmospheric pressure disturbance moving over a constant slope from deep sea to shore is numerically investigated. The wave pattern evolves from a concentric-circle type into a triangular type with the increase of the Froude number, as the local water depth decreases, which is in accord with the analysis in the unbounded flat-bottom cases. However, a hysteresis effect has been observed, which implies the obvious amplification of the forced wave induced by a pressure disturbance can not be simply predicted by Fr = 1. The effects of the characteristic parameters of pressure disturbances and slope gradient have been discussed. The results show that it is not always possible to observe significant peak of the maximum water elevation before the landing of pressure disturbances, and a significant peak can be generated by a pressure disturbance with small spatial scale and fast moving velocity over a milder slope. Besides, an extremely high run-up occurs when the forced wave hits the shore, which is an essential threat to coastal security. The results also show that the maximum run-up is not monotonously varying with the increase of disturbance moving speed and spatial scale. There exists a most dangerous speed and scale which may cause disastrous nearshore surge.

  6. Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments

    Science.gov (United States)

    Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.

    2017-09-01

    Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.

  7. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    Directory of Open Access Journals (Sweden)

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  8. Pressure waves in bubble, two-component, two-phase flows. Theoretical approach

    International Nuclear Information System (INIS)

    Micaelli, J.C.

    1982-05-01

    Common methods of modelling pressure waves (global or acoustic) and their inadequacy are described. A model is proposed, based on a stochastic treatment of the gaseous phase. Different mechanisms which affect pressure wave propagation are analysed. The importance of interfacial momentum and heat transfer is confirmed [fr

  9. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    Science.gov (United States)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  10. Electromagnetic Wave Attenuation in Atmospheric Pressure Plasma

    International Nuclear Information System (INIS)

    Zhang Shu; Hu Xiwei; Liu Minghai; Luo Fang; Feng Zelong

    2007-01-01

    When an electromagnetic (EM) wave propagates in an atmospheric pressure plasma (APP) layer, its attenuation depends on the APP parameters such as the layer width, the electron density and its profile and collision frequency between electrons and neutrals. This paper proposes that a combined parameter-the product of the line average electron density n-bar and width d of the APP layer (i.e., the total number of electrons in a unit volume along the wave propagation path) can play a more explicit and decisive role in the wave attenuation than any of the above individual parameters does. The attenuation of the EM wave via the product of n-bar and d with various collision frequencies between electrons and neutrals is presented

  11. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    Science.gov (United States)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, E.; Muller, S. K.; Kueppers, U.; Dingwell, D. B.

    2015-05-01

    Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufriere Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding

  12. Analysis of pressure blips in aft-finocyl solid rocket motor

    Science.gov (United States)

    Di Giacinto, M.; Favini, B.; Cavallini, E.

    2016-07-01

    Ballistic anomalies have frequently occurred during the firing of several solid rocket motors (SRMs) (Inertial Upper Stage, Space Shuttle Redesigned SRM (RSRM) and Titan IV SRM Upgrade (SRMU)), producing even relevant and unexpected variations of the SRM pressure trace from its nominal profile. This paper has the purpose to provide a numerical analysis of the following possible causes of ballistic anomalies in SRMs: an inert object discharge, a slag ejection, and an unexpected increase in the propellant burning rate or in the combustion surface. The SRM configuration under investigation is an aft-finocyl SRM with a first-stage/small booster design. The numerical simulations are performed with a quasi-one-dimensional (Q1D) unsteady model of the SRM internal ballistics, properly tailored to model each possible cause of the ballistic anomalies. The results have shown that a classification based on the head-end pressure (HEP) signature, relating each other the HEP shape and the ballistic anomaly cause, can be made. For each cause of ballistic anomalies, a deepened discussion of the parameters driving the HEP signatures is provided, as well as qualitative and quantitative assessments of the resultant pressure signals.

  13. Acoustic Pressure Waves in Vibrating 3-D Laminated Beam-Plate Enclosures

    Directory of Open Access Journals (Sweden)

    Charles A. Osheku

    2009-01-01

    Full Text Available The effect of structural vibration on the propagation of acoustic pressure waves through a cantilevered 3-D laminated beam-plate enclosure is investigated analytically. For this problem, a set of well-posed partial differential equations governing the vibroacoustic wave interaction phenomenon are formulated and matched for the various vibrating boundary surfaces. By employing integral transforms, a closed form analytical expression is computed suitable for vibroacoustic modeling, design analysis, and general aerospace defensive applications. The closed-form expression takes the form of a kernel of polynomials for acoustic pressure waves showing the influence of linear interface pressure variation across the axes of vibrating boundary surfaces. Simulated results demonstrate how the mode shapes and the associated natural frequencies can be easily computed. It is shown in this paper that acoustic pressure waves propagation are dynamically stable through laminated enclosures with progressive decrement in interfacial pressure distribution under the influence of high excitation frequencies irrespective of whether the induced flow is subsonic, sonic , supersonic, or hypersonic. Hence, in practice, dynamic stability of hypersonic aircrafts or jet airplanes can be further enhanced by replacing their noise transmission systems with laminated enclosures.

  14. Management of civilian ballistic fractures.

    Science.gov (United States)

    Seng, V S; Masquelet, A C

    2013-12-01

    The management of ballistic fractures, which are open fractures, has often been studied in wartime and has benefited from the principles of military surgery with debridement and lavage, and the use of external fixation for bone stabilization. In civilian practice, bone stabilization of these fractures is different and is not performed by external fixation. Fifteen civilian ballistic fractures, Gustilo II or IIIa, two associated with nerve damage and none with vascular damage, were reviewed. After debridement and lavage, ten internal fixations and five conservative treatments were used. No superficial or deep surgical site infection was noted. Fourteen of the 15 fractures (93%) healed without reoperation. Eleven of the 15 patients (73%) regained normal function. Ballistic fractures have a bad reputation due to their many complications, including infections. In civilian practice, the use of internal fixation is not responsible for excessive morbidity, provided debridement and lavage are performed. Civilian ballistic fractures, when they are caused by low-velocity firearms, differ from military ballistic fractures. Although the principle of surgical debridement and lavage remains the same, bone stabilization is different and is similar to conventional open fractures. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Ballistic properties of bidirectional fiber/resin composites

    OpenAIRE

    Dimeski, Dimko; Spaseska, Dijana

    2004-01-01

    The aim of the research was to make evaulation of the ballistic strenth of four different composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ntlon, HPPE and aramide fibers...... Key words. aramid, ballistic, V50

  16. Ballistic electron transport in mesoscopic samples

    International Nuclear Information System (INIS)

    Diaconescu, D.

    2000-01-01

    In the framework of this thesis, the electron transport in the ballistic regime has been studied. Ballistic means that the lateral sample dimensions are smaller than the mean free path of the electrons, i.e. the electrons can travel through the whole device without being scattered. This leads to transport characteristics that differ significantly from the diffusive regime which is realised in most experiments. Making use of samples with high mean free path, features of ballistic transport have been observed on samples with sizes up to 100 μm. The basic device used in ballistic electron transport is the point contact, from which a collimated beam of ballistic electrons can be injected. Such point contacts were realised with focused ion beam (FIB) implantation and the collimating properties were analysed using a two opposite point contact configuration. The typical angular width at half maximum is around 50 , which is comparable with that of point contacts defined by other methods. (orig.)

  17. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    Science.gov (United States)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  18. Fabry-Perot magnonic ballistic coherent transport across ultrathin ferromagnetic lamellar bcc Ni nanostructures between Fe leads

    Science.gov (United States)

    Khater, A.; Saim, L.; Tigrine, R.; Ghader, D.

    2018-06-01

    We propose thermodynamically stable systems of ultrathin lamellar bcc Ni nanostructures between bcc Fe leads, sbnd Fe[Ni(n)]Fesbnd , based on the available literature for bcc Ni overlayers on Fe(001) surfaces, and establish the necessary criteria for their structural and ferromagnetic order, for thicknesses n ≤ 6 bcc Ni monatomic layers. The system is globally ferromagnetic. A theoretical model is presented to investigate and understand the ballistic coherent scattering of Fe spin-waves, incident from the leads, at the ferromagnetic bcc Ni nanostructure. The Nisbnd Ni and Nisbnd Fe exchange are computed using the Ising effective field theory (EFT), and the magnetic ground state of the system is constructed in the Heisenberg representation. We compute the spin-wave eigenmodes localized on the bcc Ni nanostructure, using the phase field matching theory (PFMT), illustrating the effects of symmetry breaking on the confinement of localized spin excitations. The reflection and transmission scattering properties of spin-waves incident from the Fe leads, across the embedded Ni nanostructures are investigated within the framework of the same PFMT methodology. A highly refined Fabry-Perot magnonic ballistic coherent transmission spectra is observed for these sbnd Fe[Ni(n)]Fesbnd systems.

  19. Myocardial preload alters central pressure augmentation through changes in the forward wave

    NARCIS (Netherlands)

    van de Velde, Lennart; Eeftinck Schattenkerk, Daan W.; Venema, Pascale A. H. T.; Best, Hendrik J.; van den Bogaard, Bas; Stok, Wim J.; Westerhof, Berend E.; van den Born, Bert Jan H.

    2018-01-01

    Augmentation index (AIx) is often used to quantify the contribution of wave reflection to central pulse pressure. Recent studies have challenged this view by showing how contractility-induced changes in the forward pressure wave can markedly impact AIx. We hypothesized that changes in preload will

  20. Myocardial preload alters central pressure augmentation through changes in the forward wave

    NARCIS (Netherlands)

    Van De Velde, Lennart; Eeftinck Schattenkerk, Daan W.; Venema, Pascale A.H.T.; Best, Hendrik J.; Van Den Bogaard, Bas; Stok, Wim J.; Westerhof, Berend E.; Van Den Born, Bert Jan H.

    2018-01-01

    Objective: Augmentation index (AIx) is often used to quantify the contribution of wave reflection to central pulse pressure. Recent studies have challenged this view by showing how contractility-induced changes in the forward pressure wave can markedly impact AIx. We hypothesized that changes in

  1. Ballistic transport and electronic structure

    NARCIS (Netherlands)

    Schep, Kees M.; Kelly, Paul J.; Bauer, Gerrit E.W.

    1998-01-01

    The role of the electronic structure in determining the transport properties of ballistic point contacts is studied. The conductance in the ballistic regime is related to simple geometrical projections of the Fermi surface. The essential physics is first clarified for simple models. For real

  2. Ship Anti Ballistic Missile Response (SABR)

    OpenAIRE

    Johnson, Allen P.; Breeden, Bryan; Duff, Willard Earl; Fishcer, Paul F.; Hornback, Nathan; Leiker, David C.; Carlisle, Parker; Diersing, Michael; Devlin, Ryan; Glenn, Christopher; Hoffmeister, Chris; Chong, Tay Boon; Sing, Phang Nyit; Meng, Low Wee; Meng, Fann Chee

    2006-01-01

    Includes supplementary material. Based on public law and Presidential mandate, ballistic missile defense development is a front-burner issue for homeland defense and the defense of U.S. and coalition forces abroad. Spearheaded by the Missile Defense Agency, an integrated ballistic missile defense system was initiated to create a layered defense composed of land-, air-, sea-, and space-based assets. The Ship Anti-Ballistic Response (SABR) Project is a systems engineering approach t...

  3. Ballistic properties of bidirectional fiber/resin composites

    International Nuclear Information System (INIS)

    Dimeski, Dimko; Spaseska, Dijana

    2004-01-01

    The aim of the research was to make evaluation of the ballistic strength of four different fiber/resin composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ballistic nylon, aramid and HPPE (High Performance Polyethylene) plainly woven fabric based composites. As a matrix system, in all cases, polyvinylbutyral modified phenolic resin was used. For the investigation, areal weight range 2 - 9 kg/m 2 chosen was, which is applicable for personal ballistic protection and the ultimate resin content range 20 - 50 vol.%. Ballistic test of the composites has shown that the best results exhibit HPPE based composites; aramid based composites have been the second best followed by the polyamide based composites. The worst results have been shown by the glass based composites. All composites with lower resin content (20%) have performed much better than their counterparts with higher resin content (50 %).The plot of the ballistic strength (V 50 ) versus areal weight has shown a linear increase of V 50 with the increase of areal weight. The ballistic strength of the composites is highly dependant on the fiber/resin ratio and increases with the increase of the fiber content. (Author)

  4. Time-resolved wave profile measurements in copper to Megabar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, L C; Asay, J R

    1981-01-01

    Many time-resolved techniques have been developed which have greatly aided in the understanding of dynamic material behavior such as the high pressure-dynamic strength of materials. In the paper, time-resolved measurements of copper (at shock-induced high pressures and temperatures) are used to illustrate the capability of using such techniques to investigate high pressure strength. Continuous shock loading and release wave profiles have been made in copper to 93 GPa using velocity interferometric techniques. Fine structure in the release wave profiles from the shocked state indicates an increase in shear strength of copper to 1.5 GPa at 93 GPa from its ambient value of 0.08 GPa.

  5. Microbial arms race: Ballistic "nematocysts" in dinoflagellates represent a new extreme in organelle complexity.

    Science.gov (United States)

    Gavelis, Gregory S; Wakeman, Kevin C; Tillmann, Urban; Ripken, Christina; Mitarai, Satoshi; Herranz, Maria; Özbek, Suat; Holstein, Thomas; Keeling, Patrick J; Leander, Brian S

    2017-03-01

    We examine the origin of harpoon-like secretory organelles (nematocysts) in dinoflagellate protists. These ballistic organelles have been hypothesized to be homologous to similarly complex structures in animals (cnidarians); but we show, using structural, functional, and phylogenomic data, that nematocysts evolved independently in both lineages. We also recorded the first high-resolution videos of nematocyst discharge in dinoflagellates. Unexpectedly, our data suggest that different types of dinoflagellate nematocysts use two fundamentally different types of ballistic mechanisms: one type relies on a single pressurized capsule for propulsion, whereas the other type launches 11 to 15 projectiles from an arrangement similar to a Gatling gun. Despite their radical structural differences, these nematocysts share a single origin within dinoflagellates and both potentially use a contraction-based mechanism to generate ballistic force. The diversity of traits in dinoflagellate nematocysts demonstrates a stepwise route by which simple secretory structures diversified to yield elaborate subcellular weaponry.

  6. Ballistic phonon transport in holey silicon.

    Science.gov (United States)

    Lee, Jaeho; Lim, Jongwoo; Yang, Peidong

    2015-05-13

    When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments demonstrate room-temperature evidence of ballistic phonon transport in various nanomaterials, the thermal conductivity data for silicon in the length scale of 10-100 nm is still not available due to experimental challenges. Here we show ballistic phonon transport prevails in the cross-plane direction of holey silicon from 35 to 200 nm. The thermal conductivity scales linearly with the length (thickness) even though the lateral dimension (neck) is as narrow as 20 nm. We assess the impact of long-wavelength phonons and predict a transition from ballistic to diffusive regime using scaling models. Our results support strong persistence of long-wavelength phonons in nanostructures and are useful for controlling phonon transport for thermoelectrics and potential phononic applications.

  7. Interaction of EM Waves with Atmospheric Pressure Plasmas

    National Research Council Canada - National Science Library

    Laroussi, Mounir

    2000-01-01

    .... The focus of the main activities is the generation of large volume, non-thermal, atmospheric pressure plasmas, their diagnostics, and their interactions with EM waves and with the cells of microorganism...

  8. Variation of Pressure Waveforms in Measurements of Extracorporeal Shock Wave Lithotripter

    Science.gov (United States)

    Inose, Naoto; Ide, Masao

    1993-05-01

    In this paper, we describe measurement of variation in pressure waveforms of the acoustic field of an extra-corporeal shock-wave lithotripter (ESWL). Variations in the measured acoustic fields and pressure waveform of an underwater spark-gap-type ESWL with an exhausted spark plug electrode have been reported by researchers using crystal sensors. If the ESWL spark plugs become exhausted, patients feel pain during kidney, biliary stone disintegration. We studied the relationship between exhaustion of electrodes and the variation of pressure waveforms and shock-wave fields of the ESWL using a newly developed hydrophone.

  9. Experimental Study on Peak Pressure of Shock Waves in Quasi-Shallow Water

    Directory of Open Access Journals (Sweden)

    Zhenxiong Wang

    2015-01-01

    Full Text Available Based on the similarity laws of the explosion, this research develops similarity requirements of the small-scale experiments of underwater explosions and establishes a regression model for peak pressure of underwater shock waves under experimental condition. Small-scale experiments are carried out with two types of media at the bottom of the water and for different water depths. The peak pressure of underwater shock waves at different measuring points is acquired. A formula consistent with the similarity law of explosions is obtained and an analysis of the regression precision of the formula confirms its accuracy. Significance experiment indicates that the influence of distance between measuring points and charge on peak pressure of underwater shock wave is the greatest and that of water depth is the least within the range of geometric parameters. An analysis of data from experiments with different media at the bottom of the water reveals an influence on the peak pressure, as the peak pressure of a shock wave in a body of water with a bottom soft mud and rocks is about 1.33 times that of the case where the bottom material is only soft mud.

  10. Using pressure square-like wave to measure the dynamic characteristics of piezoelectric pressure sensor

    International Nuclear Information System (INIS)

    Han, L-L; Tsung, T-T; Chen, L-C; Chang Ho; Jwo, C-S

    2005-01-01

    Piezoelectric pressure sensors are commonly used to measuring the dynamic characteristics in a hydraulic system. The dynamic measurements require a pressure sensor which has a high response rate. In this paper, we proposed use of a pressure square wave to excite the piezoelectric pressure sensor. Experimental frequencies are 0.5, 1.0, 1.5, and 2.0 kHz at 10, 15, 20 bar, respectively. Results show that the waveform of time-domain and frequencydomain response are quite different under above testing conditions. The higher the frequencies tested, the faster the pressure-rise speeds obtained. Similarly, the higher the testing pressure, the shorter the rise time attained

  11. Ballistic resistance capacity of carbon nanotubes

    International Nuclear Information System (INIS)

    Mylvaganam, Kausala; Zhang, L C

    2007-01-01

    Carbon nanotubes have high strength, light weight and excellent energy absorption capacity and therefore have great potential applications in making antiballistic materials. By examining the ballistic impact and bouncing-back processes on carbon nanotubes, this investigation shows that nanotubes with large radii withstand higher bullet speeds and the ballistic resistance is the highest when the bullet hits the centre of the CNT; the ballistic resistance of CNTs will remain the same on subsequent bullet strikes if the impact is after a small time interval

  12. Models of brachial to finger pulse wave distortion and pressure decrement.

    Science.gov (United States)

    Gizdulich, P; Prentza, A; Wesseling, K H

    1997-03-01

    To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by the Finapres technique in 53 adult human subjects. Mean pressure was subtracted from each pressure waveform and Fourier analysis applied to the pulsations. A distortion model was estimated for each subject and averaged over the group. The average inverse model was applied to the full finger pressure waveform. The pressure decrement was modelled by multiple regression on finger systolic and diastolic levels. Waveform distortion could be described by a general, frequency dependent model having a resonance at 7.3 Hz. The general inverse model has an anti-resonance at this frequency. It converts finger to brachial pulsations thereby reducing average waveform distortion from 9.7 (s.d. 3.2) mmHg per sample for the finger pulse to 3.7 (1.7) mmHg for the converted pulse. Systolic and diastolic level differences between finger and brachial arterial pressures changed from -4 (15) and -8 (11) to +8 (14) and +8 (12) mmHg, respectively, after inverse modelling, with pulse pressures correct on average. The pressure decrement model reduced both the mean and the standard deviation of systolic and diastolic level differences to 0 (13) and 0 (8) mmHg. Diastolic differences were thus reduced most. Brachial to finger pulse wave distortion due to wave reflection in arteries is almost identical in all subjects and can be modelled by a single resonance. The pressure decrement due to flow in arteries is greatest for high pulse pressures superimposed on low means.

  13. Models of brachial to finger pulse wave distortion and pressure decrement

    NARCIS (Netherlands)

    Gizdulich, P.; Prentza, A.; Wesseling, K.H.

    1997-01-01

    Objective: To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Methods: Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by

  14. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the low latitude boundary layer (LLBL and duskside magnetosphere occurred under such inflated conditions that the magnetospheric magnetic pressure was insufficient to maintain pressure balance. In these crossings, the inner edge of

  15. SIMULATION OF NEGATIVE PRESSURE WAVE PROPAGATION IN WATER PIPE NETWORK

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-11-01

    Full Text Available Subject: factors such as pipe wall roughness, mechanical properties of pipe materials, physical properties of water affect the pressure surge in the water supply pipes. These factors make it difficult to analyze the transient problem of pressure evolution using simple programming language, especially in the studies that consider only the magnitude of the positive pressure surge with the negative pressure phase being neglected. Research objectives: determine the magnitude of the negative pressure in the pipes on the experimental model. The propagation distance of the negative pressure wave will be simulated by the valve closure scenarios with the help of the HAMMER software and it is compared with an experimental model to verify the quality the results. Materials and methods: academic version of the Bentley HAMMER software is used to simulate the pressure surge wave propagation due to closure of the valve in water supply pipe network. The method of characteristics is used to solve the governing equations of transient process of pressure change in the pipeline. This method is implemented in the HAMMER software to calculate the pressure surge value in the pipes. Results: the method has been applied for water pipe networks of experimental model, the results show the affected area of negative pressure wave from valve closure and thereby we assess the largest negative pressure that may appear in water supply pipes. Conclusions: the experiment simulates the water pipe network with a consumption node for various valve closure scenarios to determine possibility of appearance of maximum negative pressure value in the pipes. Determination of these values in real-life network is relatively costly and time-consuming but nevertheless necessary for identification of the risk of pipe failure, and therefore, this paper proposes using the simulation model by the HAMMER software. Initial calibration of the model combined with the software simulation results and

  16. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    Science.gov (United States)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    International Nuclear Information System (INIS)

    Kropelnicki, P; Mu, X J; Randles, A B; Cai, H; Ang, W C; Tsai, J M; Muckensturm, K-M; Vogt, H

    2013-01-01

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20–100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of −50 °C to 300 °C. By using the modified Butterworth–van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications. (paper)

  18. Supra-ballistic phonons

    International Nuclear Information System (INIS)

    Russell, F.M.

    1989-05-01

    Energetic particles moving with a solid, either from nuclear reactions or externally injected, deposit energy by inelastic scattering processes which eventually appears as thermal energy. If the transfer of energy occurs in a crystalline solid then it is possible to couple some of the energy directly to the nuclei forming the lattice by generating phonons. In this paper the transfer of energy from a compound excited nucleus to the lattice is examined by introducing a virtual particle Π. It is shown that by including a Π in the nuclear reaction a substantial amount of energy can be coupled directly to the lattice. In the lattice this particle behaves as a spatially localized phonon of high energy, the so-called supra-ballistic phonon. By multiple inelastic scattering the supra-ballistic phonon eventually thermalizes. Because both the virtual particle Π and the equivalent supra-ballistic phonon have no charge or spin and can only exist within a lattice it is difficult to detect other than by its decay into thermal phonons. The possibility of a Π removing excess energy from a compound nucleus formed by the cold fusion of deuterium is examined. (Author)

  19. Atmospheric Entry Studies for Venus Missions: 45 Sphere-Cone Rigid Aeroshells and Ballistic Entries

    Science.gov (United States)

    Prabhu, Dinesh K.; Spilker, Thomas R.; Allen, Gary A., Jr.; Hwang, Helen H.; Cappuccio, Gelsomina; Moses, Robert W.

    2013-01-01

    The present study considers direct ballistic entries into the atmosphere of Venus using a 45deg sphere-cone rigid aeroshell, a legacy shape that has been used successfully in the past in the Pioneer Venus Multiprobe Mission. For a number of entry mass and heatshield diameter combinations (i.e., various ballistic coefficients) and entry velocities, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DoF trajectory code, TRAJ. From these trajectories, the viable entry flight path angle space is determined through the use of mechanical and thermal performance limits on the thermal protection material and science payload; the thermal protection material of choice is entry-grade carbon phenolic, for which a material thermal response model is available. For mechanical performance, a 200 g limit is placed on the peak deceleration load experienced by the science instruments, and 10 bar is assumed as the pressure limit for entry-grade carbon-phenolic material. For thermal performance, inflection points in the total heat load distribution are used as cut off criteria. Analysis of the results shows the existence of a range of critical ballistic coefficients beyond which the steepest possible entries are determined by the pressure limit of the material rather than the deceleration load limit.

  20. The Cooperative Ballistic Missile Defence Game

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.

    2013-01-01

    The increasing proliferation of ballistic missiles and weapons of mass destruction poses new risks worldwide. For a threatened nation and given the characteristics of this threat a layered ballistic missile defence system strategy appears to be the preferred solution. However, such a strategy

  1. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    Science.gov (United States)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  2. Qualitative Resting Coronary Pressure Wave Form Analysis to Predict Fractional Flow Reserve.

    Science.gov (United States)

    Matsumura, Mitsuaki; Maehara, Akiko; Johnson, Nils P; Fearon, William F; De Bruyne, Bernard; Oldroyd, Keith G; Pijls, Nico H J; Jenkins, Paul; Ali, Ziad A; Mintz, Gary S; Stone, Gregg W; Jeremias, Allen

    2018-03-27

    To evaluate the predictability of resting distal coronary pressure wave forms for fractional flow reserve (FFR). Resting coronary wave forms were qualitatively evaluated for the presence of (i) dicrotic notch; (ii) diastolic dipping; and (iii) ventricularization. In a development cohort (n=88) a scoring system was developed that was then applied to a validation cohort (n=428) using a multivariable linear regression model to predict FFR and receiver operating characteristics (ROC) to predict FFR ≤0.8. In the development cohort, all 3 qualitative parameters were independent predictors of FFR. However, in a multivariable linear regression model in the validation cohort, qualitative wave form analysis did not further improve the ability of resting distal coronary to aortic pressure ratio (Pd/Pa) (p=0.80) or instantaneous wave-free ratio (iFR) (p=0.26) to predict FFR. Using ROC, the area under the curve of resting Pd/Pa (0.86 versus 0.86, P=0.08) and iFR (0.86 versus 0.86, P=0.26) did not improve by adding qualitative analysis. Qualitative coronary wave form analysis showed moderate classification agreement in predicting FFR but did not add substantially to the resting pressure gradients Pd/Pa and iFR; however, when discrepancies between quantitative and qualitative analyses are observed, artifact or pressure drift should be considered.

  3. Comparison of the characteristics of granular propellant movement in interior ballistics based on the interphase drag model

    International Nuclear Information System (INIS)

    Jang, Jin Sung; Oh, Seok Hawn; Roh, Tae Seong

    2014-01-01

    Interior ballistics are completed in tens of milliseconds, as are all gun-firing phenomena. Thus, some data cannot be measured directly through experimentation. Therefore, such complex gun-firing phenomena are traditionally clarified by numerical analysis. In the two phase flow of interior ballistics, interphase drag has a strong effect on propellant particle movement. This drag is a momentum sink in the gas phase and a corresponding source of momentum for the solid phase. Previous studies have calculated the drag force on the propellant particles using Ergun's empirical equation, which was developed for a dense bed and relates the drag to the pressure drop through porous media. However, the particulate bed is fluidized in the course of the cycle of interior ballistics, thus indicating that the flow field is ransient with regions of high Reynolds number beyond the range of experimental data. The Ergun equation is examined through a compensation study and calibrated based on the Reynolds number using the numerical method. Moreover, the influence of different drag models on flow behavior and propellant movement in interior ballistics is analyzed.

  4. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= $T_{p, perp}/T_{p, parallel}{-}1$ became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the

  5. Ballistic materials in MR imaging

    International Nuclear Information System (INIS)

    Smith, A.S.; Hurst, G.C.; Duerk, J.L.; Diaz, P.J.

    1990-01-01

    This paper reports on the most common ballistic materials available in the urban setting studied for deflection force, rotation, heating, and imaging artifact at 1.5 T to determine potential efficacy and safety for imaging patients with ballistic injuries. Twenty-eight missiles were tested, covering the range of bullet types and materials suggested by the Cleveland Police Department. Deflection force was measured by the New method. Rotation was studied by evaluating bullets in a 10% (W/W) ballistic gelating after 30 minutes with the long axis of the bullet placed parallel and perpendicular to the z axis. Heating was measured with alcohol thermometers imaged for 1 hour alternately with FESUM and spin-echo sequences (RF absorption w/Kg and 0.033 w/Kg). Image artifact evaluation of routine sequences was performed

  6. Pressure wave propagation in the discharge piping with water pool

    International Nuclear Information System (INIS)

    Bang, Young S.; Seul, Kwang W.; Kim, In Goo

    2004-01-01

    Pressure wave propagation in the discharge piping with a sparger submerged in a water pool, following the opening of a safety relief valve, is analyzed. To predict the pressure transient behavior, a RELAP5/MOD3 code is used. The applicability of the RELAP5 code and the adequacy of the present modeling scheme are confirmed by simulating the applicable experiment on a water hammer with voiding. As a base case, the modeling scheme was used to calculate the wave propagation inside a vertical pipe with sparger holes and submerged within a water pool. In addition, the effects on wave propagation of geometric factors, such as the loss coefficient, the pipe configuration, and the subdivision of sparger pipe, are investigated. The effects of inflow conditions, such as water slug inflow and the slow opening of a safety relief valve are also examined

  7. Feasibility of ballistic strengthening exercises in neurologic rehabilitation.

    Science.gov (United States)

    Williams, Gavin; Clark, Ross A; Hansson, Jessica; Paterson, Kade

    2014-09-01

    Conventional methods for strength training in neurologic rehabilitation are not task specific for walking. Ballistic strength training was developed to improve the functional transfer of strength training; however, no research has investigated this in neurologic populations. The aim of this pilot study was to evaluate the feasibility of applying ballistic principles to conventional leg strengthening exercises in individuals with mobility limitations as a result of neurologic injuries. Eleven individuals with neurologic injuries completed seated and reclined leg press using conventional and ballistic techniques. A 2 × 2 repeated-measures analysis of variance was used to compare power measures (peak movement height and peak velocity) between exercises and conditions. Peak jump velocity and peak jump height were greater when using the ballistic jump technique rather than the conventional concentric technique (P ballistic principles was associated with increased peak height and peak velocities.

  8. Ballistic missile defense effectiveness

    Science.gov (United States)

    Lewis, George N.

    2017-11-01

    The potential effectiveness of ballistic missile defenses today remains a subject of debate. After a brief discussion of terminal and boost phase defenses, this chapter will focus on long-range midcourse defenses. The problems posed by potential countermeasures to such midcourse defenses are discussed as are the sensor capabilities a defense might have available to attempt to discriminate the actual missile warhead in a countermeasures environment. The role of flight testing in assessing ballistic missile defense effectiveness is discussed. Arguments made about effectiveness by missile defense supporters and critics are summarized.

  9. Ballistic self-annealing during ion implantation

    International Nuclear Information System (INIS)

    Prins, Johan F.

    2001-01-01

    Ion implantation conditions are considered during which the energy, dissipated in the collision cascades, is low enough to ensure that the defects, which are generated during these collisions, consist primarily of vacancies and interstitial atoms. It is proposed that ballistic self-annealing is possible when the point defect density becomes high enough, provided that none, or very few, of the interstitial atoms escape from the layer being implanted. Under these conditions, the fraction of ballistic atoms, generated within the collision cascades from substitutional sites, decreases with increasing ion dose. Furthermore, the fraction of ballistic atoms, which finally end up within vacancies, increases with increasing vacancy density. Provided the crystal structure does not collapse, a damage threshold should be approached where just as many atoms are knocked out of substitutional sites as the number of ballistic atoms that fall back into vacancies. Under these conditions, the average point defect density should approach saturation. This model is applied to recently published Raman data that have been measured on a 3 MeV He + -ion implanted diamond (Orwa et al 2000 Phys. Rev. B 62 5461). The conclusion is reached that this ballistic self-annealing model describes the latter data better than a model in which it is assumed that the saturation in radiation damage is caused by amorphization of the implanted layer. (author)

  10. Room-temperature ballistic transport in III-nitride heterostructures.

    Science.gov (United States)

    Matioli, Elison; Palacios, Tomás

    2015-02-11

    Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the short electron mean-free-path at RT requires nanoscale devices for which surface effects are a limitation in these materials. We explore the unique properties of wide band-gap III-nitride semiconductors to demonstrate RT ballistic devices. A theoretical model is proposed to corroborate experimentally their optical phonon energy of 92 meV, which is ∼4× larger than in other III-V semiconductors. This allows RT ballistic devices operating at larger voltages and currents. An additional model is described to determine experimentally a characteristic dimension for ballistic transport of 188 nm. Another remarkable property is their short carrier depletion at device sidewalls, down to 13 nm, which allows top-down nanofabrication of very narrow ballistic devices. These results open a wealth of new systems and basic transport studies possible at RT.

  11. The effects of drain scatterings on the electron transport properties of strained-Si diodes with ballistic and non-ballistic channels

    International Nuclear Information System (INIS)

    Yasenjan Ghupur; Mamtimin Geni; Mamatrishat Mamat; Abudukelimu Abudureheman

    2015-01-01

    The effects of multiple scattering on the electron transport properties in drain regions are numerically investigated for the cases of strained-Si diodes with or without scattering in the channel. The performance of non-ballistic (with scattering) channel Si-diodes is compared with that of ballistic (without scattering) channel Si-diodes, using the strain and scattering model. Our results show that the values of the electron velocity and the current in the strain model are higher than the respective values in the unstrained model, and the values of the velocity and the current in the ballistic channel model are higher than the respective values in the non-ballistic channel model. In the strain and scattering models, the effect of each carrier scattering mechanism on the performance of the Si-diodes is analyzed in the drain region. For the ballistic channel model, our results show that inter-valley optical phonon scattering improves device performance, whereas intra-valley acoustic phonon scattering degrades device performance. For the strain model, our results imply that the larger energy splitting of the strained Si could suppress the inter-valley phonon scattering rate. In conclusion, for the drain region, investigation of the strained-Si and scattering mechanisms are necessary, in order to improve the performance of nanoscale ballistic regime devices. (paper)

  12. The influence of different auto-ignition modes on the behavior of pressure waves

    International Nuclear Information System (INIS)

    Xu, Han; Yao, Anren; Yao, Chunde

    2015-01-01

    Highlights: • Modes of pressure oscillations in knocking, HCCI and super knock are recognized. • Three representative auto-ignition modes in engines are proposed. • A new method of “Energy Injected” is brought into understanding pressure wave. • Simulation results revealed the decisive factors for these three auto-ignition modes. • Different modes lead to different pressure wave behaviors damaging engines. - Abstract: For internal combustion engines, the knock of Homogeneous Charge Compression Ignition engines, the conventional knock of gasoline engines and the super knock are all caused by the auto-ignition of unburned mixture which leads to the oscillation burning, but their Maximal Pressure Oscillation Amplitude (MPOA) and Maximum Pressure Rising Rate (MPRR) are totally different. In order to explore the reason, we propose three typical auto-ignition modes and then bring up the method of “Energy Injected” (EI) which is based on the experiment measured heat release rate. Through changing the heat source term in the energy equation for different auto-ignition modes, we conducted a series of numerical simulations for these three modes. After that, the following pressure oscillations can be compared and analyzed. The numerical simulation results show that different combustion pressure waves with different oscillation characteristics come from different auto-ignition modes, thus the macroscopic MPRR and MPOA are totally different. Furthermore, the method of “EI” based on the experiment measured heat release rate can accurately and rapidly help to research the formation and propagation of pressure waves in the engine combustion chamber.

  13. Estimation of excitation forces for wave energy converters control using pressure measurements

    Science.gov (United States)

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  14. Hydraulic experiment on evaluation method of tsunami wave pressure using inundation depth and velocity in front of land structure

    International Nuclear Information System (INIS)

    Arimitsu, Tsuyoshi; Ooe, Kazuya; Kawasaki, Koji

    2012-01-01

    Hydraulic experiments were conducted to estimate tsunami wave pressure acting on several different types of land structures and examine the influence of a seawall in front of the structure on tsunami wave pressure. Wave pressures were measured at some points on the structure. The existing hydrostatic formula tended to underestimate tsunami wave pressure under the condition of inundation flow with large Froude number. Estimation method of tsunami wave pressure using inundation depth and horizontal velocity at the front of the structure was proposed based on the experimental results. It was confirmed from comparison with the experiments that the vertical distribution of the maximum tsunami wave pressure can be reproduced by employing the proposed method in this study. (author)

  15. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  16. Preservation and storage of prepared ballistic gelatine.

    Science.gov (United States)

    Mattijssen, E J A T; Alberink, I; Jacobs, B; van den Boogaard, Y

    2016-02-01

    The use of ballistic gelatine, generally accepted as a human muscle tissue simulant in wound ballistic studies, might be improved by adding a preservative (Methyl 4-hydroxybenzoate) which inhibits microbial growth. This study shows that replacing a part of the gelatine powder by the preservative does not significantly alter the penetration depth of projectiles. Storing prepared blocks of ballistic gelatine over time decreased the penetration depth of projectiles. Storage of prepared gelatine for 4 week already showed a significant effect on the penetration depth of projectiles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Assessment of Ballistic Performance for Transparent Material

    Directory of Open Access Journals (Sweden)

    Basim M. Fadhil

    2014-05-01

    Full Text Available A finite element method was used to investigate the ballistic behavior of Polymethylmethacrylate (PMMA under impact loading by spherical steel projectile with different ranges of velocities. Three different target thicknesses were used in the experimental and the numerical works. A mathematical model has been used for the ballistic limit based on the experimental results. It has been found that projectile velocity and target thickness play an important role in the ballistic behavior of PMMA. A good agreement was found between the numerical, experimental, and the analytical result.

  18. Injuries of the head from backface deformation of ballistic protective helmets under ballistic impact.

    Science.gov (United States)

    Rafaels, Karin A; Cutcliffe, Hattie C; Salzar, Robert S; Davis, Martin; Boggess, Brian; Bush, Bryan; Harris, Robert; Rountree, Mark Steve; Sanderson, Ellory; Campman, Steven; Koch, Spencer; Dale Bass, Cameron R

    2015-01-01

    Modern ballistic helmets defeat penetrating bullets by energy transfer from the projectile to the helmet, producing helmet deformation. This deformation may cause severe injuries without completely perforating the helmet, termed "behind armor blunt trauma" (BABT). As helmets become lighter, the likelihood of larger helmet backface deformation under ballistic impact increases. To characterize the potential for BABT, seven postmortem human head/neck specimens wearing a ballistic protective helmet were exposed to nonperforating impact, using a 9 mm, full metal jacket, 124 grain bullet with velocities of 400-460 m/s. An increasing trend of injury severity was observed, ranging from simple linear fractures to combinations of linear and depressed fractures. Overall, the ability to identify skull fractures resulting from BABT can be used in forensic investigations. Our results demonstrate a high risk of skull fracture due to BABT and necessitate the prevention of BABT as a design factor in future generations of protective gear. © 2014 American Academy of Forensic Sciences.

  19. Vortex, ULF wave and Aurora Observation after Solar Wind Dynamic Pressure Change

    Science.gov (United States)

    Shi, Q.

    2017-12-01

    Here we will summarize our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the step function type solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.Shi, Q. Q. et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, doi:10.1029/2012JA017984. Shi, Q. Q. et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019551. Tian, A.M. et al.(2016), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res., 121, doi:10.1002/2016JA022459. Shen, X.C. et al.(2015), Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations, J. Geophys. Res., 120, doi:10.1002/2014JA020913Zhao, H. Y. et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA021646. Shen, X. C., et al. (2017), Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse, J. Geophys. Res

  20. Conditions for sustaining low-pressure plasma columns by travelling electromagnetic UHF waves

    International Nuclear Information System (INIS)

    Benova, E.; Zhelyazkov, I.

    1997-01-01

    The paper considers the conditions for sustaining low-pressure plasma columns by travelling electromagnetic waves in symmetric and dipolar modes, respectively. The treatment is fully electrodynamic. It is shown that the wave energy flux along the plasma column determines the conditions for sustaining the discharge. In particular as the plasma is sustained by a symmetric wave whose flux depends mainly on the radial distribution of the wave electric field whilst for a dipolar wave sustained plasma the flux is specified by the magnitude of the axial wave field component at the plasma-dielectric interface. (orig.)

  1. Ballistic deficit correction

    International Nuclear Information System (INIS)

    Duchene, G.; Moszynski, M.; Curien, D.

    1991-01-01

    The EUROGAM data-acquisition has to handle a large number of events/s. Typical in-beam experiments using heavy-ion fusion reactions assume the production of about 50 000 compound nuclei per second deexciting via particle and γ-ray emissions. The very powerful γ-ray detection of EUROGAM is expected to produce high-fold event rates as large as 10 4 events/s. Such high count rates introduce, in a common dead time mode, large dead times for the whole system associated with the processing of the pulse, its digitization and its readout (from the preamplifier pulse up to the readout of the information). In order to minimize the dead time the shaping time constant τ, usually about 3 μs for large volume Ge detectors has to be reduced. Smaller shaping times, however, will adversely affect the energy resolution due to ballistic deficit. One possible solution is to operate the linear amplifier, with a somewhat smaller shaping time constant (in the present case we choose τ = 1.5 μs), in combination with a ballistic deficit compensator. The ballistic deficit can be corrected in different ways using a Gated Integrator, a hardware correction or even a software correction. In this paper we present a comparative study of the software and hardware corrections as well as gated integration

  2. Probability Analysis of the Wave-Slamming Pressure Values of the Horizontal Deck with Elastic Support

    Science.gov (United States)

    Zuo, Weiguang; Liu, Ming; Fan, Tianhui; Wang, Pengtao

    2018-06-01

    This paper presents the probability distribution of the slamming pressure from an experimental study of regular wave slamming on an elastically supported horizontal deck. The time series of the slamming pressure during the wave impact were first obtained through statistical analyses on experimental data. The exceeding probability distribution of the maximum slamming pressure peak and distribution parameters were analyzed, and the results show that the exceeding probability distribution of the maximum slamming pressure peak accords with the three-parameter Weibull distribution. Furthermore, the range and relationships of the distribution parameters were studied. The sum of the location parameter D and the scale parameter L was approximately equal to 1.0, and the exceeding probability was more than 36.79% when the random peak was equal to the sample average during the wave impact. The variation of the distribution parameters and slamming pressure under different model conditions were comprehensively presented, and the parameter values of the Weibull distribution of wave-slamming pressure peaks were different due to different test models. The parameter values were found to decrease due to the increased stiffness of the elastic support. The damage criterion of the structure model caused by the wave impact was initially discussed, and the structure model was destroyed when the average slamming time was greater than a certain value during the duration of the wave impact. The conclusions of the experimental study were then described.

  3. Design of a Continuous Blood Pressure Measurement System Based on Pulse Wave and ECG Signals.

    Science.gov (United States)

    Li, Jian-Qiang; Li, Rui; Chen, Zhuang-Zhuang; Deng, Gen-Qiang; Wang, Huihui; Mavromoustakis, Constandinos X; Song, Houbing; Ming, Zhong

    2018-01-01

    With increasingly fierce competition for jobs, the pressures on people have risen in recent years, leading to lifestyle and diet disorders that result in significantly higher risks of cardiovascular disease. Hypertension is one of the common chronic cardiovascular diseases; however, mainstream blood pressure measurement devices are relatively heavy. When multiple measurements are required, the user experience and the measurement results may be unsatisfactory. In this paper, we describe the design of a signal collection module that collects pulse waves and electrocardiograph (ECG) signals. The collected signals are input into a signal processing module to filter the noise and amplify the useful physiological signals. Then, we use a wavelet transform to eliminate baseline drift noise and detect the feature points of the pulse waves and ECG signals. We propose the concept of detecting the wave shape associated with an instance, an approach that minimizes the impact of atypical pulse waves on blood pressure measurements. Finally, we propose an improved method for measuring blood pressure based on pulse wave velocity that improves the accuracy of blood pressure measurements by 58%. Moreover, the results meet the american medical instrument promotion association standards, which demonstrate the feasibility of our measurement system.

  4. On the excitation of ULF waves by solar wind pressure enhancements

    Directory of Open Access Journals (Sweden)

    P. T. I. Eriksson

    2006-11-01

    Full Text Available We study the onset and development of an ultra low frequency (ULF pulsation excited by a storm sudden commencement. On 30 August 2001, 14:10 UT, the Cluster spacecraft are located in the dayside magnetosphere and observe the excitation of a ULF pulsation by a threefold enhancement in the solar wind dynamic pressure. Two different harmonics are observed by Cluster, one at 6.8 mHz and another at 27 mHz. We observe a compressional wave and the development of a toroidal and poloidal standing wave mode. The toroidal mode is observed over a narrow range of L-shells whereas the poloidal mode is observed to have a much larger radial extent. By looking at the phase difference between the electric and magnetic fields we see that for the first two wave periods both the poloidal and toroidal mode are travelling waves and then suddenly change into standing waves. We estimate the azimuthal wave number for the 6.8 mHz to be m=10±3. For the 27 mHz wave, m seems to be several times larger and we discuss the implications of this. We conclude that the enhancement in solar wind pressure excites eigenmodes of the geomagnetic cavity/waveguide that propagate tailward and that these eigenmodes in turn couple to toroidal and poloidal mode waves. Thus our observations give firm support to the magnetospheric waveguide theory.

  5. Pressure broadening measurement of submillimeter-wave lines of O3

    International Nuclear Information System (INIS)

    Yamada, M.M.; Amano, T.

    2005-01-01

    The pressure broadening coefficients and their temperature dependences for two submillimeter-wave transitions of ozone, one being monitored with Odin and the other to be monitored with JEM/SMILES and EOS-MLS, have been determined by using a BWO based submillimeter-wave spectrometer. The measurements have also been extended to one of the symmetric isotopic species, 16 O 18 O 16 O. The isotopic species is observed in natural abundance and as a consequence the temperature dependence is not determined due to weak signal intensity. The pressure broadening parameters are determined with better than 1% accuracy, while the temperature dependence exponents are obtained within 1.5-3% accuracy for the normal species transitions

  6. An integrated approach towards future ballistic neck protection materials selection.

    Science.gov (United States)

    Breeze, John; Helliker, Mark; Carr, Debra J

    2013-05-01

    Ballistic protection for the neck has historically taken the form of collars attached to the ballistic vest (removable or fixed), but other approaches, including the development of prototypes incorporating ballistic material into the collar of an under body armour shirt, are now being investigated. Current neck collars incorporate the same ballistic protective fabrics as the soft armour of the remaining vest, reflecting how ballistic protective performance alone has historically been perceived as the most important property for neck protection. However, the neck has fundamental differences from the thorax in terms of anatomical vulnerability, flexibility and equipment integration, necessitating a separate solution from the thorax in terms of optimal materials selection. An integrated approach towards the selection of the most appropriate combination of materials to be used for each of the two potential designs of future neck protection has been developed. This approach requires evaluation of the properties of each potential material in addition to ballistic performance alone, including flexibility, mass, wear resistance and thermal burden. The aim of this article is to provide readers with an overview of this integrated approach towards ballistic materials selection and an update of its current progress in the development of future ballistic neck protection.

  7. Ballistic Missile Defense in Europe

    OpenAIRE

    Sarihan, Ali; Bush, Amy; Summers, Lawrence; Thompson, Brent; Tomasszewski, Steven

    2009-01-01

    This paper will build on ballistic missile defense in Europe. In the first part, a brief historical overview will place the current public management issue into light. This is followed by a discussion of the main actors in the international debate, the problems that arise and the available options and recommendations to address missile defense. In the second part, differences between George W. Bush and Barack H. Obama will analyze under the title “Ballistic Missile Defense in Europe: Evolving...

  8. 2015 Assessment of the Ballistic Missile Defense System (BMDS)

    Science.gov (United States)

    2016-04-01

    Director, Operational Test and Evaluation 2015 Assessment of the Ballistic Missile Defense System (BMDS...Evaluation (DOT&E) as they pertain to the Ballistic Missile Defense System (BMDS). Congress specified these requirements in the fiscal year 2002 (FY02...systems are the Ground-based Midcourse Defense (GMD), Aegis Ballistic Missile Defense (Aegis BMD), Terminal High-Altitude Area Defense (THAAD), and

  9. Modeling terminal ballistics using blending-type spline surfaces

    Science.gov (United States)

    Pedersen, Aleksander; Bratlie, Jostein; Dalmo, Rune

    2014-12-01

    We explore using GERBS, a blending-type spline construction, to represent deform able thin-plates and model terminal ballistics. Strategies to construct geometry for different scenarios of terminal ballistics are proposed.

  10. Ballistic resistant article, semi-finished product for and method of making a shell for a ballistic resistant article

    NARCIS (Netherlands)

    Harings, Jules Armand Wilhelmina; Janse, Gerardus Hubertus Anna

    2013-01-01

    The invention relates to a ballistic resistant article, such as a helmet (1), comprising a double curved shell in turn comprising a stack (5) of layers (6) of an oriented anti-ballistic material, the layers comprising one or more plies and having a plurality of cuts (7), the ends of which define a

  11. Ballistic resistant article, semi-finished product for and method of making a shell for a ballistic resistant article

    NARCIS (Netherlands)

    Harings, Jules; Janse, Gerardus

    2013-01-01

    The invention relates to a ballistic resistant article, such as a helmet (1), comprising a double curved shell (2) in turn comprising a stack (5) of layers (6) of an oriented anti-ballistic material, the layers (6) comprising one or more plies and having a plurality of cuts (7), the ends of which

  12. Magneto-ballistic transport in GaN nanowires

    International Nuclear Information System (INIS)

    Santoruvo, Giovanni; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison

    2016-01-01

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  13. Magneto-ballistic transport in GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Santoruvo, Giovanni, E-mail: giovanni.santoruvo@epfl.ch; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison, E-mail: elison.matioli@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne (Switzerland)

    2016-09-05

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  14. An investigation into the relationship between thermal shock resistance and ballistic performance of ceramic materials

    Science.gov (United States)

    Beaumont, Robert

    Currently, there are no reliable methods for screening potential armour materials and hence full-scale ballistic trials are needed. These are both costly and time-consuming in terms of the actual test and also in the materials development that needs to take place to produce sufficient material to give a meaningful result. Whilst it will not be possible to dispense with ballistic trials before material deployment in armour applications, the ability to shorten the development cycle would be advantageous. The thermal shock performance of ceramic armour materials has been highlighted as potential marker for ballistic performance. Hence the purpose of this study was to investigate this further. A new thermal shock technique that reproduced features relevant to ballistic testing was sought. As it would be beneficial to have a simple test that did not use much material, a water-drop method was adopted. This was combined with a variety of characterisation techniques, administered pre- and post-shock. The methods included measurement of the amplitude of ultrasonic wave transmission through the sample alongside residual strength testing using a biaxial ball-on-ball configuration and reflected light and confocal microscopy. Once the protocols had been refined the testing regime was applied to a group of ceramic materials. The materials selected were from two broad groups: alumina and carbide materials. Carbide ceramics show superior performance to alumina ceramics in ballistic applications so it was essential that any screening test would be easily able to differentiate the two groups. Within the alumina family, two commercially available materials, AD995 and Sintox FA, were selected. These were tested alongside three developmental silicon carbide-boron carbide composites, which had identical chemical compositions but different microstructures and thus presented more of a challenge in terms of differentiation. The results from the various tests were used to make predictions

  15. The effects of pressure, temperature, and pore water on velocities in Westerly granite. [for seismic wave propagation

    Science.gov (United States)

    Spencer, J. W., Jr.; Nur, A. M.

    1976-01-01

    A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.

  16. Transient response of a liquid injector to a steep-fronted transverse pressure wave

    Science.gov (United States)

    Lim, D.; Heister, S.; Stechmann, D.; Kan, B.

    2017-12-01

    Motivated by the dynamic injection environment posed by unsteady pressure gain combustion processes, an experimental apparatus was developed to visualize the dynamic response of a transparent liquid injector subjected to a single steep-fronted transverse pressure wave. Experiments were conducted at atmospheric pressure with a variety of acrylic injector passage designs using water as the working fluid. High-speed visual observations were made of the injector exit near field, and the extent of backflow and the time to refill the orifice passage were characterized over a range of injection pressures. A companion transient one-dimensional model was developed for interpretation of the results and to elucidate the trends with regard to the strength of the transverse pressure wave. Results from the model were compared with the experimental observations.

  17. Impacts of Deflection Nose on Ballistic Trajectory Control Law

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available The deflection of projectile nose is aimed at changing the motion of the projectile in flight with the theory of motion control and changing the exterior ballistics so as to change its range and increase its accuracy. The law of external ballistics with the deflectable nose is considered as the basis of the design of a flight control system and an important part in the process of projectile development. Based on the existing rigid external ballistic model, this paper establishes an external ballistic calculation model for deflectable nose projectile and further establishes the solving programs accordingly. Different angle of attack, velocity, coefficients of lift, resistance, and moment under the deflection can be obtained in this paper based on the previous experiments and emulation researches. In the end, the author pointed out the laws on the impaction of external ballistic trajectory by the deflection of nose of the missile.

  18. Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar

    Science.gov (United States)

    Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian

    2017-06-01

    Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.type="synopsis">type="main">Plain Language SummaryThe pressure gradient present within the seabed beneath breaking waves may be an important physical mechanism transporting sediment. A large-scale laboratory was used to replicate realistic surfzone conditions in controlled tests, allowing for horizontal and vertical pressure gradient magnitudes and the resulting sediment bed response to be observed with precise instruments

  19. Inner ear pressure changes following square wave intracranial or ear canal pressure manipulation in the same guinea pig

    NARCIS (Netherlands)

    Thalen, E; Wit, H; Segenhout, H; Albers, F

    Inner ear pressure was measured in scala tympani with a micropipette during square wave pressure manipulation of the intracranial compartment and, subsequently, of the external ear canal (EEC) in the same guinea pig. As expected, the combination of the cochlear aqueduct and the inner ear behaves as

  20. Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase

    International Nuclear Information System (INIS)

    Snieder, Roel

    2004-01-01

    The Green's function of waves that propagate between two receivers can be found by cross-correlating multiply scattered waves recorded at these receivers. This technique obviates the need for a source at one of these locations, and is therefore called ''passive imaging.'' This principle has been explained by assuming that the normal modes of the system are uncorrelated and that all carry the same amount of energy (equipartitioning). Here I present an alternative derivation of passive imaging of the ballistic wave that is not based on normal modes. The derivation is valid for scalar waves in three dimensions, and for elastic surface waves. Passive imaging of the ballistic wave is based on the destructive interference of waves radiated from scatterers away from the receiver line, and the constructive interference of waves radiated from secondary sources near the receiver line. The derivation presented here shows that the global requirement of the equipartitioning of normal modes can be relaxed to the local requirement that the scattered waves propagate on average isotropically near the receivers

  1. Quantum Mechanical Modeling of Ballistic MOSFETs

    Science.gov (United States)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The objective of this project was to develop theory, approximations, and computer code to model quasi 1D structures such as nanotubes, DNA, and MOSFETs: (1) Nanotubes: Influence of defects on ballistic transport, electro-mechanical properties, and metal-nanotube coupling; (2) DNA: Model electron transfer (biochemistry) and transport experiments, and sequence dependence of conductance; and (3) MOSFETs: 2D doping profiles, polysilicon depletion, source to drain and gate tunneling, understand ballistic limit.

  2. Vasomotor origin of intracranial pressure waves in hydrocephalic infants

    Energy Technology Data Exchange (ETDEWEB)

    Barritault, L; Rimbert, J N; Hirsch, J F; Pierr-Kahn, A; Lacombe, J; Zouaoui, A; Mises, J; Gabersek, V

    1980-12-01

    By measuring cerebral blood volume (CBV) and intracranial pressure (ICP) variations at the same running time during sleep, it has been demonstrated that the ICP wave which appears during the REM sleep in hydrocephalic infants is produced by intracerebral vaso-dilatation. Nine infants with stabilized hydrocephalus were investigated by non-invasive means: REM phases were distinguished with the usual polysomnographic electrodes. Intracranial pressure was measured with a fontanel palpation transducer and CBV variations were obtained by recording /sup 99/sup(m)Tc activity at the head level after in vivo labelling of red cells with /sup 99/sup(m)Tc-pertechnetate. The time activity curves, obtained from regions of interest and selected on the sequential radioisotope images, show that an increased ICP wave, occurring during the REM period, is related to a simultaneous increase in the blood volume, limited to the cerebral sector and not to the area of the external carotid artery.

  3. Elastic Wave Velocity Measurements on Mantle Peridotite at High Pressure and Temperature

    Science.gov (United States)

    Mistler, G. W.; Ishikawa, M.; Li, B.

    2002-12-01

    With the success of conducting ultrasonic measurements at high pressure and high temperature in large volume high pressure apparatus with in-situ measurement of the sample length by X-ray imaging, it is now possible to measure elastic wave velocities on aggregate samples with candidate compositions of the mantle to the conditions of the Earth's transition zone in the laboratory. These data can be directly compared with seismic data to distinguish the compositional models in debate. In this work, we carried out velocity measurements on natural peridotite KLB-1 at the conditions of the Earth's upper mantle. Fine powered sample of natural KLB-1 was used as starting material. Specimens for ultrasonic measurements were hot-pressed and equilibrated at various pressure and temperature conditions along geotherm up to the transition zone. The recovered samples were characterized with density measurement, X-ray diffraction and microprobe analysis. Bench top P and S wave velocities of KLB-1 sample sintered at 3-4 GPa and 1400 degree centigrade showed a very good agreement with the VRH average of pyrolite. High pressure and high temperature measurements was conducted up to 7 GPa and 800 degree centigrade using ultrasonic interferometric method in a DIA-type high pressure apparatus in conjunction with X-ray diffraction and X-ray imaging. The utilization of X-ray imaging technique provides direct measurements of sample lengths at high pressure and high temperature, ensuring a precise determination of velocities. The results of P and S wave velocities at high pressure and high temperature as well as their comparison with calculated pyrolite model will be presented.

  4. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  5. Inverting Coseismic TEC Disturbances for Neutral Atmosphere Pressure Wave

    Science.gov (United States)

    Lee, R. F.; Mikesell, D.; Rolland, L.

    2017-12-01

    Research from the past 20 years has shown that we can detect coseismic disturbances in the total electron content (TEC) using global navigation space systems (GNSS). In the near field, TEC disturbances are created by the direct wave from rupture on the surface. This pressure wave travels through the neutral atmosphere to the ionosphere within about 10 minutes. This provides the opportunity to almost immediately characterize the source of the acoustic disturbance on the surface using methods from seismology. In populated areas, this could provide valuable information to first responders. To retrieve the surface motion amplitude information we must account for changes in the waveform caused by the geomagnetic field, motion of the satellites and the geometry of the satellites and receivers. One method is to use a transfer function to invert for the neutral atmosphere pressure wave. Gómez et al (2015) first employed an analytical model to invert for acoustic waves produced by Rayleigh waves propagating along the Earth's surface. Here, we examine the same model in the near field using the TEC disturbances from the direct wave produced by rupture at the surface. We compare results from the forward model against a numerical model that has been shown to be in good agreement with observations from the 2011 Van (Turkey) earthquake. We show the forward model predictions using both methods for the Van earthquake. We then analyze results for hypothetical events at different latitudes and discuss the reliability of the analytical model in each scenario. Gómez, D., R. Jr. Smalley, C. A. Langston, T. J. Wilson, M. Bevis, I. W. D. Dalziel, E. C. Kendrick, S. A. Konfal, M. J. Willis, D. A. Piñón, et al. (2015), Virtual array beamforming of GPS TEC observations of coseismic ionospheric disturbances near the Geomagnetic South Pole triggered by teleseismic megathrusts, J. Geophys. Res. Space Physics, 120, 9087-9101, doi:10.1002/2015JA021725.

  6. Cost of space-based laser ballistic missile defense.

    Science.gov (United States)

    Field, G; Spergel, D

    1986-03-21

    Orbiting platforms carrying infrared lasers have been proposed as weapons forming the first tier of a ballistic missile defense system under the President's Strategic Defense Initiative. As each laser platform can destroy a limited number of missiles, one of several methods of countering such a system is to increase the number of offensive missiles. Hence it is important to know whether the cost-exchange ratio, defined as the ratio of the cost to the defense of destroying a missile to the cost to the offense of deploying an additional missile, is greater or less than 1. Although the technology to be used in a ballistic missile defense system is still extremely uncertain, it is useful to examine methods for calculating the cost-exchange ratio. As an example, the cost of an orbiting infrared laser ballistic missile defense system employed against intercontinental ballistic missiles launched simultaneously from a small area is compared to the cost of additional offensive missiles. If one adopts lower limits to the costs for the defense and upper limits to the costs for the offense, the cost-exchange ratio comes out substantially greater than 1. If these estimates are confirmed, such a ballistic missile defense system would be unable to maintain its effectiveness at less cost than it would take to proliferate the ballistic missiles necessary to overcome it and would therefore not satisfy the President's requirements for an effective strategic defense. Although the method is illustrated by applying it to a space-based infrared laser system, it should be straightforward to apply it to other proposed systems.

  7. Quantification of abnormal intracranial pressure waves and isotope cisternography for diagnosis of occult communicating hydrocephalus

    International Nuclear Information System (INIS)

    Cardoso, E.R.; Piatek, D.; Del Bigio, M.R.; Stambrook, M.; Sutherland, J.B.

    1989-01-01

    Nineteen consecutive patients with suspected occult communicating hydrocephalus were investigated by means of clinical evaluation, neuropsychological testing, isotope cisternography, computed tomography scanning, and continuous intracranial pressure monitoring. Semi-quantitative grading systems were used in the evaluation of the clinical, neuropsychological, and cisternographic assessments. Clinical examination, neuropsychological testing, and computed tomography scanning were repeated 3 months after ventriculoperitoneal shunting. All patients showed abnormal intracranial pressure waves and all improved after shunting. There was close correlation between number, peak, and pulse pressures of B waves and the mean intracranial pressure. However, quantification of B waves by means of number, frequency, and amplitude did not help in predicting the degree of clinical improvement postshunting. The most sensitive predictor of favorable response to shunting was enlargement of the temporal horns on computed tomography scan. Furthermore, the size of temporal horns correlated with mean intracranial pressure. There was no correlation between abnormalities on isotope cisternography and clinical improvement

  8. Nonlinear Ballistic Transport in an Atomically Thin Material.

    Science.gov (United States)

    Boland, Mathias J; Sundararajan, Abhishek; Farrokhi, M Javad; Strachan, Douglas R

    2016-01-26

    Ultrashort devices that incorporate atomically thin components have the potential to be the smallest electronics. Such extremely scaled atomically thin devices are expected to show ballistic nonlinear behavior that could make them tremendously useful for ultrafast applications. While nonlinear diffusive electron transport has been widely reported, clear evidence for intrinsic nonlinear ballistic transport in the growing array of atomically thin conductors has so far been elusive. Here we report nonlinear electron transport of an ultrashort single-layer graphene channel that shows quantitative agreement with intrinsic ballistic transport. This behavior is shown to be distinctly different than that observed in similarly prepared ultrashort devices consisting, instead, of bilayer graphene channels. These results suggest that the addition of only one extra layer of an atomically thin material can make a significant impact on the nonlinear ballistic behavior of ultrashort devices, which is possibly due to the very different chiral tunneling of their charge carriers. The fact that we observe the nonlinear ballistic response at room temperature, with zero applied magnetic field, in non-ultrahigh vacuum conditions and directly on a readily accessible oxide substrate makes the nanogap technology we utilize of great potential for achieving extremely scaled high-speed atomically thin devices.

  9. Calculation models of pressure wave propagation within the WWER-440 primary circulating loop

    International Nuclear Information System (INIS)

    Adamik, V.; Tkach, A.

    1982-01-01

    Computer codes SHOCK, LOVE, BAREL are described that can be used for the study of pressure wave propagation within the reactor and pipeline system during a LOCA as well as for mechanical loads identification in various parts of the system. SHOCK code is applicable to one-dimensional pressure wave propagation analysis in any hydraulic network containing a compressible nonviscous liquid with a constant (within the considered transient process period) density. LOVE code allows to calculate non-symmetrical mechanical loads on the WWER shaft in case of the main circulation pipeline cold branch rupture. BAREL code is an advanced modification of SHOCK code. It is fitted for two-dimensional pressure wave propagation analysing in the downstream section of a pressurised water reactor in case of the main circulation pipeline cold branch rupture. The calculation results for B-213 type WWER-440 reactor are presented that have been obtained under the assumption of perfect structure rigidity [ru

  10. A Venus/Saturn Mission Study: 45deg Sphere-Cone Rigid Aeroshells and Ballistic Entries

    Science.gov (United States)

    Prabhu, Dinesh K.; Allen, Gary A.; Cappuccio, Gelsomina

    2012-01-01

    The present study considers ballistic entries into the atmospheres of Saturn and Venus using a 45deg sphere-cone rigid aeroshell (a legacy shape that has been successfully used in the Pioneer Venus and Galileo missions). For a number of entry mass and diameter combinations (i.e., various entries ballistic coefficients), entry velocities, and heading angles, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is place on the peak deceleration load and 10 bar is assumed as the spallation pressure threshold for the legacy material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a minimum margined heat flux threshold of 2.5 kW/sq cm is assumed for the heritage material. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a "critical" ballistic coefficient beyond which the steepest possible entries are determined by the spallation pressure threshold. The results are verified against known performance of the various probes used in the Galileo and Pioneer Venus missions. It is hoped that the results presented here will serve as a baseline in the development of a new class of ablative materials for Venus and Saturn missions being considered in a future New Frontiers class of NASA missions.

  11. Effect of measurement on the ballistic-diffusive transition in turbid media.

    Science.gov (United States)

    Glasser, Ziv; Yaroshevsky, Andre; Barak, Bavat; Granot, Er'el; Sternklar, Shmuel

    2013-10-01

    The dependence of the transition between the ballistic and the diffusive regimes of turbid media on the experimental solid angle of the detection system is analyzed theoretically and experimentally. A simple model is developed which shows the significance of experimental conditions on the location of the ballistic-diffusive transition. It is demonstrated that decreasing the solid angle expands the ballistic regime; however, this benefit is bounded by the initial Gaussian beam diffraction. In addition, choosing the appropriate wavelength according to the model's principles provides another means of expanding the ballistic regime. Consequently, by optimizing the experimental conditions, it should be possible to extract the ballistic image of a tissue with a thickness of 1 cm.

  12. Ballistic impact response of lipid membranes.

    Science.gov (United States)

    Zhang, Yao; Meng, Zhaoxu; Qin, Xin; Keten, Sinan

    2018-03-08

    Therapeutic agent loaded micro and nanoscale particles as high-velocity projectiles can penetrate cells and tissues, thereby serving as gene and drug delivery vehicles for direct and rapid internalization. Despite recent progress in developing micro/nanoscale ballistic tools, the underlying biophysics of how fast projectiles deform and penetrate cell membranes is still poorly understood. To understand the rate and size-dependent penetration processes, we present coarse-grained molecular dynamics simulations of the ballistic impact of spherical projectiles on lipid membranes. Our simulations reveal that upon impact, the projectile can pursue one of three distinct pathways. At low velocities below the critical penetration velocity, projectiles rebound off the surface. At intermediate velocities, penetration occurs after the projectile deforms the membrane into a tubular thread. At very high velocities, rapid penetration occurs through localized membrane deformation without tubulation. Membrane tension, projectile velocity and size govern which phenomenon occurs, owing to their positive correlation with the reaction force generated between the projectile and the membrane during impact. Two critical membrane tension values dictate the boundaries among the three pathways for a given system, due to the rate dependence of the stress generated in the membrane. Our findings provide broad physical insights into the ballistic impact response of soft viscous membranes and guide design strategies for drug delivery through lipid membranes using micro/nanoscale ballistic tools.

  13. Monte Carlo Uncertainty Quantification Using Quasi-1D SRM Ballistic Model

    Directory of Open Access Journals (Sweden)

    Davide Viganò

    2016-01-01

    Full Text Available Compactness, reliability, readiness, and construction simplicity of solid rocket motors make them very appealing for commercial launcher missions and embarked systems. Solid propulsion grants high thrust-to-weight ratio, high volumetric specific impulse, and a Technology Readiness Level of 9. However, solid rocket systems are missing any throttling capability at run-time, since pressure-time evolution is defined at the design phase. This lack of mission flexibility makes their missions sensitive to deviations of performance from nominal behavior. For this reason, the reliability of predictions and reproducibility of performances represent a primary goal in this field. This paper presents an analysis of SRM performance uncertainties throughout the implementation of a quasi-1D numerical model of motor internal ballistics based on Shapiro’s equations. The code is coupled with a Monte Carlo algorithm to evaluate statistics and propagation of some peculiar uncertainties from design data to rocker performance parameters. The model has been set for the reproduction of a small-scale rocket motor, discussing a set of parametric investigations on uncertainty propagation across the ballistic model.

  14. Tilted c-Axis Thin-Film Bulk Wave Resonant Pressure Sensors With Improved Sensitivity

    OpenAIRE

    Anderås, Emil; Katardjiev, Ilia; Yantchev, Ventsislav

    2012-01-01

    Aluminum nitride thin film bulk wave resonant pressure sensors employing c- and tilted c-axis texture, have been fabricated and tested for their pressure sensitivities. The c-axis tilted FBAR pressure sensors demonstrate substantially higher pressure sensitivity compared to its c-axis oriented counterpart. More specifically the thickness plate quasi-shear resonance has demonstrated the highest pressure sensitivity while further being able to preserve its performance in liquid environment.

  15. Characterization of small intestinal pressure waves in ambulant subjects recorded with a novel portable manometric system

    NARCIS (Netherlands)

    Samsom, M.; Fraser, R.; Smout, A. J.; Verhagen, M. A.; Adachi, K.; Horowitz, M.; Dent, J.

    1999-01-01

    The organization of lumen-occlusive pressure waves is believed to be an important determinant of luminal flow. At present, little is known about the organization of small intestinal pressure waves in humans. The aim of the present study was to characterize the spatiotemporal organization of small

  16. Ballistic quality assurance

    International Nuclear Information System (INIS)

    Cassol, E.; Bonnet, J.; Porcheron, D.; Mazeron, J.J.; Peiffert, D.; Alapetite, C.

    2012-01-01

    This review describes the ballistic quality assurance for stereotactic intracranial irradiation treatments delivered with Gamma Knife R either dedicated or adapted medical linear accelerators. Specific and periodic controls should be performed in order to check the mechanical stability for both irradiation and collimation systems. If this step remains under the responsibility of the medical physicist, it should be done in agreement with the manufacturer's technical support. At this time, there are no recent published guidelines. With technological developments, both frequency and accuracy should be assessed in each institution according to the treatment mode: single versus hypo-fractionated dose, circular collimator versus micro-multi-leaf collimators. In addition, 'end-to-end' techniques are mandatory to find the origin of potential discrepancies and to estimate the global ballistic accuracy of the delivered treatment. Indeed, they include frames, non-invasive immobilization devices, localizers, multimodal imaging for delineation and in-room positioning imaging systems. The final precision that could be reasonably achieved is more or less 1 mm. (authors)

  17. A ballistic mission to fly by Comet Halley

    Science.gov (United States)

    Boain, R. J.; Hastrup, R. C.

    1980-01-01

    The paper describes the available options, ballistic trajectory opportunities, and a preliminary reference trajectory that were selected as a basis for spacecraft design studies and programmatic planning for a Halley ballistic intercept mission in 1986. The paper also presents trajectory, performance, and navigation data which support the preliminary selection.

  18. An improved method to experimentally determine temperature and pressure behind laser-induced shock waves at low Mach numbers

    International Nuclear Information System (INIS)

    Hendijanifard, Mohammad; Willis, David A

    2011-01-01

    Laser-matter interactions are frequently studied by measuring the propagation of shock waves caused by the rapid laser-induced material removal. An improved method for calculating the thermo-fluid parameters behind shock waves is introduced in this work. Shock waves in ambient air, induced by pulsed Nd : YAG laser ablation of aluminium films, are measured using a shadowgraph apparatus. Normal shock solutions are applied to experimental data for shock wave positions and used to calculate pressure, temperature, and velocity behind the shock wave. Non-dimensionalizing the pressure and temperature with respect to the ambient values, the dimensionless pressure and temperature are estimated to be as high as 90 and 16, respectively, at a time of 10 ns after the ablation pulse for a laser fluence of F = 14.5 J cm -2 . The results of the normal shock solution and the Taylor-Sedov similarity solution are compared to show that the Taylor-Sedov solution under-predicts pressure when the Mach number of the shock wave is small. At a fluence of 3.1 J cm -2 , the shock wave Mach number is less than 3, and the Taylor-Sedov solution under-predicts the non-dimensional pressure by as much as 45%.

  19. Space-based ballistic-missile defense

    International Nuclear Information System (INIS)

    Bethe, H.A.; Garwin, R.L.; Gottfried, K.; Kendall, H.W.

    1984-01-01

    This article, based on a forthcoming book by the Union for Concerned Scientists, focuses on the technical aspects of the issue of space-based ballistic-missile defense. After analysis, the authors conclude that the questionable performance of the proposed defense, the ease with which it could be overwhelmed or circumvented, and its potential as an antisatellite system would cause grievous damage to the security of the US if the Strategic Defense Initiative were to be pursued. The path toward greater security lies in quite another direction, they feel. Although research on ballistic-missile defense should continue at the traditional level of expenditure and within the constraints of the ABM Treaty, every effort should be made to negotiate a bilateral ban on the testing and use of space weapons. The authors think it is essential that such an agreement cover all altitudes, because a ban on high-altitude antisatellite weapons alone would not viable if directed energy weapons were developed for ballistic-missile defense. Further, the Star Wars program, unlikely ever to protect the entire nation against a nuclear attack, would nonetheless trigger a major expansion of the arms race

  20. Ballistic food transport in toucans.

    Science.gov (United States)

    Baussart, Sabine; Korsoun, Leonid; Libourel, Paul-Antoine; Bels, Vincent

    2009-08-01

    The basic mechanism of food transport in tetrapods is lingual-based. Neognathous birds use this mechanism for exploiting a large diversity of food resources, whereas paleognathous birds use cranioinertial mechanism with or without tongue involvement. Food transport in two neognathous species of toucans (Ramphastos toco and R. vitellinus) is defined as ballistic transport mechanism. Only one transport cycle is used for moving the food from the tip of the beak to the pharynx. The food is projected between jaws with similar initial velocity in both species. At the time of release, the angle between trajectory of food position and horizontal is higher in R. vitellinus with a shorter beak than in R. toco. The tongue never makes contact with the food nor is it used to expand the buccal cavity. Tongue movement is associated with throat expansion, permitting the food to reach the entrance of the esophagus at the end of the ballistic trajectory. Selection of large food items in the diet may explain the evolutionary trend of using ballistic transport in the feeding behavior of toucans, which plays a key role in ecology of tropical forest. 2009 Wiley-Liss, Inc.

  1. Reciprocal Influence of Slow Waves Extracted in Intracranial Pressure, Arterial Pressure and Cerebral Blood Velocity Signals

    National Research Council Canada - National Science Library

    Cervenansky, F

    2001-01-01

    ...), and arterial blood pressure (ABP). To clarify the links, we compared two frequency methods based on coherence function to estimate the influence of ICP, ABP, and CBV on couples, respectively CBV-ABP, ICP-CBV and ICP-ABP, of slow waves...

  2. Experimental study on pressure wave propagation through the open end of pipe

    International Nuclear Information System (INIS)

    Yoshida, K.; Kumagai, H.

    1994-01-01

    The steam generators of a double pool type liquid metal fast breeder reactor (LMFBR) are used in a large sodium pool which is formed between the primary vessel and the secondary vessel and accommodates the entire secondary heat transport system. Therefore, if there is a sodium-water reaction event in the steam generator, it becomes important to evaluate the pressure rises at the walls of the primary and secondary vessels as well as those at the other secondary components. An experimental study was performed, focusing on the propagation of the initial pressure spike of the-sodium-water reaction from the bottom end of the steam generator to the sodium pool. Pressure wave propagation from inside of a pipe to an open space through the pipe end was measured. Two kinds of pressure propagation media, water and air, ensured a wide range of experimental conditions. The experimental results revealed that the pressure attenuation at the open end of a pipe can be put in order using the concept of inertial length, and that the dimensionless inertial length, i.e., the inertial length divided by the half wave length of the pressure pulse, is proportional to the square of the dimensionless diameter. These results provide a prediction method for a pressure rise by the initial pressure spike in the secondary sodium pool of the Double Pool LMFBR

  3. Ballistic trauma: lessons learned from iraq and afghanistan.

    Science.gov (United States)

    Shin, Emily H; Sabino, Jennifer M; Nanos, George P; Valerio, Ian L

    2015-02-01

    Management of upper extremity injuries secondary to ballistic and blast trauma can lead to challenging problems for the reconstructive surgeon. Given the recent conflicts in Iraq and Afghanistan, advancements in combat-casualty care, combined with a high-volume experience in the treatment of ballistic injuries, has led to continued advancements in the treatment of the severely injured upper extremity. There are several lessons learned that are translatable to civilian trauma centers and future conflicts. In this article, the authors provide an overview of the physics of ballistic injuries and principles in the management of such injuries through experience gained from military involvement in Iraq and Afghanistan.

  4. Limitations On The Creation of Continuously Surfable Waves Generated By A Pressure Source Moving In A Circular Path

    NARCIS (Netherlands)

    Schmied, S.A.

    2014-01-01

    The aim of the research presented in this work was to investigate the novel idea to produce continuous breaking waves, whereby a pressure source was rotated within an annular wave pool. The concept was that the pressure source generates non-breaking waves that propagate inward to the inner ring of

  5. Ballistic transport in graphene grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K.; Zhu, Shou-En; Janssen, G. C. A. M.; Watanabe, K.; Taniguchi, T.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene

  6. Ballistic transport in graphene grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K., E-mail: l.m.k.vandersypen@tudelft.nl [Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft (Netherlands); Zhu, Shou-En; Janssen, G. C. A. M. [Micro and Nano Engineering Laboratory, Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft (Netherlands); Watanabe, K.; Taniguchi, T. [Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-01-13

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene.

  7. Identification of Standing Pressure Waves Sources in Primary Loops of NPP with WWER and PWR

    Directory of Open Access Journals (Sweden)

    K.N. Proskuriakov

    2016-05-01

    Full Text Available Results of measurement and calculation of Eigen frequencies of coolant pressure oscillations in primary loops of NPP are presented. The simple calculation model based on equivalence of electric circuit with elastic wave propagation in liquids and gases, which gives a sensible interpretation of standing pressure waves sources is developed. It is shown, that pressurizer manifest itself as managed Helmholtz resonator generating a number of SPW (with Eigen frequencies of steam volume, water volume and their combination with coolant volume of respiratory line.

  8. Understanding the ballistic event : Methodology and observations relevant to ceramic armour

    Science.gov (United States)

    Healey, Adam

    The only widely-accepted method of gauging the ballistic performance of a material is to carry out ballistic testing; due to the large volume of material required for a statistically robust test, this process is very expensive. Therefore a new test, or suite of tests, that employ widely-available and economically viable characterisation methods to screen candidate armour materials is highly desirable; in order to design such a test, more information on the armour/projectile interaction is required. This work presents the design process and results of using an adapted specimen configuration to increase the amount of information obtained from a ballistic test. By using a block of ballistic gel attached to the ceramic, the fragmentation generated during the ballistic event was captured and analysed. In parallel, quasi-static tests were carried out using ring-on-ring biaxial disc testing to investigate relationships between quasi-static and ballistic fragment fracture surfaces. Three contemporary ceramic armour materials were used to design the test and to act as a baseline; Sintox FA alumina, Hexoloy SA silicon carbide and 3M boron carbide. Attempts to analyse the post-test ballistic sample non-destructively using X-ray computed tomography (XCT) were unsuccessful due to the difference in the density of the materials and the compaction of fragments. However, the results of qualitative and quantitative fracture surface analysis using scanning electron microscopy showed similarities between the fracture surfaces of ballistic fragments at the edges of the tile and biaxial fragments; this suggests a relationship between quasi-static and ballistic fragments created away from the centre of impact, although additional research will be required to determine the reason for this. Ballistic event-induced porosity was observed and quantified on the fracture surfaces of silicon carbide samples, which decreased as distance from centre of impact increased; upon further analysis this

  9. Missile Defense: Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities

    Science.gov (United States)

    2016-04-28

    Page 1 GAO-16-339R Ballistic Missile Defense 441 G St. N.W. Washington, DC 20548 April 28, 2016 Congressional Committees Missile Defense... Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities For over half a century, the Department of Defense (DOD) has been...funding efforts to develop a system to detect, track, and defeat enemy ballistic missiles. The current system—the Ballistic Missile Defense System

  10. Room-temperature ballistic energy transport in molecules with repeating units

    Energy Technology Data Exchange (ETDEWEB)

    Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L.; Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2015-06-07

    In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport in molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.

  11. Time-gated ballistic imaging using a large aperture switching beam.

    Science.gov (United States)

    Mathieu, Florian; Reddemann, Manuel A; Palmer, Johannes; Kneer, Reinhold

    2014-03-24

    Ballistic imaging commonly denotes the formation of line-of-sight shadowgraphs through turbid media by suppression of multiply scattered photons. The technique relies on a femtosecond laser acting as light source for the images and as switch for an optical Kerr gate that separates ballistic photons from multiply scattered ones. The achievable image resolution is one major limitation for the investigation of small objects. In this study, practical influences on the optical Kerr gate and image quality are discussed theoretically and experimentally applying a switching beam with large aperture (D = 19 mm). It is shown how switching pulse energy and synchronization of switching and imaging pulse in the Kerr cell influence the gate's transmission. Image quality of ballistic imaging and standard shadowgraphy is evaluated and compared, showing that the present ballistic imaging setup is advantageous for optical densities in the range of 8 ballistic imaging setup into a schlieren-type system with an optical schlieren edge.

  12. Room-temperature ballistic energy transport in molecules with repeating units

    International Nuclear Information System (INIS)

    Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L.; Rubtsov, Igor V.

    2015-01-01

    In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport in molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators

  13. The effect of convection and shear on the damping and propagation of pressure waves

    Science.gov (United States)

    Kiel, Barry Vincent

    Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection

  14. Sub-ballistic behavior in the quantum kicked rotor

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: alejo@fing.edu.uy; Auyuanet, A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: auyuanet@fing.edu.uy; Siri, R. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: rsiri@fing.edu.uy; Micenmacher, V. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: vmd@fing.edu.uy

    2007-05-28

    We study the resonances of the quantum kicked rotor subjected to an excitation that follows an aperiodic Fibonacci prescription. In such a case the secondary resonances show a sub-ballistic behavior like the quantum walk with the same aperiodic prescription for the coin. The principal resonances maintain the well-known ballistic behavior.

  15. Sub-ballistic behavior in the quantum kicked rotor

    International Nuclear Information System (INIS)

    Romanelli, A.; Auyuanet, A.; Siri, R.; Micenmacher, V.

    2007-01-01

    We study the resonances of the quantum kicked rotor subjected to an excitation that follows an aperiodic Fibonacci prescription. In such a case the secondary resonances show a sub-ballistic behavior like the quantum walk with the same aperiodic prescription for the coin. The principal resonances maintain the well-known ballistic behavior

  16. Wave-induced stresses and pore pressures near a mudline

    Directory of Open Access Journals (Sweden)

    Andrzej Sawicki

    2008-12-01

    Full Text Available Conventional methods for the determination of water-wave induced stresses inseabeds composed of granular soils are based on Biot-type models, in which the soilskeleton is treated as an elastic medium. Such methods predict effective stressesin the soil that are unacceptable from the physical point of view, as they permittensile stresses to occur near the upper surface of the seabed. Therefore, in thispaper the granular soil is assumed to behave as an elastic-ideally plastic material,with the Coulomb-Mohr yield criterion adopted to bound admissible stress states inthe seabed. The governing equations are solved numerically by a~finite differencemethod. The results of simulations, carried out for the case of time-harmonicwater waves, illustrate the depth distributions of the excess pore pressures and theeffective stresses in the seabed, and show the shapes of zones of soil in the plastic state.~In particular, the effects on the seabed behaviour of suchparameters as the degree of pore water saturation, the soil permeability, and theearth pressure coefficient, are illustrated.

  17. Degenerate pressure driven modified nucleus-acoustic waves in degenerate plasmas

    Science.gov (United States)

    Mamun, A. A.

    2018-02-01

    The existence of degenerate pressure driven modified nucleus-acoustic (DPDMNA) waves propagating in a cold degenerate quantum plasma (DQP) system [containing cold inertialess degenerate electron species (DES), cold inertial non-degenerate light nucleus species (LNS), and stationary heavy nucleus species (HNS)] is predicted for the first time. The DPDMNA waves (in which the mass density of the cold LNS provides the inertia and the cold inertialess DES gives rise to the restoring force) are new since they completely disappear if the degenerate pressure of the cold DES is neglected. It is found that the phase speed (Vp) of the DPDMNA waves decreases with the rise of the charge number density of the stationary HNS for both non-relativistic and ultra-relativistic DES, and that the ultra-relativistic DES does not have any effect on Vp when β = 1, where β = Λc/Λe with Λ e = ne 0 - 1 / 3 being the average inter-electron distance in the DQP system and Λc being the constant (˜10-10 cm) for the DES. However, the ultra-relativistic DES does have quite a significant effect on Vp for β ≫ 1 and β ≪ 1, and the ultra-relativistic effect significantly enhances (reduces) Vp for β ≫ 1 (β ≪ 1). The DPDMNA waves and their dispersion properties are expected to be useful in understanding the basic features of the electrostatic perturbation mode in space and laboratory DQP systems.

  18. Vasomotor wave and blood pressure response to erect posture after operation for aortic coarctation.

    OpenAIRE

    Sehested, J; Schultze, G

    1982-01-01

    Low frequency fluctuations (five to 10/min) in blood pressure, that is vasomotor waves, were recorded in the erect position in 18 patients operated upon for an isolated aortic coarctation six to eight and a half years previously, and compared with vasomotor waves in six age matched normotensive controls with respect to frequency and amplitude. The investigation was carried out by simultaneous intra-arterial blood pressure radiotelemetry recordings from the brachial and femoral arteries in all...

  19. [P wave dispersion increased in childhood depending on blood pressure, weight, height, and cardiac structure and function].

    Science.gov (United States)

    Chávez-González, Elibet; González-Rodríguez, Emilio; Llanes-Camacho, María Del Carmen; Garí-Llanes, Merlin; García-Nóbrega, Yosvany; García-Sáez, Julieta

    2014-01-01

    Increased P wave dispersion are identified as a predictor of atrial fibrillation. There are associations between hypertension, P wave dispersion, constitutional and echocardiographic variables. These relationships have been scarcely studied in pediatrics. The aim of this study was to determine the relationship between P wave dispersion, blood pressure, echocardiographic and constitutional variables, and determine the most influential variables on P wave dispersion increases in pediatrics. In the frame of the PROCDEC II project, children from 8 to 11 years old, without known heart conditions were studied. Arterial blood pressure was measured in all the children; a 12-lead surface electrocardiogram and an echocardiogram were done as well. Left ventricular mass index mean values for normotensive (25.91±5.96g/m(2.7)) and hypertensive (30.34±8.48g/m(2.7)) showed significant differences P=.000. When we add prehypertensive and hypertensive there are 50.38% with normal left ventricular mass index and P wave dispersion was increased versus 13.36% of normotensive. Multiple regression demonstrated that the mean blood pressure, duration of A wave of mitral inflow, weight and height have a value of r=0.88 as related to P wave dispersion. P wave dispersion is increased in pre- and hypertensive children compared to normotensive. There are pre- and hypertensive patients with normal left ventricular mass index and increased P wave dispersion. Mean arterial pressure, duration of the A wave of mitral inflow, weight and height are the variables with the highest influence on increased P wave dispersion. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  20. Electron transport in InAs/AlGaSb ballistic rectifiers

    International Nuclear Information System (INIS)

    Maemoto, Toshihiko; Koyama, Masatoshi; Furukawa, Masashi; Takahashi, Hiroshi; Sasa, Shigehiko; Inoue, Masataka

    2006-01-01

    Nonlinear transport properties of a ballistic rectifier fabricated from InAs/AlGaSb heterostructures are reported. The operation of the ballistic rectifier is based on the guidance of carriers by a square anti-dot structure. The structure was defined by electron beam lithography and wet chemical etching. The DC characteristics and magneto-transport properties of the ballistic rectifier have been measured at 77 K and 4.2 K. Rectification effects relying on the ballistic transport were observed. From the four-terminal resistance measured at low magnetic fields, we also observed magneto-resistance fluctuations corresponding to the electron trajectories and symmetry-breaking electron scattering, which are influenced by the magnetic field strength

  1. Low-pressure degenerate four-wave mixing spectroscopy with flam atomization

    International Nuclear Information System (INIS)

    Nolan, T.G.; Koutny, L.B.; Blazewicz, P.R.; Whitten, W.B.; Ramsey, J.M.

    1988-01-01

    A combination of degenerate four-wave mixing spectroscopy and a low-pressure sampling technique has been studied for isotopic analysis in an air-acetylene flame. Hyperfine spectra of D lines of sodium and several mixtures of lithium isotopes obtained in this way are presented

  2. Design and Manufacturing Process for a Ballistic Missile

    Directory of Open Access Journals (Sweden)

    Zaharia Sebastian Marian

    2016-12-01

    Full Text Available Designing a ballistic missile flight depends on the mission and the stress to which the missile is subject. Missile’s requests are determined by: the organization of components; flight regime type, engine configuration and aerodynamic performance of the rocket flight. In this paper has been developed a ballistic missile with a smooth fuselage type, 10 control surfaces, 8 directional surfaces for cornering execution, 2 for maneuvers of execution to change the angle of incidence and 4 stabilizers direction. Through the technology of gluing and clamping of the shell and the use of titanium components, mass of ballistic missile presented a significant decrease in weight and a structure with high strength.

  3. Decoherence and quantum walks: Anomalous diffusion and ballistic tails

    International Nuclear Information System (INIS)

    Prokof'ev, N. V.; Stamp, P. C. E.

    2006-01-01

    The common perception is that strong coupling to the environment will always render the evolution of the system density matrix quasiclassical (in fact, diffusive) in the long time limit. We present here a counterexample, in which a particle makes quantum transitions between the sites of a d-dimensional hypercubic lattice while strongly coupled to a bath of two-level systems that 'record' the transitions. The long-time evolution of an initial wave packet is found to be most unusual: the mean square displacement of the particle density matrix shows long-range ballistic behavior, with 2 >∼t 2 , but simultaneously a kind of weakly localized behavior near the origin. This result may have important implications for the design of quantum computing algorithms, since it describes a class of quantum walks

  4. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    Science.gov (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  5. Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge

    International Nuclear Information System (INIS)

    Xu Lin; Chen, Lee; Funk, Merritt; Ranjan, Alok; Hummel, Mike; Bravenec, Ron; Sundararajan, Radha; Economou, Demetre J.; Donnelly, Vincent M.

    2008-01-01

    The energy distribution of ballistic electrons in a dc/rf hybrid parallel-plate capacitively coupled plasma reactor was measured. Ballistic electrons originated as secondaries produced by ion and electron bombardment of the electrodes. The energy distribution of ballistic electrons peaked at the value of the negative bias applied to the dc electrode. As that bias became more negative, the ballistic electron current on the rf substrate electrode increased dramatically. The ion current on the dc electrode also increased

  6. Towards reliable simulations of ballistic impact on concrete structures

    NARCIS (Netherlands)

    Khoe, Y.S.; Tyler Street, M.D.; Maravalalu Suresh,, R.S.; Weerheijm, J.

    2013-01-01

    Protection against weapon effects like ballistic impacts, fragmenting shells and explosions is the core business of the Explosions, Ballistics and Protection department of TNO (The Netherlands). Experimental and numerical research is performed to gain and maintain the knowledge to support the Dutch

  7. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  8. Wave-particle interaction in the Faraday waves.

    Science.gov (United States)

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2015-10-01

    Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.

  9. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension.

    Science.gov (United States)

    Castelain, V; Hervé, P; Lecarpentier, Y; Duroux, P; Simonneau, G; Chemla, D

    2001-03-15

    The purpose of this time-domain study was to compare pulmonary artery (PA) pulse pressure and wave reflection in chronic pulmonary thromboembolism (CPTE) and primary pulmonary hypertension (PPH). Pulmonary artery pressure waveform analysis provides a simple and accurate estimation of right ventricular afterload in the time-domain. Chronic pulmonary thromboembolism and PPH are both responsible for severe pulmonary hypertension. Chronic pulmonary thromboembolism and PPH predominantly involve proximal and distal arteries, respectively, and may lead to differences in PA pressure waveform. High-fidelity PA pressure was recorded in 14 patients (7 men/7 women, 46 +/- 14 years) with CPTE (n = 7) and PPH (n = 7). We measured thermodilution cardiac output, mean PA pressure (MPAP), PA pulse pressure (PAPP = systolic - diastolic PAP) and normalized PAPP (nPAPP = PPAP/MPAP). Wave reflection was quantified by measuring Ti, that is, the time between pressure upstroke and the systolic inflection point (Pi), deltaP, that is, the systolic PAP minus Pi difference, and the augmentation index (deltaP/PPAP). At baseline, CPTE and PPH had similar cardiac index (2.4 +/- 0.4 vs. 2.5 +/- 0.5 l/min/m2), mean PAP (59 +/- 9 vs. 59 +/- 10 mm Hg), PPAP (57 +/- 13 vs. 53 +/- 13 mm Hg) and nPPAP (0.97 +/- 0.16 vs. 0.89 +/- 0.13). Chronic pulmonary thromboembolism had shorter Ti (90 +/- 17 vs. 126 +/- 16 ms, p PPAP (0.26 +/- 0.01 vs. 0.09 +/- 0.07, p < 0.01). Our study indicated that: 1) CPTE and PPH with severe pulmonary hypertension had similar PA pulse pressure, and 2) wave reflection is elevated in both groups, and CPTE had increased and anticipated wave reflection as compared with PPH, thus suggesting differences in the pulsatile component of right ventricular afterload.

  11. Two Dimensional Finite Element Analysis for the Effect of a Pressure Wave in the Human Brain

    Science.gov (United States)

    Ponce L., Ernesto; Ponce S., Daniel

    2008-11-01

    Brain injuries in people of all ages is a serious, world-wide health problem, with consequences as varied as attention or memory deficits, difficulties in problem-solving, aggressive social behavior, and neuro degenerative diseases such as Alzheimer's and Parkinson's. Brain injuries can be the result of a direct impact, but also pressure waves and direct impulses. The aim of this work is to develop a predictive method to calculate the stress generated in the human brain by pressure waves such as high power sounds. The finite element method is used, combined with elastic wave theory. The predictions of the generated stress levels are compared with the resistance of the arterioles that pervade the brain. The problem was focused to the Chilean mining where there are some accidents happen by detonations and high sound level. There are not formal medical investigation, however these pressure waves could produce human brain damage.

  12. Development and testing of a flexible ballistic neck protection

    NARCIS (Netherlands)

    Roebroeks, G.H.J.J.; Rensink, P.

    2016-01-01

    Sufficient ballistic protection of the neck area would significantly reduce the vulnerability of an infantry soldier. So far this protection is offered by extensions on the ballistic vest or combat helmet. However, the requirements for head agility and the various body to head positions combined

  13. 76 FR 70165 - Ballistic-Resistant Body Armor Standard Workshop

    Science.gov (United States)

    2011-11-10

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (NIJ) Docket No. 1573] Ballistic-Resistant Body Armor Standard Workshop AGENCY: National Institute of Justice, DOJ. ACTION: Notice. SUMMARY: The... jointly hosting a workshop focused on NIJ Standard-0101.06, Ballistic Resistance of Body Armor, and the...

  14. Pressure and intracorporal acceleration measurements in pigs exposed to strong shock waves in a free field

    International Nuclear Information System (INIS)

    Vassout, P.; Franke, R.; Parmentier, G.; Evrard, G.; Dancer, A.

    1987-01-01

    A theoretical study on the propagation of a pressure wave in a diphasic medium, when compared to the onset mechanism of pulmonary lesions in subjects exposed to strong shock waves, shows an increase in the incident overpressure at the interface level. Using hydrophones, intracorporal pressure was measured in pigs. The authors recorded the costal wall acceleration on the side directly exposed to the shock wave and calculated the displacement of the costal wall after a shock wave passed by. These experiments were conducted for shock waves in a free field, at an overpressure peak level ranging from 26 kFPa to 380 kPa and for a first positive phase lasting 2 ms. Sensors placed in an intracorporal position detected no increase of the overpressure level for any value of the incident pressure. A comparison of the costal wall displacement, measured experimentally, relative to the theoretical displacement of the entire animal mass indicates that the largest relative displacement of the costal wall could be the origin of the pulmonary lesions found. 5 refs., 13 figs

  15. Trismus in Face Transplantation Following Ballistic Trauma.

    Science.gov (United States)

    Krezdorn, Nicco; Alhefzi, Muayyad; Perry, Bridget; Aycart, Mario A; Tasigiorgos, Sotirios; Bueno, Ericka M; Green, Jordan R; Pribaz, Julian J; Pomahac, Bohdan; Caterson, Edward J

    2018-06-01

    Trismus can be a challenging consequence of ballistic trauma to the face, and has rarely been described in the setting of face transplantation. Almost half of all current face transplant recipients in the world received transplantation to restore form and function after a ballistic injury. Here we report our experience and challenges with long standing trismus after face transplantation. We reviewed the medical records of our face transplant recipients whose indication was ballistic injury. We focused our review on trismus and assessed the pre-, peri- and postoperative planning, surgery and functional outcomes. Two patients received partial face transplantation, including the midface for ballistic trauma. Both patients suffered from impaired mouth opening, speech intelligibility, and oral competence. Severe scarring of the temporomandibular joint (TMJ) required intraoperative release in both patients, and additional total condylectomy on the left side 6 months posttransplant for 1 patient. Posttransplant, both patients achieved an improvement in mouth opening; however, there was persistent trismus. One year after transplantation, range of motion of the jaw had improved for both patients. Independent oral food intake was possible 1 year after surgery, although spillage of liquids and mixed consistency solids persisted. Speech intelligibility testing showed impairments in the immediate postoperative period, with improvement to over 85% for both patients at 1 year posttransplant. Ballistic trauma to the face and subsequent reconstructive measures can cause significant scarring and covert injuries to structures such as the TMJ, resulting in long standing trismus. Meticulous individual planning prior to interventions such as face transplantation must take these into account. We encourage intraoperative evaluation of these structures as well as peri- and postoperative treatment when necessary. Due to the nature of the primary injury, functional outcomes after face

  16. Kinetics of diffusion-controlled and ballistically-controlled reactions

    International Nuclear Information System (INIS)

    Redner, S.

    1995-01-01

    The kinetics of diffusion-controlled two-species annihilation, A+B → O and single-species ballistically-controlled annihilation, A+A → O are investigated. For two-species annihilation, we describe the basic mechanism that leads to the formation of a coarsening mosaic of A- and B-domains. The implications of this picture on the distribution of reactants is discussed. For ballistic annihilation, dimensional analysis shows that the concentration and rms velocity decay as c∼t -α and v∼t -β , respectively, with α+β = 1 in any spatial dimension. Analysis of the Boltzmann equation for the evolution of the velocity distribution yields accurate predictions for the kinetics. New phenomena associated with discrete initial velocity distributions and with mixed ballistic and diffusive reactant motion are also discussed. (author)

  17. Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects.

    Science.gov (United States)

    Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Schaller, Vanessa; Wirths, Stephan; Moselund, Kirsten; Luisier, Mathieu; Karg, Siegfried; Riel, Heike

    2017-04-12

    Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.

  18. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  19. An oxygen pressure sensor using surface acoustic wave devices

    Science.gov (United States)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  20. Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach.

    Science.gov (United States)

    Lechner, Christiane; Koch, Max; Lauterborn, Werner; Mettin, Robert

    2017-12-01

    The acoustic waves being generated during the motion of a bubble in water near a solid boundary are calculated numerically. The open source package OpenFOAM is used for solving the Navier-Stokes equation and extended to include nonlinear acoustic wave effects via the Tait equation for water. A bubble model with a small amount of gas is chosen, the gas obeying an adiabatic law. A bubble starting from a small size with high internal pressure near a flat, solid boundary is studied. The sequence of events from bubble growth via axial microjet formation, jet impact, annular nanojet formation, torus-bubble collapse, and bubble rebound to second collapse is described. The different pressure and tension waves with their propagation properties are demonstrated.

  1. Planar time-resolved PIV for velocity and pressure retrieval in atmospheric boundary layer over surface waves.

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette

    2017-04-01

    Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were

  2. Simulation of two-dimensional interior ballistics model of solid propellant electrothermal-chemical launch with discharge rod plasma generator

    Directory of Open Access Journals (Sweden)

    Yan-jie Ni

    2017-08-01

    Full Text Available Instead of the capillary plasma generator (CPG, a discharge rod plasma generator (DRPG is used in the 30 mm electrothermal-chemical (ETC gun to improve the ignition uniformity of the solid propellant. An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun (2D-IB-SPETCG is presented to describe the process of the ETC launch. Both calculated pressure and projectile muzzle velocity accord well with the experimental results. The feasibility of the 2D-IB-SPETCG model is proved. Depending on the experimental data and initial parameters, detailed distribution of the ballistics parameters can be simulated. With the distribution of pressure and temperature of the gas phase and the propellant, the influence of plasma during the ignition process can be analyzed. Because of the radial flowing plasma, the propellant in the area of the DRPG is ignited within 0.01 ms, while all propellant in the chamber is ignited within 0.09 ms. The radial ignition delay time is much less than the axial delay time. During the ignition process, the radial pressure difference is less than 5  MPa at the place 0.025 m away from the breech. The radial ignition uniformity is proved. The temperature of the gas increases from several thousand K (conventional ignition to several ten thousand K (plasma ignition. Compare the distribution of the density and temperature of the gas, we know that low density and high temperature gas appears near the exits of the DRPG, while high density and low temperature gas appears at the wall near the breech. The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch. The 2D-IB-SPETC model can be used for prediction and improvement of experiments.

  3. Ballistic parameters and trauma potential of pistol crossbows.

    Science.gov (United States)

    Frank, Matthias; Schikorr, Wolfgang; Tesch, Ralf; Werner, Ronald; Hanisch, Steffen; Peters, Dieter; Ekkernkamp, Axel; Bockholdt, Britta; Seifert, Julia

    2013-07-01

    Hand-held pistol crossbows, which are smaller versions of conventional crossbows, have recently increased in popularity. Similar to conventional crossbows, life threatening injuries due to bolts discharged from pistol crossbows are reported in forensic and traumatological literature. While the ballistic background of conventional crossbows is comprehensively investigated, there are no investigations on the characteristic ballistic parameters (draw force, potential energy, recurve factor, kinetic energy, and efficiency) of pistol crossbows. Two hand-held pistol crossbows (Barnett Commando and Mini Cross Bow, rated draw force 362.9 N or 80 lbs) were tested. The maximum draw force was investigated using a dynamic tensile testing machine (TIRAtest 2705, TIRA GmbH). The potential energy was determined graphically by polynomial regression as area under the force-draw curve. External ballistic parameters of the bolts discharged from pistol crossbows were measured using a redundant ballistic speed measurement system (Dual-BMC 21a and Dual-LS 1000, Werner Mehl Kurzzeitmesstechnik). The average maximum draw force was 190.3 and 175.6 N for the Barnett and Mini Cross Bow, respectively. The corresponding total energy expended was 10.7 and 11 J, respectively. The recurve factor was calculated to be 0.705 and 1.044, respectively. Average bolt velocity was measured 43 up to 52 m/s. The efficiency was calculated up to 0.94. To conclude, this work provides the pending ballistic data on this special subgroup of crossbows which operate on a remarkable low kinetic energy level. Furthermore, it demonstrates that the nominal draw force pretended in the sales brochure is grossly exaggerated.

  4. Japan and Ballistic Missile Defense

    National Research Council Canada - National Science Library

    Swaine, Michael

    2001-01-01

    Spurred by a perceived growing ballistic missile threat from within the Asia-Pacific region and requests from the United States to support research and development on components of a missile defense...

  5. Comparative study on sintered alumina for ballistic shielding application

    International Nuclear Information System (INIS)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira

    1997-01-01

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull's modulii and other mechanical properties are able to improve ballistic penetration resistance. (author)

  6. Hybrid carbon-glass fiber/toughened epoxy thick composites subject to drop-weight and ballistic impacts

    Science.gov (United States)

    Sevkat, Ercan

    The goals of this study are to investigate the low velocity and ballistic impact response of thick-section hybrid fiber composites at room temperature. Plain-woven S2-Glass and IM7 Graphite fabrics are chosen as fiber materials reinforcing the SC-79 epoxy. Four different types of composites consisting of alternating layers of glass and graphite woven fabric sheets are considered. Tensile tests are conducted using 98 KN (22 kip) MTS testing machine equipped with environmental chamber. Low-velocity impact tests are conducted using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Ballistic impact tests are performed using helium pressured high-speed gas-gun. Tensile tests results were used to define the material behavior of the hybrid and non-hybrid composites in Finite Element modeling. The low velocity and ballistic impact tests showed that hybrid composites performance was somewhere between non-hybrid woven composites. Using woven glass fabrics as outer skin improved the impact performance of woven graphite composite. However hybrid composites are prone to delamination especially between dissimilar layers. The ballistic limit velocity V50 hybrid composites were higher that of woven graphite composite and lower than that of woven glass composite. Both destructive cross-sectional micrographs and nondestructive ultrasonic techniques are used to evaluate the damage created by impact. The Finite Element code LS-DYNA is chosen to perform numerical simulations of low velocity and ballistic impact on thick-section hybrid composites. The damage progression in these composites shows anisotropic nonlinearity. The material model to describe this behavior is not available in LS-DYNA material library. Initially, linear orthotropic material with damage (Chan-Chan Model) is employed to simulate some of the experimental results. Then, user-defined material subroutine is incorporated into LS-DYNA to simulate the nonlinear behavior. The

  7. Ballistic heat conduction and mass disorder in one dimension

    International Nuclear Information System (INIS)

    Ong, Zhun-Yong; Zhang, Gang

    2014-01-01

    It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim L→∞ κ∝L 0.5 where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (L C ) below which ballistic heat conduction (κ∝L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[−L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction. (paper)

  8. Ballistic heat conduction and mass disorder in one dimension.

    Science.gov (United States)

    Ong, Zhun-Yong; Zhang, Gang

    2014-08-20

    It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim(L--> ∞) κ ∝ L(0.5) where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (κ ∝ L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[-L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction.

  9. Transition to ballistic regime for heat transport in helium II

    Energy Technology Data Exchange (ETDEWEB)

    Sciacca, Michele, E-mail: michele.sciacca@unipa.it [Dipartimento Scienze Agrarie e Forestali, Università degli studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Sellitto, Antonio, E-mail: ant.sellitto@gmail.com [Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Campus Macchia Romana, 85100 Potenza (Italy); Jou, David, E-mail: david.jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2014-07-04

    The size-dependent and flux-dependent effective thermal conductivity of narrow capillaries filled with superfluid helium is analyzed from a thermodynamic continuum perspective. The classical Landau evaluation of the effective thermal conductivity of quiescent superfluid, or the Gorter–Mellinck regime of turbulent superfluids, is extended to describe the transition to ballistic regime in narrow channels wherein the radius R is comparable to (or smaller than) the phonon mean-free path ℓ in superfluid helium. To do so, we start from an extended equation for the heat flux incorporating non-local terms, and take into consideration a heat slip flow along the walls of the tube. This leads from an effective thermal conductivity proportional to R{sup 2} (Landau regime) to another one proportional to Rℓ (ballistic regime). We consider two kinds of flows: along cylindrical pipes and along two infinite parallel plates. - Highlights: • Heat transport in counterflow helium in the ballistic regime. • The one-fluid model based on the Extended Thermodynamics is used. • The transition from the Landau regime to the ballistic regime. • The transition from quantum turbulence to ballistic regime.

  10. Novel formulations of ballistic gelatin. 1. Rheological properties.

    Science.gov (United States)

    Zecheru, Teodora; Său, Ciprian; Lăzăroaie, Claudiu; Zaharia, Cătălin; Rotariu, Traian; Stănescu, Paul-Octavian

    2016-06-01

    Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Ballistic Transport Exceeding 28 μm in CVD Grown Graphene.

    Science.gov (United States)

    Banszerus, Luca; Schmitz, Michael; Engels, Stephan; Goldsche, Matthias; Watanabe, Kenji; Taniguchi, Takashi; Beschoten, Bernd; Stampfer, Christoph

    2016-02-10

    We report on ballistic transport over more than 28 μm in graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride. The structures are fabricated by an advanced dry van-der-Waals transfer method and exhibit carrier mobilities of up to three million cm(2)/(Vs). The ballistic nature of charge transport is probed by measuring the bend resistance in cross- and square-shaped devices. Temperature-dependent measurements furthermore prove that ballistic transport is maintained exceeding 1 μm up to 200 K.

  12. Simulation of depth of penetration during ballistic impact on thick ...

    Indian Academy of Sciences (India)

    One-dimensional discrete element model for the ballistic impact is used ... Simulation of ballistic impact process has been done using several ..... MATLAB 7.0 platform is used to simulate impact process using 1-D DEM and to perform the.

  13. Targeting Low-Energy Ballistic Lunar Transfers

    Science.gov (United States)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  14. A ballistics module as a part of the fire control system

    Directory of Open Access Journals (Sweden)

    Branka R. Luković

    2013-10-01

    Full Text Available This article presents a ballistics module as a part of the fire control system of weapons for fire support (mortars, artillery weapons and rocket launchers. The software is "open" with the prominence of autonomy work. It can be modulated and adapted on the user demand. Moreover, it is independent of the hardware base. Introduction: The fire control system is based on a ballistic module (BM which determines the firing data for each weapon tool in the battery. Ballistic calculations, for the given position of the target in relation to the position of tools in the given weather conditions, determine firing data (elevation, direction, timing and locating devices so that the missile seems to cause the desired effect. This paper gives the basic information about the features the BM performs and the manner of their implementation in the fire control system without going into algorithmic solution procedures. Ballistic problem in the fire control system: Ballistic calculation is based on a trajectory calculation of all kinds of projectiles (current, time-fuze, illuminating, smoke, with conventional propulsion, rocket, with built-in gas generator, etc.. Instead of previous solutions, where a trajectory calculation of the fire control system was done by approximate methods, in this BM the trajectory calculation is made by the same model with the same data as for a weapon and ammunition in the process of creating a firing table. The data used in the fire control system are made simultaneously with the preparation of firing tables for a particular tool and associated ammunition,. A modified model of particle, standardized at the NATO level, is also used. Taking into account the meteorological situation, before the trajectory calculation is done, a relative position of the target in relation to the position of the tool should be determined. A selection or loading check is carried out (possibility of reaching a given target as well as the point at which the

  15. Experiments with Liquid Propellant Jet Ignition in a Ballistic Compressor

    National Research Council Canada - National Science Library

    Birk, Avi

    1998-01-01

    .... The apparatus consists of an inline ballistic compressor and LP injector. The rebound of the ballistic compressor piston was arrested, trapping 40 to 55 MPa of 750 to 8500 C argon for ignition of circular jets in a windowed test chamber...

  16. Simulations of nonlinear continuous wave pressure fields in FOCUS

    Science.gov (United States)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  17. Thermodynamic properties of UF sub 6 measured with a ballistic piston compressor

    Science.gov (United States)

    Sterritt, D. E.; Lalos, G. T.; Schneider, R. T.

    1973-01-01

    From experiments performed with a ballistic piston compressor, certain thermodynamic properties of uranium hexafluoride were investigated. Difficulties presented by the nonideal processes encountered in ballistic compressors are discussed and a computer code BCCC (Ballistic Compressor Computer Code) is developed to analyze the experimental data. The BCCC unfolds the thermodynamic properties of uranium hexafluoride from the helium-uranium hexafluoride mixture used as the test gas in the ballistic compressor. The thermodynamic properties deduced include the specific heat at constant volume, the ratio of specific heats for UF6, and the viscous coupling constant of helium-uranium hexafluoride mixtures.

  18. Treadmill walking with load carriage increases aortic pressure wave reflection.

    Science.gov (United States)

    Ribeiro, Fernando; Oliveira, Nórton L; Pires, Joana; Alves, Alberto J; Oliveira, José

    2014-01-01

    The study examined the effects of treadmill walking with load carriage on derived measures of central pressure and augmentation index in young healthy subjects. Fourteen male subjects (age 31.0 ± 1.0 years) volunteered in this study. Subjects walked 10 minutes on a treadmill at a speed of 5 km/h carrying no load during one session and a load of 10% of their body weight on both upper limbs in two water carboys with handle during the other session. Pulse wave analysis was performed at rest and immediately after exercise in the radial artery of the right upper limb by applanation tonometry. The main result indicates that walking with load carriage sharply increased augmentation index at 75 bpm (-5.5 ± 2.2 to -1.4 ± 2.2% vs. -5.2 ± 2.8 to -5.5 ± 2.1%, p<0.05), and also induced twice as high increments in central pulse pressure (7.4 ± 1.5 vs. 3.1 ± 1.4 mmHg, p<0.05) and peripheral (20.5 ± 2.7 vs. 10.3 ± 2.5 mmHg, p<0.05) and central systolic pressure (14.7 ± 2.1 vs. 7.4 ± 2.0 mmHg, p<0.05). Walking with additional load of 10% of their body weight (aerobic exercise accompanied by upper limb isometric contraction) increases derived measures of central pressure and augmentation index, an index of wave reflection and arterial stiffness. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  19. Ballistic tongue projection in a miniaturized salamander.

    Science.gov (United States)

    Deban, Stephen M; Bloom, Segall V

    2018-05-20

    Miniaturization of body size is often accompanied by peculiarities in morphology that can have functional consequences. We examined the feeding behavior and morphology of the miniaturized plethodontid salamander Thorius, one of the smallest vertebrates, to determine if its performance and biomechanics differ from those of its larger relatives. High-speed imaging and dynamics analysis of feeding at a range of temperatures show that tongue projection in Thorius macdougalli is ballistic and achieves accelerations of up to 600 G with low thermal sensitivity, indicating that tongue projection is powered by an elastic-recoil mechanism. Preceding ballistic projection is an unusual preparatory phase of tongue protrusion, which, like tongue retraction, shows lower performance and higher thermal sensitivity that are indicative of movement being powered directly by muscle shortening. The variability of tongue-projection kinematics and dynamics is comparable to larger ballistic-tongued plethodontids and reveals that Thorius is capable of modulating its tongue movements in response to prey distance. Morphological examination revealed that T. macdougalli possesses a reduced number of myofibers in the tongue muscles, a large projector muscle mass relative to tongue mass, and an unusual folding of the tongue skeleton, compared with larger relatives. Nonetheless, T. macdougalli retains the elaborated collagen aponeuroses in the projector muscle that store elastic energy and a tongue skeleton that is free of direct myofiber insertion, two features that appear to be essential for ballistic tongue projection in salamanders. © 2018 Wiley Periodicals, Inc.

  20. Acoustic propagation operators for pressure waves on an arbitrarily curved surface in a homogeneous medium

    Science.gov (United States)

    Sun, Yimin; Verschuur, Eric; van Borselen, Roald

    2018-03-01

    The Rayleigh integral solution of the acoustic Helmholtz equation in a homogeneous medium can only be applied when the integral surface is a planar surface, while in reality almost all surfaces where pressure waves are measured exhibit some curvature. In this paper we derive a theoretically rigorous way of building propagation operators for pressure waves on an arbitrarily curved surface. Our theory is still based upon the Rayleigh integral, but it resorts to matrix inversion to overcome the limitations faced by the Rayleigh integral. Three examples are used to demonstrate the correctness of our theory - propagation of pressure waves acquired on an arbitrarily curved surface to a planar surface, on an arbitrarily curved surface to another arbitrarily curved surface, and on a spherical cap to a planar surface, and results agree well with the analytical solutions. The generalization of our method for particle velocities and the calculation cost of our method are also discussed.

  1. Ballistic study of Tensylon®–based panels

    Directory of Open Access Journals (Sweden)

    L-C. Alil

    2018-06-01

    Full Text Available Ballistic protection is a matter of interest requested by civilian as well as military needs. The last decade has witnessed an increase in the use of light weight and efficient armour systems. These panels may be used for body protection as well as light vehicle protection against small calibres or to enhance the protection level of heavier vehicles with decreasing or maintaining their weight penalty. Ultra high molecular weight polyethylene is a material of interest for light weight armour applications. The authors designed panels made of hot–pressed Tensylon® in different configurations with thin steel sheets as a backing and shield protection. Comparison of their ballistic performance to the theory predictions reveals the improved ballistic response of the panels. In addition, a non–pressed Tensylon® panel has been tested in order to facilitate the observations of the failure mechanisms inside the panels. Even if not suitable for practical use, such non–pressed panels clearly reveal the dynamic processes at micro–scale that occur during the impact. The failure mechanisms of the material under bullet penetration are discussed based on photography, optical microscopy and scanning electron microscopy. The supposed effects of the panel pressing are discussed based on the observed difference between pressed and non–pressed structures ballistic response.

  2. Comparison of noninvasive assessments of central blood pressure using general transfer function and late systolic shoulder of the radial pressure wave.

    Science.gov (United States)

    Wohlfahrt, Peter; Krajcoviechová, Alena; Seidlerová, Jitka; Mayer, Otto; Filipovsky, Jan; Cífková, Renata

    2014-02-01

    Central systolic blood pressure (cSBP) can be derived by the general transfer function of the radial pressure wave, as used in the SphygmoCor device, or by regression equation from directly measured late systolic shoulder of the radial pressure wave (pSBP2), as used in the Omron HEM-9000AI device. The aim of this study was to compare the SphygmoCor estimates of cSBP with 2 estimates of cSBP provided by the Omron HEM-9000AI (cSBP, pSBP2) in a large cohort of the white population. In 391 patients aged 52.3±13.5 years (46% men) from the Czech post-MONICA Study, cSBP was measured using the SphygmoCor and Omron HEM-9000AI devices in random order. Omron cSBP and pSBP2 were perfectly correlated (r = 1.0; P wave provides a comparable accuracy with the validated general transfer function. When comparing Omron HEM-9000AI and SphygmoCor estimates of cSBP, Omron pSBP2 should be used. The difference between both devices in cSBP may be explained by differences in calibration.

  3. Influence of Pore-Fluid Pressure on Elastic Wave Velocity and Electrical Conductivity in Water-Saturated Rocks

    Science.gov (United States)

    Higuchi, A.; Watanabe, T.

    2013-12-01

    Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure

  4. Ballistic protection performance of curved armor systems with or without debondings/delaminations

    International Nuclear Information System (INIS)

    Tan, Ping

    2014-01-01

    Highlights: • Influence of pre-existing defect in an armor system on its ballistic performance. • Development of finite element models for the ballistic performance of armor systems. • Prediction of the ballistic limit and back face deformation of curved armor systems. - Abstract: In order to discern how pre-existing defects such as single or multiple debondings/delaminations in a curved armor system may affect its ballistic protection performance, two-dimensional axial finite element models were generated using the commercial software ANSYS/Autodyn. The armor systems considered in this investigation are composed of boron carbide front component and Kevlar/epoxy backing component. They are assumed to be perfectly bonded at the interface without defects. The parametric study shows that for the cases considered, the maximum back face deformation of a curved armor system with or without defects is more sensitive to its curvature, material properties of the ceramic front component, and pre-existing defect size and location than the ballistic limit velocity. Additionally, both the ballistic limit velocity and maximum back face deformation are significantly affected by the backing component thickness, front/backing component thickness ratio and the number of delaminations

  5. 19 mm ballistic range: a potpourri of techniques and recipes

    International Nuclear Information System (INIS)

    Carpluk, G.T.

    1975-01-01

    The expansion of ballistic gun range facilities at LLL has introduced state-of-the-art diagnostic techniques to glovebox-enclosed ballistic guns systems. These enclosed ballistic ranges are designed for the study of one-dimensional shock phenomena in extremely toxic material such as plutonium. The extension of state-of-the-art phtographic and interferometric diagnostic systems to glovebox-enclosed gun systems introduces new design boundaries and performance criteria on optical and mechanical components. A technique for experimentally evaluating design proposals is illustrated, and several specific examples (such as, target alignment, collateral shrapnel damage, and soft recovery) are discussed

  6. Ballistic behavior of ultra-high molecular weight polyethylene composite: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L. dos Santos; Nascimento, Lucio F.C.; Suarez, Joao C. Miguez; lucio2002bol.com.br

    2003-01-01

    Since World War II, textile composites have been used as ballistic armor. Ultra-high molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials. As they have been developed and commercialized only recently, there is not enough information about the effect of environmental agents in the ballistic performance of UHMWPE composites. In the present work, was evaluated the ballistic behavior of composite plates manufactured with UHMWPE fibers after exposure to gamma radiation. The ballistic tests results were related to the macromolecular alterations induced by the radiation through mechanical (hardness, impact and flexure) and physicochemical (Ftir/Mir. DSC and TGA) testing. It was observed that irradiation induces changes in the UHMWPE, degrading the ballistic performance of the composite. These results are presented and discussed. (author)

  7. Verification of models for ballistic movement time and endpoint variability.

    Science.gov (United States)

    Lin, Ray F; Drury, Colin G

    2013-01-01

    A hand control movement is composed of several ballistic movements. The time required in performing a ballistic movement and its endpoint variability are two important properties in developing movement models. The purpose of this study was to test potential models for predicting these two properties. Twelve participants conducted ballistic movements of specific amplitudes using a drawing tablet. The measured data of movement time and endpoint variability were then used to verify the models. This study was successful with Hoffmann and Gan's movement time model (Hoffmann, 1981; Gan and Hoffmann 1988) predicting more than 90.7% data variance for 84 individual measurements. A new theoretically developed ballistic movement variability model, proved to be better than Howarth, Beggs, and Bowden's (1971) model, predicting on average 84.8% of stopping-variable error and 88.3% of aiming-variable errors. These two validated models will help build solid theoretical movement models and evaluate input devices. This article provides better models for predicting end accuracy and movement time of ballistic movements that are desirable in rapid aiming tasks, such as keying in numbers on a smart phone. The models allow better design of aiming tasks, for example button sizes on mobile phones for different user populations.

  8. Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Shigeru, E-mail: taniguchi@stat.nitech.ac.jp; Sugiyama, Masaru, E-mail: sugiyama@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Arima, Takashi, E-mail: tks@stat.nitech.ac.jp [Center for Social Contribution and Collaboration, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna, Bologna (Italy)

    2014-01-15

    We study the shock wave structure in a rarefied polyatomic gas based on a simplified model of extended thermodynamics in which the dissipation is due only to the dynamic pressure. In this case the differential system is very simple because it is a variant of Euler system with a new scalar equation for the dynamic pressure [T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Phys. Lett. A 376, 2799–2803 (2012)]. It is shown that this theory is able to describe the three types of the shock wave structure observed in experiments: the nearly symmetric shock wave structure (Type A, small Mach number), the asymmetric structure (Type B, moderate Mach number), and the structure composed of thin and thick layers (Type C, large Mach number)

  9. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Directory of Open Access Journals (Sweden)

    Benjamin Doyon

    2015-03-01

    Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  10. Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry.

    Science.gov (United States)

    Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A; Volkov, V T; Khodos, I I; Brisset, F; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie

    2017-07-05

    The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current-phase relation. The sharp sawtooth-shaped phase-modulated current-phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0-π transitions and ϕ 0 -junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.

  11. Monte Carlo simulation of ballistic transport in high-mobility channels

    Energy Technology Data Exchange (ETDEWEB)

    Sabatini, G; Marinchio, H; Palermo, C; Varani, L; Daoud, T; Teissier, R [Institut d' Electronique du Sud (CNRS UMR 5214) - Universite Montpellier II (France); Rodilla, H; Gonzalez, T; Mateos, J, E-mail: sabatini@ies.univ-montp2.f [Departamento de Fisica Aplicada - Universidad de Salamanca (Spain)

    2009-11-15

    By means of Monte Carlo simulations coupled with a two-dimensional Poisson solver, we evaluate directly the possibility to use high mobility materials in ultra fast devices exploiting ballistic transport. To this purpose, we have calculated specific physical quantities such as the transit time, the transit velocity, the free flight time and the mean free path as functions of applied voltage in InAs channels with different lengths, from 2000 nm down to 50 nm. In this way the transition from diffusive to ballistic transport is carefully described. We remark a high value of the mean transit velocity with a maximum of 14x10{sup 5} m/s for a 50 nm-long channel and a transit time shorter than 0.1 ps, corresponding to a cutoff frequency in the terahertz domain. The percentage of ballistic electrons and the number of scatterings as functions of distance are also reported, showing the strong influence of quasi-ballistic transport in the shorter channels.

  12. Monte Carlo simulation of ballistic transport in high-mobility channels

    International Nuclear Information System (INIS)

    Sabatini, G; Marinchio, H; Palermo, C; Varani, L; Daoud, T; Teissier, R; Rodilla, H; Gonzalez, T; Mateos, J

    2009-01-01

    By means of Monte Carlo simulations coupled with a two-dimensional Poisson solver, we evaluate directly the possibility to use high mobility materials in ultra fast devices exploiting ballistic transport. To this purpose, we have calculated specific physical quantities such as the transit time, the transit velocity, the free flight time and the mean free path as functions of applied voltage in InAs channels with different lengths, from 2000 nm down to 50 nm. In this way the transition from diffusive to ballistic transport is carefully described. We remark a high value of the mean transit velocity with a maximum of 14x10 5 m/s for a 50 nm-long channel and a transit time shorter than 0.1 ps, corresponding to a cutoff frequency in the terahertz domain. The percentage of ballistic electrons and the number of scatterings as functions of distance are also reported, showing the strong influence of quasi-ballistic transport in the shorter channels.

  13. [Wound Ballistics – a Brief Overview].

    Science.gov (United States)

    Bolliger, Stephan A; Eggert, Sebastian; Thali, Michael J

    2016-02-03

    Wound ballistics examines the specific effect, namely the wound profile, of bullets on the body by firing at synthetic models made of ordnance gelatine, glycerin soap and synthetic bones, validated with real cases from (battlefield) surgery and forensic pathology. Wound profile refers to the penetration depth, the bullet deformation/ fragmentation, the diameter of the permanent and the temporary wound cavity. Knowing these features and the used ammunition a surgeon can rapidly assess the amount damage within a patient. The forensic pathologist can draw conclusions as to the used ammunition based on the wound profile. By measuring of the destructive capability of different ammunition types, wound ballistics lays the foundation for guidelines concerning the maximum effect of military ammunition.

  14. Firearms and Ballistics

    OpenAIRE

    BOLTON-KING, Rachel; Schulze, Johan

    2016-01-01

    Chapter 7 of the book entitled 'Practical Veterinary Forensics' aims to introduce forensic veterinarians to the scientific concepts underpinning the field of firearms and ballistics. This introduction will enable practitioners to understand wound formation depending on the firearm and ammunition used. \\ud \\ud Various types of firearms, modern firing mechanisms and ammunition will be explained, together with an introduction to the physical concepts underpinning the four main constituents of th...

  15. A new experimental setup to characterize the dynamic mechanical behaviour of ballistic yarns

    International Nuclear Information System (INIS)

    Chevalier, C; Kerisit, C; Faderl, N; Klavzar, A; Boussu, F; Coutellier, D

    2016-01-01

    Fabrics have been widely used as part of ballistic protections since the 1970s and the development of new ballistic solutions made from fabrics need numerical simulations, in order to predict the performance of the ballistic protection. The performances and the induced mechanisms in ballistic fabrics during an impact depend on the weaving parameters and also on the inner parameters of the yarns used inside these structures. Thus, knowing the dynamic behaviour of yarn is essential to determine the ballistic behaviour of fabrics during an impact. Two major experimental devices exist and are used to test ballistic yarns in a dynamic uniaxial tension. The first one corresponds to the Split Hopkinson Tensile Bars device, which is commonly used to characterize the mechanical properties of materials in uniaxial tension and under high loading. The second one is the transversal impact device. The real conditions of ballistic impact can be realized with this device. Then, this paper deals with a new experimental setup developed in our laboratory and called the ‘tensile impact test for yarn’ (TITY) device. With this device, specific absorbed energy measurements of para-aramid yarns (336 Tex, Twaron ™ , 1000 filaments) have been carried out and revealed that static and dynamic properties of para-aramid are different. (paper)

  16. Ballistic spin filtering across the ferromagnetic-semiconductor interface

    Directory of Open Access Journals (Sweden)

    Y.H. Li

    2012-03-01

    Full Text Available The ballistic spin-filter effect from a ferromagnetic metal into a semiconductor has theoretically been studied with an intention of detecting the spin polarizability of density of states in FM layer at a higher energy level. The physical model for the ballistic spin filtering across the interface between ferromagnetic metals and semiconductor superlattice is developed by exciting the spin polarized electrons into n-type AlAs/GaAs superlattice layer at a much higher energy level and then ballistically tunneling through the barrier into the ferromagnetic film. Since both the helicity-modulated and static photocurrent responses are experimentally measurable quantities, the physical quantity of interest, the relative asymmetry of spin-polarized tunneling conductance, could be extracted experimentally in a more straightforward way, as compared with previous models. The present physical model serves guidance for studying spin detection with advanced performance in the future.

  17. Ballistic current transport studies of ferromagnetic multilayer films and tunnel junctions (invited)

    International Nuclear Information System (INIS)

    Rippard, W. H.; Perrella, A. C.; Buhrman, R. A.

    2001-01-01

    Three applications of ballistic electron microscopy are used to study, with nanometer-scale resolution, the magnetic and electronic properties of magnetic multilayer thin films and tunnel junctions. First, the capabilities of ballistic electron magnetic microscopy are demonstrated through an investigation of the switching behavior of continuous Ni 80 Fe 20 /Cu/Co trilayer films in the presence of an applied magnetic field. Next, the ballistic, hot-electron transport properties of Co films and multilayers formed by thermal evaporation and magnetron sputtering are compared, a comparison which reveals significant differences in the ballistic transmissivity of thin film multilayers formed by the two techniques. Finally, the electronic properties of thin aluminum oxide tunnel junctions formed by thermal evaporation and sputter deposition are investigated. Here the ballistic electron microscopy studies yield a direct measurement of the barrier height of the aluminum oxide barriers, a result that is invariant over a wide range of oxidation conditions. [copyright] 2001 American Institute of Physics

  18. Ballistic Resistance of Armored Passenger Vehicles: Test Protocols and Quality Methods

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey M. Lacy; Robert E. Polk

    2005-07-01

    This guide establishes a test methodology for determining the overall ballistic resistance of the passenger compartment of assembled nontactical armored passenger vehicles (APVs). Because ballistic testing of every piece of every component of an armored vehicle is impractical, if not impossible, this guide describes a testing scheme based on statistical sampling of exposed component surface areas. Results from the test of the sampled points are combined to form a test score that reflects the probability of ballistic penetration into the passenger compartment of the vehicle.

  19. Controlling ballistic missiles: How important? How to do it?

    International Nuclear Information System (INIS)

    Harvey, J.R.; Rubin, U.

    1992-01-01

    Missiles themselves are not weapons of mass destruction; they do not give states the ability to wreak unimaginable destruction, or to radically shift the balance of power, as nuclear weapons do. Hence, the primary focus of nonproliferation efforts should remain on weapons of mass destruction, particularly nuclear weapons, rather than on one of the many possible means of delivering them. Moreover, as discussed in more detail below, advanced strike aircraft can also be effective in delivering nuclear weapons, and are generally more effective than ballistic missiles for delivering conventional or chemical ordnance. Ultimately, if the industrialized nations seriously desire to control the spread of delivery means for weapons of mass destruction, they need to consider bringing controls over ballistic missiles and advanced strike aircraft more into balance. At the same time, while efforts to control ballistic missile proliferation - centered on the Missile Technology Control Regime (MTCR) - have had some successes and could be strengthened, US policy will be most effective if it recognizes two key realities: the spread of ballistic missiles cannot be as comprehensively controlled as the spread of nuclear weapons, nor need it be as comprehensively controlled

  20. The Importance of Pressure Sampling Frequency in Models for Determination of Critical Wave Loadings on Monolithic Structures

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Meinert, Palle

    2008-01-01

    Wave induced pressures on model scale monolithic structures like caissons and concrete superstructures on rubble mound breakwaters show very peaky variations, even in cases without impacts from slamming waves....

  1. 76 FR 14589 - Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...

    Science.gov (United States)

    2011-03-17

    ...-AH18 Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...). Section 222 repeals the restriction on purchase of Ballistic Missile Defense research, development, test... Ballistic Missile Defense research, development, test, and evaluation that was required by section 222 of...

  2. Medical Provider Ballistic Protection at Active Shooter Events.

    Science.gov (United States)

    Stopyra, Jason P; Bozeman, William P; Callaway, David W; Winslow, James; McGinnis, Henderson D; Sempsrott, Justin; Evans-Taylor, Lisa; Alson, Roy L

    2016-01-01

    There is some controversy about whether ballistic protective equipment (body armor) is required for medical responders who may be called to respond to active shooter mass casualty incidents. In this article, we describe the ongoing evolution of recommendations to optimize medical care to injured victims at such an incident. We propose that body armor is not mandatory for medical responders participating in a rapid-response capacity, in keeping with the Hartford Consensus and Arlington Rescue Task Force models. However, we acknowledge that the development and implementation of these programs may benefit from the availability of such equipment as one component of risk mitigation. Many police agencies regularly retire body armor on a defined time schedule before the end of its effective service life. Coordination with law enforcement may allow such retired body armor to be available to other public safety agencies, such as fire and emergency medical services, providing some degree of ballistic protection to medical responders at little or no cost during the rare mass casualty incident. To provide visual demonstration of this concept, we tested three "retired" ballistic vests with ages ranging from 6 to 27 years. The vests were shot at close range using police-issue 9mm, .40 caliber, .45 caliber, and 12-gauge shotgun rounds. Photographs demonstrate that the vests maintained their ballistic protection and defeated all of these rounds. 2016.

  3. A microscopic model of ballistic-diffusive crossover

    International Nuclear Information System (INIS)

    Bagchi, Debarshee; Mohanty, P K

    2014-01-01

    Several low-dimensional systems show a crossover from diffusive to ballistic heat transport when system size is decreased. Although there is some phenomenological understanding of this crossover phenomenon at the coarse-grained level, a microscopic picture that consistently describes both the ballistic and the diffusive transport regimes has been lacking. In this work we derive a scaling form for the thermal current in a class of one dimensional systems attached to heat baths at boundaries and rigorously show that the crossover occurs when the characteristic length scale of the system competes with the system size. (paper)

  4. Small surface wave discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kiss' ovski, Zh; Kolev, M; Ivanov, A; Lishev, St; Koleva, I, E-mail: kissov@phys.uni-sofia.b [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria)

    2009-09-21

    A small surface wave driven source produces plasma at atmospheric pressure. Microwave power at frequency 2.45 GHz is coupled with the source and a discharge is ignited at power levels below 10 W. The coaxial exciter of the surface waves has a length of 10 mm because its dielectric is a high permittivity discharge tube. The plasma source operates as a plasma jet in the case of plasma columns longer than the tube length. The source maintains stable plasma columns over a wide range of neutral gas flow and applied power in continuous and pulse regimes. An additional advantage of this source is the discharge self-ignition. An electron temperature of T{sub e} {approx} 1.9 eV and a density of n{sub e} {approx} 3.9 x 10{sup 14} cm{sup -3} are estimated by the probe diagnostics method. The emission spectra in the wavelength range 200-1000 nm under different experimental conditions are analysed and they prove the applicability of the source for analytical spectroscopy. The dependences of column length, reflected power and plasma parameters on the gas flow and the input power are discussed. (fast track communication)

  5. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  6. Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes.

    Science.gov (United States)

    Young, Kieran P; Haff, G Gregory; Newton, Robert U; Gabbett, Tim J; Sheppard, Jeremy M

    2015-03-01

    To evaluate whether the dynamic strength index (DSI: ballistic peak force/isometric peak force) could be effectively used to guide specific training interventions and detect training-induced changes in maximal and ballistic strength. Twenty-four elite male athletes were assessed in the isometric bench press and a 45% 1-repetition-maximum (1RM) ballistic bench throw using a force plate and linear position transducer. The DSI was calculated using the peak force values obtained during the ballistic bench throw and isometric bench press. Athletes were then allocated into 2 groups as matched pairs based on their DSI and strength in the 1RM bench press. Over the 5 wk of training, athletes performed either high-load (80-100% 1RM) bench press or moderate-load (40-55% 1RM) ballistic bench throws. The DSI was sensitive to disparate training methods, with the bench-press group increasing isometric bench-press peak force (P=.035, 91% likely), and the ballistic-bench-throw group increasing bench-throw peak force to a greater extent (P≤.001, 83% likely). A significant increase (P≤.001, 93% likely) in the DSI was observed for both groups. The DSI can be used to guide specific training interventions and can detect training-induced changes in isometric bench-press and ballistic bench-throw peak force over periods as short as 5 wk.

  7. Optimization theory for ballistic conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  8. Theoretical and experimental investigation of plasma and wave characteristics of coaxial discharges at low pressures

    International Nuclear Information System (INIS)

    Neichev, Z; Benova, E; Gamero, A; Sola, A

    2006-01-01

    The paper discusses a new configuration of the surface-wave sustained plasma - 'the coaxial structure'. The coaxial structure is investigated on the base of one-dimensional axial fluid model. That model is adequate enough for low pressure plasma, when the main process for charged particles production is the direct ionization from the ground state and the loss of electrons is due to diffusion to the wall. The role of the geometric factors is evaluated and discussed, varying the discharge conditions in the theoretical model. The main equations of the model - the local dispersion relation and the wave energy balance equation are obtained from Maxwell's equations with appropriate boundary conditions. The phase diagrams, the radial profiles of the electric field and the axial profiles of dimensionless electron number density, wave number, wave power are obtained at various plasma radii and dielectric tube thickness. The results are compared with those for the typical cylindrical plasma column at similar conditions. For the purpose of modelling at low pressure of a coaxial discharge sustained by a travelling electromagnetic wave, some important characteristics of the propagation of surface waves have been investigated experimentally. The axial profiles of the propagation coefficient and radial profiles of the electric field at different experimental conditions have been obtained and discussed

  9. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    Science.gov (United States)

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  10. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    Directory of Open Access Journals (Sweden)

    Elias Randjbaran

    2014-01-01

    Full Text Available Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  11. The Anti-Ballistic Missile Treaty

    International Nuclear Information System (INIS)

    Platt, A.

    1991-01-01

    This paper reports that in late May 1972 former President Richard M. Nixon went to Moscow and signed, among other documents, a Treaty to Limit Anti-Ballistic Missile (ABM) Systems. Under this agreement, both the United States and the Soviet Union made a commitment not to build nationwide ABM defenses against the other's intercontinental and submarine-launched ballistic missiles. They agreed to limit ABM deployments to a maximum of two sites, with no more than 100 launchers per site. Thirteen of the treaty's sixteen articles are intended to prevent any deviation from this. In addition, a joint Standing Consultative Commission to monitor compliance was created. National technical means --- sophisticated monitoring devices on land, sea, and in space --- were to be the primary instruments used to monitor compliance with the treaty. The ABM Treaty was signed in conjunction with an Interim Agreement to Limit Strategic Offensive Arms

  12. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    NARCIS (Netherlands)

    Vries, de N.; Palomares, J.M.; Iordanova, E.I.; Veldhuizen, van E.M.; Mullen, van der J.J.A.M.

    2008-01-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined

  13. Ballistic Rail Gun Soft Recovery Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Rail Gun Soft Recovery Facility accommodates a 155mm Howitzer, fired horizontally into a 104-foot long water trough to slow the projectile and recover...

  14. Effects of Strength vs. Ballistic-Power Training on Throwing Performance.

    Science.gov (United States)

    Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos

    2013-01-01

    The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key pointsBallistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks.In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance.The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters.

  15. Comprehensive study on the pressure dependence of shock wave plasma generation under TEA CO2 laser bombardment on metal sample

    International Nuclear Information System (INIS)

    Marpaung, A.M.; Kurniawan, H.; Tjia, M.O.; Kagawa, K.

    2001-01-01

    An experimental study has been carried out on the dynamical process taking place in the plasma generated by a TEA CO 2 laser (400 mJ, 100 ns) on a zinc target when surrounded by helium gas of pressure ranging from 2 Torr to 1 atm. Plasma characteristics were examined in detail on the emission lines of Zn I 481.0 nm and He I 587.6 nm by means of an unique time-resolved spatial distribution technique in addition to an ordinary time-resolved emission measurement technique. The results reveal, for the first time, persistent shock wave characteristics in all cases throughout the entire pressure range considered. Further analysis of the data has clarified the distinct characteristics of laser plasmas generated in different ranges of gas pressure. It is concluded that three types of shock wave plasma can be identified; namely, a target shock wave plasma in the pressure range from 2 Torr to around 50 Torr; a coupling shock wave plasma in the pressure range from around 50 Torr to 200 Torr and a gas breakdown shock wave plasma in the pressure range from around 200 Torr to 1 atm. These distinct characteristics are found to be ascribable to the different extents of the gas breakdown process taking place at the different gas pressures. These results, obtained for a TEA CO 2 laser, will provide a useful basis for the analyses of plasmas induced by other lasers. (author)

  16. Geometrical optimization of a local ballistic magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Yuhsuke; Hara, Masahiro [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Nomura, Tatsuya [Advanced Electronics Research Division, INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Kimura, Takashi [Advanced Electronics Research Division, INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2014-04-07

    We have developed a highly sensitive local magnetic sensor by using a ballistic transport property in a two-dimensional conductor. A semiclassical simulation reveals that the sensitivity increases when the geometry of the sensor and the spatial distribution of the local field are optimized. We have also experimentally demonstrated a clear observation of a magnetization process in a permalloy dot whose size is much smaller than the size of an optimized ballistic magnetic sensor fabricated from a GaAs/AlGaAs two-dimensional electron gas.

  17. Noncontact ballistic motion measurement using a fiber-optic confocal sensor

    International Nuclear Information System (INIS)

    Shafir, E.; Berkovic, G.; Horovitz, Y.; Appelbaum, G.; Moshe, E.; Horovitz, E.; Skutelski, A.; Werdiger, M.; Perelmutter, L.; Sudai, M.

    2007-01-01

    A fiber-optic confocal sensor for noncontact ballistic measurements is described. Determination of motion at velocities of 1.7 km/s with an uncertainty as small as ±0.3% is demonstrated for both a projectile and a free-surface target. The fibers detect the passage of the object at their conjugate image points created by low F/ optics. This results in an output signal comprising a train of sharp pulses each precisely identifying when the ballistic object traverses an image point. Since the ballistic object does not contact the sensor at the time of imaging, the measurements do not perturb the motion, enabling multi-fragment measurement, as well as repetitive measurements of the same object point

  18. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    International Nuclear Information System (INIS)

    Maassen, Jesse; Lundstrom, Mark

    2015-01-01

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions

  19. Tunnel pressure waves - A smartphone inquiry on rail travel

    Science.gov (United States)

    Müller, Andreas; Hirth, Michael; Kuhn, Jochen

    2016-02-01

    When traveling by rail, you might have experienced the following phenomenon: The train enters a tunnel, and after some seconds a noticeable pressure change occurs, as perceived by your ears or even by a rapid wobbling of the train windows. The basic physics is that pressure waves created by the train travel down the tunnel, are reflected at its other end, and travel back until they meet the train again. Here we will show (i) how this effect can be well understood as a kind of large-scale outdoor case of a textbook paradigm, and (ii) how, e.g., a prediction of the tunnel length from the inside of a moving train on the basis of this model can be validated by means of a mobile phone measurement.

  20. Effects of Different Relative Loads on Power Performance During the Ballistic Push-up.

    Science.gov (United States)

    Wang, Ran; Hoffman, Jay R; Sadres, Eliahu; Bartolomei, Sandro; Muddle, Tyler W D; Fukuda, David H; Stout, Jeffrey R

    2017-12-01

    Wang, R, Hoffman, JR, Sadres, E, Bartolomei, S, Muddle, TWD, Fukuda, DH, and Stout, JR. Effects of different relative loads on power performance during the ballistic push-up. J Strength Cond Res 31(12): 3411-3416, 2017-The purpose of this investigation was to examine the effect of load on force and power performance during a ballistic push-up. Sixty (24.5 ± 4.3 years, 1.75 ± 0.07 m, and 80.8 ± 13.5 kg) recreationally active men who participated in this investigation completed all testing and were included in the data analysis. All participants were required to perform a 1 repetition maximum bench press, and ballistic push-ups without external load (T1), with 10% (T2) and 20% (T3) of their body mass. Ballistic push-ups during T2 and T3 were performed using a weight loaded vest. Peak and mean force, power, as well as net impulse and flight time were determined for each ballistic push-up. Peak and mean force were both significantly greater (p ballistic push-up, regardless of the participants' level of strength.

  1. Instability waves and transition in adverse-pressure-gradient boundary layers

    Science.gov (United States)

    Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.

    2018-05-01

    Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.

  2. Development of ballistics identification—from image comparison to topography measurement in surface metrology

    International Nuclear Information System (INIS)

    Song, J; Chu, W; Vorburger, T V; Thompson, R; Renegar, T B; Zheng, A; Yen, J; Silver, R; Ols, M

    2012-01-01

    Fired bullets and ejected cartridge cases have unique ballistics signatures left by the firearm. By analyzing the ballistics signatures, forensic examiners can trace these bullets and cartridge cases to the firearm used in a crime scene. Current automated ballistics identification systems are primarily based on image comparisons using optical microscopy. The correlation accuracy depends on image quality which is largely affected by lighting conditions. Because ballistics signatures are geometrical micro-topographies by nature, direct measurement and correlation of the surface topography is being investigated for ballistics identification. A Two-dimensional and Three-dimensional Topography Measurement and Correlation System was developed at the National Institute of Standards and Technology for certification of Standard Reference Material 2460/2461 bullets and cartridge cases. Based on this system, a prototype system for bullet signature measurement and correlation has been developed for bullet signature identifications, and has demonstrated superior correlation results. (paper)

  3. Ballistic Characterization of the Scalability of Magnesium Alloy AMX602

    Science.gov (United States)

    2015-07-01

    Magnesium Alloy AMX602 by Tyrone L Jones Weapons and Materials Research Directorate, ARL Katsuyoshi Kondoh Joining and Welding Research...formed a collaborative partnership with Osaka University Joining and Welding Research Institute (JWRI), Taber Extrusions, Epson Atmix, Pacific Sowa...Powder Metallurgy 4 5. Fabrication Procedure 4 6. Mechanical Property Analysis 5 7. Ballistic Experimental Procedures 6 8. Ballistic Experimental

  4. The application of computed tomography in wound ballistics research

    International Nuclear Information System (INIS)

    Tsiatis, Nick; Moraitis, Konstantinos; Papadodima, Stavroula; Spiliopoulou, Chara; Kelekis, Alexis; Kelesis, Christos; Efstathopoulos, Efstathios; Kordolaimi, Sofia; Ploussi, Agapi

    2015-01-01

    In wound ballistics research there is a relationship between the data that characterize a bullet and the injury resulted after shooting when it perforates the human body. The bullet path in the human body following skin perforation as well as the damaging effect cannot always be predictable as they depend on various factors such as the bullet's characteristics (velocity, distance, type of firearm and so on) and the tissue types that the bullet passes through. The purpose of this presentation is to highlight the contribution of Computed Tomography (CT) in wound ballistics research. Using CT technology and studying virtual “slices” of specific areas on scanned human bodies, allows the evaluation of density and thickness of the skin, the subcutaneous tissue, the muscles, the vital organs and the bones. Density data taken from Hounsfield units can be converted in g/ml by using the appropriate software. By evaluating the results of this study, the anatomy of the human body utilizing ballistic gel will be reproduced in order to simulate the path that a bullet follows. The biophysical analysis in wound ballistics provides another application of CT technology, which is commonly used for diagnostic and therapeutic purposes in various medical disciplines. (paper)

  5. Steering of quantum waves: Demonstration of Y-junction transistors using InAs quantum wires

    Science.gov (United States)

    Jones, Gregory M.; Qin, Jie; Yang, Chia-Hung; Yang, Ming-Jey

    2005-06-01

    In this paper we demonstrate using an InAs quantum wire Y-branch switch that the electron wave can be switched to exit from the two drains by a lateral gate bias. The gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Our result suggests a new transistor function in a multiple-lead ballistic quantum wire system.

  6. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Rose, D.V.; Welch, D.R.; Oliver, B.V.; Clark, R.E.; Sharp, W.M.; Friedman, A.

    2001-01-01

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  7. Results of a Round Robin ballistic load sensing headform test series

    NARCIS (Netherlands)

    Philippens, M.A.G.; Anctil, B.; Markwardt, K.C.

    2014-01-01

    The majority of methods to assess the behind armour blunt trauma (BABT) risk for ballistic helmets is based on plastic deformable headforms. An alternative, the Ballistic Load Sensing Headform (BLSH) can record the dynamic contact force between helmet back face and the skull. Helmet BABT methods are

  8. Non-invasive aortic systolic pressure and pulse wave velocity estimation in a primary care setting: An in silico study.

    Science.gov (United States)

    Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca; Mesin, Luca

    2017-04-01

    Everyday clinical cardiovascular evaluation is still largely based on brachial systolic and diastolic pressures. However, several clinical studies have demonstrated the higher diagnostic capacities of the aortic pressure, as well as the need to assess the aortic mechanical properties (e.g., by measuring the aortic pulse wave velocity). In order to fill this gap, we propose to exploit a set of easy-to-obtain physical characteristics to estimate the aortic pressure and pulse wave velocity. To this aim, a large population of virtual subjects is created by a validated mathematical model of the cardiovascular system. Quadratic regressive models are then fitted and statistically selected in order to obtain reliable estimations of the aortic pressure and pulse wave velocity starting from the knowledge of the subject age, height, weight, brachial pressure, photoplethysmographic measures and either electrocardiogram or phonocardiogram. The results are very encouraging and foster clinical studies aiming to apply a similar technique to a real population. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp; Tanaka, Moe [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531 (Japan)

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  10. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  11. Molecular Dynamics Studies on Ballistic Thermal Resistance of Graphene Nano-Junctions

    International Nuclear Information System (INIS)

    Yao Wen-Jun; Cao Bing-Yang

    2015-01-01

    Ballistic thermal resistance of graphene nano-junctions is investigated using non-equilibrium molecular dynamics simulation. The simulation system is consisted of two symmetrical trapezoidal or rectangular graphene nano-ribbons (GNRs) and a connecting nanoscale constriction in between. From the simulated temperature profile, a big temperature jump resulted from the constriction is found, which is proportional to the heat current and corresponds to a local ballistic thermal resistance. Fixing the constriction width and the length of GNRs, this ballistic thermal resistance is independent of the width of the GNRs bottom layer, i.e., the convex angle. But interestingly, this thermal resistance has obvious size effect. It is inversely proportional to the constriction width and will disappear with the constriction being wider. Moreover, based on the phonon dynamics theory, a theoretical model of the ballistic thermal resistance in two-dimensional nano-systems is developed, which gives a good explanation on microcosmic level and agrees well with the simulation result quantitatively and qualitatively. (paper)

  12. Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film

    International Nuclear Information System (INIS)

    Xiong Qi-lin; Tian Xin

    2017-01-01

    The ultrafast thermomechanical coupling problem in a thin gold film irradiated by ultrashort laser pulses with different electron ballistic depths is investigated via the ultrafast thermoelasticity model. The solution of the problem is obtained by solving finite element governing equations. The comparison between the results of ultrafast thermomechanical coupling responses with different electron ballistic depths is made to show the ballistic electron effect. It is found that the ballistic electrons have a significant influence on the ultrafast thermomechanical coupling behaviors of the gold thin film and the best laser micromachining results can be achieved by choosing the specific laser technology (large or small ballistic range). In addition, the influence of simplification of the ultrashort laser pulse source on the results is studied, and it is found that the simplification has a great influence on the thermomechanical responses, which implies that care should be taken when the simplified form of the laser source term is applied as the Gaussian heat source. (paper)

  13. Self-diffusion and solute diffusion in alloys under irradiation: Influence of ballistic jumps

    International Nuclear Information System (INIS)

    Roussel, Jean-Marc; Bellon, Pascal

    2002-01-01

    We have studied the influence of ballistic jumps on thermal and total diffusion of solvent and solute atoms in dilute fcc alloys under irradiation. For the diffusion components that result from vacancy migration, we introduce generalized five-frequency models, and show that ballistic jumps produce decorrelation effects that have a moderate impact on self-diffusion but that can enhance or suppress solute diffusion by several orders of magnitude. These could lead to new irradiation-induced transformations, especially in the case of subthreshold irradiation conditions. We also show that the mutual influence of thermal and ballistic jumps results in a nonadditivity of partial diffusion coefficients: the total diffusion coefficient under irradiation may be less than the sum of the thermal and ballistic diffusion coefficients. These predictions are confirmed by kinetic Monte Carlo simulations. Finally, it is shown that the method introduced here can be extended to take into account the effect of ballistic jumps on the diffusion of dumbbell interstitials in dilute alloys

  14. Investigation on the generation characteristic of pressure pulse wave signal during the measurement-while-drilling process

    Science.gov (United States)

    Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren

    2014-04-01

    The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.

  15. Analysis of flow induced valve operation and pressure wave propagation for single and two-phase flow conditions

    International Nuclear Information System (INIS)

    Nagel, H.

    1986-01-01

    The flow induced valve operation is calculated for single and two-phase flow conditions by the fluid dynamic computer code DYVRO and results are compared to experimental data. The analysis show that the operational behaviour of the valves is not only dependent on the condition of the induced flow, but also the pipe flow can cause a feedback as a result of the induced pressure waves. For the calculation of pressure wave propagation in pipes of which the operation of flow induced valves has a considerable influence it is therefore necessary to have a coupled analysis of the pressure wave propagation and the operational behaviour of the valves. The analyses of the fast transient transfer from steam to two-phase flow show a good agreement with experimental data. Hence even these very high loads on pipes resulting from such fluid dynamic transients can be calculated realistically. (orig.)

  16. Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions

    OpenAIRE

    Weingart, S.; Bock, C.; Kunze, U.; Speck, F.; Seyller, Th.; Ley, L.

    2009-01-01

    We report on the observation of inertial-ballistic transport in nanoscale cross junctions fabricated from epitaxial graphene grown on SiC(0001). Ballistic transport is indicated by a negative bend resistance of R12,43 ~ 170 ohm which is measured in a non-local, four-terminal configuration at 4.2 K and which vanishes as the temperature is increased above 80 K.

  17. Micro-Doppler Feature Extraction and Recognition Based on Netted Radar for Ballistic Targets

    Directory of Open Access Journals (Sweden)

    Feng Cun-qian

    2015-12-01

    Full Text Available This study examines the complexities of using netted radar to recognize and resolve ballistic midcourse targets. The application of micro-motion feature extraction to ballistic mid-course targets is analyzed, and the current status of application and research on micro-motion feature recognition is concluded for singlefunction radar networks such as low- and high-resolution imaging radar networks. Advantages and disadvantages of these networks are discussed with respect to target recognition. Hybrid-mode radar networks combine low- and high-resolution imaging radar and provide a specific reference frequency that is the basis for ballistic target recognition. Main research trends are discussed for hybrid-mode networks that apply micromotion feature extraction to ballistic mid-course targets.

  18. Are certain fractures at increased risk for compartment syndrome after civilian ballistic injury?

    Science.gov (United States)

    Meskey, Thomas; Hardcastle, John; O'Toole, Robert V

    2011-11-01

    Compartment syndrome after ballistic fracture is uncommon but potentially devastating. Few data are available to help guide clinicians regarding risk factors for developing compartment syndrome after ballistic fractures. Our primary hypothesis was that ballistic fractures of certain bones would be at higher risk for development of compartment syndrome. A retrospective review at a Level I trauma center from 2001 through 2007 yielded 650 patients with 938 fractures resulting from gunshots. We reviewed all operative notes, clinic notes, discharge summaries, and data from our prospective trauma database. Cases in which the attending orthopedic surgeon diagnosed compartment syndrome and performed fasciotomy were considered cases with compartment syndrome. We excluded all prophylactic fasciotomies. Univariate analyses were conducted to identify risk factors associated with development of compartment syndrome. Twenty-six (2.8%) of the 938 fractures were associated with compartment syndrome. Only fibular (11.6%) and tibial (11.4%) fractures had incidence significantly higher than baseline for all ballistic fractures (p Ballistic fractures of the fibula and tibia are at increased risk for development of compartment syndrome over other ballistic fractures. We recommend increased vigilance when treating these injuries, particularly if the fracture is in the proximal aspect of the bone or is associated with vascular injury.

  19. Ballistic Missile Defense

    OpenAIRE

    Mayer, Michael

    2011-01-01

    At the 2010 NATO summit in Lisbon, the alliance decided to move forward on the development of a territorial ballistic missile defense (BMD) system and explore avenues for cooperation with Russia in this endeavor. Substantial progress on BMD has been made over the past decade, but some questions remain regarding the ultimate strategic utility of such a system and whether its benefi ts outweigh the possible opportunity costs. Missile defense has been a point of contention between the US and its...

  20. Potentiation Effects of Half-Squats Performed in a Ballistic or Nonballistic Manner.

    Science.gov (United States)

    Suchomel, Timothy J; Sato, Kimitake; DeWeese, Brad H; Ebben, William P; Stone, Michael H

    2016-06-01

    This study examined and compared the acute effects of ballistic and nonballistic concentric-only half-squats (COHSs) on squat jump performance. Fifteen resistance-trained men performed a squat jump 2 minutes after a control protocol or 2 COHSs at 90% of their 1 repetition maximum (1RM) COHS performed in a ballistic or nonballistic manner. Jump height (JH), peak power (PP), and allometrically scaled peak power (PPa) were compared using three 3 × 2 repeated-measures analyses of variance. Statistically significant condition × time interaction effects existed for JH (p = 0.037), PP (p = 0.041), and PPa (p = 0.031). Post hoc analysis revealed that the ballistic condition produced statistically greater JH (p = 0.017 and p = 0.036), PP (p = 0.031 and p = 0.026), and PPa (p = 0.024 and p = 0.023) than the control and nonballistic conditions, respectively. Small effect sizes for JH, PP, and PPa existed during the ballistic condition (d = 0.28-0.44), whereas trivial effect sizes existed during the control (d = 0.0-0.18) and nonballistic (d = 0.0-0.17) conditions. Large statistically significant relationships existed between the JH potentiation response and the subject's relative back squat 1RM (r = 0.520; p = 0.047) and relative COHS 1RM (r = 0.569; p = 0.027) during the ballistic condition. In addition, large statistically significant relationship existed between JH potentiation response and the subject's relative back squat strength (r = 0.633; p = 0.011), whereas the moderate relationship with the subject's relative COHS strength trended toward significance (r = 0.483; p = 0.068). Ballistic COHS produced superior potentiation effects compared with COHS performed in a nonballistic manner. Relative strength may contribute to the elicited potentiation response after ballistic and nonballistic COHS.

  1. The NOL ballistic piston compressor 2: Operation up to 5,000 ATM

    Science.gov (United States)

    Hammond, G. L.; Lalos, G. T.

    1971-01-01

    Experiments are described which demonstrated the feasibility of rapidly compressing inert gases in a ballistic piston compressor to simultaneously high temperatures and densities previously unobtainable in the laboratory. With argon, temperatures of the order of 6000 K and accompanying densities of the order of 100 Amagats have been obtained; and with nitrogen, temperatures and densities of 3000 K and 400 Amagats have been approached. Details of the design, assembly, instrumentation, and operating procedures are presented, and the results of mechanical and thermal performance tests up to 5000 atmospheres pressure are described. Emphasis is placed on experiments which demonstrated the usefulness of this apparatus for spectral line broadening studies.

  2. Application of Super-Hydrophobic Coating for Enhanced Water Repellency of Ballistic Fabric

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [ORNL; Rajic, Slobodan [ORNL; Hunter, Scott Robert [ORNL

    2014-10-01

    The objective of this work was to demonstrate that a superhydrophobic coating technology developed at Oak Ridge National Laboratory (ORNL) increases the water repellency of ballistic fabric beyond that provided by existing water repellency treatments. This increased water repellency has the potential to provide durable ballistic fabric for body armor without adding significant weight to the armor or significant manufacturing cost. Specimens of greige and scoured ballistic fabric were treated with a superhydrophobic coating and their weights and degree of water repellency were compared to specimens of untreated fabric. Treatment of both greige and scoured ballistic fabrics yielded highly water repellent fabrics. Our measurements of the water droplet contact angles gave values of approximately 150 , near the lower limit of 160 for superhydrophobic surfaces. The coatings increased the fabric weights by approximately 6%, an amount that is many times less than the estimated weight increase in a conventional treatment of ballistic fabric. The treated fabrics retained a significant amount of water repellency following a basic abrasion test, with water droplet contact angles decreasing by 14 to 23 . Microscopic analysis of the coating applied to woven fabrics indicated that the coating adhered equally well to fibers of greige and scoured yarns. Future evaluation of the superhydrophobic water repellent treatment will involve the manufacture of shoot packs of treated fabric for ballistic testing and provide an analysis of manufacturing scale-up and cost-to-benefit considerations.

  3. Ballistic behaviour of ultra-high molecular weight polyethylene: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L.S.; Nascimento, Lucio F.C.; Miguez Suarez, Joao Carlos

    2004-01-01

    The fiber reinforced polymer matrix composites (PMCs) are considered excellent engineering materials. In structural applications, when a high strength-to-weight ratio is fundamental for the design, PMCs are successfully replacing many conventional materials. Since World War II textile materials have been used as ballistic armor. Materials manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials, for personnel protection and armored vehicles. As these have been developed and commercialized more recently, there is not enough information about the action of the ionizing radiation in the ballistic performance of this armor material. In the present work the ballistic behavior of composite plates manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers were evaluated after exposure to gamma radiation. The ballistic tests results were related to the macromolecular modifications induced by the environmental degradation through mechanical (hardness, impact and flexure) and physicochemical (infrared spectroscopy, differential scanning calorimetry and thermal gravimetric analysis) tests. Our results indicate that gamma irradiation induces modifications in the UHMWPE macromolecular chains, altering the mechanical properties of the composite and decreasing, for higher radiation doses, its ballistic performance. These results are presented and discussed. (author)

  4. Supercurrent and multiple Andreev reflections in micrometer-long ballistic graphene Josephson junctions.

    Science.gov (United States)

    Zhu, Mengjian; Ben Shalom, Moshe; Mishchsenko, Artem; Fal'ko, Vladimir; Novoselov, Kostya; Geim, Andre

    2018-02-08

    Ballistic Josephson junctions are predicted to support a number of exotic physics processess, providing an ideal system to inject the supercurrent in the quantum Hall regime. Herein, we demonstrate electrical transport measurements on ballistic superconductor-graphene-superconductor junctions by contacting graphene to niobium with a junction length up to 1.5 μm. Hexagonal boron nitride encapsulation and one-dimensional edge contacts guarantee high-quality graphene Josephson junctions with a mean free path of several micrometers and record-low contact resistance. Transports in normal states including the observation of Fabry-Pérot oscillations and Sharvin resistance conclusively witness the ballistic propagation in the junctions. The critical current density J C is over one order of magnitude larger than that of the previously reported junctions. Away from the charge neutrality point, the I C R N product (I C is the critical current and R N the normal state resistance of junction) is nearly a constant, independent of carrier density n, which agrees well with the theory for ballistic Josephson junctions. Multiple Andreev reflections up to the third order are observed for the first time by measuring the differential resistance in the micrometer-long ballistic graphene Josephson junctions.

  5. Drag of ballistic electrons by an ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.

  6. Development of high-density ceramic composites for ballistic applications

    International Nuclear Information System (INIS)

    Rupert, N.L.; Burkins, M.S.; Gooch, W.A.; Walz, M.J.; Levoy, N.F.; Washchilla, E.P.

    1993-01-01

    The application of ceramic composites for ballistic application has been generally developed with ceramics of low density, between 2.5 and 4.5 g/cm 2 . These materials have offered good performance in defeating small-caliber penetrators, but can suffer time-dependent degradation effects when thicker ceramic tiles are needed to defeat modem, longer, heavy metal penetrators that erode rather than break up. This paper addresses the ongoing development, fabrication procedures, analysis, and ballistic evaluation of thinner, denser ceramics for use in armor applications. Nuclear Metals Incorporated (NMI) developed a process for the manufacture of depleted uranium (DU) ceramics. Samples of the ceramics have been supplied to the US Army Research Laboratory (ARL) as part of an unfunded cooperative study agreement. The fabrication processes used, characterization of the ceramic, and a ballistic comparison between the DU-based ceramic with baseline Al 2 O 3 will be presented

  7. Interaction of Acoustic Waves with a Cryogenic Nitrogen Jet at Sub- and Supercritical Pressures

    National Research Council Canada - National Science Library

    Chehroudi, B

    2001-01-01

    To better understand the nature of the interaction between acoustic waves and liquid fuel jets in rocket engines, cryogenic liquid nitrogen is injected into a room temperature high-pressure chamber...

  8. Relationship between traditional and ballistic squat exercise with vertical jumping and maximal sprinting.

    Science.gov (United States)

    Requena, Bernardo; García, Inmaculada; Requena, Francisco; de Villarreal, Eduardo Sáez-Sáez; Cronin, John B

    2011-08-01

    The purpose of this study was to quantify the magnitude of the relationship between vertical jumping and maximal sprinting at different distances with performance in the traditional and ballistic concentric squat exercise in well-trained sprinters. Twenty-one men performed 2 types of barbell squats (ballistic and traditional) across different loads with the aim of determining the maximal peak and average power outputs and 1 repetition maximum (1RM) values. Moreover, vertical jumping (countermovement jump test [CMJ]) and maximal sprints over 10, 20, 30, 40, 60, and 80 m were also assessed. In respect to 1RM in traditional squat, (a) no significant correlation was found with CMJ performance; (b) positive strong relationships (p ballistic and traditional squat exercises (r = 0.53-0.90); (c) negative significant correlations (r = -0.49 to -0.59, p ballistic or traditional squat exercises. Sprint time at 20 m was only related to ballistic and traditional squat performance when power values were expressed in relative terms. Moderate significant correlations (r = -0.39 to -0.56, p ballistic and traditional squat exercises. Sprint times at 60 and 80 m were mainly related to ballistic squat power outputs. Although correlations can only give insights into associations and not into cause and effect, from this investigation, it can be seen that traditional squat strength has little in common with CMJ performance and that relative 1RM and power outputs for both squat exercises are statistically correlated to most sprint distances underlying the importance of strength and power to sprinting.

  9. Whither Ballistic Missile Defense?

    Science.gov (United States)

    1992-11-30

    important that technology today is placing enormous power in the many camps-not only information that enables timely decision-making, but also the...WHITHER BALLISTIC MISSILE DEFENSE? BY AMBASSADOR HENRY F. COOPER NOVEMBER 30,1992 TECHNICAL MARKETING SOCIETY OF AMERICA WASHINGTON, DC...Conference on Technical Marketing 2000: Opportunities and Strategies for a Changing World) I intend to discuss the prospects for SDI in a changing

  10. Ballistic model to estimate microsprinkler droplet distribution

    Directory of Open Access Journals (Sweden)

    Conceição Marco Antônio Fonseca

    2003-01-01

    Full Text Available Experimental determination of microsprinkler droplets is difficult and time-consuming. This determination, however, could be achieved using ballistic models. The present study aimed to compare simulated and measured values of microsprinkler droplet diameters. Experimental measurements were made using the flour method, and simulations using a ballistic model adopted by the SIRIAS computational software. Drop diameters quantified in the experiment varied between 0.30 mm and 1.30 mm, while the simulated between 0.28 mm and 1.06 mm. The greatest differences between simulated and measured values were registered at the highest radial distance from the emitter. The model presented a performance classified as excellent for simulating microsprinkler drop distribution.

  11. Simulation of ballistic and non-Fourier thermal transport in ultra-fast laser heating

    International Nuclear Information System (INIS)

    Xu Jun; Wang Xinwei

    2004-01-01

    In this work, the lattice Boltzmann method (LBM) is developed to simulate pico- and femtosecond laser heating of silicon. The temperature fields calculated by the LBM are compared with those obtained from the parabolic heat conduction equation (PHCE) and the hyperbolic heat conduction equation (HHCE). Although the HHCE overcomes the dilemma of infinite thermal propagation speed of the PHCE, it cannot be applied to length scales comparable to the mean free path of energy carriers because of the breakdown of continuum approaches under severe nonequilibrium conditions. The LBM, considering both effects, can be used in both short temporal and spatial scales. From the results of the LBM, it is found that the speed of thermal wave at the ballistic limit is equal to the speed of sound, instead of the value predicted by the HHCE, which is valid only in the diffuse limit. It is also demonstrated that the traditional way of calculating heat flux using the temperature gradient gives rise to physically unreasonable results at the thermal wave front, while the LBM has no such drawback

  12. Dust acoustic waves in complex plasmas at elevated pressure

    International Nuclear Information System (INIS)

    Filippov, A.V.; Starostin, A.N.; Tkachenko, I.M.; Fortov, V.E.

    2011-01-01

    The bi-Yukawa effective interaction potential with different screening constants is employed to calculate dust static correlation functions in the hyper-netted chain approximation and to generalize the theory of dust acoustic waves within the non-perturbative moment approach complemented by hydrodynamic considerations. For the bi-Yukawa interaction potential the sound speed becomes significantly wavenumber-dependent, an additional soft diffusion-like mode is predicted, and the static dielectric function is shown to take negative values. The results can be applied to non-equilibrium dusty plasmas at elevated pressure. -- Highlights: ► Bi-Yukawa interaction potential of dust particles with different screening lengths. ► Dust static correlation functions in the hyper-netted chain approximation. ► The moment and hydrodynamic approaches are in a good agreement at weak non-ideality. ► The dust acoustic wave phase and group velocities depend on the wavenumber. ► The moment approach hints the appearance of the diffusion-like soft mode.

  13. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    by subconscious (subliminal) augmented visual feedback on motor performance. To test this, 45 subjects participated in the experiment, which involved learning of a ballistic task. The task was to execute simple ankle plantar flexion movements as quickly as possible within 200 ms and to continuously improve...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance.......). It is a well- described phenomenon that we may respond to features of our surroundings without being aware of them. It is also a well-known principle, that learning is reinforced by augmented feedback on motor performance. In the present experiment we hypothesized that motor learning may be facilitated...

  14. Ballistic movements of jumping legs implemented as variable components of cricket behaviour.

    Science.gov (United States)

    Hustert, R; Baldus, M

    2010-12-01

    Ballistic accelerations of a limb or the whole body require special joint mechanisms in many animals. Specialized joints can be moved by stereotypic or variable motor control during motor patterns with and without ballistic components. As a model of variable motor control, the specialized femur-tibia (knee) joints of cricket (Acheta domesticus) hindlegs were studied during ballistic kicking, jumping and swimming and in non-ballistic walking. In this joint the tendons of the antagonistic flexor and the extensor muscles attach at different distances from the pivot and the opposed lever arms form an angle of 120 deg. A 10:1 ratio of their effective lever arms at full knee flexion helps to prepare for most ballistic extensions: the tension of the extensor can reach its peak while it is restrained by flexor co-contraction. In kicks, preparatory flexion is rapid and the co-contraction terminates just before knee extensions. Therefore, mainly the stored tension of the extensor muscle accelerates the small mass of the tibia. Jumps are prepared with slower extensor-flexor co-contractions that flex both knees simultaneously and then halt to rotate both legs outward to a near horizontal level. From there, catapult extension of both knees accelerates the body, supported by continued high frequency motor activity to their tibia extensor muscles during the ongoing push-off from the substrate. Premature extension of one knee instantly takes load from the lagging leg that extends and catches up, which finally results in a straight jump. In swimming, synchronous ballistic power strokes of both hindlegs drive the tibiae on a ventral-to-posterior trajectory through the water, well coordinated with the swimming patterns of all legs. In walking, running and climbing the steps of the hindlegs range between 45 deg flexion and 125 deg extension and use non-ballistic, alternating activity of knee flexor and extensor muscles. Steep climbing requires longer bursts from the extensor tibiae

  15. Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions

    International Nuclear Information System (INIS)

    Bock, Claudia; Weingart, Sonja; Karaissaridis, Epaminondas; Kunze, Ulrich; Speck, Florian; Seyller, Thomas

    2012-01-01

    In this paper we investigate the influence of material and device properties on the ballistic transport in epitaxial monolayer graphene and epitaxial quasi-free-standing monolayer graphene. Our studies comprise (a) magneto-transport in two-dimensional (2D) Hall bars, (b) temperature- and magnetic-field-dependent bend resistance of unaligned and step-edge-aligned orthogonal cross junctions, and (c) the influence of the lead width of the cross junctions on ballistic transport. We found that ballistic transport is highly sensitive to scattering at the step edges of the silicon carbide substrate. A suppression of the ballistic transport is observed if the lead width of the cross junction is reduced from 50 nm to 30 nm. In a 50 nm wide device prepared on quasi-free-standing graphene we observe a gradual transition from the ballistic into the diffusive transport regime if the temperature is increased from 4.2 to about 50 K, although 2D Hall bars show a temperature-independent mobility. Thus, in 1D devices additional temperature-dependent scattering mechanisms play a pivotal role. (paper)

  16. Investigation of the potential barrier lowering for quasi-ballistic transport in short channel MOSFETs

    International Nuclear Information System (INIS)

    Lee, Jaehong; Kwon, Yongmin; Ji, Junghwan; Shin, Hyungcheol

    2011-01-01

    In this paper, the quasi-ballistic carrier transport in short channel MOSFETs is investigated from the point of potential barrier lowering. To investigate the ballistic characteristic of transistors, we extracted the channel backscattering coefficient and the ballistic ratio from experimental data obtained by RF C-V and DC I-V measurements. Two factors that modulate the potential barrier height, besides the gate bias, are considered in this work: the drain bias (V DS ) and the channel doping concentration (N A ). We extract the critical length by calculating the potential drop in the channel region and conclude that the drain bias and the channel doping concentration affect the quasi-ballistic carrier transport.

  17. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    Directory of Open Access Journals (Sweden)

    A. Fedaravicius

    2007-01-01

    Full Text Available The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warhead must be determined, and the problem of internal ballistics – where the design of the cartridge and the ballistic barrel must be performed.

  18. Overlapping Ballistic Ejecta Fields: Separating Distinct Blasts at Kings Bowl, Idaho

    Science.gov (United States)

    Borg, C.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Heldmann, J. L.; Lim, D. S. S.; Haberle, C. W.; Sears, H.; Elphic, R. C.; Kobayashi, L.; Garry, W. B.; Neish, C.; Karunatillake, S.; Button, N.; Purcell, S.; Mallonee, H.; Ostler, B.

    2015-12-01

    Kings Bowl is a ~2200ka pit crater created by a phreatic blast along a volcanic fissure in the eastern Snake River Plain (ESRP), Idaho. The main crater measures approximately 80m in length, 30m in width, and 30m in depth, with smaller pits located nearby on the Great Rift fissure, and has been targeted by the FINESSE team as a possible analogue for Cyane Fossae, Mars. The phreatic eruption is believed to have occurred due to the interaction of groundwater with lava draining back into the fissure following a lava lake high stand, erupting already solidified basalt from this and previous ERSP lava flows. The contemporaneous draw back of the lava with the explosions may conceal some smaller possible blast pits as more lava drained into the newly formed pits. Ballistic ejecta from the blasts occur on both sides of the fissure. To the east, the ballistic blocks are mantled by fine tephra mixed with eolian dust, the result of a westerly wind during the explosions. We use differential GPS to map the distribution of ballistic blocks on the west side of the fissure, recording position, percent vesiculation, and the length of 3 mutually perpendicular axes for each block >20cm along multiple transects parallel to the fissure. From the several hundred blocks recorded, we have been able to separate the ballistic field into several distinct blast deposits on the basis of size distributions and block concentration. The smaller pits identified from the ballistic fields correspond broadly to the northern and southern limits of the tephra/dust field east of the fissure. Soil formation and bioturbation of the tephra by sagebrush have obliterated any tephrostratigraphy that could have been linked to individual blasts. The ballistic block patterns at Kings Bowl may be used to identify distinct ejecta groups in high-resolution imagery of Mars or other planetary bodies.

  19. BALLISTIC RESISTANT ARTICLES COMPRISING TAPES

    NARCIS (Netherlands)

    VAN DER EEM, JORIS; HARINGS, JULES; JANSE, GERARDUS; TJADEN, HENDRIK

    2015-01-01

    The invention pertains to a ballistic-resistant moulded article comprising a compressed stack of sheets comprising reinforcing tapes having a tensile strength of at least 1.0 GPa, a tensile modulus of at least 40 GPa, and a tensile energy-to-break of at least 15 J/g, the direction of the tapes

  20. 77 FR 809 - Request for Proposals for Certification and Testing Expertise for the Ballistic Resistance of...

    Science.gov (United States)

    2012-01-06

    ... for Certification and Testing Expertise for the Ballistic Resistance of Personal Body Armor (2008... revising its Ballistic Resistance of Personal Body Armor (2008) Standard and corresponding certification... laboratories with experience in programs for similar types of ballistic-resistant personal protective equipment...

  1. Scattering theory of ballistic-electron-emission microscopy at nonepitaxial interfaces

    International Nuclear Information System (INIS)

    Smith, D. L.; Kozhevnikov, M.; Lee, E. Y.; Narayanamurti, V.

    2000-01-01

    We present an interface scattering model to describe ballistic-electron-emission microscopy (BEEM) at nonepitaxial metal/semiconductor interfaces. The model starts with a Hamiltonian consisting of the sum of two terms: one term, H 0 , describes an ideal interface for which the interface parallel component of wave vector is a good quantum number, and the second term, δH, describes interfacial scattering centers. The eigenstates of H 0 consist of an incident and a reflected part in the metal and a transmitted part in the semiconductor. The three components of each eigenstate have the same interface parallel wave vector. Because tunneling preferentially weights forward-directed states, the interface parallel component of wave vector is small for the H 0 eigenstates that are initially populated with high probability in BEEM. δH scatters electrons between the eigenstates of H 0 . The scattering conserves energy, but not the interface parallel wave vector. In the final state of the scattering process, states with a large interface parallel wave vector can be occupied with reasonable probability. If scattering is weak, so that the parallel wave vector is nearly conserved, the calculated collector current into conduction-band valleys with zero parallel wave vector at the minimum, such as the Γ valley for GaAs(100), is much larger than the calculated collector current into conduction-band valleys with a large parallel wave vector at the minimum, such as the L valleys for GaAs(100). However, if scattering is strong, the injected electron flux distribution is redistributed and valleys with zero interface transverse wave vector at their energy minimum are not preferentially weighted. Instead, the weighting varies as the density of final states for the scattering process so that, for example, the calculated L-channel collector current is much larger than the calculated Γ-channel collector current for GaAs(100). Interfacial scattering reduces the overall magnitude of the

  2. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    International Nuclear Information System (INIS)

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    2017-01-01

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansion and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.

  3. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    Science.gov (United States)

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    Science.gov (United States)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  5. Atmospheric Entry Studies for Venus Missions: 45 deg Sphere-Cone Rigid Aeroshells and Ballistic Entries

    Science.gov (United States)

    Prabu, Dinesh K.; Allen, Gary A., Jr.; Cappuccio, Gelsomina; Spilker, Thomas R.; Hwang, Helen H.; Moses, Robert W.

    2013-01-01

    The present study considers ballistic entries into the atmosphere of Venus using a 45deg sphere-cone rigid aeroshell, a legacy shape that has been used successfully in the past in the Pioneer Venus Multiprobe Mission. For a number of entry mass and capsule diameter combinations (i.e., various ballistic coefficients) and entry velocities, the trajectory space in terms of entry flight path angles between skip out and -30 is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is placed on the peak deceleration load and 10 bar is assumed as the limit for heritage carbon-phenolic material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a heat flux 2.5 kW/sq cm is utilized as a threshold below which the heritage carbon phenolic is considered mass inefficient. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a range of "critical" ballistic coefficients beyond which the steepest possible entries are determined by the pressure limit of 10 bar. The results are verified against known performance of the various probes used in the Pioneer Venus mission. It is anticipated that the results presented here will serve as a baseline in the development of a new class of ablative materials for future Venus missions.

  6. Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.

    Science.gov (United States)

    Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun

    2013-01-01

    The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.

  7. Pressure effects on spin density wave in Cr rich Cr-Al, Si, Mn, Fe and Co alloys

    International Nuclear Information System (INIS)

    Mizuki, Jun-ichiro; Endoh, Yasuo; Ishikawa, Yoshikazu

    1982-01-01

    The effect of pressure on the spin density wave (SDW) state in Cr rich Cr-Al, Si, Nn, Fe and Co alloys has been elucidated by neutron diffraction studies. We found that the change of the SDW wave vector Q, by applying pressure, 1/Q. delta Q/ delta P, is linearly related to the decrease of T sub(N) with increasing pressure 1/T sub(N). delta T sub(N)/ delta P and that all the results from the Cr-Si, Fe and Co alloys fall on a single straight line independent of their concentrations. Their magnetic phase diagrams in a temperature-pressure coordinate system can be related to the alloy phase diagram by employing an empirical rule that applying pressure corresponds to a decrese in the electron to atom ratio. The non transition metal Si impurity has been found to act as an electron donor, while the effect of Al is not interpreted by the two band nesting model. (author)

  8. A Klein-tunneling transistor with ballistic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wilmart, Quentin; Fève, Gwendal; Berroir, Jean-Marc; Plaçais, Bernard [Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P et M Curie, Université D Diderot, 24, rue Lhomond, 75231 Paris Cedex 05 (France); Berrada, Salim; Hung Nguyen, V; Dollfus, Philippe [Institute of Fundamental Electronics, Univ. Paris-Sud, CNRS, Orsay (France); Torrin, David [Département de Physique, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-06-15

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)

  9. Wave Engine Topping Cycle Assessment

    Science.gov (United States)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  10. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    Science.gov (United States)

    2016-04-05

    Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress Ronald O’Rourke Specialist in Naval...Affairs April 5, 2016 Congressional Research Service 7-5700 www.crs.gov R41129 Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine...1,091.1 million in research and development funding for the Ohio replacement program (ORP), a program to design and build a new class of 12 ballistic

  11. Optimization theory for ballistic energy conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; Van Den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  12. Electron Interference in Ballistic Graphene Nanoconstrictions

    DEFF Research Database (Denmark)

    Baringhaus, Jens; Settnes, Mikkel; Aprojanz, Johannes

    2016-01-01

    We realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC mesa structures. The high quality of our devices allows the observation of a number of electronic quantum interference phenomena. The transmissions of Fabry-Perot-like resonances are probed...

  13. Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement

    Directory of Open Access Journals (Sweden)

    Elkarous Lamine

    2016-01-01

    Full Text Available The development of a dynamic calibration standard for high-amplitude pressure piezoelectric transducers implies the implementation of a system which can provide reference pressure values with known characteristics and uncertainty. The reference pressure must be issued by a sensor, as a part of a measuring chain, with a guaranteed traceability to an international standard. However, this operation has not been completely addressed yet until today and is still calling further investigations. In this paper, we introduce an experimental study carried out in order to contribute to current efforts for the establishment of a reference dynamic calibration method. A suitable practical calibration method based on the calculation of the reference pressure by measurement of the displacement of the piston in contact with an oil-filled cylindrical chamber is presented. This measurement was achieved thanks to a high speed camera and an accelerometer. Both measurements are then compared. In the first way, pressure was generated by impacting the piston with a free falling weight and, in the second way, with strikers of known weights and accelerated to the impact velocities with an air gun. The aim of the experimental setup is to work out a system which may generate known hydraulic pressure pulses with high-accuracy and known uncertainty. Moreover, physical models were also introduced to consolidate the experimental study. The change of striker’s velocities and masses allows tuning the reference pressure pulses with different shapes and, therefore, permits to sweep a wide range of magnitudes and frequencies.

  14. Transition from normal to ballistic diffusion in a one-dimensional impact system

    Science.gov (United States)

    Livorati, André L. P.; Kroetz, Tiago; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2018-03-01

    We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of noninteracting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the midrange velocity.

  15. The use of gelatine in wound ballistics research.

    Science.gov (United States)

    Carr, D J; Stevenson, T; Mahoney, P F

    2018-04-25

    Blocks of gelatine are used in both lethality and survivability studies for broadly the same reason, i.e. comparison of ammunition effects using a material that it is assumed represents (some part of) the human body. The gelatine is used to visualise the temporary and permanent wound profiles; elements of which are recognised as providing a reasonable approximation to wounding in humans. One set of researchers aim to improve the lethality of the projectile, and the other to understand the effects of the projectile on the body to improve survivability. Research areas that use gelatine blocks are diverse and include ammunition designers, the medical and forensics communities and designers of ballistic protective equipment (including body armour). This paper aims to provide an overarching review of the use of gelatine for wound ballistics studies; it is not intended to provide an extensive review of wound ballistics as that already exists, e.g. Legal Med 23:21-29, 2016. Key messages are that test variables, projectile type (bullet, fragmentation), impact site on the body and intermediate layers (e.g. clothing, personal protective equipment (PPE)) can affect the resulting wound profiles.

  16. Precession feature extraction of ballistic missile warhead with high velocity

    Science.gov (United States)

    Sun, Huixia

    2018-04-01

    This paper establishes the precession model of ballistic missile warhead, and derives the formulas of micro-Doppler frequency induced by the target with precession. In order to obtain micro-Doppler feature of ballistic missile warhead with precession, micro-Doppler bandwidth estimation algorithm, which avoids velocity compensation, is presented based on high-resolution time-frequency transform. The results of computer simulations confirm the effectiveness of the proposed method even with low signal-to-noise ratio.

  17. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  18. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    International Nuclear Information System (INIS)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-01-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCF max , spatial registration position in x–y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States. (paper)

  19. Effect of joint design on ballistic performance of quenched and tempered steel welded joints

    International Nuclear Information System (INIS)

    Balakrishnan, M.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2014-01-01

    Highlights: • Traditional usage of austenitic stainless steel filler for armour steel welding shows poor ballistic performance. • Earlier efforts show dubious success on ballistic resistance of armour steel joints. • Comparative evaluation of equal/unequal joint design on ballistic performance. • Effect of joint design covers the main aspects of successful bullet stoppage. - Abstract: A study was carried out to evaluate the effect of joint design on ballistic performance of armour grade quenched and tempered steel welded joints. Equal double Vee and unequal double Vee joint configuration were considered in this study. Targets were fabricated using 4 mm thick tungsten carbide hardfaced middle layer; above and below which austenitic stainless steel layers were deposited on both sides of the hardfaced interlayer in both joint configurations. Shielded metal arc welding process was used to deposit for all layers. The fabricated targets were evaluated for its ballistic performance and the results were compared in terms of depth of penetration on weld metal. From the ballistic test results, it was observed that both the targets successfully stopped the bullet penetration at weld center line. Of the two targets, the target made with unequal double Vee joint configuration offered maximum resistance to the bullet penetration at weld metal location without any bulge at the rear side. The higher volume of austenitic stainless steel front layer and the presence of hardfaced interlayer after some depth of soft austenitic stainless steel front layer is the primary reason for the superior ballistic performance of this joint

  20. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    Science.gov (United States)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-06-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCFmax, spatial registration position in x-y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States.

  1. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    International Nuclear Information System (INIS)

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P.

    2013-01-01

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to be below the region of best fit for the power law form of the BK model, demonstrating its region of validity

  2. Ballistic Missile Defense and ABM Treaty Limitations

    National Research Council Canada - National Science Library

    Robinson, Brian

    1998-01-01

    The U.S. must critically evaluate our current ballistic missile defense (BMD) strategy. In today's geostrategic context, is it sound strategy to continue to impose 1972 ABM Treaty restrictions on BMD systems development...

  3. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes.

    Science.gov (United States)

    Borzenets, I V; Amet, F; Ke, C T; Draelos, A W; Wei, M T; Seredinski, A; Watanabe, K; Taniguchi, T; Bomze, Y; Yamamoto, M; Tarucha, S; Finkelstein, G

    2016-12-02

    We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

  4. Herontwerp Ballistisch vest voor Vrouwen: Fase 1 (Redesign Ballistic Vest for Women: Phase 1)

    National Research Council Canada - National Science Library

    Koerhuis, C. L; Weghorst, M. G

    2008-01-01

    .... A questionnaire was filled out by fourteen female soldiers consisting of questions about complaints, characteristics of the ballistic vest and the mobility of the combat soldier wearing the ballistic vest...

  5. A Klein-tunneling transistor with ballistic graphene

    International Nuclear Information System (INIS)

    Wilmart, Quentin; Fève, Gwendal; Berroir, Jean-Marc; Plaçais, Bernard; Berrada, Salim; Hung Nguyen, V; Dollfus, Philippe; Torrin, David

    2014-01-01

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)

  6. Destabilization of hydromagnetic drift-Alfven waves in a finite pressure collisional plasma

    International Nuclear Information System (INIS)

    Tang, J.T.

    1974-01-01

    In a finite beta (β = 8πn 0 kT 0 /B 0 2 ) plasma, where the plasma pressure n 0 kT 0 is an appreciable fraction of the confining magnetic field energy-density B 0 2 /8π, density-gradient driven drift waves couple with Alfven waves when the phase velocities of the two waves become comparable. The resulting hydromagnetic drift-Alfven waves separate into two branches--a drift mode and an Alfven mode, with both modes exhibiting magnetic field and localized density fluctuations near the coupling point. The dispersion relation of the collisional drift-Alfven wave is derived by using a slab-geometry, two-fluid model which includes finite beta, electron-ion collisions, ion-ion collisions, finite ion larmar radius, temperature fluctuations, and an axial electron current. A hydromagnetic drift mode is found to be unstable in a moderately dense plasma. A localized ''Alfven'' mode is destabilized only with the passage of an axial current along the plasma column. In order to check the theoretical predictions an experiment is performed in a finite-beta plasma of density n 0 = 10 13 -10 15 cm -3 and temperature T/sub e/ approximately T/sub i/ = 1-7 eV. (U.S.)

  7. Wound ballistic evaluation of the Taser® XREP ammunition.

    Science.gov (United States)

    Kunz, Sebastian N; Adamec, Jiri; Zinka, Bettina; Münzel, Daniela; Noël, Peter B; Eichner, Simon; Manthei, Axel; Grove, Nico; Graw, M; Peschel, Oliver

    2013-01-01

    The Taser® eXtended Range Electronic Projectile (XREP®) is a wireless conducted electrical weapon (CEW) designed to incapacitate a person from a larger distance. The aim of this study was to analyze the ballistic injury potential of the XREP. Twenty rounds were fired from the Taser®X12 TM shotgun into ballistic soap covered with artificial skin and clothing at different shooting distances (1-25 m). One shot was fired at pig skin at a shooting distance of 10 m. The average projectile velocity was 67.0 m/s. The kinetic energy levels on impact varied from 28-52 J. Depending on the intermediate target, the projectiles penetrated up to 4.2 cm into the ballistic soap. On impact the nose assembly did not separate from the chassis, and no electrical activation was registered. Upon impact, a skin penetration of the XREP cannot be excluded. However, it is very unlikely at shooting distances of 10 m or more. Clothing and a high elasticity limit of the target body area can significantly reduce the penetration risk on impact.

  8. A comparison of the behind armour blunt trauma effects between ceramic faced and soft body armours caused by ballistic impact

    OpenAIRE

    Lewis, E. A.; Horsfall, Ian; Watson, Celia H.

    2002-01-01

    Recently published research has characterised the behind armour blunt trauma (BABT) effects associated with high velocity ballistic impact on textile-based armour faced with a ceramic plate. Subsequently dynamic displacements, accelerations and pressures have been characterised both in Gelatine experiments and animal experiments and used to provide test methodologies. High velocity armour consists of a ceramic plate usually backed with a composite panel, which is worn over the conventional te...

  9. Experimental determination of radiated internal wave power without pressure field data

    Science.gov (United States)

    Lee, Frank M.; Paoletti, M. S.; Swinney, Harry L.; Morrison, P. J.

    2014-04-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux left and total radiated power P for two-dimensional internal gravity waves. Both left and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  10. Experimental determination of radiated internal wave power without pressure field data

    International Nuclear Information System (INIS)

    Lee, Frank M.; Morrison, P. J.; Paoletti, M. S.; Swinney, Harry L.

    2014-01-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data

  11. On the influence of particle morphology on the post-impact ballistic response of ceramic armour materials

    Science.gov (United States)

    Hameed, Amer; Appleby-Thomas, Gareth; Wood, David; Jaansalu, Kevin

    2015-06-01

    Recent studies have shown evidence that the ballistic-resistance of fragmented (comminuted) ceramics is independent of the original strength of the material. In particular, experimental investigations into the ballistic behaviour of such fragmented ceramics have indicated that this response is correlated to shattered ceramic morphology. This suggests that careful control of ceramic microstructure - and therefore failure paths - might provide a route to optimise post-impact ballistic performance, thereby enhancing multi-hit capability. In this study, building on previous in-house work, ballistic tests were conducted using pre-formed `fragmented-ceramic' analogues based around three morphologically differing (but chemically identical) alumina feedstock materials compacted into target `pucks. In an evolution of previous work, variation of target thickness provided additional insight into an apparent morphology-based contribution to ballistic response.

  12. Development of an analysis code for pressure wave propagation, (1)

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Sakano, Kosuke; Shindo, Yoshihisa

    1974-11-01

    We analyzed the propagation of the pressure-wave in the piping system of SWAT-1B rig by using SWAC-5 Code. We carried out analyses on the following parts. 1) A straight pipe 2) Branches 3) A piping system The results obtained in these analyses are as follows. 1) The present our model simulates well the straight pipe and the branch with the same diameters. 2) The present our model simulates approximately the branch with the different diameters and the piping system. (auth.)

  13. Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube

    Science.gov (United States)

    Seidt, J. D.; Periira, J. M.; Hammer, J. T.; Gilat, A.; Ruggeri, C. R.

    2012-01-01

    Bird strikes are a common problem for the aerospace industry and can cause serious damage to an aircraft. Ballistic gelatin is frequently used as a surrogate for actual bird carcasses in bird strike tests. Numerical simulations of these tests are used to supplement experimental data, therefore it is necessary to use numerical modeling techniques that can accurately capture the dynamic response of ballistic gelatin. An experimental technique is introduced to validate these modeling techniques. A ballistic gelatin projectile is fired into a strike plate attached to a 36 in. long sensor tube. Dynamic load is measured at two locations relative to the strike plate using strain gages configured in a full Wheatstone bridge. Data from these experiments are used to validate a gelatin constitutive model. Simulations of the apparatus are analyzed to investigate its performance.

  14. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    Science.gov (United States)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  15. Nonlocal nature of the resistance in classical ballistic transport

    International Nuclear Information System (INIS)

    Sukhorukov, E.V.; Levinson, I.B.

    1990-01-01

    An investigation is made of the resistance of ballistic microstructures formed in the two-dimensional electron gas of a GaAs/AlGaAs heterojunction representing combinations of long channels. It is shown that the nonlocal nature of the resistance (dependence on the measurement method) is unrelated to the quantum nature of the electron behavior, but is solely due to the ballistic nature of microstructures and does not disappear in the classical limit. An analog of the Landauer equation is obtained for the resistance measured by the four-probe method allowing for the geometry of the measuring probes

  16. Voltage quantization by ballistic vortices in two-dimensional superconductors

    International Nuclear Information System (INIS)

    Orlando, T.P.; Delin, K.A.

    1991-01-01

    The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions

  17. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.

    Science.gov (United States)

    Yang, Lin; Zhang, Qian; Cui, Zhiguang; Gerboth, Matthew; Zhao, Yang; Xu, Terry T; Walker, D Greg; Li, Deyu

    2017-12-13

    Thermal transport in amorphous silicon dioxide (a-SiO 2 ) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO 2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO 2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO 2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO 2 . With solid experimental data demonstrating ballistic phonon transport through a-SiO 2 , this work should provide important insight into thermal management of electronic devices.

  18. Ballistic calculation of nonequilibrium Green's function in nanoscale devices using finite element method

    International Nuclear Information System (INIS)

    Kurniawan, O; Bai, P; Li, E

    2009-01-01

    A ballistic calculation of a full quantum mechanical system is presented to study 2D nanoscale devices. The simulation uses the nonequilibrium Green's function (NEGF) approach to calculate the transport properties of the devices. While most available software uses the finite difference discretization technique, our work opts to formulate the NEGF calculation using the finite element method (FEM). In calculating a ballistic device, the FEM gives some advantages. In the FEM, the floating boundary condition for ballistic devices is satisfied naturally. This paper gives a detailed finite element formulation of the NEGF calculation applied to a double-gate MOSFET device with a channel length of 10 nm and a body thickness of 3 nm. The potential, electron density, Fermi functions integrated over the transverse energy, local density of states and the transmission coefficient of the device have been studied. We found that the transmission coefficient is significantly affected by the top of the barrier between the source and the channel, which in turn depends on the gate control. This supports the claim that ballistic devices can be modelled by the transport properties at the top of the barrier. Hence, the full quantum mechanical calculation presented here confirms the theory of ballistic transport in nanoscale devices.

  19. What Should Be the United States Policy towards Ballistic Missile Defense for Northeast Asia?

    National Research Council Canada - National Science Library

    Delgado, Roberto L

    2005-01-01

    .... The threat of ballistic missiles from Northeast Asia is especially high. China and North Korea are seen as the top threats in the region when it comes to the delivery of WMD through ballistic missiles...

  20. Numerical Evaluation of the Use of Aluminum Particles for Enhancing Solid Rocket Motor Combustion Stability

    Directory of Open Access Journals (Sweden)

    David Greatrix

    2015-02-01

    Full Text Available The ability to predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms typically necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. On the mitigation side, one in practice sees the use of inert or reactive particles for the suppression of pressure wave development in the motor chamber flow. With the focus of the present study placed on reactive particles, a numerical internal ballistic model incorporating relevant elements, such as a transient, frequency-dependent combustion response to axial pressure wave activity above the burning propellant surface, is applied to the investigation of using aluminum particles within the central internal flow (particles whose surfaces nominally regress with time, as a function of current particle size, as they move downstream as a means of suppressing instability-related symptoms in a cylindrical-grain motor. The results of this investigation reveal that the loading percentage and starting size of the aluminum particles have a significant influence on reducing the resulting transient pressure wave magnitude.

  1. Ballistic representation for kinematic access

    Science.gov (United States)

    Alfano, Salvatore

    2011-01-01

    This work uses simple two-body orbital dynamics to initially determine the kinematic access for a ballistic vehicle. Primarily this analysis was developed to assess when a rocket body might conjunct with an orbiting satellite platform. A family of access opportunities can be represented as a volume for a specific rocket relative to its launch platform. Alternately, the opportunities can be represented as a geographical footprint relative to aircraft or satellite position that encompasses all possible launcher locations for a specific rocket. A thrusting rocket is treated as a ballistic vehicle that receives all its energy at launch and follows a coasting trajectory. To do so, the rocket's burnout energy is used to find its equivalent initial velocity for a given launcher's altitude. Three kinematic access solutions are then found that account for spherical Earth rotation. One solution finds the maximum range for an ascent-only trajectory while another solution accommodates a descending trajectory. In addition, the ascent engagement for the descending trajectory is used to depict a rapid access scenario. These preliminary solutions are formulated to address ground-, sea-, or air-launched vehicles.

  2. Impulse-variability theory: implications for ballistic, multijoint motor skill performance.

    Science.gov (United States)

    Urbin, M A; Stodden, David F; Fischman, Mark G; Weimar, Wendi H

    2011-01-01

    Impulse-variability theory (R. A. Schmidt, H. N. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979) accounts for the curvilinear relationship between the magnitude and resulting variability of the muscular forces that influence the success of goal-directed limb movements. The historical roots of impulse-variability theory are reviewed in the 1st part of this article, including the relationship between movement speed and spatial error. The authors then address the relevance of impulse-variability theory for the control of ballistic, multijoint skills, such as throwing, striking, and kicking. These types of skills provide a stark contrast to the relatively simple, minimal degrees of freedom movements that characterized early research. However, the inherent demand for ballistic force generation is a strong parallel between these simple laboratory tasks and multijoint motor skills. Therefore, the authors conclude by recommending experimental procedures for evaluating the adequacy of impulse variability as a theoretical model within the context of ballistic, multijoint motor skill performance. Copyright © Taylor & Francis Group, LLC

  3. Scale effects on quasi-steady solid rocket internal ballistic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Greatrix, D. R. [Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B2K3 (Canada)

    2010-11-15

    The ability to predict with some accuracy a given solid rocket motor's performance before undertaking one or several costly experimental test firings is important. On the numerical prediction side, as various component models evolve, their incorporation into an overall internal ballistics simulation program allows for new motor firing simulations to take place, which in turn allows for updated comparisons to experimental firing data. In the present investigation, utilizing an updated simulation program, the focus is on quasi-steady performance analysis and scale effects (influence of motor size). The predicted effects of negative/positive erosive burning and propellant/casing deflection, as tied to motor size, on a reference cylindrical-grain motor's internal ballistics, are included in this evaluation. Propellant deflection has only a minor influence on the reference motor's internal ballistics, regardless of motor size. Erosive burning, on the other hand, is distinctly affected by motor scale. (author)

  4. Analysis of nonlocal phonon thermal conductivity simulations showing the ballistic to diffusive crossover

    Science.gov (United States)

    Allen, Philip B.

    2018-04-01

    Simulations [e.g., X. W. Zhou et al., Phys. Rev. B 79, 115201 (2009), 10.1103/PhysRevB.79.115201] show nonlocal effects of the ballistic/diffusive crossover. The local temperature has nonlinear spatial variation not contained in the local Fourier law j ⃗(r ⃗) =-κ ∇ ⃗T (r ⃗) . The heat current j ⃗(r ⃗) depends not just on the local temperature gradient ∇ ⃗T (r ⃗) but also on temperatures at points r⃗' within phonon mean free paths, which can be micrometers long. This paper uses the Peierls-Boltzmann transport theory in nonlocal form to analyze the spatial variation Δ T (r ⃗) . The relaxation-time approximation (RTA) is used because the full solution is very challenging. Improved methods of extrapolation to obtain the bulk thermal conductivity κ are proposed. Callaway invented an approximate method of correcting RTA for the q ⃗ (phonon wave vector or crystal momentum) conservation of N (Normal as opposed to Umklapp) anharmonic collisions. This method is generalized to the nonlocal case where κ (k ⃗) depends on the wave vector of the current j ⃗(k ⃗) and temperature gradient i k ⃗Δ T (k ⃗) .

  5. Study of discharges produced by surface waves under medium and high pressure: application to chemical analysis

    International Nuclear Information System (INIS)

    Laye epouse Granier, Agnes

    1986-01-01

    This report deals with the study of microwave discharges produced in argon gas by surface waves in the 20-760 Torr pressure range. Application to chemical analysis by emission optical spectroscopy is also investigated. First of all we study the propagation of a surface wave in a bounded plasma in which the effective collision frequency for momentum transfer ν is higher than the excitation one. The axial electron density profile is determined from two diagnostic techniques, i.e., phase variations of the wave field and Stark broadening of H β line. Then we deduce the discharge characteristics ν, θ (maintaining power of an electron-ion pair) and E eff (effective electric field for discharge sustaining) from the electron density profile. Then an energy balance of the discharge is developed. It explains the change of operating conditions in the 20-50 Torr range. At low pressure the discharge is governed by ambipolar diffusion whereas at high pressure, the electrons are mainly lost by volume recombination of Ar 2 + . Finally, we report on chemical analysis experiment of gases (optimum sensibility in found near 100 Torr) and of metallic solutions sprayed by a graphite oven. Performances of such a design and ICP plasma torches are compared. (author) [fr

  6. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    Science.gov (United States)

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  7. KevlarTM Fiber-Reinforced Polybenzoxazine Alloys for Ballistic Impact Application

    Directory of Open Access Journals (Sweden)

    Chanchira Jubsilp

    2011-10-01

    Full Text Available A light weight ballistic composites from KevlarTM-reinforcing fiber having polybenzoxazine (BA/urethane prepolymer (PU alloys as a matrix were investigated in this work. The effect of alloy compositions on the ballistic composite properties was determined. The results revealed that the enhancement in the glass transition temperature (Tg of the KevlarTM-reinforced BA/PU composites compared to that of the KevlarTM-reinforced polybenzoxazine composite was observed. The increase of the elastomeric PU content in the BA/PU alloy resulted in samples with tougher characteristics. The storage modulus of the KevlarTM-reinforced BA/PU composites increased with increasing the mass fraction of polybenzoxazine. A ballistic impact test was also performed on the KevlarTM-reinforced BA/PU composites using a 9 mm handgun. It was found that the optimal contents of PU in the BA/PU alloys should be approximately 20wt%. The extent of the delaminated area and interfacial fracture were observed to change with the varied compositions of the matrix alloys. The appropriate thickness of KevlarTM-reinforced 80/20 BA/PU composite panel was 30 plies and 50 plies to resist the penetration from the ballistic impact equivalent to levels II-A and III-A of NIJ standard. The arrangement of composite panels with the higher stiffness panel at the front side also showed the best efficiency of ballistic penetration resistance.

  8. High Resolution, High-Speed Photography, an Increasingly Prominent Diagnostic in Ballistic Research Experiments

    International Nuclear Information System (INIS)

    Shaw, L.; Muelder, S.

    1999-01-01

    High resolution, high-speed photography is becoming a prominent diagnostic in ballistic experimentation. The development of high speed cameras utilizing electro-optics and the use of lasers for illumination now provide the capability to routinely obtain high quality photographic records of ballistic style experiments. The purpose of this presentation is to review in a visual manner the progress of this technology and how it has impacted ballistic experimentation. Within the framework of development at LLNL, we look at the recent history of large format high-speed photography, and present a number of photographic records that represent the state of the art at the time they were made. These records are primarily from experiments involving shaped charges. We also present some examples of current photographic technology, developed within the ballistic community, that has application to hydro diagnostic experimentation at large. This paper is designed primarily as an oral-visual presentation. This written portion is to provide general background, a few examples, and a bibliography

  9. Dust ion acoustic solitary waves in a magnetized dusty plasma with anisotropic ion pressure

    International Nuclear Information System (INIS)

    Choi, Cheong Rim; Ryu, Chang-Mo; Lee, D.-Y.; Lee, Nam C.; Kim, Y.-H.

    2007-01-01

    The influence of anisotropic ion pressure on the dust ion acoustic solitary wave (DIASW) and the double layer (DL) obliquely propagating to a magnetic field are investigated by using the Sagdeev potential. The anisotropic ion pressure is defined by applying the Chew-Goldberger-Low (CGL) theory, p-perpendicular=p-perpendicular 0 n and p-parallel=p-parallel 0 n 3 , where n is the normalized ion density. The solutions of DIASWs and DLs obliquely propagating to an external magnetic field are obtained in the small amplitude limit. It is found that the perpendicular component of anisotropic ion pressure works differently from that of the parallel component on the DIASWs in a magnetized dusty plasma, deviating from a straight extension of the isotropic pressure effect

  10. Natural Mallow Fiber-Reinforced Epoxy Composite for Ballistic Armor Against Class III-A Ammunition

    Science.gov (United States)

    Nascimento, Lucio Fabio Cassiano; Holanda, Luane Isquerdo Ferreira; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Lima, Édio Pereira

    2017-10-01

    Epoxy matrix composites reinforced with up to 30 vol pct of continuous and aligned natural mallow fibers were for the first time ballistic tested as personal armor against class III-A 9 mm FMJ ammunition. The ballistic efficiency of these composites was assessed by measuring the dissipated energy and residual velocity after the bullet perforation. The results were compared to those in similar tests of aramid fabric (Kevlar™) commonly used in vests for personal protections. Visual inspection and scanning electron microscopy analysis of impact-fractured samples revealed failure mechanisms associated with fiber pullout and rupture as well as epoxy cracking. As compared to Kevlar™, the mallow fiber composite displayed practically the same ballistic efficiency. However, there is a reduction in both weight and cost, which makes the mallow fiber composites a promising material for personal ballistic protection.

  11. EFFECTS OF STRENGTH VS. BALLISTIC-POWER TRAINING ON THROWING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Nikolaos Zaras

    2013-03-01

    Full Text Available The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9 and Power (n = 8 groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ, Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively. Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively, while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05. Muscle fibre Cross Sectional Area (fCSA increased in all fibre types after Strength training by 19-26% (p < 0.05, while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (% decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations

  12. Comparison of ballistic impact effects between biological tissue and gelatin.

    Science.gov (United States)

    Jin, Yongxi; Mai, Ruimin; Wu, Cheng; Han, Ruiguo; Li, Bingcang

    2018-02-01

    Gelatin is commonly used in ballistic testing as substitute for biological tissue. Comparison of ballistic impact effects produced in the gelatin and living tissue is lacking. The work in this paper was aimed to compare the typical ballistic impact effects (penetration trajectory, energy transfer, temporary cavity) caused by 4.8mm steel ball penetrating the 60kg porcine hind limbs and 10wt% gelatin. The impact event in the biological tissue was recorded by high speed flash X-ray machine at different delay time, while the event in the gelatin continuously recorded by high speed video was compared to that in the biological tissue. The collected results clearly displayed that the ballistic impact effects in the muscle and gelatin were similar for the steel ball test; as for instance, the projectile trajectory in the two targets was basically similar, the process of energy transfer was highly coincident, and the expansion of temporary cavity followed the same pattern. This study fully demonstrated that choosing gelatin as muscle simulant was reasonable. However, the maximum temporary cavity diameter in the gelatin was a little larger than that in the muscle, and the expansion period of temporary cavity was longer in the gelatin. Additionally, the temporary cavity collapse process in the two targets followed different patterns, and the collapse period in the gelatin was two times as long as that in the muscle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results

    Directory of Open Access Journals (Sweden)

    V. Ilyin

    2010-01-01

    Full Text Available We address the now classical problem of a diffusion process that crosses over from a ballistic behavior at short times to a fractional diffusion (sub- or super-diffusion at longer times. Using the standard non-Markovian diffusion equation we demonstrate how to choose the memory kernel to exactly respect the two different asymptotics of the diffusion process. Having done so we solve for the probability distribution function as a continuous function which evolves inside a ballistically expanding domain. This general solution agrees for long times with the probability distribution function obtained within the continuous random walk approach but it is much superior to this solution at shorter times where the effect of the ballistic regime is crucial.

  14. Experimental evaluation of ballistic hazards in imaging diagnostic center.

    Science.gov (United States)

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-04-01

    Serious hazards for human health and life and devices in close proximity to the magnetic resonance scanners (MRI scanners) include the effects of being hit by ferromagnetic objects attracted by static magnetic field (SMF) produced by scanner magnet - the so-called ballistic hazards classified among indirect electromagnetic hazards. International safety guidelines and technical literature specify different SMF threshold values regarding ballistic hazards - e.g. 3 mT (directive 2004/40/EC, EN 60601-2-33), and 30 mT (BMAS 2009, directive proposal 2011). Investigations presented in this article were performed in order to experimentally verify SMF threshold for ballistic hazards near MRI scanners used in Poland. Investigations were performed with the use of a laboratory source of SMF (0-30 mT) and MRI scanners of various types. The levels of SMF in which metal objects of various shapes and 0.4-500 g mass are moved by the field influence were investigated. The distance from the MRI scanners (0.2-3T) where hazards may occur were also investigated. Objects investigated under laboratory conditions were moved by SMF of 2.2-15 mT magnetic flux density when they were freely suspended, but were moved by the SMF of 5.6-22 mT when they were placed on a smooth surface. Investigated objects were moved in fields of 3.5-40 mT by MRI scanners. Distances from scanner magnet cover, where ballistic hazards might occur are: up to 0.5 m for 0.2-0.3T scanners; up to 1.3 m for 0.5T scanners; up to 2.0 m for 1.5T scanners and up to 2.5 m for 3T scanners (at the front and back of the magnet). It was shown that SMF of 3 mT magnetic flux density should be taken as the threshold for ballistic hazards. Such level is compatible with SMF limit value regarding occupational safety and health-protected areas/zones, where according to the Polish labor law the procedures of work environment inspection and prevention measures regarding indirect electromagnetic hazards should be applied. Presented results

  15. Effect of ageing on the calibration of ballistic gelatin.

    Science.gov (United States)

    Guey, Jason; Rodrigues, S; Pullen, A; Shaw, B; Kieser, D C

    2018-02-27

    Ballistic gelatin is commonly used as a validated surrogate for soft tissue during terminal ballistic testing. However, the effect of a delay between production and testing of a gelatin mould remains unknown. The aim of this study was to determine any potential effects of ageing on ballistic gelatin. Depth of penetration (DoP) of 4.5 mm spherical fragment simulating projectiles was ascertained using mixtures of 10%, 11.25% and 20% Type A 250 Bloom ballistic gelatin. Testing was performed daily for 5 days using velocities between 75 and 210 m/s. DoP at day 5 was statistically compared with day 1, and net mass change was recorded daily. No significant difference was found for DoP observed with time in any of the samples (P>0.05). Spearman correlation was excellent in all moulds. The moulds with known standard calibrations remained in calibration throughout the study period. Mass loss of less than 1% was noted in all samples. Mass loss was the only quantifiable measure of changes in the blocks with time, but did not correlate with any changes in DoP. This may provide reassurance when undertaking such testing that an inadvertent delay will not significantly alter the penetration properties of the mould. Future research is recommended to determine any potential effect on the mechanical properties of gelatin at higher velocity impacts and whether the calibration corresponds to an adequate simulation under such conditions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Mitigation technologies for damage induced by pressure waves in high-power mercury spallation neutron sources (1). Material surface improvement

    International Nuclear Information System (INIS)

    Naoe, Takashi; Futakawa, Masatoshi; Wakui, Takashi; Kogawa, Hiroyuki; Shoubu, Takahisa; Takeuchi, Hirotsugu; Kawai, Masayoshi

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed in the world. Proton beams will be used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by microjets and/or shock waves that are caused by cavitation bubble collapse impose pitting damage on the vessel wall. Bubble collapse behavior was observed by using a high-speed video camera, as well as simulated numerically. Localized impact due to cavitation bubble collapse was quantitatively estimated through comparison between numerical simulation and experiment. A novel surface treatment technique that consists of carburizing and nitriding processes was developed and the treatment condition was optimized to mitigate the pitting damage due to localized impacts. (author)

  17. Valley-symmetric quasi-1D transport in ballistic graphene

    Science.gov (United States)

    Lee, Hu-Jong

    We present our recent studies on gate-defined valley-symmetric one-dimensional (1D) carrier guiding in ballistic monolayer graphene and valley-symmetry-protected topological 1D transport in ballistic bilayer graphene. Successful carrier guiding was realized in ballistic monolayer graphene even in the absence of a band gap by inducing a high distinction ( more than two orders of magnitude) in the carrier density between the region of a quasi-1D channel and the rest of the top-gated regions. Conductance of a channel shows quantized values in units of 4e2/ h, suggesting that the valley symmetry is preserved. For the latter, the topological 1D conduction was realized between two closely arranged insulating regions with inverted band gaps, induced under a pair of split dual gating with polarities opposite to each other. The maximum conductance along the boundary channel showed 4e2/ h, again with the preserved valley symmetry. The 1D topological carrier guiding demonstrated in this study affords a promising route to robust valleytronic applications and sophisticated valley-associated functionalities based on 2D materials. This work was funded by the National Research Foundation of Korea.

  18. Laser driven shock wave experiments for equation of state studies at megabar pressures

    CERN Document Server

    Pant, H C; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 mu m wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments.

  19. Laser driven shock wave experiments for equation of state studies at megabar pressures

    International Nuclear Information System (INIS)

    Pant, H C; Shukla, M; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 μm wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments

  20. Density wave induced star formation: The optical surface brightness of galaxies

    International Nuclear Information System (INIS)

    Bash, F.N.

    1979-01-01

    A model for the galactic orbits of molecular clouds has been devised. The molecular clouds are assumed to be launched from the two-armed spiral-shock wave, to orbit in the Galaxy like ballistic particles with gravitational perturbations due to the density-wave spiral-potential, and each cloud is assumed to produce a cluster of stars. Each cloud radiates detectable 12 C 16 O (J=0→1) spectral line radiation from birth for 40 million years. Stars are seen in the cloud about 25 million years after birth, and the star cluster is assumed to continue in ballistic orbit around the Galaxy.The model has been tested by comparing its predicted velocity-longitude diagram for CO against that observed for the Galaxy and by comparing the model's predicted distribution of light in the UBV photometric bands against observed surface photometry for Sb and SC galaxies. The interpolation of the initial velocities in the model was corrected, and the model was examined to see whether preshock or postshock initial velocities better fit the observations. The model gives very good general agreement and reproduces many of the features observed in the CO velocity-longitude diagram

  1. Proposal of evaluation method of tsunami wave pressure using 2D depth-integrated flow simulation

    International Nuclear Information System (INIS)

    Arimitsu, Tsuyoshi; Ooe, Kazuya; Kawasaki, Koji

    2012-01-01

    To design and construct land structures resistive to tsunami force, it is most essential to evaluate tsunami pressure quantitatively. The existing hydrostatic formula, in general, tended to underestimate tsunami wave pressure under the condition of inundation flow with large Froude number. Estimation method of tsunami pressure acting on a land structure was proposed using inundation depth and horizontal velocity at the front of the structure, which were calculated employing a 2D depth-integrated flow model based on the unstructured grid system. The comparison between the numerical and experimental results revealed that the proposed method could reasonably reproduce the vertical distribution of the maximum tsunami pressure as well as the time variation of the tsunami pressure exerting on the structure. (author)

  2. The reference ballistic imaging database revisited.

    Science.gov (United States)

    De Ceuster, Jan; Dujardin, Sylvain

    2015-03-01

    A reference ballistic image database (RBID) contains images of cartridge cases fired in firearms that are in circulation: a ballistic fingerprint database. The performance of an RBID was investigated a decade ago by De Kinder et al. using IBIS(®) Heritage™ technology. The results of that study were published in this journal, issue 214. Since then, technologies have evolved quite significantly and novel apparatus have become available on the market. The current research article investigates the efficiency of another automated ballistic imaging system, Evofinder(®) using the same database as used by De Kinder et al. The results demonstrate a significant increase in correlation efficiency: 38% of all matches were on first position of the Evofinder correlation list in comparison to IBIS(®) Heritage™ where only 19% were on the first position. Average correlation times are comparable to the IBIS(®) Heritage™ system. While Evofinder(®) demonstrates specific improvement for mutually correlating different ammunition brands, ammunition dependence of the markings is still strongly influencing the correlation result because the markings may vary considerably. As a consequence a great deal of potential hits (36%) was still far down in the correlation lists (positions 31 and lower). The large database was used to examine the probability of finding a match as a function of correlation list verification. As an example, the RBID study on Evofinder(®) demonstrates that to find at least 90% of all potential matches, at least 43% of the items in the database need to be compared on screen and this for breech face markings and firing pin impression separately. These results, although a clear improvement to the original RBID study, indicate that the implementation of such a database should still not be considered nowadays. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  4. Advanced geometries for ballistic neutron guides

    International Nuclear Information System (INIS)

    Schanzer, Christian; Boeni, Peter; Filges, Uwe; Hils, Thomas

    2004-01-01

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands

  5. Deterrence of ballistic missile systems and their effects on today's air operations

    Science.gov (United States)

    Durak, Hasan

    2015-05-01

    Lately, the effect-based approach has gained importance in executing air operations. Thus, it makes more successful in obtaining the desired results by breaking the enemy's determination in a short time. Air force is the first option to be chosen in order to defuse the strategic targets. However, the problems such as the defense of targets and country, radars, range…etc. becoming serious problems. At this level ballistic missiles emerge as a strategic weapon. Ultimate emerging technologies guided by the INS and GPS can also be embedded with multiple warheads and reinforced with conventional explosive, ballistic missiles are weapons that can destroy targets with precision. They have the advantage of high speed, being easily launched from every platform and not being easily detected by air defense systems contrary to other air platforms. While these are the advantages, there are also disadvantages of the ballistic missiles. The high cost, unavailability of nuclear, biological and chemical weapons, and its limited effect while using conventional explosives against destroying the fortified targets are the disadvantages. The features mentioned above should be considered as limitation to the impact of the ballistic missiles. The aim is to impose the requests on enemies without starting a war with all components and to ensure better implementation of the operation functions during the air operations. In this study, effects of ballistic missiles in the future on air battle theatre will be discussed in the beginning, during the process and at the end phase of air operations within the scope of an effect-based approach.

  6. Localization and Ballistic Diffusion for the Tempered Fractional Brownian-Langevin Motion

    Science.gov (United States)

    Chen, Yao; Wang, Xudong; Deng, Weihua

    2017-10-01

    This paper discusses the tempered fractional Brownian motion (tfBm), its ergodicity, and the derivation of the corresponding Fokker-Planck equation. Then we introduce the generalized Langevin equation with the tempered fractional Gaussian noise for a free particle, called tempered fractional Langevin equation (tfLe). While the tfBm displays localization diffusion for the long time limit and for the short time its mean squared displacement (MSD) has the asymptotic form t^{2H}, we show that the asymptotic form of the MSD of the tfLe transits from t^2 (ballistic diffusion for short time) to t^{2-2H}, and then to t^2 (again ballistic diffusion for long time). On the other hand, the overdamped tfLe has the transition of the diffusion type from t^{2-2H} to t^2 (ballistic diffusion). The tfLe with harmonic potential is also considered.

  7. Electron transport properties in InAs four-terminal ballistic junctions under weak magnetic fields

    International Nuclear Information System (INIS)

    Koyama, M.; Fujiwara, K.; Amano, N.; Maemoto, T.; Sasa, S.; Inoue, M.

    2009-01-01

    We report on the electron transport properties based on ballistic electrons under magnetic fields in four-terminal ballistic junctions fabricated on an InAs/AlGaSb heterostructure. The four-terminal junction structure is composed of two longitudinal stems with two narrow wires slanted with 30 degree from the perpendicular axis. The electron focusing peak was obtained with the bend resistance measurement. Then it was investigated the nonlinear electron transport property of potential difference between longitudinal stems due to ballistic electrons with applying direct current from narrow wires. Observed nonlinearity showed clear rectification effects which have negative polarity regardless of input voltage polarity. Although this nonlinearity was qualitatively changed due to the Lorentz force under magnetic fields, the degradation of ballistic effects on nonlinear properties were observed when the current increased to higher strength. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Characterization of dynamic properties of ballistic clay

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Broos, J.P.F.; Halls, V.; Zheng, J.

    2014-01-01

    In order use material models in (numerical) calculations, the mechanical properties of all materials involved should be known. At TNO an indirect method to determine the dynamic flow stress of materials has been generated by a combination of ballistic penetration tests with an energy-based

  9. Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.

    Science.gov (United States)

    Cui, Qiannan; Zhao, Hui

    2015-04-28

    Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.

  10. Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour

    Directory of Open Access Journals (Sweden)

    Christian Kaufmann

    2003-01-01

    Full Text Available In support of improved personal armour development, depth of penetration tests have been conducted on four different ceramic materials including alumina, modified alumina, silicon carbide and boron carbide. These experiments consisted of impacting ceramic tiles bonded to aluminum cylinders with 0.50 caliber armour piercing projectiles. The results are presented in terms of ballistic efficiency, and the validity of using ballistic efficiency as a measure of ceramic performance was examined. In addition, the correlation between ballistic performance and ceramic material properties, such as elastic modulus, hardness, spall strength and Hugoniot Elastic Limit, has been considered.

  11. Delay Pressure Detection Method to Eliminate Pump Pressure Interference on the Downhole Mud Pressure Signals

    Directory of Open Access Journals (Sweden)

    Yue Shen

    2013-01-01

    Full Text Available The feasibility of applying delay pressure detection method to eliminate mud pump pressure interference on the downhole mud pressure signals is studied. Two pressure sensors mounted on the mud pipe in some distance apart are provided to detect the downhole mud continuous pressure wave signals on the surface according to the delayed time produced by mud pressure wave transmitting between the two sensors. A mathematical model of delay pressure detection is built by analysis of transmission path between mud pump pressure interference and downhole mud pressure signals. Considering pressure signal transmission characteristics of the mud pipe, a mathematical model of ideal low-pass filter for limited frequency band signal is introduced to study the pole frequency impact on the signal reconstruction and the constraints of pressure sensor distance are obtained by pole frequencies analysis. Theoretical calculation and numerical simulation show that the method can effectively eliminate mud pump pressure interference and the downhole mud continuous pressure wave signals can be reconstructed successfully with a significant improvement in signal-to-noise ratio (SNR in the condition of satisfying the constraints of pressure sensor distance.

  12. Propagation of atmospheric-pressure ionization waves along the tapered tube

    Science.gov (United States)

    Xia, Yang; Wang, Wenchun; Liu, Dongping; Yan, Wen; Bi, Zhenhua; Ji, Longfei; Niu, Jinhai; Zhao, Yao

    2018-02-01

    Gas discharge in a small radius dielectric tube may result in atmospheric pressure plasma jets with high energy and density of electrons. In this study, the atmospheric pressure ionization waves (IWs) were generated inside a tapered tube. The propagation behaviors of IWs inside the tube were studied by using a spatially and temporally resolved optical detection system. Our measurements show that both the intensity and velocity of the IWs decrease dramatically when they propagate to the tapered region. After the taper, the velocity, intensity, and electron density of the IWs are improved with the tube inner diameter decreasing from 4.0 to 0.5 mm. Our analysis indicates that the local gas conductivity and surface charges may play a role in the propagation of the IWs under such a geometrical constraint, and the difference in the dynamics of the IWs after the taper can be related to the restriction in the size of IWs.

  13. Pressure-drop and density-wave instability thresholds in boiling channels

    International Nuclear Information System (INIS)

    Gurgenci, H.; Yildirim, T.; Kakac, S.; Veziroglu, T.N.

    1987-01-01

    In this study, a criterion for linearized stability with respect to both the pressure-drop and the density-wave oscillations is developed for a single-channel upflow boiling system operating between constant pressures with upstream compressibility introduced through a surge tank. Two different two-phase flow models, namely a constant-property homogeneous flow model a variable-property drift-flux model, have been employed. The conservation equations for both models and the equations of surge tank dynamics are first linearized for small perturbation and the stability of the resulting set of equations for each model are examined by use of Nyquist plots. As a measure of the relative instability of the system, the amounts of the inlet throttling necessary to stabilize the system at particular operating points have been calculated. The results are compared with experimental findings. Comparisons show that the drift-flux formulation offers a simple and reliable way of determining the instability thresholds

  14. Temperature dependence of ballistic mobility in a metamorphic InGaAs/InAlAs high electron mobility transistor

    International Nuclear Information System (INIS)

    Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Im, Hyunsik

    2014-01-01

    We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable to the carrier's mean free path in the channel.

  15. Quantum ballistic evolution in quantum mechanics: Application to quantum computers

    International Nuclear Information System (INIS)

    Benioff, P.

    1996-01-01

    Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single-step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e., motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proven that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics. Also the definition of quantum Turing machines used here is compared with that used by other authors. copyright 1996 The American Physical Society

  16. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    Science.gov (United States)

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  17. Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS. Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.62 mm ammunition. The depth of penetration caused by the bullet in a block of clay witness, simulating a human body, was used to evaluate the MAS ballistic performance according to the international standard. The fractured materials after tests were analyzed by scanning electron microscopy (SEM. The results indicated that jute fabric composites present a performance similar to that of the much stronger Kevlar™, which is an aramid fabric laminate, as MAS second layer with the same thickness. The mechanism of this similar ballistic behavior as well as the comparative advantages of the jute fabric composites over the Kevlar™ are discussed.

  18. The strong thermoelectric effect in nanocarbon generated by the ballistic phonon drag of electrons

    International Nuclear Information System (INIS)

    Eidelman, E D; Vul', A Ya

    2007-01-01

    The thermoelectric power and thermoelectric figure of merit for carbon nanostructure consisting of graphite-like (sp 2 ) and diamond-like (sp 3 ) regions have been investigated. The probability of electron collisions with quasi-ballistic phonons in sp 2 regions has been analysed for the first time. We have shown that the probability is not small. We have analysed the influence of various factors on the process of the electron-ballistic phonon drag (the phonon drag effect). The thermoelectric power and thermoelectric figure of merit under conditions of ballistic transport were found to be substantially higher than those in the cases of drag by thermalized phonons and of electron diffusion. The thermoelectric figure of merit (ZT) in the case of a ballistic phonon contribution to the phonon drag of electrons should be 50 times that for chaotic phonons and 500 times that in the case of the diffusion process. In that case ZT should be a record (ZT≥2-3)

  19. Ballistic Impact Resistance of Plain Woven Kenaf/Aramid Reinforced Polyvinyl Butyral Laminated Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2016-07-01

    Full Text Available Traditionally, the helmet shell has been used to provide protection against head injuries and fatalities caused by ballistic threats. In this study, because of the high cost of aramid fibres and the necessity for environmentally friendly alternatives, a portion of aramid was replaced with plain woven kenaf fibre, with different arrangements and thicknesses, without jeopardising the requirements demanded by U.S. Army helmet specifications. Furthermore, novel helmets were produced and tested to reduce the dependency on the ballistic resistance components. Their use could lead to helmets that are less costly and more easily available than conventional helmet armour. The hybrid materials subjected to ballistic tests were composed of 19 layers and were fabricated by the hot press technique using different numbers and configurations of plain woven kenaf and aramid layers. In the case of ballistic performance tests, a positive effect was found for the hybridisation of kenaf and aramid laminated composites.

  20. The effect of spherical hub-nose position on pressure drop in an oscillating water column system for wave energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Z.; Ahmad, N.; Ghazilla, R.A.R.; Yap, H.J.; Ya, T.Y.T.; Passarella, R.; Hasanuddin, I.; Yunus, M. [Malaya Univ. (Malaysia). Centre for Product Design and Manufacturing; Sugiyono [Malaya Univ., (Malaysia). Centre for Product Design and Manufacturing; Gadjah Mada Univ. (Indonesia). Dept. of Mechanical and Industrial Engineering

    2009-07-01

    The use of renewable energy sources as an alternative to conventional fuels was discussed with particular reference to ocean wave energy and its potential to contribute to the energy requirements of coastal nations. Ocean wave energy has been harnessed and converted into electricity using processes and technologies that are environmentally sound. The oscillating water column (OWC) system is considered to be among the most promising technology for harnessing wave energy. This paper presented the results of a study that investigated the pressure drop in an OWC system and the effect of spherical hub-nose position in an annular duct. Computational fluid dynamics (CFD) analysis was used under steady flow conditions for several hub-nose positions to determine the characteristic of pressure drop. The study showed that the hub-nose position influenced the pressure drop in the OWC system. The highest value of the pressure drop in this study occurred when the hub-nose was at the position of 0.0 m relative to the end of the converging cone. The pressure drop decreased when the hub-nose position moved away from the end of converging cone. The lowest value occurred at the position of -0.5 m. It was concluded that despite the numerically small change in pressure drop, this phenomenon should be considered in the design process of the OWC system because of the operational condition of the system at low-pressure pneumatic power. The pressure drop actually reduces the amount of energy that will be converted by the air turbine. 9 refs., 2 tabs., 6 figs.

  1. Ballistic target tracking algorithm based on improved particle filtering

    Science.gov (United States)

    Ning, Xiao-lei; Chen, Zhan-qi; Li, Xiao-yang

    2015-10-01

    Tracking ballistic re-entry target is a typical nonlinear filtering problem. In order to track the ballistic re-entry target in the nonlinear and non-Gaussian complex environment, a novel chaos map particle filter (CMPF) is used to estimate the target state. CMPF has better performance in application to estimate the state and parameter of nonlinear and non-Gassuian system. The Monte Carlo simulation results show that, this method can effectively solve particle degeneracy and particle impoverishment problem by improving the efficiency of particle sampling to obtain the better particles to part in estimation. Meanwhile CMPF can improve the state estimation precision and convergence velocity compared with EKF, UKF and the ordinary particle filter.

  2. The effect of pressure on the charge-density wave and superconductivity in ZrTe sub 3

    CERN Document Server

    Yamaya, K; Yasuzuka, S; Okajima, Y; Tanda, S

    2002-01-01

    The charge-density-wave (CDW) transition temperature, T sub C sub D sub W , of ZrTe sub 3 is found to increase for pressures up to 0.6 GPa, while the superconducting transition temperature, T sub c , decreases with increasing pressure. According to a band calculation, it is found that the pressure-induced enhancement of the CDW and suppression of the superconductivity are not simply explained by the effect of nesting of the Fermi surface, suggesting the possibility of a new relation for the competition between the CDW and superconductivity.

  3. 48 CFR 252.225-7018 - Notice of prohibition of certain contracts with foreign entities for the conduct of ballistic...

    Science.gov (United States)

    2010-10-01

    ... certain contracts with foreign entities for the conduct of ballistic missile defense research, development... foreign entities for the conduct of ballistic missile defense research, development, test, and evaluation... With Foreign Entities for the Conduct of Ballistic Missile Defense Research, Development, Test, and...

  4. [Ballistic concepts and management of gunshot wounds at members].

    Science.gov (United States)

    Fabeck, L; Hock, N; Goffin, J; Ngatchou, W

    2017-01-01

    Ballistic trauma is not the prerogative of battlefields and currently extends to civil environments. Any surgeon or emergency room can be faced with such trauma whose management requires an understanding of wound ballistics. The aim of this retrospective is reviewing the management of ballistic trauma within the C.H.U. Saint-Pierre hospital over a period of ten years. Data recorded included demographics data, lesions, clinical parameters, imaging, treatment and outcome. It appears that the wounds of the members have a low mortality rate but a significant rate of complications. Patients should be managed according to the ATLS protocol and according hemodynamic stability and location of the injury, benefit from imaging. Unstable patients will be operated in emergency, stable patients will be treated according to the extent of damage and the type of fracture either conservatively or by external fixator and intramedullary centromedullary. Debridement and antibiotics are recommended as a nerve exploration if there is a peripheral paralysis. The management of trauma in our sample appear not optimal in light of the literature especially in terms of setting the vascular point of debridement, antibiotic and nerve repair resulting in significant consequences. Two management protocols according to patients' hemodynamic status are offered.

  5. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    Science.gov (United States)

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  6. Experimental evaluation of ballistic hazards in imaging diagnostic center

    International Nuclear Information System (INIS)

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-01-01

    Serious hazards for human health and life and devices in close proximity to the magnetic resonance scanners (MRI scanners) include the effects of being hit by ferromagnetic objects attracted by static magnetic field (SMF) produced by scanner magnet – the so-called ballistic hazards classified among indirect electromagnetic hazards. International safety guidelines and technical literature specify different SMF threshold values regarding ballistic hazards – e.g. 3 mT (directive 2004/40/EC, EN 60601-2-33), and 30 mT (BMAS 2009, directive proposal 2011). Investigations presented in this article were performed in order to experimentally verify SMF threshold for ballistic hazards near MRI scanners used in Poland. Investigations were performed with the use of a laboratory source of SMF (0–30 mT) and MRI scanners of various types. The levels of SMF in which metal objects of various shapes and 0.4–500 g mass are moved by the field influence were investigated. The distance from the MRI scanners (0.2–3T) where hazards may occur were also investigated. Objects investigated under laboratory conditions were moved by SMF of 2.2–15 mT magnetic flux density when they were freely suspended, but were moved by the SMF of 5.6–22 mT when they were placed on a smooth surface. Investigated objects were moved in fields of 3.5–40 mT by MRI scanners. Distances from scanner magnet cover, where ballistic hazards might occur are: up to 0.5 m for 0.2–0.3T scanners; up to 1.3 m for 0.5T scanners; up to 2.0 m for 1.5T scanners and up to 2.5 m for 3T scanners (at the front and back of the magnet). It was shown that SMF of 3 mT magnetic flux density should be taken as the threshold for ballistic hazards. Such level is compatible with SMF limit value regarding occupational safety and health-protected areas/zones, where according to the Polish labor law the procedures of work environment inspection and prevention measures regarding indirect electromagnetic hazards should be applied

  7. Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501

    International Nuclear Information System (INIS)

    Garcia, F.; Forbes, J.W.; Tarver, C.M.; Urtiew, P.A.; Greenwood, D.W.; Vandersall, K.S.

    2001-01-01

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios

  8. Ballistic transport in semiconductor nanostructures: From quasi ...

    Indian Academy of Sciences (India)

    By suitable design it is possible to achieve quasi-ballistic transport in semiconductor nanostructures over times up to the ps-range. Monte-Carlo simulations reveal that under these conditions phase-coherent real-space oscillations of an electron ensemble, generated by fs-pulses become possible in wide potential wells.

  9. A theoretical analysis of ballistic electron emission microscopy: band structure effects and attenuation lengths

    International Nuclear Information System (INIS)

    Andres, P.L. de; Reuter, K.; Garcia-Vidal, F.J.; Flores, F.; Hohenester, U.; Kocevar, P.

    1998-01-01

    Using quantum mechanical approach, we compute the ballistic electron emission microscopy current distribution in reciprocal space to compare experimental and theoretical spectroscopic I(V) curves. In the elastic limit, this formalism is a 'parameter free' representation of the problem. At low voltages, low temperatures, and for thin metallic layers, the elastic approximation is enough to explain the experiments (ballistic conditions). At low temperatures, inelastic effects can be taken into account approximately by introducing an effective electron-electron lifetime as an imaginary part in the energy. Ensemble Monte Carlo calculations were also performed to obtain ballistic electron emission microscopy currents in good agreement with the previous approach. (author)

  10. Analysis of the effects of the pressure wave generated in loss of coolant accidents in reactor vessels

    International Nuclear Information System (INIS)

    Valero Martinez, M.

    1980-01-01

    The increasing demands in the field of ''Nuclear Safety'', obliges to a perfect knowledge of the causes and effects of every possible accident in a nuclear power plant. In this paper will be analysed the effects of the pressure wave appearing in a LOCA (Loss of collant accident). The pressure wave could deform the following structures: core barrel wall, cover and bottom, control rods and safety coolant system. Any change of the geometry of these structures could provoke and incorrect system reaction after the accident has happened. The basis and hypothesis for the theoretical analysis will be exposed. The structures are considered to be rigid. A typical boiling water be analysed and the developed theory will be verified in comparations with experimental results and the results obtained with some others models. Due to the easy application and short calculation time of the created programmes, they are recommended for parametrical calculations in the analysis of the pressurized water reactors and boiling water reactors. (author)

  11. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, A; Stafilidis, S; Tilp, M

    2017-10-01

    The purpose of this study was to investigate the influence of a single static, ballistic, or proprioceptive neuromuscular facilitation (PNF) stretching exercise on the various muscle-tendon parameters of the lower leg and to detect possible differences in the effects between the methods. Volunteers (n = 122) were randomly divided into static, ballistic, and PNF stretching groups and a control group. Before and after the 4 × 30 s stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle of the gastrocnemius medialis. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Observation of muscle-tendon junction (MTJ) displacement with ultrasound allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate stiffness. Although RoM increased (static: +4.3%, ballistic: +4.5%, PNF: +3.5%), PRT (static: -11.4%, ballistic: -11.5%, PNF: -13,7%), muscle stiffness (static: -13.1%, ballistic: -20.3%, PNF: -20.2%), and muscle-tendon stiffness (static: -11.3%, ballistic: -10.5%, PNF: -13.7%) decreased significantly in all the stretching groups. Only in the PNF stretching group, the pennation angle in the stretched position (-4.2%) and plantar flexor MVC (-4.6%) decreased significantly. Multivariate analysis showed no clinically relevant difference between the stretching groups. The increase in RoM and the decrease in PRT and muscle-tendon stiffness could be explained by more compliant muscle tissue following a single static, ballistic, or PNF stretching exercise. © 2017 The Authors Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  12. On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target

    International Nuclear Information System (INIS)

    Zhang, X.F.; Li, Y.C.

    2010-01-01

    Ballistic performance of different type of ceramic materials subjected to high velocity impact was investigated in many theoretical, experimental and numerical studies. In this study, a comparison of ballistic performance of 95% alumina ceramic and 10% zirconia toughened alumina (ZTA) ceramic tiles was analyzed theoretically and experimentally. Spherical cavity model based on the concepts of mechanics of compressible porous media of Galanov was used to analyze the relation of target resistance and static mechanical properties. Experimental studies were carried out on the ballistic performance of above two types of ceramic tiles based on the depth of penetration (DOP) method, when subjected to normal impact of tungsten long rod projectiles. Typical damaged targets were presented. The residual depth of penetration on after-effect target was measured in all experiments, and the ballistic efficiency factor of above two types ceramic plates were determined. Both theoretical and experimental results show that the improvement on ballistic resistance was clearly observed by increasing fracture toughness in ZTA ceramics.

  13. Noninteracting beams of ballistic two-dimensional electrons

    International Nuclear Information System (INIS)

    Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.

    1991-01-01

    We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels

  14. Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions

    Science.gov (United States)

    Li, S.; Kang, N.; Fan, D. X.; Wang, L. B.; Huang, Y. Q.; Caroff, P.; Xu, H. Q.

    2016-01-01

    Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson junction devices fabricated from InSb nanowires grown by molecular-beam epitaxy and provide a clear evidence for phase-coherent, ballistic charge transport through the nanowires in the junctions. We demonstrate that our devices show gate-tunable proximity-induced supercurrent and clear signatures of multiple Andreev reflections in the differential conductance, indicating phase-coherent transport within the junctions. We also observe periodic modulations of the critical current that can be associated with the Fabry-Pérot interference in the nanowires in the ballistic transport regime. Our work shows that the InSb nanowires grown by molecular-beam epitaxy are of excellent material quality and hybrid superconducting devices made from these nanowires are highly desirable for investigation of the novel physics in topological states of matter and for applications in topological quantum electronics. PMID:27102689

  15. Evaluation of bone surrogates for indirect and direct ballistic fractures.

    Science.gov (United States)

    Bir, Cynthia; Andrecovich, Chris; DeMaio, Marlene; Dougherty, Paul J

    2016-04-01

    The mechanism of injury for fractures to long bones has been studied for both direct ballistic loading as well as indirect. However, the majority of these studies have been conducted on both post-mortem human subjects (PMHS) and animal surrogates which have constraints in terms of storage, preparation and testing. The identification of a validated bone surrogate for use in forensic, medical and engineering testing would provide the ability to investigate ballistic loading without these constraints. Two specific bone surrogates, Sawbones and Synbone, were evaluated in comparison to PMHS for both direct and indirect ballistic loading. For the direct loading, the mean velocity to produce fracture was 121 ± 19 m/s for the PMHS, which was statistically different from the Sawbones (140 ± 7 m/s) and Synbone (146 ± 3 m/s). The average distance to fracture in the indirect loading was .70 cm for the PMHS. The Synbone had a statistically similar average distance to fracture (.61 cm, p=0.54) however the Sawbones average distance to fracture was statistically different (.41 cm, pballistic testing was not identified and future work is warranted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Is muscle coordination affected by loading condition in ballistic movements?

    Science.gov (United States)

    Giroux, Caroline; Guilhem, Gaël; Couturier, Antoine; Chollet, Didier; Rabita, Giuseppe

    2015-02-01

    This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: Ppush-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. HVI Ballistic Limit Charaterization of Fused Silica Thermal Pane

    Science.gov (United States)

    Bohl, William E.; Miller, Joshua E.; Christiansen, Eric L.; Deighton, Kevin.; Davis, Bruce

    2015-01-01

    The Orion spacecraft's windows are exposed to the micrometeroid and orbital debris (MMOD) space environments while in space as well as the Earth entry environment at the mission's conclusion. The need for a low-mass spacecraft window design drives the need to reduce conservatism when assessing the design for loss of crew due to MMOD impact and subsequent Earth entry. Therefore, work is underway at NASA and Lockheed Martin to improve characterization of the complete penetration ballistic limit of an outer fused silica thermal pane. Hypervelocity impact tests of the window configuration at up to 10 km/s and hydrocode modeling have been performed with a variety of projectile materials to enable refinement of the fused silica ballistic limit equation.

  18. Terminal ballistics

    CERN Document Server

    Rosenberg, Zvi

    2016-01-01

    This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. Employing a unique approach to numerical simulations as a measure of sensitivity for the major physical parameters, the new edition also includes the following features: new figures to better illustrate the problems discussed; improved explanations for the equation of state of a solid and for the cavity expansion process; new data concerning the Kolsky bar test; and a discussion of analytical modeling for the hole diameter in a thin metallic plate impacted by a shaped charge jet. The section on thick concrete targets penetrated by rigid projectiles has now been expanded to include the latest findings, and two new sections have been added: one on a novel approach to the perforation of thin concrete slabs, and one on testing the failure of thin metallic plates using a hydrodynamic ram.

  19. Lower solar chromosphere-corona transition region. II - Wave pressure effects for a specific form of the heating function

    Science.gov (United States)

    Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.

    1990-01-01

    Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.

  20. Analysis of stress in reactor core vessel under effect of pressure lose shock wave

    International Nuclear Information System (INIS)

    Li Yong; Liu Baoting

    2001-01-01

    High Temperature gas cooled Reactor (HTR-10) is a modular High Temperature gas cooled Reactor of the new generation. In order to analyze the safety characteristics of its core vessel in case of large rupture accident, the transient performance of its core vessel under the effect of pressure lose shock wave is studied, and the transient pressure difference between the two sides of the core vessel and the transient stresses in the core vessel is presented in this paper, these results can be used in the safety analysis and safety design of the core vessel of HTR-10. (author)

  1. Cost Effective Regional Ballistic Missile Defense

    Science.gov (United States)

    2016-02-16

    deploying advanced air defense systems18, such as the Russian S-300 and S-500, and concealing them in hardened, camouflaged sites, such as extensive... Russian objections to the European Phased Adaptive Approach (EPAA) and fund homeland defense priorities.39 Furthermore, the PTSS system was also... Theatre Ballistic Missile Defence Capability Becomes Operational,” Jane’s Missiles & Rockets, 1 February 2011. 55 Joseph W. Kirschbaum, REGIONAL MISSILE

  2. Kinematics and dynamics of green water on a fixed platform in a large wave basin in focusing wave and random wave conditions

    Science.gov (United States)

    Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard

    2018-06-01

    Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.

  3. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole

    Science.gov (United States)

    Hillers, G.; Campillo, M.; Lin, Y.-Y.; Ma, K.-F.; Roux, P.

    2012-06-01

    The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that noise is generated by cultural activity. The vicinity of the recording site to the excitation region, indicated by a narrow azimuthal distribution of propagation directions, leads to a predominant ballistic propagation regime. This is evident from the compatibility of the data with an incident plane wave model, polarized direct arrivals of noise correlation functions, and the asymmetric arrival shape. Evidence for contributions from scattering comes from equilibrated earthquake coda energy ratios, the frequency dependent randomization of propagation directions, and the existence of correlation coda waves. We conclude that the ballistic and scattered propagation regime coexist, where the first regime dominates the records, but the second is weaker yet not negligible. Consequently, the wave field is not equipartitioned. Correlation signal-to-noise ratios indicate a frequency dependent noise intensity. Iterations of the correlation procedure enhance the signature of the scattered regime. Discrepancies between phase velocities estimated from correlation functions and in-situ measurements are associated with the array geometry and its relative orientation to the predominant energy flux. The stability of correlation functions suggests their applicability in future monitoring efforts.

  4. Toward Better Personal Ballistic Protection

    Science.gov (United States)

    2014-03-04

    Toward Better Personal Ballistic Protection Manon Bolduc1, Jason Lo2, Ruby Zhang2, Dan Walsh2, Shuqiong Lin3, Benoit Simard3, Ken Bosnick4, Mike...presenc particulate gr atly increase ceramic mad er, knowing e ceramic ma the alumina y on the mat a layered with s on the coat stantial prope C) magnif...mic fiber ma site ceramics such, thod. this fore, on of t has 8. CONCLUSION In an attempt to improve the failure resistance of ceramic

  5. Institute for Non-Lethal Defense Technologies Report: Ballistic Gelatin

    National Research Council Canada - National Science Library

    Nicholas, N. C; Welsch, J. R

    2004-01-01

    Ballistic gelatin is designed to simulate living soft tissue. It is the standard for evaluating the effectiveness of firearms against humans because of its convenience and acceptability over animal or cadaver testing...

  6. Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia.

    Science.gov (United States)

    Akbar, N S; Tripathi, D; Khan, Z H; Bég, O Anwar

    2018-04-06

    In this paper, we present an analytical study of pressure-driven flow of micropolar non-Newtonian physiological fluids through a channel comprising two parallel oscillating walls. The cilia are arranged at equal intervals and protrude normally from both walls of the infinitely long channel. A metachronal wave is generated due to natural beating of cilia and the direction of wave propagation is parallel to the direction of fluid flow. Appropriate expressions are presented for deformation via longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The conservation equations for mass, longitudinal and transverse (linear) momentum and angular momentum are reduced in accordance with the long wavelength and creeping Stokesian flow approximations and then normalized with appropriate transformations. The resulting non-linear moving boundary value problem is solved analytically for constant micro-inertia density, subject to physically realistic boundary conditions. Closed-form expressions are derived for axial velocity, angular velocity, volumetric flow rate and pressure rise. The transport phenomena are shown to be dictated by several non-Newtonian parameters, including micropolar material parameter and Eringen coupling parameter, and also several geometric parameters, viz eccentricity parameter, wave number and cilia length. The influence of these parameters on streamline profiles (with a view to addressing trapping features via bolus formation and evolution), pressure gradient and other characteristics are evaluated graphically. Both axial and angular velocities are observed to be substantially modified with both micropolar rheological parameters and furthermore are significantly altered with increasing volumetric flow rate. Free pumping is also examined. An inverse relationship between pressure rise and flow rate is computed which is similar to that observed in Newtonian fluids. The

  7. The Internal Ballistics of an Air Gun

    Science.gov (United States)

    Denny, Mark

    2011-01-01

    The internal ballistics of a firearm or artillery piece considers the pellet, bullet, or shell motion while it is still inside the barrel. In general, deriving the muzzle speed of a gunpowder firearm from first principles is difficult because powder combustion is fast and it very rapidly raises the temperature of gas (generated by gunpowder…

  8. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment

    International Nuclear Information System (INIS)

    Avolio, Alberto P; Butlin, Mark; Walsh, Andrew

    2010-01-01

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. (topical review)

  9. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design

    OpenAIRE

    Yang, Yanfei; Chen, Xiaogang

    2017-01-01

    This study aims to reveal different energy absorption efficiency of each layer when armour panel is under ballistic impact. Through Finite Element (FE) modelling and ballistic tests, it is found that when fabrics are layered up in a panel, energy absorption efficiency is only 30%–60% of an individual fabric layer with free boundary condition. In addition, fabric layers in front, middle, and back exhibit different ballistic characteristics. Therefore, a new hybrid design principle has been pro...

  10. Ballistic thermophoresis of adsorbates on free-standing graphene.

    Science.gov (United States)

    Panizon, Emanuele; Guerra, Roberto; Tosatti, Erio

    2017-08-22

    The textbook thermophoretic force which acts on a body in a fluid is proportional to the local temperature gradient. The same is expected to hold for the macroscopic drift behavior of a diffusive cluster or molecule physisorbed on a solid surface. The question we explore here is whether that is still valid on a 2D membrane such as graphene at short sheet length. By means of a nonequilibrium molecular dynamics study of a test system-a gold nanocluster adsorbed on free-standing graphene clamped between two temperatures [Formula: see text] apart-we find a phoretic force which for submicron sheet lengths is parallel to, but basically independent of, the local gradient magnitude. This identifies a thermophoretic regime that is ballistic rather than diffusive, persisting up to and beyond a 100-nanometer sheet length. Analysis shows that the phoretic force is due to the flexural phonons, whose flow is known to be ballistic and distance-independent up to relatively long mean-free paths. However, ordinary harmonic phonons should only carry crystal momentum and, while impinging on the cluster, should not be able to impress real momentum. We show that graphene and other membrane-like monolayers support a specific anharmonic connection between the flexural corrugation and longitudinal phonons whose fast escape leaves behind a 2D-projected mass density increase endowing the flexural phonons, as they move with their group velocity, with real momentum, part of which is transmitted to the adsorbate through scattering. The resulting distance-independent ballistic thermophoretic force is not unlikely to possess practical applications.

  11. Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection

    Science.gov (United States)

    Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos

    2017-10-01

    Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.

  12. Unsteady flow analysis of combustion processes in a Davis gun

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H.-C.; Shin, H.D. [Korea Advanced Inst. of Science and Technology, Mechanical Engineering Dept., Taejon (Korea, Republic of); Yoon, J.-K. [Hansung Univ., School of Industrial and System Engineering, Seoul (Korea, Republic of)

    1999-09-01

    The Davis gun, a type of recoilless gun, had the advantages of requiring less rear area and less powder than a conventional recoilless gun. The unsteady pressure and flow fields of a Davis gun were numerically simulated by using a two-phase fluid dynamic model. Numerical simulation results were compared with experimental values to evaluate the feasibility of the interior ballistic model. The interior ballistics in a Davis gun with a simple countermass were predicted with the computational model. It was shown that the pressure-time curves matched well between experimental data and numerical analysis except in the vicinity of the peak pressure and steep pressure gradient. The predicted muzzle velocity of projectile and countermass was closely similar to the experimental one. In this study, large pressure waves were not observed since the initial porosity was relatively high ({phi}{sub 0}0.867) and the charge was ignited at the centre of the granular bed. (Author)

  13. Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law

    OpenAIRE

    Wei Cai; Yanyan Zhang

    2016-01-01

    We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.

  14. High pressure gas scintillation drift chambers with wave-shifter fiber readout

    International Nuclear Information System (INIS)

    Parsons, A.; Edberg, T.K.; Sadoulet, B.; Weiss, S.; Wilkerson, J.; Hurley, K.; Lin, R.P.

    1990-01-01

    The authors present results from a prototype high pressure xenon gas scintillation drift chamber using a novel wave-shifter fiber readout scheme. They have measured the primary scintillation light yield to be one photon per 76 ± 12 eV deposited energy. They present initial results of our chamber for the two-interaction separation (< 4 mm in the drift direction, ∼ 7 mm orthogonal to the drift); for the position resolution (< 400 μm rms in the plane orthogonal to the drift direction); and for the energy resolution (ΔE/E < 6% FWHM at 122 keV)

  15. Ultrafast dynamics in CeTe{sub 3} near the pressure-induced charge-density-wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Tauch, Jonas; Obergfell, Manuel [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Schaefer, Hanjo [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Demsar, Jure [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Institute of Physics, Johannes Gutenberg-University Mainz (Germany); Giraldo, Paula; Fisher, Ian R. [Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University (United States); Pashkin, Alexej [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2015-07-01

    Femtosecond pump-probe spectroscopy is an efficient tool for studying ultrafast dynamics in strongly correlated electronic systems, in particular, compounds with a charge-density-wave (CDW) order. Application of external pressure often leads to a suppression of a CDW state due to an impairment of the Fermi surface nesting. We combine time-resolved optical spectroscopy and diamond anvil cell technology to study electron and lattice dynamics in tri-telluride compound CeTe{sub 3}. Around pressures of 4 GPa we observe a gradual vanishing of the relaxation process related to the recombination of the photoexcited quasiparticles. The coherent oscillations of the phonon modes coupled to the CDW order parameter demonstrate even more dramatic suppression with increasing pressure. These observations clearly indicate a transition into the metallic state of CeTe{sub 3} induced by the external pressure.

  16. The Advantages of Normalizing Electromyography to Ballistic Rather than Isometric or Isokinetic Tasks.

    Science.gov (United States)

    Suydam, Stephen M; Manal, Kurt; Buchanan, Thomas S

    2017-07-01

    Isometric tasks have been a standard for electromyography (EMG) normalization stemming from anatomic and physiologic stability observed during contraction. Ballistic dynamic tasks have the benefit of eliciting maximum EMG signals for normalization, despite having the potential for greater signal variability. It is the purpose of this study to compare maximum voluntary isometric contraction (MVIC) to nonisometric tasks with increasing degrees of extrinsic variability, ie, joint range of motion, velocity, rate of contraction, etc., to determine if the ballistic tasks, which elicit larger peak EMG signals, are more reliable than the constrained MVIC. Fifteen subjects performed MVIC, isokinetic, maximum countermovement jump, and sprint tasks while EMG was collected from 9 muscles in the quadriceps, hamstrings, and lower leg. The results revealed the unconstrained ballistic tasks were more reliable compared to the constrained MVIC and isokinetic tasks for all triceps surae muscles. The EMG from sprinting was more reliable than the constrained cases for both the hamstrings and vasti. The most reliable EMG signals occurred when the body was permitted its natural, unconstrained motion. These results suggest that EMG is best normalized using ballistic tasks to provide the greatest within-subject reliability, which beneficially yield maximum EMG values.

  17. Computational Investigation of Effects of Grain Size on Ballistic Performance of Copper

    Science.gov (United States)

    He, Ge; Dou, Yangqing; Guo, Xiang; Liu, Yucheng

    2018-01-01

    Numerical simulations were conducted to compare ballistic performance and penetration mechanism of copper (Cu) with four representative grain sizes. Ballistic limit velocities for coarse-grained (CG) copper (grain size ≈ 90 µm), regular copper (grain size ≈ 30 µm), fine-grained (FG) copper (grain size ≈ 890 nm), and ultrafine-grained (UG) copper (grain size ≈ 200 nm) were determined for the first time through the simulations. It was found that the copper with reduced grain size would offer higher strength and better ductility, and therefore renders improved ballistic performance than the CG and regular copper. High speed impact and penetration behavior of the FG and UG copper was also compared with the CG coppers strengthened by nanotwinned (NT) regions. The comparison results showed the impact and penetration resistance of UG copper is comparable to the CG copper strengthened by NT regions with the minimum twin spacing. Therefore, besides the NT-strengthened copper, the single phase copper with nanoscale grain size could also be a strong candidate material for better ballistic protection. A computational modeling and simulation framework was proposed for this study, in which Johnson-Cook (JC) constitutive model is used to predict the plastic deformation of Cu; the JC damage model is to capture the penetration and fragmentation behavior of Cu; Bao-Wierzbicki (B-W) failure criterion defines the material's failure mechanisms; and temperature increase during this adiabatic penetration process is given by the Taylor-Quinney method.

  18. Measurements of the ballistic-phonon component resulting from nuclear and electron recoils in crystalline silicon

    International Nuclear Information System (INIS)

    Lee, A.T.; Cabrera, B.; Dougherty, B.L.; Penn, M.J.; Pronko, J.G.; Tamura, S.

    1996-01-01

    We present measurements of the ballistic-phonon component resulting from nuclear and electron recoils in silicon at ∼380 mK. The detectors used for these experiments consist of a 300-μm-thick monocrystal of silicon instrumented with superconducting titanium transition-edge sensors. These sensors detect the initial wavefront of athermal phonons and give a pulse height that is sensitive to changes in surface-energy density resulting from the focusing of ballistic phonons. Nuclear recoils were generated by neutron bombardment of the detector. A Van de Graaff proton accelerator and a thick 7 Li target were used. Pulse-height spectra were compared for neutron, x-ray, and γ-ray events. A previous analysis of this data set found evidence for an increase in the ballistic-phonon component for nuclear recoils compared to electron recoils at a 95% confidence level. An improved understanding of the detector response has led to a change in the result. In the present analysis, the data are consistent with no increase at the 68% confidence level. This change stems from an increase in the uncertainty of the result rather than a significant change in the central value. The increase in ballistic phonon energy for nuclear recoils compared to electron recoils as a fraction of the total phonon energy (for equal total phonon energy events) was found to be 0.024 +0.041 -0.055 (68% confidence level). This result sets a limit of 11.6% (95% confidence level) on the ballistic phonon enhancement for nuclear recoils predicted by open-quote open-quote hot spot close-quote close-quote and electron-hole droplet models, which is the most stringent to date. To measure the ballistic-phonon component resulting from electron recoils, the pulse height as a function of event depth was compared to that of phonon simulations. (Abstract Truncated)

  19. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    Science.gov (United States)

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high...mechanisms, friction stir welding M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, B. A. Cheeseman Clemson University Office of Sponsored Programs 300

  20. Validation of the NATO Armaments Ballistic Kernel for use in small-arms fire control systems

    Directory of Open Access Journals (Sweden)

    D. Corriveau

    2017-06-01

    Full Text Available In support for the development of a new small-arm ballistic computer based on the NATO Armaments Ballistic Kernel (NABK for the Canadian snipers, DRDC Valcartier Research Centre was asked to carry out high-fidelity 6 degree-of-freedom (6-DOF trajectory simulations for a set of relevant vignettes for the snipers, and to compare the direct fire 6-DOF simulation results with those obtained with the 4-DOF NATO Armaments Ballistic Kernel (NABK adapted to simulate small-arm ammunition trajectories. To conduct this study, DRDC Valcartier Research Centre used BALCO v1.0b. This paper presents (1 the process and the methodology employed to carry out the sniper direct fire solution study, (2 the modeling and the simulation of the sniper projectile, the approach used in calculating the firing solutions, and the results of direct fire simulations for the sniper vignettes, and (3 an analysis of firing solutions obtained with the BALCO engine versus those of NABK. The work presented in this paper serves to validate the use of NABK for the new sniper ballistic computer.

  1. Artifacts that mimic ballistic magnetoresistance

    International Nuclear Information System (INIS)

    Egelhoff, W.F. . E-mail : egelhoff@nist.gov; Gan, L.; Ettedgui, H.; Kadmon, Y.; Powell, C.J.; Chen, P.J.; Shapiro, A.J.; McMichael, R.D.; Mallett, J.J.; Moffat, T.P.; Stiles, M.D.; Svedberg, E.B.

    2005-01-01

    We have investigated the circumstances underlying recent reports of very large values of ballistic magnetoresistance (BMR) in nanocontacts between magnetic wires. We find that the geometries used are subject to artifacts due to motion of the wires that distort the nanocontact thereby changing its electrical resistance. Since these nanocontacts are often of atomic scale, reliable experiments would require stability on the atomic scale. No method for achieving such stability in macroscopic wires is apparent. We conclude that macroscopic magnetic wires cannot be used to establish the validity of the BMR effect

  2. A brief review of strength and ballistic assessment methodologies in sport.

    Science.gov (United States)

    McMaster, Daniel Travis; Gill, Nicholas; Cronin, John; McGuigan, Michael

    2014-05-01

    An athletic profile should encompass the physiological, biomechanical, anthropometric and performance measures pertinent to the athlete's sport and discipline. The measurement systems and procedures used to create these profiles are constantly evolving and becoming more precise and practical. This is a review of strength and ballistic assessment methodologies used in sport, a critique of current maximum strength [one-repetition maximum (1RM) and isometric strength] and ballistic performance (bench throw and jump capabilities) assessments for the purpose of informing practitioners and evolving current assessment methodologies. The reliability of the various maximum strength and ballistic assessment methodologies were reported in the form of intra-class correlation coefficients (ICC) and coefficient of variation (%CV). Mean percent differences (Mdiff = [/Xmethod1 - Xmethod2/ / (Xmethod1 + Xmethod2)] x 100) and effect size (ES = [Xmethod2 - Xmethod1] ÷ SDmethod1) calculations were used to assess the magnitude and spread of methodological differences for a given performance measure of the included studies. Studies were grouped and compared according to their respective performance measure and movement pattern. The various measurement systems (e.g., force plates, position transducers, accelerometers, jump mats, optical motion sensors and jump-and-reach apparatuses) and assessment procedures (i.e., warm-up strategies, loading schemes and rest periods) currently used to assess maximum isometric squat and mid-thigh pull strength (ICC > 0.95; CV 0.91; CV ballistic (vertical jump and bench throw) capabilities (ICC > 0.82; CV ballistic performance in recreational and elite athletes, alike. However, the reader needs to be cognisant of the inherent differences between measurement systems, as selection will inevitably affect the outcome measure. The strength and conditioning practitioner should also carefully consider the benefits and limitations of the different measurement

  3. Satellite and Ground Signatures of Kinetic and Inertial Scale ULF Alfven Waves Propagating in Warm Plasma in Earth's Magnetosphere

    Science.gov (United States)

    Rankin, R.; Sydorenko, D.

    2015-12-01

    Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.

  4. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  5. Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law

    Directory of Open Access Journals (Sweden)

    Wei Cai

    2016-01-01

    Full Text Available We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.

  6. Image-guided percutaneous removal of ballistic foreign bodies secondary to air gun injuries.

    Science.gov (United States)

    Rothermund, Jacob L; Rabe, Andrew J; Zumberge, Nicholas A; Murakami, James W; Warren, Patrick S; Hogan, Mark J

    2018-01-01

    Ballistic injuries with retained foreign bodies from air guns is a relatively common problem, particularly in children and adolescents. If not removed in a timely fashion, the foreign bodies can result in complications, including pain and infection. Diagnostic methods to identify the presence of the foreign body run the entire gamut of radiology, particularly radiography, ultrasound (US) and computed tomography (CT). Removal of the foreign bodies can be performed by primary care, emergency, surgical, and radiologic clinicians, with or without imaging guidance. To evaluate the modalities of radiologic detection and the experience of image-guided ballistic foreign body removal related to air gun injuries within the interventional radiology department of a large pediatric hospital. A database of more than 1,000 foreign bodies that were removed with imaging guidance by the interventional radiologists at our institution was searched for ballistic foreign bodies from air guns. The location, dimensions, diagnostic modality, duration, complications and imaging modality used for removal were recorded. In addition, the use of sedation and anesthesia required for the procedures was also recorded. Sixty-one patients with ballistic foreign bodies were identified. All foreign bodies were metallic BBs or pellets. The age of the patients ranged from 5 to 20 years. The initial diagnostic modality to detect the foreign bodies was primarily radiography. The primary modality to assist in removal was US, closely followed by fluoroscopy. For the procedure, 32.7% of the patients required some level of sedation. Only two patients had an active infection at the time of the removal. The foreign bodies were primarily in the soft tissues; however, successful removal was also performed from intraosseous, intraglandular and intratendinous locations. All cases resulted in successful removal without complications. Image-guided removal of ballistic foreign bodies secondary to air guns is a very

  7. Surgeon preferences regarding antibiotic prophylaxis for ballistic fractures.

    Science.gov (United States)

    Marecek, Geoffrey S; Earhart, Jeffrey S; Gardner, Michael J; Davis, Jason; Merk, Bradley R

    2016-06-01

    Scant evidence exists to support antibiotic use for low velocity ballistic fractures (LVBF). We therefore sought to define current practice patterns. We hypothesized that most surgeons prescribe antibiotics for LVBF, prescribing is not driven by institutional protocols, and that decisions are based on protocols utilized for blunt trauma. A web-based questionnaire was emailed to the membership of the Orthopaedic Trauma Association (OTA). The questionnaire included demographic information and questions about LVBF treatment practices. Two hundred and twenty surgeons responded. One hundred and fifty-four (70 %) respondents worked at a Level-1 trauma center, 176 (80 %) had received fellowship education in orthopaedic trauma and 104 (47 %) treated at least 10 ballistic fractures annually. Responses were analyzed with SAS 9.3 for Windows (SAS Institute Inc, Cary, NC). One hundred eighty-six respondents (86 %) routinely provide antibiotics for LVBF. Those who did not were more apt to do so for intra-articular fractures (8/16, 50 %) and pelvic fractures with visceral injury (10/16, 63 %). Most surgeons (167, 76 %) do not believe the Gustilo-Anderson classification applies to ballistic fractures, and (20/29, 70 %) do not base their antibiotic choice on the classification system. Few institutions (58, 26 %) have protocols guiding antibiotic use for LVBF. Routine antibiotic use for LVBF is common; however, practice is not dictated by institutional protocol. Although antibiotic use generally follows current blunt trauma guidelines, surgeons do not base their treatment decisions the Gustilo-Anderson classification. Given the high rate of antibiotic use for LVBF, further study should focus on providing evidence-based treatment guidelines.

  8. Designing an Innovative Composite Armor System for Affordable Ballistic Protection

    National Research Council Canada - National Science Library

    Ma, Zheng-Dong; Wang, Hui; Cui, Yushun; Rose, Douglas; Socks, Adria; Ostberg, Donald

    2006-01-01

    .... This paper focuses on the frontal armor plate and back plate design problems with demonstration examples, including both results of the virtual prototyping and ballistic testing for proof-of-concept...

  9. Wave Pressures on Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Kofoed, Jens Peter; Frigaard, Peter

    2006-01-01

    This paper presents results on loading action on an innovative caisson breakwater for electricity production. The work reported here contributes to the European Union Sixth Framework programme priority 6.1 (Sustainable Energy System), contract 019831, titled "Full- scale demonstration of robust...... and high efficiency energy converter" (WAVESSG). Information on wave loading acting on Wave Energy Convert (WEC) Seawave Slot-Cone GEnerator (SSG) exposed to extreme wave conditions are reported....

  10. Effect of parallel transport currents on the d-wave Josephson junction

    International Nuclear Information System (INIS)

    Rashedi, Gholamreza

    2009-01-01

    In this paper, the non-local mixing of coherent current states in d-wave superconducting banks is investigated. The superconducting banks are connected via a ballistic point contact. The banks have mis-orientation and phase difference. Furthermore, they are subjected to a tangential transport current along the ab plane of d-wave crystals and parallel to the interface between the superconductors. The effects of mis-orientation and external transport current on the current-phase relations and current distributions are the subjects of this paper. It is observed that, at values of phase difference close to 0, π and 2π, the current distribution may have a vortex-like form in the vicinity of the point contact. The current distribution of the above-mentioned junction between d-wave superconductors is totally different from the junction between s-wave superconductors. The interesting result which this study shows is that spontaneous and Josephson currents are observed for the case of φ = 0.

  11. Interplay of multiple charge-density-waves and superconductivity in DyTe{sub 3} at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Zocco, Diego A. [Institute for Solid State Physics, Karlsruhe Institute of Technology, D-76021 Karlsruhe (Germany); Department of Physics, University of California, San Diego, CA 92093 (United States); Kapuvari, Andreas; Sauer, Aaron; Weber, Frank [Institute for Solid State Physics, Karlsruhe Institute of Technology, D-76021 Karlsruhe (Germany); Paraskevas, Parisiadis; Garbarino, Gaston [European Synchrotron Radiation Facility, F-38043 Grenoble Cedex (France); Fisher, Ian [Department of Applied Physics, Stanford University, CA 94305 (United States); Hamlin, James; Maple, Brian [Department of Physics, University of California, San Diego, CA 92093 (United States)

    2015-07-01

    DyTe{sub 3} is a quasi-two-dimensional system in which two successive incommensurate charge-density-wave (CDW) states appear upon cooling at ambient pressure (T{sub CDW,1} = 306 K, T{sub CDW,2} = 49 K). The suppression with pressure of the CDW order is followed by the emergence of superconductivity above 1 GPa and below 1.5 K, as shown by our measurements of electrical resistivity and ac-susceptibility. X-ray diffraction (XRD) experiments under pressure indicate that the lower CDW state merges with the upper one at an intermediate pressure, suggesting that the double-CDW state could be accessed directly below a single T{sub CDW}(P) line. The phase diagram obtained from XRD is compared with the results of our recent electrical resistivity experiments.

  12. Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour

    OpenAIRE

    Kaufmann, Christian; Cronin, Duane; Worswick, Michael; Pageau, Gilles; Beth, Andre

    2003-01-01

    In support of improved personal armour development, depth of penetration tests have been conducted on four different ceramic materials including alumina, modified alumina, silicon carbide and boron carbide. These experiments consisted of impacting ceramic tiles bonded to aluminum cylinders with 0.50 caliber armour piercing projectiles. The results are presented in terms of ballistic efficiency, and the validity of using ballistic efficiency as a measure of ceramic performance was examined. In...

  13. Investigation of energy levels of Er-impurity centers in Si by the method of ballistic electron emission spectroscopy

    International Nuclear Information System (INIS)

    Filatov, D. O.; Zimovets, I. A.; Isakov, M. A.; Kuznetsov, V. P.; Kornaukhov, A. V.

    2011-01-01

    The method of ballistic electron emission spectroscopy is used for the first time to study the energy spectrum of Er-impurity complexes in Si. The features are observed in the ballistic electron spectra of mesa diodes based on p + -n + Si structures with a thin (∼30 nm) p + -Si:Er surface layer in the region of ballistic-electron energies eV t lower than the conduction-band-edge energy E c in this layer. They are associated with the tunnel injection of ballistic electrons from the probe of the scanning tunnel microscope to the deep donor levels of the Er-impurity complexes in the p + -Si:Er layer with subsequent thermal excitation into the conduction band and the diffusion to the p + -n + junction and the direct tunneling in it. To verify this assumption, the ballistic-electron transport was simulated in the system of the Pt probe, native-oxide layer SiO 2 -p + -Si:Er-n + , and Si substrate. By approximating the experimental ballistic-electron spectra with the modeling spectra, the ground-state energy of the Er complex in Si was determined: E d ≈ E c − 0.27 eV. The indicated value is consistent with the data published previously and obtained from the measurements of the temperature dependence of the free-carrier concentration in Si:Er layers.

  14. Investigation of thermal effects on FinFETs in the quasi-ballistic regime

    Science.gov (United States)

    Yin, Longxiang; Shen, Lei; Di, Shaoyan; Du, Gang; Liu, Xiaoyan

    2018-04-01

    In this work, the thermal effects of FinFETs in the quasi-ballistic regime are investigated using the Monte Carlo method. Bulk Si nFinFETs with the same fin structure and two different gate lengths L g = 20 and 80 nm are investigated and compared to evaluate the thermal effects on the performance of FinFETs in the quasi-ballistic regime. The on current of the 20 nm FinFET with V gs = 0.7 V does not decrease with increasing lattice temperature (T L) at a high V ds. The electrostatic properties in the 20 nm FinFET are more affected by T L than those in the 80 nm FinFET. However, the electron transport in the 20 nm FinFET is less affected by T L than that in the 80 nm FinFET. The electrostatic properties being more sensitive and the electron transport being less sensitive to thermal effects in the quasi-ballistic regime than in the diffusive regime should be considered for effective device modeling and design.

  15. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    Science.gov (United States)

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  16. Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized

    Directory of Open Access Journals (Sweden)

    Siu H. Chan

    2012-02-01

    Full Text Available Vascular stiffness has been proposed as a simple method to assess arterial loading conditions of the heart which induce left ventricular hypertrophy (LVH. There is some controversy as to whether the relationship of vascular stiffness to LVH is independent of blood pressure, and which measurement of arterial stiffness, augmentation index (AI or pulse wave velocity (PWV is best. Carotid pulse wave contor and pulse wave velocity of patients (n=20 with hypertension whose blood pressure (BP was under control (<140/90 mmHg with antihypertensive drug treatment medications, and without valvular heart disease, were measured. Left ventricular mass, calculated from 2D echocardiogram, was adjusted for body size using two different methods: body surface area and height. There was a significant (P<0.05 linear correlation between LV mass index and pulse wave velocity. This was not explained by BP level or lower LV mass in women, as there was no significant difference in PWV according to gender (1140.1+67.8 vs 1110.6+57.7 cm/s. In contrast to PWV, there was no significant correlation between LV mass and AI. In summary, these data suggest that aortic vascular stiffness is an indicator of LV mass even when blood pressure is controlled to less than 140/90 mmHg in hypertensive patients. The data further suggest that PWV is a better proxy or surrogate marker for LV mass than AI and the measurement of PWV may be useful as a rapid and less expensive assessment of the presence of LVH in this patient population.

  17. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is nonexistent but necessary to protect the heart and lungs. In tests against ballistic projectiles, protective apparel is placed over ballistic clay and the projectiles are fired into the armor/clay target. The clay represents the human torso and its behind-armor, permanent deflection is the principal metric used to assess armor protection. Although this approach provides relative merit assessment of protection, it does not examine the behind-armor blunt trauma to crucial torso organs. We propose a modeling and simulation (M&S) capability for wound injury scenarios to the head, neck, and torso of the warfighter. We will use this toolset to investigate the consequences of, and mitigation against, blast exposure, blunt force impact, and ballistic projectile penetration leading to damage of critical organs comprising the central nervous, cardiovascular, and respiratory systems. We will leverage Sandia codes and our M&S expertise on traumatic brain injury to develop virtual anatomical models of the head, neck, and torso and the simulation methodology to capture the physics of wound mechanics. Specifically, we will investigate virtual wound injuries to the head, neck, and torso without and with protective armor to demonstrate the advantages of performing injury simulations for the development of body armor. The proposed toolset constitutes a significant advance over current methods by providing a virtual simulation capability to investigate wound injury and optimize armor design without the need for extensive field testing.

  18. Shock wave propagation in neutral and ionized gases

    International Nuclear Information System (INIS)

    Podder, N. K.; Wilson IV, R. B.; Bletzinger, P.

    2008-01-01

    Preliminary measurements on a recently built shock tube are presented. Planar shock waves are excited by the spark discharge of a capacitor, and launched into the neutral argon or nitrogen gas as well as its ionized glow discharge in the pressure region 1-17 Torr. For the shock wave propagation in the neutral argon at fixed capacitor charging voltage, the shock wave velocity is found to increase nonlinearly at the lower pressures, reach a maximum at an intermediate pressure, and then decrease almost linearly at the higher pressures, whereas the shock wave strength continues to increase at a nonlinear rate over the entire range of pressure. However, at fixed gas pressure the shock wave velocity increases almost monotonically as the capacitor charging voltage is increased. For the shock wave propagation in the ionized argon glow, the shock wave is found to be most influenced by the glow discharge plasma current. As the plasma current is increased, both the shock wave propagation velocity and the dispersion width are observed to increase nonlinearly

  19. Ballistic energy transport via perfluoroalkane linkers

    Energy Technology Data Exchange (ETDEWEB)

    Rubtsova, Natalia I. [Department of Chemistry, Tulane University, New Orleans, LA 70118 (United States); Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, LA 70118 (United States)

    2013-08-30

    Highlights: ► Energy transport in perfluoroalkanes oligomers of various chain lengths was studied. ► Cross-peaks among C=O stretch and CH bending modes were recorded using RA 2DIR. ► Efficient constant-speed energy transport with the speed of 1150 m/s is found. ► Ballistic energy transport mechanism is suggested. - Abstract: Intramolecular energy transport in a series of perfluoroalkane oligomers with various chain lengths of 3, 5, 7, 9, and 11 carbon atoms terminated by a carboxylic acid moiety on one end and –CF{sub 2}H group on another end is studied by relaxation-assisted two-dimensional infrared spectroscopy. Perfluoroalkane oligomers adopt an extended structure with antiperiplanar orientation of the neighboring carbon atoms. The energy transport initiated by exciting the C=O stretching mode of the acid was recorded by measuring a cross-peak amplitude between the C=O stretch and the C–H bending mode as a function of the waiting time between the excitation and probing. A linear dependence of energy transport time vs. chain length is found, which suggests a ballistic energy transport mechanism. The energy transport speed, measured from the chain-length dependence of the half-rise time, T{sub ½}, was found to be ca. 1150 m/s, which is close to the longitudinal speed of sound in Teflon polymers.

  20. Ballistic Characterization Of A Typical Military Steel Helmet

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Maher

    2017-08-01

    Full Text Available In this study the ballistic limit of a steel helmet against a FMJ 919 mm caliber bullet is estimated. The helmet model is the typical polish helmet wz.31.The helmet material showed high strength low alloy steel material of 0.28 carbon content and 9.125 kgm2 areal density. The tensile test according to ASTM E8 showed a tensile strength of 1236.4 MPa .The average hardness value was about HV550. First shooting experiment has been executed using a 9 mm pistol based on 350 ms muzzle velocity at 5m against the simply supported helmet complete penetrations rose in this test were in the form of cracks on the helmet surface and partial penetrations were in the form of craters on the surface whose largest diameter and depth were 43 mm and 20.2 mm consequently .The second experiment was on a rifled gun arrangement 13 bullets of 919 mm caliber were shot on the examined simply supported steel helmet at a zero obliquity angle at different velocities to determine the ballistic limit velocity V50 according to MIL-STD-662F. Three major outcomes were revealed 1 the value V50 which found to be about 390 ms is higher than the one found in literature 360 ms German steel helmet model 1A1. 2 The smallest the standard deviation of the mixed results zone data the most accurate the ballistic limit is. 3Similar to the performance of blunt-ended projectiles impacting overmatching targets tD near 11 or larger It was found that the dominating failure mode of the steel helmet stuck by a hemispherical-nose projectile was plugging mode despite of having tD ratio of about 19 undermatching.

  1. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals

    OpenAIRE

    Salvado, F.C.; Teixeira-Dias, Filipe; Walley, S.; Lea, L.J.; Cardoso, J.B.

    2017-01-01

    The response of structures and materials subject to ballistic impacts or blast loads remains a field of intense research. In a blast or impact load a sharp pressure wave travelling at supersonic speed impinges on the structure surface where deformation will develop at very high strain rates and stress waves may form and travel through the continuum solid. Both the dynamic loading and the temperature increase will significantly affect the mechanical and failure response of the material. This r...

  2. Electron Density in Atmospheric Pressure Microwave Surface Wave Discharges

    International Nuclear Information System (INIS)

    Jasinski, M.; Zakrzewski, Z.; Mizeraczyk, J.

    2008-01-01

    In this paper, we present results of the spectroscopic measurements of the electron density in a microwave surface wave sustained discharges in Ar and Ne at atmospheric pressure. The discharge in the form of a plasma column was generated inside a quartz tube cooled with a dielectric liquid. The microwave power delivered to the discharge via rectangular waveguide was applied in the range of 200-1500 W. In all investigations presented in this paper, the gas flow rate was relatively low (0.5 l/min), so the plasma column was generated in the form of a single filament, and the lengths of the upstream and downstream plasma columns were almost the same. The electron density in the plasma columns was determined using the method based on the Stark broadening of H β spectral line, including plasma region inside the waveguide which was not investigated earlier

  3. Direct measurement of the ballistic motion of a freely floating colloid in Newtonian and viscoelastic fluids.

    Science.gov (United States)

    Hammond, Andrew P; Corwin, Eric I

    2017-10-01

    A thermal colloid suspended in a liquid will transition from a short-time ballistic motion to a long-time diffusive motion. However, the transition between ballistic and diffusive motion is highly dependent on the properties and structure of the particular liquid. We directly observe a free floating tracer particle's ballistic motion and its transition to the long-time regime in both a Newtonian fluid and a viscoelastic Maxwell fluid. We examine the motion of the free particle in a Newtonian fluid and demonstrate a high degree of agreement with the accepted Clercx-Schram model for motion in a dense fluid. Measurements of the functional form of the ballistic-to-diffusive transition provide direct measurements of the temperature, viscosity, and tracer radius. We likewise measure the motion in a viscoelastic Maxwell fluid and find a significant disagreement between the theoretical asymptotic behavior and our measured values of the microscopic properties of the fluid. We observe a greatly increased effective mass for a freely moving particle and a decreased plateau modulus.

  4. Ballistic transport in graphene grown by chemical vapor deposition

    NARCIS (Netherlands)

    Calado, V.E.; Zhu, S.E.; Goswami, S.; Xu, Q.; Watanabe, K.; Taniguchi, T.; Janssen, G.C.A.M.; Vandersypen, L.M.K.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be

  5. Cracked rocks with positive and negative Poisson's ratio: real-crack properties extracted from pressure dependence of elastic-wave velocities

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena

    2017-04-01

    We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.

  6. Graphene ballistic nano-rectifier with very high responsivity

    Science.gov (United States)

    Auton, Gregory; Zhang, Jiawei; Kumar, Roshan Krishna; Wang, Hanbin; Zhang, Xijian; Wang, Qingpu; Hill, Ernie; Song, Aimin

    2016-01-01

    Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm2 V−1 s−1 is achieved at room temperature, well beyond that required for ballistic transport. This enables a voltage responsivity as high as 23,000 mV mW−1 with a low-frequency input signal. Taking advantage of the output channels being orthogonal to the input terminals, the noise is found to be not strongly influenced by the input. Hence, the corresponding noise-equivalent power is as low as 0.64 pW Hz−1/2. Such performance is even comparable to superconducting bolometers, which however need to operate at cryogenic temperatures. Furthermore, output oscillations are observed at low temperatures, the period of which agrees with the lateral size quantization. PMID:27241162

  7. Shock-induced borehole waves and fracture effects

    NARCIS (Netherlands)

    Fan, H.; Smeulders, D.M.J.

    2012-01-01

    We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure

  8. The Rise and Fall of Safeguard:Anti‐Ballistic Missile Technology and the Nixon Administration

    OpenAIRE

    Spinardi, Graham

    2010-01-01

    The Safeguard anti-ballistic missile system was the first (and up until 2002 the only) system deployed to defend the USA from nuclear-armed ballistic missile attack. It was finally declared operational in September 1975 after many years of development and fierce controversy over both its feasibility and its desirability. However, almost immediately Congress voted to close the system down and it was dismantled within a few months. This paper draws on documents available in the Nixon archives t...

  9. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    Science.gov (United States)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  10. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    International Nuclear Information System (INIS)

    Romain, J P; Bonneau, F; Dayma, G; Boustie, M; Resseguier, T de; Combis, P

    2002-01-01

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm -2 . The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence -2 , the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface

  11. Orbital magnetism in ensembles of ballistic billiards

    International Nuclear Information System (INIS)

    Ullmo, D.; Richter, K.; Jalabert, R.A.

    1993-01-01

    The magnetic response of ensembles of small two-dimensional structures at finite temperatures is calculated. Using semiclassical methods and numerical calculation it is demonstrated that only short classical trajectories are relevant. The magnetic susceptibility is enhanced in regular systems, where these trajectories appear in families. For ensembles of squares large paramagnetic susceptibility is obtained, in good agreement with recent measurements in the ballistic regime. (authors). 20 refs., 2 figs

  12. Strategic nuclear policy and ballistic missile defense

    International Nuclear Information System (INIS)

    1981-01-01

    The article explains the problems of the antirockets (ABM) as they were part of the presentation Salt I 1972. It is a translation from the English of a publication of the Foreign Affairs Research Institute in London. A topical analysis of the strategic nuclear policy of the two superpowers and their attitudes in the question of ballistic missile defense are given by means of two monographies. (orig./HSCH) [de

  13. Influence of arterial wave reflection on carotid blood pressure and intima-media thickness in older endurance trained men and women with pre-hypertension.

    Science.gov (United States)

    Heffernan, Kevin S; Jae, Sae Young; Tomayko, Emily; Ishaque, Muhammad R; Fernhall, Bo; Wilund, Kenneth R

    2009-05-01

    Increased carotid intima-media thickness (IMT) with aging is a significant predictor of mortality. Older endurance trained (ET) individuals have lower carotid artery stiffness but similar carotid IMT when compared to sedentary (SED) age-matched peers. The purpose of this study was to examine the contribution of arterial wave reflections to carotid hemodynamics and IMT in older ET and SED with pre-hypertension. Subjects consisted of endurance-trained master athletes and age-matched sedentary controls (mean age 67 years). Carotid artery Beta-stiffness index and IMT was assessed with ultrasonography. Carotid pressure and augmented pressure from wave reflections (obtained from pulse contour analysis) was measured with applanation tonometry. Carotid systolic blood pressure (SBP) and IMT were not different between groups (P>0.05). Carotid stiffness was significantly lower in ET versus SED (7.3 +/- 0.8 versus 9.9 +/- 0.6, Phypertension have reduced carotid artery stiffness, but similar carotid SBP and carotid IMT when compared to SED. The lack of change in carotid SBP and IMT in older ET may be related to the inability of chronic exercise training to reduce bradycardia-related augmented pressure from wave reflections with aging.

  14. Submillimeter-wave measurements of the pressure broadening of BrO

    International Nuclear Information System (INIS)

    Yamada, M.M.; Kobayashi, M.; Habara, H.; Amano, T.; Drouin, B.J.

    2003-01-01

    The N 2 and O 2 pressure broadening coefficients of the J=23.5 ↔ 22.5 and J=25.5 ↔ 24.5 rotational transitions in the ground vibronic state X 2 Π 3/2 of 81 BrO at 624.768 and 650.178 GHz have been independently measured at Ibaraki University and Jet Propulsion Laboratory. These lines are expected to be monitored by the superconducting submillimeter-wave limb emission sounder in the Japanese Experiment Module on the International Space Station (JEM/SMILES) as well as the earth observing system microwave limb sounder (EOS-MLS). This work provides temperature-dependent pressure broadening parameters of BrO needed by the space station and satellite based observations. The BrO pressure broadening coefficients and their 1σ uncertainties are: γ 0 (N 2 )=3.24±0.05 MHz/Torr and γ 0 (O 2 )=2.33±0.06 MHz/Torr for the 624.768 GHz transition at room temperature (296 K). For the 650.178 GHz line, the results are: γ 0 (N 2 )=3.20±0.07 MHz/Torr and γ 0 (O 2 )=2.41±0.06 MHz/Torr. The temperature dependence exponents and their 1σ error are determined to be: n(N 2 )=-0.76±0.05 and n(O 2 )=-0.93±0.07 for the 624.768 GHz transition, and n(N 2 )=-0.84±0.07 and n(O 2 )=-0.70±0.07 for the 650.178 GHz transition

  15. Spectral element modelling of seismic wave propagation in visco-elastoplastic media including excess-pore pressure development

    Science.gov (United States)

    Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise

    2017-12-01

    Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.

  16. Ballistic fractures: indirect fracture to bone.

    Science.gov (United States)

    Dougherty, Paul J; Sherman, Don; Dau, Nathan; Bir, Cynthia

    2011-11-01

    Two mechanisms of injury, the temporary cavity and the sonic wave, have been proposed to produce indirect fractures as a projectile passes nearby in tissue. The purpose of this study is to evaluate the temporal relationship of pressure waves using strain gauge technology and high-speed video to elucidate whether the sonic wave, the temporary cavity, or both are responsible for the formation of indirect fractures. Twenty-eight fresh frozen cadaveric diaphyseal tibia (2) and femurs (26) were implanted into ordnance gelatin blocks. Shots were fired using 9- and 5.56-mm bullets traversing through the gelatin only, passing close to the edge of the bone, but not touching, to produce an indirect fracture. High-speed video of the impact event was collected at 20,000 frames/s. Acquisition of the strain data were synchronized with the video at 20,000 Hz. The exact time of fracture was determined by analyzing and comparing the strain gauge output and video. Twenty-eight shots were fired, 2 with 9-mm bullets and 26 with 5.56-mm bullets. Eight indirect fractures that occurred were of a simple (oblique or wedge) pattern. Comparison of the average distance of the projectile from the bone was 9.68 mm (range, 3-20 mm) for fractured specimens and 15.15 mm (range, 7-28 mm) for nonfractured specimens (Student's t test, p = 0.036). In this study, indirect fractures were produced after passage of the projectile. Thus, the temporary cavity, not the sonic wave, was responsible for the indirect fractures.

  17. Balancing ballistic protection against physiological strain: evidence from laboratory and field trials.

    Science.gov (United States)

    Taylor, Nigel A S; Burdon, Catriona A; van den Heuvel, Anne M J; Fogarty, Alison L; Notley, Sean R; Hunt, Andrew P; Billing, Daniel C; Drain, Jace R; Silk, Aaron J; Patterson, Mark J; Peoples, Gregory E

    2016-02-01

    This project was based on the premise that decisions concerning the ballistic protection provided to defence personnel should derive from an evaluation of the balance between protection level and its impact on physiological function, mobility, and operational capability. Civilians and soldiers participated in laboratory- and field-based studies in which ensembles providing five levels of ballistic protection were evaluated, each with progressive increases in protection, mass (3.4-11.0 kg), and surface-area coverage (0.25-0.52 m(2)). Physiological trials were conducted on volunteers (N = 8) in a laboratory, under hot-dry conditions simulating an urban patrol: walking at 4 km·h(-1) (90 min) and 6 km·h(-1) (30 min or to fatigue). Field-based trials were used to evaluate tactical battlefield movements (mobility) of soldiers (N = 31) under tropical conditions, and across functional tests of power, speed, agility, endurance, and balance. Finally, trials were conducted at a jungle training centre, with soldiers (N = 32) patrolling under tropical conditions (averaging 5 h). In the laboratory, work tolerance was reduced as protection increased, with deep-body temperature climbing relentlessly. However, the protective ensembles could be grouped into two equally stressful categories, each providing a different level of ballistic protection. This outcome was supported during the mobility trials, with the greatest performance decrement evident during fire and movement simulations, as the ensemble mass was increased (-2.12%·kg(-1)). The jungle patrol trials similarly supported this outcome. Therefore, although ballistic protection does increase physiological strain, this research has provided a basis on which to determine how that strain can be balanced against the mission-specific level of required personal protection.

  18. Stationary spectra of short-wave convective and magnetostatic fluctuations in a finite-pressure plasma and anomalous heat conductivity

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    Within the general renormalized statistical approach, the low-frequency short-wave stationary spectra of potential and magnetic perturbations in a finite-pressure plasma, are obtained. Anomalous heat conductivity considerably enhances due to non-linear interaction between magnetic excitations. 11 refs. (author)

  19. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.

    Science.gov (United States)

    Zhang, Yuning; Du, Xiaoze

    2015-09-01

    Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Calculation Of Pneumatic Attenuation In Pressure Sensors

    Science.gov (United States)

    Whitmore, Stephen A.

    1991-01-01

    Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.

  1. Numerical and experimental study on atmospheric pressure ionization waves propagating through a U-shape channel

    International Nuclear Information System (INIS)

    Yan, Wen; Xia, Yang; Bi, Zhenhua; Song, Ying; Liu, Dongping; Wang, Dezhen; Sosnin, Eduard A; Skakun, Victor S

    2017-01-01

    A 2D computational study of ionization waves propagating in U-shape channels at atmospheric pressure was performed, with emphasis on the effect of voltage polarity and the curvature of the bend. The discharge was ignited by a HV needle electrode inside the channel, and power was applied in the form of a trapezoidal pulse lasting 2 µ s. We have shown that behavior of ionization waves propagating in U-shape channels was quite different with that in straight tubes. For positive polarity of applied voltage, the ionization waves tended to propagate along one side of walls rather than filling the channel. The propagation velocity of ionization waves predicted by the simulation was in good agreement with the experiment results; the velocity was first increasing rapidly in the vicinity of the needle tip and then decreasing with the increment of propagation distance. Then we have studied the influence of voltage polarity on discharge characteristics. For negative polarity, the ionization waves tended to propagate along the opposite side of the wall, while the discharge was more diffusive and volume-filling compared with the positive case. It was found that the propagation velocity for the negative ionization wave was higher than that for the positive one. Meanwhile, the propagation of the negative ionization wave depended less on the pre-ionization level than the positive ionization wave. Finally, the effect of the radius of curvature was studied. Simulations have shown that the propagation speeds were sensitive to the radii of the curvature of the channels for both polarities. Higher radii of curvature tended to have higher speed and longer length of plasma. The simulation results were supported by experimental observations under similar discharge conditions. (paper)

  2. MD Test of a Ballistic Optics

    CERN Document Server

    Garcia-Tabares Valdivieso, Ana; Salvachua Ferrando, Belen Maria; Skowronski, Piotr Krzysztof; Solfaroli Camillocci, Matteo; Tomas Garcia, Rogelio; Wenninger, Jorg; Coello De Portugal - Martinez Vazquez, Jaime Maria; CERN. Geneva. ATS Department

    2016-01-01

    The ballistic optics is designed to improve the understanding of optical errors and BPM systematic effects in the critical triplet region. The particularity of that optics is that the triplet is switched off, effectively transforming the triplets on both sides of IR1 and IR5 into drift spaces. Advantage can be taken from that fact to localize better errors in the Q4-Q5-triplet region. During this MD this new optics was tested for the first time at injection with beam 2.

  3. Refrigeration system having standing wave compressor

    Science.gov (United States)

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  4. Ballistic Missile Defense: National Security and the High Frontier of Space.

    Science.gov (United States)

    Adragna, Steven P.

    1985-01-01

    Ballistic missile defense is discussed, and the rationale behind the proposal to place defensive weapons in space is examined. Strategic defense is a national security, political, and moral imperative. (RM)

  5. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Sei; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R., E-mail: mrc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-12-14

    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  6. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  7. Dynamic knee stability and ballistic knee movement after ACL reconstruction: an application on instep soccer kick.

    Science.gov (United States)

    Cordeiro, Nuno; Cortes, Nelson; Fernandes, Orlando; Diniz, Ana; Pezarat-Correia, Pedro

    2015-04-01

    The instep soccer kick is a pre-programmed ballistic movement with a typical agonist-antagonist coordination pattern. The coordination pattern of the kick can provide insight into deficient neuromuscular control. The purpose of this study was to investigate knee kinematics and hamstrings/quadriceps coordination pattern during the knee ballistic extension phase of the instep kick in soccer players after anterior cruciate ligament reconstruction (ACL reconstruction). Seventeen players from the Portuguese Soccer League participated in this study. Eight ACL-reconstructed athletes (experimental group) and 9 healthy individuals (control group) performed three instep kicks. Knee kinematics (flexion and extension angles at football contact and maximum velocity instants) were calculated during the kicks. Rectus femoris (RF), vastus lateralis, vastus medialis, biceps femoralis, and semitendinosus muscle activations were quantified during the knee extension phase. The ACL-reconstructed group had significantly lower knee extension angle (-1.2 ± 1.6, p ballistic control movement pattern between normal and ACL-reconstructed subjects. Performing open kinetic chain exercises using ballistic movements can be beneficial when recovering from ACL reconstruction. The exercises should focus on achieving multi-joint coordination and full knee extension (range of motion). III.

  8. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    CERN Document Server

    Romain, J P; Dayma, G; Boustie, M; Resseguier, T D; Combis, P

    2002-01-01

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm sup - sup 2. The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence <1.4 J cm sup - sup 2 , the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface.

  9. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J P [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Bonneau, F [Departement de Physique Theorique et Appliquee CEA/DAM Ile de France, BP 12, 91680 Bruyeres le Chatel (France); Dayma, G [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Boustie, M [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Resseguier, T de [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Combis, P [Departement de Physique Theorique et Appliquee CEA/DAM Ile de France, BP 12, 91680 Bruyeres le Chatel (France)

    2002-11-11

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm{sup -2}. The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence <1.4 J cm{sup -2}, the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface.

  10. MODELING THE FLIGHT TRAJECTORY OF OPERATIONAL-TACTICAL BALLISTIC MISSILES

    Directory of Open Access Journals (Sweden)

    I. V. Filipchenko

    2018-01-01

    Full Text Available The article gives the basic approaches to updating the systems of combat operations modeling in the part of enemy missile attack simulation taking into account the possibility of tactical ballistic missile maneuvering during the flight. The results of simulation of combat tactical missile defense operations are given. 

  11. Contemporary management of maxillofacial ballistic trauma.

    Science.gov (United States)

    Breeze, J; Tong, D; Gibbons, A

    2017-09-01

    Ballistic maxillofacial trauma in the UK is fortunately relatively rare, and generally involves low velocity handguns and shotguns. Civilian terrorist events have, however, shown that all maxillofacial surgeons need to understand how to treat injuries from improvised explosive devices. Maxillofacial surgeons in the UK have also been responsible for the management of soldiers evacuated from Iraq and Afghanistan, and in this review we describe the newer types of treatment that have evolved from these conflicts, particularly that of damage-control maxillofacial surgery. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. A standing pressure wave hypothesis of oscillating forces generated during a steam line break

    International Nuclear Information System (INIS)

    Tinoco, H.

    2001-01-01

    A rapid glance at the figure depicting the net forces acting on the reactor vessel and internals, as obtained through a CFD simulation of a BWR steam line break, reveals an amazing oscillating regularity of these forces which is in glaring contrast to the chaotic behaviour of the steam pressure field in the steam annulus. Assuming that the decompression process excites and maintains standing pressure waves in the annular cylindrical region constituted by the steam annulus, it is possible to reconstruct the net forces acting on the reactor vessel and internals through the contribution of almost only the first dispersive mode. If a Neumann boundary condition is assumed at the section connecting the steam annulus to the steam dome, the frequency predicted is approximately % 5.9 higher than that of the CFD simulations. However, this connecting section allows wave transmission, and a more appropriate boundary condition should be one of the Robin type. Therefore, this section is modelled as an absorbing wall, and the corresponding normal impedance is calculated using the CFD simulations. Week non-linear effects can also be observed in the calculated forces through the presence of the first subharmonic. By the methodology described above, an estimate of the forces acting on the reactor vessel and internals of unit 3 of Forsmark Nuclear Power Plant has been obtained. (author)

  13. Preparative engineering on the Tomari Nuclear Power Station Unit 3. In-site measurement on wave pressure working to new type bank protection

    International Nuclear Information System (INIS)

    Matsumoto, Yoriaki; Hoshi, Hideki; Amano, Hideki

    2003-01-01

    The Tomari Nuclear Power Station Unit 3 is planned to construct it at sea-side area adjacent to southern-east portion of Unit 1 and 2, and has been carried out its preparative engineerings such as bank protection with about 670 m in length, its development, and so on, corresponding to it. Among them, as type of landfill for protection of important construction at its background the Amahata covered-block type bank protection developed by a series of hydrologic tests was adopted. This engineering was begun on March, 2001, and most of establishment on the landfill bank protection was finished on June, 2003. Then, an in-situ measurement aiming to obtain actual testing data and so on of wave pressure at this type of bank protection, was planned, to carry out its measurement at winter (October, 2002 to February, 2003) showing the highest wave at this sea area. Here were reported on relationship between incident wave and wave pressure feature working at new type bank protection together with describing on outlines of the in-situ measurement. (G.K.)

  14. Solitary traveling wave solutions of pressure equation of bubbly liquids with examination for viscosity and heat transfer

    Science.gov (United States)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-03-01

    In this research, we investigate one of the most popular model in nature and also industrial which is the pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many application in nature and engineering. Understanding the physical meaning of exact and solitary traveling wave solutions for this equation gives the researchers in this field a great clear vision of the pressure waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our goal, we apply three different methods which are extended tanh-function method, extended simple equation method and a new auxiliary equation method on this equation. We obtained exact and solitary traveling wave solutions and we also discuss the similarity and difference between these three method and make a comparison between results that we obtained with another results that obtained with the different researchers using different methods. All of these results and discussion explained the fact that our new auxiliary equation method is considered to be the most general, powerful and the most result-oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its intrinsic properties as well as the ease of way of application and its applicability to other phenomena.

  15. Modeling and Experiments on Ballistic Impact into UHMWPE Yarns Using Flat and Saddle-Nosed Projectiles

    Directory of Open Access Journals (Sweden)

    Stuart Leigh Phoenix

    2017-03-01

    Full Text Available Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex, twisted to 40 turns/m, and initially tensioned to stresses ranging from 29 to 2200 MPa. Yarns were impacted, transversely, by two types of cylindrical steel projectiles at velocities ranging from 150 to 555 m/s: (i a reverse-fired, fragment simulating projectile (FSP where the flat rear face impacted the yarn rather than the beveled nose; and (ii a ‘saddle-nosed projectile’ having a specially contoured nose imparting circular curvature in the region of impact, but opposite curvature transversely to prevent yarn slippage off the nose. Experimental data consisted of sequential photographic images of the progress of the triangular transverse wave, as well as tensile wave speed measured using spaced, piezo-electric sensors. Yarn Young’s modulus, calculated from the tensile wave-speed, varied from 133 GPa at minimal initial tension to 208 GPa at the highest initial tensions. However, varying projectile impact velocity, and thus, the strain jump on impact, had negligible effect on the modulus. Contrary to predictions from the classical Cole-Smith model for 1D yarn impact, the critical velocity for yarn failure differed significantly for the two projectile types, being 18% lower for the flat-faced, reversed FSP projectile compared to the saddle-nosed projectile, which converts to an apparent 25% difference in yarn strength. To explain this difference, a wave-propagation model was developed that incorporates tension wave collision under blunt impact by a flat-faced projectile, in contrast to outward wave propagation in the classical model. Agreement between experiment and model predictions was outstanding across a wide range of initial yarn tensions. However, plots of calculated failure stress versus yarn pre

  16. Skipping Orbits, Traversing Trajectories, and Quantum Ballistic Transport in Microstructures

    NARCIS (Netherlands)

    Beenakker, C.W.J.; Houten, H. van; Wees, B.J. van

    1989-01-01

    Three topics of current interest in the study of quantum ballistic transport in a two-dimensional electron gas are discussed, with an emphasis on correspondences between classical trajectories and quantum states in the various experimental geometries. We consider the quantized conductance of point

  17. GAMMASPHERE: Elimination of ballistic deficit by using a quasi-trapezoidal pulse shaper

    International Nuclear Information System (INIS)

    Goulding, F.S.; Landis, D.A.; Madden, N.; Maier, M.; Yaver, H.

    1993-10-01

    Gammasphere uses an spherical array of very large (7.2cm dia.) germanium detectors and only high-multiplicity events are studied. To achieve a reasonable coincidence rate, the individual detector channels must handle high rates with minimum pile-up losses. Ten microseconds was chosen as the total processing time for a signal which means that the shaped signal peaks in about 4us. The combination of short pulse shaping and the fluctuating long charge collection times (up to 400ns) in the detectors exaggerates the energy resolution degradation due to ballistic deficit effects. We describe a method of producing a flat-topped pulse with a simple time-invariant network that satisfies GAMMASPHERE requirements and eliminates ballistic deficit effects

  18. Ballistic transport of graphene pnp junctions with embedded local gates

    International Nuclear Information System (INIS)

    Nam, Seung-Geol; Ki, Dong-Keun; Kim, Youngwook; Kim, Jun Sung; Lee, Hu-Jong; Park, Jong Wan

    2011-01-01

    We fabricated graphene pnp devices, by embedding pre-defined local gates in an oxidized surface layer of a silicon substrate. With neither deposition of dielectric material on the graphene nor electron-beam irradiation, we obtained high-quality graphene pnp devices without degradation of the carrier mobility even in the local-gate region. The corresponding increased mean free path leads to the observation of ballistic and phase-coherent transport across a local gate 130 nm wide, which is about an order of magnitude wider than reported previously. Furthermore, in our scheme, we demonstrated independent control of the carrier density in the local-gate region, with a conductance map very much distinct from those of top-gated devices. This was caused by the electric field arising from the global back gate being strongly screened by the embedded local gate. Our scheme allows the realization of ideal multipolar graphene junctions with ballistic carrier transport.

  19. Effect of tempering time on the ballistic performance of a high strength armour steel

    OpenAIRE

    Jena, Pradipta Kumar; Senthil P., Ponguru; K., Siva Kumar

    2016-01-01

    The investigation describes and analyses the effect of tempering time on the mechanical and ballistic performance of a high strength armour steel. The steel is subjected to tempering at 300 °C for 2, 24 and 48 h. A marginal variation in strength and hardness is observed with increase in tempering time, whereas ductility and Charpy impact values are found to be decreasing. Ballistic performance of the samples are evaluated by impacting 7.62 mm and 12.7 mm armour piercing projectiles at 0° angl...

  20. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    Science.gov (United States)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of

  1. Abnormal storm waves in the winter East/Japan Sea: generation process and hindcasting using an atmosphere-wind wave modelling system

    Directory of Open Access Journals (Sweden)

    H. S. Lee

    2010-04-01

    Full Text Available Abnormal storm waves cause coastal disasters along the coasts of Korean Peninsula and Japan in the East/Japan Sea (EJS in winter, arising due to developed low pressures during the East Asia winter monsoon. The generation of these abnormal storm waves during rough sea states were studied and hindcast using an atmosphere-wave coupled modelling system. Wind waves and swell due to developed low pressures were found to be the main components of abnormal storm waves. The meteorological conditions that generate these waves are classified into three patterns based on past literature that describes historical events as well as on numerical modelling. In hindcasting the abnormal storm waves, a bogussing scheme originally designed to simulate a tropical storm in a mesoscale meteorological model was introduced into the modelling system to enhance the resolution of developed low pressures. The modelling results with a bogussing scheme showed improvements in terms of resolved low pressure, surface wind field, and wave characteristics obtained with the wind field as an input.

  2. Analysis of Measured and Simulated Supraglottal Acoustic Waves.

    Science.gov (United States)

    Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A

    2016-09-01

    To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Ballistic Aspects of Feasibility for Prospective Satellite Navigation Technologies

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2015-01-01

    Full Text Available When modeling the operating processes of ballistics and navigation support it is expedient to make decomposition of the general problem of coordinate-time and navigation support into the typical options of its engineering implementation.As the satellite navigation technologies the paper considers inter-satellite measurement and autonomous navigation mode of differential correction. It also assesses the possibility of their application to improve the accuracy of navigation determinations.Technologies using inter-satellite measurement tools such as GLONASS / GPS equipment, equipment of inter-satellite radio link, astro-optical space based devices are an independent class of navigation technologies.However, each of these options has both advantages and disadvantages that affect the eva luation of the appropriateness and feasibility of their use.The paper separately considers the problem of increasing survivability of space systems and conservation of ground control complex due to introduction of requirements to ensure the independent functioning of spacecraft and application of technologies of ballistics and navigation support, supposing to involve minimum means of automated ground control complex for these purposes.Currently, there is a completely developed theory of autonomous navigation based on astronomical positional gauges, which are used as onboard optical sensors of orientation and stabilization systems.To date, the differential navigation mode is, virtually, the only approach that can allow the olution of tasks in terms of increased accuracy, but with some restrictions.The implementation of differential mode of treatment is carried out through the creation of differential subsystems of the satellite navigation systems. These subsystems are usually divided into wide-range, regional and local ones.Analysis of ballistic aspects to implement discussed navigation technologies allowed us to identify constraints for improving accuracy to define

  4. Ballistic trauma from an exploding electronic cigarette: Case report

    Directory of Open Access Journals (Sweden)

    Christopher Ban, DMD

    2017-09-01

    Full Text Available Electronic cigarettes (e-cigarettes first became available in the United States in 2007, and since that time, the number of e-cigarette users in the US has grown to over 2.5 million. During the period from 2010–2013 alone, the percentage of Americans who reported that they had ever used electronic cigarettes more than doubled from 3.3% to 8.5%. This number will continue to grow, as the use of electronic cigarettes as an alternative to smoking and in smoking cessation is being explored by the public and medical professionals alike. This article presents a case report involving a patient who was injured when the electronic cigarette he was smoking exploded in his face, causing a ballistic injury to his maxilla, as well as a series of other associated injuries. There have been several recent reports in the literature of exploding electronic cigarettes. This article presents a case of avulsive injury due to ballistic trauma with associated impaction of the vaporizing device.

  5. Improving Ballistic Performance of Polyurethane Foam by Nanoparticle Reinforcement

    Directory of Open Access Journals (Sweden)

    M. F. Uddin

    2009-01-01

    Full Text Available We report improving ballistic performance of polyurethane foam by reinforcing it with nanoscale TiO2 particles. Particles were dispersed through a sonic cavitation process and the loading of particles was 3 wt% of the total polymer. Once foams were reinforced, sandwich panels were made and impacted with fragment simulating projectiles (FSPs in a 1.5-inch gas gun. Projectile speed was set up to have complete penetration of the target in each experiment. Test results have indicated that sandwich with nanophased cores absorbed about 20% more kinetic energy than their neat counterpart. The corresponding increase in ballistic limit was around 12% over the neat control samples. The penetration phenomenon was also monitored using a high-speed camera. Analyses of digital images showed that FSP remained inside the nanophased sandwich for about 7 microseconds longer than that of a neat sandwich demonstrating improved energy absorption capability of the nanoparticle reinforced core. Failure modes for energy absorption have been investigated through a microscope and high-speed images.

  6. Improving Ballistic Performance of Polyurethane Foam by Nanoparticle Reinforcement

    International Nuclear Information System (INIS)

    Uddin, M.F.; Zainuddin, S.; Mahfuz, H.; Jeelani, S.

    2009-01-01

    We report improving ballistic performance of polyurethane foam by reinforcing it with nano scale TiO 2 particles. Particles were dispersed through a sonic cavitation process and the loading of particles was 3 wt % of the total polymer. Once foams were reinforced, sandwich panels were made and impacted with fragment simulating projectiles (FSPs) in a 1.5-inch gas gun. Projectile speed was set up to have complete penetration of the target in each experiment. Test results have indicated that sandwich with nano phased cores absorbed about 20% more kinetic energy than their neat counterpart. The corresponding increase in ballistic limit was around 12% over the neat control samples. The penetration phenomenon was also monitored using a high-speed camera. Analyses of digital images showed that FSP remained inside the nano phased sandwich for about 7 microseconds longer than that of a neat sandwich demonstrating improved energy absorption capability of the nanoparticle reinforced core. Failure modes for energy absorption have been investigated through a microscope and high-speed images.

  7. Ballistic Limit Equation for Single Wall Titanium

    Science.gov (United States)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  8. The influence of magnetic field on ballistic performance of aramid fibre and ultrahigh molecular weight polyethylene

    International Nuclear Information System (INIS)

    Wong, Y.C.; Ruan, D.; Sesso, M.L.

    2014-01-01

    Highlights: • Ballistic tests conducted on Kevlar and UHMWPE within a magnetic field. • Repulsion force created by opposing magnet poles reduced the impact momentum. • High speed camera images showed no perforation on Kevlar due to magnetic field. • Standoff distance between magnets has an effect on the repulsion force. - Abstract: An innovative method is introduced here whereby using two sets of arrays of rare earth magnets aligned opposite each other in order to create a repulsion force owing to the like poles when facing close to each other. Ballistic test samples of aramid fibre (Kevlar K29) and ultrahigh molecular weight polyethylene (UHMWPE) were sandwiched by two sets of opposing magnets. Ballistic test was conducted using a gas gun with a 7.62 mm diameter projectile at a velocity ranging from 160 to 220 m/s. High speed camera was used to capture the ballistics testing and it shows that the magnetic repulsion force created by the opposing rare earth magnets managed to suppress the projectile from advancing into the front face of the aramid fibre. Similarly, when magnets were used, the UHMWPE sample shows the projectile perforated through the first few sheets and finally rested on the last sheet showing partial perforation

  9. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  10. Spin Seebeck effect and ballistic transport of quasi-acoustic magnons in room-temperature yttrium iron garnet films

    Science.gov (United States)

    Noack, Timo B.; Musiienko-Shmarova, Halyna Yu; Langner, Thomas; Heussner, Frank; Lauer, Viktor; Heinz, Björn; Bozhko, Dmytro A.; Vasyuchka, Vitaliy I.; Pomyalov, Anna; L’vov, Victor S.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    We studied the transient behavior of the spin current generated by the longitudinal spin Seebeck effect (LSSE) in a set of platinum-coated yttrium iron garnet (YIG) films of different thicknesses. The LSSE was induced by means of pulsed microwave heating of the Pt layer and the spin currents were measured electrically using the inverse spin Hall effect in the same layer. We demonstrate that the time evolution of the LSSE is determined by the evolution of the thermal gradient triggering the flux of thermal magnons in the vicinity of the YIG/Pt interface. These magnons move ballistically within the YIG film with a constant group velocity, while their number decays exponentially within an effective propagation length. The ballistic flight of the magnons with energies above 20 K is a result of their almost linear dispersion law, similar to that of acoustic phonons. By fitting the time-dependent LSSE signal for different film thicknesses varying by almost an order of magnitude, we found that the effective propagation length is practically independent of the YIG film thickness. We consider this fact as strong support of a ballistic transport scenario—the ballistic propagation of quasi-acoustic magnons in room temperature YIG.

  11. Ballistic Impact Response of Woven Hybrid Coir/Kevlar Laminated Composites

    Directory of Open Access Journals (Sweden)

    Azrin Hani A.R

    2016-01-01

    Full Text Available The effects of different laminated hybrid composites stacking configuration subjected to ballistic impact were investigated. The hybrid composites consist of woven coir (C and woven Kevlar (K layers laminated together. The samples of woven coir were prepared using handloom device. The composites were produced by stacking the laminated woven coir and Kevlar alternately with the presence of the binder. The samples were tested under ballistic impact with different stacking configuration. The results obtained had successfully achieved the National Institute of Justice (NIJ standard level IIA with energy absorption of 435.6 kJ and 412.2 kJ under the projectile speed of between 330 m/s and 321 m/s respectively. Samples that having Kevlar layer at the front face and woven coir layer as back face achieved partial penetration during projectile impact. This orientation is proven to have good impact energy absorption and able to stop projectile at the second panel of the composites.

  12. Waves reflected by solid wall and wave interaction in vapour bubbly liquids

    International Nuclear Information System (INIS)

    Duong, N.H.; Nguyen, V.T.

    2004-01-01

    The vapour bubbly liquids are met in many natural and industrial processes, including in energy equipment. In the nuclear power plants this kind of medium appears in reactor cores (PWR, BWR and etc.), in turbine generators and in heat transfer loops. Due to some circumstances (for example, a hit caused by detonations or strong collisions) the pressure waves can appear in the bubbly liquid medium contained in those facilities. These waves propagate in the mixtures and interact with themselves and with structures. It is important that what will occur during mentioned above processes. The knowledge of this kind processes will be useful for analysing the different sorts of the processes occurred in the energy facilities where the vapor bubbly liquids are used as working or heat transfer medium, like nuclear power plants, and also useful in finding the measures for prevention of unfavourable phenomena (for example, during wave interactions maybe appear too high pressures, which could lead into damages of facilities and etc.) and safety operating the equipment. From the physical point of view, the waves in this kind of medium are interesting that owing to non-linear, dispersion and dissipation effects the wave patterns in them may be diverse and easy altered. In the paper the investigation results of the waves reflected by solid wall or structure of the moderate intensity shock waves, and the behaviour of pressure in the process of wave interaction in some mixtures of liquid with vapour bubbles (of radium ∼1 mm) are presented. (author)

  13. Relationships Between Potentiation Effects After Ballistic Half-Squats and Bilateral Symmetry.

    Science.gov (United States)

    Suchomel, Timothy J; Sato, Kimitake; DeWeese, Brad H; Ebben, William P; Stone, Michael H

    2016-05-01

    The purposes of this study were to examine the effect of ballistic concentric-only half-squats (COHS) on subsequent squat-jump (SJ) performances at various rest intervals and to examine the relationships between changes in SJ performance and bilateral symmetry at peak performance. Thirteen resistance-trained men performed an SJ immediately and every minute up to 10 min on dual force plates after 2 ballistic COHS repetitions at 90% of their 1-repetition-maximum COHS. SJ peak force, peak power, net impulse, and rate of force development (RFD) were compared using a series of 1-way repeated-measures ANOVAs. The percent change in performance at which peak performance occurred for each variable was correlated with the symmetry index scores at the corresponding time point using Pearson correlation coefficients. Statistical differences in peak power (P = .031) existed between rest intervals; however, no statistically significant pairwise comparisons were present (P > .05). No statistical differences in peak force (P = .201), net impulse (P = .064), and RFD (P = .477) were present between rest intervals. The relationships between changes in SJ performance and bilateral symmetry after the rest interval that produced the greatest performance for peak force (r = .300, P = .319), peak power (r = -.041, P = .894), net impulse (r = -.028, P = .927), and RFD (r = -.434, P = .138) were not statistically significant. Ballistic COHS may enhance SJ performance; however, the changes in performance were not related to bilateral symmetry.

  14. The Clementine Nickel Hydrogen Common Pressure Vessel Battery

    OpenAIRE

    Garner, Christopher

    1994-01-01

    The Clementine spacecraft was launched in January 1994 to demonstrate advanced lightweight technologies for the Ballistic Missile Defense Organization (BMDO). One of the key technologies was the first use of a multi-cell nickel hydrogen (NiH2) common pressure vessel (CPV) battery. The 5.0 inch diameter, 22 cell, 15.0 ampere-hour NiH2 CPV battery was manufactured by Johnson Controls Battery Group Inc., (JCBGI). Battery test and integration was performed by the Naval Research Laboratory (NRL). ...

  15. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women.

    Science.gov (United States)

    Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V

    2016-11-01

    Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.

  16. Ballistic V50 Evaluation of TIMET Ti108

    Science.gov (United States)

    2018-02-01

    threat by 1 m/s. Future studies or adjustments to the chemistry of the Ti108 can be conducted to optimize ballistic performance. 15. SUBJECT TERMS...10 Fig. A-2 30-mm APDS overall back of plate .................................................... 10 List of Tables Table 1 Chemistry of Ti108...performance of different titanium alloys. Conventional Ti-6Al-4V is commonly used in aerospace frames and engine components, but has difficulty passing

  17. Wave propagation of spectral energy content in a granular chain

    Directory of Open Access Journals (Sweden)

    Shrivastava Rohit Kumar

    2017-01-01

    Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  18. Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement.

    Science.gov (United States)

    Koyama, Soichiro; Tanaka, Satoshi; Tanabe, Shigeo; Sadato, Norihiro

    2015-02-19

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates motor performance and learning. Previous studies have shown that tDCS over the primary motor cortex (M1) can facilitate consolidation of various motor skills. However, the effect of tDCS on consolidation of newly learned ballistic movements remains unknown. The present study tested the hypothesis that tDCS over M1 enhances consolidation of ballistic thumb movements in healthy adults. Twenty-eight healthy subjects participated in an experiment with a single-blind, sham-controlled, between-group design. Fourteen subjects practiced a ballistic movement with their left thumb during dual-hemisphere tDCS. Subjects received 1mA anodal tDCS over the contralateral M1 and 1mA cathodal tDCS over the ipsilateral M1 for 25min during the training session. The remaining 14 subjects underwent identical training sessions, except that dual-hemisphere tDCS was applied for only the first 15s (sham group). All subjects performed the task again at 1h and 24h later. Primary measurements examined improvement in peak acceleration of the ballistic thumb movement at 1h and 24h after stimulation. Improved peak acceleration was significantly greater in the tDCS group (144.2±15.1%) than in the sham group (98.7±9.1%) (Pballistic thumb movement in healthy adults. Dual-hemisphere tDCS over M1 may be useful to improve elemental motor behaviors, such as ballistic movements, in patients with subcortical strokes. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Function-Oriented Material Design of Joints for Advance Armors Under Ballistic Impact

    National Research Council Canada - National Science Library

    Ma, Zheng-Dong; Wang, Hui; Raju, Basavaraju

    2004-01-01

    The objective of this research is to develop a system of software tools based on a new design methodology for the efficient composite armor structural design under ballistic impact loading conditions...

  20. Formal Specification and Run-time Monitoring Within the Ballistic Missile Defense Project

    National Research Council Canada - National Science Library

    Caffall, Dale S; Cook, Thomas; Drusinsky, Doron; Michael, James B; Shing, Man-Tak; Sklavounos, Nicholas

    2005-01-01

    .... Ballistic Missile Defense Advanced Battle Manager (ABM) project in an effort that is amongst the most comprehensive application of formal methods to a large-scale safety-critical software application ever reported...