Condition for tripartite entanglement
We propose a scheme for classifying the entanglement of a tripartite pure qubit state. This classification scheme consists of an ordered list of seven elements. These elements are the Cayley hyper-determinant, and its six associated 2 × 2 subdeterminants. In particular we show that this classification provides a necessary and sufficient condition for separability.
Facets of tripartite entanglement
Dipankar Home
2001-02-01
Tripartite entangled states of systems 1, 2 and 3 involving nonorthogonal states are used to reveal two hitherto unexplored quantum effects. The ﬁrst shows that kinematic entanglement between the states of 1 and 2 can affect the result of dynamical interaction between 2 and 3, though 1 and 2 may be spatially separated so that they no longer interact. The second shows that if a residual interaction persists between 1 and 2 while 2 interacts with 3 to form an entangled state, the measurement of observables of 1 can be used to determine whether 2 has interacted with 3. This effect occurs even when the measurement on 1 is made long after the residual interaction between 1 and 2 has ceased to act. Such effects resulting from interplay between unitary dynamics and kinematic entanglement have interesting implications. In particular, we discuss the signiﬁcance as regards what we call the dynamic version of Einstein locality
Tripartite entanglement of fermionic system in accelerated frames
Khan, Salman, E-mail: sksafi@comsats.edu.pk
2014-09-15
The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. The degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.
Tripartite entanglement of fermionic system in accelerated frames
The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. The degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes
Tripartite information of highly entangled states
Rota, Massimiliano
2015-01-01
Holographic systems require monogamous mutual information for validity of semiclassical geometry. This is encoded by the sign of the tripartite information ($I3$). We investigate the behaviour of $I3$ for all partitionings of systems in states which are highly entangled in a multipartite or bipartite sense. In the case of multipartite entanglement we propose an algorithmic construction that we conjecture can be used to build local maxima of $I3$ for any partitioning. In case of bipartite entanglement we classify the possible values of $I3$ for perfect states and investigate, in some examples, the effect on its sign definiteness due to deformations of the states. Finally we comment on the proposal of using $I3$ as a parameter of scrambling, arguing that in general its average over qubits permutations could be a more sensible measure.
Linear response of tripartite entanglement to infinitesimal noise
Zhang, Fu-Lin, E-mail: flzhang@tju.edu.cn [Physics Department, School of Science, Tianjin University, Tianjin 300072 (China); Chen, Jing-Ling, E-mail: chenjl@nankai.edu.cn [Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin, 300071 (China); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)
2014-10-15
Recent experimental progress in prolonging the coherence time of a quantum system prompts us to explore the behavior of quantum entanglement at the beginning of the decoherence process. The response of the entanglement under an infinitesimal noise can serve as a signature of the robustness of entangled states. A crucial problem of this topic in multipartite systems is to compute the degree of entanglement in a mixed state. We find a family of global noise in three-qubit systems, which is composed of four W states. Under its influence, the linear response of the tripartite entanglement of a symmetrical three-qubit pure state is studied. A lower bound of the linear response is found to depend completely on the initial tripartite and bipartite entanglement. This result shows that the decay of tripartite entanglement is hastened by the bipartite one. - Highlights: • We study a set of W-type noise and its linear effect on symmetric pure states. • Its effect on two-qubit entanglement depends only on the initial concurrence. • A lower bound of the effect on 3-tangle is found in terms of initial entanglements. • We obtain the time of three-tangle sudden death for two families of typical states. • These reveal that the bipartite entanglement speeds up the decay of the tripartite one.
Linear response of tripartite entanglement to infinitesimal noise
Recent experimental progress in prolonging the coherence time of a quantum system prompts us to explore the behavior of quantum entanglement at the beginning of the decoherence process. The response of the entanglement under an infinitesimal noise can serve as a signature of the robustness of entangled states. A crucial problem of this topic in multipartite systems is to compute the degree of entanglement in a mixed state. We find a family of global noise in three-qubit systems, which is composed of four W states. Under its influence, the linear response of the tripartite entanglement of a symmetrical three-qubit pure state is studied. A lower bound of the linear response is found to depend completely on the initial tripartite and bipartite entanglement. This result shows that the decay of tripartite entanglement is hastened by the bipartite one. - Highlights: • We study a set of W-type noise and its linear effect on symmetric pure states. • Its effect on two-qubit entanglement depends only on the initial concurrence. • A lower bound of the effect on 3-tangle is found in terms of initial entanglements. • We obtain the time of three-tangle sudden death for two families of typical states. • These reveal that the bipartite entanglement speeds up the decay of the tripartite one
Teleportation with Tripartite Entangled State via Thermal Cavity
Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state. The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.
Teleportation with Tripartite Entangled State via Thermal Cavity
XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang
2006-01-01
Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state.The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.
A measure of tripartite entanglement in bosonic and fermionic systems
Buscemi, Fabrizio
2011-01-01
We describe an efficient theoretical criterion suitable for the evaluation of the tripartite entanglement of any mixed three-boson or -fermion state, based on the notion of the entanglement of particles for bipartite systems of identical particles. Our approach allows one to quantify the accessible amount of quantum correlations in the systems without any violation of the local particle number superselection rule. A generalization of the tripartite negativity is here applied to some correlated systems including the continuous-time quantum walks of identical particles (both for bosons and fermions) and compared with other criteria recently proposed in the literature. Our results show the dependence of the entanglement dynamics upon the quantum statistics: the bosonic bunching results into a low amount of quantum correlations while Fermi-Dirac statistics allows for higher values of the entanglement.
Optimal values of bipartite entanglement in a tripartite system
Sahoo, Shaon, E-mail: shaon.sahoo@gmail.com [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India)
2015-01-23
For a general tripartite system in some pure state, an observer possessing any two parts will see them in a mixed state. By the consequence of Hughston–Jozsa–Wootters theorem, each basis set of local measurement on the third part will correspond to a particular decomposition of the bipartite mixed state into a weighted sum of pure states. It is possible to associate an average bipartite entanglement (S{sup ¯}) with each of these decompositions. The maximum value of S{sup ¯} is called the entanglement of assistance (E{sub A}) while the minimum value is called the entanglement of formation (E{sub F}). An appropriate choice of the basis set of local measurement will correspond to an optimal value of S{sup ¯}; we find here a generic optimality condition for the choice of the basis set. In the present context, we analyze the tripartite states W and GHZ and show how they are fundamentally different. - Highlights: • We study optimal values of bipartite entanglement in a tripartite system. • Using the Hughston–Jozsa–Wootters theorem, an optimality condition is derived. • This condition will help us study mixed bipartite states using ancilla.
Quantum frequency doubling based on tripartite entanglement with cavities
Juan, Guo; Zhi-Feng, Wei; Su-Ying, Zhang
2016-02-01
We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cavities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the transmission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network. Project supported by the National Natural Science Foundation of China (Grant No. 91430109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).
Entanglement and quantum teleportation via decohered tripartite entangled states
Metwally, N., E-mail: nmohamed31@gmail.com
2014-12-15
The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.
Entanglement and quantum teleportation via decohered tripartite entangled states
The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state
Entanglement of Tripartite States with Decoherence in Noninertial frames
Khan, Salman
2013-01-01
The one-tangle and {\\pi}-tangle are used to quantify the entanglement of a tripartite GHZ state in noninertial frames when the system interacts with a noisy environment in the form of phase damping, phase flip and bit flip channel. It is shown that the two-tangles behave as a closed system. The one-tangle and {\\pi}-tangle have different behaviors in the three channel. In the case of phase damping channel, depending on the kind of coupling, the sudden death of both one-tangle and {\\pi}-tangle ...
Detailed balance and entanglement
We study a connection between quantum detailed balance, which is a concept of importance in statistical mechanics, and entanglement. We also explore how this connection fits into thermofield dynamics. (paper)
Toward tripartite hybrid entanglement in quantum dot molecules
Khoshnegar, M.; Jafari-Salim, A.; Ansari, M. H.; Majedi, A. H.
2014-02-01
Establishing the hybrid entanglement among a growing amount of matter and photonic quantum bits is necessary for scalable quantum computation and long-distance quantum communication. Here we demonstrate that charged excitonic complexes forming in strongly correlated quantum dot molecules are able to generate tripartite hybrid entanglement under proper carrier quantization. The mixed orbitals of the molecule construct multi-level ground states with sub-meV hole tunneling energy and relatively large electron hybridization energy. We show that appropriate size and interdot spacing keeps the electron particle weakly localized, opening extra recombination channels by correlating ground-state excitons. This allows for creation of higher order entangled states. Nontrivial hole tunneling energy, renormalized by multi-particle interactions, facilitates the realization of the energy coincidence among only certain components of the molecule optical spectrum. This translates to the emergence of favorable spectral components in a multi-body excitonic complex which sustain principal oscillator strengths throughout the electric field-induced hole tunneling process. We particularly analyze whether the level broadening of favorable spin configurations could be manipulated to eliminate the distinguishability of photons.
Toward tripartite hybrid entanglement in quantum dot molecules
Establishing the hybrid entanglement among a growing amount of matter and photonic quantum bits is necessary for scalable quantum computation and long-distance quantum communication. Here we demonstrate that charged excitonic complexes forming in strongly correlated quantum dot molecules are able to generate tripartite hybrid entanglement under proper carrier quantization. The mixed orbitals of the molecule construct multi-level ground states with sub-meV hole tunneling energy and relatively large electron hybridization energy. We show that appropriate size and interdot spacing keeps the electron particle weakly localized, opening extra recombination channels by correlating ground-state excitons. This allows for creation of higher order entangled states. Nontrivial hole tunneling energy, renormalized by multi-particle interactions, facilitates the realization of the energy coincidence among only certain components of the molecule optical spectrum. This translates to the emergence of favorable spectral components in a multi-body excitonic complex which sustain principal oscillator strengths throughout the electric field-induced hole tunneling process. We particularly analyze whether the level broadening of favorable spin configurations could be manipulated to eliminate the distinguishability of photons. (paper)
Bipartite and Tripartite Entanglement in a Three-Qubit Heisenberg Model
REN Jie; ZHU Shi-Qun
2006-01-01
The bipartite and tripartite entanglement in a three-qubit Heisenberg XY model with a nonuniformmagnetic field is studied. There are two or four peaks in the concurrence of the bipartite entanglement when the amplitudes of the magnetic fields are differently distributed between the three qubits. It is very interesting to note that there is no tangle of tripartite entanglement between the three qubits when the amplitudes of the magnetic fields are varied. However, the variation of the magnetic field direction can induce the tangle. The tangle is periodic about the angle between the magnetic field and the z axis of the spin.
YUAN Hong-Chun; QI Kai-Guo
2005-01-01
We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.
M Soltani
2015-12-01
Full Text Available In this work, we generalize the entanglement of three-qbit Bosonic systems beyond the single-mode approximation when one of the observers is accelerated. For this purpose, we review the effects of acceleration on field modes and quantum states. The single-mode approximation and beyond the single-mode approximation methods are introduced. After this brief introduction, the main problem of this paper, tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation is investigated. The tripartite entangled states have different classes with GHZ and W states being most important. Here, we choose &pi-tangle as a measure of tripartite entanglement. If the three parties share GHZ state, the corresponding &pi-tangle will increase by increasing acceleration for some Unruh modes. This phenomenon, increasing entanglement, has never been observed in the single-mode approximation for bosonic case. Moreover, the &pi-tangle dose not exhibit a monotonic behavior with increasing acceleration. In the infinite acceleration limit, the &pi-tangle goes to different nonzero values for distinct Unruh modes. Unlike GHZ state, the entanglement of the W state shows only monotonically increasing and decreasing behaviors with increasing acceleration. Also, the entanglement for all possible choices of Unruh modes approaches only 0.176 in the high acceleration limit. Therefore, according to the quantum entanglement, there is no distinction between the single-mode approximation and beyond the single-mode approximation methods in this limit.
Tripartite nonlocality and continuous-variable entanglement in thermal states of trapped ions
We study a system of three trapped ions in an anisotropic bidimensional trap. By focusing on the transverse modes of the ions, we show that the mutual ion-ion Coulomb interactions set entanglement of a genuine tripartite nature, to some extent persistent to the thermal nature of the vibronic modes. We tackle this issue by addressing a nonlocality test in the phase space of the ionic system and quantifying the genuine residual tripartite entanglement in the continuous variable state of the transverse modes.
Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment
Park, DaeKil
2016-08-01
We study on the tripartite entanglement dynamics when each party is initially entangled with other parties, but they locally interact with their own Markovian or non-Markovian environment. First we consider three GHZ-type initial states, all of which have GHZ-symmetry provided that the parameters are chosen appropriately. However, this symmetry is broken due to the effect of environment. The corresponding π -tangles, one of the tripartite entanglement measures, are analytically computed at arbitrary time. For Markovian case while the tripartite entanglement for type I exhibits an entanglement sudden death, the dynamics for the remaining cases decays normally in time with the half-life rule. For non-Markovian case the revival phenomenon of entanglement occurs after complete disappearance of entanglement. We also consider two W-type initial states. For both cases the π -tangles are analytically derived. The revival phenomenon also occurs in this case. On the analytical ground the robustness or fragility issue against the effect of environment is examined for both GHZ-type and W-type initial states.
Scheme for Implementing Teleporting an Arbitrary Tripartite Entangled State in Cavity QED
Wang, Xue-Wen; Peng, Zhao-Hui
2009-10-01
We propose to teleport an arbitrary tripartite entangled state in cavity QED. In this scheme, the five-qubit Brown state is chosen as the quantum channel. It has been shown that the teleportation protocol can be completed perfectly with two different measurement methods. In the future, our scheme might be realizable based on present experimental technology.
Tripartite entanglement in single-neutron interferometer experiments
Erdösi, Daniel; Hasegawa, Yuji [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Wien (Austria); Huber, Marcus [University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria and University of Bristol, Department of Mathematics, Bristol, BS8 1TW (United Kingdom); Hiesmayr, Beatrix C. [University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria and Masaryk University, Department of Theoretical Physics and Astrophysics, Kotlárska 2, 61137 Brno (Czech Republic)
2014-12-04
We present experimental evidence of the generation of distinct types of genuine multipartite entanglement between the spin, energy, and path degrees of freedom within single-neutron quantum systems. This is achieved via the development of new spin manipulation apparatuses for neutron interferometry and the entanglement is detected via appropriately designed and optimized non-linear witnesses. We demonstrate the extraordinarily high controllability and fidelity of the generated entangled states.
Various notions of positivity for bi-linear maps and applications to tri-partite entanglement
We consider bi-linear analogues of s-positivity for linear maps. The dual objects of these notions can be described in terms of Schmidt ranks for tri-tensor products and Schmidt numbers for tri-partite quantum states. These tri-partite versions of Schmidt numbers cover various kinds of bi-separability, and so we may interpret witnesses for those in terms of bi-linear maps. We give concrete examples of witnesses for various kinds of three qubit entanglement
Various notions of positivity for bi-linear maps and applications to tri-partite entanglement
Han, Kyung Hoon; Kye, Seung-Hyeok
2016-01-01
We consider bi-linear analogues of s-positivity for linear maps. The dual objects of these notions can be described in terms of Schmidt ranks for tri-tensor products and Schmidt numbers for tri-partite quantum states. These tri-partite versions of Schmidt numbers cover various kinds of bi-separability, and so we may interpret witnesses for those in terms of bi-linear maps. We give concrete examples of witnesses for various kinds of three qubit entanglement.
Han, Jia-Xing; Hu, Yuan; Jin, Yu; Zhang, Guo-Feng
2016-04-01
An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for both systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity. PMID:27059571
Gerardo Adesso
2013-05-01
Full Text Available We study a system represented by a Bose-Einstein condensate interacting with a cavity field in presence of a strong off-resonant pumping laser. This system can be described by a three-mode Gaussian state, where two are the atomic modes corresponding to atoms populating upper and lower momentum sidebands and the third mode describes the scattered cavity field light. We show that, as a consequence of the collective atomic recoil instability, these modes possess a genuine tripartite entanglement that increases unboundedly with the evolution time and is larger than the bipartite entanglement in any reduced two-mode bipartition. We further show that the state of the system exhibits genuine tripartite nonlocality, which can be revealed by a robust violation of the Svetlichny inequality when performing displaced parity measurements. Our exact results are obtained by exploiting the powerful machinery of phase-space informational measures for Gaussian states, which we briefly review in the opening sections of the paper.
Non-Maximal Tripartite Entanglement Degradation of Dirac and Scalar Fields in Non-Inertial Frames
Salman, Khan; Niaz, Ali Khan; M. K., Khan
2014-03-01
The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scalar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for π-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of scalar fields is slower than for Dirac fields.
Non-Maximal Tripartite Entanglement Degradation of Dirac and Scalar Fields in Non-Inertial Frames
The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scalar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for π-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of scalar fields is slower than for Dirac fields. (general)
Olsen, M. K.; Cavalcanti, E. G.
2016-07-01
The fully symmetric Gaussian tripartite entangled pure states will not exhibit two-mode Einstein-Podolsky-Rosen (EPR) steering. This means that any two participants cannot share quantum secrets using the security of one-sided device independent quantum key distribution (1SDI-QKD) without involving the third. They are restricted at most to standard quantum key distribution, which is less secure. Here we demonstrate an asymmetric tripartite system that can exhibit bipartite EPR steering, so that two of the participants can use 1SDI-QKD without involving the other. This is possible because the promiscuity relations of continuous-variable tripartite entanglement are different from those of discrete-variable systems. We analyze these properties for two different systems, showing that the asymmetric system exhibits practical properties not found in the symmetric one.
Yu, Chang-shui; Guo, Bao-qing; Yang, Si-ren
2016-04-01
Usually, the three-tangle of a tripartite pure state of qubits can be directly measured with the simultaneous preparation of a not-less-than fourfold copy of the state. We show that the exact genuine tripartite entanglement for (2 ⊗2 ⊗n )-dimensional pure quantum states can be measured in a similar manner, provided that only two simultaneous copies of the state are available. Lower bounds are also proposed for more convenient experimental operations. As an example, a comprehensive demonstration of the scheme is provided for the three-tangle of a three-qubit state.
We propose teleporting a specific family of tripartite entangled pure states, which include both the Greenberger-Horne-Zeilinger (GHZ) state and the W-class state, with the five-qubit cluster state. In this scheme, two different measurement strategies are introduced and the successful probability of both is one theoretically. In cavity quantum electrodynamics (QED), we propose generating the five-qubit cluster state and discuss the local measurement of the Bell state and the five-qubit cluster state. It is shown that our scheme may be realizable based on present cavity QED technology. In future, our scheme may be useful for establishing general tripartite entanglement in remote nodes of the communication network.
Najarbashi, G.; Mirzaei, S.
2016-03-01
Multi-mode entangled coherent states are important resources for linear optics quantum computation and teleportation. Here we introduce the generalized balanced N-mode coherent states which recast in the multi-qudit case. The necessary and sufficient condition for bi-separability of such balanced N-mode coherent states is found. We particularly focus on pure and mixed multi-qubit and multi-qutrit like states and examine the degree of bipartite as well as tripartite entanglement using the concurrence measure. Unlike the N-qubit case, it is shown that there are qutrit states violating monogamy inequality. Using parity, displacement operator and beam splitters, we will propose a scheme for generating balanced N-mode entangled coherent states for even number of terms in superposition.
Transformation of bipartite non-maximally entangled states into a tripartiteWstate in cavity QED
ZANG XUE-PING; YANG MING; DU CHAO-QUN; WANG MIN; FANG SHU-DONG; CAO ZHUO-LIANG
2016-05-01
We present two schemes for transforming bipartite non-maximally entangled states into a W state in cavity QED system, by using highly detuned interactions and the resonant interactions between two-level atoms and a single-mode cavity field. A tri-atom W state can be generated by adjusting the interaction times between atoms and the cavity mode. These schemes demonstrate that two bipartite non-maximally entangled states can be merged into a maximally entangled W state. So the scheme can, in some sense, be regarded as an entanglement concentration process. The experimental feasibility of the schemes is also discussed.
The purpose of this paper is to investigate the effects of quantum noises on entanglement localization by taking an example of reducing a three-qubit Greenberger–Horne–Zeilinger (GHZ) state to a two-qubit entangled state. We consider, respectively, two types of quantum decoherence, i.e. amplitude-damping and depolarizing decoherence, and explore the best von Neumann measurements on one of three qubits of the triple GHZ state for making the amount of entanglement of the collapsed bipartite state be as large as possible. The results indicate that different noises have different impacts on entanglement localization, and that the optimal strategy for reducing a three-qubit GHZ state to a two-qubit one via local measurements and classical communications in the amplitude-damping case is different from that in the noise-free case. We also show that the idea of entanglement localization could be utilized to improve the quality of bipartite entanglement distributing through amplitude-damping channels. These findings might shed a new light on entanglement manipulations and transformations. (paper)
郑一丹; 周斌
2016-01-01
Quantum entanglement is one of the most fundamental properties of quantum mechanics. Because of the nonlocality, quantum entanglement is widely used in quantum computation and quantum information. Considering the fact that thermal fluctuation suppresses quantum effects, the concept of thermal entanglement is introduced to refer to the idea that the effect of temperature should be viewed as external control in the preparation of entangled state. It has been found that nanoscale single molecular magnet has a novel quantum effect at low temperature. Furthermore, single-molecular magnet is viewed as a promising candidate for realizing encoding and manipulation of quantum information. Na9[Cu3Na3(H2O)9(α-AsW9O33)2]·26H2O (denoted as {Cu3} for convenience) is one of the typical representatives of nanoscale single molecular magnets. In this paper, we will theoretically analyze the properties of tripartite entanglement in {Cu3} with an external magnetic field in thermal equilibrium. The tripartite negativity is used to characterize the tripartite entanglement. The tripartite negativity of {Cu3} single molecular magnet is calculated numerically by using the equivalent spin model and experimental fitting parameters. We consider the magnetic fields along the vertical and the parallel directions of triangular spin ring, respectively, and the case with a tilted magnetic field is also discussed in this paper. It is shown that the magnitude and direction of magnetic field, and temperature have importance effects on the tripartite negativity of the system. It is found that the larger extra strong magnetic field will inhibit the generation of the quantum state of tripartite entanglement at higher temperature. In addition, compared with the magnetic field along the parallel direction of triangular spin ring and the tilted magnetic field, the magnetic field along the vertical direction of triangular spin ring obtains larger values of tripartite negativity under the same temperature
Polygamy of distributed entanglement
Buscemi F.; Gour G.; Kim J.S.
2009-01-01
While quantum entanglement is known to be monogamous (i.e. shared entanglement is restricted in multi-partite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multi-qubit...
Charcterization of multipartite entanglement
Chong, Bo
2006-06-23
In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle {tau}{sup (T)} to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle {tau}{sup (T)} from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)
Charcterization of multipartite entanglement
In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle τ(T) to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle τ(T) from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)
Tripartite Quantum Controlled Teleportation via Seven-Qubit Cluster State
Li, Wei; Zha, Xin-Wei; Qi, Jian-Xia
2016-04-01
In this paper, a theoretical scheme for tripartite quantum controlled teleportation is presented using the entanglement property of seven-qubit cluster state. This means that Alice wants to transmit a entangled state of particle a to Bob, Charlie wants to transmit a entangled state of particle b to David and Edison wants to transmit a entangled state of particle c to Ford via the control of the supervisor. In the end, we compared the aspects of quantum resource consumption, operation complexity, classical resource consumption, quantum information bits transmitted, success probability and efficiency with other schemes.
Quantum teleportation of entangled squeezed vacuum states
蔡新华
2003-01-01
An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.
Entangling gates in even Euclidean lattices such as Leech lattice
Planat, Michel
2010-01-01
We point out a organic relationship between real entangling n-qubit gates of quantum computation and the group of automorphisms of even Euclidean lattices of the corresponding dimension 2n. The type of entanglement that is found in the gates/generators of Aut() depends on the lattice. In particular, we investigate Zn lattices, Barnes-Wall lattices D4, E8, 16 (associated to n = 2, 3 and 4 qubits), and the Leech lattices h24 and 24 (associated to a 3-qubit/qutrit system). Balanced tripartite entanglement is found to be a basic feature of Aut(), a nding that bears out our recent work related to the Weyl group of E8 [1, 2].
Entanglement distillation for three-particle W class states
Cao, Zhuo-Liang; Yang, Ming
2003-01-01
In this paper, we propose two general entanglement distillation protocols, which can concentrate the non-maximally entangled pure W class state. The general protocols are mainly based on the unitary transformation on the auxiliary particle and one of the three entangled particles, and in the second protocol, the entanglement distillation includes two meanings, namely, extracting the concentrated tripartite entangled W state and obtaining the maximally entangled bipartite state from the garbag...
Conservation law for distributed entanglement of formation and quantum discord
We present a direct relation, based upon a monogamic principle, between entanglement of formation (EOF) and quantum discord (QD), showing how they are distributed in an arbitrary tripartite pure system. By extending it to a paradigmatic situation of a bipartite system coupled to an environment, we demonstrate that the EOF and the QD obey conservation relation. By means of this relation we show that in the deterministic quantum computer with one pure qubit the protocol has the ability to rearrange the EOF and the QD, which implies that quantum computation can be understood on a different basis as a coherent dynamics where quantum correlations are distributed between the qubits of the computer. Furthermore, for a tripartite mixed state we show that the balance between distributed EOF and QD results in a stronger version of the strong subadditivity of entropy.
Links and Quantum Entanglement
Solomon, A I
2011-01-01
We discuss the analogy between topological entanglement and quantum entanglement, particularly for tripartite quantum systems. We illustrate our approach by first discussing two clearly (topologically) inequivalent systems of three-ring links: The Borromean rings, in which the removal of any one link leaves the remaining two non-linked (or, by analogy, non-entangled); and an inequivalent system (which we call the NUS link) for which the removal of any one link leaves the remaining two linked (or, entangled in our analogy). We introduce unitary representations for the appropriate Braid Group ($B_3$) which produce the related quantum entangled systems. We finally remark that these two quantum systems, which clearly possess inequivalent entanglement properties, are locally unitarily equivalent.
Controlled Probabilistic Teleportation of an Unknown Multi-Particle High-Dimensional Entangled State
We propose a protocol for controlled probabilistic teleportation of an unknown tripartite qutrit entangled state with two partial tripartite qutrit entangled states as the quantum channel. It is found that teleportation associated with the generalized qutrit Bell-basis measurement, the generalized qutrit π-state measurement and the generalized Hadamard operator in three-dimensional Hilbert space. We generalize the protocol for controlled probabilistic teleportation of an unknown k-particle qudit entangled state with a multi-particle qudit entangled state and a tripartite qudit entangled state as the quantum channel. We also calculate the classical communication cost required in both cases. (general)
Entangled graphs: a classification of four-qubit entanglement
Ghahi, Masoud Gharahi; Akhtarshenas, Seyed Javad
2016-03-01
We use the concept of entangled graphs with weighted edges to present a classification for four-qubit entanglement which is based neither on the LOCC nor the SLOCC. Entangled graphs, first introduced by Plesch et al. [Phys. Rev. A 67, 012322 (2003)], are structures such that each qubit of a multi-qubit system is represented as a vertex and an edge between two vertices denotes bipartite entanglement between the corresponding qubits. Our classification is based on the use of generalized Schmidt decomposition of pure states of multi-qubit systems. We show that for every possible entangled graph one can find a pure state such that the reduced entanglement of each pair, measured by concurrence, represents the weight of the corresponding edge in the graph. We also use the concept of tripartite and quadripartite concurrences as a proper measure of global entanglement of the states. In this case a circle including the graph indicates the presence of global entanglement.
Dynamics and protection of tripartite quantum correlations in a thermal bath
We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successful protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases
Dynamics and protection of tripartite quantum correlations in a thermal bath
Guo, Jin-Liang, E-mail: guojinliang80@163.com; Wei, Jin-Long
2015-03-15
We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successful protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases.
Purified discord and multipartite entanglement
We study bipartite quantum discord as a manifestation of a multipartite entanglement structure in the tripartite purified system. In particular, we find that bipartite quantum discord requires the presence of both bipartite and tripartite entanglement in the purification. This allows one to understand the asymmetry of quantum discord, D(A,B)≠D(B,A) in terms of entanglement monogamy. As instructive special cases, we study discord for qubits and Gaussian states in detail. As a result of this we shed new light on a counterintuitive property of Gaussian states: the presence of classical correlations necessarily requires the presence of quantum correlations. Finally, our results also shed new light on a protocol for remote activation of entanglement by a third party. -- Highlights: •Bipartite quantum discord as a manifestation of multipartite entanglement. •Relevance of quantum discord as a utilizable resource for quantum info. tasks. •Quantum discord manifests itself in entanglement in the purified state. •Relation between asymmetry of discord and entanglement monogamy. •Protocol for remote activation of entanglement by a third party
Detecting genuine multipartite entanglement in steering scenarios
Jebaratnam, C.
2016-05-01
Einstein-Podolsky-Rosen (EPR) steering is a form of quantum nonlocality which is intermediate between entanglement and Bell nonlocality. EPR steering is a resource for quantum key distribution that is device independent on only one side in that it certifies bipartite entanglement when one party's device is not characterized while the other party's device is fully characterized. In this work, we introduce two types of genuine tripartite EPR steering, and derive two steering inequalities to detect them. In a semi-device-independent scenario where only the dimensions of two parties are assumed, the correlations which violate one of these inequalities also certify genuine tripartite entanglement. It is known that Alice can demonstrate bipartite EPR steering to Bob if and only if her measurement settings are incompatible. We demonstrate that quantum correlations can also detect tripartite EPR steering from Alice to Bob and Charlie, even if Charlie's measurement settings are compatible.
From entanglement witness to generalized Catalan numbers.
Cohen, E; Hansen, T; Itzhaki, N
2016-01-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a "sterile entanglement witness", which for large enough systems detects entanglement without affecting much the system's state. We discuss when our proposed entanglement witness can be regarded as a sterile one. PMID:27461089
From entanglement witness to generalized Catalan numbers
Cohen, E.; Hansen, T.; Itzhaki, N.
2016-07-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one.
Graphical Classification of Entangled Qutrits
Kentaro Honda
2012-10-01
Full Text Available A multipartite quantum state is entangled if it is not separable. Quantum entanglement plays a fundamental role in many applications of quantum information theory, such as quantum teleportation. Stochastic local quantum operations and classical communication (SLOCC cannot essentially change quantum entanglement without destroying it. Therefore, entanglement can be classified by dividing quantum states into equivalence classes, where two states are equivalent if each can be converted into the other by SLOCC. Properties of this classification, especially in the case of non two-dimensional quantum systems, have not been well studied. Graphical representation is sometimes used to clarify the nature and structural features of entangled states. SLOCC equivalence of quantum bits (qubits has been described graphically via a connection between tripartite entangled qubit states and commutative Frobenius algebras (CFAs in monoidal categories. In this paper, we extend this method to qutrits, i.e., systems that have three basis states. We examine the correspondence between CFAs and tripartite entangled qutrits. Using the symmetry property, which is required by the definition of a CFA, we find that there are only three equivalence classes that correspond to CFAs. We represent qutrits graphically, using the connection to CFAs. We derive equations that characterize the three equivalence classes. Moreover, we show that any qutrit can be represented as a composite of three graphs that correspond to the three classes.
Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables
无
2005-01-01
A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states.
Dynamics of disentanglement as measured by the tripartite negativity and Bell nonlocality as measured by the extent of violation of the multipartite Bell-type inequalities are investigated in this work. It is shown definitively that for the initial three-qubit Greenberger–Horne–Zeilinger (GHZ) or W class state preparation, the Bell nonlocality suffers sudden death under the influence of thermal reservoirs. Moreover, all the Bell-nonlocal states are useful for nonclassical teleportation, while there are entangled states that do not violate any Bell-type inequalities, but still yield nonclassical teleportation fidelity. - Highlights: ► Comparison of different aspects of quantum correlations. ► Robustness of the initial tripartite GHZ and W class states against decoherence. ► Bell-nonlocality sudden death under the influence of thermal reservoir. ► A nonzero minimum tripartite negativity is needed for nonclassical teleportation. ► All the Bell-nonlocal states yield nonclassical teleportation fidelity.
Three qubit entanglement within graphical Z/X-calculus
Bob Coecke
2011-03-01
Full Text Available The compositional techniques of categorical quantum mechanics are applied to analyse 3-qubit quantum entanglement. In particular the graphical calculus of complementary observables and corresponding phases due to Duncan and one of the authors is used to construct representative members of the two genuinely tripartite SLOCC classes of 3-qubit entangled states, GHZ and W. This nicely illustrates the respectively pairwise and global tripartite entanglement found in the W- and GHZ-class states. A new concept of supplementarity allows us to characterise inhabitants of the W class within the abstract diagrammatic calculus; these method extends to more general multipartite qubit states.
Entanglement sharing: from qubits to Gaussian states
Adesso, Gerardo; Illuminati, Fabrizio
2005-01-01
It is a central trait of quantum information theory that there exist limitations to the free sharing of quantum correlations among multiple parties. Such 'monogamy constraints' have been introduced in a landmark paper by Coffman, Kundu and Wootters, who derived a quantitative inequality expressing a trade-off between the couplewise and the genuine tripartite entanglement for states of three qubits. Since then, a lot of efforts have been devoted to the investigation of distributed entanglement...
Page curves for tripartite systems
Hwang, Junha; Nho, Dongju; Oh, Jeonghun; Park, Hyosub; Yeom, Dong-han; Zoe, Heeseung
2016-01-01
We investigate information flow and Page curves for tripartite systems. We prepare a tripartite system (say, A, B, and C) of a given number of states and calculate information and entropy contents by assuming random states. Initially, every particle was in A (this means a black hole), and as time goes on, particles move to either B (means Hawking radiation) or C (means a broadly defined remnant, including a non-local transport of information, the last burst, an interior large volume, or a bubble universe, etc.). If the final number of states of the remnant is smaller than that of Hawking radiation, then information will be stored by both of the radiation and the mutual information between the radiation and the remnant, while the remnant itself does not contain information. On the other hand, if the final number of states of the remnant is greater than that of Hawking radiation, then the radiation contains negligible information, while the remnant and the mutual information between the radiation and the remnan...
Multipartite Entanglement in Stabilizer Tensor Networks
Nezami, Sepehr
2016-01-01
Tensor network models reproduce important structural features of holography, including the Ryu-Takayanagi formula for the entanglement entropy and quantum error correction in the entanglement wedge. In contrast, only little is known about their multipartite entanglement structure, which has been of considerable recent interest. In this work, we study random stabilizer tensor networks and show that here the tripartite entanglement question has a sharp answer: The average number of GHZ triples that can be extracted from a stabilizer tensor network is small, implying that the entanglement is predominantly bipartite. As a consequence, we obtain a new operational interpretation of the monogamy of the Ryu-Takayanagi mutual information and an entropic diagnostic for higher-partite entanglement. Our technical contributions include a spin model for evaluating the average GHZ content of stabilizer tensor networks and a novel formula for the third moment of random stabilizer states.
Tensor rank of the tripartite state |W>xn
Tensor rank refers to the number of product states needed to express a given multipartite quantum state. Its nonadditivity as an entanglement measure has recently been observed. In this Brief Report, we estimate the tensor rank of multiple copies of the tripartite state |W>=(1/√(3))(|100>+|010>+|001>). Both an upper bound and a lower bound of this rank are derived. In particular, it is proven that the rank of |W>x2 is 7, thus resolving a previously open problem. Some implications of this result are discussed in terms of transformation rates between |W>xn and multiple copies of the state |GHZ>=(1/√(2))(|000>+|111>).
Almost all cancellative triple systems are tripartite
Balogh, Jozsef; Mubayi, Dhruv
2009-01-01
A triple system is cancellative if no three of its distinct edges satisfy $A \\cup B=A \\cup C$. It is tripartite if it has a vertex partition into three parts such that every edge has exactly one point in each part. It is easy to see that every tripartite triple system is cancellative. We prove that almost all cancellative triple systems with vertex set [n] are tripartite. This sharpens a theorem of Nagle and Rodl on the number of cancellative triple systems. It also extends recent work of Per...
Structure and operation of bacterial tripartite pumps.
Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis
2013-01-01
In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition. PMID:23808339
Svetlichny's inequality and genuine tripartite nonlocality in three-qubit pure states
The violation of the Svetlichny's inequality (SI) [Phys. Rev. D 35, 3066 (1987)] is sufficient but not necessary for genuine tripartite nonlocal correlations. Here we quantify the relationship between tripartite entanglement and the maximum expectation value of the Svetlichny operator (which is bounded from above by the inequality) for the two inequivalent subclasses of pure three-qubit states: the Greenberger-Horne-Zeilinger (GHZ) class and the W class. We show that the maximum for the GHZ-class states reduces to Mermin's inequality [Phys. Rev. Lett. 65, 1838 (1990)] modulo a constant factor, and although it is a function of the three tangle and the residual concurrence, large numbers of states do not violate the inequality. We further show that by design SI is more suitable as a measure of genuine tripartite nonlocality between the three qubits in the W-class states, and the maximum is a certain function of the bipartite entanglement (the concurrence) of the three reduced states, and only when their sum attains a certain threshold value do they violate the inequality.
Equivalence between entanglement and the optimal fidelity of continuous variable teleportation.
Adesso, Gerardo; Illuminati, Fabrizio
2005-10-01
We devise the optimal form of Gaussian resource states enabling continuous-variable teleportation with maximal fidelity. We show that a nonclassical optimal fidelity of N-user teleportation networks is necessary and sufficient for N-party entangled Gaussian resources, yielding an estimator of multipartite entanglement. The entanglement of teleportation is equivalent to the entanglement of formation in a two-user protocol, and to the localizable entanglement in a multiuser one. Finally, we show that the continuous-variable tangle, quantifying entanglement sharing in three-mode Gaussian states, is defined operationally in terms of the optimal fidelity of a tripartite teleportation network. PMID:16241708
Entanglement dynamics in quantum information theory
Cubitt, T.S.
2007-03-29
This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more
Entanglement dynamics in quantum information theory
This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more abstract results, the entanglement and
Danforth, Douglas G.
2001-01-01
Classical systems can be entangled. Entanglement is defined by coincidence correlations. Quantum entanglement experiments can be mimicked by a mechanical system with a single conserved variable and 77.8% conditional efficiency. Experiments are replicated for four particle entanglement swapping and GHZ entanglement.
Abdi, Mehdi; Tombesi, Paolo; Vitali, David
2013-01-01
We introduce a modification of the standard entanglement swapping protocol where the generation of entanglement between two distant modes is realized and verified using only local optical measurements. We show, indeed, that a simple condition on the purity of the initial state involving also an ancillary mode is sufficient to guarantee the success of the protocol by local measurements {M. Abdi \\textit{et al.}, Phys. Rev. Lett. \\textbf{109}, 143601 (2012)}]. We apply the proposed protocol to a tripartite optomechanical system where the never interacting mechanical modes become entangled and certified using only local optical measurements.
Computational complexity in entanglement transformations
Chitambar, Eric A.
In physics, systems having three parts are typically much more difficult to analyze than those having just two. Even in classical mechanics, predicting the motion of three interacting celestial bodies remains an insurmountable challenge while the analogous two-body problem has an elementary solution. It is as if just by adding a third party, a fundamental change occurs in the structure of the problem that renders it unsolvable. In this thesis, we demonstrate how such an effect is likewise present in the theory of quantum entanglement. In fact, the complexity differences between two-party and three-party entanglement become quite conspicuous when comparing the difficulty in deciding what state changes are possible for these systems when no additional entanglement is consumed in the transformation process. We examine this entanglement transformation question and its variants in the language of computational complexity theory, a powerful subject that formalizes the concept of problem difficulty. Since deciding feasibility of a specified bipartite transformation is relatively easy, this task belongs to the complexity class P. On the other hand, for tripartite systems, we find the problem to be NP-Hard, meaning that its solution is at least as hard as the solution to some of the most difficult problems humans have encountered. One can then rigorously defend the assertion that a fundamental complexity difference exists between bipartite and tripartite entanglement since unlike the former, the full range of forms realizable by the latter is incalculable (assuming P≠NP). However, similar to the three-body celestial problem, when one examines a special subclass of the problem---invertible transformations on systems having at least one qubit subsystem---we prove that the problem can be solved efficiently. As a hybrid of the two questions, we find that the question of tripartite to bipartite transformations can be solved by an efficient randomized algorithm. Our results are
Entanglement distillation for three-particle W class states
In this paper, we propose two general entanglement distillation protocols which can concentrate the W' state (non-maximally entangled pure W state). The general protocols are mainly based on the unitary transformation on the auxiliary particle and one of the three entangled particles, and in the second protocol, the entanglement distillation includes two meanings, namely, extracting the concentrated tripartite entangled W state and obtaining the maximally entangled bipartite state from the 'garbage' state, which gives no contribution to the distillation of the W' state. We can make use of the 'garbage' in the distillation process, and make the entanglement waste in the quantum communication as small as possible. A feasible physical scheme is suggested based on the cavity QED
Experimental Entangled Entanglement
Walther, P; Resch, K J; Zeilinger, A
2005-01-01
Entanglement according to Schroedinger - the essential property of quantum mechanics - teaches us that the properties of individual quantum systems cannot be considered to be (local) elements of physical reality before and independent of observation. Yet it is a widespread belief that the way the observations on, say, two particles are correlated, i.e. the specific type of their entanglement, can still be considered as a property of the physical world. We present experimental evidence to the contrary. We have measured the correlations between a single-particle property, the polarization state of a photon, and a joint property of two particles, the entangled state of a photon pair, in a three-photon entangled state. The measured correlations between these properties are too strong for any local-realistic explanation and demonstrate a convincing violation of the Clauser-Horne-Shimony-Holt Bell inequality.
Almost all cancellative triple systems are tripartite
Balogh, Jozsef
2009-01-01
A triple system is cancellative if no three of its distinct edges satisfy $A \\cup B=A \\cup C$. It is tripartite if it has a vertex partition into three parts such that every edge has exactly one point in each part. It is easy to see that every tripartite triple system is cancellative. We prove that almost all cancellative triple systems with vertex set [n] are tripartite. This sharpens a theorem of Nagle and Rodl on the number of cancellative triple systems. It also extends recent work of Person and Schacht who proved a similar result for triple systems without the Fano configuration. Our proof uses the hypergraph regularity lemma of Frankl and Rodl, and a stability theorem for cancellative triple systems due to Keevash and the second author.
Is 'entanglement' always entangled?
Entanglement, including 'quantum entanglement', is a consequence of correlation between objects. When the objects are subunits of pairs which in turn are members of an ensemble described by a wavefunction, a correlation among the subunits induces the mysterious properties of 'cat-states'. However, correlation between subsystems can be present in purely non-quantum sources, thereby entailing no unfathomable behaviour. Such entanglement arises whenever the so-called 'qubit space' is not afflicted with Heisenberg uncertainty. It turns out that all optical experimental realizations of the Einstein, Podolsky and Rosen (EPR) Gedanken experiment in fact do not suffer Heisenberg uncertainty. Examples will be analysed and non-quantum models for some of these described. The consequences for experiments that were to test EPRs contention in the form of Bell's theorem are drawn: valid tests of EPR's hypothesis have yet to be done
Hu, Ming-Liang, E-mail: mingliang0301@163.com
2012-09-15
Dynamics of disentanglement as measured by the tripartite negativity and Bell nonlocality as measured by the extent of violation of the multipartite Bell-type inequalities are investigated in this work. It is shown definitively that for the initial three-qubit Greenberger-Horne-Zeilinger (GHZ) or W class state preparation, the Bell nonlocality suffers sudden death under the influence of thermal reservoirs. Moreover, all the Bell-nonlocal states are useful for nonclassical teleportation, while there are entangled states that do not violate any Bell-type inequalities, but still yield nonclassical teleportation fidelity. - Highlights: Black-Right-Pointing-Pointer Comparison of different aspects of quantum correlations. Black-Right-Pointing-Pointer Robustness of the initial tripartite GHZ and W class states against decoherence. Black-Right-Pointing-Pointer Bell-nonlocality sudden death under the influence of thermal reservoir. Black-Right-Pointing-Pointer A nonzero minimum tripartite negativity is needed for nonclassical teleportation. Black-Right-Pointing-Pointer All the Bell-nonlocal states yield nonclassical teleportation fidelity.
Multipartite entanglement arising from dense Euclidean lattices in dimensions 4-24
The group of automorphisms of Euclidean (embedded in Rn) dense lattices such as the root lattices D4 and E8, the Barnes-Wall lattice BW16, the unimodular lattice D12+ and the Leech lattice Λ24 may be generated by entangled quantum gates of the corresponding dimension. These (real) gates/lattices are useful for quantum error correction: for instance, the two- and four-qubit real Clifford groups are the automorphism groups of the lattices D4 and BW16, respectively, and the three-qubit real Clifford group is maximal in the Weyl group W(E8). Technically, the automorphism group Aut(Λ) of the lattice Λ is the set of orthogonal matrices B such that, following the conjugation action by the generating matrix of the lattice, the output matrix is unimodular (of determinant ±1, with integer entries). When the degree n is equal to the number of basis elements of Λ, Aut(Λ) also acts on basis vectors and is generated with matrices B such that the sum of squared entries in a row is 1, i.e. B may be seen as a quantum gate. For the dense lattices listed above, maximal multipartite entanglement arises. In particular, one finds a balanced tripartite entanglement in E8 (the two- and three-tangles have the same magnitude 1/4) and a Greenberger-Horne-Zeilinger-type entanglement in BW16. In this paper, we also investigate the entangled gates from D12+ and Λ24, by seeing them as systems coupling a qutrit to two- and three-qubits, respectively. In addition to quantum computing, the work may be related to particle physics in the spirit of Planat et al (2011 Rep. Math. Phys. 66 39-51).
Entanglement concentration for W-type entangled coherent states
An entangled coherent state (ECS) is one type of entanglement, which is widely discussed in the application of quantum information processing (QIP). In this paper, we propose an entanglement concentration protocol (ECP) to distill the maximally entangled W-type ECS from the partially entangled W-type ECS. In the ECP, we adopt the balanced beam splitter (BS) to make the parity check measurement. Our ECP is quite different from the conventional ECPs. After performing the ECP, not only can we obtain the maximally entangled ECS with some success probability, but also we can increase the amplitude of the coherent state. Therefore, it is especially useful in long-distance quantum communication, if the photon loss is considered. (general)
Entanglement revive and information flow within the decoherent environment
Shi, Jia-dong; Wang, Dong; Ye, Liu
2016-01-01
In this paper, the dynamics of entanglement is investigated in the presence of a noisy environment. We reveal its revival behavior and probe the mechanisms of this behavior via an information-theoretic approach. By analyzing the correlation distribution and the information flow within the composite system including the qubit subsystem and a noisy environment, it has been found that the subsystem-environment coupling can induce the quasi-periodic entanglement revival. Furthermore, the dynamical relationship among tripartite correlations, bipartite entanglement and local state information is explored, which provides a new insight into the non-Markovian mechanisms during the evolution. PMID:27506664
Measuring Entanglement in a Photonic Embedding Quantum Simulator.
Loredo, J C; Almeida, M P; Di Candia, R; Pedernales, J S; Casanova, J; Solano, E; White, A G
2016-02-19
Measuring entanglement is a demanding task that usually requires full tomography of a quantum system, involving a number of observables that grows exponentially with the number of parties. Recently, it was suggested that adding a single ancillary qubit would allow for the efficient measurement of concurrence, and indeed any entanglement monotone associated with antilinear operations. Here, we report on the experimental implementation of such a device-an embedding quantum simulator-in photonics, encoding the entangling dynamics of a bipartite system into a tripartite one. We show that bipartite concurrence can be efficiently extracted from the measurement of merely two observables, instead of 15, without full tomographic information. PMID:26943521
Entanglement revive and information flow within the decoherent environment.
Shi, Jia-Dong; Wang, Dong; Ye, Liu
2016-01-01
In this paper, the dynamics of entanglement is investigated in the presence of a noisy environment. We reveal its revival behavior and probe the mechanisms of this behavior via an information-theoretic approach. By analyzing the correlation distribution and the information flow within the composite system including the qubit subsystem and a noisy environment, it has been found that the subsystem-environment coupling can induce the quasi-periodic entanglement revival. Furthermore, the dynamical relationship among tripartite correlations, bipartite entanglement and local state information is explored, which provides a new insight into the non-Markovian mechanisms during the evolution. PMID:27506664
Topological entanglement negativity in Chern-Simons theories
Wen, Xueda; Ryu, Shinsei
2016-01-01
We study the topological entanglement negativity between two spatial regions in (2+1)-dimensional Chern-Simons gauge theories by using the replica trick and the surgery method. For a bipartitioned or tripartitioned spatial manifold, we show how the topological entanglement negativity depends on the presence of quasiparticles and the choice of ground states. In particular, for two adjacent non-contractible regions on a tripartitioned torus, the entanglement negativity provides a simple way to distinguish Abelian and non-Abelian theories. Our method applies to a Chern-Simons gauge theory defined on an arbitrary oriented (2+1)-dimensional spacetime manifold. Our results agree with the edge theory approach in a recent work (X. Wen, S. Matsuura and S. Ryu, arXiv:1603.08534).
Gualdi, Giulia; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2011-01-01
We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and non-interacting quantum systems and its optimization for ap...
Alishahiha, Mohsen; Allahbakhshi, Davood; Naseh, Ali
2013-01-01
Entanglement entropy is a statistical entropy measuring information loss due to coarse-graining corresponding to a spatial division of a system. In this paper we construct a thermodynamics (entanglement thermodynamics) which includes the entanglement entropy as the entropy variable, for a massless scalar field in Minkowski, Schwarzschild and Reissner-Nordstr{\\"o}m spacetimes to understand the statistical origin of black-hole thermodynamics. It is shown that the entanglement thermodynamics in ...
Entanglement dynamics of a three-qubit system with different interatomic distances
Feng, Ling-Juan; Zhang, Ying-Jie; Zhang, Lu; Xia, Yun-Jie
2015-11-01
We investigate the tripartite entanglement dynamics of three two-level atoms in a multi-mode vacuum field. By considering the influences of the interatomic distance and the initial condition on the lower bound of concurrence and the tripartite negativity, we show that an optimal interatomic distance can be found to minimize the collective damping. Interestingly, at the same optimal distance, the tripartite entanglement would be maximized in the open dynamics process. In the case of shorter interatomic distance, the tripartite entanglement can display the oscillatory behavior in the initial short-time limit and be trapped in a stationary value in the long-time limit. In addition, the tripartite entanglement for the general situation with different interatomic distances is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012, 11204156, and 11304179), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20133705110001 and 20123705120002), and the Natural Science Foundation of Shandong Province, China (Grant Nos. BS2013DX034, ZR2012FQ024, and ZR2014AP009).
Mutual Contextualization in Tripartite Graphs of Folksonomies
Au Yeung, Ching-Man; Gibbins, Nicholas; Shadbolt, Nigel
2007-01-01
The use of tags to describe Web resources in a collaborative manner has experienced rising popularity among Web users in recent years. The product of such activity is given the name folksonomy, which can be considered as a scheme of organizing information in the users’ own way. This research work attempts to analyze tripartite graphs – graphs involving users, tags and resources – of folksonomies and discuss how these elements acquire their semantics through their associations with other eleme...
Tripartite assembly of RND multidrug efflux pumps
Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier
2016-02-01
Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.
Quantum entanglement without eigenvalue spectra multipartite case
Chen, H
2001-01-01
We introduce algebriac sets in the products of complex projective spaces for multipartite mixed states, which are independent of their eigenvalues and only measure the "position" of their eigenvectors, as their non-local invariants (ie. remaining invariant after local untary transformations). The algebraic sets have to be the union of linear subspaces if the multipartite mixed state is separable, and thus we give a new separability criterion of multipartite mixed states. A continuous family of 4-party mixed states, whose members are separable for any 2:2 cut and entangled for any 1:3 cut (thus bound entanglement if 4 parties are isolated), is constructed and studied from our invariants and separability criterion. Examples of LOCC-incomparable entangled tripartite pure states are given to show it is hopeless to characterize the entanglement properties of tripartite pure states by only using the eigenvalue speactra of their partial traces. We also prove that at least $n^2+n-1$ terms of separable pure states, wh...
Gualdi, Giulia; Illuminati, Fabrizio
2010-01-01
We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting blocks of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent blocks. We clarify the mechanisms underlying the onset of entanglement between distant and non-interacting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.
Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio
2011-02-01
We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing. PMID:21405382
Entanglement sharing: from qubits to Gaussian states
Adesso, G; Adesso, Gerardo; Illuminati, Fabrizio
2005-01-01
It is a central trait of quantum information theory that there exist limitations to the free sharing of quantum correlations among multiple parties. Such {\\em monogamy constraints} have been introduced in a landmark paper by Coffman, Kundu and Wootters, who derived a quantitative inequality expressing a trade-off between the couplewise and the genuine tripartite entanglement for states of three qubits. Since then, a lot of efforts have been devoted to the investigation of distributed entanglement in multipartite quantum systems. In these proceedings we report, in a unifying framework, a bird's eye view of the most relevant results that have been established so far on entanglement sharing in quantum systems. We will take off from the domain of $N$ qubits, graze qudits, and finally land in the almost unexplored territory of multimode Gaussian states of continuous variable systems.
Samblowski, Aiko; Grosse, Nicolai; Lam, Ping Koy; Schnabel, Roman
2010-01-01
We report on the generation of entangled states of light between the wavelengths 810 and 1550 nm in the continuous variable regime. The fields were produced by type I optical parametric oscillation in a standing-wave cavity build around a periodically poled potassium titanyl phosphate crystal, operated above threshold. Balanced homodyne detection was used to detect the non-classical noise properties, while filter cavities provided the local oscillators by separating carrier fields from the entangled sidebands. We were able to obtain an inseparability of I=0.82, corresponding to about -0.86 dB of non-classical quadrature correlation.
Holweck, Frédéric; Lévay, Péter
2015-01-01
In this paper we present several multipartite quantum systems featuring the same type of genuine (tripartite) entanglement. Based on a geometric interpretation of the so-called $|W\\rangle$ and $|GHZ\\rangle$ states we show that the classification of all multipartite systems featuring those and only those two classes of genuine entanglement can be deduced from earlier work of algebraic geometers. This classification corresponds in fact to classification of fundamental subadjoint varieties and e...
Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping
Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde
2016-05-01
Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles.
Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping.
Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde
2016-01-01
Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles. PMID:27165122
Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping
Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde
2016-01-01
Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles. PMID:27165122
Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms
Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A2+. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A2+. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion
Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms
Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)
2015-08-15
Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.
Mutual Contextualization in Tripartite Graphs of Folksonomies
Yeung, Ching-Man Au; Gibbins, Nicholas; Shadbolt, Nigel
The use of tags to describe Web resources in a collaborative manner has experienced rising popularity among Web users in recent years. The product of such activity is given the name folksonomy, which can be considered as a scheme of organizing information in the users' own way. This research work attempts to analyze tripartite graphs - graphs involving users, tags and resources - of folksonomies and discuss how these elements acquire their semantics through their associations with other elements, a process we call mutual contextualization. By studying such process, we try to identify solutions to problems such as tag disambiguation, retrieving documents of similar topics and discovering communities of users. This paper describes the basis of the research work, mentions work done so far and outlines future plans.
Authenticating Tripartite Key Agreement Protocol with Pairings
Sheng-Li Liu; Fang-Guo Zhang; Ke-Fei Chen
2004-01-01
In this paper, an authenticated tripartite key agreement protocol is proposed, which is an ID-based one with pairings. This protocol involves only one round. The authenticity of the protocol is assured by a special signature scheme, so that messages carrying the information of two ephemeral keys can be broadcasted authentically by an entity. Consequently, one instance of the protocol results in eight session keys for three entities. In other word, one instance of the protocol generates a session key, which is eight times longer than those obtained from traditional key agreement protocols. Security attributes of the protocol are presented, and the computational overhead and bandwidth of the broadcast messages are analyzed as well.
Device-independent witnesses of genuine multipartite entanglement.
Bancal, Jean-Daniel; Gisin, Nicolas; Liang, Yeong-Cherng; Pironio, Stefano
2011-06-24
We consider the problem of determining whether genuine multipartite entanglement was produced in an experiment, without relying on a characterization of the systems observed or of the measurements performed. We present an n-partite inequality that is satisfied by all correlations produced by measurements on biseparable quantum states, but which can be violated by n-partite entangled states, such as Greenberger-Horne-Zeilinger states. In contrast to traditional entanglement witnesses, the violation of this inequality implies that the state is not biseparable independently of the Hilbert space dimension and of the measured operators. Violation of this inequality does not imply, however, genuine multipartite nonlocality. We show more generically how the problem of identifying genuine tripartite entanglement in a device-independent way can be addressed through semidefinite programming. PMID:21770616
Comparing Quantum Entanglement and Topological Entanglement
Kauffman, Louis H.; Lomonaco, Samuel J.
2002-01-01
This paper discusses relationships between topological entanglement and quantum entanglement. Specifically, we propose that for this comparison it is fundamental to view topological entanglements such as braids as "entanglement operators" and to associate to them unitary operators that are capable of creating quantum entanglement.
Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir
2014-12-15
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.
For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved
Adesso, Gerardo; Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita degli Studi di Salerno (Italy); CNISM and CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno (Italy); Via S Allende, 84081 Baronissi, SA (Italy)
2006-01-15
For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.
Output three-mode entanglement via coherently prepared inverted Y-type atoms
In this paper, the output quantum correlations of three fields interacting with inverted Y-type atoms inside a three-mode cavity are investigated. By numerically calculating the stationary noise spectra of the fields, we show that it is possible to generate the genuine tripartite continuous variable entanglement outside the cavity by coherently preparing the atoms in a superposition of the upper excited state and two ground states initially. Our numerical results demonstrate that both zero frequency entanglement and sideband frequency entanglement can be obtained under different initial coherent conditions. In addition, we investigate the thermal fluctuation effects on the quantum entanglement. It is found out that the entanglement occurring in a high frequency regime is more robust against thermal noise than the zero frequency entanglement, which may be useful for quantum communication. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Entanglement and coherence in quantum state merging
Streltsov, A; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-01-01
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to ...
Measurement of Creativity: The tripartite approach for creative thinking
Akira Horikami; Kiyoshi Takahashi
2014-01-01
The purpose of this paper is to propose a new measurement method of creativity. Based on the tripartite thinking model (TTM), this paper developed the tripartite creativity test (TCT). The TCT was generated by considering creative process in problem solving. The TCT defines creativity as the interaction of three modes of thinking: logical thinking, critical thinking, and lateral thinking. This model is apart from traditional definition of creativity that prescribes it as the skill for produci...
Policy modes for climate change: the role of tripartite partnerships
Kolk, A.; Pinkse, J.
2010-01-01
This position paper provides an initial overview of the role of tripartite partnerships for climate change in the broader framework of policy options available to address the issue. First, we will position partnerships in relation to other policy modes for climate change, including emissions trading schemes, voluntary agreements and individual corporate self-regulation. Next, partnerships for climate change are explored empirically, considering two existing databases for their tripartite init...
Modeling synaptic transmission of the tripartite synapse
Nadkarni, Suhita; Jung, Peter
2007-03-01
The tripartite synapse denotes the junction of a pre- and postsynaptic neuron modulated by a synaptic astrocyte. Enhanced transmission probability and frequency of the postsynaptic current-events are among the significant effects of the astrocyte on the synapse as experimentally characterized by several groups. In this paper we provide a mathematical framework for the relevant synaptic interactions between neurons and astrocytes that can account quantitatively for both the astrocytic effects on the synaptic transmission and the spontaneous postsynaptic events. Inferred from experiments, the model assumes that glutamate released by the astrocytes in response to synaptic activity regulates store-operated calcium in the presynaptic terminal. This source of calcium is distinct from voltage-gated calcium influx and accounts for the long timescale of facilitation at the synapse seen in correlation with calcium activity in the astrocytes. Our model predicts the inter-event interval distribution of spontaneous current activity mediated by a synaptic astrocyte and provides an additional insight into a novel mechanism for plasticity in which a low fidelity synapse gets transformed into a high fidelity synapse via astrocytic coupling.
Astaneh, Amin Faraji
2015-01-01
We use the Heat Kernel method to calculate the Entanglement Entropy for a given entangling region on a fractal. The leading divergent term of the entropy is obtained as a function of the fractal dimension as well as the walk dimension. The power of the UV cut-off parameter is (generally) a fractional number which indeed is a certain combination of these two indices. This exponent is known as the spectral dimension. We show that there is a novel log periodic oscillatory behavior in the entropy which has root in the complex dimension of a fractal. We finally indicate that the Holographic calculation in a certain Hyper-scaling violating bulk geometry yields the same leading term for the entanglement entropy, if one identifies the effective dimension of the hyper-scaling violating theory with the spectral dimension of the fractal. We provide more supports with comparing the behavior of the thermal entropy in terms of the temperature in these two cases.
Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames
We investigate the geometric measure of quantum discord of all possible bipartite divisions of a tripartite system of Dirac fields in noninertial frames. As a comparison, we calculate the geometric measure of entanglement. We discuss the properties of geometric measure of quantum discord and geometric measure of entanglement for three qubit–qubit subsystems with acceleration parameter and the parameter describing the degree of entanglement the system in detail. We have found a conservative relationship involving two of three geometric discords in some condition and another conservative relationship involving three geometric discords for initially maximally entangled states. By the way, we also report some conservative relationships of concurrence, mutual information and geometric measure of entanglement for two bipartite subsystems
We propose an inductive procedure to classify N-partite entanglement under stochastic local operations and classical communication provided such a classification is known for N-1 qubits. The method is based upon the analysis of the coefficient matrix of the state in an arbitrary product basis. We illustrate this approach in detail with the well-known bipartite and tripartite systems, obtaining as a by-product a systematic criterion to establish the entanglement class of a given pure state without resourcing to any entanglement measure. The general case is proved by induction, allowing us to find an upper bound for the number of N-partite entanglement classes in terms of the number of entanglement classes for N-1 qubits
Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames
Qiang, Wen-Chao, E-mail: qwcqj@163.com [Faculty of Science, Xi' an University of Architecture and Technology, Xi' an, 710055 (China); Zhang, Lei [Huaqing College, Xi' an University of Architecture and Technology, Xi' an, 710055 (China)
2015-03-06
We investigate the geometric measure of quantum discord of all possible bipartite divisions of a tripartite system of Dirac fields in noninertial frames. As a comparison, we calculate the geometric measure of entanglement. We discuss the properties of geometric measure of quantum discord and geometric measure of entanglement for three qubit–qubit subsystems with acceleration parameter and the parameter describing the degree of entanglement the system in detail. We have found a conservative relationship involving two of three geometric discords in some condition and another conservative relationship involving three geometric discords for initially maximally entangled states. By the way, we also report some conservative relationships of concurrence, mutual information and geometric measure of entanglement for two bipartite subsystems.
Continuity bounds for entanglement
Nielsen, M. A.
1999-01-01
This Brief Report quantifies the continuity properties of entanglement: how much does entanglement vary if we change the entangled quantum state just a little? This question is studied for the pure state entanglement of a bipartite system and for the entanglement of formation of a bipartite system in a mixed state.
Detecting Quantum Entanglement
Terhal, Barbara M.
2001-01-01
We review the criteria for separability and quantum entanglement, both in a bipartite as well as a multipartite setting. We discuss Bell inequalities, entanglement witnesses, entropic inequalities, bound entanglement and several features of multipartite entanglement. We indicate how these criteria bear on the experimental detection of quantum entanglement.
Entanglement and quantum fluctuations
Klyachko, Alexander A.; Shumovsky, Alexander S.
2003-01-01
We discuss maximum entangled states of quantum systems in terms of quantum fluctuations of all essential measurements responsible for manifestation of entanglement. Namely, we consider maximum entanglement as a property of states, for which quantum fluctuations come to their extreme.
Entanglement negativity in free-fermion systems: An overlap matrix approach
Chang, Po-Yao; Wen, Xueda
2016-05-01
In this paper, we calculate the entanglement negativity in free-fermion systems by use of the overlap matrices. For a tripartite system, if the ground state can be factored into triples of modes, we show that the partially transposed reduced density matrix can be factorized and the entanglement negativity has a simple form. However, the factorability of the ground state in a tripartite system does not hold in general. In this situation, the partially transposed reduced density matrix can be expressed in terms of the Kronecker product of matrices. We explicitly compute the entanglement negativity for the Su-Schrieffer-Heeger model, the integer Quantum Hall state, and a homogeneous one-dimensional chain. We find that the entanglement negativity for the integer quantum Hall states shows an area law behavior. For the entanglement negativity of two adjacent intervals in a homogeneous one-dimensional gas, we find agreement with the conformal field theory. Our method provides a numerically feasible way to study the entanglement negativity in free-fermion systems.
Generalized entanglement distillation
Sheng, Yu-Bo; Zhou, Lan
2014-01-01
We present a way for the entanglement distillation of genuine mixed state. Different from the conventional mixed state in entanglement purification protocol, each components of the mixed state in our protocol is a less-entangled state, while it is always a maximally entangled state. With the help of the weak cross-Kerr nonlinearity, this entanglement distillation protocol does not require the sophisticated single-photon detectors. Moreover, the distilled high quality entangled state can be re...
The entanglement evolution between two entangled atoms
Zong-Cheng Xu; Mai-Lin Liang; Ya-Ting Zhang; Jian-Quan Yao
2016-03-01
The entanglement properties of two entangled atoms interacting with the field under intensity-dependent coupling are studied in detail. It is found that the degree of entanglement between the two atoms changes periodically and undergoes the entanglement sudden death (ESD) and sudden birth at some time. The entanglement properties between the field and the atom insidethe cavity are dependent on the photon number. Most interestingly, the entanglement between the field and the atom in the field is influenced significantly by manipulating the atom outside the field.
Hadjiivanov, Ludmil
2015-01-01
Expository paper providing a historical survey of the gradual transformation of the "philosophical discussions" between Bohr, Einstein and Schr\\"odinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schr\\"odinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminati...
Quantum Teleportation of Tripartite Arbitrary State via W State
XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang
2005-01-01
A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates the measurements and informs the receiver her results, he can reconstruct the original state by the corresponding unitary transformation. The probability of the successful teleportation is also obtained.
Entanglement teleportation using three-qubit entanglement
Yeo, Ye
2003-01-01
We investigate the teleportation of an entangled two-qubit state using three-qubit GHZ and W channels. The effects of white noise on the average teleportation fidelity and amount of entanglement transmitted are also studied.
Remote preparation of atomic and field cluster states from a pair of tri-partite GHZ states
We propose two simple and resource-economical schemes for remote preparation of four-partite atomic as well as cavity field cluster states. In the case of atomic state generation, we utilize simultaneous resonant and dispersive interactions of the two two-level atoms at the preparation station. Atoms involved in these interactions are individually pair-wise entangled into two different tri-partite GHZ states. After interaction, the passage of the atoms through a Ramsey zone and their subsequent detection completes the protocol. However, for field state generation we first copy the quantum information in the cavities to the atoms by resonant interactions and then adapt the same method as in the case of atomic state generation. The method can be generalised to remotely generate any arbitrary graph states in a straightforward manner. (general)
Entanglement in continuous-variable systems: recent advances and current perspectives
We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states. Multipartite entanglement of Gaussian states is reviewed by discussing its qualification by different classes of separability, and the main consequences of the monogamy inequality, such as the quantification of genuine tripartite entanglement in three-mode Gaussian states, the promiscuous nature of entanglement sharing in symmetric Gaussian states and the possible coexistence of unlimited bipartite and multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non-Gaussian states, a field of research that is to a large extent yet to be explored
Entanglement in continuous-variable systems: recent advances and current perspectives
Adesso, Gerardo [Dipartimento di Fisica, Universita degli Studi di Roma ' La Sapienza' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Illuminati, Fabrizio [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2007-07-13
We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states. Multipartite entanglement of Gaussian states is reviewed by discussing its qualification by different classes of separability, and the main consequences of the monogamy inequality, such as the quantification of genuine tripartite entanglement in three-mode Gaussian states, the promiscuous nature of entanglement sharing in symmetric Gaussian states and the possible coexistence of unlimited bipartite and multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non-Gaussian states, a field of research that is to a large extent yet to be explored.
Distillation of bi-partite entanglement from W state with cavity QED
Deng Li; Chen Ai-Xi; Chen De-Hai; Huang Ke-Lin
2008-01-01
Following the theoretical protocol described by Fortescue and Lo [Fortescue B and Lo H K 2007 Phys. Rev. Lett. 98 260501], we present a scheme in which one can distill maximally entangled bi-partite states from a tri-partite W state with cavity QED. Our scheme enables the concrete physical system to realize its protocol. In our scheme, the rate distillation also asymptotically approaches one. Based on the present cavity QED techniques, we discuss the experimental feasibility.
Quantum entanglement degrees amplifier
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu; Meng, Xiang-Dong; Li, Hong; Zhang, Si-Qi
2015-01-01
The quantum entangled degrees of entangled states become smaller with the transmission distance increasing, how to keep the purity of quantum entangled states is the puzzle in quantum communication. In the paper, we have designed a new type entanglement degrees amplifier by one-dimensional photonic crystal, which is similar as the relay station of classical electromagnetic communication. We find when the entangled states of two-photon and three-photon pass through photonic crystal, their entanglement degrees can be magnified, which make the entanglement states can be long range propagation and the quantum communication can be really realized.
Completely mixed state is a critical point for three-qubit entanglement
Tamaryan, Sayatnova, E-mail: sayat@mail.yerphi.am [Department of Theoretical Physics, A. Alikhanyan National Laboratory, Yerevan (Armenia)
2011-06-06
Pure three-qubit states have five algebraically independent and one algebraically dependent polynomial invariants under local unitary transformations and an arbitrary entanglement measure is a function of these six invariants. It is shown that if the reduced density operator of a some qubit is a multiple of the unit operator, than the geometric entanglement measure of the pure three-qubit state is absolutely independent of the polynomial invariants and is a constant for such tripartite states. Hence a one-particle completely mixed state is a critical point for the geometric measure of entanglement. -- Highlights: → Geometric measure of pure three-qubits is expressed in terms of polynomial invariants. → When one Bloch vector is zero the measure is independent of the remaining invariants. → Hence a one-particle completely mixed state is a critical point for the geometric measure. → The existence of the critical points is an inherent feature of the entanglement.
A Mathematical Model of Tripartite Synapse: Astrocyte Induced Synaptic Plasticity
Tewari, Shivendra; Majumdar, Kaushik
2011-01-01
In this paper we present a biologically detailed mathematical model of tripartite synapses, where astrocytes modulate short-term synaptic plasticity. The model consists of a pre-synaptic bouton, a post-synaptic dendritic spine-head, a synaptic cleft and a peri-synaptic astrocyte controlling Ca2+ dynamics inside the synaptic bouton. This in turn controls glutamate release dynamics in the cleft. As a consequence of this, glutamate concentration in the cleft has been modeled, in which glutamate ...
Tag Meaning Disambiguation through Analysis of Tripartite Structure of Folksonomies
Au Yeung, Ching Man; Gibbins, Nicholas; Shadbolt, Nigel
2007-01-01
Collaborative tagging systems are becoming very popular recently. Web users use freely-chosen tags to describe shared resources, resulting in a folksonomy. One problem of folksonomies is that tags which appear in the same form may carry multiple meanings and represent different concepts. As this kind of tags are ambiguous, the precisions in both description and retrieval of the shared resources are reduced. We attempt to develop effective methods to disambiguate tags by studying the tripartit...
The Climate Change - Development Nexus and Tripartite Partnerships
Kolk, Ans; Pinkse, Jonatan
2011-01-01
textabstractIn view of the very limited number of tripartite partnerships for climate change in general, and those focused on development (developing countries) in parti cular, as shown in an earlier position paper (Kolk & Pinkse, 2010), it would seem useful to take a step back and consider the linkages between climate and development in more detail. In view of the very limited number of triparti te partnerships for climate change in general, and those focused on development (developing count...
Renormalizing Entanglement Distillation
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens
2016-01-01
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
Generalized Remote Preparation of Arbitrary m-qubit Entangled States via Genuine Entanglements
Dong Wang
2015-03-01
Full Text Available Herein, we present a feasible, general protocol for quantum communication within a network via generalized remote preparation of an arbitrary m-qubit entangled state designed with genuine tripartite Greenberger–Horne–Zeilinger-type entangled resources. During the implementations, we construct novel collective unitary operations; these operations are tasked with performing the necessary phase transfers during remote state preparations. We have distilled our implementation methods into a five-step procedure, which can be used to faithfully recover the desired state during transfer. Compared to previous existing schemes, our methodology features a greatly increased success probability. After the consumption of auxiliary qubits and the performance of collective unitary operations, the probability of successful state transfer is increased four-fold and eight-fold for arbitrary two- and three-qubit entanglements when compared to other methods within the literature, respectively. We conclude this paper with a discussion of the presented scheme for state preparation, including: success probabilities, reducibility and generalizability.
Quantum entanglement and quantum operation
无
2008-01-01
It is a simple introduction to quantum entanglement and quantum operations. The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations. It includes remote state preparation by using any pure entangled states, nonlocal operation implementation using entangled states, entanglement capacity of two-qubit gates and two-qubit gates construction.
Yamazaki, Masahito
2013-01-01
We propose a new concept of entanglement for quantum systems: entanglement in theory space. This is defined by decomposing a theory into two by an un-gauging procedure. We provide two examples where this newly-introduced entanglement is closely related with conventional geometric entropies: deconstruction and AGT-type correspondence.
Observer-dependent entanglement
Understanding the observer-dependent nature of quantum entanglement has been a central question in relativistic quantum information. In this paper, we will review key results on relativistic entanglement in flat and curved spacetime and discuss recent work which shows that motion and gravity have observable effects on entanglement between localized systems. (paper)
Observer dependent entanglement
Alsing, Paul M.; Fuentes, Ivette
2012-01-01
Understanding the observer-dependent nature of quantum entanglement has been a central question in relativistic quantum information. In this paper we will review key results on relativistic entanglement in flat and curved spacetime and discuss recent work which shows that motion and gravity have observable effects on entanglement between localized systems.
Nonequilibrium thermal entanglement
Results on heat current, entropy production rate, and entanglement are reported for a quantum system coupled to two different temperature heat reservoirs. By applying a temperature gradient, different quantum states can be found with exactly the same amount of entanglement but different purity degrees and heat currents. Furthermore, a nonequilibrium enhancement-suppression transition behavior of the entanglement is identified
Jaynes principle versus entanglement
Horodecki, M; Horodecki, R; Horodecki, Michal; Horodecki, Pawel; Horodecki, Ryszard
1997-01-01
We show that the Jaynes principle of maximum entropy when applied to compound quantum system can produce states with non-minimal entanglement. The resulting surplus of entanglement occurs for the sets of both local and nonlocal observables. We also point out that the estimation of the parameters of quantum noise should be based on minimization of entanglement rather than maximization of entropy.
Quantum Entanglement and Cryptography
Gray, Sean
2014-01-01
In this paper the features of quantum systems which lay the foundation of quantum entanglement are studied. General properties of entangled states are discussed, including their entropy and relation to Bell's inequality. Applications of entanglement, namely quantum teleportation and quantum cryptography, are also considered.
Entanglement of Quantum Evolutions
Zanardi, Paolo
2000-01-01
The notion of entanglement can be naturally extended from quantum-states to the level of general quantum evolutions. This is achieved by considering multi-partite unitary transformations as elements of a multi-partite Hilbert space and then extended to general quantum operations. We show some connection between this entanglement and the entangling capabilities of the quantum evolution.
Entanglement structure of the two-channel Kondo model
Alkurtass, Bedoor; Bayat, Abolfazl; Affleck, Ian; Bose, Sougato; Johannesson, Henrik; Sodano, Pasquale; Sørensen, Erik S.; Le Hur, Karyn
2016-02-01
Two electronic channels competing to screen a single impurity spin, as in the two-channel Kondo model, are expected to generate a ground state with a nontrivial entanglement structure. We exploit a spin-chain representation of the two-channel Kondo model to probe the ground-state block entropy, negativity, tangle, and Schmidt gap, using a density matrix renormalization group approach. In the presence of symmetric coupling to the two channels, we confirm field-theory predictions for the boundary entropy difference ln(gUV/gIR) =ln(2 ) /2 between the ultraviolet and infrared limits and the leading ln(x )/x impurity correction to the block entropy. The impurity entanglement Simp is shown to scale with the characteristic length ξ2 CK. We show that both the Schmidt gap and the entanglement of the impurity with one of the channels—as measured by the negativity—faithfully serve as order parameters for the impurity quantum phase transition appearing as a function of channel asymmetry, allowing for explicit determination of critical exponents, ν ≈2 and β ≈0.2 . Remarkably, we find the emergence of tripartite entanglement only in the vicinity of the critical channel-symmetric point.
Structures in entanglement dynamics
Understanding the dynamics of entanglement that is exhibited by a quantum system constitutes a major step in the venture to harvest this quantum effect in potential applications, and to elaborate the role that entanglement plays in real world settings. Interesting dynamics include collective coherent driving and general decoherence processes. Without resorting to the phenomenological treatment of specific examples, we present general features of the structure underlying the dynamics of entanglement. Starting from low dimensional systems where algebraic properties of some entanglement monotones allow for an ''entanglement equation of motion'' we continue, using topological and measure theoretic approaches, to typical behaviour exhibited in the thermodynamic limit
McLaren, Melanie; Leach, Jonathan; Roux, Filippus S; Padgett, Miles J; Forbes, Andrew
2012-01-01
Orbital angular momentum (OAM) entanglement is investigated in the Bessel-Gauss (BG) basis. Having a readily adjustable radial scale, BG modes provide a more favourable basis for OAM entanglement over Laguerre-Gaussian (LG) modes. The OAM bandwidth in terms of BG modes can be increased by selection of particular radial modes and leads to a flattening of the spectrum. The flattening of the spectrum allows for higher entanglement. We demonstrate increased entanglement in terms of BG modes by performing a Bell-type experiment and violating the appropriate Clauser Horne Shimony Holt (CHSH) inequality. In addition, we reconstruct the quantum state of BG modes entangled in high-dimensions.
Entangling power of permutations
The notion of entangling power of unitary matrices was introduced by Zanardi et al., [Phys. Rev. A 62, 030301 (2000)]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with a possible exception for 36. Our result enables us to construct generic examples of 4-qudit maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimensions 4 and 9, and we give some estimates for higher dimensions
Renormalized entanglement entropy
Taylor, Marika
2016-01-01
We develop a renormalization method for holographic entanglement entropy based on area renormalization of entangling surfaces. The renormalized entanglement entropy is derived for entangling surfaces in asymptotically locally anti-de Sitter spacetimes in general dimensions and for entangling surfaces in four dimensional holographic renormalization group flows. The renormalized entanglement entropy for disk regions in $AdS_4$ spacetimes agrees precisely with the holographically renormalized action for $AdS_4$ with spherical slicing and hence with the F quantity, in accordance with the Casini-Huerta-Myers map. We present a generic class of holographic RG flows associated with deformations by operators of dimension $3/2 < \\Delta < 5/2$ for which the F quantity increases along the RG flow, hence violating the strong version of the F theorem. We conclude by explaining how the renormalized entanglement entropy can be derived directly from the renormalized partition function using the replica trick i.e. our re...
Baur, M; Fedorov, A; Steffen, L; Filipp, S; da Silva, M P; Wallraff, A
2012-01-27
Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%. PMID:22400817
Entanglement of two hybrid optomechanical cavity composed of BEC atoms under Bell detection
Eghbali-Arani, Mohammad
2016-01-01
In this paper, firstly, we exploit two bipartite entanglement of output optical field, moving mirror,and the lowest band of a one dimensional BEC inside a driven optomechanical cavity. We consider atomic collision on the behaviour of the BEC in the weak photon-atom coupling, and use Bogoliubov approximation for the condensate. Secondly under above conditions, we propose a scheme for entanglement swapping which involves tripartite systems. In our investigation, we consider a scenario where BECs, mirrors, and field modes are given in a Gaussian state with a covariance matrix (CM). By applying the Bell measurement to the output optical field modes, we show how the remote entanglement between two BECs, two mirrors, and BEC-mirror modes in different optomechanical cavity can be generated.
Entanglement - From Particles to Consciousness
Teodorani, M.
2007-06-01
This book, which is entirely devoted to the description and discussion of the mechanism of quantum entanglement, is divided into three main parts: a) canonical entanglement in the realm of elementary particles; b) entanglement in the biological environment (DNA and microtubules); c) entanglement in the psychic realm. Cosmological entanglement and non-local SETI are discussed as well.
On bound entanglement assisted distillation
Vedral, V.
1999-01-01
We investigate asymptotic distillation of entanglement in the presence of an unlimited amount of bound entanglement for bi-partite systems. We show that the distillability is still bounded by the relative entropy of entanglement. This offers a strong support to the fact that bound entanglement does not improve distillation of entanglement.
The Bell Inequality and Entanglement
Munro, W J; Nemoto, K.; White, A. G.
2001-01-01
Entanglement is a critical resource used in many current quantum information schemes. As such entanglement has been extensively studied in two qubit systems and its entanglement nature has been exhibited by violations of the Bell inequality. Can the amount of violation of the Bell inequality be used to quantify the degree of entanglement. What do Bell inequalities indicate about the nature of entanglement?
Bidens tripartite L.: A Cd-accumulator confirmed by pot culture and site sampling experiment
Characteristics of accumulation and tolerance of cadmium (Cd) in Bidens tripartite L. were investigated to identify Cd-accumulating properties. In this study, pot culture experiment and site sampling experiments were conducted to assess whether this plant is a heavy metal hyperaccumulator or accumulator. The results indicated that the Cd enrichment factor (concentration in plant/soil) and Cd translocation factor (concentration in shoot/root) of B. tripartite was principally >1 in pot culture and concentration gradient experiments. Shoot biomass was not reduced significantly (p -1, the threshold concentration for a Cd-hyperaccumulator. In the site sampling experiment, B. tripartite also showed Cd-accumulator properties. Based on these results, B. tripartite could be identified as a Cd-accumulator. Thus, B. tripartite should only be considered as a Cd-accumulator.
Spectral conditions for entanglement witnesses vs. bound entanglement
Chruściński, Dariusz; Kossakowski, Andrzej; Sarbicki, Gniewomir
2009-01-01
It is shown that entanglement witnesses constructed via the family of spectral conditions are decomposable, i.e. cannot be used to detect bound entanglement. It supports several observations that bound entanglement reveals highly non-spectral features.
Entanglement-annihilating and entanglement-breaking channels
Moravčíková, Lenka; Ziman, Mario
2010-01-01
We introduce and investigate a family of entanglement-annihilating channels. These channels are capable of destroying any quantum entanglement within the system they act on. We show that they are not necessarily entanglement breaking. In order to achieve this result we analyze the subset of locally entanglement-annihilating channels. In this case, the same local noise applied on each subsystem individually is less entanglement annihilating (with respect to multi-partite entanglement) as the n...
Theory of entanglement and entanglement-assisted communication
Bennett, Charles H.
2011-03-01
Protocols such as quantum teleportation and measurement-based quantum computation highlight the importance of entanglement as a resource to be quantified and husbanded. Unlike classical shared randomness, entanglement has a profound effect on the capacity of quantum channels: a channel's entanglement-assisted capacity can be much greater than its unassisted capacity, and in any case is given by much a simpler formula, paralleling Shannon's original formula for the capacity of a classical channel. We review the differences between entanglement and weaker forms of correlation, and the theory of entanglement distillation and entanglement-assisted communication, including the role of strong forms of entanglement such as entanglement-embezzling states.
Thermalization of entanglement.
Zhang, Liangsheng; Kim, Hyungwon; Huse, David A
2015-06-01
We explore the dynamics of the entanglement entropy near equilibrium in highly entangled pure states of two quantum-chaotic spin chains undergoing unitary time evolution. We examine the relaxation to equilibrium from initial states with either less or more entanglement entropy than the equilibrium value, as well as the dynamics of the spontaneous fluctuations of the entanglement that occur in equilibrium. For the spin chain with a time-independent Hamiltonian and thus an extensive conserved energy, we find slow relaxation of the entanglement entropy near equilibration. Such slow relaxation is absent in a Floquet spin chain with a Hamiltonian that is periodic in time and thus has no local conservation law. Therefore, we argue that slow diffusive energy transport is responsible for the slow relaxation of the entanglement entropy in the Hamiltonian system. PMID:26172682
Unlocking fermionic mode entanglement
Friis, Nicolai
2016-06-01
Aside from other puzzling features of entanglement, it has been debated whether a physically meaningful notion of entanglement requires two (or more) particles as carriers of the correlated degrees-of-freedom, or if a single particle could be considered to be entangled as well. While the usefulness of single-boson entanglement has been demonstrated some time ago, the restrictions of superselection rules have previously thwarted attempts at similar arguments for single fermions. In Dasenbrook et al (2016 New J. Phys. 18 043036) this obstacle is overcome. The authors propose a scheme for a Bell test on two copies of single-electron states whose entanglement is individually not accessible. The discussed scheme, which makes use of recent progress in electronic quantum optics, provides an experimentally viable and theoretically unambiguous way to assert that certain single-electron states can be considered to be entangled.
Multipartite entanglement measures
Szalay, Szilárd
2015-10-01
The main concern of this paper is how to define proper measures of multipartite entanglement for mixed quantum states. Since the structure of partial separability and multipartite entanglement is getting complicated if the number of subsystems exceeds two, one cannot expect the existence of an ultimate scalar entanglement measure, which grasps even a small part of the rich hierarchical structure of multipartite entanglement, and some higher-order structure characterizing that is needed. In this paper we make some steps in this direction. First, we reveal the lattice-theoretic structure of the partial separability classification, introduced earlier [Sz. Szalay and Z. Kökényesi, Phys. Rev. A 86, 032341 (2012), 10.1103/PhysRevA.86.032341]. It turns out that, mathematically, the structure of the entanglement classes is the up-set lattice of the structure of the different kinds of partial separability, which is the down-set lattice of the lattice of the partitions of the subsystems. It also turns out that, physically, this structure is related to the local operations and classical communication convertibility: If a state from a class can be mapped into another one, then that class can be found higher in the hierarchy. Second, we introduce the notion of multipartite monotonicity, expressing that a given set of entanglement monotones, while measuring the different kinds of entanglement, shows also the same hierarchical structure as the entanglement classes. Then we construct such hierarchies of entanglement measures and propose a physically well-motivated one, being the direct multipartite generalization of the entanglement of formation based on the entanglement entropy, motivated by the notion of statistical distinguishability. The multipartite monotonicity shown by this set of measures motivates us to consider the measures to be the different manifestations of some "unified" notion of entanglement.
Entanglement in neutrino oscillations
Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2007-01-01
Flavor oscillations in elementary particle physics are related to multi-mode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We disc...
Quantum entanglement and quantum operation
2008-01-01
It is a simple introduction to quantum entanglement and quantum operations.The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations.It includes remote state preparation by using any pure entangled states,nonlocal operation implementation using entangled states,entanglement capacity of two-qubit gates and two-qubit gates construction.
Entanglement Criteria - Quantum and Topological
Kauffman, Louis H.; Lomonaco Jr., Samuel J.
2003-01-01
This paper gives a criterion for detecting the entanglement of a quantum state, and uses it to study the relationship between topological and quantum entanglement. It is fundamental to view topological entanglements such as braids as entanglement operators and to associate to them unitary operators that are capable of creating quantum entanglement. The entanglement criterion is used to explore this connection. The paper discusses non-locality in the light of this criterion.
Geometric multipartite entanglement measures
Paz-Silva, Gerardo A. [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)]. E-mail: gerapaz@univalle.edu.co; Reina, John H. [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia) and Institut fuer Theoretische Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)]. E-mail: j.reina-estupinan@physics.ox.ac.uk
2007-05-21
Within the framework of constructions for quantifying entanglement, we build a natural scenario for the assembly of multipartite entanglement measures based on Hopf bundle-like mappings obtained through Clifford algebra representations. Then, given the non-factorizability of an arbitrary two-qubit density matrix, we give an alternate quantity that allows the construction of two types of entanglement measures based on their arithmetical and geometrical averages over all pairs of qubits in a register of size N, and thus fully characterize its degree and type of entanglement. We find that such an arithmetical average is both additive and strongly super additive.
Teleportation via classical entanglement
Rafsanjani, Seyed Mohammad Hashemi; Magaña-Loaiza, Omar S; Boyd, Robert W
2015-01-01
We present a classical counterpart to quantum teleportation that uses classical entanglement instead of quantum entanglement. In our implementation we take advantage of classical entanglement among three parties: orbital angular momentum (OAM), polarization, and the radial degrees of freedom of a beam of light. We demonstrate the teleportation of arbitrary OAM states, in the subspace spanned by any two OAM states, to the polarization of the same beam. Our letter presents the first classical demonstration of a commonly-perceived--quantum phenomenon that requires entanglement among more than two parties.
Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing; Fei, Shao-Ming
2016-08-01
We present several criteria for genuine multipartite entanglement from universal uncertainty relations based on majorization theory. Under non-negative Schur-concave functions, the vector-type uncertainty relation generates a family of infinitely many detectors to check genuine multipartite entanglement. We also introduce the concept of k-separable circles via geometric distance for probability vectors, which include at most ( k-1)-separable states. The entanglement witness is also generalized to a universal entanglement witness which is able to detect the k-separable states more accurately.
Renormalizing Entanglement Distillation.
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T; Eisert, Jens
2016-01-15
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics-ideas from renormalization and matrix-product states and operators-with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow. PMID:26824532
Nuclear shell effect and collinear tripartition of nuclei
Nasirov, A K; Tashkhodjaev, R B
2014-01-01
A possibility of formation of the three reaction products having comparable masses at the spontaneous fission of $^{252}$Cf is theoretically explored. This work is aimed to study the mechanism leading to observation of the reaction products with masses $M_1=$136---140 and $M_2=$68---72 in coincidence by the FOBOS group in JINR. The same type of ternary fission decay has been observed in the reaction $^{235}$U(n$_{\\rm th}$,fff). The potential energy surface for the ternary system forming a collinear nuclear chain is calculated for the wide range of mass and charge numbers of constituent nuclei. The results of the PES for the tripartition of $^{252}$Cf(sf,fff) shows, that we have favorable dynamical conditions for the formation of fragments with mass combinations of clusters $^{68-70}$Ni with $^{130-132}$Sn and with missing cluster $^{48-52}$Ca.
Literature, Society And The Writer In Tripartite Unity
George Nworah Anaso
2014-08-01
Full Text Available The proactive unity of purpose between Literature, society and the writer is the main focus of this paper. Writers use Literature to address various important themes or the goings on in the society, with the purpose of edifying its virtues and condemning the vices so as to adulate the good deeds or correct the society where it goes wrong. However, this role often exposes the writer to danger and risks from vested interests. The paper nevertheless recommends both local and international actions that could be explored to enhance Literature, society and the writer’s works. It concludes with the submission that with proper political education, the society would be better placed to choose more responsible leaders so that the lots of the society would be better enhanced. In this way the tripartite unity and the full potentials of Literature and writers in society would be realized.
Nuclear shell effect and collinear tripartition of nuclei
Avazbek K Nasirov; Wolfram von Oertzen; Rustam B Tashkhodjaev
2015-08-01
A possibility for the formation of three reaction products having comparable masses at the spontaneous fission of 252Cf is theoretically explored. This work is aimed to study the mechanism leading to the observation of the reaction products with masses $M_{1}$ = 136–140 and $M_{2}$ = 68–72 in coincidence with the FOBOS group in JINR. The same type of ternary fission decay has been observed in the 235U(nth, fff) reaction. The potential energy surface (PES) for the ternary system forming a collinear nuclear chain is calculated for a wide range of masses and charge numbers of the constituent nuclei. The results of the PES for the tripartition of 252Cf(sf, fff) allows us to establish dynamical conditions leading to the formation of fragments with mass combinations of clusters 68−70Ni with 130−132Sn and with the missing cluster 48−52Ca.
Support for an expanded tripartite influence model with gay men.
Tylka, Tracy L; Andorka, Michael J
2012-01-01
This study investigated whether an expanded tripartite influence model would represent gay men's experiences. This model was extended by adding partners and gay community involvement as sources of social influence and considering dual body image pathways (muscularity and body fat dissatisfaction) to muscularity enhancement and disordered eating behaviors. Latent variable structural equation modeling analyses upheld this model for 346 gay men. Dual body image pathways to body change behaviors were supported, although three unanticipated interrelationships emerged, suggesting that muscularity and body fat concerns and behaviors may be more integrated for gay men. Internalization of the mesomorphic ideal, appearance comparison, muscularity dissatisfaction, and body fat dissatisfaction were key mediators in the model. Of the sources of social influence, friend and media pressure to be lean, gay community involvement, and partner, friend, media, and family pressures to be muscular made incremental contributions. Unexpectedly, certain sources were directly connected to body change behaviors. PMID:22036192
Continuous variable quantum communication with bright entangled optical beams
XIE Chang-de; ZHANG Jing; PAN Qing; JIA Xiao-jun; PENG Kun-chi
2006-01-01
In this paper,we briefly introduce the basic concepts and protocols of continuous variable quantum communication,and then summarize the experimental researches accomplished by our group in this field.The main features of quantum communication systems used in our experiments are:(1) The bright entangled optical beams with the anticorrelated amplitude quadratures and the correlated phase quadratures that serve as the entanglement resources and (2) The Bell-state direct detection systems are utilized in the measurements of quantum entanglement and transmitted signals instead of the usually balanced homodyne detectors.
Can, M. Ali; Klyachko, Alexander; SHUMOVSKY, Alexander
2004-01-01
Using the approach to quantum entanglement based on the quantum fluctuations of observables, we show the existence of perfect entangled states of a single "spin-1" particle. We give physical examples related to the photons, condensed matter physics, and particle physics.
Entanglement generated by dissipation
Krauter, Hanna; Jensen, Kasper; Wasilewski, Wojciech; Petersen, Jonas M; Cirac, J Ignacio; Polzik, Eugene S
2010-01-01
Entanglement is not only one of the most striking features of Quantum Mechanics but also an essential ingredient in most applications in the field of Quantum Information. Unfortunately, this property is very fragile. In experiments conducted so far, coupling of the system to a quantum mechanical environment, commonly referred to as dissipation, either inhibits entanglement or prevents its generation. In this Letter, we report on an experiment in which dissipation induces entanglement between two atomic objects rather than impairing it. This counter-intuitive effect is achieved by engineering the dissipation by means of laser- and magnetic fields, and leads to entanglement which is very robust and therefore long-lived. Our system consists of two distant macroscopic ensembles containing about 10^{12} atoms coupled to the environment composed of the vacuum modes of the electromagnetic field. The two atomic objects are kept entangled by dissipation at room temperature for about 0.015s. The prospects of using this...
Floating Entanglement Witness Measure and Genetic Algorithm
Baghbanpourasl, A.; Najarbashi, G.; Seyedkazemi, M.
2007-01-01
In this paper based on the notion of entanglement witness, a new measure of entanglement called floating entanglement witness measure is introduced which satisfies some of the usual properties of a good entanglement measure. By exploiting genetic algorithm, we introduce a classical algorithm that computes floating entanglement witness measure. This algorithm also provides a method for finding entanglement witness for a given entangled state.
Entanglement and decoherence: fragile and robust entanglement
Novotný, Jaroslav; Jex, Igor
2011-01-01
The destruction of entanglement of open quantum systems by decoherence is investigated in the asymptotic long-time limit. Starting from a general and analytically solvable decoherence model which does not involve any weak-coupling or Markovian assumption it is shown that two fundamentally different classes of entangled states can be distinguished. Quantum states of the first class are fragile against decoherence so that they can be disentangled asymptotically even if coherences between pointer states are still present. Quantum states of the second type are robust against decoherence. Asymptotically they can be disentangled only if also decoherence is perfect. A simple criterion for identifying these two classes on the basis of two-qubit entanglement is presented.
The motivation of this thesis was to create higher-order entanglements. The first experimental observation of a four-photon entanglement was presented in the experiment of this thesis. And the visibility of this entanglement was 0.79+-0.06, which is sufficient to make claims of the nonlocality of quantum mechanics. This therefore lays a foundation for experiments showing the nonlocality of teleportation, and the purification of entanglement. The work of this thesis brings together a lot of earlier work done by the Zeilinger Group, and lays a foundation for future experiments. Earlier experiments such as teleportation together with entanglement swapping, which are 'complete teleportation' in as much as the state teleported is entirely undefined, can be combined and re-done with this four-photon entanglement. This result would be the first demonstration of complete, nonlocal teleportation. Also this experiment can be slightly modified and used to perform the first experimental quantum purification of entanglement, which is of vital importance to the fields of quantum information, and also is interesting for fundamental experiments on entanglement. Another direct application of this experiment is to perform the first 'event-ready' testing of Bell's Inequality. Here the four-photon entanglement can be used as a source of entangled photons, whereby the photons have no common source. This would enable an even more stringent testing of Bells theorem. Finally this experiment can be used for the demonstration and investigation of many practical, directly applicable quantum information schemes. For instance quantum cryptography, error correction, and computing. (author)
Experimental entanglement restoration on entanglement-breaking channels
SCIARRINO, Fabio; Nagali, Eleonora; De Martini, Francesco; Gavenda, Miroslav; Filip, Radim
2008-01-01
Quantum entanglement, a fundamental property ensuring security of key distribution and efficiency of quantum computing, is extremely sensitive to decoherence. Different procedures have been developed in order to recover entanglement after propagation over a noisy channel. However, besides a certain amount of noise, entanglement is completely lost. In this case the channel is called entanglement breaking and any multi-copy distillation methods cannot help to restore even a bit of entanglement....
Entanglement negativity in the multiverse
Kanno, Sugumi [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao (Spain); Laboratory for Quantum Gravity & Strings and Astrophysics, Cosmology & Gravity Center, Department of Mathematics & Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Shock, Jonathan P. [Laboratory for Quantum Gravity & Strings and Astrophysics, Cosmology & Gravity Center, Department of Mathematics & Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); National Institute for Theoretical Physics, Private Bag X1, Matieland, 7602 (South Africa); Soda, Jiro [Department of Physics, Kobe University, Kobe 657-8501 (Japan)
2015-03-10
We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.
Entanglement negativity in the multiverse
We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse
Demonstration of a bright and compact source of tripartite nonclassical light
Allevi, Alessia; Bondani, Maria; Paris, Matteo G. A.; Andreoni, Alessandra
2008-01-01
We experimentally demonstrate the nonclassical photon number correlations expected in tripartite continuous variable states obtained by parametric processes. Our scheme involves a single nonlinear crystal, where two interlinked parametric interactions take place simultaneously, and represents a bright and compact source of a sub-shot-noise tripartite light field. We analyze the effects of the pump intensities on the numbers of detected photons and on the amount of noise reduction in some deta...
Lower bound on concurrence for arbitrary-dimensional tripartite quantum states
Chen, Wei; Fei, Shao-Ming; Zheng, Zhu-Jun
2016-06-01
In this paper, we study the concurrence of arbitrary-dimensional tripartite quantum states. An explicit operational lower bound of concurrence is obtained in terms of the concurrence of substates. A given example shows that our lower bound may improve the well-known existing lower bounds of concurrence. The significance of our result is to get a lower bound when we study the concurrence of arbitrary m⊗ n⊗ l -dimensional tripartite quantum states.
Entanglement renormalization and integral geometry
Huang, Xing; Lin, Feng-Li
2015-01-01
We revisit the applications of integral geometry in AdS$_3$ and argue that the metric of the kinematic space can be realized as the entanglement contour, which is defined as the additive entanglement density. From the renormalization of the entanglement contour, we can holographically understand the operations of disentangler and isometry in multi-scale entanglement renormalization ansatz. Furthermore, a renormalization group equation of the long-distance entanglement contour is then derived....
Entanglement in Quantum Process Algebra
Wang, Yong
2014-01-01
We explicitly model entanglement in quantum processes by treating entanglement as a kind of parallelism. We introduce a shadow constant quantum operation and a so-called entanglement merge into quantum process algebra qACP. The transition rules of the shadow constant quantum operation and entanglement merge are designed. We also do a sound and complete axiomatization modulo the so-called quantum bisimularity for the shadow constant quantum operation and entanglement merge. Then, this new type...
Multipartite Entanglement And Firewalls
Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas
2016-03-01
Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully AMPS have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a ``firewall'' inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as ``monogamy'' plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. We identified an example which could change the AMPS accounting of quantum entanglement and perhaps eliminating the need for a firewall. Looking at different many body entanglement measures and their monogamy properties can tell us subtle ways in which different subsystems can share their entanglement. Specific measures we consider include negativity, concurrence, and mutual information. Taking insights from these different measures, we constructed toy models for black hole decay which have different entanglement behaviors than those assumed by AMPS. We hope to use our effective toy model to demonstrate interesting new ways of thinking about black holes.
Adesso, G; Serafini, A; Adesso, Gerardo; Illuminati, Fabrizio; Serafini, Alessio
2005-01-01
We present a complete analysis of multipartite entanglement of three-mode Gaussian states of continuous variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations will be quantified by a proper convex roof extension of the squared logarithmic negativity (the contangle), satisfying a monogamy relation for multimode Gaussian states, whose proof will be reviewed and elucidated. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communication and defines a measure of genuine tripartite entanglement. We analytically determine the residual contangle for arbitrary pure three-mode Gaussian states and study the distribution of quantum correlations for such states. ...
Probabilistic Teleportation via Entanglement
Li, De-Chao; Shi, Zhong-Ke
2008-10-01
With an arbitrary bi-particle entangled mixed state which is shared by Alice (the sender) and Bob (the receiver) acted as a quantum channel, at first, a teleportation protocol that Alice successfully transmits an unknown mixed state to Bob based on a positive operator-valued measurement (POVM) is presented. The upper bound of probability to teleport successfully an unknown mixed state is then investigated, and conclude that it completely depends on the entanglement degree of the bi-particle entangled mixed state as a resource.
Baez, John C
2014-01-01
Maldacena and Susskind have proposed a correspondence between wormholes and entanglement, dubbed ER=EPR. We study this in the context of 3d topological quantum field theory, where we show that the formation of a wormhole is the same process as creating a particle-antiparticle pair. A key feature of the ER=EPR proposal is that certain apparently entangled degrees of freedom turn out to be the same. We name this phenomenon "fake entanglement", and show how it arises in our topological quantum field theory model.
Multiple-copy entanglement transformation and entanglement catalysis
We prove that any multiple-copy entanglement transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A 65, 052315 (2002)] can be implemented by a suitable entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)]. Furthermore, we show that the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones. Most interestingly, we show that an arbitrarily large number of copies of state should be considered in multiple-copy entanglement transformations
Nematodes, bacteria, and flies: a tripartite model for nematode parasitism.
Hallem, Elissa A; Rengarajan, Michelle; Ciche, Todd A; Sternberg, Paul W
2007-05-15
More than a quarter of the world's population is infected with nematode parasites, and more than a hundred species of nematodes are parasites of humans [1-3]. Despite extensive morbidity and mortality caused by nematode parasites, the biological mechanisms of host-parasite interactions are poorly understood, largely because of the lack of genetically tractable model systems. We have demonstrated that the insect parasitic nematode Heterorhabditis bacteriophora, its bacterial symbiont Photorhabdus luminescens, and the fruit fly Drosophila melanogaster constitute a tripartite model for nematode parasitism and parasitic infection. We find that infective juveniles (IJs) of Heterorhabditis, which contain Photorhabdus in their gut, can infect and kill Drosophila larvae. We show that infection activates an immune response in Drosophila that results in the temporally dynamic expression of a subset of antimicrobial peptide (AMP) genes, and that this immune response is induced specifically by Photorhabdus. We also investigated the cellular and molecular mechanisms underlying IJ recovery, the developmental process that occurs in parasitic nematodes upon host invasion and that is necessary for successful parasitism. We find that the chemosensory neurons and signaling pathways that control dauer recovery in Caenorhabditis elegans also control IJ recovery in Heterorhabditis, suggesting conservation of these developmental processes across free-living and parasitic nematodes. PMID:17475494
An ancient tripartite symbiosis of plants, ants and scale insects.
Ueda, Shouhei; Quek, Swee-Peck; Itioka, Takao; Inamori, Keita; Sato, Yumiko; Murase, Kaori; Itino, Takao
2008-10-22
In the Asian tropics, a conspicuous radiation of Macaranga plants is inhabited by obligately associated Crematogaster ants tending Coccus (Coccidae) scale insects, forming a tripartite symbiosis. Recent phylogenetic studies have shown that the plants and the ants have been codiversifying over the past 16-20 million years (Myr). The prevalence of coccoids in ant-plant mutualisms suggest that they play an important role in the evolution of ant-plant symbioses. To determine whether the scale insects were involved in the evolutionary origin of the mutualism between Macaranga and Crematogaster, we constructed a cytochrome oxidase I (COI) gene phylogeny of the scale insects collected from myrmecophytic Macaranga and estimated their time of origin based on a COI molecular clock. The minimum age of the associated Coccus was estimated to be half that of the ants, at 7-9Myr, suggesting that they were latecomers in the evolutionary history of the symbiosis. Crematogaster mitochondrial DNA (mtDNA) lineages did not exhibit specificity towards Coccus mtDNA lineages, and the latter was not found to be specific towards Macaranga taxa, suggesting that patterns of associations in the scale insects are dictated by opportunity rather than by specialized adaptations to host plant traits. PMID:18611850
Xi Xiao-Qiang; Liu Wu-Ming
2007-01-01
Based on the calculation of all the pairwise entanglements in the n(n≤6)-qubit Heisenberg ⅩⅩ open chain with system impurity, we find an important result: pairwise entanglement can only be transferred by an entangled pair. The non-nearest pairwise entanglements will have the possibility to exist as long as there has been even number of qubits in their middle. This point indicates that we can obtain longer distance entanglement in a solid system.
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-03-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.
An observable entanglement measure
Although entanglement constitutes one of the most remarkable differences between classical and quantum mechanics, and it does have directly observable consequences, it is not an observable like for example momentum or energy. Unlike a regular observable that has an associated hermitean operator, an entanglement measure is rather a non-linear functional of a large set of such observables. Therefore, one typically needs to perform many different measurements, in order to determine the degree of entanglement of a given quantum state. We show, how the entanglement measure concurrence is given in terms of collective observables of two identically prepared quantum states. This allows for a direct experimental estimate of the concurrence of arbitrary finite dimensional quantum states as it is demonstrated in a laboratory experiments with pure twin photon states
An observable entanglement measure
Mintert, Florian [Department of Physics, Harvard University (United Kingdom); Aolita, Leandro [Universidade Federal do Rio de Janeiro (Brazil); Max Planck Institut fuer Physik Komplexer Systeme, Dresden (Germany); Demkowicz Dobrzanski, Rafal; Kus, Marek [Centrum Fizyki Teoretycznej Polskiej Akademii Nauk, Warszawa (Poland); Walborn, Stephen; Souto Ribeiro, Paulo; Davidovich, Luiz [Universidade Federal do Rio de Janeiro (Brazil); Buchleitner, Andreas [Max Planck Institut fuer Physik Komplexer Systeme, Dresden (Germany)
2007-07-01
Although entanglement constitutes one of the most remarkable differences between classical and quantum mechanics, and it does have directly observable consequences, it is not an observable like for example momentum or energy. Unlike a regular observable that has an associated hermitean operator, an entanglement measure is rather a non-linear functional of a large set of such observables. Therefore, one typically needs to perform many different measurements, in order to determine the degree of entanglement of a given quantum state. We show, how the entanglement measure concurrence is given in terms of collective observables of two identically prepared quantum states. This allows for a direct experimental estimate of the concurrence of arbitrary finite dimensional quantum states as it is demonstrated in a laboratory experiments with pure twin photon states.
Holographic Entanglement Entropy
Rangamani, Mukund
2016-01-01
We review the developments in the past decade on holographic entanglement entropy, a subject that has garnered much attention owing to its potential to teach us about the emergence of spacetime in holography. We provide an introduction to the concept of entanglement entropy in quantum field theories, review the holographic proposals for computing the same, providing some justification for where these proposals arise from in the first two parts. The final part addresses recent developments linking entanglement and geometry. We provide an overview of the various arguments and technical developments that teach us how to use field theory entanglement to detect geometry. Our discussion is by design eclectic; we have chosen to focus on developments that appear to us most promising for further insights into the holographic map. This is a preliminary draft of a few chapters of a book which will appear sometime in the near future, to be published by Springer. The book in addition contains a discussion of application o...
Entanglement in neutrino oscillations
Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)
Hartman, Thomas
2015-01-01
We show that in any relativistic system, entanglement entropy obeys a speed limit set by the entanglement in thermal equilibrium. The bound is derived from inequalities on relative entropy with respect to a thermal reference state. Thus the thermal state constrains far-from-equilibrium entanglement dynamics whether or not the system actually equilibrates, in a manner reminiscent of fluctuation theorems in classical statistical mechanics. A similar shape-dependent bound constrains the full nonlinear time evolution, supporting a simple physical picture for entanglement propagation that has previously been motivated by holographic calculations in conformal field theory. We discuss general quantum field theories in any spacetime dimension, but also derive some results of independent interest for thermal relative entropy in 1+1d CFT.
Entanglement in neutrino oscillations
Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)
2009-03-15
Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)
Entanglement Renormalization: an introduction
Vidal, Guifre
2009-01-01
We present an elementary introduction to entanglement renormalization, a real space renormalization group for quantum lattice systems. This manuscript corresponds to a chapter of the book "Understanding Quantum Phase Transitions", edited by Lincoln D. Carr (Taylor & Francis, Boca Raton, 2010)
Converting Nonclassicality into Entanglement.
Killoran, N; Steinhoff, F E S; Plenio, M B
2016-02-26
Quantum mechanics exhibits a wide range of nonclassical features, of which entanglement in multipartite systems takes a central place. In several specific settings, it is well known that nonclassicality (e.g., squeezing, spin squeezing, coherence) can be converted into entanglement. In this work, we present a general framework, based on superposition, for structurally connecting and converting nonclassicality to entanglement. In addition to capturing the previously known results, this framework also allows us to uncover new entanglement convertibility theorems in two broad scenarios, one which is discrete and one which is continuous. In the discrete setting, the classical states can be any finite linearly independent set. For the continuous setting, the pertinent classical states are "symmetric coherent states," connected with symmetric representations of the group SU(K). These results generalize and link convertibility properties from the resource theory of coherence, spin coherent states, and optical coherent states, while also revealing important connections between local and nonlocal pictures of nonclassicality. PMID:26967398
Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre;
2012-01-01
Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... keeps the files in it private but still lets each client P_i recover his own data by interacting with S; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of c as this will imply that none of the clients can...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation...
Irreversibility in asymptotic manipulations of entanglement
Vidal, G.; Cirac, J. I.
2001-01-01
We show that the process of entanglement distillation is irreversible by showing that the entanglement cost of a bound entangled state is finite. Such irreversibility remains even if extra pure entanglement is loaned to assist the distillation process.
Anomalies and entanglement entropy
Nishioka, Tatsuma; Yarom, Amos(Department of Physics, Technion, Haifa, 32000, Israel)
2016-01-01
We initiate a systematic study of entanglement and Renyi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanish...
Entanglement in Classical Optics
Ghose, Partha; Mukherjee, Anirban
2013-01-01
The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate betw...
Shun-long Luo; You-feng Luo
2003-01-01
In quantum mechanics, it is long recognized that there exist correlations between observables which are much stronger than the classical ones. These correlations are usually called entanglement, and cannot be accounted for by classical theory. In this paper, we will study correlations between observables in terms of covariance and the Wigner-Yanase correlation, and compare their merits in characterizing entanglement. We will show that the Wigner-Yanase correlation has some advantages over the conventional covariance.
Convolutional Entanglement Distillation
Wilde, Mark M.; Krovi, Hari; Brun, Todd A.
2007-01-01
We develop a theory of entanglement distillation that exploits a convolutional coding structure. We provide a method for converting an arbitrary classical binary or quaternary convolutional code into a convolutional entanglement distillation protocol. The imported classical convolutional code does not have to be dual-containing or self-orthogonal. The yield and error-correcting properties of such a protocol depend respectively on the rate and error-correcting properties of the imported classi...
Entanglement Renormalization and Wavelets
Evenbly, Glen; White, Steven R.
2016-04-01
We establish a precise connection between discrete wavelet transforms and entanglement renormalization, a real-space renormalization group transformation for quantum systems on the lattice, in the context of free particle systems. Specifically, we employ Daubechies wavelets to build approximations to the ground state of the critical Ising model, then demonstrate that these states correspond to instances of the multiscale entanglement renormalization ansatz (MERA), producing the first known analytic MERA for critical systems.
Anomalies and Entanglement Entropy
Nishioka, Tatsuma
2015-01-01
We initiate a systematic study of entanglement and Renyi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.
We study the temporal evolution of the properties of a two-level atom coupled to a single-mode cavity field without dissipation with its center-of-mass motion quantized in one dimension. It is shown that, starting with a separable state, genuine tripartite entangled states can be generated under resonance conditions of the light frequency and atom transition frequency in the cold regime. The onset of Rabi oscillations is analyzed and explicit predictions for properties like emission probability and dispersions for the center-of-mass position and momenta are given for resonance and detuned conditions. Transmission-resonance effects on entanglement and other properties are also analyzed. Comparisons with the semiclassical adiabatic approximation predictions are also made.
Entangling power and operator entanglement of nonunitary quantum evolutions
Kong, Fan-Zhen; Zhao, Jun-Long; Yang, Ming; Cao, Zhuo-Liang
2015-07-01
We propose a method to calculate the operator entanglement and entangling power of a noisy nonunitary operation in terms of linear entropy. By decomposing the Kraus operators of noisy evolution as the sum of products of Pauli matrices, we derive the analytical expression of the operator entanglement for a general nonunitary operation. The definition of entangling power is extended from the ideal unitary operation case to the nonunitary case via a Kraus operator representation and the analytical expression of the entangling power for a general nonunitary operation is derived. To demonstrate the effectiveness of the above method, we investigate the properties of operator entanglement and entangling power of nonunitary operations caused by phase damping noise. Our findings imply that the pure phase damping noise has its own operator entanglement and entangling power, which increase exponentially with time and asymptotically approach their respective upper bounds. In addition, when the phase damping noise is added to an ideal operation, such as an iswap operation or a controlled-Z operation, it can make the operation's entangling power grow exponentially with the strength of noise, but leave its operator entanglement invariant. In this sense, we can conclude that, for a general operation, operator entanglement is a more intrinsic property than entangling power.
Entanglement measure for any quantum states
Lee, Hyuk-jae; Oh, Sung Dahm; Ahn, Doyeol
2003-01-01
The entanglement measure for multiqudits is proposed. This measure calculates the partial entanglement distributed by subsystems and the complete entanglement of the total system. This shows that we need to measure the subsystem entanglements to explain the full description for multiqudit entanglement. Furthermore, we extend the entanglement measure to mixed multiqubits and the higher dimension Hilbert spaces.
Entanglement swapping of two arbitrarily degraded entangled states
Kirby, Brian T.; Santra, Siddhartha; Malinovsky, Vladimir S.; Brodsky, Michael
2016-07-01
We consider entanglement swapping, a key component of quantum network operations and entanglement distribution. Pure entangled states, which are the desired input to the swapping protocol, are typically mixed by environmental interactions, causing a reduction in their degree of entanglement. Thus an understanding of entanglement swapping with partially mixed states is of importance. Here we present a general analytical solution for entanglement swapping of arbitrary two-qubit states. Our result provides a comprehensive method for analyzing entanglement swapping in quantum networks. First, we show that the concurrence of a partially mixed state is conserved when this state is swapped with a Bell state. Then, we find upper and lower bounds on the concurrence of the state resulting from entanglement swapping for various classes of input states. Finally, we determine a general relationship between the ranks of the initial states and the rank of the final state after swapping.
Entanglement Temperature and Entanglement Entropy of Excited States
Wong, Gabriel; Zayas, Leopoldo A Pando; Vaman, Diana
2013-01-01
We derive a general relation between the ground state entanglement Hamiltonian and the physical stress tensor within the path integral formalism. For spherical entangling surfaces in a CFT, we reproduce the \\emph{local} ground state entanglement Hamiltonian derived by Casini, Huerta and Myers. The resulting reduced density matrix can be interpreted as a state of local thermal equilibrium with a spatially varying "entanglement temperature." Using the entanglement Hamiltonian, we calculate the first order change in the entanglement entropy due to changes in conserved charges of the ground state, and find a generalized, local first law-like relation for the entanglement entropy. Our approach provides a field theory derivation and generalization of recent results obtained by holographic techniques. However, we note a discrepancy between our field theoretically derived results for the entanglement entropy of excited states with a non-uniform energy density and current holographic results in the literature. Finally...
Maximal Entanglement - A New Measure of Entanglement
Beigi, Salman
2014-01-01
Maximal correlation is a measure of correlation for bipartite distributions. This measure has two intriguing features: (1) it is monotone under local stochastic maps; (2) it gives the same number when computed on i.i.d. copies of a pair of random variables. This measure of correlation has recently been generalized for bipartite quantum states, for which the same properties have been proved. In this paper, based on maximal correlation, we define a new measure of entanglement which we call maxi...
Entanglement properties of locally maximally entangleable states
Full text: Locally maximally entangleable states (LMES) are a class of multi partite quantum states characterized by 2n-1 real phases, where n is the number of qubits. Prominent examples of LMES are graph states and stabilizer states. They can be prepared by applying general phase gates to a product state. One can associate any LMES to a weighted hypergraph, identifying each of these phase gates acting non-trivially on a subset of qubits to a weighted hyperedge connecting a subset of vertices. In this regard, they can be understood as a generalization of (weighted) graph states. The hypergraph, or equivalently the 2n-1 phases, determine the entanglement. We investigated the entanglement of LME states, ie their usefulness as a resource when the parties are separated and their manipulation is restricted to local operations and classical communication (LOCC). We discuss local unitary (LU) and stochastic LOCC equivalence of these states. In some cases, LU equivalence can be reduced to the much simpler case of equivalence under the action of local Pauli gates, which simplifies the characterization of LU-equivalent classes. We also present the convertibility of LMESs under local operations and classical communication (LOCC) to characterize the set of states that can be deterministically obtained from them. (author)
Entanglement diversion and quantum teleportation of entangled coherent states
Cai Xin-Hua; Guo Jie-Rong; Nie Jian-Jun; Jia Jin-Ping
2006-01-01
The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented.In these proposals,the entanglement between two coherent states,|α〉and |-α〉,with the same amplitude but a phase difference of π is utilized as a quantum channel.The processes of the entanglement diversion and the teleportation are achieved by using the 5050 symmetric beam splitters,the phase shifters and the photodetectors with the help of classical information.
Entanglement required in achieving entanglement-assisted channel capacities
Bowen, Garry
2002-01-01
Entanglement shared between the two ends of a quantum communication channel has been shown to be a useful resource in increasing both the quantum and classical capacities for these channels. The entanglement-assisted capacities were derived assuming an unlimited amount of shared entanglement per channel use. In this paper, bounds are derived on the minimum amount of entanglement required per use of a channel, in order to asymptotically achieve the capacity. This is achieved by introducing a c...
Optimal Entanglement Formulas for Entanglement-Assisted Quantum Coding
Wilde, Mark M.; Brun, Todd A.
2008-01-01
We provide several formulas that determine the optimal number of entangled bits (ebits) that a general entanglement-assisted quantum code requires. Our first theorem gives a formula that applies to an arbitrary entanglement-assisted block code. Corollaries of this theorem give formulas that apply to a code imported from two classical binary block codes, to a code imported from a classical quaternary block code, and to a continuous-variable entanglement-assisted quantum block code. Finally, we...
Exact Entanglement Cost of Multi-Qubit Bound Entangled States
Bandyopadhyay, Somshubhro; Roychowdhury, Vwani P.
2005-01-01
We report the exact entanglement cost of a class of multiqubit bound entangled states, computed in the context of a universal model for multipartite state preparation. The exact amount of entanglement needed to prepare such states are determined by first obtaining lower bounds using a cut-set approach, and then providing explicit local protocols achieving the lower bound.
Manipulating continuous variable photonic entanglement
I will review our work on photonic entanglement in the continuous variable regime including both Gaussian and non-Gaussian states. The feasibility and efficiency of various entanglement purification protocols are discussed this context. (author)
Hessian geometry and entanglement thermodynamics
Matsueda, Hiroaki
2015-01-01
We reconstruct entanglement thermodynamics by means of Hessian geometry, since this method exactly generalizes thermodynamics into much wider exponential family cases including quantum entanglement. Starting with the correct first law of entanglement thermodynamics, we derive that a proper choice of the Hessian potential leads to both of the entanglement entropy scaling for quantum critical systems and hyperbolic metric (or AdS space with imaginary time). We also derive geometric representation of the entanglement entropy in which the entropy is described as integration of local conserved current of information flowing across an entangling surface. We find that the entangling surface is equivalent to the domain boundary of the Hessian potential. This feature originates in a special property of critical systems in which we can identify the entanglement entropy with the Hessian potential after the second derivative by the canonical parameters, and this identification guarantees violation of extensive nature of ...
Entanglement and quantum phase transitions
Gu, Shi-Jian; Tian, Guang-Shan; Lin, Hai-Qing
2005-01-01
We examine several well known quantum spin models and categorize behavior of pairwise entanglement at quantum phase transitions. A unified picture on the connection between the entanglement and quantum phase transition is given.
Generic entangling through quantum indistinguishability
Sougato Bose; Dipankar Home
2002-08-01
We present a general scheme for entangling any degree of freedom of two uncorrelated identical particles from independent sources by a combination of two-particle interferometry and which-way detection. We show that this entanglement generation procedure works for completely random initial states of the variable to be entangled. We also demonstrate a curious complementarity exhibited by our scheme and its applications in estimating the generated entanglement as a function of wave packet overlap at the beamsplitter.
Entangled subspaces and quantum symmetries
Bracken, A. J.
2003-01-01
Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize the entanglement of the subspace, so that a first subspace is more entangled than a second, if the Schmidt string of the sec...
Multipartite entanglement in neutrino oscillations
Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.
Multipartite entanglement in neutrino oscillations
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.
Entanglement quantification by local unitaries
A. Monras; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.
2011-01-01
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "mirror entanglement". They are constructed by first considering the (squared) Hilbert-S...
Electromagnetically Induced Entanglement.
Yang, Xihua; Xiao, Min
2015-01-01
Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing. PMID:26314514
Entanglement in the Bogoliubov vacuum
Poulsen, Uffe Vestergaard; Meyer, T.; Lewenstein, M.
2005-01-01
geometry of the configuration and the strength of the interactions. As our measure of entanglement we use the logarithmic negativity, supplemented by an algorithmic check for bound entanglement where appropiate. The short-range entanglement is found to grow approximately linearly with the group sizes and...
Entanglement versus disentanglement: Quantum Cryptography
Mitra, Arindam
2000-01-01
In quantum information, the role of entanglement and disentanglement is itself a subject of research and debate. Earlier works on quantum cryptography have almost established that entanglement has no special advantage in quantum cryptography. In this paper we reveal that entanglement is better ingredient than disentanglement for our alternative quantum cryptography.
Quantum Entanglement and Quantum Chromodynamics
Abbas, Afsar
2000-01-01
Non-locality or entanglement is an experimentally well established property of quantum mechanics. Here we study the role of quantum entanglement for higher symmetry group like $ SU(3_c) $, the gauge group of quantum chromodynamics (QCD). We show that the hitherto unexplained property of confinement in QCD arises as a fundamental feature of quantum entanglement in $ SU(3_c) $.
Multipartite entanglement in quantum algorithms
Bruss D.; MacChiavello C.
2011-01-01
We investigate the entanglement features of the quantum states employed in quantum algorithms. In particular, we analyse the multipartite entanglement properties in the Deutsch-Jozsa, Grover and Simon algorithms. Our results show that for these algorithms most instances involve multipartite entanglement.
Quantum Entanglement in Nanocavity Arrays
Liew, T.C.H.; Savona, V
2011-01-01
We show theoretically how quantum interference between linearly coupled modes with weak local nonlinearity allows the generation of continuous variable entanglement. By solving the quantum master equation for the density matrix, we show how the entanglement survives realistic levels of pure dephasing. The generation mechanism forms a new paradigm for entanglement generation in arrays of coupled quantum modes.
Lithography using quantum entangled particles
Williams, Colin (Inventor); Dowling, Jonathan (Inventor)
2001-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Quantum Statistics and Entanglement Problems
Trainor, L. E. H.; Lumsden, Charles J.
2002-01-01
Interpretations of quantum measurement theory have been plagued by two questions, one concerning the role of observer consciousness and the other the entanglement phenomenon arising from the superposition of quantum states. We emphasize here the remarkable role of quantum statistics in describing the entanglement problem correctly and discuss the relationship to issues arising from current discussions of intelligent observers in entangled, decohering quantum worlds.
Deriving covariant holographic entanglement
Dong, Xi; Rangamani, Mukund
2016-01-01
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Renyi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Robles-Pérez, Salvador J
2012-01-01
Quantum information theory and the multiverse are two of the greatest outcomes of the XX century physics. The consideration of entanglement between the quantum states of two or more universes in a multiverse scenario provides us with a completely new paradigm that opens the door to novel approaches for traditionally unsolved problems in cosmology. More precisely, the problems of the cosmological constant, the arrow of time and the choice of boundary conditions, among others. It also encourages us to adopt new points of view about major philosophical ideas. In this chapter, we shall present the main features that may characterize inter-universal entanglement and it will be addressed the customary problems of cosmology from the new perspective that the quantum multiverse scenario supplies us with. In summary, the appropriate boundary condition that has to be imposed on the quantum state of the whole multiverse allows us to interpret it as made up of entangled pairs of universes. Then, a quantum thermodynamical ...
Images in quantum entanglement
A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction ΨO plus a portion of its own inverse image. Bell states can be defined in this way: Ψ= 1/√2 (ΨO±ΨI ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν123 entanglement, two-particle entanglements ν12, ν13, ν23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν12, ν13, ν23, ν123 and φ123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α1, β1), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.
Images in quantum entanglement
Bowden, G J [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom)
2009-08-28
A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction {psi}{sub O} plus a portion of its own inverse image. Bell states can be defined in this way: {psi}= 1/{radical}2 ({psi}{sub O}{+-}{psi}{sub I} ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle {nu}{sub 123} entanglement, two-particle entanglements {nu}{sub 12}, {nu}{sub 13}, {nu}{sub 23} and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters {nu}{sub 12}, {nu}{sub 13}, {nu}{sub 23}, {nu}{sub 123} and {phi}{sub 123} are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function ({alpha}{sub 1}, {beta}{sub 1}), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.
Images in quantum entanglement
Bowden, G. J.
2009-08-01
A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction ΨO plus a portion of its own inverse image. Bell states can be defined in this way: \\Psi = 1/\\sqrt 2 (\\Psi _O \\pm \\Psi _I ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν123 entanglement, two-particle entanglements ν12, ν13, ν23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν12, ν13, ν23, ν123 and phi123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α1, β1), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.
Greenberger-Horne-Zeilinger Paradox in Tripartite Systems of Arbitrary Dimension
Lee, J; Kim, M S; Lee, Jinhyoung; Lee, Seung-Woo
2004-01-01
We present a generalized Greenberger-Horne-Zeilinger (GHZ) paradox in a tripartite system with each subsystem of arbitrary even dimension. Contrary to conventional approaches of compatible observables, in order to prove Bell's theorem, we employ concurrent observables, that are mutually incompatible but still have a common eigenstate such that they are involved in elements of physical reality. It is proved that our formulation of the generalized GHZ paradox is genuinely multi-dimensional. The present approach enables a tripartite system to suffice for the truly d-dimensional GHZ paradox, contrary to previous works which require a (d+1)-partite system.
Baez, John C.; Vicary, Jamie
2014-11-01
Maldacena and Susskind have proposed a correspondence between wormholes and entanglement, dubbed ER=EPR. We study this in the context of three-dimensional topological quantum field theory (TQFT), where we show that the formation of a wormhole is the same process as creating a particle-antiparticle pair. A key feature of the ER=EPR proposal is that certain apparently entangled degrees of freedom turn out to be the same. We name this phenomenon ‘fake entanglement’, and show how it arises in our TQFT model.
Plaquettes, Spheres, and Entanglement
Grimmett, Geoffrey R
2010-01-01
The high-density plaquette percolation model in d dimensions contains a surface that is homeomorphic to the (d-1)-sphere and encloses the origin. This is proved by a path-counting argument in a dual model. When d=3, this permits an improved lower bound on the critical point p_e of entanglement percolation, namely p_e >= \\mu^-2 where \\mu is the connective constant for self-avoiding walks on Z^3. Furthermore, when the edge density p is below this bound, the radius of the entanglement cluster containing the origin has an exponentially decaying tail.
Holographic entanglement chemistry
Caceres, Elena; Pedraza, Juan F
2016-01-01
We use the Iyer-Wald formalism to derive an extended first law of entanglement that includes variations in the cosmological constant, Newton's constant and --in the case of higher derivative theories-- all the additional couplings of the theory. In Einstein gravity, where the number of degrees of freedom $N^2$ of the dual field theory is a function of $\\Lambda$ and $G$, our approach allows us to vary $N$ keeping the field theory scale fixed or to vary the field theory scale keeping $N$ fixed. We also derive an extended first law of entanglement for Gauss-Bonnet and Lovelock gravity.
Complementarity, privacy, and entanglement
We develop a complementary information tradeoff which bounds the amount of information about complementary observables that can be simultaneously extracted from a quantum system. This leads directly to a simple characterization both private states (the quantum version of secret keys) and maximally-entangled states, revealing these to be a direct manifestation of the quantum mechanical phenomenon of complementarity. Furthermore, we conjecture a strengthened version of the tradeoff and show how these ideas can be adapted to create protocols for distilling secret keys or entangled states
Plasmon-assisted Quantum Entanglement
Altewischer, E; Woerdman, J P
2002-01-01
The state of a two-particle system is called entangled when its quantum mechanical wave function cannot be factorized in two single-particle wave functions. Entanglement leads to the strongest counter-intuitive feature of quantum mechanics, namely nonlocality. Experimental realization of quantum entanglement is relatively easy for the case of photons; a pump photon can spontaneously split into a pair of entangled photons inside a nonlinear crystal. In this paper we combine quantum entanglement with nanostructured metal optics in the form of optically thick metal films perforated with a periodic array of subwavelength holes. These arrays act as photonic crystals that may convert entangled photons into surface-plasmon waves, i.e., compressive charge density waves. We address the question whether the entanglement survives such a conversion. We find that, in principle, optical excitation of the surface plasmon modes of a metal is a coherent process at the single-particle level. However, the quality of the plasmon...
Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears