WorldWideScience

Sample records for bactericides

  1. Effect of bactericides on sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, T A; Gareyshina, A Z; Limanov, V Ye; Neizvestnoya, R G; Yalymova, A G

    1980-01-01

    A study was made of the effect on sulfate-reducing bacteria (SRD) of different bactericides under laboratory conditions. The tests were conducted according to the technique developed in the VNIISPTneft'. A total of 36 chemical reagents were checked. The majority of them completely suppressed the growth of the accumulating culture of the SRD with different concentration of bactericide. The reagents which have good bactericidal action were verified for anticorrosion properties and were tested on field water from well 520 and 6334 of the Aznakayevskiy UKPN. The study results indicated that in selecting the dosing of bactericides on the accumulation culture of the SRD, the bactericidal effect is observed with lower concentration than the SRD collected from the near-face well zones.

  2. Bactericidal catechins damage the lipid bilayer.

    Science.gov (United States)

    Ikigai, H; Nakae, T; Hara, Y; Shimamura, T

    1993-04-08

    The mode of antibacterial action of, the green tea (Camellia sinensis) extracts, (-)-epigallocatechin gallate (EGCg) and (-)-epicatechin (EC) was investigated. Strong bactericidal EGCg caused leakage of 5,6-carboxyfluorescein from phosphatidylcholine liposomes (PC), but EC with very weak bactericidal activity caused little damage to the membrane. Phosphatidylserine and dicetyl phosphate partially protected the membrane from EGCg-mediated damage when reconstituted into the liposome membrane with PC. EGCg, but not EC, caused strong aggregation and NPN-fluorescence quenching of PC-liposomes and these actions were markedly lowered in the presence of negatively charged lipids. These results show that bactericidal catechins primarily act on and damage bacterial membranes. The observation that Gram-negative bacteria are more resistant to bactericidal catechins than Gram-positive bacteria can be explained to some extent by the presence of negatively charged lipopolysaccharide.

  3. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  4. Blood bactericidal activity in Hiroshima subjects

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, J W; Hamilton, H B

    1961-03-07

    A simple screening method for blood bactericidal activity was developed for study of irradiated atomic bomb survivors and nonirradiated subjects in Hiroshima. Blood bactericidal activity was found to be a relatively constant biological phenomenon in all subjects studied. No differences in activity were detected in relationship to radiation exposure in 1945. 17 references, 6 tables.

  5. Bactericidal action of cold atmospheric plasma in solution

    International Nuclear Information System (INIS)

    Boxhammer, V; Morfill, G E; Shimizu, T; Klämpfl, T; Li, Y-F; Köritzer, J; Zimmermann, J L; Jokipii, J R; Schlegel, J

    2012-01-01

    In this study different influences on the bactericidal effect of cold atmospheric plasma (CAP) were investigated intensively. In detail, different initial densities of Escherichia coli cells and different treatment times of up to 8 min were studied. The results show that up to densities of 10 5 cells per 20 μl high reduction rates of up to 5 log can be achieved in less than 3 min of CAP application. In contrast, for higher cell densities almost no reduction was measured for CAP treatment times of up to 8 min. To understand this data in detail, a theoretical model was developed. This model starts from the premise that bacteria are able to some degree to neutralize reactive species and that accordingly the bactericidal effect depends on the bacterial concentration. A further purpose of this study was to analyze the contribution of reactive oxygen and also reactive nitrogen species—produced by the CAP—to the bactericidal effect. We therefore measured nitrites, nitrates and hydrogen peroxide—products of chemical reactions between the species produced by the CAP and the liquid. The evidence of nitric oxide (NO) uptake in bacteria and the corresponding reference experiments with hydrogen peroxide and a chemical NO donor clearly show that the bactericidal effect of CAP is related to a combination of oxidative and nitrosative effects. (paper)

  6. Bactericidal activites of selected macrofungi extracts against Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Nikolovska-Nedelkoska Daniela A.

    2017-01-01

    Full Text Available The increasing of the antibiotic resistance exhibited by pathogenic microorganisms has resulted in research directed toward evaluation of novel sources of antimicrobial compounds. Previous studies have indicated that macrofungi, as a specific response to the natural hostile environment, produce secondary metabolites with antimicrobial properties. In this study, antimicrobial activities of the extracts from six wild mushrooms: Amanita echinocephala, Russula medulata, Cerena unicolor, Hericium erinaceus, Ishnoderma benzoinum and Laetiporus sulphureus were evaluated against Grampositive bacterium Staphylococcus aureus. The antimicrobial potential of the methanolic mushroom extracts was investigated by the microdilution method. Antimicrobial activity was observed in all species included in the study. All the extracts that demonstrated inhibitory activities were further tested for bactericidal activity and minimum bactericidal concentration (MBC values were determined. The tested microorganism was most sensitive to the examined extracts from the polypore fungi C. unicolor and H. erinaceus. The highest bactericidal activity was obtained in the extracts from the species C. unicolor (MBC=1.563 mg/mL. The experimental results revealed that the methanolic extract of C. unicolor possessed significant bactericidal activity. The findings suggest the potential use of this wild mushroom as antimicrobial agent.

  7. [Bactericidal activity of serum and chemotherapy in sensitive and resistant exciter (author's transl)].

    Science.gov (United States)

    Eyer, H; Metz, H; Preac-Mursic, V

    1975-11-21

    Comparing examinations with Ampicillin sensitive and resistant bacteria-strains show that the bactericidal activity of serum is dependent on the bacteria-strains, on the Ampicillin sensitivity of the particular exciter and on the number of bacteria/ml (germ count). Bactericide effect could always be obtained with sensitive strains as a result of additional chemotherapy. With several resistant strains a bactericide effect could not be obtained in this case the continuous optimal Ampicillin addition was the decisive factor. Because of the extremely complicated process of the bactericide one should not make general conclusions from the individual experimental results.

  8. Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces

    Science.gov (United States)

    Linklater, Denver P.; Khuong Duy Nguyen, Huu; Bhadra, Chris M.; Juodkazis, Saulius; Ivanova, Elena P.

    2017-06-01

    The nanostructuring of materials to create bactericidal and antibiofouling surfaces presents an exciting alternative to common methods of preventing bacterial adhesion. The fabrication of synthetic bactericidal surfaces has been inspired by the anti-wetting and anti-biofouling properties of insect wings, and other topologies found in nature. Black silicon is one such synthetic surfaces which has established bactericidal properties. In this study we show that time-dependent plasma etching of silicon wafers using 15, 30, and 45 min etching intervals, is able to produce different surface geometries with linearly increasing heights of approximately 280, 430, and 610 nm, respectively. After incubation on these surfaces with Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacterial cells it was established that smaller, more densely packed pillars exhibited the greatest bactericidal activity with 85% and 89% inactivation of bacterial cells, respectively. The decrease in the pillar heights, pillar cap diameter and inter-pillar spacing corresponded to a subsequent decrease in the number of attached cells for both bacterial species.

  9. The stability of complement-mediated bactericidal activity in human serum against Salmonella.

    Directory of Open Access Journals (Sweden)

    Colette M O'Shaughnessy

    Full Text Available The complement cascade includes heat-labile proteins and care is required when handling serum in order to preserve its functional integrity. We have previously used a whole human serum bactericidal assay to show that antibody and an intact complement system are required in blood for killing of invasive isolates of Salmonella. The aim of the present study was to evaluate the conditions under which human serum can be stored and manipulated while maintaining complement integrity. Serum bactericidal activity against Salmonella was maintained for a minimum of 35 days when stored at 4°C, eight days at 22°C and 54 hours at 37°C. Up to three freeze-thaw cycles had no effect on the persistence of bactericidal activity and hemolytic complement assays confirmed no effect on complement function. Delay in the separation of serum for up to four days from clotted blood stored at 22°C did not affect bactericidal activity. Dilution of serum resulted in an increased rate of loss of bactericidal activity and so serum should be stored undiluted. These findings indicate that the current guidelines concerning manipulation and storage of human serum to preserve complement integrity and function leave a large margin for safety with regards to bactericidal activity against Salmonella. The study provides a scheme for determining the requirements for serum handling in relation to functional activity of complement in other systems.

  10. Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria.

    Science.gov (United States)

    Zhou, Zhongxin; Wei, Dafu; Lu, Yanhua

    2015-01-01

    More information regarding the bactericidal properties of polyhexamethylene guanidine hydrochloride (PHMG) against clinically important antibiotic-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens needs to be provided for its uses in infection control. The bactericidal properties of PHMG and chlorhexidine digluconate (CHG) were compared based on their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations, and time-course-killing curves against clinically important antibiotic-susceptible and antibiotic-resistant ESKAPE pathogens. Results showed that PHMG exhibited significantly higher bactericidal activities against methicillin-resistant Staphylococcus aureus, carbapenem-resistant Klebsiella pneumoniae, and ceftazidime-resistant Enterobacter spp. than CHG. A slight bactericidal advantage over CHG was obtained against vancomycin-resistant Enterococcus faecium, ciprofloxacin- and levofloxacin-resistant Acinetobacter spp., and multidrug-resistant Pseudomonas aeruginosa. In previous reports, PHMG had higher antimicrobial activity against almost all tested Gram-negative bacteria and several Gram-positive bacteria than CHG using MIC test. These studies support the further development of covalently bound PHMG in sterile-surface materials and the incorporation of PHMG in novel disinfectant formulas. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  11. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria.

    OpenAIRE

    Eng, R H; Padberg, F T; Smith, S M; Tan, E N; Cherubin, C E

    1991-01-01

    Antimicrobial agents are most often tested against bacteria in the log phase of multiplication to produce the maximum bactericidal effect. In an infection, bacteria may multiply less optimally. We examined the effects of several classes of antimicrobial agents to determine their actions on gram-positive and gram-negative bacteria during nongrowing and slowly growing phases. Only ciprofloxacin and ofloxacin exhibited bactericidal activity against nongrowing gram-negative bacteria, and no antib...

  12. Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer.

    Science.gov (United States)

    Fan, Xiao-Li; Hu, Mi; Qin, Zhi-Hui; Wang, Jing; Chen, Xia-Chao; Lei, Wen-Xi; Ye, Wan-Ying; Jin, Qiao; Ren, Ke-Feng; Ji, Jian

    2018-03-28

    Cationic antibacterial coating based on quaternary ammonium compounds, with an efficient and broad spectrum bactericidal property, has been widely used in various fields. However, the high density of positive charges tends to induce weak hemocompatibility, which hinders the application of the cationic antibacterial coating in blood-contacting devices and implants. It has been reported that a negatively charged surface can reduce blood coagulation, showing improved hemocompatibility. Here, we describe a strategy to combine the cationic and anionic groups by using mixed-charged copolymers. The copolymers of poly (quaternized vinyl pyridine- co- n-butyl methacrylate- co-methacrylate acid) [P(QVP- co- nBMA- co-MAA)] were synthesized through free radical copolymerization. The cationic group of QVP, the anionic group of MAA, and the hydrophobic group of nBMA were designed to provide bactericidal capability, hemocompatibility, and coating stability, respectively. Our findings show that the hydrophilicity of the copolymer coating increased, and its zeta potential decreased from positive charge to negative charge with the increase of the anionic/cationic ratio. Meanwhile, the bactericidal property of the copolymer coating was kept around a similar level compared with the pure quaternary ammonium copolymer coating. Furthermore, the coagulation time, platelet adhesion, and hemolysis tests revealed that the hemocompatibility of the copolymer coating improved with the addition of the anionic group. The mixed-charged copolymer combined both bactericidal property and hemocompatibility and has a promising potential in blood-contacting antibacterial devices and implants.

  13. BACTERICIDAL ACTIVITY OF HUMAN SERA AGAINST ...

    African Journals Online (AJOL)

    hi-tech

    East African Medical Journal Vol. 77 No. 12 December 2000. BACTERICIDAL ACTIVITY OF HUMAN SERA AGAINST SALMONELLA TYPHI AND SALMONELLA PARATYPHI A, B, C. E.O. Igumbor, BSc, MSc, PhD, Department of Medical Microbiology, School of Medicine, University of Zimbabwe P.O. Box Al78, Avondale, ...

  14. Bactericidal Effects and Mechanism of Action of Olanexidine Gluconate, a New Antiseptic

    Science.gov (United States)

    Iwata, Koushi; Nii, Takuya; Nakata, Hikaru; Tsubotani, Yoshie; Inoue, Yasuhide

    2015-01-01

    Olanexidine gluconate [1-(3,4-dichlorobenzyl)-5-octylbiguanide gluconate] (development code OPB-2045G) is a new monobiguanide compound with bactericidal activity. In this study, we assessed its spectrum of bactericidal activity and mechanism of action. The minimal bactericidal concentrations of the compound for 30-, 60-, and 180-s exposures were determined with the microdilution method using a neutralizer against 320 bacterial strains from culture collections and clinical isolates. Based on the results, the estimated bactericidal olanexidine concentrations with 180-s exposures were 869 μg/ml for Gram-positive cocci (155 strains), 109 μg/ml for Gram-positive bacilli (29 strains), and 434 μg/ml for Gram-negative bacteria (136 strains). Olanexidine was active against a wide range of bacteria, especially Gram-positive cocci, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and had a spectrum of bactericidal activity comparable to that of commercial antiseptics, such as chlorhexidine and povidone-iodine. In vitro experiments exploring its mechanism of action indicated that olanexidine (i) interacts with the bacterial surface molecules, such as lipopolysaccharide and lipoteichoic acid, (ii) disrupts the cell membranes of liposomes, which are artificial bacterial membrane models, (iii) enhances the membrane permeability of Escherichia coli, (iv) disrupts the membrane integrity of S. aureus, and (v) denatures proteins at relatively high concentrations (≥160 μg/ml). These results indicate that olanexidine probably binds to the cell membrane, disrupts membrane integrity, and its bacteriostatic and bactericidal effects are caused by irreversible leakage of intracellular components. At relatively high concentrations, olanexidine aggregates cells by denaturing proteins. This mechanism differs slightly from that of a similar biguanide compound, chlorhexidine. PMID:25987609

  15. [Bactericidal activity of colloidal silver against grampositive and gramnegative bacteria].

    Science.gov (United States)

    Afonina, I A; Kraeva, L A; Tseneva, G Ia

    2010-01-01

    It was shown that colloidal silver solution prepared in cooperation with the A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, had significant bactericidal activity. Stable bactericidal effect on gramnegative microorganisms was observed after their 2-hour exposition in the solution of colloidal silver at a concentration of 10 ppm. Grampositive capsule-forming microorganisms were less susceptible to the colloidal silver solution: their death was observed after the 4-hour exposition in the solution.

  16. Processing, characterization, and bactericidal activity of undoped and silver-doped vanadium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tousley, M.E.; Wren, A.W.; Towler, M.R. [Inamori School of Engineering, Alfred University, Alfred, NY 14803 (United States); Mellott, N.P., E-mail: mellott@alfred.edu [Inamori School of Engineering, Alfred University, Alfred, NY 14803 (United States)

    2012-12-14

    Vanadium oxide (V) and silver-doped vanadium oxide (Ag-V) powders were prepared via sol-gel processing. Structural evolution and bactericidal activity was examined as a function of temperature ranging from 250, 350, 450 and 550 Degree-Sign C. Powders were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy. Results from all techniques showed vanadium pentoxide (V{sub 2}O{sub 5}) is the predominant phase regardless of heat treatment temperature or the addition of silver (Ag). XRD analysis suggests Ag is present as AgCl in samples heat treated to 250, 350, and 450 Degree-Sign C and as AgV{sub 6}O{sub 15} at 550 Degree-Sign C. Bactericidal activity was evaluated against Escherichia coli using the agar disk diffusion method considering both Ag-V and undoped, V powders. While the addition of Ag significantly increased bactericidal properties, the specific Ag valency, or crystal structure and morphology formed at higher temperatures, had little effect on functionality. -- Highlights: Black-Right-Pointing-Pointer Vanadium and silver-doped vanadium oxide powders were prepared via sol-gel. Black-Right-Pointing-Pointer Powders were characterized using advanced, complementary structural techniques. Black-Right-Pointing-Pointer Bactericidal activity was evaluated against E. coli. Black-Right-Pointing-Pointer Both vanadium and silver doped vanadium oxide show bactericidal activity.

  17. The behavior of active bactericidal and antifungal coating under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Gang; Zhang, Xiaodong; Zhao, Yan; Su, Haijia, E-mail: suhj@mail.buct.edu.cn; Tan, Tianwei

    2014-02-15

    In the present paper, the novel active bactericidal and antifungal coatings (ABAC) have been prepared through the immobilization of Fe-doped TiO{sub 2} (anatase) with chitosan. The characterization of ABAC using optical microscope imaging, SEM, AFM and FTIR shows that the Fe doped TiO{sub 2} is embedded into the chitosan coating with favorable dispersion through the hydrogen bonds interaction between chitosan molecules and TiO{sub 2}. The contact angle measurement demonstrated the hydrophilicity of ABAC (θ = 34.5 ± 4.1°). The bactericidal activity of ABAC has been evaluated by inactivating three different test strains: Escherichia coli, Candida albicans and Aspergillus niger which illustrates the apparently higher bactericidal ability than chitosan, Fe-TiO{sub 2} and chitosan/TiO{sub 2} (pure) under visible light irradiation and its bactericidal activity is lasting for at least 24 h. ABAC showed rapid and efficient antibacterial ability for the three tested strains and its antibacterial ratio in 2 h for E. coli, C. albicans and A. niger was 99.9%, 97.0% and 95.0%, respectively. The prepared chitosan/TiO{sub 2} composite emulsion shows favorable storage stability and can be stored up to 1 year without losing its bactericidal activity. ABAC is a low-cost and eco-friendly antibacterial coating products and promising for domestic, medical and industrial applications.

  18. Bactericidal activity of titanium dioxide ultraviolet-induced films

    Energy Technology Data Exchange (ETDEWEB)

    Pleskova, S.N., E-mail: pleskova@mail.ru [Laboratory of Biochemistry and Molecular Biology, Tomsk State University, ave. Lenina 36, Tomsk 634050 (Russian Federation); Golubeva, I.S., E-mail: golubmay@mail.ru [Institute of applied biotechnology of Nizhny Novgorod, Yablonevaya Street 22, Nizhny Novgorod 603093 (Russian Federation); Verevkin, Y.K., E-mail: verevkin@appl.sci-nnov.ru [Institute of applied physics of the Russian Academy of Science, Ul' yanov Street, 46, Nizhny Novgorod 603950 (Russian Federation)

    2016-02-01

    TiO{sub 2} films are used as a self-sterilization surface due to their property to form reactive oxygen species (ROS) when irradiated with ultraviolet light. These ROS attack bacteria and kill them. We present a new way to enhance the bactericidal activity of TiO{sub 2}-films: formation of nanopores on the surface by four-beam high-power laser irradiation. Such surfaces have significantly higher antibacterial activity as compared to conventional TiO{sub 2} surfaces after 15 and 60 min of UV irradiation. Study of the bacterial cell morphology by atomic force microscopy after 60 min irradiation showed that Staphylococcus aureus 956 and Escherichia coli 321–5 undergo significant morphological changes. S. aureus assume atypical elongated shapes after UV treatment alone and swollen forms with protrusions after UV treatment on TiO{sub 2} surface. E. coli exhibit oval or round forms after UV treatment alone, and round forms with small protrusions, and destroyed cells after incubation under UV on the TiO{sub 2} film. - Highlights: • Nanopores on the TiO{sub 2} surface enhance the bactericidal activity of films. • The bactericidal effect of TiO{sub 2} is strain-specific. • The bacterial morphology significantly changes after UV/TiO{sub 2} treatment.

  19. Bactericidal activity of ciprofloxacin upon Escherichia coli and Acinetobacter baumanni.

    Science.gov (United States)

    Zemelman, R; Vejar, C; Bello, H; Domínguez, M; González, G

    1992-01-01

    The mechanisms of bactericidal activity of ciprofloxacin (mechanisms A and B) upon cells of a strain of Escherichia coli and one strain of Acinetobacter baumannii were investigated under different conditions. The killing of E. coli cells by ciprofloxacin was significantly reduced by chloramphenicol, but this antibiotic showed almost no activity upon killing of A. baumannii cells by this quinolone. Similar results were obtained when rifampicin was added to ciprofloxacin. Bactericidal activity of ciprofloxacin upon nondividing cells of E. coli was lower and that upon non-dividing cells of A. baumannii was not affected when compared with activity of ciprofloxacin upon dividing cells of both microorganisms. These results demonstrate that the antibacterial activity of ciprofloxacin upon A. baumannii is independent of protein and ARN synthesis, a fact which suggests that this quinolone exerts only bactericidal mechanism B upon A. baumannii. This finding might explain, at least in part, the lower susceptibility of this microorganism to ciprofloxacin.

  20. Evaluation of bactericidal efficacy of silver ions on Escherichia coli for drinking water disinfection.

    Science.gov (United States)

    Pathak, Satya P; Gopal, K

    2012-07-01

    The purpose of this study is the development of a suitable process for the disinfection of drinking water by evaluating bactericidal efficacy of silver ions from silver electrodes. A prototype of a silver ioniser with silver electrodes and control unit has been fabricated. Silver ions from silver electrodes in water samples were estimated with an atomic absorption spectrophotometer. A fresh culture of Escherichia coli (1.75 × 10(3) c.f.u./ml) was exposed to 1, 2, 5, 10 and 20 ppb of silver ions in 100 ml of autoclaved tap water for 60 min. The effect of different pH and temperatures on bactericidal efficacy was observed at constant silver ion concentration (5 ppb) and contact time of 30 min. The maximum bactericidal activity (100%) was observed at 20 ppb of silver ion concentration indicating total disinfection after 20 min while minimum bactericidal activity (25%) was observed after 10 min at 01 ppb of silver ions. Likewise, 100% bactericidal activity was noticed with 2, 5 and 10 ppb of silver ions after 60, 50 and 40 min, respectively. Bactericidal activity at pH 5, 6, 7, 8 and 9 was observed at 79.9%, 79.8%, 80.5%, 100% and 100%, respectively, whereas it was 80.4%, 88.3%, 100%, 100% and 100% at 10°C, 20°C, 30°C, 40°C and 50°C, respectively. The findings of this study revealed that very low concentrations of silver ions at pH 8-9 and temperature >20°C have bactericidal efficacy for total disinfection of drinking water. Silver ionisation is suitable for water disinfection and an appropriate alternative to chlorination which forms carcinogenic disinfection by-products.

  1. Bactericidal action of photogenerated singlet oxygen from photosensitizers used in plaque disclosing agents.

    Directory of Open Access Journals (Sweden)

    Kirika Ishiyama

    Full Text Available BACKGROUND: Photodynamic therapy (PDT has been suggested as an efficient clinical approach for the treatment of dental plaque in the field of dental care. In PDT, once the photosensitizer is irradiated with light of a specific wavelength, it transfers the excitation energy to molecular oxygen, which gives rise to singlet oxygen. METHODOLOGY/PRINCIPAL FINDINGS: Since plaque disclosing agents usually contain photosensitizers such as rose bengal, erythrosine, and phloxine, they could be used for PTD upon photoactivation. The aim of the present study is to compare the ability of these three photosensitizers to produce singlet oxygen in relation to their bactericidal activity. The generation rates of singlet oxygen determined by applying an electron spin resonance technique were in the order phloxine > erythrosine ≒ rose bengal. On the other hand, rose bengal showed the highest bactericidal activity against Streptococcus mutans, a major causative pathogen of caries, followed by erythrosine and phloxine, both of which showed activity similar to each other. One of the reasons for the discrepancy between the singlet oxygen generating ability and bactericidal activity was the incorporation efficiency of the photosensitizers into the bacterial cells. The incorporation rate of rose bengal was the highest among the three photosensitizers examined in the present study, likely leading to the highest bactericidal activity. Meanwhile, the addition of L-histidine, a singlet oxygen quencher, cancelled the bactericidal activity of any of the three photoactivated photosensitizers, proving that singlet oxygen was responsible for the bactericidal action. CONCLUSIONS: It is strongly suggested that rose bengal is a suitable photosensitizer for the plaque disclosing agents as compared to the other two photosensitizers, phloxine and erythrosine, when used for PDT.

  2. Serum bactericidal activity as indicator of innate immunity in pacu Piaractus mesopotamicus (Holmberg, 1887

    Directory of Open Access Journals (Sweden)

    J.D. Biller-Takahashi

    2013-12-01

    Full Text Available The immune system of teleost fish has mechanisms responsible for the defense against bacteria through protective proteins in several tissues. The protein action can be evaluated by serum bactericidal activity and this is an important tool to analyze the immune system. Pacu, Piaractus mesopotamicus, is one of the most important fish in national aquaculture. However there is a lack of studies on its immune responses. In order to standardize and assess the accuracy of the serum bactericidal activity assay, fish were briefly challenged with Aeromonas hydrophila and sampled one week after the challenge. The bacterial infection increased the concentration of protective proteins, resulting in a decrease of colony-forming unit values expressed as well as an enhanced serum bactericidal activity. The protocol showed a reliable assay, appropriate to determine the serum bactericidal activity of pacu in the present experimental conditions.

  3. Bactericidal strontium-releasing injectable bone cements based on bioactive glasses.

    Science.gov (United States)

    Brauer, Delia S; Karpukhina, Natalia; Kedia, Gopal; Bhat, Aditya; Law, Robert V; Radecka, Izabela; Hill, Robert G

    2013-01-06

    Strontium-releasing injectable bone cements may have the potential to prevent implant-related infections through the bactericidal action of strontium, while enhancing bone formation in patients suffering from osteoporosis. A melt-derived bioactive glass (BG) series (SiO2–CaO–CaF2–MgO) with 0–50% of calcium substituted with strontium on a molar base were produced. By mixing glass powder, poly(acrylic acid) and water, cements were obtained which can be delivered by injection and set in situ, giving compressive strength of up to 35 MPa. Strontium release was dependent on BG composition with increasing strontium substitution resulting in higher concentrations in the medium. Bactericidal effects were tested on Staphylococcus aureus and Streptococcus faecalis; cell counts were reduced by up to three orders of magnitude over 6 days. Results show that bactericidal action can be increased through BG strontium substitution, allowing for the design of novel antimicrobial and bone enhancing cements for use in vertebroplasty or kyphoplasty for treating osteoporosis-related vertebral compression fractures.

  4. Studies on bactericidal efficacy of pumpkin (Cucurbita moschata Duchesne peel

    Directory of Open Access Journals (Sweden)

    El Zawane Kamarudin

    2014-02-01

    Full Text Available Objective: T o explore the in vitro antibacterial potential of the peel of Cucurbita moschata D uchesne ( tropical pumpkin ( C. moschata against human pathogenic bacteria. Methods: I n the present study, dichloromethane ( DCM , methanol ( MEOH and aqueous extracts of C. moschata peel were examined for in vitro antibacterial potency against eight bacterial strains i.e. Bacillus cereus, Burkholderia cepacia, Escherichia coli, Enterococcus faecalis, Staphyloccocus aureus, Pseudomonas aerugenosa, Vibrio alginolyticus, Vibrio parahaemolyticus using K irby- B auer disk diffusion susceptibility and broth micro-dilution methods. Results: DCM extract of pumpkin peel exhibited the maximum zone of inhibition against Staphyloccocus aureus ( 21 mm whereas aqueous extract of pumpkin peel revealed the least zone of inhibition against Escherichia coli ( 8 mm . MEOH extract gave maximum zone of inhibition against Pseudomonas aerugenosa ( 19 mm . B roth micro-dilution method showed minimum inhibitory concentration for the DCM extract against Burkholderia cepacia at 6 . 25 mg/m L . T he minimum bactericidal concentrations were also determined to know the nature of all extracts. DCM and MEOH extracts exhibited bactericidal nature to all bacterial strains except for the Vibrio alginolyticus. T he minimum bactericidal concentrations values exhibited bactericidal nature ranging from 3 . 12 mg/m L to 100 . 00 mg/m L . T he screening of antimicrobial properties of different extracts of C. moschata peel revealed that the DCM extract possessed good antimicrobial efficacy compared to MEOH and aqueous extracts. Conclusions: P eel of C. moschata possesses antibacterial compounds and could be potential source for a new class of antibiotics.

  5. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    International Nuclear Information System (INIS)

    Shimizu, T; Zimmermann, J L; Morfill, G E

    2011-01-01

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O 2 /N 2 and H 2 O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  6. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    Science.gov (United States)

    Shimizu, T.; Zimmermann, J. L.; Morfill, G. E.

    2011-02-01

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O2/N2 and H2O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  7. Bactericidal antibiotics induce programmed metabolic toxicity

    Directory of Open Access Journals (Sweden)

    Aislinn D. Rowan

    2016-03-01

    Full Text Available The misuse of antibiotics has led to the development and spread of antibiotic resistance in clinically important pathogens. These resistant infections are having a significant impact on treatment outcomes and contribute to approximately 25,000 deaths in the U.S. annually. If additional therapeutic options are not identified, the number of annual deaths is predicted to rise to 317,000 in North America and 10,000,000 worldwide by 2050. Identifying therapeutic methodologies that utilize our antibiotic arsenal more effectively is one potential way to extend the useful lifespan of our current antibiotics. Recent studies have indicated that modulating metabolic activity is one possible strategy that can impact the efficacy of antibiotic therapy. In this review, we will address recent advances in our knowledge about the impacts of bacterial metabolism on antibiotic effectiveness and the impacts of antibiotics on bacterial metabolism. We will particularly focus on two studies, Lobritz, et al. (PNAS, 112(27: 8173-8180 and Belenky et al. (Cell Reports, 13(5: 968–980 that together demonstrate that bactericidal antibiotics induce metabolic perturbations that are linked to and required for bactericidal antibiotic toxicity.

  8. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T; Zimmermann, J L; Morfill, G E, E-mail: tshimizu@mpe.mpg.de [Max-Planck Institute for Extraterrestrial Physics, Giessenbachstr., 85748 Garching (Germany)

    2011-02-15

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O{sub 2}/N{sub 2} and H{sub 2}O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  9. Phagocytic and bactericidal activities of leukocytes in whole blood from atomic bomb survivors

    International Nuclear Information System (INIS)

    Sasagawa, S.; Yoshimoto, Y.; Toyota, E.; Neriishi, S.; Yamakido, M.; Matsuo, M.; Hosoda, Y.; Finch, S.C.

    1990-01-01

    This study evaluated the phagocytic and bactericidal activities of peripheral blood leukocytes from Hiroshima and Nagasaki atomic bomb survivors for Staphylococcus aureus. The data were analyzed by multiple linear regression for age, sex, radiation exposure, city of exposure, and neutrophil counts. No significant radiation effect was observed for either blood phagocytic or bactericidal activities. The only significant variable for these functions was the neutrophil count

  10. Influence of Rifampin Therapy on Serum Bactericidal Activity in the Presence of Cloxacillin and Vancomycin

    Directory of Open Access Journals (Sweden)

    Andrew MR Mackenzie

    1990-01-01

    Full Text Available In this study the effect of rifampin on serum inhibitory and serum bactericidal titres was examined. Sera were prepared from pooled human serum to contain vancomycin (10 mg/L, cloxacillin (5 mg/L or rifampin (1 mg/L, and the combinations cloxacillin/rifampin and vancomycin/rifampin. These five sera were tested by a microtitre method for serum inhibitory power and serum bactericidal titre against 11 strains of Staphylococcus aureus. A 48 h incubation period was required to detect full colony growth for subculture plates. It was found with all strains that the effect of the addition of rifampin to the other two antibiotics was to increase the serum inhibitory power, lower the serum bactericidal titre, increase the inhibitory/cidal ratio, and slow colony growth on subculture. In the clinical part of the study it was shown that only three of 38 sera (8% from patients receiving betalactam or vanomycin but not rifampin gave an inhibitory/cidal ratio greater than 8, but that nine of 10 sera (90% from patients receiving rifampin in addition to betalactam or vancomycin gave a ratio greater than 8 (P<0.001. The study verified that the effect of rifampin in serum was to increase inhibitory power and decrease bactericidal titre. The clinical significance of these results is not known and it is suggested that a high ratio of inhibitory to bactericidal titre in the presence of rifampin is to be expected, and that a low bactericidal titre under these circumstances is not necessarily an indication to modify therapy.

  11. Combined treatment of UVA irradiation and antibiotics induces greater bactericidal effects on Vibrio parahaemolyticus.

    Science.gov (United States)

    Hou, Yanfei; Nakahashi, Mutsumi; Mawatari, Kazuaki; Shimohata, Takaaki; Uebanso, Takashi; Harada, Yumi; Tsunedomi, Akari; Emoto, Takahiro; Akutagawa, Masatake; Kinouchi, Yohsuke; Takahashi, Akira

    2016-01-01

    The presence of antibiotics in the environment and their subsequent impact on the development of multi-antibiotic resistant bacteria has raised concerns globally. Consequently, much research is focused on a method to produce a better disinfectant. We have established a disinfectant system using UVA-LED that inactivates pathogenic bacteria. We assessed the bactericidal efficiency of a combination of UVA-LED and antibiotics against Vibrio parahaemolyticus. Combined use of antibiotic drugs and UVA irradiation was more bactericidal than UVA irradiation or antibacterial drugs alone. The bactericidal synergy was observed at low concentrations of each drug that are normally unable to kill the bacteria. This combination has the potential to become a sterilization technology.

  12. Bactericidal Antibiotics Do Not Appear To Cause Oxidative Stress in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Feld, Louise; Knudsen, Gitte Maegaard; Gram, Lone

    2012-01-01

    Oxidative stress can be an important contributor to the lethal effect of bactericidal antibiotics in some bacteria, such as Escherichia coli and Staphylococcus aureus. Thus, despite the different target-specific actions of bactericidal antibiotics, they have a common mechanism leading to bacterial...... to cause oxidative stress in L. monocytogenes and propose that this is caused by its noncyclic tricarboxylic acid (TCA) pathway. Hence, in this noncyclic metabolism, there is a decoupling between the antibiotic-mediated cellular requirement for NADH and the induction of TCA enzyme activity, which...

  13. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    International Nuclear Information System (INIS)

    Wang, Xianghong; Yuan, Shuaishuai; Shi, Dean; Yang, Yingkui; Jiang, Tao; Yan, Shunjie; Shi, Hengchong; Luan, Shifang; Yin, Jinghua

    2016-01-01

    Graphical abstract: - Highlights: • Antifouling and bactericidal capabilities were facilely integrated into a surface via bioinspired coating. • The modification technique was very facile and universal to different types of substrate materials. • The integrated antifouling and bactericidal surfaces have great potential in wound dressing applications. - Abstract: Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  14. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianghong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Yuan, Shuaishuai [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Dean, E-mail: deanshi2012@yahoo.com [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Yang, Yingkui; Jiang, Tao [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Yan, Shunjie; Shi, Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Luan, Shifang, E-mail: sfluan@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-07-01

    Graphical abstract: - Highlights: • Antifouling and bactericidal capabilities were facilely integrated into a surface via bioinspired coating. • The modification technique was very facile and universal to different types of substrate materials. • The integrated antifouling and bactericidal surfaces have great potential in wound dressing applications. - Abstract: Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  15. Bactericidal effect of a 405-nm diode laser on Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Kotoku, Y; Kato, J; Akashi, G; Hirai, Y [Department of Operative Dentistry, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba, 261-8502 (Japan); Ishihara, K [Department of Microbiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba, 261-8502 (Japan)

    2009-05-15

    The study was conducted to determine the effect of 405-nm diode laser irradiation on periodontopathic bacteria such as Porphyromonas gingivalis in vitro. A diluted suspension of P. gingivalis was irradiated directly with a 405-nm diode laser under conditions of 100 mW-10 sec, 100 mW-20 sec, 200 mW-5 sec, 200 mW-10 sec, 200 mW-20 sec, 400 mW-5 sec, 400 mW-10 sec, and 400 mW-20 sec. The energy density ranged from 2.0 to 16.0 J/cm{sup 2}. The irradiated bacterial suspension was spread on a blood agar plate and growth of the colonies was examined after an anaerobic culture for 7 days. Bacterial growth was inhibited under all irradiation conditions, but the bactericidal effect of the 405-nm diode laser depended on the energy density. More than 97% of bacterial growth was inhibited with irradiation at an energy density > 4.0 J/cm{sup 2}. The mechanism of the bactericidal effect is photochemical, rather than photothermal. These findings suggest that a 405-nm diode laser has a high bactericidal effect on P. gingivalis.

  16. Bactericidal effect of a 405-nm diode laser on Porphyromonas gingivalis

    International Nuclear Information System (INIS)

    Kotoku, Y; Kato, J; Akashi, G; Hirai, Y; Ishihara, K

    2009-01-01

    The study was conducted to determine the effect of 405-nm diode laser irradiation on periodontopathic bacteria such as Porphyromonas gingivalis in vitro. A diluted suspension of P. gingivalis was irradiated directly with a 405-nm diode laser under conditions of 100 mW-10 sec, 100 mW-20 sec, 200 mW-5 sec, 200 mW-10 sec, 200 mW-20 sec, 400 mW-5 sec, 400 mW-10 sec, and 400 mW-20 sec. The energy density ranged from 2.0 to 16.0 J/cm 2 . The irradiated bacterial suspension was spread on a blood agar plate and growth of the colonies was examined after an anaerobic culture for 7 days. Bacterial growth was inhibited under all irradiation conditions, but the bactericidal effect of the 405-nm diode laser depended on the energy density. More than 97% of bacterial growth was inhibited with irradiation at an energy density > 4.0 J/cm 2 . The mechanism of the bactericidal effect is photochemical, rather than photothermal. These findings suggest that a 405-nm diode laser has a high bactericidal effect on P. gingivalis

  17. Bactericidal effect of a 405-nm diode laser on Porphyromonas gingivalis

    Science.gov (United States)

    Kotoku, Y.; Kato, J.; Akashi, G.; Hirai, Y.; Ishihara, K.

    2009-05-01

    The study was conducted to determine the effect of 405-nm diode laser irradiation on periodontopathic bacteria such as Porphyromonas gingivalis in vitro. A diluted suspension of P. gingivalis was irradiated directly with a 405-nm diode laser under conditions of 100 mW-10 sec, 100 mW-20 sec, 200 mW-5 sec, 200 mW-10 sec, 200 mW-20 sec, 400 mW-5 sec, 400 mW-10 sec, and 400 mW-20 sec. The energy density ranged from 2.0 to 16.0 J/cm2. The irradiated bacterial suspension was spread on a blood agar plate and growth of the colonies was examined after an anaerobic culture for 7 days. Bacterial growth was inhibited under all irradiation conditions, but the bactericidal effect of the 405-nm diode laser depended on the energy density. More than 97% of bacterial growth was inhibited with irradiation at an energy density > 4.0 J/cm2. The mechanism of the bactericidal effect is photochemical, rather than photothermal. These findings suggest that a 405-nm diode laser has a high bactericidal effect on P. gingivalis.

  18. Selenium-mediated protection in reversing the sensitivity of bacterium to the bactericidal antibiotics.

    Science.gov (United States)

    Li, Zhonglei; Tan, Jun; Shao, Lei; Dong, Xiaojing; Ye, Richard D; Chen, Daijie

    2017-05-01

    Inducing production of damaging reactive oxygen species (ROS) is an important criterion to distinguish the bactericidal antibiotics from bacteriostatic antibiotics. Selenoenzymes were generally recognized to be a powerful antioxidant capable of scavenging free radicals, protecting the cells from the harmful effects of ROS. Therefore, the present study was carried out to investigate the selenium (Se)-mediated protection in reversing antibiotic sensitivity and the role of selenoenzymes in alleviating the negative effects of oxidative stress. The cellular antioxidant activity of Se-enriched bacteria was analyzed, as well as intracellular ROS production and elimination when Se-enriched bacteria in the presence of various antibiotics. Compared to complete inhibition of the parental strain by bactericidal antibiotics, it only exhibited slight and reversible inhibition of Se-enriched Escherichia coli ATCC25922 and Staphylococcus aureus ATCC25923 at the same conditions, which indicated that intracellular selenium provided substantial protection against antibiotics. ROS generation caused by bactericidal antibiotics was confirmed by fluorescence spectrophotometry using 2', 7'-dichloro- uorescein diacetate (DCFH-DA) as substrate. The time course experiments of pretreatment with selenium showed significant decrease of ROS level at 2h. In summary, the present study provides experimental evidence supporting selenoenzymes has good scavenging effect to ROS and can protect bacteria from oxidative stress injury induced by bactericidal antibiotics. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Whole-blood phagocytic and bactericidal activities of atomic bomb survivors, Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Sasagawa, Sumiko; Yoshimoto, Yasuhiko; Toyota, Emiko; Neriishi, Shotaro; Yamakido, Michio; Matsuo, Miyo; Hosoda, Yutaka; Finch, S.C.

    1989-04-01

    This in vitro study evaluated the phagocytic and bactericidal activities of leukocytes in aliquots of whole blood from Hiroshima and Nagasaki atomic bomb survivors for Staphylococcus aureus. The data were analyzed by multiple linear regression. Any significant effects of exposure to A-bomb radiation could not be detected for both phagocytic and bactericidal activities of whole blood from A-bomb survivors. In addition, there were no significant effects of age categories, sex or city, except in neutrophil counts. (J.P.N.)

  20. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly

    Science.gov (United States)

    Mainwaring, David E.; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N.; Wu, Alex H.-F.; Marchant, Richard; Crawford, Russell J.; Ivanova, Elena P.

    2016-03-01

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron

  1. The bactericidal effect of a Genius (R) Nd : YAG laser

    NARCIS (Netherlands)

    Kranendonk, A.A.; Reijden, W.A. van der; Winkelhoff, A.J. van; Weijden, G.A. van der

    PURPOSE: To evaluate the 'in vitro' bactericidal effect of the Nd:YAG laser (Genius, MØlsgaard Dental, Copenhagen, Denmark) on six periodontal pathogens. METHODS: Suspensions of six different periodontal pathogens (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella

  2. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Emily A Clementi

    Full Text Available HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET's bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA's bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments - an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes' bactericidal activities, while the proteins are required both to solubilize

  3. Nanoparticle synthesis of zinc peroxide: structural and morphological characterization for bactericidal applications

    International Nuclear Information System (INIS)

    Colonia, Roberto; Martinez, Vanessa C.; Solis, Jose L.; Gomez, Monica M.

    2013-01-01

    Zinc peroxide (ZnO 2 ) nanoparticles were synthesized by sol-gel technique. The chemicals used for the synthesis were zinc acetate di-hydrate (Zn(CH 3 COO) 2. 2H 2 O) and hydrogen peroxide (H 2 O 2 ) at 30 % in an aqueous solution with sonication. The structure of the ZnO 2 nanoparticles was characterized by X-ray diffraction. While the morphology and the cluster size were determined using scanning and transmission electron microscopy. For a preliminary evaluation of the bactericidal properties of the ZnO 2 , the material was exposed to Staphylococcus aureus, Escherichia coli y Bacillus subtili, and the nanoparticles presented good bactericidal properties. (author)

  4. Electrospun biodegradable polymers loaded with bactericide agents

    Directory of Open Access Journals (Sweden)

    Ramaz Katsarava

    2016-03-01

    Full Text Available Development of materials with an antimicrobial activity is fundamental for different sectors, including medicine and health care, water and air treatment, and food packaging. Electrospinning is a versatile and economic technique that allows the incorporation of different natural, industrial, and clinical agents into a wide variety of polymers and blends in the form of micro/nanofibers. Furthermore, the technique is versatile since different constructs (e.g. those derived from single electrospinning, co-electrospinning, coaxial electrospinning, and miniemulsion electrospinning can be obtained to influence the ability to load agents with different characteristics and stability and to modify the release behaviour. Furthermore, antimicrobial agents can be loaded during the electrospinning process or by a subsequent coating process. In order to the mitigate burst release effect, it is possible to encapsulate the selected drug into inorganic nanotubes and nanoparticles, as well as in organic cyclodextrine polysaccharides. In the same way, processes that involve covalent linkage of bactericide agents during surface treatment of electrospun samples may also be considered. The present review is focused on more recent works concerning the electrospinning of antimicrobial polymers. These include chitosan and common biodegradable polymers with activity caused by the specific load of agents such as metal and metal oxide particles, quaternary ammonium compounds, hydantoin compounds, antibiotics, common organic bactericides, and bacteriophages.

  5. The bactericidal mechanism of action against Staphylococcus aureus for AgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenning, E-mail: shenwenning@qq.com [School of Materials Science and Engineering, Xi' an University of Technology, No. 5 South Jinhua Road, Xi' an 710048 (China); Li, Pin [School of Materials Science and Engineering, Xi' an University of Technology, No. 5 South Jinhua Road, Xi' an 710048 (China); Feng, Hui [Shaanxi Institute of Zoology, Xi' an 710032 (China); Ge, Yanfeng; Liu, Zheng; Feng, Lajun [School of Materials Science and Engineering, Xi' an University of Technology, No. 5 South Jinhua Road, Xi' an 710048 (China)

    2017-06-01

    To identify the mechanistic effects of AgO nanoparticles on Gram-positive bacteria, S. aureus cells suspended in phosphate buffer solution (PBS) and deionized water were separately treated using AgO nanoparticles at different concentrations. The phase composition changes of the bactericide after killing S. aureus and the cellular responses of S. aureus to AgO were characterized by X-ray diffraction, atomic absorption spectrophotometer, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The results show that AgO nanoparticles could kill S. aureus suspended in PBS and deionized water. The bactericidal effect of AgO bactericide against S. aureus in water was better than that in PBS, due to the formation of Ag{sub 3}PO{sub 4} from the reaction between AgO and PBS. AgO nanoparticles exerted their bactericidal activity by multiple processes. AgO nanoparticles adhered to the surface of S. aureus cells firstly, then induced physical alterations in cell morphology and released silver ions, leading to initial injuries of cell membrane. Once membrane damage occurred, they entered the cells, and damaged the intracellular materials, eventually causing severe morphological and structural injuries to the cells and leakage of cytoplasm. - Highlights: • S. aureus in water was more sensitive to AgO than in PBS, since AgO reacted with PBS and formed Ag{sub 3}PO{sub 4}. • After killing S. aureus in water, AgO did not changed. • AgO particles attached to cell surface then interacted with the cells, resulting in the increase of released silver contents. • Cell membrane damages by AgO nanoparticles were supported by the leakages of K{sup +}, proteins and DNA. • Serious cell morphological and structural changes were caused by AgO nanoparticles.

  6. The bactericidal mechanism of action against Staphylococcus aureus for AgO nanoparticles

    International Nuclear Information System (INIS)

    Shen, Wenning; Li, Pin; Feng, Hui; Ge, Yanfeng; Liu, Zheng; Feng, Lajun

    2017-01-01

    To identify the mechanistic effects of AgO nanoparticles on Gram-positive bacteria, S. aureus cells suspended in phosphate buffer solution (PBS) and deionized water were separately treated using AgO nanoparticles at different concentrations. The phase composition changes of the bactericide after killing S. aureus and the cellular responses of S. aureus to AgO were characterized by X-ray diffraction, atomic absorption spectrophotometer, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The results show that AgO nanoparticles could kill S. aureus suspended in PBS and deionized water. The bactericidal effect of AgO bactericide against S. aureus in water was better than that in PBS, due to the formation of Ag 3 PO 4 from the reaction between AgO and PBS. AgO nanoparticles exerted their bactericidal activity by multiple processes. AgO nanoparticles adhered to the surface of S. aureus cells firstly, then induced physical alterations in cell morphology and released silver ions, leading to initial injuries of cell membrane. Once membrane damage occurred, they entered the cells, and damaged the intracellular materials, eventually causing severe morphological and structural injuries to the cells and leakage of cytoplasm. - Highlights: • S. aureus in water was more sensitive to AgO than in PBS, since AgO reacted with PBS and formed Ag 3 PO 4 . • After killing S. aureus in water, AgO did not changed. • AgO particles attached to cell surface then interacted with the cells, resulting in the increase of released silver contents. • Cell membrane damages by AgO nanoparticles were supported by the leakages of K + , proteins and DNA. • Serious cell morphological and structural changes were caused by AgO nanoparticles.

  7. Bactericidal efficacy of elevated pH on fish pathogenic and environmental bacteria

    Directory of Open Access Journals (Sweden)

    Clifford E. Starliper

    2013-07-01

    Full Text Available Ship ballast water is a recognized medium for transfer and introductions of nonindigenous species. There is a need for new ballast water treatment methods that effectively and safely eliminate or greatly minimize movements of these species. The present study employed laboratory methods to evaluate the bactericidal efficacy of increased pH (pH 10.0–12.0 for exposure durations of up to 72 h to kill a variety of Gram-negative and Gram-positive bacteria including fish pathogens (Aeromonas spp., Yersinia ruckeri, Edwardsiella ictaluri, Serratia liquefaciens, Carnobacterium sp., other common aquatic-inhabitant bacteria (Serratia marcescens, Pseudomonas fluorescens, Staphylococcus sp., Bacillus sp. and indicators listed in International Maritime Organization D2 Standards; namely, Vibrio cholera (an environmental isolate from fish, Escherichia coli and Enterococcus faecalis. Volumes of 5 N NaOH were added to tryptic soy broth to obtain desired pH adjustments. Viable cells were determined after 0, 4, 12, 24, 48, and 72 h. Initial (0 h cell numbers ranged from 3.40 × 104 cfu/mL for Bacillus sp. to 2.44 × 107 cfu/mL for E. faecalis. The effective endpoints of pH and treatment duration necessary to realize 100% bactericidal effect varied; however, all bacteria tested were killed within 72 h at pH 12.0 or lower. The lowest parameters examined, 4 h at pH 10.0, were bactericidal to V. cholera, E. ictaluri, three of four isolates of E. coli, and (three of four Aeromonas salmonicida subsp. salmonicida. Bactericidal effect was attained at pH 10.0 within 12 h for the other A. salmonicida subsp. salmonicida, and within 24 h for P. fluorescens, and the remaining E. coli.

  8. Bactericidal efficacy of elevated pH on fish pathogenic and environmental bacteria

    Science.gov (United States)

    Starliper, Clifford E.; Watten, Barnaby J.

    2013-01-01

    Ship ballast water is a recognized medium for transfer and introductions of nonindigenous species. There is a need for new ballast water treatment methods that effectively and safely eliminate or greatly minimize movements of these species. The present study employed laboratory methods to evaluate the bactericidal efficacy of increased pH (pH 10.0–12.0) for exposure durations of up to 72 h to kill a variety of Gram-negative and Gram-positive bacteria including fish pathogens (Aeromonas spp., Yersinia ruckeri, Edwardsiella ictaluri, Serratia liquefaciens, Carnobacterium sp.), other common aquatic-inhabitant bacteria (Serratia marcescens, Pseudomonas fluorescens, Staphylococcus sp., Bacillus sp.) and indicators listed in International Maritime Organization D2 Standards; namely, Vibrio cholera (an environmental isolate from fish), Escherichia coli and Enterococcus faecalis. Volumes of 5 N NaOH were added to tryptic soy broth to obtain desired pH adjustments. Viable cells were determined after 0, 4, 12, 24, 48, and 72 h. Initial (0 h) cell numbers ranged from 3.40 × 104 cfu/mL for Bacillus sp. to 2.44 × 107 cfu/mL for E. faecalis. The effective endpoints of pH and treatment duration necessary to realize 100% bactericidal effect varied; however, all bacteria tested were killed within 72 h at pH 12.0 or lower. The lowest parameters examined, 4 h at pH 10.0, were bactericidal to V. cholera, E. ictaluri, three of four isolates of E. coli, and (three of four) Aeromonas salmonicida subsp. salmonicida. Bactericidal effect was attained at pH 10.0 within 12 h for the other A. salmonicida subsp. salmonicida, and within 24 h for P. fluorescens, and the remaining E. coli.

  9. Lactobacillus proteins are associated with the bactericidal activity against E. coli of female genital tract secretions.

    Directory of Open Access Journals (Sweden)

    Sabah Kalyoussef

    Full Text Available Female genital tract secretions are bactericidal for Escherichia (E. coli ex vivo. However, the intersubject variability and molecules that contribute to this activity have not been defined.The bactericidal activity and concentration of immune mediators in cervicovaginal lavage (CVL collected from 99 healthy women were determined.CVL reduced the number of E. coli colonies by 68% [-26, 100] (median [range]. CVL were active against laboratory and clinical isolates of E. coli, but were inactive against Lactobacillus species. Bactericidal activity correlated with the concentration of protein recovered (p90% inhibitory activity (active and two with<30% activity were subjected to MS/MS proteomic analysis. 215 proteins were identified and six were found exclusively in active samples. Four of these corresponded to Lactobacillus crispatus or jensenii proteins. Moreover, culture supernatants from Lactobacillus jensenii were bactericidal for E. coli.Both host and commensal microbiota proteins contribute to mucosal defense. Identification of these proteins will facilitate the development of strategies to maintain a healthy vaginal microbiome and prevent colonization with pathogenic bacteria such as E. coli that increase the risk for urinary tract infections, preterm labor and perinatal infection.

  10. Two Major Medicinal Honeys Have Different Mechanisms of Bactericidal Activity

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2011-01-01

    Honey is increasingly valued for its antibacterial activity, but knowledge regarding the mechanism of action is still incomplete. We assessed the bactericidal activity and mechanism of action of Revamil (R) source (RS) honey and manuka honey, the sources of two major medical-grade honeys. RS honey

  11. The Integral Method, a new approach to quantify bactericidal activity.

    Science.gov (United States)

    Gottardi, Waldemar; Pfleiderer, Jörg; Nagl, Markus

    2015-08-01

    The bactericidal activity (BA) of antimicrobial agents is generally derived from the results of killing assays. A reliable quantitative characterization and particularly a comparison of these substances, however, are impossible with this information. We here propose a new method that takes into account the course of the complete killing curve for assaying BA and that allows a clear-cut quantitative comparison of antimicrobial agents with only one number. The new Integral Method, based on the reciprocal area below the killing curve, reliably calculates an average BA [log10 CFU/min] and, by implementation of the agent's concentration C, the average specific bactericidal activity SBA=BA/C [log10 CFU/min/mM]. Based on experimental killing data, the pertaining BA and SBA values of exemplary active halogen compounds were established, allowing quantitative assertions. N-chlorotaurine (NCT), chloramine T (CAT), monochloramine (NH2Cl), and iodine (I2) showed extremely diverging SBA values of 0.0020±0.0005, 1.11±0.15, 3.49±0.22, and 291±137log10 CFU/min/mM, respectively, against Staphylococcus aureus. This immediately demonstrates an approximately 550-fold stronger activity of CAT, 1730-fold of NH2Cl, and 150,000-fold of I2 compared to NCT. The inferred quantitative assertions and conclusions prove the new method suitable for characterizing bactericidal activity. Its application comprises the effect of defined agents on various bacteria, the consequence of temperature shifts, the influence of varying drug structure, dose-effect relationships, ranking of isosteric agents, comparison of competing commercial antimicrobial formulations, and the effect of additives. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The effect of long-term storage on the physiochemical and bactericidal properties of electrochemically activated solutions.

    Science.gov (United States)

    Robinson, Gareth; Thorn, Robin; Reynolds, Darren

    2012-12-24

    Electrochemically activated solutions (ECAS) are generated by electrolysis of NaCl solutions, and demonstrate broad spectrum antimicrobial activity and high environmental compatibility. The biocidal efficacy of ECAS at the point of production is widely reported in the literature, as are its credentials as a "green biocide." Acidic ECAS are considered most effective as biocides at the point of production and ill suited for extended storage. Acidic ECAS samples were stored at 4 °C and 20 °C in glass and polystyrene containers for 398 days, and tested for free chlorine, pH, ORP and bactericidal activity throughout. ORP and free chlorine (mg/L) in stored ECAS declined over time, declining at the fastest rate when stored at 20 °C in polystyrene and at the slowest rate when stored at 4 °C in glass. Bactericidal efficacy was also affected by storage and ECAS failed to produce a 5 log(10) reduction on five occasions when stored at 20 °C. pH remained stable throughout the storage period. This study represents the longest storage evaluation of the physiochemical parameters and bactericidal efficacy of acidic ECAS within the published literature and reveals that acidic ECAS retain useful bactericidal activity for in excess of 12 months, widening potential applications.

  13. The Effect of Long-Term Storage on the Physiochemical and Bactericidal Properties of Electrochemically Activated Solutions

    Directory of Open Access Journals (Sweden)

    Gareth Robinson

    2012-12-01

    Full Text Available Electrochemically activated solutions (ECAS are generated by electrolysis of NaCl solutions, and demonstrate broad spectrum antimicrobial activity and high environmental compatibility. The biocidal efficacy of ECAS at the point of production is widely reported in the literature, as are its credentials as a “green biocide.” Acidic ECAS are considered most effective as biocides at the point of production and ill suited for extended storage. Acidic ECAS samples were stored at 4 °C and 20 °C in glass and polystyrene containers for 398 days, and tested for free chlorine, pH, ORP and bactericidal activity throughout. ORP and free chlorine (mg/L in stored ECAS declined over time, declining at the fastest rate when stored at 20 °C in polystyrene and at the slowest rate when stored at 4 °C in glass. Bactericidal efficacy was also affected by storage and ECAS failed to produce a 5 log10 reduction on five occasions when stored at 20 °C. pH remained stable throughout the storage period. This study represents the longest storage evaluation of the physiochemical parameters and bactericidal efficacy of acidic ECAS within the published literature and reveals that acidic ECAS retain useful bactericidal activity for in excess of 12 months, widening potential applications.

  14. THE BACTERICIDAL ACTIVITY OF NORMAL GUINEA PIG SERUM AGAINST LISTERIA MONOCYTOGENES AND ITS INHIBITION BY A LISTERIAL CELL EXTRACT,

    Science.gov (United States)

    Normal guinea pig serum contains bactericidins active against Listeria monocytogenes. The listeriocidal activity of the serum did not increase after...factor. Lysozyme was not implicated in the bactericidal system. It was suggested that the bactericidal activity of guinea pig serum might be due either to

  15. Disclosure of the quackery: Testing of the bactericidal action of ...

    African Journals Online (AJOL)

    The obtained results indicate a fraud: bactericidal effect is rather a result of photocatalytic action of a hidden component used on purpose in the production of glass or subsequently applied by the use of nanotechnology (possibly antimony trioxide or titanium oxide) than of the so-called ''orgon and hydronic technology''.

  16. Comparison of the bactericidal activity of ozone and chlorine against Escherichia coli at 1/sup 0/

    Energy Technology Data Exchange (ETDEWEB)

    Fetner, R H; Ingols, R S

    1956-01-01

    The bactericidal effects of ozone solutions were tested against Escherichia coli suspensions at 1/sup 0/, and the lethal concentration was found to be that quantity of ozone necessary to produce a detectable residue in the suspension; under the conditions of these experiments this was 0.4-0.5 mg/l. A comparison of the bactericidal activity of chlorine under similar conditions emphasized the different modes of action of the two agents.

  17. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant Acinetobacter baumannii.

    Science.gov (United States)

    Intorasoot, Amornrat; Chornchoem, Piyaorn; Sookkhee, Siriwoot; Intorasoot, Sorasak

    2017-01-01

    The aim of the study is to investigate the antibacterial activity of 10 volatile oils extracted from medicinal plants, including galangal ( Alpinia galanga Linn.), ginger ( Zingiber officinale ), plai ( Zingiber cassumunar Roxb.), lime ( Citrus aurantifolia ), kaffir lime ( Citrus hystrix DC.), sweet basil ( Ocimum basilicum Linn.), tree basil ( Ocimum gratissimum ), lemongrass ( Cymbopogon citratus DC.), clove ( Syzygium aromaticum ), and cinnamon ( Cinnamomum verum ) against four standard strains of Staphylococcus aureus , Escherichia coli , Pseudomonas aeruginosa , Acinetobacter baumannii , and 30 clinical isolates of multidrug-resistant A. baumannii (MDR- A. baumannii ). Agar diffusion, minimum inhibitory concentration, and minimum bactericidal concentration (MBC) were employed for the determination of bactericidal activity of water distilled medicinal plants. Tea tree oil ( Melaleuca alternifolia ) was used as positive control in this study. The results indicated the volatile oil extracted from cinnamon exhibited potent antibacterial activity against the most common human pathogens, S. aureus , E. coli , P. aeruginosa , and A. baumannii . Most of volatile oil extracts were less effective against non-fermentative bacteria, P. aeruginosa . In addition, volatile oil extracted from cinnamon, clove, and tree basil possessed potent bactericidal activity against MDR- A. baumannii with MBC 90 of 0.5, 1, and 2 mg/mL, respectively. The volatile oil extracts would be useful as alternative natural product for the treatment of the most common human pathogens and MDR- A. baumannii infections.

  18. Bactericidal and cytotoxic effects of Erythrina fusca leaves aquadest extract

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2013-03-01

    Full Text Available Background: Empirically, Erythrina fusca has been used as traditional herb for its antibacterial and antiinflammation properties. Periodontal disease is one of the most oral infectious diseases with microorganism predominated as the contributing factors. Porphyromonas gingivalis (P. gingivalis is one of the main bacteria pathogen found in periodontal diseases. Purpose: The purpose of this study was to examine the bactericidal effect of Erythrina fusca Leaves Aquadest Extract (EFLAE at various concentrations on P. gingivalis and cytotoxic effect on fibroblast. Methods: Pure P. gingivalis was cultured in Brain Heart Infusion (BHI medium for 24 hours with or without various concentrations of treatment of EFLAE. Calculation and statistical analysis of remaining bacteria were performed by inhibitory zone method to evaluate the EFLAE bactericidal effect and compared to chlorhexidine as positive control. To evaluate the cytotoxic effect, NIH 3T3 cells were cultured in Dulbecco’s Modification of Eagle’s Medium (DMEM containing of 10% fetal bovine serum (FBS and 1% penicillin-streptomycin, pH 7.2, in 5% CO2, and stored in humidified incubator under temperature 370 C. Cells were treated with/without various concentrations of EFLAE for 48 hours. The viable cells were then counted using 3-(4,5- Dimethylthiazol-2-yl-2,5 diphenyl tetrazodium bromide (MTT method. Results: EFLAE have bactericidal effect on P. gingivalis in a concentration dependent manner starting from 78%. The concentration of 90% EFLAE had stronger bactericidal effect (35.004 ± 1.546 than those of chlorhexidine as positive control (32.313 ± 1.619. One-way ANOVA showed significant bactericidal effect differences among concentrations of EFLAE and chlorhexidine (p<0.05 while Tuckey HSD test showed significant difference only between lower concentration of EFLAE (78%, 79% and chlorhexidine. With the highest concentration of EFLAE (100% applied in the bactericidal test, no cytotoxic effect

  19. Electrochemical analysis of the UV treated bactericidal Ti6Al4V surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pacha-Olivenza, Miguel A. [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Department of Applied Physics, Faculty of Science, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Gallardo-Moreno, Amparo M., E-mail: amparogm@unex.es [Department of Applied Physics, Faculty of Science, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Vadillo-Rodríguez, Virginia; González-Martín, M. Luisa [Department of Applied Physics, Faculty of Science, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Pérez-Giraldo, Ciro [Department of Microbiology, Faculty of Medicine, University of Extremadura, Av. Elvas s/n, 06071 Badajoz (Spain); Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Galván, Juan C. [National Centre for Metallurgical Research (CENIM-CSIC), Av. Gregorio del Amo 8, 28040-Madrid (Spain)

    2013-04-01

    This research investigates in detail the bactericidal effect exhibited by the surface of the biomaterial Ti6Al4V after being subjected to UV-C light. It has been recently hypothesized that small surface currents, occurring as a consequence of the electron–hole pair recombination taking place after the excitation process, are behind the bactericidal properties displayed by this UV-treated material. To corroborate this hypothesis we have used different electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), potentiodynamic polarization plots and Mott–Schottky plots. EIS and Mott–Schottky plots have shown that UV-C treatment causes an initial increase on the surface electrical conduction of this material. In addition, EIS and polarization plots demonstrated that higher corrosion currents occur at the UV treated than at the non-irradiated samples. Despite this increase in the corrosion currents, EIS has also shown that such currents are not likely to affect the good stability of this material oxide film since the irradiated samples completely recovered the control values after being stored in dark conditions for a period not longer than 24 h. These results agree with the already-published in vitro transitory behavior of the bactericidal effect, which was shown to be present at initial times after the biomaterial implantation, a crucial moment to avoid a large number of biomaterial associated infections. Highlights: ► Bactericidal response of UV-treated Ti6Al4V is explained through electrochemistry. ► There is an increase in the superficial electrical conduction after UV-treatment. ► Higher corrosion currents for UV-treated against non-UV-treated samples are shown. ► EIS shows the recuperation on irradiated samples in agreement with microbial tests.

  20. Electrochemical analysis of the UV treated bactericidal Ti6Al4V surfaces

    International Nuclear Information System (INIS)

    Pacha-Olivenza, Miguel A.; Gallardo-Moreno, Amparo M.; Vadillo-Rodríguez, Virginia; González-Martín, M. Luisa; Pérez-Giraldo, Ciro; Galván, Juan C.

    2013-01-01

    This research investigates in detail the bactericidal effect exhibited by the surface of the biomaterial Ti6Al4V after being subjected to UV-C light. It has been recently hypothesized that small surface currents, occurring as a consequence of the electron–hole pair recombination taking place after the excitation process, are behind the bactericidal properties displayed by this UV-treated material. To corroborate this hypothesis we have used different electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), potentiodynamic polarization plots and Mott–Schottky plots. EIS and Mott–Schottky plots have shown that UV-C treatment causes an initial increase on the surface electrical conduction of this material. In addition, EIS and polarization plots demonstrated that higher corrosion currents occur at the UV treated than at the non-irradiated samples. Despite this increase in the corrosion currents, EIS has also shown that such currents are not likely to affect the good stability of this material oxide film since the irradiated samples completely recovered the control values after being stored in dark conditions for a period not longer than 24 h. These results agree with the already-published in vitro transitory behavior of the bactericidal effect, which was shown to be present at initial times after the biomaterial implantation, a crucial moment to avoid a large number of biomaterial associated infections. Highlights: ► Bactericidal response of UV-treated Ti6Al4V is explained through electrochemistry. ► There is an increase in the superficial electrical conduction after UV-treatment. ► Higher corrosion currents for UV-treated against non-UV-treated samples are shown. ► EIS shows the recuperation on irradiated samples in agreement with microbial tests

  1. Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori.

    Science.gov (United States)

    Seabra, Catarina Leal; Nunes, Cláudia; Gomez-Lazaro, Maria; Correia, Marta; Machado, José Carlos; Gonçalves, Inês C; Reis, Celso A; Reis, Salette; Martins, M Cristina L

    2017-03-15

    Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid present in fish oil, has been described as a promising molecule to the treatment of Helicobacter pylori gastric infection. However, due to its highly unsaturated structure, DHA can be easily oxidized loosing part of its bioactivity. This work aims the nanoencapsulation of DHA to improve its bactericidal efficacy against H. pylori. DHA was loaded into nanostructured lipid carriers (NLC) produced by hot homogenization and ultrasonication using a blend of lipids (Precirol ATO5 ® , Miglyol-812 ® ) and a surfactant (Tween 60 ® ). Homogeneous NLC with 302±14nm diameter, -28±3mV surface charge (dynamic and electrophoretic light scattering) and containing 66±7% DHA (UV/VIS spectroscopy) were successfully produced. Bacterial growth curves, performed over 24h in the presence of different DHA concentrations (free or loaded into NLC), demonstrated that nanoencapsulation enhanced DHA bactericidal effect, since DHA-loaded NLC were able to inhibit H. pylori growth in a much lower concentrations (25μM) than free DHA (>100μM). Bioimaging studies, using scanning and transmission electron microscopy and also imaging flow cytometry, demonstrated that DHA-loaded NLC interact with H. pylori membrane, increasing their periplasmic space and disrupting membrane and allowing the leakage of cytoplasmic content. Furthermore, the developed nanoparticles are not cytotoxic to human gastric adenocarcinoma cells at bactericidal concentrations. DHA-loaded NLC should, therefore, be envisaged as an alternative to the current treatments for H. pylori infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences.

    Science.gov (United States)

    Zhou, Z X; Wei, D F; Guan, Y; Zheng, A N; Zhong, J J

    2010-03-01

    The purpose of this study was to provide micrographic evidences for the damaged membrane structure and intracellular structure change of Escherichia coli strain 8099, induced by polyhexamethylene guanidine hydrochloride (PHMG). The bactericidal effect of PHMG on E. coli was investigated based on beta-galactosidase activity assay, fluorescein-5-isothiocyanate confocal laser scanning microscopy, field emission scanning electron microscopy and transmission electron microscopy. The results revealed that a low dose (13 microg ml(-1)) of PHMG slightly damaged the outer membrane structure of the treated bacteria and increased the permeability of the cytoplasmic membrane, while no significant damage was observed to the morphological structure of the cells. A high dose (23 microg ml(-1)) of PHMG collapsed the outer membrane structure, led to the formation of a local membrane pore across the membrane and badly damaged the internal structure of the cells. Subsequently, intracellular components were leaked followed by cell inactivation. Dose-dependent membrane disruption was the main bactericidal mechanism of PHMG. The formation of the local membrane pores was probable after exposure to a high dose (23 microg ml(-1)) of PHMG. Micrographic evidences were provided about the damaged membrane structure and intracellular structure change of E. coli. The presented information helps understand the bactericidal mechanism of PHMG by membrane damage.

  3. Bactericidal efficacy of silver impregnated activated carbon for disinfection of water

    International Nuclear Information System (INIS)

    Sultana, L.; Khan, F.A.; Usmani, T.H.

    2009-01-01

    When highly contaminated water was passed through two types of silver coated activated carbon and their mixtures with sand, the former was found to be far better medium for disinfection of water, with bactericidal efficacy of about 2.5 times that of the latter. (author)

  4. Nanoparticles as Efflux Pump and Biofilm Inhibitor to Rejuvenate Bactericidal Effect of Conventional Antibiotics

    Science.gov (United States)

    Gupta, Divya; Singh, Ajeet; Khan, Asad U.

    2017-07-01

    The universal problem of bacterial resistance to antibiotic reflects a serious threat for physicians to control infections. Evolution in bacteria results in the development of various complex resistance mechanisms to neutralize the bactericidal effect of antibiotics, like drug amelioration, target modification, membrane permeability reduction, and drug extrusion through efflux pumps. Efflux pumps acquire a wide range of substrate specificity and also the tremendous efficacy for drug molecule extrusion outside bacterial cells. Hindrance in the functioning of efflux pumps may rejuvenate the bactericidal effect of conventional antibiotics. Efflux pumps also play an important role in the exclusion or inclusion of quorum-sensing biomolecules responsible for biofilm formation in bacterial cells. This transit movement of quorum-sensing biomolecules inside or outside the bacterial cells may get interrupted by impeding the functioning of efflux pumps. Metallic nanoparticles represent a potential candidate to block efflux pumps of bacterial cells. The application of nanoparticles as efflux pump inhibitors will not only help to revive the bactericidal effect of conventional antibiotics but will also assist to reduce biofilm-forming capacity of microbes. This review focuses on a novel and fascinating application of metallic nanoparticles in synergy with conventional antibiotics for efflux pump inhibition.

  5. Bactericidal effect of starch-stabilized zero-valent iron nanoparticles on Escherichia coli

    Directory of Open Access Journals (Sweden)

    Mohammad Mosaferi

    2016-01-01

    Conclusion: The present study showed that nonstabilized Fe 0 nanoparticles have higher bactericidal efficiency than that of S-NZVI. This investigation also suggests that NZVI can be used as an effective and strong agent for antimicrobial applications.

  6. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage

    Directory of Open Access Journals (Sweden)

    Peter Belenky

    2015-11-01

    Full Text Available Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (β-lactams, aminoglycosides, quinolones. These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products.

  7. Bactericidal activity of herbal volatile oil extracts against multidrug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Amornrat Intorasoot

    2017-06-01

    Full Text Available Aim:\tTo investigate the antibacterial activity of ten volatile oils extracted from medicinal plants, including galangal (Alpinia galanga Linn., ginger (Zingiber officinale, plai (Zingiber cassumunar Roxb., lime (Citrus aurantifolia, kaffir lime (Citrus hystrix DC., sweet basil (Ocimum basilicum Linn., tree basil (Ocimum gratissimum, lemongrass (Cymbopogon citratus DC., clove (Syzygium aromaticum and cinnamon (Cinnamomum verum against four standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii and thirty clinical isolates of multidrug-resistant A. baumannii (MDR-A. baumannii. Methods:\tAgar diffusion, minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC were employed for determination of bactericidal activity of water distillated medicinal plants. Tea tree oil (Melaleuca alternifolia was used as positive control in this study. Results:\tThe results indicated the volatile oil extracted from cinnamon exhibited potent antibacterial activity against the most common human pathogens, S. aureus, E. coli, P. aeruginosa and A. baumannii. Most of volatile oil extracts were less effective against non-fermentative bacteria, P. aeruginosa. In addition, volatile oil extracted from cinnamon, clove and tree basil possessed potent bactericidal activity against MDR-A. baumannii with MBC90 of 0.5, 1 and 2 mg/mL, respectively. Conclusions: The volatile oil extracts would be useful as alternative natural product for treatment of the most common human pathogens and MDR-A. baumannii infections. [J Complement Med Res 2017; 6(2.000: 218-222

  8. Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties.

    Directory of Open Access Journals (Sweden)

    Ajay Vikram Singh

    Full Text Available The considerable morbidity associated with hospitalized patients and clinics in developed countries due to biofilm formation on biomedical implants and surgical instruments is a heavy economic burden. An alternative to chemically treated surfaces for bactericidal activity started emerging from micro/nanoscale topographical cues in the last decade. Here, we demonstrate a putative antibacterial surface using copper nanowhiskers deposited by molecular beam epitaxy. Furthermore, the control of biological response is based on hydrophobic pinning of water droplets in the Wenzel regime, causing mechanical injury and cell death. Scanning electron microscopy images revealed the details of the surface morphology and non-contact mode laser scanning of the surface revealed the microtopography-associated quantitative parameters. Introducing the bacterial culture over nanowhiskers produces mechanical injury to cells, leading to a reduction in cell density over time due to local pinning of culture medium to whisker surfaces. Extended culture to 72 hours to observe biofilm formation revealed biofilm inhibition with scattered microcolonies and significantly reduced biovolume on nanowhiskers. Therefore, surfaces patterned with copper nanowhiskers can serve as potential antibiofilm surfaces. The topography-based antibacterial surfaces introduce a novel prospect in developing mechanoresponsive nanobiomaterials to reduce the risk of medical device biofilm-associated infections, contrary to chemical leaching of copper as a traditional bactericidal agent.

  9. Bactericidal activity of self-assembled palmitic and stearic fatty acid crystals on highly ordered pyrolytic graphite.

    Science.gov (United States)

    Ivanova, Elena P; Nguyen, Song Ha; Guo, Yachong; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Wandiyanto, Jason V; Garvey, Christopher J; Mahon, Peter J; Mainwaring, David E; Crawford, Russell J

    2017-09-01

    The wings of insects such as cicadas and dragonflies have been found to possess nanostructure arrays that are assembled from fatty acids. These arrays can physically interact with the bacterial cell membranes, leading to the death of the cell. Such mechanobactericidal surfaces are of significant interest, as they can kill bacteria without the need for antibacterial chemicals. Here, we report on the bactericidal effect of two of the main lipid components of the insect wing epicuticle, palmitic (C16) and stearic (C18) fatty acids. Films of these fatty acids were re-crystallised on the surface of highly ordered pyrolytic graphite. It appeared that the presence of two additional CH 2 groups in the alkyl chain resulted in the formation of different surface structures. Scanning electron microscopy and atomic force microscopy showed that the palmitic acid microcrystallites were more asymmetric than those of the stearic acid, where the palmitic acid microcrystallites were observed to be an angular abutment in the scanning electron micrographs. The principal differences between the two types of long-chain saturated fatty acid crystallites were the larger density of peaks in the upper contact plane of the palmitic acid crystallites, as well as their greater proportion of asymmetrical shapes, in comparison to that of the stearic acid film. These two parameters might contribute to higher bactericidal activity on surfaces derived from palmitic acid. Both the palmitic and stearic acid crystallite surfaces displayed activity against Gram-negative, rod-shaped Pseudomonas aeruginosa and Gram-positive, spherical Staphylococcus aureus cells. These microcrystallite interfaces might be a useful tool in the fabrication of effective bactericidal nanocoatings. Nanostructured cicada and dragonfly wing surfaces have been discovered to be able physically kill bacterial cells. Here, we report on the successful fabrication of bactericidal three-dimensional structures of two main lipid

  10. Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in tubing.

    Science.gov (United States)

    Chino, T; Nukui, Y; Morishita, Y; Moriya, K

    2017-01-01

    The bactericidal effect of disinfectants against biofilms is essential to reduce potential endoscopy-related infections caused by contamination. Here, we investigated the bactericidal effect of a high-level disinfectant, peracetic acid (PAA), against Staphylococcus aureus and Pseudomonas aeruginosa biofilm models in vitro. S. aureus and P. aeruginosa biofilms were cultured at 35 °C for 7 days with catheter tubes. The following high-level disinfectants (HLDs) were tested: 0.3% PAA, 0.55% ortho-phthalaldehyde (OPA), and 2.0% alkaline-buffered glutaraldehyde (GA). Biofilms were exposed to these agents for 1-60 min and observed after 5 min and 30 min by transmission and scanning electron microscopy. A Student's t test was performed to compare the exposure time required for bactericidal effectiveness of the disinfectants. PAA and GA were active within 1 min and 5 min, respectively, against S. aureus and P. aeruginosa biofilms. OPA took longer than 10 min and 30 min to act against S. aureus and P. aeruginosa biofilms, respectively ( p  < 0.01). Treatment with PAA elicited changes in cell shape after 5 min and structural damage after 30 min. Amongst the HLDs investigated, PAA elicited the most rapid bactericidal effects against both biofilms. Additionally, treatment with PAA induced morphological alterations in the in vitro biofilm models, suggesting that PAA exerts fast-acting bactericidal effects against biofilms associated with endoscopy-related infections. These findings indicate that the exposure time for bactericidal effectiveness of HLDs for endoscope reprocessing in healthcare settings should be reconsidered.

  11. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells.

    Science.gov (United States)

    Bermudez, Maria A; Sendon-Lago, Juan; Eiro, Noemi; Treviño, Mercedes; Gonzalez, Francisco; Yebra-Pimentel, Eva; Giraldez, Maria Jesus; Macia, Manuel; Lamelas, Maria Luz; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2015-01-22

    To evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) on corneal epithelial healing in a rat model of dry eye after alkaline corneal epithelial ulcer. We also tested the bactericidal effect of CM-hUCESCs. Dry eye was induced in rats by extraocular lacrimal gland excision, and corneal ulcers were produced using NaOH. Corneal histologic evaluation was made with hematoxylin-eosin (H&E) staining. Real-time PCR was used to evaluate mRNA expression levels of proinflammatory cytokines. We also studied the bactericidal effect of CM-hUCESCs in vitro and on infected corneal contact lenses (CLs) using Escherichia coli and Staphylococcus epidermidis bacteria. In addition, in order to investigate proteins from CM-hUCESCs that could mediate these effects, we carried out a human cytokine antibody array. After injury, dry eyes treated with CM-hUCESCs significantly improved epithelial regeneration and showed reduced corneal macrophage inflammatory protein-1 alpha (MIP-1α) and TNF-α mRNA expression as compared to untreated eyes and eyes treated with culture medium or sodium hyaluronate ophthalmic drops. In addition, we found in CM-hUCESCs high levels of proteins, such as tissue inhibitors of metalloproteinases 1 and 2, fibroblast growth factor 6 and 7, urokinase receptor, and hepatocyte growth factor, that could mediate these effects. In vitro, CM-hUCESCs showed a clear bactericidal effect on both E. coli and S. epidermidis and CLs infected with S. epidermidis. Analyses of CM-hUCESCs showed elevated levels of proteins that could be involved in the bactericidal effect, such as the chemokine (C-X-C motif) ligands 1, 6, 8, 10, and the chemokine (C-C motif) ligands 5 and 20. Treatment with CM-hUCESCs improved wound healing of alkali-injured corneas and showed a strong bactericidal effect on CLs. Patients using CLs and suffering from dry eye, allergies induced by commercial solutions, or small corneal injuries could benefit from this treatment

  12. Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Silvie; Samek, Ota; Pilát, Zdeněk; Šerý, Mojmír; Ježek, Jan; Jákl, Petr; Šiler, Martin; Krzyžánek, Vladislav; Zemánek, Pavel; Holá, V.; Dvořáčková, M.; Růžička, F.

    2013-01-01

    Roč. 18, č. 11 (2013), s. 13188-13199 ISSN 1420-3049 R&D Projects: GA MŠk ED0017/01/01; GA ČR GAP205/11/1687 Institutional support: RVO:68081731 Keywords : Raman spectroscopy * antibiotics * bacteria * bactericidal * bacteriostatic Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.095, year: 2013

  13. The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores

    Directory of Open Access Journals (Sweden)

    Pengyong Zhou

    2018-04-01

    Full Text Available Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA, jasmonoyl-isoleucine conjugate (JA-Ile, ethylene and H2O2 but not salicylic acid. These activated signaling pathways altered the volatile profile of rice plants. White-backed planthopper (WBPH, Sogatella furcifera nymphs and gravid females showed a preference for feeding and/or oviposition on control plants: survival rates were better and more eggs were laid than on bismerthiazol-treated plants. Moreover, bismerthiazol treatment also increased both the parasitism rate of WBPH eggs laid on plants in the field by Anagrus nilaparvatae, and also the resistance of rice to the brown planthopper (BPH Nilaparvata lugens and the striped stem borer (SSB Chilo suppressalis. These findings suggest that the bactericide bismerthiazol can induce the direct and/or indirect resistance of rice to multiple insect pests, and so can be used as a broad-spectrum chemical elicitor.

  14. Multi-residue screening of prioritised human pharmaceuticals, illicit drugs and bactericides in sediments and sludge.

    Science.gov (United States)

    Langford, Katherine H; Reid, Malcolm; Thomas, Kevin V

    2011-08-01

    A robust multi-residue method was developed for the analysis of a selection of pharmaceutical compounds, illicit drugs and personal care product bactericides in sediments and sludges. Human pharmaceuticals were selected for analysis in Scottish sewage sludge and freshwater sediments based on prescription, physico-chemical and occurrence data. The method was suitable for the analysis of the selected illicit drugs amphetamine, benzoylecgonine, cocaine, and methamphetamine, the pharmaceuticals atenolol, bendroflumethiazide, carbamazepine, citalopram, diclofenac, fluoxetine, ibuprofen, and salbutamol, and the bactericides triclosan and triclocarban in sewage sludge and freshwater sediment. The method provided an overall recovery of between 56 and 128%, RSDs of between 2 and 19% and LODs of between 1 and 50 ng g(-1). Using the methodology the human pharmaceuticals atenolol, carbamazepine and citalopram and the bactericides triclosan and triclocarban were detected in Scottish sewage sludge. The illicit drugs cocaine, its metabolite benzoylecgonine, amphetamine and methamphetamine were not detected in any of the samples analysed. Triclosan and triclocarban were present at the highest concentrations with triclocarban detected in all but one sample and showing a pattern of co-occurrence in both sludge and sediment samples.

  15. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    Science.gov (United States)

    Sheng, Hong; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2015-01-01

    The bactericidal effect of hydroxyl radical (·OH) generated by combination of photolysis of hydrogen peroxide (H2O2) and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2) and ultrasound (power: 30 w, frequency: 1.65 MHz) at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  16. Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in tubing

    Directory of Open Access Journals (Sweden)

    T. Chino

    2017-12-01

    Full Text Available Abstract Background The bactericidal effect of disinfectants against biofilms is essential to reduce potential endoscopy-related infections caused by contamination. Here, we investigated the bactericidal effect of a high-level disinfectant, peracetic acid (PAA, against Staphylococcus aureus and Pseudomonas aeruginosa biofilm models in vitro. Methods S. aureus and P. aeruginosa biofilms were cultured at 35 °C for 7 days with catheter tubes. The following high-level disinfectants (HLDs were tested: 0.3% PAA, 0.55% ortho-phthalaldehyde (OPA, and 2.0% alkaline-buffered glutaraldehyde (GA. Biofilms were exposed to these agents for 1–60 min and observed after 5 min and 30 min by transmission and scanning electron microscopy. A Student’s t test was performed to compare the exposure time required for bactericidal effectiveness of the disinfectants. Results PAA and GA were active within 1 min and 5 min, respectively, against S. aureus and P. aeruginosa biofilms. OPA took longer than 10 min and 30 min to act against S. aureus and P. aeruginosa biofilms, respectively (p < 0.01. Treatment with PAA elicited changes in cell shape after 5 min and structural damage after 30 min. Conclusions Amongst the HLDs investigated, PAA elicited the most rapid bactericidal effects against both biofilms. Additionally, treatment with PAA induced morphological alterations in the in vitro biofilm models, suggesting that PAA exerts fast-acting bactericidal effects against biofilms associated with endoscopy-related infections. These findings indicate that the exposure time for bactericidal effectiveness of HLDs for endoscope reprocessing in healthcare settings should be reconsidered.

  17. The effect of using a fungicide along with bactericide in the main ...

    African Journals Online (AJOL)

    quarternized compounds), and a fungicide (2-thiocyanomethylthio benzothiazole based) commonly used in Turkish leather industry were chosen. The bactericides were added into the main soaking float with and without different concentrations of fungicide. In each trial, liquor samples were taken at the end of the main ...

  18. Antibacterial activities of leave extracts as bactericides for soaking of skin or hide

    Science.gov (United States)

    Suparno, Ono; Panandita, Tania; Afifah, Amalia; Marimin; Purnawati, Rini

    2018-03-01

    Antibacteria, a subtance inhibiting the growth of bacteria, can be obtained from tropical-almond (Terminalia catappa), morinda (Morinda citrifolia), and white leadtree (Leucaena leucocephala) plants, since the plants have phytochemical content functioning as antibacterial agent. Commonly, part of plant that contains higher antibacterial substances is its leaf. The objectives of this study were to determine antibacterial activity of tropical-almond, morinda, and white leadtree leaves extracts, and to analyse the potency of the three extracts as natural bactericide for soaking of skin or hide. The responses measured in this study were phytochemical contents, total flavonoid, tannin content, the inhibition zone, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Phytochemical contents containing the three leaves extracts were alkaloid, flavonoid, tannin, saponin, phenolic, and glycoside. Total flavonoid and tannin contents of the three extracts were tropical-almond extract of 1.14 % and 1.51 %, respectively; morinda extract of 0.61 % and 0.36 %, respectively; and white leadtree extract of 0.60 % and 4.82 %, respectively. White leadtree leaf extract gave the highest inhibition zone against B. subtilis, S. aureus and E. coli, i.e. 1.50, 1.3, and 1.65 cm, respectively; and the lowest MIC and MBC against B. subtilis, S. aureus and E. coli, i.e. 1500, 3000, and 1500 μg/ml, respectively. Therefore, the white leadtree leave extract had more potential as bactericide for soaking of skin or hide compared to those of the tropical-almond and morinda leaves extracts.

  19. The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores

    OpenAIRE

    Pengyong Zhou; Xiaochang Mo; Wanwan Wang; Xia Chen; Yonggen Lou

    2018-01-01

    Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA), jasmonoyl-isoleucine conjugate (JA-Ile), ethylene and H2O2 but not salicylic acid. These activated signaling pathways ...

  20. Bactericidal effects of triclosan in soap both in vitro and in vivo.

    Science.gov (United States)

    Kim, S A; Moon, H; Lee, K; Rhee, M S

    2015-12-01

    On December 2013, the US FDA proposed a rule stating that manufacturers must provide data to demonstrate that antibacterial soap is more effective than plain soap or water. The objective of the present study was to examine the in vitro and in vivo bactericidal effect of triclosan (the most widely used antiseptic agent in soap) in soap. Twenty bacterial strains (proposed by the FDA) were exposed to plain and antibacterial soaps (the same formulation as plain soap, but containing 0.3% triclosan) for 20 s at 22°C (room temperature) and 40°C (warm temperature). The temperature and time were selected to simulate the hand washing conditions and procedures used by consumers. The triclosan concentration of 0.3% is the maximum allowed by law. The decontamination efficacy of plain soap and antibacterial soap was also examined in vivo: the hands of volunteers were artificially inoculated with Serratia marcescens. There was no significant difference (P > 0.05) in bactericidal activity between plain soap and antibacterial soap at either test temperature. However, antibacterial soap showed significantly greater bactericidal effects after 9 h. These results suggest that although triclosan-containing soap does have antibacterial activity, the effects are not apparent during the short time required for hand washing. Antibacterial soap containing triclosan (0.3%) was no more effective than plain soap at reducing bacterial contamination when used under 'real-life' conditions. The present study provides practical information that may prove useful for both industry and governments. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens.

    Science.gov (United States)

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumanni , Pseudomonas aeruginosa , and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60-70% killing) and A. baumannii (85-90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa , 60-80% E. cloacae and 20-60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa , but had reduced activity against biofilms of S. aureus and A. baumannii . Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae , and A. baumannii . Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections.

  2. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    Directory of Open Access Journals (Sweden)

    Hong Sheng

    Full Text Available The bactericidal effect of hydroxyl radical (·OH generated by combination of photolysis of hydrogen peroxide (H2O2 and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2 and ultrasound (power: 30 w, frequency: 1.65 MHz at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  3. Bactericidal effect of colistin on planktonic Pseudomonas aeruginosa is independent of hydroxyl radical formation

    DEFF Research Database (Denmark)

    Brochmann, Rikke Prejh; Toft, Anders; Ciofu, Oana

    2014-01-01

    The bactericidal effect of several major types of antibiotics has recently been demonstrated to be dependent on the formation of toxic amounts of hydroxyl radicals (OH·) resulting from oxidative stress in metabolically active cells. Since killing by the antimicrobial peptide colistin does...... not require bacterial metabolic activity, we tested whether the bactericidal effect of colistin depends on the formation of OH·. In Pseudomonas aeruginosa cultures, OH-mediated killing by ciprofloxacin was demonstrated by decreased bacterial survival and induction of 3'-(p-hydroxyphenyl) fluorescein (HPF......) fluorescence. OH·-mediated killing by ciprofloxacin was further confirmed by rescue of cells and reduction of HPF fluorescence due to prevention of OH· accumulation by scavenging with thiourea, by chelating with dipyridyl, by decreasing metabolism as well as by anoxic growth. In contrast, no formation of OH...

  4. The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Tsukasa, E-mail: akasaka@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586 (Japan); Matsuoka, Makoto [Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586 (Japan); Hashimoto, Takeshi [Meijo Nano Carbon Co. Ltd., Otsubashi bldg. 4F, 3-4-10 Marunouchi, Naka-ku, Nagoya 460-0002 (Japan); Abe, Shigeaki; Uo, Motohiro; Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586 (Japan)

    2010-10-15

    Dental caries are mainly associated with oral pathogens, and Streptococcus mutans is a primary cariogenic organism. Many methods have been established to eliminate S. mutans from the oral cavity. This study aimed to evaluate the effect of carbon nanotube (CNT)/agar composites irradiated with near-infrared (NIR) light on S. mutans, as a potential photothermal antimicrobial nanotherapy. A colony-forming unit assay clearly showed that CNT/agar composites attain bactericidal activity after NIR light irradiation; this bactericidal activity is higher than that of graphite (GP)/agar and activated carbon (AC)/agar composites. Furthermore, it was observed that longer irradiation times immobilized S. mutans in the CNT/agar composite.

  5. The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans

    International Nuclear Information System (INIS)

    Akasaka, Tsukasa; Matsuoka, Makoto; Hashimoto, Takeshi; Abe, Shigeaki; Uo, Motohiro; Watari, Fumio

    2010-01-01

    Dental caries are mainly associated with oral pathogens, and Streptococcus mutans is a primary cariogenic organism. Many methods have been established to eliminate S. mutans from the oral cavity. This study aimed to evaluate the effect of carbon nanotube (CNT)/agar composites irradiated with near-infrared (NIR) light on S. mutans, as a potential photothermal antimicrobial nanotherapy. A colony-forming unit assay clearly showed that CNT/agar composites attain bactericidal activity after NIR light irradiation; this bactericidal activity is higher than that of graphite (GP)/agar and activated carbon (AC)/agar composites. Furthermore, it was observed that longer irradiation times immobilized S. mutans in the CNT/agar composite.

  6. In vitro bactericidal activity of Jinghua Weikang Capsule and its individual herb Chenopodium ambrosioides L. against antibiotic-resistant Helicobacter pylori.

    Science.gov (United States)

    Liu, Wei; Liu, Yu; Zhang, Xue-Zhi; Li, Ning; Cheng, Hong

    2013-01-01

    To investigate the bactericidal effects of Jinghua Weikang Capsule and its major component Chenopodium ambrosioides L. on antibiotic-resistant Helicobacter pylori. Four clinical antibiotic-resistant H. pylori strains were isolated and incubated in liquid medium containing Jinghua Weikang Capsule or Chenopodium ambrosioides L. By means of time-kill curve method, the average colony counts and bactericidal rate were calculated at time points of 0, 4, 8 and 24 h after the incubation and the time-kill curves were charted. Both Jinghua Weikang Capsule and Chenopodium ambrosioides L. at a concentration of 0.64 g/L showed obvious bactericidal effect against antibiotic-resistant H. pylori after 4 h of incubation. Jinghua Weikang Capsule and Chenopodium ambrosioides L. are considered to be active against antibiotic-resistant H. pylori in vitro.

  7. Bactericidal activity of bio-synthesized silver nanoparticles against human pathogenic bacteria

    International Nuclear Information System (INIS)

    Abalkhil, Tarad Abdulaziz; Alharbi, Sulaiman Ali; Salmen, Saleh Hussein; Wainwright, Milton

    2017-01-01

    Green synthesis is an attractive and eco-friendly approach to generate potent antibacterial silver nanoparticles (Ag-NPs). Such particles have long been used to fight bacteria and represent a promising tool to overcome the emergence of antibiotic-resistant bacteria. In this study, green synthesis of Ag-NPs was attempted using plant extracts of Aloe vera, Portulaca oleracea and Cynodon dactylon. The identity and size of Ag-NPs was characterized by ultraviolet–visible spectrophotometer and scanning electron microscopy. Monodispersed Ag-NPs were produced with a range of different sizes based on the plant extract used. The bactericidal activity of Ag-NPs against a number of human pathogenic bacteria was determined using the disc diffusion method. The results showed that Gram positive bacteria were more susceptible than Gram negative ones to these antibacterial agents. The minimum inhibitory concentration was determined using the 96- well plate method. Finally, the mechanism by which Ag-NPs affect bacteria was investigated by SEM analysis. Bacteria treated with Ag-NPs were seen to undergo shrinkage and to lose their viability. This study provides evidence for a cheap and effective method for synthesizing potent bactericidal Ag-NPs and demonstrates their effectiveness against human pathogenic bacteria

  8. Bactericidal Effects of HVOF-Sprayed Nanostructured TiO2 on Pseudomonas aeruginosa

    Science.gov (United States)

    Jeffery, B.; Peppler, M.; Lima, R. S.; McDonald, A.

    2010-01-01

    Titanium dioxide (TiO2) has been shown to exhibit photocatalytic bactericidal activity. This preliminary study focused on examining the photocatalytic activity of high-velocity oxy-fuel (HVOF) sprayed nanostructured TiO2 coatings to kill Pseudomonas aeruginosa. The surfaces of the nanostructured TiO2 coatings were lightly polished before addition of the bacterial solution. Plates of P. aeruginosa were grown, and then suspended in a phosphate buffer saline (PBS) solution. The concentration of bacteria used was determined by a photo-spectrometer, which measured the amount of light absorbed by the bacteria-filled solution. This solution was diluted and pipetted onto the coating, which was exposed to white light in 30-min intervals, up to 120 min. It was found that on polished HVOF-sprayed coatings exposed to white light, 24% of the bacteria were killed after exposure for 120 min. On stainless steel controls, approximately 6% of the bacteria were not recovered. These preliminary results show that thermal-sprayed nanostructured TiO2 coatings exhibited photocatalytic bactericidal activity with P. aeruginosa.

  9. Influence of pulmonary surfactant on in vitro bactericidal activities of amoxicillin, ceftazidime, and tobramycin

    NARCIS (Netherlands)

    A. van 't Veen (Annemarie); J.W. Mouton (Johan); D.A.M.P.J. Gommers (Diederik); J.A.J.W. Kluytmans (Jan); P. Dekkers; B.F. Lachmann (Burkhard)

    1995-01-01

    textabstractThe influence of a natural pulmonary surfactant on antibiotic activity was investigated to assess the possible use of exogenous surfactant as a vehicle for antibiotic delivery to the lung. The influence of surfactant on the bactericidal activity of

  10. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization.

    Science.gov (United States)

    Wang, Bailiang; Ye, Zi; Tang, Yihong; Han, Yuemei; Lin, Quankui; Liu, Huihua; Chen, Hao; Nan, Kaihui

    Infections after surgery or endophthalmitis are potentially blinding complications caused by bacterial adhesion and subsequent biofilm formation on the intraocular lens. Neither single-function anti-adhesion surface nor contacting killing surface can exhibit ideal antibacterial function. In this work, a novel (2-(dimethylamino)-ethyl methacrylate- co -2-methacryloyloxyethyl phosphorylcholine) (p (DMAEMA- co -MPC)) brush was synthesized by "grafting from" method through reversible-addition fragmentation chain transfer polymerization. 1-Bromoheptane was used to quaternize the p (DMAEMA- co -MPC) brush coating and to endow the surface with bactericidal function. The success of the surface functionalization was confirmed by atomic force microscopy, water contact angle, and spectroscopic ellipsometry. The quaternary ammonium salt units were employed as efficient disinfection that can eliminate bacteria through contact killing, whereas the 2-methacryloyloxyethyl phosphorylcholine units were introduced to suppress unwanted nonspecific adsorption. The functionalized poly(dimethyl siloxane) surfaces showed efficiency in reducing bovine serum albumin adsorption and in inhibiting bacteria adhesion and biofilm formation. The copolymer brushes also demonstrated excellent bactericidal function against gram-positive ( Staphylococcus aureus ) bacteria measured by bacteria live/dead staining and shake-flask culture methods. The surface biocompatibility was evaluated by morphology and activity measurement with human lens epithelial cells in vitro. The achievement of the p (DMAEMA + - co -MPC) copolymer brush coating with nonfouling, bactericidal, and bacteria corpse release properties can be used to modify intraocular lenses.

  11. Modification of TiO(2) nanotube surfaces by electro-spray deposition of amoxicillin combined with PLGA for bactericidal effects at surgical implantation sites.

    Science.gov (United States)

    Lee, Jung-Hwan; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2013-01-01

    To fabricate the antibiotic-releasing coatings on TiO(2) nanotube surfaces for wide applications of implant and bone plate in medical and dental surgery, the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures was found. FE-SEM, ESD and FT-IR were used for confirming deposition of amoxicillin/PLGA on the TiO(2) surface. Also, the elution of amoxicillin/PLGA in a TiO(2) nanotube surface was measured by a UV-VIS spectrophotometer. The bactericidal effect of amoxicillin on the TiO(2) nanotube surface was evaluated by using Staphylococcus aureus (S. aureus). The cytotoxicity and cell proliferation were observed by WST assay using MC3T3-E1 osteoblast cells. The results indicated that the TiO(2) nanotube surface controlled by electro-spray deposition time with amoxicillin/PLGA solution could provide a high bactericidal effect against S. aureus by the bactericidal effect of amoxicillin, as well as good osteoblast cell proliferation at the TiO(2) nanotube surface without toxicity. This study used electro-spray deposition (ESD) methodology to obtain amoxicillin deposition in nanotube structures of TiO(2) and found the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures.

  12. A rapid microtiter plate serum bactericidal assay method for determining serum complement-mediated killing of Mannheimia haemolytica.

    Science.gov (United States)

    Ayalew, Sahlu; Confer, Anthony W; Shrestha, Binu; Payton, Mark E

    2012-05-01

    In this study, we describe a rapid microtiter serum bactericidal assay (RMSBA) that can be used to measure the functionality of immune sera. It quantifies bactericidal activity of immune sera in the presence of complement against a homologous bacterium, M. haemolytica in this case. There is high correlation between data from RMSBA and standard complement-mediated bacterial killing assay (r=0.756; p<0.0001). The RMSBA activity of sera can be generated in less than 5 h instead of overnight incubation. RMSBA costs substantially less in terms of time, labor, and resources and is highly reproducible. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Bactericidal activity of partially oxidized nanodiamonds.

    Science.gov (United States)

    Wehling, Julia; Dringen, Ralf; Zare, Richard N; Maas, Michael; Rezwan, Kurosch

    2014-06-24

    Nanodiamonds are a class of carbon-based nanoparticles that are rapidly gaining attention, particularly for biomedical applications, i.e., as drug carriers, for bioimaging, or as implant coatings. Nanodiamonds have generally been considered biocompatible with a broad variety of eukaryotic cells. We show that, depending on their surface composition, nanodiamonds kill Gram-positive and -negative bacteria rapidly and efficiently. We investigated six different types of nanodiamonds exhibiting diverse oxygen-containing surface groups that were created using standard pretreatment methods for forming nanodiamond dispersions. Our experiments suggest that the antibacterial activity of nanodiamond is linked to the presence of partially oxidized and negatively charged surfaces, specifically those containing acid anhydride groups. Furthermore, proteins were found to control the bactericidal properties of nanodiamonds by covering these surface groups, which explains the previously reported biocompatibility of nanodiamonds. Our findings describe the discovery of an exciting property of partially oxidized nanodiamonds as a potent antibacterial agent.

  14. PREPARATION OF TITANIA SOL-GEL COATINGS CONTAINING SILVER IN VARIOUS FORMS AND MEASURING OF THEIR BACTERICIDAL EFFECTS AGAINST E. COLI

    Directory of Open Access Journals (Sweden)

    Diana Horkavcova

    2015-09-01

    Full Text Available The work describes titania coatings containing various forms of silver applied on a titanium substrate by a dip-coating sol-gel technique. Silver was added into the basic titania sol in form of colloid particles of Ag, crystals of AgNO3, particles of AgI, particles of Ag3PO4 and Ag3PO4 developed in situ (in the sol by reaction of AgNO3 with added calcium phosphate (brushite or monetite. Mechanically and chemically treated titanium substrates were dipped at a constant rate into individual types of sols. Subsequently, they were slowly fired. The fired coatings contained microcracks. All over the surface there were evenly distributed spherical nanoparticles of silver (Ag, AgNO3 or microcrystals of AgI and Ag3PO4. The prepared coatings were tested under static conditions for their bactericidal effects against gram-negative bacteria Escherichia coli (E. coli. The coated substrates were immersed into a suspension of E. coli in physiological solution for 24 and 4 hours. The basic titania coatings with no silver demonstrated no bactericidal properties. Very good bactericidal effect against E. coli in both types of bactericidal test showed the titania coatings with AgNO3, Ag3PO4 crystals and Ag3PO4 developed in situ.

  15. Bactericidal strontium-releasing injectable bone cements based on bioactive glasses

    OpenAIRE

    Brauer, Delia S.; Karpukhina, Natalia; Kedia, Gopal; Bhat, Aditya; Law, Robert V.; Radecka, Izabela; Hill, Robert G.

    2013-01-01

    Strontium-releasing injectable bone cements may have the potential to prevent implant-related infections through the bactericidal action of strontium, while enhancing bone formation in patients suffering from osteoporosis. A melt-derived bioactive glass (BG) series (SiO2–CaO–CaF2–MgO) with 0–50% of calcium substituted with strontium on a molar base were produced. By mixing glass powder, poly(acrylic acid) and water, cements were obtained which can be delivered by injection and set in situ, gi...

  16. Novel antiseptic compound OPB-2045G shows potent bactericidal activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus both in vitro and in vivo: a pilot study in animals.

    Science.gov (United States)

    Inoue, Yasuhide; Hagi, Akifumi; Nii, Takuya; Tsubotani, Yoshie; Nakata, Hikaru; Iwata, Koushi

    2015-01-01

    There is a need for new compounds to effectively treat methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). The novel monobiguanide compound 1-(3,4-dichlorobenzyl)-5-octylbiguanide gluconate (OPB-2045G) has potential bactericidal activity. We sought to elucidate the potency of OPB-2045G bactericidal activity against MRSA and VRE compared to those of chlorhexidine digluconate (CHG) and povidone iodine (PVP-I). In vitro bactericidal activity was analysed using minimum bactericidal concentration (MBC) as the index. The in vivo bactericidal efficacy of OPB-2045G was examined by determining MRSA and VRE contamination of the normal dorsal skin of mice following removal of hair. After a 3 min treatment period, the MBC of OPB-2045G was lower than that of CHG and PVP-I against standard strains and clinical isolates. Additionally, in our in vivo mouse model, the in vivo bactericidal activity of 1.5 % OPB-2045G (a clinically relevant dose) was higher than that of 0.5 % CHG and equivalent to that of 10 % PVP-I against MRSA. Similarly, the in vivo bactericidal activity of OPB-2045G was higher than that of 0.5 % CHG and 10 % PVP-I against VRE. OPB-2045G showed more potent bactericidal activity against MRSA and VRE both in vitro and in vivo compared to CHG and PVP-I, indicating that OPB-2045G may provide better protection against health care-associated infections caused by these pathogens. © 2015 The Authors.

  17. Subsets of memory CD4+ T cell and bactericidal antibody response to Neisseria meningitidis serogroup C after immunization of HIV-infected children and adolescents.

    Directory of Open Access Journals (Sweden)

    Lucimar G Milagres

    Full Text Available Meningococcal disease is endemic in Brazil, with periodic outbreaks and case fatality rates reach as high as 18 to 20% of cases. Conjugate vaccines against meningococci are immunogenic in healthy children. However, we have previously shown a poor bactericidal antibody response to a Men C conjugate vaccine in Brazilian HIV-infected children and adolescents after a single vaccine administration. The goal of the present work was to investigate associations between bactericidal antibody response induced by MenC vaccine and the frequency and activation profile (expression of CD38, HLA-DR and CCR5 molecules of total CD4+ memory T cell sub-populations in HIV-1-infected children and adolescents. Responders to vaccination against MenC had a predominance (about 44% of CD4+ TINTERMEDIATE subset followed by TTRANSITIONAL memory subset (23 to 26%. Importantly, CD4+ TINT frequency was positively associated with bactericidal antibody response induced by vaccination. The positive correlation persisted despite the observation that the frequency TINT CD38+HLA-DR+ was higher in responders. In contrast, CD4+ TCENTRAL MEMORY (TCM subset negatively correlated with bactericidal antibodies. In conclusion, these data indicate that less differentiated CD+ T cells, like TCM may be constantly differentiating into intermediate and later differentiated CD4+ T cell subsets. These include CD4 TINT subset which showed a positive association with bactericidal antibodies.

  18. Inhibitory and bactericidal power of mangosteen rind extract towards Porphyromonas Gingivalis and Actinobacillus Actinomycetemcomitans (Laboratory test

    Directory of Open Access Journals (Sweden)

    Ina Hendiani

    2017-08-01

    Full Text Available Introduction: The bacteria that cause the occurrence of pathogens of periodontal disease are gram negative anaerobes. These bacteria include Pophyromonas Gingivalis and Actinobacillus Actinomycetemcomitans. Mangosteen skin extract is known to have anti-inflammatory, anti microbial, and anti oxidant properties. The extract of the mangosteen peel is altered in gel preparation in order to streamline its clinical application in periodontal disease. The purpose of this study was to examine the antibacterial power of the ginger mangosteen tree extract gel against Pophyromonas gingivalis and Actinobacillus Actinomycetemcomitans (Aggregatibacter Actinomycetemcomitans. Methods: This research was conducted by experimental laboratory. Mangosteen fruit extract gel with concentration of 100%, 50%, 25%, 12,5%, 6,25%, 3,125% and 0,78% were tested against Pophyromonas Gingivalis and Aggregatibacter Actinomycetemcomitans with agar diffusion method. Results and Discussion: The results of this study indicate that for Actinobacilus Aggregatibacter bacteria minimal inhibitory concentration at a concentration of 6.25% with a diameter of 13,5mm inhibition. Minimal bactericidal concentration at 12,5% concentration with 14,7mm inhibitory diameter. In the test of Pophyromonas Gingivalis bacteria, minimal inhibitory concentrations were obtained at a concentration of 1.56% and a minimum bactericidal concentration was obtained at a concentration of 3.125%. Conclusion: The conclusion that mangosteen peel skin gel extract can inhibit bacterial growth and is bactericidal against Pophyromonas Gingivalis and Actinobacillus Actinomycetemcomitans (Aggregatibacter Actinomycetecomitans.

  19. Bactericidal activity under UV and visible light of cotton fabrics coated with anthraquinone-sensitized TiO2

    KAUST Repository

    Rahal, Raed

    2013-06-01

    This study describes a method derived from ISO/TC 206/SC specifications to assess the bactericidal activity against a bacterial strain, Pseudomonas fluorescens, of various photocatalytic fabrics, under UVA and filtered visible light. The experimental method allowed the accurate quantification of bacteria survival on photoactive surfaces and films under UVA and UV-free visible irradiation. Cotton fabrics coated with TiO2, anthraquinone or anthraquinone-sensitized TiO2 display a significant bactericidal efficiency. TiO2-coated fabrics are very efficient against P. fluorescens after 4 h UVA irradiation (bacteria survival below the detection limit). Under UVA-free visible light, anthraquinone-sensitized TiO2 coated fabrics induced a significant bactericidal activity after 2 h irradiation, while anthraquinone alone-coated fabrics were not as efficient and TiO2 coated fabrics were almost inefficient. These results show that although exhibiting a weak n-π* band in the 350-420 nm range, anthraquinone is a good candidate as an efficient visible light photosensitizer. A synergy effect between anthraquinone and TiO2 was demonstrated. A possible reaction mechanism, involving a synergy effect for singlet oxygen formation with anthraquinone-sensitized TiO2 is proposed to account for these results. © 2012 Elsevier B.V. All rights reserved.

  20. Bactericidal active ingredient in cryopreserved plasma-treated water with the reduced-pH method for plasma disinfection

    Science.gov (United States)

    Kitano, Katsuhisa; Ikawa, Satoshi; Nakashima, Yoichi; Tani, Atsushi; Yokoyama, Takashi; Ohshima, Tomoko

    2016-09-01

    For the plasma disinfection of human body, plasma sterilization in liquid is crucial. We found that the plasma-treated water (PTW) has strong bactericidal activity under low pH condition. Physicochemical properties of PTW is discussed based on chemical kinetics. Lower temperature brings longer half-life and the bactericidal activity of PTW can be kept by cryopreservation. High performance PTW, corresponding to the disinfection power of 22 log reduction (B. subtilis spore), can be obtained by special plasma system equipped with cooling device. This is equivalent to 65% H2O2, 14% sodium hypochlorite and 0.33% peracetic acid, which are deadly poison for human. But, it is deactivated soon at higher temperature (4 sec. at body temperature), and toxicity to human body seems low. For dental application, PTW was effective on infected models of human extracted tooth. Although PTW has many chemical components, respective chemical components in PTW were isolated by ion chromatography. In addition to peaks of H2O2, NO2- and NO3-, a specific peak was detected. and only this fraction had bactericidal activity. Purified active ingredient of PTW is the precursor of HOO, and further details will be discussed in the presentation. MEXT (15H03583, 23340176, 25108505). NCCE (23-A-15).

  1. Efficacy of pH elevation as a bactericidal strategy for treating ballast water of freight carriers

    Directory of Open Access Journals (Sweden)

    Clifford E. Starliper

    2015-05-01

    Full Text Available Treatment of ship ballast water with sodium hydroxide (NaOH is one method currently being developed to minimize the risk to introduce aquatic invasive species. The bactericidal capability of sodium hydroxide was determined for 148 bacterial strains from ballast water collected in 2009 and 2010 from the M/V Indiana Harbor, a bulk-freight carrier plying the Laurentian Great Lakes, USA. Primary culture of bacteria was done using brain heart infusion agar and a developmental medium. Strains were characterized based on PCR amplification and sequencing of a portion of the 16S rRNA gene. Sequence similarities (99+ % were determined by comparison with the National Center for Biotechnology Information (NCBI GenBank catalog. Flavobacterium spp. were the most prevalent bacteria characterized in 2009, comprising 51.1% (24/47 of the total, and Pseudomonas spp. (62/101; 61.4% and Brevundimonas spp. (22/101; 21.8% were the predominate bacteria recovered in 2010; together, comprising 83.2% (84/101 of the total. Testing was done in tryptic soy broth (TSB medium adjusted with 5 N NaOH. Growth of each strain was evaluated at pH 10.0, pH 11.0 and pH 12.0, and 4 h up to 72 h. The median cell count at 0 h for 148 cultures was 5.20 × 106 cfu/mL with a range 1.02 × 105–1.60 × 108 cfu/mL. The TSB adjusted to pH 10.0 and incubation for less than 24 h was bactericidal to 52 (35.1% strains. Growth in pH 11.0 TSB for less than 4 h was bactericidal to 131 (88.5% strains and pH 11.0 within 12 h was bactericidal to 141 (95.3%. One strain, Bacillus horikoshii, survived the harshest treatment, pH 12.0 for 72 h.

  2. Efficacy of pH elevation as a bactericidal strategy for treating ballast water of freight carriers.

    Science.gov (United States)

    Starliper, Clifford E; Watten, Barnaby J; Iwanowicz, Deborah D; Green, Phyllis A; Bassett, Noel L; Adams, Cynthia R

    2015-05-01

    Treatment of ship ballast water with sodium hydroxide (NaOH) is one method currently being developed to minimize the risk to introduce aquatic invasive species. The bactericidal capability of sodium hydroxide was determined for 148 bacterial strains from ballast water collected in 2009 and 2010 from the M/V Indiana Harbor, a bulk-freight carrier plying the Laurentian Great Lakes, USA. Primary culture of bacteria was done using brain heart infusion agar and a developmental medium. Strains were characterized based on PCR amplification and sequencing of a portion of the 16S rRNA gene. Sequence similarities (99+ %) were determined by comparison with the National Center for Biotechnology Information (NCBI) GenBank catalog. Flavobacterium spp. were the most prevalent bacteria characterized in 2009, comprising 51.1% (24/47) of the total, and Pseudomonas spp. (62/101; 61.4%) and Brevundimonas spp. (22/101; 21.8%) were the predominate bacteria recovered in 2010; together, comprising 83.2% (84/101) of the total. Testing was done in tryptic soy broth (TSB) medium adjusted with 5 N NaOH. Growth of each strain was evaluated at pH 10.0, pH 11.0 and pH 12.0, and 4 h up to 72 h. The median cell count at 0 h for 148 cultures was 5.20 × 10(6) cfu/mL with a range 1.02 × 10(5)-1.60 × 10(8) cfu/mL. The TSB adjusted to pH 10.0 and incubation for less than 24 h was bactericidal to 52 (35.1%) strains. Growth in pH 11.0 TSB for less than 4 h was bactericidal to 131 (88.5%) strains and pH 11.0 within 12 h was bactericidal to 141 (95.3%). One strain, Bacillus horikoshii, survived the harshest treatment, pH 12.0 for 72 h.

  3. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions

    DEFF Research Database (Denmark)

    Kolpen, Mette; Appeldorff, Cecilie F.; Brandt, Sarah

    2016-01-01

    that production of OH˙may not contribute significantly to the bactericidal activity of colistin on P. aeruginosa biofilm. Thus, we investigated the effect of colistin treatment on biofilm of wild-type PAO1, a catalase-deficient mutant (katA) and a colistin-resistant CF isolate cultured in microtiter plates...

  4. Susceptibility of Meningococcal Strains Responsible for Two Serogroup B Outbreaks on U.S. University Campuses to Serum Bactericidal Activity Elicited by the MenB-4C Vaccine.

    Science.gov (United States)

    Rossi, Raffaella; Beernink, Peter T; Giuntini, Serena; Granoff, Dan M

    2015-12-01

    In 2013 and 2014, two U.S. universities had meningococcal serogroup B outbreaks (a total of 14 cases) caused by strains from two different clonal complexes. To control the outbreaks, students were immunized with a serogroup B meningococcal vaccine (Novartis) that was not yet licensed in the United States. The vaccine (referred to as MenB-4C) contains four components capable of eliciting bactericidal activity. Both outbreak strains had high expression levels of two of the vaccine antigens (subfamily B factor H binding protein [FHbp] and neisserial heparin binding antigen [NHba]); the university B outbreak strain also had moderate expression of a third antigen, NadA. We investigated the bactericidal activity of sera from mice immunized with FHbp, NHba, or NadA and sera from MenB-4C-immunized infant macaques and an adult human. The postimmunization bactericidal activity of the macaque or human serum against isolates from university B with FHbp identification (ID) 1 that exactly matched the vaccine FHbp sequence variant was 8- to 21-fold higher than that against isolates from university A with FHbp ID 276 (96% identity to the vaccine antigen). Based on the bactericidal activity of mouse antisera to FHbp, NadA, or NHba and macaque or human postimmunization serum that had been depleted of anti-FHbp antibody, the bactericidal activity against both outbreak strains largely or entirely resulted from antibodies to FHbp. Thus, despite the high level of strain expression of FHbp from a subfamily that matched the vaccine antigen, there can be large differences in anti-FHbp bactericidal activity induced by MenB-4C vaccination. Further, strains with moderate to high NadA and/or NHba expression can be resistant to anti-NadA or anti-NHba bactericidal activity elicited by MenB-4C vaccination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Bacterial Iron Uptake Pathways: Gates for the Import of Bactericide Compounds.

    Science.gov (United States)

    Schalk, Isabelle J; Mislin, Gaëtan L A

    2017-06-08

    Bacterial resistance to most antibiotics in clinical use has reached alarming proportions. A challenge for modern medicine will be to discover new antibiotics or strategies to combat multidrug resistant bacteria, especially Gram-negative bacteria for which the situation is particularly critical. Vectorization of bactericide compounds by siderophores (iron chelators produced by bacteria) is a promising strategy able to considerably increase the efficacy of drugs. Such a Trojan horse strategy can also extend activity of specific Gram-positive antibiotics to Gram-negative bacteria.

  6. Comprehensive bactericidal activity of an ethanol-based hand gel in 15 seconds

    Directory of Open Access Journals (Sweden)

    Kampf Günter

    2008-01-01

    Full Text Available Abstract Background Some studies indicate that the commonly recommended 30 s application time for the post contamination treatment of hands may not be necessary as the same effect may be achieved with some formulations in a shorter application time such as 15 s. Method We evaluated the bactericidal activity of an ethanol-based hand gel (Sterillium® Comfort Gel within 15 s in a time-kill-test against 11 Gram-positive, 16 Gram-negative bacteria and 11 emerging bacterial pathogens. Each strain was evaluated in quadruplicate. Results The hand gel (85% ethanol, w/w was found to reduce all 11 Gram-positive and all 16 Gram-negative bacteria by more than 5 log10 steps within 15 s, not only against the ATCC test strains but also against corresponding clinical isolates. In addition, a log10 reduction > 5 was observed against all tested emerging bacterial pathogens. Conclusion The ethanol-based hand gel was found to have a broad spectrum of bactericidal activity in only 15 s which includes the most common species causing nosocomial infections and the relevant emerging pathogens. Future research will hopefully help to find out if a shorter application time for the post contamination treatment of hands provides more benefits or more risks.

  7. Inhibitory and bactericidal action of the biocorrosion agents «INCORGAS» and «AMDOR».

    Science.gov (United States)

    Tsygankova, L E; Vigdorovich, V I; Esina, M N; Nazina, T N; Dubinskaya, E V

    2014-06-01

    Inhibiting action of A, B and M-X compositions against hydrosulfide corrosion of carbon steel, hydrogen diffusion through the steel membrane has been studied along with their bactericidal effect with respect to sulfate-reducing bacteria of Desulfomicrobium type. Bactericidal properties of the compositions have been studied in the Postgate medium. Corrosion tests have been made in the NACE medium saturated by hydrogen sulfide and carbon dioxide separately and together by methods of gravimetrical measurements and linear polarization resistance (LRP). Potentiodynamic polarization and electrochemical diffusion method have been used. Steel protection is determined in the inhibited solutions by combined action of corrosion products film and inhibitor. Presence of sulfate-reducing bacteria in medium increases hydrogen diffusion flux through the steel membrane by 2-3 times and essentially stimulates effect of the inhibitors. The inhibiting compositions decrease quantity of sulfate-reducing bacteria (SRB) by 95-98%. The obtained results testify about predominately bacteriostatic action of the inhibiting compositions, which has influence on the enzymatic systems of SRB cells responsible directly for the sulfate reduction because of substantially decreasing the biogenic hydrogen sulfide concentration in the system. © 2013 Elsevier B.V. All rights reserved.

  8. Bactericidal properties of silver films on intramedullary implants

    Science.gov (United States)

    Gallagher, C.; Walker, C.; Cortes, E.; Hettinger, Jeffrey; Krchnavek, R.; Caputo, G. A.; Ostrum, R.

    2011-03-01

    We report on investigations of silver films on titanium and stainless steel substrates as anti-bacterial coatings for intramedullary nails used in orthopedic trauma. Silver films are deposited using a magnetron sputtering technique from a single elemental target. The deposition parameter (energy, pressure, and temperature) dependence of the silver film microstructure and adhesion will be presented. Preliminary measurements of the effectiveness of the silver films as a bactericide on S. aureus bacteria demonstrate that the films are effective destroying the bacteria. The process of this investigation will be presented. Preliminary transmission electron microscopy measurements will also presented which image healthy and damaged bacteria helping to identify the fundamental mechanism leading to the effectiveness of silver as an anti-bacterial coating. We acknowledge the support of Rowan University, College of Liberal Arts and Sciences.

  9. Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor h binding protein.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal vaccines containing factor H binding protein (fHbp) are in clinical development. fHbp binds human fH, which enables the meningococcus to resist complement-mediated bacteriolysis. Previously, we found that chimeric human IgG1 mouse anti-fHbp monoclonal antibodies (MAbs) had human complement-mediated bactericidal activity only if the MAb inhibited fH binding. Since IgG subclasses differ in their ability to activate complement, we investigated the role of human IgG subclasses on antibody functional activity. We constructed chimeric MAbs in which three different murine fHbp-specific binding domains were each paired with human IgG1, IgG2, or IgG3. Against a wild-type group B isolate, all three IgG3 MAbs, irrespective of their ability to inhibit fH binding, had bactericidal activity that was >5-fold higher than the respective IgG1 MAbs, while the IgG2 MAbs had the least activity. Against a mutant with increased fHbp expression, the anti-fHbp MAbs elicited greater C4b deposition (classical pathway) and greater bactericidal activity than against the wild-type strain, and the IgG1 MAbs had similar or greater activity than the respective IgG3 MAbs. The bactericidal activity against both wild-type and mutant strains also was dependent, in part, on activation of the alternative complement pathway. Thus, at lower epitope density in the wild-type strain, the IgG3 anti-fHbp MAbs had the greatest bactericidal activity. At a higher epitope density in the mutant, the IgG1 MAbs had similar or greater bactericidal activity than the IgG3 MAbs, and the activity was less dependent on the inhibition of fH binding than at a lower epitope density.

  10. Bactericidal activity does not predict sterilizing activity: the case of rifapentine in the murine model of Mycobacterium ulcerans disease.

    Directory of Open Access Journals (Sweden)

    Deepak V Almeida

    Full Text Available Since 2004, treatment of Mycobacterium ulcerans disease, or Buruli ulcer, has shifted from surgery to daily treatment with streptomycin (STR + rifampin (RIF for 8 weeks. For shortening treatment duration, we tested the potential of daily rifapentine (RPT, a long-acting rifamycin derivative, as a substitute for RIF.BALB/c mice were infected with M. ulcerans in the right hind footpad and treated either daily (7/7 with STR+RIF or five days/week (5/7 with STR+RIF or STR+RPT for 4 weeks, beginning 28 days after infection when CFU counts were 4.88±0.51. The relative efficacy of the drug treatments was compared by footpad CFU counts during treatment and median time to footpad swelling after treatment cessation as measure of sterilizing activity. All drug treatments were bactericidal. After 1 week of treatment, the decline in CFU counts was significantly greater in treated mice but not different between the three treated groups. After 2 weeks of treatment, the decline in CFU was greater in mice treated with STR+RPT 5/7 than in mice treated with STR+RIF 7/7 and STR+RIF 5/7. After 3 and 4 weeks of treatment, CFU counts were nil in mice treated with STR+RPT and reduced by more than 3 and 4 logs in mice treated with STR+RIF 5/7 and STR+RIF 7/7, respectively. In sharp contrast to the bactericidal activity, the sterilizing activity was not different between all drug regimens although it was in proportion to the treatment duration.The better bactericidal activity of daily STR+RIF and especially of STR+RPT did not translate into better prevention of relapse, possibly because relapse-freecure after treatment of Buruli ulcer is more related to the reversal of mycolactone-induced local immunodeficiency by drug treatment rather than to the bactericidal potency of drugs.

  11. Smart Biointerface with Photoswitched Functions between Bactericidal Activity and Bacteria-Releasing Ability.

    Science.gov (United States)

    Wei, Ting; Zhan, Wenjun; Yu, Qian; Chen, Hong

    2017-08-09

    Smart biointerfaces with capability to regulate cell-surface interactions in response to external stimuli are of great interest for both fundamental research and practical applications. Smart surfaces with "ON/OFF" switchability for a single function such as cell attachment/detachment are well-known and useful, but the ability to switch between two different functions may be seen as the next level of "smart". In this work reported, a smart supramolecular surface capable of switching functions reversibly between bactericidal activity and bacteria-releasing ability in response to UV-visible light is developed. This platform is composed of surface-containing azobenzene (Azo) groups and a biocidal β-cyclodextrin derivative conjugated with seven quaternary ammonium salt groups (CD-QAS). The surface-immobilized Azo groups in trans form can specially incorporate CD-QAS to achieve a strongly bactericidal surface that kill more than 90% attached bacteria. On irradiation with UV light, the Azo groups switch to cis form, resulting in the dissociation of the Azo/CD-QAS inclusion complex and release of dead bacteria from the surface. After the kill-and-release cycle, the surface can be easily regenerated for reuse by irradiation with visible light and reincorporation of fresh CD-QAS. The use of supramolecular chemistry represents a promising approach to the realization of smart, multifunctional surfaces, and has the potential to be applied to diverse materials and devices in the biomedical field.

  12. BACTERICIDAL COATINGS ON TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT

    Science.gov (United States)

    2017-07-07

    TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT by Tobyn A. Branck Courtney M. Cowell Jennifer M. Rego and...October 2011 – September 2015 4. TITLE AND SUBTITLE BACTERICIDAL COATINGS ON TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT... REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT Introduction The Biological Sciences and Technology Team (BSTT), Warfighter

  13. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    International Nuclear Information System (INIS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; Ostrikov, Kostya; Vasilev, Krasimir

    2016-01-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces. (paper)

  14. The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance

    Directory of Open Access Journals (Sweden)

    Cheng Chia-Liang

    2009-01-01

    Full Text Available Abstract Bactericidal activity of traditional titanium dioxide (TiO2 photocatalyst is effective only upon irradiation by ultraviolet light, which restricts the potential applications of TiO2 for use in our living environments. Recently carbon-containing TiO2 was found to be photoactive at visible-light illumination that affords the potential to overcome this problem; although, the bactericidal activity of these photocatalysts is relatively lower than conventional disinfectants. Evidenced from scanning electron microscopy and confocal Raman spectral mapping analysis, we found the interaction with bacteria was significantly enhanced in these anatase/rutile mixed-phase carbon-containing TiO2. Bacteria-killing experiments indicate that a significantly higher proportion of all tested pathogens including Staphylococcus aureus, Shigella flexneri and Acinetobacter baumannii, were eliminated by the new nanoparticle with higher bacterial interaction property. These findings suggest the created materials with high bacterial interaction ability might be a useful strategy to improve the antimicrobial activity of visible-light-activated TiO2.

  15. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization

    Directory of Open Access Journals (Sweden)

    Wang B

    2016-12-01

    Full Text Available Bailiang Wang,1,2 Zi Ye,1 Yihong Tang,1 Yuemei Han,1 Quankui Lin,1,2 Huihua Liu,2 Hao Chen,1,2 Kaihui Nan1,2 1School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 2Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China Abstract: Infections after surgery or endophthalmitis are potentially blinding complications caused by bacterial adhesion and subsequent biofilm formation on the intraocular lens. Neither single-function anti-adhesion surface nor contacting killing surface can exhibit ideal antibacterial function. In this work, a novel (2-(dimethylamino-ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine (p (DMAEMA-co-MPC brush was synthesized by “grafting from” method through reversible–addition fragmentation chain transfer polymerization. 1-Bromoheptane was used to quaternize the p (DMAEMA-co-MPC brush coating and to endow the surface with bactericidal function. The success of the surface functionalization was confirmed by atomic force microscopy, water contact angle, and spectroscopic ellipsometry. The quaternary ammonium salt units were employed as efficient disinfection that can eliminate bacteria through contact killing, whereas the 2-methacryloyloxyethyl phosphorylcholine units were introduced to suppress unwanted nonspecific adsorption. The functionalized poly(dimethyl siloxane surfaces showed efficiency in reducing bovine serum albumin adsorption and in inhibiting bacteria adhesion and biofilm formation. The copolymer brushes also demonstrated excellent bactericidal function against gram-positive (Staphylococcus aureus bacteria measured by bacteria live/dead staining and shake-flask culture methods. The surface biocompatibility was evaluated by morphology and activity measurement with human lens epithelial cells in vitro. The achievement of the p (DMAEMA+-co-MPC copolymer brush coating with nonfouling, bactericidal, and

  16. Green Synthesis of Silver Nanoparticles and Their Bactericidal and Antimycotic Activities against Oral Microbes

    Directory of Open Access Journals (Sweden)

    Osvelia E. Rodríguez-Luis

    2016-01-01

    Full Text Available Nanotechnology is a new discipline with huge applications including medicine and pharmacology industries. Although several methods and reducing agents have been employed to synthesize silver nanoparticles, reactive chemicals promote toxicity and nondesired effects on the human and biological systems. The objective of this work was to synthesize silver nanoparticles from Glycyrrhiza glabra and Amphipterygium adstringens extracts and determine their bactericidal and antimycotic activities against Enterococcus faecalis and Candida albicans growth, respectively. 1 and 10 mM silver nitrate were mixed with an extract of Glycyrrhiza glabra and Amphipterygium adstringens. Green silver nanoparticles (AgNPs were characterized by TEM, Vis-NIR, FTIR, fluorescence, DLS, TGA, and X-ray diffraction (XRD analysis. Bactericidal and antimycotic activities of AgNPs were determined by Kirby and Bauer method and cell viability MTT assays. AgNPs showed a spherical shape and average size of 9 nm if prepared with Glycyrrhiza glabra extract and 3 nm if prepared with Amphipterygium adstringens extract. AgNPs inhibited the bacterial and fungal growth as was expected, without a significant cytotoxic effect on human epithelial cells. Altogether, these results strongly suggest that AgNPs could be an interesting option to control oral biofilms.

  17. A versatile synthesis of highly bactericidal Myramistin (registered) stabilized silver nanoparticles

    International Nuclear Information System (INIS)

    Vertelov, G K; Krutyakov, Yu A; Olenin, A Yu; Lisichkin, G V; Efremenkova, O V

    2008-01-01

    Silver nanoparticles stabilized by a well-known antibacterial surfactant benzyldimethyl[3-(myristoylamino)propyl]ammonium chloride (Myramistin) were produced for the first time by borohydride reduction of silver chloride sol in water. Stable aqueous dispersions of silver nanoparticles without evident precipitation for several months could be obtained. In vitro bactericidal tests showed that Myramistin capped silver NPs exhibited notable activity against six different microorganisms-gram-positive and gram-negative bacteria, yeasts and fungi. The activity was up to 20 times higher (against E. coli) compared to Myramistin at the same concentrations and on average 2 times higher if compared with citrate-stabilized NPs

  18. Bactericidal micron-thin sol-gel films prevent pin tract and periprosthetic infection.

    Science.gov (United States)

    Qu, Haibo; Knabe, Christine; Burke, Megan; Radin, Shula; Garino, Jonathan; Schaer, Thomas; Ducheyne, Paul

    2014-08-01

    Orthopedic injuries constitute the majority of wounds sustained by U.S. soldiers in recent conflicts. The risk of infection is considerable with fracture fixation devices. In this pilot study, we examined the use of unique bactericidal micron-thin sol-gel films on fracture fixation devices and their ability to prevent and eradicate infections. External fixation was studied with micron-thin sol-gel coated percutaneous pins releasing triclosan and inserted medially into rabbit tibiae. A total of 11 rabbits received percutaneous pins that were either uncoated or sol-gel/triclosan coated. Internal fracture fixation was also studied using sol-gel coated intramedullary (IM) nails releasing vancomycin in the intramedullary tibiae. Six sheep received IM nails that were coated with a sol-gel film that either contained vancomycin or did not contain vancomycin. All animals were challenged with Staphylococcus aureus around the implant. Animals were euthanized at 1 month postoperative. Rabbits receiving triclosan/sol-gel coated percutaneous pins did not show signs of infection. Uncoated percutaneous pins had a significantly higher infection rate. In the sheep study, there were no radiographic signs of osteomyelitis with vancomycin/sol-gel coated IM nails, in contrast to the observations in the control cohort. Hence, the nanostructured sol-gel controlled release technology offers the promise of a reliable and continuous delivery system of bactericidals from orthopedic devices to prevent and treat infection. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  19. Adverse influence of ozone on pulmonary bactericidal activity of the murine lung

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, E; Tyler, W S; Hoeprich, P D; Eagle, C

    1971-01-01

    Mice infected with /sup 32/P-labeled Staphylococcus aureus and subsequently (30 to 45 min) exposed to 0.62 to 4.25 ppM O/sub 3/ for 4 hr showed less bactericidal activity (negative at higher concentrations) than controls not exposed to O/sub 3/. Counts of /sup 32/P showed 5 to 20% loss (ciliary clearance) from 0 to 5 hr with no O/sub 3/ effect. Histologically, capillaries and small vessels were dilated with occasional edema at higher concentrations. Inhibition of macrophage function was thought to account for these results.

  20. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.

    Directory of Open Access Journals (Sweden)

    Clifford E. Starliper

    2015-01-01

    Full Text Available Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments of captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine whether selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s were determined for these four oils, Allimed® (garlic extract, Allium sativum and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBCs (0.02–0.04% were obtained with three different sources of cinnamon oil. MBCs for three sources of oregano and lemongrass oils ranged from 0.14% to 0.30% and 0.10% to 0.65%, respectively, and for two thyme oils were 2.11% and 2.22%. The highest concentration (5% of Allimed® tested resulted in MBCs to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBCs for all but one isolate.

  1. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite

    International Nuclear Information System (INIS)

    Sharma, Rajeev Kumar; Agarwal, Meenakshi; Balani, Kantesh

    2016-01-01

    Bacterial infection of implants can be controlled by selective trapping of bacteria, followed with consequent killing by targeted antibacterial agents. Herein, the role of various ZnO morphologies, viz. micro-rods (R), nanoparticles (NP), and micro-disks (D) on antibacterial efficacy of ZnO via release of Zn"2"+ and H_2O_2 is assessed, both as isolated powders and via incorporating them in cytocompatible ultra high molecular weight polyethylene (UHMWPE). Though ZnO is antibacterial, interestingly, all ZnO morphologies elicited a supportive growth of gram-negative bacteria (Escherichia coli) in culture medium (until 28–35 μg/ml). But, all ZnO morphologies did elicit bactericidal effect on gram positive bacteria (Staphylococcus aureus or Staphylococcus epidermidis) both in culture medium (for 0–2.5 μg/ml) or when incorporated (5–20 wt.%) into UHMWPE. The bactericidal mechanisms were quantified for various ZnO morphologies via: (i) H_2O_2 production, (ii) Zn"2"+ release, and (iii) the presence of surface oxygen vacancies. On one hand, where only ZnO(NP) elicited release of H_2O_2 in the absence of light, maximum Zn"2"+ release was elicited by ZnO(D). Interestingly, when ZnO is incorporated as reinforcement (5–20 wt.%), its antibacterial action against E. coli was vividly observed due to selective proliferation of bacteria only on friendly UHMWPE matrix. Hence, luring bacteria on affable UHMWPE surface can be complemented with their targeted killing by ZnO present in composite. - Highlights: • The role of ZnO morphology in affecting bactericidal mechanisms • Quantification of Zn"2"+ release, H_2O_2 production and surface oxygen vacancy defects • Inherent resistance by gram negative bacteria at lower ZnO concentrations • Containment of bacteria on polymeric surface and consequent targeted killing by ZnO

  2. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Science.gov (United States)

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-01-01

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed. PMID:28773823

  3. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Directory of Open Access Journals (Sweden)

    Pawel Sikora

    2016-08-01

    Full Text Available The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100% to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  4. A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles

    Science.gov (United States)

    Vertelov, G. K.; Krutyakov, Yu A.; Efremenkova, O. V.; Olenin, A. Yu; Lisichkin, G. V.

    2008-09-01

    Silver nanoparticles stabilized by a well-known antibacterial surfactant benzyldimethyl[3-(myristoylamino)propyl]ammonium chloride (Myramistin®) were produced for the first time by borohydride reduction of silver chloride sol in water. Stable aqueous dispersions of silver nanoparticles without evident precipitation for several months could be obtained. In vitro bactericidal tests showed that Myramistin® capped silver NPs exhibited notable activity against six different microorganisms—gram-positive and gram-negative bacteria, yeasts and fungi. The activity was up to 20 times higher (against E. coli) compared to Myramistin® at the same concentrations and on average 2 times higher if compared with citrate-stabilized NPs.

  5. [Antibacterial actin of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7 (Part 2). Effect of sodium chloride and temperature on bactericidal activity].

    Science.gov (United States)

    Entani, E; Asai, M; Tsujihata, S; Tsukamoto, Y; Ohta, M

    1997-05-01

    Bactericidal effects of various kinds of AWASEZU (processed vinegar, 2.5% acidity) on food-borne pathogenic bacteria including Escherichia coli O157:H7 and other bacteria were examined. the order of bactericidal activities was NIHAIZU (3.5% NaCl was added) > SANBA-IZU (3.5% NaCl and 10% sucrose were added) > plain vinegar (spirit vinegar) > AMAZU (10% sucrose was added). This indicates that their activities were enhanced by the addition of sodium chloride and suppressed by the addition of sugar. On the other hand, when soy sauce was used instead of sodium chloride, the order of bactericidal activities was plain vinegar > AMAZU > NIHAIZU > SANBAIZU. This is mainly because their activities were suppressed by the increase in the pH value. The effect of sodium chloride (0.01-15%) and temperature (10-50 degrees C) on bactericidal activities against E. coli O157:H7 in spirit vinegar (0.5-2.5% acidity) was further examined. When vinegar was used in combination with sodium chloride, predominant synergism on the bactericidal activity was observed. Their activities were markedly enhanced by the addition of sodium chloride in proportion to the concentration. In addition to this, at higher temperatures spirit vinegar killed bacteria much more rapidly. It should be noted that the bactericidal activity of spirit vinegar was extremely enhanced by the combined use of the addition of sodium chloride and the rise of temperature. For example, in 2.5% acidity vinegar, the time required for 3 log decrease in viable cell numbers at 20 degrees C was shortened to 1/140-fold by the addition of 5% sodium chloride, shortened to 1/51-fold by the rise of the reaction temperature at 40 degrees C, and shortened to 1/830-fold; 0.89 minutes by both the addition of 5% sodium chloride and the rise of temperature at 40 degrees C. In order to propose the methods to prevent food poisoning by bacterial infection, bactericidal activities of vinegar solution containing sodium chloride on cooking tools and

  6. Persistence of bactericidal antibodies following early infant vaccination with a serogroup B meningococcal vaccine and immunogenicity of a preschool booster dose.

    Science.gov (United States)

    Snape, Matthew D; Saroey, Praveen; John, Tessa M; Robinson, Hannah; Kelly, Sarah; Gossger, Nicoletta; Yu, Ly-Mee; Wang, Huajun; Toneatto, Daniela; Dull, Peter M; Pollard, Andrew J

    2013-10-15

    The multicomponent serogroup B meningococcal (4CMenB) vaccine was recently licensed for use in Europe. There are currently no data on the persistence of bactericidal antibodies induced by use of this vaccine in infants. Our objective was to evaluate serogroup B-specific bactericidal antibodies in children aged 40-44 months previously vaccinated at 2, 4, 6 and 12 months of age. Participants given 4 doses of 4CMenB as infants received a fifth dose of the vaccine at 40-44 months of age. Age-matched participants who were MenB vaccine-naive received 4CMenB and formed the control group. We evaluated human complement serum bactericidal activity (hSBA) titres at baseline and 1 month after each dose of 4CMenB. Before a booster dose at enrolment, 41%-76% of 17 participants previously vaccinated with 4CMenB in infancy had hSBA titres of 4 or greater against 4 reference strains. Before vaccination in the control group (n = 40) these proportions were similar for strains 44/76-SL (63%) and M10713 (68%) but low for strains NZ98/254 (0%) and 5/99 (3%). A booster dose in the 4CMenB-primed participants generated greater increases in hSBA titres than in controls. As has been observed with other meningococcal vaccines, bactericidal antibodies waned after vaccination with 4CMenB administered according to an approved infant vaccination schedule of 2, 4, 6 and 12 months of age, but there was an anamnestic response to a booster dose at 40-44 months of age. If 4CMenB were introduced into routine vaccination schedules, assessment of the need for a booster dose would require data on the impact of these declining titres on vaccine effectiveness. ClinicalTrials.gov, no. NCT01027351.

  7. Combined treatment of UVA irradiation and antibiotics induces greater bactericidal effects on Vibrio parahaemolyticus

    OpenAIRE

    Hou, Yanfei; Nakahashi, Mutsumi; Mawatari, Kazuaki; Shimohata, Takaaki; Uebanso, Takashi; Harada, Yumi; Tsunedomi, Akari; Emoto, Takahiro; Akutagawa, Masatake; Kinouchi, Yohsuke; Takahashi, Akira

    2016-01-01

    The presence of antibiotics in the environment and their subsequent impact on the development of multi-antibiotic resistant bacteria has raised concerns globally. Consequently, much research is focused on a method to produce a better disinfectant. We have established a disinfectant system using UVA-LED that inactivates pathogenic bacteria. We assessed the bactericidal efficiency of a combination of UVA-LED and antibiotics against Vibrio parahaemolyticus. Combined use of antibiotic drugs and U...

  8. Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

    DEFF Research Database (Denmark)

    Paulander, Wilhelm; Wang, Ying; Folkesson, Sven Anders

    2014-01-01

    It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH center dot) formation. Flow cytometric detection of OH center dot by hydroxyphenyl fluorescein (HPF) probe oxidation was used...... to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen...... for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin...

  9. Effect of bactericidal activity of three disinfectants on methicillin-resistant Staphylococcus aureus (MRSA

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Marchionatti Avancini

    2017-05-01

    Full Text Available Background and Objectives: Methicillin-resistant Staphylococcus aureus (MRSA can cause hospital-acquired infections (HA-MRSA, community- acquired ones (CA-MRSA, and infections transmitted by pets and animals raised for food production (livestock-acquired or LA-MRSA. The conduct to control the transmission of these diseases requires a careful action against the causative agents on surfaces in the environment and the choice of disinfectants and antiseptics is crucial. The objective of the present study was to evaluate the effect of the bactericidal activity of sodium hypochlorite (SH, iodophor (I and a quaternary ammonium compound (QAC, cetyl-trimethyl-ammonium chloride, commonly used in hospital and animal production settings, on 21 MRSA isolates and a control bacterium, and test the hypothesis of cross resistance of antibiotics and disinfectants. Methods: The bactericidal activity of four successive dilutions of the disinfectants was evaluated through the suspension test, using an initial inoculum population density of 107 CFU/mL, after contact times of 5, 15 and 30 minutes. Results: Five minutes of contact of SH 25 ppm, I 12.5 ppm and QAC 125 ppm sufficed to inactivate the reference bacterium S. aureus ATCC 6538 and all MRSA. Conclusions: Once the factors that influence the efficiency of disinfectants are controlled, sodium hypochlorite, iodophor and the quaternary ammonium compound are suitable for controlling MRSA in the sources of infection. No resistance relationship was observed in the methicillin-resistant isolates with these substances.

  10. Bactericidal Permeability-Increasing Proteins Shape Host-Microbe Interactions

    Directory of Open Access Journals (Sweden)

    Fangmin Chen

    2017-04-01

    Full Text Available We characterized bactericidal permeability-increasing proteins (BPIs of the squid Euprymna scolopes, EsBPI2 and EsBPI4. They have molecular characteristics typical of other animal BPIs, are closely related to one another, and nest phylogenetically among invertebrate BPIs. Purified EsBPIs had antimicrobial activity against the squid’s symbiont, Vibrio fischeri, which colonizes light organ crypt epithelia. Activity of both proteins was abrogated by heat treatment and coincubation with specific antibodies. Pretreatment under acidic conditions similar to those during symbiosis initiation rendered V. fischeri more resistant to the antimicrobial activity of the proteins. Immunocytochemistry localized EsBPIs to the symbiotic organ and other epithelial surfaces interacting with ambient seawater. The proteins differed in intracellular distribution. Further, whereas EsBPI4 was restricted to epithelia, EsBPI2 also occurred in blood and in a transient juvenile organ that mediates hatching. The data provide evidence that these BPIs play different defensive roles early in the life of E. scolopes, modulating interactions with the symbiont.

  11. Effect of food processing organic matter on photocatalytic bactericidal activity of titanium dioxide (TiO2).

    Science.gov (United States)

    Yemmireddy, Veerachandra K; Hung, Yen-Con

    2015-07-02

    The purpose of this study was to determine the effect of food processing organic matter on photocatalytic bactericidal activity of titanium dioxide (TiO2) nanoparticles (NPs). Produce and meat processing wash solutions were prepared using romaine lettuce and ground beef samples. Physico-chemical properties such as pH, turbidity, chemical oxygen demand (COD), total phenolics (for produce) and protein (for meat) content of the extracts were determined using standard procedures. The photocatalytic bactericidal activity of TiO2 (1 mg/mL) in suspension with or without organic matter against Escherichia coli O157:H7 (5-strain) was determined over a period of 3h. Increasing the concentration of organic matter (either produce or meat) from 0% to 100% resulted in 85% decrease in TiO2 microbicidal efficacy. 'Turbidity, total phenolics, and protein contents in wash solutions had significant effect on the log reduction. Increasing the total phenolics content in produce washes from 20 to 114 mg/L decreased the log reduction from 2.7 to 0.38 CFU/mL, whereas increasing the protein content in meat washes from 0.12 to 1.61 mg/L decreased the log reduction from and 5.74 to 0.87 CFU/mL. Also, a linear correlation was observed between COD and total phenolics as well as COD and protein contents. While classical disinfection kinetic models failed to predict, an empirical equation in the form of "Y=me(nX)" (where Y is log reduction, X is COD, and m and n are reaction rate constants) predicted the disinfection kinetics of TiO2 in the presence of organic matter (R(2)=94.4). This study successfully identified an empirical model with COD as a predictor variable to predict the bactericidal efficacy of TiO2 when used in food processing environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rajeev Kumar [Biomaterials Processing and Characterization Laboratory, Indian Institute of Technology Kanpur, Kanpur -208016 (India); Agarwal, Meenakshi [Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh - 201303 (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Biomaterials Processing and Characterization Laboratory, Indian Institute of Technology Kanpur, Kanpur -208016 (India)

    2016-05-01

    Bacterial infection of implants can be controlled by selective trapping of bacteria, followed with consequent killing by targeted antibacterial agents. Herein, the role of various ZnO morphologies, viz. micro-rods (R), nanoparticles (NP), and micro-disks (D) on antibacterial efficacy of ZnO via release of Zn{sup 2+} and H{sub 2}O{sub 2} is assessed, both as isolated powders and via incorporating them in cytocompatible ultra high molecular weight polyethylene (UHMWPE). Though ZnO is antibacterial, interestingly, all ZnO morphologies elicited a supportive growth of gram-negative bacteria (Escherichia coli) in culture medium (until 28–35 μg/ml). But, all ZnO morphologies did elicit bactericidal effect on gram positive bacteria (Staphylococcus aureus or Staphylococcus epidermidis) both in culture medium (for 0–2.5 μg/ml) or when incorporated (5–20 wt.%) into UHMWPE. The bactericidal mechanisms were quantified for various ZnO morphologies via: (i) H{sub 2}O{sub 2} production, (ii) Zn{sup 2+} release, and (iii) the presence of surface oxygen vacancies. On one hand, where only ZnO(NP) elicited release of H{sub 2}O{sub 2} in the absence of light, maximum Zn{sup 2+} release was elicited by ZnO(D). Interestingly, when ZnO is incorporated as reinforcement (5–20 wt.%), its antibacterial action against E. coli was vividly observed due to selective proliferation of bacteria only on friendly UHMWPE matrix. Hence, luring bacteria on affable UHMWPE surface can be complemented with their targeted killing by ZnO present in composite. - Highlights: • The role of ZnO morphology in affecting bactericidal mechanisms • Quantification of Zn{sup 2+} release, H{sub 2}O{sub 2} production and surface oxygen vacancy defects • Inherent resistance by gram negative bacteria at lower ZnO concentrations • Containment of bacteria on polymeric surface and consequent targeted killing by ZnO.

  13. Contribution of the autolysin AtlA to the bactericidal activity of amoxicillin against Enterococcus faecalis JH2-2.

    Science.gov (United States)

    Bravetti, Anne-Lise; Mesnage, Stéphane; Lefort, Agnès; Chau, Françoise; Eckert, Catherine; Garry, Louis; Arthur, Michel; Fantin, Bruno

    2009-04-01

    The bactericidal activity of amoxicillin was investigated against Enterococcus faecalis JH2-2 and against an isogenic mutant deficient in the production of the N-acetylglucosaminidase AtlA. Comparison of the two strains indicated that this autolysin contributes to killing by amoxicillin both in vitro and in a rabbit model of experimental endocarditis.

  14. Percutaneous external fixator pins with bactericidal micron-thin sol-gel films for the prevention of pin tract infection.

    Science.gov (United States)

    Qu, Haibo; Knabe, Christine; Radin, Shula; Garino, Jonathan; Ducheyne, Paul

    2015-09-01

    Risk of infection is considerable in open fractures, especially when fracture fixation devices are used to stabilize the fractured bones. Overall deep infection rates of 16.2% have been reported. The infection rate is even greater, up to 32.2%, with external fixation of femoral fractures. The use of percutaneous implants for certain clinical applications, such as percutaneous implants for external fracture fixation, still represents a challenge today. Currently, bone infections are very difficult to treat. Very potent antibiotics are needed, which creates the risk of irreversible damage to other organs, when the antibiotics are administered systemically. As such, controlled, local release is being pursued, but no such treatments are in clinical use. Herein, the use of bactericidal micron-thin sol-gel films on metallic fracture fixation pins is reported. The data demonstrates that triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether), an antimicrobial agent, can be successfully incorporated into micron-thin sol-gel films deposited on percutaneous pins. The sol-gel films continuously release triclosan in vitro for durations exceeding 8 weeks (longest measured time point). The bactericidal effect of the micron-thin sol-gel films follows from both in vitro and in vivo studies. Inserting percutaneous pins in distal rabbit tibiae, there were no signs of infection around implants coated with a micron-thin sol-gel/triclosan film. Healing had progressed normally, bone tissue growth was normal and there was no epithelial downgrowth. This result was in contrast with the results in rabbits that received control, uncoated percutaneous pins, in which abundant signs of infection and epithelial downgrowth were observed. Thus, well-adherent, micron-thin sol-gel films laden with a bactericidal molecule successfully prevented pin tract infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Microwave, sonochemical and combustion synthesized CuO nanostructures and their electrical and bactericidal properties

    International Nuclear Information System (INIS)

    Karunakaran, C.; Manikandan, G.; Gomathisankar, P.

    2013-01-01

    Highlights: •CuO nanoleaves synthesized by CTAB-assisted hydrothermal method. •CuO nanodiscs synthesized by CTAB-assisted sonochemical method. •Combustion synthesized CuO is highly porous. •Synthetic method and morphology influence CuO bactericidal activity. -- Abstract: Cetyltrimethylammonium bromide (CTAB)-assisted microwave synthesis of CuO provides nanoleaves and in the absence of CTAB the shape of CuO is irregular. Sonochemical synthesis of CuO using CTAB gives nanodiscs whereas irregularly shaped flake-like structure is obtained without CTAB. Combustion synthesized CuO is highly porous with innumerable large holes. CTAB does not provide any structure in combustion synthesis. Transmission electron micrographs (TEM) display the constituent nanoparticles of microwave and sonochemically synthesized CuO. The powder X-ray diffractogram (XRD) shows the sample obtained by sonochemical method in the absence of CTAB as a mixture of monoclinic CuO, cubic Cu 2 O, and orthorhombic Cu(OH) 2 . But the rest of the samples are pure CuO in monoclinic phase. The selected area electron diffractograms (SAED) of the microwave and sonochemically synthesized samples, in the presence as well as in the absence of CTAB, confirm the monoclinic phase of CuO and indicates the presence of amorphous CuO in traces. All the samples are characteristic of Fourier Transform infrared (FT-IR) Cu–O stretching frequencies. The method of synthesis and also the morphology influence the electrical properties as well as the bactericidal activity of CuO

  16. Evaluation of bactericidal and anti-biofilm properties of a novel surface-active organosilane biocide against healthcare associated pathogens and Pseudomonas aeruginosa biolfilm.

    Directory of Open Access Journals (Sweden)

    Jason Murray

    Full Text Available Healthcare acquired infections (HAI pose a great threat in hospital settings and environmental contamination can be attributed to the spread of these. De-contamination and, significantly, prevention of re-contamination of the environment could help in preventing/reducing this threat. Goldshield (GS5 is a novel organosilane biocide marketed as a single application product with residual biocidal activity. We tested the hypothesis that GS5 could provide longer-term residual antimicrobial activity than existing disinfectants once applied to surfaces. Thus, the residual bactericidal properties of GS5, Actichlor and Distel against repeated challenge with Staphylococcus aureus ATCC43300 were tested, and showed that GS5 alone exhibited longer-term bactericidal activity for up to 6 days on 316I stainless steel surfaces. Having established efficacy against S. aureus, we tested GS5 against common healthcare acquired pathogens, and demonstrated that, on average, a 1 log10 bactericidal effect was exhibited by GS5 treated surfaces, although biocidal activity varied depending upon the surface type and the species of bacteria. The ability of GS5 to prevent Pseudomonas aeruginosa biofilm formation was measured in standard microtitre plate assays, where it had no significant effect on either biofilm formation or development. Taken together the data suggests that GS5 treatment of surfaces may be a useful means to reducing bacterial contamination in the context of infection control practices.

  17. Null bactericidal effect of ultraviolet radiation emitted by LEDs.

    Directory of Open Access Journals (Sweden)

    Francisco Alcántara Muñoz

    2016-11-01

    Full Text Available This research has aimed to assess the bactericidal effect of ultraviolet light emitted by LEDS on the growth on Petri dishes of microorganisms whose legal limits in foods have been established. An electrically fed apparatus has been designed with precise timing and a camera to prevent light spillage, in which two ultraviolet radiation emission devices were connected by LED technology at different wavelengths: through an array of LEDS emitting at around 350nm, and a single specific emission LED at 280nm. 1000 cfu of E. Coli and S. aureus sown on PCA were used as prototypes of gram negative and positive bacteria, respectively, onto which ultraviolet light was radiated at different time intervals, by means of both devices, with the whole experiment being carried out in triplicate . In none of the three series of treatments at the two wavelengths were reductions in microbial growth observed. The series of sowings on PCA were done on unseeded plates in order to be able to discard the likelihood of subsequent recontamination.

  18. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    Science.gov (United States)

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  19. Superior bactericidal activity of N-bromine compounds compared to their N-chlorine analogues can be reversed under protein load.

    Science.gov (United States)

    Gottardi, W; Klotz, S; Nagl, M

    2014-06-01

    To investigate and compare the bactericidal activity (BA) of active bromine and chlorine compounds in the absence and presence of protein load. Quantitative killing tests against Escherichia coli and Staphylococcus aureus were performed both in the absence and in the presence of peptone with pairs of isosteric active chlorine and bromine compounds: hypochlorous and hypobromous acid (HOCl and HOBr), dichloro- and dibromoisocyanuric acid, chlorantine and bromantine (1,3-dibromo- and 1,3 dichloro-5,5-dimethylhydantoine), chloramine T and bromamine T (N-chloro- and N-bromo-4-methylbenzenesulphonamide sodium), and N-chloro- and N-bromotaurine sodium. To classify the bactericidal activities on a quantitative basis, an empirical coefficient named specific bactericidal activity (SBA), founded on the parameters of killing curves, was defined: SBA= mean log reductions/(mean exposure times x concentration) [mmol 1(-1) min (-1)]. In the absence of peptone, tests with washed micro-organisms revealed a throughout higher BA of bromine compounds with only slight differences between single substances. This was in contrast to chlorine compounds, whose killing times differed by a factor of more than four decimal powers. As a consequence, also the isosteric pairs showed according differences. In the presence of peptone, however, bromine compounds showed an increased loss of BA, which partly caused a reversal of efficacy within isosteric pairs. In medical practice, weakly oxidizing active chlorine compounds like chloramines have the highest potential as topical anti-infectives in the presence of proteinaceous material (mucous membranes, open wounds). Active bromine compounds, on the other hand, have their chance at insensitive body regions with low organic matter, for example skin surfaces. The expected protein load is one of the most important parameters for selection of a suited active halogen compound. © 2014 The Society for Applied Microbiology.

  20. Two approaches to form antibacterial surface: Doping with bactericidal element and drug loading

    Energy Technology Data Exchange (ETDEWEB)

    Sukhorukova, I.V.; Sheveyko, A.N.; Kiryukhantsev-Korneev, Ph.V. [National University of Science and Technology “MISIS”, Leninsky pr. 4, Moscow 119049 (Russian Federation); Anisimova, N.Y.; Gloushankova, N.A.; Zhitnyak, I.Y. [N.N Blokhin Russian Cancer Research Center of RAMS, Kashirskoe shosse 24, Moscow 115478 (Russian Federation); Benesova, J. [Institute of Experimental Medicine of the ASCR, Vídenska 1083, Prague 14220 (Czech Republic); Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Uvalu 84, Prague 15006 (Czech Republic); Amler, E. [Institute of Experimental Medicine of the ASCR, Vídenska 1083, Prague 14220 (Czech Republic); Faculty of Biomedical Engineering, Czech Technical University in Prague (Czech Republic); Shtansky, D.V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky pr. 4, Moscow 119049 (Russian Federation)

    2015-03-01

    Graphical abstract: - Highlights: • Bioactive materials with rate-controlled release of antibacterial agent. • Ag{sup +} ion release from TiCaPCON-Ag films depended on Ag content. • TiCaPCON-coated Ti network structure with blind pores loaded with co-amoxiclav. • Strong bactericidal effect of drug-loaded samples. • Antibacterial yet biocompatible and bioactive surfaces. - Abstract: Two approaches (surface doping with bactericidal element and loading of antibiotic into specially formed surface microcontainers) to the fabrication of antibacterial yet biocompatible and bioactive surfaces are described. A network structure with square-shaped blind pores of 2.6 ± 0.6 × 10{sup −3} mm{sup 3} for drug loading was obtained by selective laser sintering (SLS). The SLS-fabricated samples were loaded with 0.03, 0.3, 2.4, and 4 mg/cm{sup 2} of co-amoxiclav (amoxicillin and clavulanic acid). Ag-doped TiCaPCON films with 0.4, 1.2, and 4.0 at.% of Ag were obtained by co-sputtering of composite TiC{sub 0.5}-Ca{sub 3}(PO{sub 4}){sub 2} and metallic Ag targets. The surface structure of SLS-prepared samples and cross-sectional morphology of TiCaPCON-Ag films were studied by scanning electron microscopy. The through-thickness of Ag distribution in the TiCaPCON-Ag films was obtained by glow discharge optical emission spectroscopy. The kinetics of Ag ion release in normal saline solution was studied using inductively coupled plasma mass spectrometry. Bacterial activity of the samples was evaluated against S. epidermidis, S. aureus, and K. pneum. ozaenae using the agar diffusion test and photometric method by controlling the variation of optical density of the bacterial suspension over time. Cytocompatibility of the Ag-doped TiCaPCON films was observed in vitro using chondrocytic and MC3T3-E1 osteoblastic cells. The viability and proliferation of chondrocytic cells were determined using the MTS assay and PicoGreen assay tests, respectively. The alkaline phosphatase (ALP

  1. Survival of Bactericidal Antibiotic Treatment by a Persister Subpopulation of Listeria monocytogenes

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Ng, Yin; Gram, Lone

    2013-01-01

    Listeria monocytogenes can cause the serious infection listeriosis, which despite antibiotic treatment has a high mortality. Understanding the response of L. monocytogenes to antibiotic exposure is therefore important to ensure treatment success. Some bacteria survive antibiotic treatment...... by formation of persisters, which are a dormant antibiotic-tolerant subpopulation. The purpose of this study was to determine whether L. monocytogenes can form persisters and how bacterial physiology affects the number of persisters in the population. A stationary-phase culture of L. monocytogenes was adjusted...... that eradication of persisters is possible. Our study adds L. monocytogenes to the list of bacterial species capable of surviving bactericidal antibiotics in a dormant stage, and this persister phenomenon should be borne in mind when developing treatment regimens....

  2. Calcium and Zinc Containing Bactericidal Glass Coatings for Biomedical Metallic Substrates

    Directory of Open Access Journals (Sweden)

    Leticia Esteban-Tejeda

    2014-07-01

    Full Text Available The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3–SiO2–Na2O–ZnO and SiO2–Na2O–Al2O3–CaO–B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar according to the biomedical metallic substrates. Formation of bubbles in some of the glassy coatings has been rationalized considering the reactions that take place at the different metal/coating interfaces. All the obtained coatings were proven to be strongly antibacterial versus Escherichia coli (>4 log.

  3. Complement activation and formation of the membrane attack complex on serogroup B Neisseria meningitidis in the presence or absence of serum bactericidal activity

    NARCIS (Netherlands)

    Drogari-Apiranthitou, M.; Kuijper, E. J.; Dekker, N. [=Nick; Dankert, J.

    2002-01-01

    Encapsulated meningococci are complement sensitive only in the presence of bactericidal antibodies by yet-unexplored mechanisms. The objective of this study was to investigate the involvement of major bacterial surface constituents on complement activation and membrane attack complex (MAC) formation

  4. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    Science.gov (United States)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  5. Influence of glycerol and an alternative humectant on the immediate and 3-hours bactericidal efficacies of two isopropanol-based antiseptics in laboratory experiments in vivo according to EN 12791

    Directory of Open Access Journals (Sweden)

    Miranda Suchomel

    2017-06-01

    Full Text Available Abstract Background Guidelines for hand hygiene recommend the use of alcohol-based hand rubs containing humectants in order to improve dermal tolerance. However, the bactericidal efficacy of pre-surgical hand rubs is negatively affected by the WHO-recommended humectant glycerol, especially the 3-h efficacy. The aim of this study was to investigate whether replacing glycerol as humectant increases the bactericidal efficacy of surgical hand rubs based on isopropanol (75%, wt/wt. Material and methods The efficacy of 3 and 5 min applications of a modified WHO II-formulation (containing lower glycerol concentrations and the TPH 5766 hand rub which contains a new humectant (containing ethylhexylglycerin, dexpanthenol and a fatty alcohol were compared to the European Norm 12,791 reference (n-propanol, 60%, vol/vol immediately following and 3 h after application. Results Immediately after application both isopropanol-based surgical rubs approximated the performance of the reference. The 3-h effect of the modified WHO II-formulation was found to be less efficacious than the EN 12791, showing a 30% decrease in log10 reduction values. The 3-h post application effect for the TPH 5766 hand rub was found to not be different from EN 12791. Conclusion Based on our data, the bactericidal efficacy of isopropanol-based surgical hand rubs can best be obtained if glycerol is not used in the formulation. Unlike glycerol, a humectant comprised of ethylhexylglycerin, dexpanthenol and a fatty alcohol was found not to decrease hand rub effectiveness. Further investigation of the bactericidal efficacy of other humectants is necessary and may prove useful.

  6. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays.

    Science.gov (United States)

    Yuan, Yuan; Zhang, Yugen

    2017-10-01

    Cicada wing surfaces are covered with dense patterns of nano-pillar structure that prevent bacterial growth by rupturing adhered microbial cells. To mimic the natural nano-pillar structure, we developed a general and simple method to grow metal organic framework (MOF) nano-dagger arrays on a wide range of surfaces. These nano-daggers possess high bactericidal activity, with log reduction >7 for Escherichia coli and Staphylococcus aureus. It was hypothesized that the positively-charged ZIF-L nano-dagger surfaces enhance bacterial cell adhesion, facilitating selective and efficient bacteria killing by the rigid and sharp nano-dagger tips. This research provides a safe and clean antimicrobial surface technology which does not require external chemicals and will not cause drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  8. Bactericidal activity of M protein conserved region antibodies against group A streptococcal isolates from the Northern Thai population

    Directory of Open Access Journals (Sweden)

    Pruksachatkunakorn Chulabhorn

    2006-08-01

    Full Text Available Abstract Background Most group A streptococcal (GAS vaccine strategies have focused on the surface M protein, a major virulence factor of GAS. The amino-terminus of the M protein elicits antibodies, that are both opsonic and protective, but which are type specific. J14, a chimeric peptide that contains 14 amino acids from the M protein conserved C-region at the carboxy-terminus, offers the possibility of a vaccine which will elicit protective opsonic antibodies against multiple different GAS strains. In this study, we searched for J14 and J14-like sequences and the number of their repeats in the C-region of the M protein from GAS strains isolated from the Northern Thai population. Then, we examined the bactericidal activity of J14, J14.1, J14-R1 and J14-R2 antisera against multiple Thai GAS strains. Results The emm genes of GAS isolates were sequenced and grouped as 14 different J14-types. The most diversity of J14-types was found in the C1-repeat. The J14.1 type was the major sequence in the C2 and C3-repeats. We have shown that antisera raised against the M protein conserved C-repeat region peptides, J14, J14.1, J14-R1 and J14-R2, commonly found in GAS isolates from the Northern Thai population, are able to kill GAS of multiple different emm types derived from an endemic area. The mean percent of bactericidal activities for all J14 and J14-like peptide antisera against GAS isolates were more than 70%. The mean percent of bactericidal activity was highest for J14 antisera followed by J14-R2, J14.1 and J14-R1 antisera. Conclusion Our study demonstrated that antisera raised against the M protein conserved C-repeat region are able to kill multiple different strains of GAS isolated from the Northern Thai population. Therefore, the four conserved "J14" peptides have the potential to be used as GAS vaccine candidates to prevent streptococcal infections in an endemic area.

  9. Serum bactericidal assay for the evaluation of typhoid vaccine using a semi-automated colony-counting method.

    Science.gov (United States)

    Jang, Mi Seon; Sahastrabuddhe, Sushant; Yun, Cheol-Heui; Han, Seung Hyun; Yang, Jae Seung

    2016-08-01

    Typhoid fever, mainly caused by Salmonella enterica serovar Typhi (S. Typhi), is a life-threatening disease, mostly in developing countries. Enzyme-linked immunosorbent assay (ELISA) is widely used to quantify antibodies against S. Typhi in serum but does not provide information about functional antibody titers. Although the serum bactericidal assay (SBA) using an agar plate is often used to measure functional antibody titers against various bacterial pathogens in clinical specimens, it has rarely been used for typhoid vaccines because it is time-consuming and labor-intensive. In the present study, we established an improved SBA against S. Typhi using a semi-automated colony-counting system with a square agar plate harboring 24 samples. The semi-automated SBA efficiently measured bactericidal titers of sera from individuals immunized with S. Typhi Vi polysaccharide vaccines. The assay specifically responded to S. Typhi Ty2 but not to other irrelevant enteric bacteria including Vibrio cholerae and Shigella flexneri. Baby rabbit complement was more appropriate source for the SBA against S. Typhi than complements from adult rabbit, guinea pig, and human. We also examined the correlation between SBA and ELISA for measuring antibody responses against S. Typhi using pre- and post-vaccination sera from 18 human volunteers. The SBA titer showed a good correlation with anti-Vi IgG quantity in the serum as determined by Spearman correlation coefficient of 0.737 (P measure functional antibody titers against S. Typhi in sera from human subjects immunized with typhoid vaccines. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism

    DEFF Research Database (Denmark)

    Koul, A.; Vranckx, L.; Dhar, N.

    2014-01-01

    Bedaquiline (BDQ), an ATP synthase inhibitor, is the first drug to be approved for treatment of multidrug-resistant tuberculosis in decades. Though BDQ has shown excellent efficacy in clinical trials, its early bactericidal activity during the first week of chemotherapy is minimal. Here, using...... microfluidic devices and time-lapse microscopy of Mycobacterium tuberculosis, we confirm the absence of significant bacteriolytic activity during the first 3-4 days of exposure to BDQ. BDQ-induced inhibition of ATP synthesis leads to bacteriostasis within hours after drug addition. Transcriptional...... and proteomic analyses reveal that M. tuberculosis responds to BDQ by induction of the dormancy regulon and activation of ATP-generating pathways, thereby maintaining bacterial viability during initial drug exposure. BDQ-induced bacterial killing is significantly enhanced when the mycobacteria are grown on non...

  11. The Application of Bactericidal Silver Nanoparticles in Wound Treatment

    Directory of Open Access Journals (Sweden)

    Geewoo Nam

    2015-07-01

    Full Text Available Even with the prevalence of wounds, the medical technol‐ ogy for efficiently managing skin damage is still primitive. The disruption of any of the numerous healing processes can lead to problems in the time-sensitive healing actions of the dermal and epidermal layers. Bacterial infection is one of the major obstacles to proper wound healing as it poses a danger of causing long-term negative effects. Keeping the wound free of bacteria is imperative to the proper and hasty repair of dermal wounds. Silver has been widely used to treat wounds for its bactericidal properties. Although the mechanism of silver’s antibacterial action is not fully understood, it exhibits a significant antimicrobial efficacy against a wide spectrum of bacterial species. A number of different approaches to the mechanism are reported and presented in this review. Silver nanoparticles (AgNPs have been reported to exhibit enhanced antibac‐ terial activity due to their increased surface-area-to-volume ratio. AgNPs are capable of various modifications, signifi‐ cantly broadening the therapeutic properties of the mate‐ rial as a result. This review explores the different aspects of silver and silver nanoparticles, and their antibacterial properties, which can be applied in the field of wound treatments.

  12. Effect of organically modified clay on mechanical properties, cytotoxicity and bactericidal properties of poly(ɛ-caprolactone) nanocomposites

    Science.gov (United States)

    Kumar, Sachin; Mishra, Anupam; Chatterjee, Kaushik

    2014-12-01

    The objective of this study was to evaluate the use of organically-modified clay nanoparticles in poly(ɛ-caprolactone) (PCL) for developing biodegradable composites. PCL nanocomposites reinforced with two different types of organically-modified clay (Cloisite 30B, C30B and Cloisite 93A, C93A) were prepared by melt-mixing. Morphology of PCL/clay nanocomposites characterized by scanning electron microscopy indicated good dispersion of nanoclay in the PCL matrix. Reinforcement of nanoclay in PCL enhanced mechanical properties without affecting thermal and degradation properties of PCL. Cytocompatibility of PCL/clay nanocomposites was studied using both osteoblasts and endothelial cells in vitro. Both composites (PCL/C30B and PCL/C93A) were cytotoxic with high toxicity observed for C30B even at low content of 1 wt %. The cytotoxicity was found to arise due to leachables from PCL/clay composites. Electrical conductivity measurements of aqueous media confirmed leaching of cationic surfactant from the PCL/clay composites PCL matrix. Both composites were found to be bactericidal but C30B was more effective than C93A. Taken together, it was observed that organically-modified nanoclay as fillers in PCL improves mechanical properties and imparts bactericidal properties but with increased risk of toxicity. These PCL/clay composites may be useful as stronger packaging material with antibacterial properties but are not suited as biomedical implants or for food packaging applications.

  13. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli.

    Science.gov (United States)

    Flores-Villaseñor, Héctor; Canizalez-Román, Adrian; Reyes-Lopez, Magda; Nazmi, Kamram; de la Garza, Mireya; Zazueta-Beltrán, Jorge; León-Sicairos, Nidia; Bolscher, Jan G M

    2010-06-01

    Increased prevalence of antibiotic-resistant bacteria has become a major threat to the health sector worldwide due to their virulence, limited therapeutic options and distribution in both hospital and community settings. Discovery and development of new agents to combat antibiotic-resistant bacteria is thus needed. This study therefore aimed to evaluate the ability of bovine lactoferrin (LF), peptides from two antimicrobial domains lactoferricin B (LFcin17-30) and lactoferrampin (LFampin265-284) and a chimeric construct (LFchimera) containing both peptides, as potential bactericidal agents against clinical isolates of antibiotic-resistant Staphylococcus aureus and Escherichia coli. Results in kinetics of growth show that LF chimera and peptides inhibited the growth of both bacterial species. By confocal microscopy and flow cytometry it was observed that LF and FITC-labeled peptides are able to interact with these bacteria and cause membrane permeabilization, as monitored by propidium iodide staining, these effects were decreased by preincubation with lipopolysaccharide in E. coli. By electron microscopy, a clear cellular damage was observed in bacteria after treatments with LFchimera and peptides, suggesting that interaction and membrane disruption are probably involved as a mechanism of action. In conclusion, results show that LFchimera, LF and peptides have potential as bactericidal agents in the antibiotic-resistant strains of S. aureus and E. coli and also the work strongly suggest that LFcin17-30 and LFampin265-284 acts synergistically with antibiotics against multidrug resistant EPEC and MRSA in vitro.

  14. Bactericidal Activity of Ceragenin CSA-13 in Cell Culture and in an Animal Model of Peritoneal Infection.

    Science.gov (United States)

    Bucki, Robert; Niemirowicz, Katarzyna; Wnorowska, Urszula; Byfield, Fitzroy J; Piktel, Ewelina; Wątek, Marzena; Janmey, Paul A; Savage, Paul B

    2015-10-01

    Ceragenins constitute a novel family of cationic antibiotics characterized by a broad spectrum of antimicrobial activities, which have mostly been assessed in vitro. Using a polarized human lung epithelial cell culture system, we evaluated the antibacterial activities of the ceragenin CSA-13 against two strains of Pseudomonas aeruginosa (PAO1 and Xen5). Additionally, the biodistribution and bactericidal activity of a CSA-13-IRDye 800CW derivate were assessed using an animal model of peritoneal infection after PAO1 challenge. In cell culture, CSA-13 bactericidal activities against PAO1 and Xen5 were higher than the activities of the human cathelicidin peptide LL-37. Increased CSA-13 activity was observed in polarized human lung epithelial cell cultures subjected to butyric acid treatment, which is known to increase endogenous LL-37 production. Eight hours after intravenous or intraperitoneal injection, the greatest CSA-13-IRDye 800CW accumulation was observed in mouse liver and kidneys. CSA-13-IRDye 800CW administration resulted in decreased bacterial outgrowth from abdominal fluid collected from animals subjected to intraperitoneal PAO1 infection. These observations indicate that CSA-13 may synergistically interact with antibacterial factors that are naturally present at mucosal surfaces and it maintains its antibacterial activity in the infected abdominal cavity. Cationic lipids such as CSA-13 represent excellent candidates for the development of new antibacterial compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Controlled assembly of silver nano-fluid in Heliotropium crispum extract: A potent anti-biofilm and bactericidal formulation

    Science.gov (United States)

    Khan, Faria; Hashmi, Muhammad Uzair; Khalid, Nauman; Hayat, Muhammad Qasim; Ikram, Aamer; Janjua, Hussnain A.

    2016-11-01

    The study describes the optimized method for silver nanoparticle (AgNPs) synthesis using Heliotropium crispum (HC) plant extract. Optimization of physicochemical parameters resulted in stable and rapidly assembled AgNPs. FTIR results suggest presence of plant phytochemicals that helped in the reduction, stabilization and capping of AgNPs. The assembled Ag nano-composites displayed the peak surface plasmon resonance (SPR) around 428 nm. The presence of uniquely assembled Ag-biomolecule composites, cap and stabilize nanoparticles in aqueous plant suspension. Spherical, uniform-shaped AgNPs with low poly-dispersion and average particle size of 42 nm and was determined through dynamic light scattering (DLS) and scanning election microscopy (SEM) which present robust interaction with microbes. The study also evaluates the antimicrobial and anti-biofilm properties of biologically synthesized AgNPs on clinical isolates of MRSA, Pseudomonas aeruginosa and Acinetobacter baumannii. Minimum inhibitory concentration (0.5 mg mL-1) of nanoparticles that presented bactericidal effect was made through inhibition assays on bacterial strains. The concentration which presented potent bactericidal response was then evaluated through growth inhibition in liquid medium for anti-biofilm studies at 2.0 mg mL-1. HC-Ag nanoparticles mediated anti-biofilm effects on Pseudomonas aeruginosa was revealed through SEM. Complete breakdown of biofilm's extracellular polymeric substances resulted after incubation with AgNPs. Peptidoglycan cell wall destruction was also revealed on planktonic bacterial images after 24 h of incubation.

  16. Development of Titanium Dioxide (TiO2 ) Nanocoatings on Food Contact Surfaces and Method to Evaluate Their Durability and Photocatalytic Bactericidal Property.

    Science.gov (United States)

    Yemmireddy, Veerachandra K; Farrell, Glenn D; Hung, Yen-Con

    2015-08-01

    Titanium dioxide (TiO2 ) is a well-known photocatalyst for its excellent bactericidal property under UVA light. The purpose of this study was to develop physically stable TiO2 coatings on food contact surfaces using different binding agents and develop methods to evaluate their durability and microbicidal property. Several types of organic and inorganic binders such as polyvinyl alcohol, polyethylene glycol, polyurethane, polycrylic, sodium and potassium silicates, shellac resin, and other commercial binders were used at 1:1 to 1:16 nanoparticle to binder weight ratios to develop a formulation for TiO2 coating on stainless steel surfaces. Among the tested binders, polyurethane, polycrylic, and shellac resin were found to be physically more stable when used in TiO2 coating at 1:4 to 1:16 weight ratio. The physical stability of TiO2 coatings was determined using adhesion strength and scratch hardness tests by following standard ASTM procedures. Further, wear resistance of the coatings was evaluated based on a simulated cleaning procedure used in food processing environments. TiO2 coating with polyurethane at a 1:8 nanoparticle to binder weight ratio showed the highest scratch hardness (1.08 GPa) followed by coating with polycrylic (0.68 GPa) and shellac (0.14 GPa) binders. Three different techniques, namely direct spreading, glass cover-slip, and indented coupon were compared to determine the photocatalytic bactericidal property of TiO2 coatings against Escherichia coli 0157:H7 at 2 mW/cm(2) UVA light intensity. Under the tested conditions, the indented coupon technique was found to be the most appropriate method to determine the bactericidal property of TiO2 coatings and showed a reduction of 3.5 log CFU/cm(2) in 2 h. © 2015 Institute of Food Technologists®

  17. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    Moreno-Alvarez, S. A.; Martinez-Castanon, G. A.; Nino-Martinez, N.; Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P.; Ruiz, Facundo

    2010-01-01

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  18. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Alvarez, S. A. [UASLP, Doctorado Institucional en Ingenieria y Ciencia de Materiales (Mexico); Martinez-Castanon, G. A., E-mail: mtzcastanon@fciencias.uaslp.m [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Nino-Martinez, N. [UASLP, Facultad de Ciencias (Mexico); Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P. [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Ruiz, Facundo [UASLP, Facultad de Ciencias (Mexico)

    2010-10-15

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 {mu}g/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  19. [On the bactericidal action of dibromoisocyanuric acid; experiments concerning the disinfection of hands (author's transl)].

    Science.gov (United States)

    Gottardi, W; Puritscher, M

    1976-07-01

    The action of dibromoisocyanuric acid (DBI), C12, Br2, trichloroisocyanuric acid (TCI) and chloramine T against Staph. aureus SG 511 was compared. Using the suspension test DBI and Br2 showed the strongest, chloramine T however, the weakest bactericidal power (Tab 2). Under the conditions of the "Hygienic disinfection of hands" a 0.005 M solution of DBI met the requirements specified in the "Richtlinien für die Prüfung chemischer Desinfektionsmittel" (3. Ed., Stuttgart: Gustav Fischer Verlag, 1972), and was comparable to a chloramine T solution containing the same amount of active halogen (Tab. 3). The decrease of disinfection power compared with the suspension test can be attributed to a great error induced by protein.

  20. Bactericidal effect of blue LED light irradiated TiO2/Fe3O4 particles on fish pathogen in seawater

    International Nuclear Information System (INIS)

    Cheng, T.C.; Yao, K.S.; Yeh, N.; Chang, C.I.; Hsu, H.C.; Gonzalez, F.; Chang, C.Y.

    2011-01-01

    This study uses blue LED light (λ max = 475 nm) activated TiO 2 /Fe 3 O 4 particles to evaluate the particles' photocatalytic activity efficiency and bactericidal effects in seawater of variable salinities. Different TiO 2 to Fe 3 O 4 mole ratios have been synthesized using sol-gel method. The synthesized particles contain mainly anatase TiO 2 , Fe 3 O 4 and FeTiO 3 . The study has identified TiO 2 /Fe 3 O 4 's bactericidal effect to marine fish pathogen (Photobacterium damselae subsp. piscicida BCRC17065) in seawater. The SEM photo reveals the surface destruction in bacteria incubated with blue LED irradiated TiO 2 /Fe 3 O 4 . The result of this study indicates that 1) TiO 2 /Fe 3 O 4 acquires photocatalytic activities in both the freshwater and the seawater via blue LED irradiation, 2) higher photocatalytic activities appear in solutions of higher TiO 2 /Fe 3 O 4 mole ratio, and 3) photocatalytic activity decreases as salinity increases. These results suggest that the energy saving blue LED light is a feasible light source to activate TiO 2 /Fe 3 O 4 photocatalytic activities in both freshwater and seawater.

  1. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells.

    Science.gov (United States)

    Brunati, Cristina; Thomsen, Thomas T; Gaspari, Eleonora; Maffioli, Sonia; Sosio, Margherita; Jabes, Daniela; Løbner-Olesen, Anders; Donadio, Stefano

    2018-02-01

    To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time-kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial

  2. Bactericidal Effect of Lauric Acid-Loaded PCL-PEG-PCL Nano-Sized Micelles on Skin Commensal Propionibacterium acnes

    Directory of Open Access Journals (Sweden)

    Thi-Quynh-Mai Tran

    2016-08-01

    Full Text Available Acne is the over growth of the commensal bacteria Propionibacterium acnes (P. acnes on human skin. Lauric acid (LA has been investigated as an effective candidate to suppress the activity of P. acnes. Although LA is nearly insoluble in water, dimethyl sulfoxide (DMSO has been reported to effectively solubilize LA. However, the toxicity of DMSO can limit the use of LA on the skin. In this study, LA-loaded poly(ɛ-caprolactone-poly(ethylene glycol-poly(ɛ-caprolactone micelles (PCL-PEG-PCL were developed to improve the bactericidal effect of free LA on P. acnes. The block copolymers mPEG-PCL and PCL-PEG-PCL with different molecular weights were synthesized and characterized using 1H Nuclear Magnetic Resonance spectroscopy (1H NMR, Fourier-transform infrared spectroscopy (FT-IR, Gel Permeation Chromatography (GPC, and Differential Scanning Calorimetry (DSC. In the presence of LA, mPEG-PCL diblock copolymers did not self-assemble into nano-sized micelles. On the contrary, the average particle sizes of the PCL-PEG-PCL micelles ranged from 50–198 nm for blank micelles and 27–89 nm for LA-loaded micelles. The drug loading content increased as the molecular weight of PCL-PEG-PCL polymer increased. Additionally, the minimum inhibitory concentration (MIC and the minimum bactericidal concentration (MBC of free LA were 20 and 80 μg/mL, respectively. The MICs and MBCs of the micelles decreased to 10 and 40 μg/mL, respectively. This study demonstrated that the LA-loaded micelles are a potential treatment for acne.

  3. Effect of diesel leakage in circulating cooling water system on preponderant bacteria diversity and bactericidal effect of biocides.

    Science.gov (United States)

    Zhong, Huiyun; Liu, Fang; Lu, Jinjin; Yang, Wei; Zhao, Chaocheng

    2015-01-01

    Petroleum products leakage results in adverse effect on the normal operation of a circulating cooling water system. However, relatively little research has been done to explore the effect of petroleum products leakage on circulating cooling water quality and biofilm preponderant bacteria diversity. Also, normal biocides application modes cannot fulfil the need for biofilm control. In this study, diesel oil was used as the experimental subject representing leaking petroleum products; the effect of diesel addition on biofilm preponderant bacteria diversity and the bactericidal effect of chlorine dioxide and tetradecyl dimethyl benzyl ammonium chloride (1427) was investigated. Bacterial community structures were examined by PCR-denaturing gradient gel electrophoresis and PCR cloning of 16S rDNA genes. Except for 100 mg/L diesel, increasing diesel concentration enhanced the biofilm detachment ratio compared with the control test. The microstructure of biofilm samples with 0, 300 and 900 mg/L diesel addition was observed. The species of preponderant bacteria in the biofilm sample with 300 mg/L diesel addition were more and the bacterial distribution was more uniform than those in the biofilm sample with 900 mg/L diesel addition. With ClO2 and 1427 addition, chemical oxygen demand increased, lipid phosphorus and bacterial count first decreased and then remained stable, and the bactericidal ratio first increased and then remained stable. Diesel addition variation has more obvious effect on ClO2 than 1427.

  4. Bactericidal Immunity to Salmonella in Africans and Mechanisms Causing Its Failure in HIV Infection.

    Directory of Open Access Journals (Sweden)

    Yun Shan Goh

    2016-04-01

    Full Text Available Nontyphoidal strains of Salmonella are a leading cause of death among HIV-infected Africans. Antibody-induced complement-mediated killing protects healthy Africans against Salmonella, but increased levels of anti-lipopolysaccharide (LPS antibodies in some HIV-infected African adults block this killing. The objective was to understand how these high levels of anti-LPS antibodies interfere with the killing of Salmonella.Sera and affinity-purified antibodies from African HIV-infected adults that failed to kill invasive S. Typhimurium D23580 were compared to sera from HIV-uninfected and HIV-infected subjects with bactericidal activity. The failure of sera from certain HIV-infected subjects to kill Salmonella was found to be due to an inherent inhibitory effect of anti-LPS antibodies. This inhibition was concentration-dependent and strongly associated with IgA and IgG2 anti-LPS antibodies (p<0.0001 for both. IgG anti-LPS antibodies, from sera of HIV-infected individuals that inhibit killing at high concentration, induced killing when diluted. Conversely, IgG, from sera of HIV-uninfected adults that induce killing, inhibited killing when concentrated. IgM anti-LPS antibodies from all subjects also induced Salmonella killing. Finally, the inhibitory effect of high concentrations of anti-LPS antibodies is seen with IgM as well as IgG and IgA. No correlation was found between affinity or avidity, or complement deposition or consumption, and inhibition of killing.IgG and IgM classes of anti-S. Typhimurium LPS antibodies from HIV-infected and HIV-uninfected individuals are bactericidal, while at very high concentrations, anti-LPS antibodies of all classes inhibit in vitro killing of Salmonella. This could be due to a variety of mechanisms relating to the poor ability of IgA and IgG2 to activate complement, and deposition of complement at sites where it cannot insert in the bacterial membrane. Vaccine trials are required to understand the significance of

  5. Production of TiO2 films with bactericidal properties deposited on paper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lisboa, A.J.T.; Vasconcelos, J.S.; Vasconcelos, A.C.S.; Vasconcelos, N.S.L.S.; Rangel, J.H.G.; Oliveira, M.M.O. [Universidade Federal do Maranha (UFMA), MA (Brazil); Longo, E.; Varela, J. A. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2014-07-01

    The main objective of this work was to obtain anatase-phase titanium oxide films deposited on paper substrates, using the polymeric precursor (Pechini) method. The oxide was mixed with a polyvinyl alcohol (PVA) solution and deposited on a paper substrate. The samples were then characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and energy dispersive spectroscopy (EDS), to check their surface phase. Bactericidal assays using Staphylococcus aureus and Escherichia coli bacteria for the anatase TiO2 film deposited on paper substrate indicated that the method was efficient, since the bacteria were eliminated after a given exposure time. However, the method proved to be more efficient when exposing samples contaminated with E. coli to UV irradiation for 30 and 45 min and then to sunlight for 90 min, since this resulted in the elimination of all the bacteria. (author)

  6. Production of TiO2 films with bactericidal properties deposited on paper substrate

    International Nuclear Information System (INIS)

    Lisboa, A.J.T.; Vasconcelos, J.S.; Vasconcelos, A.C.S.; Vasconcelos, N.S.L.S.; Rangel, J.H.G.; Oliveira, M.M.O.; Longo, E.; Varela, J. A.

    2014-01-01

    The main objective of this work was to obtain anatase-phase titanium oxide films deposited on paper substrates, using the polymeric precursor (Pechini) method. The oxide was mixed with a polyvinyl alcohol (PVA) solution and deposited on a paper substrate. The samples were then characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and energy dispersive spectroscopy (EDS), to check their surface phase. Bactericidal assays using Staphylococcus aureus and Escherichia coli bacteria for the anatase TiO2 film deposited on paper substrate indicated that the method was efficient, since the bacteria were eliminated after a given exposure time. However, the method proved to be more efficient when exposing samples contaminated with E. coli to UV irradiation for 30 and 45 min and then to sunlight for 90 min, since this resulted in the elimination of all the bacteria. (author)

  7. Bactericidal performance of visible-light responsive titania photocatalyst with silver nanostructures.

    Directory of Open Access Journals (Sweden)

    Ming-Show Wong

    Full Text Available BACKGROUND: Titania dioxide (TiO(2 photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO(2 photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved. METHODOLOGY/PRINCIPAL FINDINGS: Using thermal reduction method, here we synthesized silver-nanostructures coated TiO(2 thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO(2, carbon-doped TiO(2 [TiO(2 (C] and nitrogen-doped TiO(2 [TiO(2 (N], TiO(2 (N showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO(2 (N substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials. CONCLUSION/SIGNIFICANCE: Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.

  8. In vitro and in vivo bactericidal activity of Tinospora sagittata (Oliv.) Gagnep. var. craveniana (S.Y.Hu) Lo and its main effective component, palmatine, against porcine Helicobacter pylori.

    Science.gov (United States)

    Rong, Qian; Xu, Min; Dong, Qi; Zhang, Yuli; Li, Yinglun; Ye, Gang; Zhao, Ling

    2016-08-30

    Tinospora sagittata (Oliv.) Gagnep. var. craveniana (S.Y.Hu) Lo (TSG) is a traditional Chinese herb that has been used for the treatment of upper respiratory tract infection and has anti-bacterial and anti-ulcer activity. Our study investigated the bactericidal effects of TSG and its major component, palmatine, against a Helicobacter pylori (H. pylori) strain isolated from pig and the standard strain H. pylori SS1 in vitro and in vivo. H. pylori was isolated from pig and named H. pylori SCYA201401. For in vitro experiments, the inhibitory activity of TSG and palmatine against H. pylori SCYA201401 and H. pylori SS1 were tested by use of the agar cup diffusion technique. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined from the absence of H. pylori colonies on agar plates. Time-kill curves were used to evaluate bactericidal activity; the average number of colonies was calculated at 0 to 48 h after liquid incubation, with concentrations of drugs at 0.5, 1, and 2 × MIC. For in vivo experiments, H. pylori SCYA201401-infected mice were randomly divided into TSG, palmatine, triple therapy (omeprazole, clarithromycin, and amoxicillin), blank control, and model groups. The eradication ratios were determined by use of rapid urease tests and bacterial culture. In vitro, the MIC and MBC of TSG against H. pylori SCYA201401 and SS1 were both 6250 μg/mL, whereas palmatine against H. pylori SCYA201401 was 6.25 μg/mL and against H. pylori SS1 was 3.12 μg/mL. The time-kill curves showed a dose-dependent, progressive decline in the numbers of viable bacteria up to 40 h. In vivo, the eradication ratios in the TSG and palmatine groups of mice were 80 and 50 % compared with 70 % in the triple-therapy group. TSG and its major component, palmatine, have bactericidal activity against H. pylori in vitro and in vivo. The possibility that TSG or palmatine can be effective in the treatment of human and animals H. pylori

  9. Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract

    Science.gov (United States)

    Seralathan, Janani; Stevenson, Priscilla; Subramaniam, Shankar; Raghavan, Rachana; Pemaiah, Brindha; Sivasubramanian, Aravind; Veerappan, Anbazhagan

    2014-01-01

    Nanosized silver have been widely used in many applications, such as catalysis, photonics, sensors, medicine etc. Thus, there is an increasing need to develop high-yield, low cost, non-toxic and eco-friendly procedures for the synthesis of nanoparticles. Herein, we report an efficient, green synthesis of silver nanoparticles utilizing the aqueous extract of Salicornia brachiata, a tropical plant of the Chenopodiaceae family. Silver nanoparticles have been characterized by ultraviolet-visible spectroscopy, scanning electron microscopy and transmission electron microscopy. The morphology of the particles formed consists of highly diversified shapes like spherical, rod-like, prism, triangular, pentagonal and hexagonal pattern. However, addition of sodium hydroxide to the extract produces mostly spherical particles. The stable nanoparticles obtained using this green method show remarkable catalytic activity in the reduction of 4-nitro phenol to 4-amino phenol. The reduction catalyzed by silver nanoparticles followed the first-order kinetics, with a rate constant of, 0.6 × 10-2 s-1. The bactericidal activity of the synthesized silver nanoparticles against the pathogenic bacteria, Staphylococcus aureus, Staphylococcus aureus E, Bacillus subtilis and Escherichia coli, was also explored using REMA. The obtained results showed that the minimum inhibitory concentration required to induce bactericidal effect is lower than the control antibiotic, ciprofloxacin. In addition to these, the biogenic synthesized nanoparticles also exhibited excellent free radical scavenging activity.

  10. Bactericidal activity of culture fluid components of Lactobacillus fermentum strain 90 TS-4 (21) clone 3, and their capacity to modulate adhesion of Candida albicans yeast-like fungi to vaginal epithelial cells.

    Science.gov (United States)

    Anokhina, I V; Kravtsov, E G; Protsenko, A V; Yashina, N V; Yermolaev, A V; Chesnokova, V L; Dalin, M V

    2007-03-01

    Antagonistic activities of L. fermentum strain 90 TS-4 (21), L. casei ATCC 27216, and L. acidophilus ATCC 4356 and bactericidal activity of lactobacillus culture fluid towards E. coli strain K12, S. aureus, and S. epidermidis test cultures were studied. The bactericidal effect of L. fermentum strain 90 TS-4 (21) clone 3 culture fluid preparation (pH 6.0) on the test cultures was dose-dependent. Adhesion of C. albicans yeast-like fungi to vaginal epitheliocytes was more pronounced for strains isolated from women with asymptomatic infection than for strains isolated from women with manifest forms. L. fermentum strain 90 TS-4 (21) clone 3 culture fluid preparation modulated adhesion of yeast-like fungi only if the fungal strain was initially highly adherent.

  11. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Bijan; Faramarzi, Mohammad Ali; Sepehrizadeh, Zargham [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451 Tehran (Iran, Islamic Republic of); Shakibaie, Mojtaba [Department of Pharmacognosy and Biotechnology, School of Pharmacy, Pharmaceutics Research Center, Kerman University of Medical Sciences, P.O. Box 76175-493 Kerman (Iran, Islamic Republic of); Rezaie, Sassan [Department of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza, E-mail: shahverd@sina.tums.ac.ir [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451 Tehran (Iran, Islamic Republic of)

    2012-11-15

    Highlights: ► Biosynthesis of rod shape tellurium nanoparticles with a hexagonal crystal structure. ► Extraction procedure for isolation of tellurium nanoparticles from Bacillus sp. BZ. ► Extracted tellurium nanoparticles have good bactericidal activity against some bacteria. -- Abstract: In this study, a tellurium-transforming Bacillus sp. BZ was isolated from the Caspian Sea in northern Iran. The isolate was identified by various tests and 16S rDNA analysis, and then used to prepare elemental tellurium nanoparticles. The isolate was subsequently used for the intracellular biosynthesis of elemental tellurium nanoparticles. The biogenic nanoparticles were released by liquid nitrogen and purified by an n-octyl alcohol water extraction system. The shape, size, and composition of the extracted nanoparticles were characterized. The transmission electron micrograph showed rod-shaped nanoparticles with dimensions of about 20 nm × 180 nm. The energy dispersive X-ray and X-ray diffraction spectra respectively demonstrated that the extracted nanoparticles consisted of only tellurium and have a hexagonal crystal structure. This is the first study to demonstrate a biological method for synthesizing rod-shaped elemental tellurium by a Bacillus sp., its extraction and its antibacterial activity against different clinical isolates.

  12. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities

    International Nuclear Information System (INIS)

    Zare, Bijan; Faramarzi, Mohammad Ali; Sepehrizadeh, Zargham; Shakibaie, Mojtaba; Rezaie, Sassan; Shahverdi, Ahmad Reza

    2012-01-01

    Highlights: ► Biosynthesis of rod shape tellurium nanoparticles with a hexagonal crystal structure. ► Extraction procedure for isolation of tellurium nanoparticles from Bacillus sp. BZ. ► Extracted tellurium nanoparticles have good bactericidal activity against some bacteria. -- Abstract: In this study, a tellurium-transforming Bacillus sp. BZ was isolated from the Caspian Sea in northern Iran. The isolate was identified by various tests and 16S rDNA analysis, and then used to prepare elemental tellurium nanoparticles. The isolate was subsequently used for the intracellular biosynthesis of elemental tellurium nanoparticles. The biogenic nanoparticles were released by liquid nitrogen and purified by an n-octyl alcohol water extraction system. The shape, size, and composition of the extracted nanoparticles were characterized. The transmission electron micrograph showed rod-shaped nanoparticles with dimensions of about 20 nm × 180 nm. The energy dispersive X-ray and X-ray diffraction spectra respectively demonstrated that the extracted nanoparticles consisted of only tellurium and have a hexagonal crystal structure. This is the first study to demonstrate a biological method for synthesizing rod-shaped elemental tellurium by a Bacillus sp., its extraction and its antibacterial activity against different clinical isolates.

  13. Synthesis of nanosilver particles by reverse micelle method and study of their bactericidal properties

    Energy Technology Data Exchange (ETDEWEB)

    Tran Thi Ngoc Dung; Ngo Quoc Buu; Dang Viet Quang; Le Anh Bang; Nguyen Hoai Chau; Nguyen Thi Ly [Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Distr., Hanoi (Viet Nam); Huynh Thi Ha [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Distr., Hanoi (Viet Nam); Nguyen Vu Trung [National Institute for Infectious and Tropical Diseases, 1 Ton That Tung, Dong Da Distr., Hanoi (Viet Nam)], E-mail: ttndzung@yahoo.com, E-mail: buu_nq@yahoo.com

    2009-09-01

    Nanosilver particles have been synthesized by the reverse micelle method, where AgNO{sub 3} was used as a silver ions source, NaBH{sub 4} and quercetin - as reducing agents, CTAB, SDOSS and AOT- as surfactants, while the stabilizer was Vietnamese chitosan. Studying the factors influencing the process of nanosilver particle formation, it was shown that the particle size of the nanosilver products depends on the concentration of the reaction components and their stoichiometric ratio. It was also shown that the reaction system using AOT surfactant is capable of producing nanosilver particles with smallest nanoparticles ({phi}{sub av} {approx} 5 nm) and good particle-size distribution. The study on bactericidal activity of the nanosilver products indicated that the disinfecting solution with a nanosilver concentration of 3 ppm was able to inhibit all E.coli and Coliforms, TPC and fungi at 15 ppm, while Vibrio cholerae cells were inactivated completely with 0.5 ppm of nanosilver after 30 minutes exposition.

  14. Effect of influenza infection on the phagocytic and bactericidal activities of pulmonary macrophages

    International Nuclear Information System (INIS)

    Nugent, K.M.; Pesanti, E.L.

    1979-01-01

    The effect of mouse-adapted influenza A/PR/8/34 virus on pulmonary macrophage function was evaluated by using an in vitro system which allowed direct virus interaction with macrophages and then separate analysis of the steps required for bacterial clearance by macrophages. Infection of macrophages with this virus resulted in the appearance of a hemagglutinating activity on the macrophage surface; expression of this activity was inhibited by amantadine, 2-deoxyglucose, and cycloheximide and by pretreatment of the virus inoculum with with ultraviolet light and specific antiserum. After influenza infection, net ingestion of viable Staphylococcus aureus by macrophage monolayers was unaltered and there was no change in the fraction of the monolayer which ingested cocci over a wide range of bacterial inputs. Influenza-infected microphages also inactivated intracellular S. aureus at a rate indistinguishable from controls. Therefore, these in vitro studies do not support the hypothesis that the defect in pulmonary antibacterial mechanisms associated with influenza infections results from a direct effect of virus infection on either the phagocytic or bactericidal activity of resistant pulmonary macarophages

  15. Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice.

    Science.gov (United States)

    Martínez Viedma, Pilar; Sobrino López, Angel; Ben Omar, Nabil; Abriouel, Hikmate; Lucas López, Rosario; Valdivia, Eva; Martín Belloso, Olga; Gálvez, Antonio

    2008-12-10

    The effect of the broad spectrum cyclic antimicrobial peptide enterocin AS-48 combination with high-intensity pulsed-electric field (HIPEF) treatment (35 kV/cm, 150 Hz, 4 micros and bipolar mode) was tested on Salmonella enterica CECT 915 in apple juice. A response surface methodology was applied to study the bactericidal effects of the combined treatment. The process variables were AS-48 concentration, temperature, and HIPEF treatment time. While treatment with enterocin AS-48 alone up to 60 microg/ml had no effect on the viability of S. enterica in apple juice, an increased bactericidal activity was observed in combination with HIPEF treatments. Survival fraction was affected by treatment time, enterocin AS48 concentration and treatment temperature. The combination of 100 micros of HIPEF treatment, 30 microg/ml of AS-48, and temperature of 20 degrees C resulted in the lowest inactivation, with only a 1.2-log reduction. The maximum inactivation of 4.5-log cycles was achieved with HIPEF treatment for 1000 micros in combination with 60 microg/ml of AS-48 and a treatment temperature of 40 degrees C. Synergism between enterocin AS-48 and HIPEF treatment depended on the sequence order application, since it was observed only when HIPEF was applied in the presence of previously-added bacteriocin. The combined treatment could improve the safety of freshly-made apple juice against S. enterica transmission.

  16. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism.

    Science.gov (United States)

    Kashyap, Des R; Kuzma, Marcin; Kowalczyk, Dominik A; Gupta, Dipika; Dziarski, Roman

    2017-09-01

    Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn 2+ through influx of extracellular Zn 2+ ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy. © 2017 John Wiley & Sons Ltd.

  17. Surface functionalization of Cu-Ni alloys via grafting of a bactericidal polymer for inhibiting biocorrosion by Desulfovibrio desulfuricans in anaerobic seawater.

    Science.gov (United States)

    Yuan, S J; Liu, C K; Pehkonen, S O; Bai, R B; Neoh, K G; Ting, Y P; Kang, E T

    2009-01-01

    A novel surface modification technique was developed to provide a copper nickel alloy (M) surface with bactericidal and anticorrosion properties for inhibiting biocorrosion. 4-(chloromethyl)-phenyl tricholorosilane (CTS) was first coupled to the hydroxylated alloy surface to form a compact silane layer, as well as to confer the surface with chloromethyl functional groups. The latter allowed the coupling of 4-vinylpyridine (4VP) to generate the M-CTS-4VP surface with biocidal functionality. Subsequent surface graft polymerization of 4VP, in the presence of benzoyl peroxide (BPO) initiator, from the M-CTS-4VP surface produced the poly(4-vinylpyridine) (P(4VP)) grafted surface, or the M-CTS-P(4VP) surface. The pyridine nitrogen moieties on the M-CTS-P(4VP) surface were quaternized with hexylbromide to produce a high concentration of quaternary ammonium groups. Each surface functionalization step was ascertained by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements. The alloy with surface-quaternized pyridinium cation groups (N+) exhibited good bactericidal efficiency in a Desulfovibrio desulfuricans-inoculated seawater-based modified Barr's medium, as indicated by viable cell counts and fluorescence microscopy (FM) images of the surface. The anticorrosion capability of the organic layers was verified by the polarization curve and electrochemical impedance spectroscopy (EIS) measurements. In comparison, the pristine (surface hydroxylated) Cu-Ni alloy was found to be readily susceptible to biocorrosion under the same environment.

  18. Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins.

    Directory of Open Access Journals (Sweden)

    Natalya Panova

    Full Text Available The advantages offered by established antibiotics in the treatment of infectious diseases are endangered due to the increase in the number of antibiotic-resistant bacterial strains. This leads to a need for new antibacterial compounds. Recently, we discovered a series of compounds termed lipophosphonoxins (LPPOs that exhibit selective cytotoxicity towards Gram-positive bacteria that include pathogens and resistant strains. For further development of these compounds, it was necessary to identify the mechanism of their action and characterize their interaction with eukaryotic cells/organisms in more detail. Here, we show that at their bactericidal concentrations LPPOs localize to the plasmatic membrane in bacteria but not in eukaryotes. In an in vitro system we demonstrate that LPPOs create pores in the membrane. This provides an explanation of their action in vivo where they cause serious damage of the cellular membrane, efflux of the cytosol, and cell disintegration. Further, we show that (i LPPOs are not genotoxic as determined by the Ames test, (ii do not cross a monolayer of Caco-2 cells, suggesting they are unable of transepithelial transport, (iii are well tolerated by living mice when administered orally but not peritoneally, and (iv are stable at low pH, indicating they could survive the acidic environment in the stomach. Finally, using one of the most potent LPPOs, we attempted and failed to select resistant strains against this compound while we were able to readily select resistant strains against a known antibiotic, rifampicin. In summary, LPPOs represent a new class of compounds with a potential for development as antibacterial agents for topical applications and perhaps also for treatment of gastrointestinal infections.

  19. Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins.

    Science.gov (United States)

    Panova, Natalya; Zborníková, Eva; Šimák, Ondřej; Pohl, Radek; Kolář, Milan; Bogdanová, Kateřina; Večeřová, Renata; Seydlová, Gabriela; Fišer, Radovan; Hadravová, Romana; Šanderová, Hana; Vítovská, Dragana; Šiková, Michaela; Látal, Tomáš; Lovecká, Petra; Barvík, Ivan; Krásný, Libor; Rejman, Dominik

    2015-01-01

    The advantages offered by established antibiotics in the treatment of infectious diseases are endangered due to the increase in the number of antibiotic-resistant bacterial strains. This leads to a need for new antibacterial compounds. Recently, we discovered a series of compounds termed lipophosphonoxins (LPPOs) that exhibit selective cytotoxicity towards Gram-positive bacteria that include pathogens and resistant strains. For further development of these compounds, it was necessary to identify the mechanism of their action and characterize their interaction with eukaryotic cells/organisms in more detail. Here, we show that at their bactericidal concentrations LPPOs localize to the plasmatic membrane in bacteria but not in eukaryotes. In an in vitro system we demonstrate that LPPOs create pores in the membrane. This provides an explanation of their action in vivo where they cause serious damage of the cellular membrane, efflux of the cytosol, and cell disintegration. Further, we show that (i) LPPOs are not genotoxic as determined by the Ames test, (ii) do not cross a monolayer of Caco-2 cells, suggesting they are unable of transepithelial transport, (iii) are well tolerated by living mice when administered orally but not peritoneally, and (iv) are stable at low pH, indicating they could survive the acidic environment in the stomach. Finally, using one of the most potent LPPOs, we attempted and failed to select resistant strains against this compound while we were able to readily select resistant strains against a known antibiotic, rifampicin. In summary, LPPOs represent a new class of compounds with a potential for development as antibacterial agents for topical applications and perhaps also for treatment of gastrointestinal infections.

  20. Bactericidal activity of the Ti-13Nb-13Zr alloy against different species of bacteria related with implant infection.

    Science.gov (United States)

    Aguilera-Correa, John-Jairo; Conde, Ana; Arenas, Maria-Angeles; de-Damborenea, Juan-Jose; Marin, Miguel; Doadrio, Antonio L; Esteban, Jaime

    2017-08-11

    The Ti-6Al-4V alloy is one of the most commonly used in orthopedic surgery. Despite its advantages, there is an increasing need to use new titanium alloys with no toxic elements and improved biomechanical properties, such as Ti-13Nb-13Zr. Prosthetic joint infections (PJI) are mainly caused by Gram-positive bacteria; however, Gram-negative bacteria are a growing problem due to associated multidrug resistance. In this study, the bacterial adherence and viability on the Ti-13Nb-13Zr alloy have been compared to that of the Ti-6Al-4V alloy using 16 collection and clinical strains of bacterial species related to PJI: Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. When compared with the Ti-6Al-4V alloy, bacterial adherence on the Ti-13Nb-13Zr alloy was significantly higher in most staphylococcal and P. aeruginosa strains and lower for E. coli strains. The proportion of live bacteria was significantly lower for both Gram-negative species on the Ti-13Nb-13Zr alloy than on the Ti-6Al-4V alloy pointing to some bactericidal effect of the Ti-13Nb-13Zr alloy. This bactericidal effect appears to be a consequence of the formation of hydroxyl radicals, since this effect is neutralized when dimethylsulfoxide was added to both the saline solution and water used to wash the stain. The antibacterial effect of the Ti-13Nb-13Zr alloy against Gram-negative bacteria is an interesting property useful for the prevention of PJI caused by these bacteria on this potential alternative to the Ti-6Al-4V alloy for orthopedic surgery.

  1. Bactericidal effect of blue LED light irradiated TiO{sub 2}/Fe{sub 3}O{sub 4} particles on fish pathogen in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, T.C. [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Taiwan (China); Yao, K.S. [Department of Horticulture, National Taitung Junior College, Taiwan (China); Yeh, N. [Mingdao University, Taiwan (China); Chang, C.I. [Aquaculture Division, Fisheries Research Institute, Council of Agriculture, Taiwan (China); Hsu, H.C. [Department of Life Science, Mingdao University, Taiwan (China); Gonzalez, F. [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Taiwan (China); Chang, C.Y., E-mail: cyc1136@yahoo.com.tw [Center of General Education, National Taitung Junior College, Taiwan (China)

    2011-05-31

    This study uses blue LED light ({lambda}{sub max} = 475 nm) activated TiO{sub 2}/Fe{sub 3}O{sub 4} particles to evaluate the particles' photocatalytic activity efficiency and bactericidal effects in seawater of variable salinities. Different TiO{sub 2} to Fe{sub 3}O{sub 4} mole ratios have been synthesized using sol-gel method. The synthesized particles contain mainly anatase TiO{sub 2}, Fe{sub 3}O{sub 4} and FeTiO{sub 3}. The study has identified TiO{sub 2}/Fe{sub 3}O{sub 4}'s bactericidal effect to marine fish pathogen (Photobacterium damselae subsp. piscicida BCRC17065) in seawater. The SEM photo reveals the surface destruction in bacteria incubated with blue LED irradiated TiO{sub 2}/Fe{sub 3}O{sub 4}. The result of this study indicates that 1) TiO{sub 2}/Fe{sub 3}O{sub 4} acquires photocatalytic activities in both the freshwater and the seawater via blue LED irradiation, 2) higher photocatalytic activities appear in solutions of higher TiO{sub 2}/Fe{sub 3}O{sub 4} mole ratio, and 3) photocatalytic activity decreases as salinity increases. These results suggest that the energy saving blue LED light is a feasible light source to activate TiO{sub 2}/Fe{sub 3}O{sub 4} photocatalytic activities in both freshwater and seawater.

  2. Recombinant Protein Truncation Strategy for Inducing Bactericidal Antibodies to the Macrophage Infectivity Potentiator Protein of Neisseria meningitidis and Circumventing Potential Cross-Reactivity with Human FK506-Binding Proteins

    Science.gov (United States)

    Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.

    2014-01-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (−LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. PMID:25452551

  3. Recombinant protein truncation strategy for inducing bactericidal antibodies to the macrophage infectivity potentiator protein of Neisseria meningitidis and circumventing potential cross-reactivity with human FK506-binding proteins.

    Science.gov (United States)

    Bielecka, Magdalena K; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E; Christodoulides, Myron

    2015-02-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (-LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Effect of increased CRM₁₉₇ carrier protein dose on meningococcal C bactericidal antibody response.

    Science.gov (United States)

    Lee, Lucia H; Blake, Milan S

    2012-04-01

    New multivalent CRM(197)-based conjugate vaccines are available for childhood immunization. Clinical studies were reviewed to assess meningococcal group C (MenC) antibody responses following MenC-CRM(197) coadministration with CRM(197)-based pneumococcal or Haemophilus influenzae type b conjugate vaccines. Infants receiving a total CRM(197) carrier protein dose of ∼50 μg and concomitant diphtheria-tetanus-acellular pertussis (DTaP)-containing vaccine tended to have lower MenC geometric mean antibody titers and continued to have low titers after the toddler dose. Nevertheless, at least 95% of children in the reported studies achieved a MenC serum bactericidal antibody (SBA) titer of ≥ 1:8 after the last infant or toddler dose. SBA was measured using an assay with a baby rabbit or human complement source. Additional studies are needed to assess long-term antibody persistence and MenC CRM(197) conjugate vaccine immunogenicity using alternative dosing schedules.

  5. Human Lysozyme Synergistically Enhances Bactericidal Dynamics and Lowers the Resistant Mutant Prevention Concentration for Metronidazole to Helicobacter pylori by Increasing Cell Permeability

    Directory of Open Access Journals (Sweden)

    Xiaolin Zhang

    2016-10-01

    Full Text Available Metronidazole (MNZ is an effective agent that has been employed to eradicate Helicobacter pylori (H. pylori. The emergence of broad MNZ resistance in H. pylori has affected the efficacy of this therapeutic agent. The concentration of MNZ, especially the mutant prevention concentration (MPC, plays an important role in selecting or enriching resistant mutants and regulating therapeutic effects. A strategy to reduce the MPC that can not only effectively treat H. pylori but also prevent resistance mutations is needed. H. pylori is highly resistant to lysozyme. Lysozyme possesses a hydrolytic bacterial cell wall peptidoglycan and a cationic dependent mode. These effects can increase the permeability of bacterial cells and promote antibiotic absorption into bacterial cells. In this study, human lysozyme (hLYS was used to probe its effects on the integrity of the H. pylori outer and inner membranes using as fluorescent probe hydrophobic 1-N-phenyl-naphthylamine (NPN and the release of aspartate aminotransferase. Further studies using a propidium iodide staining method assessed whether hLYS could increase cell permeability and promote cell absorption. Finally, we determined the effects of hLYS on the bactericidal dynamics and MPC of MNZ in H. pylori. Our findings indicate that hLYS could dramatically increase cell permeability, reduce the MPC of MNZ for H. pylori, and enhance its bactericidal dynamic activity, demonstrating that hLYS could reduce the probability of MNZ inducing resistance mutations.

  6. A meningococcal NOMV-FHbp vaccine for Africa elicits broader serum bactericidal antibody responses against serogroup B and non-B strains than a licensed serogroup B vaccine.

    Science.gov (United States)

    Pajon, Rolando; Lujan, Eduardo; Granoff, Dan M

    2016-01-27

    Meningococcal epidemics in Sub-Sahara caused by serogroup A strains are controlled by a group A polysaccharide conjugate vaccine. Strains with serogroups C, W and X continue to cause epidemics. Protein antigens in licensed serogroup B vaccines are shared among serogroup B and non-B strains. Compare serum bactericidal antibody responses elicited by an investigational native outer membrane vesicle vaccine with over-expressed Factor H binding protein (NOMV-FHbp) and a licensed serogroup B vaccine (MenB-4C) against African serogroup A, B, C, W and X strains. Human Factor H (FH) transgenic mice were immunized with NOMV-FHbp prepared from a mutant African meningococcal strain containing genetically attenuated endotoxin and a mutant sub-family B FHbp antigen with low FH binding, or with MenB-4C, which contains a recombinant sub-family B FHbp antigen that binds human FH, and three other antigens, NHba, NadA and PorA P1.4, capable of eliciting bactericidal antibody. The NOMV-FHbp elicited serum bactericidal activity against 12 of 13 serogroup A, B, W or X strains from Africa, and four isogenic serogroup B mutants with sub-family B FHbp sequence variants. There was no activity against a serogroup B mutant with sub-family A FHbp, or two serogroup C isolates from a recent outbreak in Northern Nigeria, which were mismatched for both PorA and sub-family of the FHbp vaccine antigen. For MenB-4C, NHba was expressed by all 16 African isolates tested, FHbp sub-family B in 13, and NadA in five. However, MenB-4C elicited titers ≥ 1:10 against only one isolate, and against only two of four serogroup B mutant strains with sub-family B FHbp sequence variants. NOMV-FHbp has greater potential to confer serogroup-independent protection in Africa than the licensed MenB-4C vaccine. However, the NOMV-FHbp vaccine will require inclusion of sub-family A FHbp for coverage against recent serogroup C strains causing outbreaks in Northern Nigeria. Copyright © 2015 Elsevier Ltd. All rights

  7. Bactericidal Effect of Pterostilbene Alone and in Combination with Gentamicin against Human Pathogenic Bacteria.

    Science.gov (United States)

    Lee, Wee Xian; Basri, Dayang Fredalina; Ghazali, Ahmad Rohi

    2017-03-17

    The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination with gentamicin were assessed using checkerboard assay and time-kill kinetic study. Results of the present study showed that the combination effects of pterostilbene with gentamicin were synergistic (FIC index bacteria strains: Staphylococcus aureus ATCC 25923 , Escherichia coli O157 and Pseudomonas aeruginosa 15442 . However, the time-kill study showed that the interaction was indifference which did not significantly differ from the gentamicin treatment. Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 2 to 8 h treatment with 0.5 × MIC of pterostilbene and gentamicin. The identified combinations could be of effective therapeutic value against bacterial infections. These findings have potential implications in delaying the development of bacterial resistance as the antibacterial effect was achieved with the lower concentrations of antibacterial agents.

  8. Meningococcal Serogroup B Bivalent rLP2086 Vaccine Elicits Broad and Robust Serum Bactericidal Responses in Healthy Adolescents

    DEFF Research Database (Denmark)

    Vesikari, Timo; Østergaard, Lars Jørgen; Diez-Domingo, Javier

    2015-01-01

    BACKGROUND: Neisseria meningitidis serogroup B (MnB) is a leading cause of invasive meningococcal disease in adolescents and young adults. A recombinant factor H binding protein (fHBP) vaccine (Trumenba(®); bivalent rLP2086) was recently approved in the United States in individuals aged 10-25 years....... Immunogenicity and safety of 2- or 3-dose schedules of bivalent rLP2086 were assessed in adolescents. METHODS: Healthy adolescents (11 to ... bactericidal antibody assay using human complement (hSBA). Safety assessments included local and systemic reactions and adverse events. RESULTS: Bivalent rLP2086 was immunogenic when administered as 2 or 3 doses; the most robust hSBA responses occurred with 3 doses. The proportion of subjects with hSBA titers...

  9. Preparation of AgBr@SiO{sub 2} core@shell hybrid nanoparticles and their bactericidal activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanyuan [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Yang, Lisu [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Henna Sports School, Zhengzhou 450045 (China); Zhao, Yanbao, E-mail: yanbaozhao@126.com [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Li, Binjie; Sun, Lei; Luo, Huajuan [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2013-04-01

    AgBr@SiO{sub 2} core@shell hybrid nanoparticles (NPs) were successfully prepared by sol-gel method. Their morphology and structure were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The hybrid NPs are predominantly spherical in shape, with an average diameter of 180–200 nm, and each NP contains one inorganic core. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the hybrid NPs were examined against Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli), respectively. Results indicated that the AgBr@SiO{sub 2} NPs had excellent antibacterial activity. - Highlights: ► Presents a novel antibacterial agent “AgBr@ SiO{sub 2} NPs”. ► AgBr@SiO{sub 2} hybrid NPs could provide long-term antimicrobial effect. ► AgBr@SiO{sub 2} hybrid NPs have excellent antibacterial activity.

  10. Agglutinating and bactericidal properties of fractions of rabbit anti-Vibrio cholerae serum.

    Science.gov (United States)

    Pike, R M; Chandler, C H

    1969-06-01

    The major portion of the agglutinating and bactericidal activity of the sera of rabbits immunized with live Vibrio cholerae or with cholera vaccine was found in the gammaM fractions during the early stages of immunization. After 5 weeks or more, gammaG fractions accounted for more than half of the agglutinating activity. When late antibody was measured as the amount of protein precipitated by somatic antigens, nearly 3 times as much gammaG as gammaM was required for agglutination, and about 30 times as much gammaG as gammaM was required to kill 50% of a standard inoculum in the presence of complement. The ratio of vibriocidal to agglutinin titer of gammaG fractions at different stages of immunization was more variable than that of gammaM fractions. More complement was required for a vibriocidal effect by gammaG than by gammaM. Increasing the amount of complement decreased the amount of both gammaG and gammaM required to kill, but smaller amounts of gammaM required disproportionately larger amounts of complement. Less time was required by gammaM than by gammaG to kill 50% of the inoculum. Removal of the group-reactive antibody from anti-Ogawa serum and serum fractions by absorption with Inaba reduced the vibriocidal titer by more than one-half.

  11. Bactericidal Effect of Calcium Oxide (Scallop-Shell Powder) Against Pseudomonas aeruginosa Biofilm on Quail Egg Shell, Stainless Steel, Plastic, and Rubber.

    Science.gov (United States)

    Jung, Soo-Jin; Park, Shin Young; Kim, Seh Eun; Kang, Ike; Park, Jiyong; Lee, Jungwon; Kim, Chang-Min; Chung, Myung-Sub; Ha, Sang-Do

    2017-07-01

    The aim of this study was to evaluate the bactericidal effect of calcium oxide (CaO) against Pseudomonas aeruginosa biofilms on quail eggshells and major egg contacting surfaces (stainless steel, plastic, and rubber). The samples were subjected to CaO treatments (0%, 0.01%, 0.05%, 0.10%, 0.15%, 0.20%, 0.25%, and 0.30%) for 1 min. All the CaO treatments significantly reduced P. aeruginosa biofilms on all tested surfaces as compared to controls. In comparison of biofilm stability, the strongest and most resistant biofilm was formed on eggshell against the CaO treatment, followed by rubber, stainless steel, and plastic. In evaluation of bactericidal effect, the largest reduction (3.16 log CFU) was observed in plastic even at the lowest concentration of CaO (0.01%), whereas the least reduction was found in eggshells, regardless of CaO concentration. In addition, stainless steel showed a significant reduction in biofilm formation at all concentrations except 0.10% to 0.15% CaO. At 0.30% CaO, the reduction of P. aeruginosa in biofilms on stainless steel, plastic, rubber, and eggshell were 5.48, 6.37, 4.87, and 3.14 log CFU/cm 2 (CFU/egg), respectively. Biofilm reduction after CaO treatment was also observed by field emission scanning electron microscopy (FE-SEM). Based on the FE-SEM images, we observed that P. aeruginosa biofilms formed compact aggregations on eggshell surfaces with CaO treatments up to 0.30%. More specifically, a 0.20% CaO treatment resulted in the reductions of 3 to 6 log CFU in all materials. © 2017 Institute of Food Technologists®.

  12. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis.

    Science.gov (United States)

    Gustafsson, Tomas N; Osman, Harer; Werngren, Jim; Hoffner, Sven; Engman, Lars; Holmgren, Arne

    2016-06-01

    Bacillus anthracis is the causative agent of anthrax, a disease associated with a very high mortality rate in its invasive forms. We studied a number of ebselen analogs as inhibitors of B. anthracis thioredoxin reductase and their antibacterial activity on Bacillus subtilis, Staphylococcus aureus, Bacillus cereus and Mycobacterium tuberculosis. The most potent compounds in the series gave IC(50) values down to 70 nM for the pure enzyme and minimal inhibitory concentrations (MICs) down to 0.4 μM (0.12 μg/ml) for B. subtilis, 1.5 μM (0.64 μg/ml) for S. aureus, 2 μM (0.86 μg/ml) for B. cereus and 10 μg/ml for M. tuberculosis. Minimal bactericidal concentrations (MBCs) were found at 1-1.5 times the MIC, indicating a general, class-dependent, bactericidal mode of action. The combined bacteriological and enzymological data were used to construct a preliminary structure-activity-relationship for the benzoisoselenazol class of compounds. When S. aureus and B. subtilis were exposed to ebselen, we were unable to isolate resistant mutants on both solid and in liquid medium suggesting a high resistance barrier. These results suggest that ebselen and analogs thereof could be developed into a novel antibiotic class, useful for the treatment of infections caused by B. anthracis, S. aureus, M. tuberculosis and other clinically important bacteria. Furthermore, the high barrier against resistance development is encouraging for further drug development. We have characterized the thioredoxin system from B. anthracis as a novel drug target and ebselen and analogs thereof as a potential new class of antibiotics targeting several important human pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti–Ag and Nb–Ag thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, D., E-mail: damian.wojcieszak@pwr.edu.pl [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, M.; Kaczmarek, D. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, P. [Institute of Experimental Physics, University of Wrocław, Max Born 9, 50-204 Wrocław (Poland); Szponar, B. [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53–114 Wrocław (Poland); Domaradzki, J. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Kepinski, L. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2016-05-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti–Ag and Nb–Ag thin films have been carried out. Ti–Ag and Nb–Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti–Ag and Nb–Ag thin films were nanocrystalline. In the case of Ag–Ti film presence of AgTi{sub 3} and Ag phases was identified, while in the structure of Nb–Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb–Ag thin films was covered with Ag-agglomerates, while Ti–Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h. - Highlights: • Surface and biological properties of Ti–Ag and Nb–Ag thin films were examined. • Ag content was related to sputtering yields and nucleation of Ti and Nb. • For Nb–Ag film the agglomeration of silver at the surface was observed. • Composition and surface topography had an impact on antimicrobial properties. • Fine-grained surface was important in Ag ions release process.

  14. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti–Ag and Nb–Ag thin films

    International Nuclear Information System (INIS)

    Wojcieszak, D.; Mazur, M.; Kaczmarek, D.; Mazur, P.; Szponar, B.; Domaradzki, J.; Kepinski, L.

    2016-01-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti–Ag and Nb–Ag thin films have been carried out. Ti–Ag and Nb–Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti–Ag and Nb–Ag thin films were nanocrystalline. In the case of Ag–Ti film presence of AgTi_3 and Ag phases was identified, while in the structure of Nb–Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb–Ag thin films was covered with Ag-agglomerates, while Ti–Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h. - Highlights: • Surface and biological properties of Ti–Ag and Nb–Ag thin films were examined. • Ag content was related to sputtering yields and nucleation of Ti and Nb. • For Nb–Ag film the agglomeration of silver at the surface was observed. • Composition and surface topography had an impact on antimicrobial properties. • Fine-grained surface was important in Ag ions release process.

  15. Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn.F. and their bactericidal activities.

    Science.gov (United States)

    Kagithoju, Srikanth; Godishala, Vikram; Nanna, Rama Swamy

    2015-10-01

    Inspired green synthesis of metallic nanoparticles is evolving as an important branch of nanotechnology. Traditionally these are manufactured by wet chemical methods which require toxic and flammable chemicals. We report for the first time an economic and eco-friendly green synthesis of silver nanoparticles using Strychnos potatorum aqueous leaf extract from 3 mM silver nitrate solution. Nanoparticles thus formed are confirmed and characterized by using UV-Vis absorption spectroscopy, SEM and XRD measurements. The XRD and SEM analysis showed the average particle size of nanoparticles as 28 nm as well as revealed their (mixed, i.e., cubic and hexagonal) structure. Further, these green synthesized nanoparticles showed bactericidal activity against multidrug-resistant human pathogenic bacteria.

  16. Epithelial Cell Damage Activates Bactericidal/Permeability Increasing-Protein (BPI Expression in Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Arjun Balakrishnan

    2017-08-01

    Full Text Available As the first line of defense against invading pathogen, intestinal epithelium produces various antimicrobial proteins (AMP that help in clearance of pathogen. Bactericidal/permeability-increasing protein (BPI is a 55 kDa AMP that is expressed in intestinal epithelium. Dysregulation of BPI in intestinal epithelium is associated with various inflammatory diseases like Crohn’s Disease, Ulcerative colitis, and Infectious enteritis’s. In this paper, we report a direct correlation between intestinal damage and BPI expression. In Caco-2 cells, we see a significant increase in BPI levels upon membrane damage mediated by S. aureus infection and pore-forming toxins (Streptolysin and Listeriolysin. Cells detect changes in potassium level as a Danger-associated molecular pattern associated with cell damage and induce BPI expression in a p38 dependent manner. These results are further supported by in vivo findings that the BPI expression in murine intestinal epithelium is induced upon infection with bacteria which cause intestinal damage (Salmonella Typhimurium and Shigella flexneri whereas mutants that do not cause intestinal damage (STM ΔfliC and STM ΔinvC did not induce BPI expression. Our results suggest that epithelial damage associated with infection act as a signal to induce BPI expression.

  17. The study of cellulosic fabrics impregnated with porphyrin compounds for use as photo-bactericidal polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Rahmatollah, E-mail: rahimi_rah@iust.ac.ir [Bioinorganic Chemistry Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Fayyaz, Fatemeh [Bioinorganic Chemistry Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Rassa, Mehdi [Department of Biology, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of)

    2016-02-01

    In the present work, we report on the preparation of cellulosic fabrics bearing two types of photo-sensitizers in order to prepare efficient polymeric materials for antimicrobial applications. The obtained porphyrin-grafted cellulosic fabrics were characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, diffuse reflectance UV–Vis (DRUV) spectroscopy, thermo-gravimetric analysis (TG) and scanning electron microscopy (SEM). Antimicrobial activity of the prepared porphyrin-cellulose was tested under visible light irradiation against Staphylococcus aureus, Pseudomunas aeroginosa and Escherichia coli. In addition, the effect of two parameters on photo-bactericidal activity of treated fibers was studied: illumination time and concentration of photosensitizers (PS). - Highlights: • Cellulosic fabrics were impregnated with various concentrations of porphyrins (TAPP and its zinc ion complex). • The products were characterized by ATR-FTIR, DRUV, SEM and TG. • The photo-antibacterial activity of products was determined against S. aureus, P. aeroginosa and E. coli. • The effect of two parameters were studied on photoinactivation of treated fibers: illumination time and concentration of PS.

  18. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    International Nuclear Information System (INIS)

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-01-01

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain

  19. Bactericidal Effect of Pterostilbene Alone and in Combination with Gentamicin against Human Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Wee Xian Lee

    2017-03-01

    Full Text Available The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination with gentamicin were assessed using checkerboard assay and time-kill kinetic study. Results of the present study showed that the combination effects of pterostilbene with gentamicin were synergistic (FIC index < 0.5 against three susceptible bacteria strains: Staphylococcus aureus ATCC 25923, Escherichia coli O157 and Pseudomonas aeruginosa 15442. However, the time-kill study showed that the interaction was indifference which did not significantly differ from the gentamicin treatment. Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 2 to 8 h treatment with 0.5 × MIC of pterostilbene and gentamicin. The identified combinations could be of effective therapeutic value against bacterial infections. These findings have potential implications in delaying the development of bacterial resistance as the antibacterial effect was achieved with the lower concentrations of antibacterial agents.

  20. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    Energy Technology Data Exchange (ETDEWEB)

    Laha, Dipranjan; Pramanik, Arindam [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Laskar, Aparna [CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Jana, Madhurya [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Pramanik, Panchanan [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India); Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India)

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  1. Pharmacokinetics of enrofloxacin and ceftiofur in plasma, interstitial fluid, and gastrointestinal tract of calves after subcutaneous injection, and bactericidal impacts on representative enteric bacteria.

    Science.gov (United States)

    Foster, D M; Jacob, M E; Warren, C D; Papich, M G

    2016-02-01

    This study's objectives were to determine intestinal antimicrobial concentrations in calves administered enrofloxacin or ceftiofur sodium subcutaneously, and their impact on representative enteric bacteria. Ultrafiltration devices were implanted in the ileum and colon of 12 steers, which received either enrofloxacin or ceftiofur sodium. Samples were collected over 48 h after drug administration for pharmacokinetic/pharmacodynamic analysis. Enterococcus faecalis or Salmonella enterica (5 × 10(5) CFU/mL of each) were exposed in vitro to peak and tail (48 h postadministration) concentrations of both drugs at each location for 24 h to determine inhibition of growth and change in MIC. Enrofloxacin had tissue penetration factors of 1.6 and 2.5 in the ileum and colon, while ciprofloxacin, an active metabolite of enrofloxacin, was less able to cross into the intestine (tissue penetration factors of 0.7 and 1.7). Ceftiofur was rapidly eliminated leading to tissue penetration factors of 0.39 and 0.25. All concentrations of enrofloxacin were bactericidal for S. enterica and significantly reduced E. faecalis. Peak ceftiofur concentration was bactericidal for S. enterica, and tail concentrations significantly reduced growth. E. faecalis experienced growth at all ceftiofur concentrations. The MICs for both organisms exposed to peak and tail concentrations of antimicrobials were unchanged at the end of the study. Enrofloxacin and ceftiofur achieved intestinal concentrations capable of reducing intestinal bacteria, yet the short exposure of ceftiofur in the intestine may select for resistant organisms. © 2015 John Wiley & Sons Ltd.

  2. Recombinant Protein Truncation Strategy for Inducing Bactericidal Antibodies to the Macrophage Infectivity Potentiator Protein of Neisseria meningitidis and Circumventing Potential Cross-Reactivity with Human FK506-Binding Proteins

    OpenAIRE

    Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.; Christodoulides, Myron

    2014-01-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human protein...

  3. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity.

    Science.gov (United States)

    Ooi, Nicola; Miller, Keith; Hobbs, Joanne; Rhys-Williams, William; Love, William; Chopra, Ian

    2009-10-01

    XF-73 is a novel porphyrin antibacterial agent previously reported to inhibit a range of gram-positive bacterial species, including Staphylococcus aureus. Its mode of action is unknown. Using S. aureus as a model organism we sought to examine the basis of its antibacterial activity. The effects of XF-73 on the growth and survival of S. aureus SH1000 were investigated by viable count and culture absorbance techniques. Inhibition of macromolecular synthesis and disruption of membrane integrity after exposure to XF-73 were examined by radiolabelling experiments, the BacLight fluorescent dye assay and measurement of K(+) and ATP leakage from the cell. The effect of XF-73 on a staphylococcal coupled transcription-translation system was also investigated. XF-73 was rapidly bactericidal against S. aureus SH1000 and demonstrated more rapid killing kinetics than all other comparator agents when tested at an equivalent multiple (4x) of the MIC. Exposure of S. aureus to XF-73 for 10 min completely inhibited DNA, RNA and protein synthesis. XF-73 had no effect on transcription and translation in vitro. Cells exposed to XF-73 gave a positive response in the BacLight assay, which detects membrane damage. The drug also caused substantial loss of K(+) and ATP from the cell, but did not promote bacterial lysis. XF-73 exhibited rapid membrane-perturbing activity, which is likely to be responsible for inhibition of macromolecular synthesis and the death of staphylococci exposed to the drug.

  4. Minimum bactericidal concentration of phenols extracted from oil vegetation water on spoilers, starters and food-borne bacteria

    Directory of Open Access Journals (Sweden)

    Luca Fasolato

    2015-05-01

    Full Text Available The aim of the study was to assess the in vitro effect of phenols extracted from oil vegetation water (PEOW on several food-borne strains. Antibacterial activity of PEOW was based on the minimum bactericidal concentration (MBC on microtitre assay. The taxa tested were: Staphylococcus (n. 5, Listeria (n. 4, Escherichia (n. 2, Salmonella (n. 1, Pseudomonas (n. 3, Lactobacillus (n. 2 and Pediococcus (n. 1. S. aureus and L. monocytogens showed the lowest level of resistance to PEOW (MBC=1.5-3 mg/mL. In contrast, the Gram negative strains (e.g. S. Typhimurium and Pseudomonas spp. were in some cases unaffected by the tested doses and the MBCs ranged between 6 to 12 mg/mL. Starter cultures were dramatically reduced on growth (e.g. Staphylococcus xylosus; 0.75 mg/mL MBC. The thresholds for pathogenic strains could be considered for further applications of PEOW in food models (e.g. shelf life or challenge test studies.

  5. Concentrations of lipopolysaccharide-binding protein, bactericidal/permeability-increasing protein, soluble CD14 and plasma lipids in relation to endotoxaemia in patients with alcoholic liver disease

    DEFF Research Database (Denmark)

    Schäfer, C.; Parlesak, Alexandr; Schütt, C.

    2002-01-01

    of endotoxin on its target cells (LPS-binding protein and sCD14) were increased. Endotoxin antagonists, such as bactericidal/permeability-increasing protein and high-density lipoprotein, were increased in the pre-cirrhotic stages, whereas a significant reduction of the latter was observed in cirrhosis. Low......-density lipoprotein remained unchanged. The elevation of binding factors in the pre-cirrhotic stages of alcoholic liver disease might attenuate the effects of endotoxaemia, whereas in cirrhosis the reduction of high density lipoprotein, to which large quantities of endotoxin bind, may contribute to its pro...

  6. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides.

    Science.gov (United States)

    Bolscher, Jan G M; Adão, Regina; Nazmi, Kamran; van den Keybus, Petra A M; van 't Hof, Wim; Nieuw Amerongen, Arie V; Bastos, Margarida; Veerman, Enno C I

    2009-01-01

    The innate immunity factor lactoferrin harbours two antimicrobial moieties, lactoferricin and lactoferrampin, situated in close proximity in the N1 domain of the molecule. Most likely they cooperate in many of the beneficial activities of lactoferrin. To investigate whether chimerization of both peptides forms a functional unit we designed a chimerical structure containing lactoferricin amino acids 17-30 and lactoferrampin amino acids 265-284. The bactericidal activity of this LFchimera was found to be drastically stronger than that of the constituent peptides, as was demonstrated by the need for lower dose, shorter incubation time and less ionic strength dependency. Likewise, strongly enhanced interaction with negatively charged model membranes was found for the LFchimera relative to the constituent peptides. Thus, chimerization of the two antimicrobial peptides resembling their structural orientation in the native molecule strikingly improves their biological activity.

  7. Bactericidal assessment of nano-silver on emerging and re-emerging human pathogens.

    Science.gov (United States)

    Anuj, Samir A; Gajera, Harsukh P; Hirpara, Darshna G; Golakiya, Baljibhai A

    2018-04-24

    With the threat of the growing number of bacteria resistant to antibiotics, the re-emergence of previously deadly infections and the emergence of new infections, there is an urgent need for novel therapeutic agent. Silver in the nano form, which is being used increasingly as antibacterial agents, may extend its antibacterial application to emerging and re-emerging multidrug-resistant pathogens, the main cause of nosocomial diseases worldwide. In the present study, a completely bottom up method to prepare green nano-silver was used. To explore the action of nano-silver on emerging Bacillus megaterium MTCC 7192 and re-emerging Pseudomonas aeruginosa MTCC 741 pathogenic bacteria, the study includes an analysis of the bacterial membrane damage through Scanning Electron Microscope (SEM) as well as alternation of zeta potential and intracellular leakages. In this work, we observed genuine bactericidal property of nano-silver as compare to broad spectrum antibiotics against emerging and re-emerging mode. After being exposed to nano-silver, the membrane becomes scattered from their original ordered arrangement based on SEM observation. Moreover, our results also suggested that alternation of zeta potential enhanced membrane permeability, and beyond a critical point, it leads to cell death. The leakages of intracellular constituents were confirmed by Gas Chromatography-Mass Spectrometry (GC-MS). In conclusion, the combine results suggested that at a specific dose, nano-silver may destroy the structure of bacterial membrane and depress its activity, which causes bacteria to die eventually. Copyright © 2018 Elsevier GmbH. All rights reserved.

  8. Fusion between fluid liposomes and intact bacteria: study of driving parameters and in vitro bactericidal efficacy

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-08-01

    Full Text Available Zhao Wang,1,2* Yufan Ma,1,3,4* Hayssam Khalil,1 Rutao Wang,1–3 Tingli Lu,1 Wen Zhao,1 Yang Zhang,3 Jamin Chen,1,2 Tao Chen,1–3  1Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 2Shaanxi Liposome Research Center, Xi'an, Shaanxi, 3Xi'an Libang Pharmaceuticals Co, Ltd, Xi'an, 4School of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China *These authors contributed equally to this work. Background: Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of bacteria to conventional antibiotics made it imperative to develop new liposome formulations for antibiotics, and investigate the fusion between liposome and bacterium. Methods: In this study, the factors involved in fluid liposome interaction with bacteria have been investigated. We also demonstrated a mechanism of fusion between liposomes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dimyristoylphosphatidylglycerol [DMPG] 9:1, mol/mol in a fluid state, and intact bacterial cells, by lipid mixing assay. Results: The observed fusion process is shown to be mainly dependent on several key factors. Perturbation of liposome fluidity by addition of cholesterol dramatically decreased the degree of fusion with P. aeruginosa from 44% to 5%. It was observed that fusion between fluid liposomes and bacteria and also the bactericidal activities were strongly dependent upon the properties of the bacteria themselves. The level of fusion detected when fluid liposomes were mixed with Escherichia coli (66% or P. aeruginosa (44% seems to be correlated to their outer membrane phosphatidylethanolamine (PE phospholipids

  9. Hydrophilic, bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling resistance.

    Science.gov (United States)

    Ray, Jessica R; Tadepalli, Sirimuvva; Nergiz, Saide Z; Liu, Keng-Ku; You, Le; Tang, Yinjie; Singamaneni, Srikanth; Jun, Young-Shin

    2015-06-03

    Polyamide (PA) semipermeable membranes typically used for reverse osmosis water treatment processes are prone to fouling, which reduces the amount and quality of water produced. By synergistically coupling the photothermal and bactericidal properties of graphene oxide (GO) nanosheets, gold nanostars (AuNS), and hydrophilic polyethylene glycol (PEG) on PA reverse osmosis membrane surfaces, we have dramatically improved fouling resistance of these membranes. Batch fouling experiments from three classes of fouling are presented: mineral scaling (CaCO3 and CaSO4), organic fouling (humic acid), and biofouling (Escherichia coli). Systematic analyses and a variety of complementary techniques were used to elucidate fouling resistance mechanisms from each layer of modification on the membrane surface. Both mineral scaling and organic fouling were significantly reduced in PA-GO-AuNS-PEG membranes compared to other membranes. The PA-GO-AuNS-PEG membrane was also effective in killing all near-surface bacteria compared to PA membranes. In the PA-GO-AuNS-PEG membrane, the GO nanosheets act as templates for in situ AuNS growth, which then facilitated localized heating upon irradiation by an 808 nm laser inactivating bacteria on the membrane surface. Furthermore, AuNS in the membrane assisted PEG in preventing mineral scaling on the membrane surface. In flow-through flux and foulant rejection tests, PA-GO-AuNS-PEG membranes performed better than PA membranes in the presence of CaSO4 and humic acid model foulants. Therefore, the newly suggested membrane surface modifications will not only reduce fouling from RO feeds, but can improve overall membrane performance. Our innovative membrane design reported in this study can significantly extend the lifetime and water treatment efficacy of reverse osmosis membranes to alleviate escalating global water shortage from rising energy demands.

  10. Synergistic bactericidal effect by combined exposure to Ag nanoparticles and UVA

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoxu; Toyooka, Tatsushi; Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp

    2013-08-01

    Broad and strong antimicrobial properties of silver (Ag) have been used for biomedical applications, water treatment, etc. In this study, a synergistic antibacterial effect between Ag nanoparticles (AgNPs) and ultraviolet (UV) light was examined. AgNPs (< 0.1 μm) with subsequent exposure to UVA (320–400 nm) showed pronounced toxicity in Escherichia coli, but micro-sized Ag particles (> 1 μm) with UVA and AgNPs with UVB (280–325 nm) did not. As significant bactericidal activity was also exhibited by hydrogen peroxide-treated AgNPs, the surface oxidation of AgNPs caused by UVA irradiation was considered to contribute to the enhanced antibacterial effect. Although no difference in NP-incorporation rates was observed with or without the surface oxidation of AgNPs, a particle size of less than 0.1 μm was a factor for AgNPs uptake and an essential requirement for the antimicrobial function of Ag particles. Incorporated AgNPs oxidized by UVA irradiation released larger amounts of Ag ion inside cells than reduced AgNPs, which reacted with intercellular molecules having –SH groups such as glutathione. The synergistic use of AgNPs and UVA could become a powerful tool with broad antimicrobial applications. Highlights: • Combined treatment with AgNPs and UV achieved a remarkable antibacterial effect in E. coli. • For the antibacterial effect, it is necessary to satisfy the following requirements: • 1) Translocation of nano-sized Ag particles inside E. coli. • 2) Oxidation of AgNPs by UVA, and extensive and persistent release of Ag{sup +} inside E. coli. • Ag{sup +} released inside cells reacted with intercellular molecules having –SH groups such as GSH.

  11. Development of Antifouling and Bactericidal Coatings for Platelet Storage Bags Using Dopamine Chemistry.

    Science.gov (United States)

    Hadjesfandiari, Narges; Weinhart, Marie; Kizhakkedathu, Jayachandran N; Haag, Rainer; Brooks, Donald E

    2018-03-01

    Platelets have a limited shelf life, due to the risk of bacterial contamination and platelet quality loss. Most platelet storage bags are made of a mixture of polyvinyl chloride with a plasticizer, denoted as pPVC. To improve biocompatibility of pPVC with platelets and to inhibit bacterial biofilm formation, an antifouling polymer coating is developed using mussel-inspired chemistry. A copolymer of N,N-dimethylacrylamide and N-(3-aminopropyl)methacrylamide hydrochloride is synthesized and coupled with catechol groups, named DA51-cat. Under mild aqueous conditions, pPVC is first equilibrated with an anchoring polydopamine layer, followed by a DA51-cat layer. Measurements show this coating decreases fibrinogen adsorption to 5% of the control surfaces. One-step coating with DA51-cat does not coat pPVC efficiently although it is sufficient for coating silicon wafers and gold substrates. The dual layer coating on platelet bags resists bacterial biofilm formation and considerably decreases platelet adhesion. A cationic antimicrobial peptide, E6, is conjugated to DA51-cat then coated on silicon wafers and introduces bactericidal activity to these surfaces. Time-of-flight second ion-mass spectroscopy is successfully applied to characterize these surfaces. pPVC is widely used in medical devices; this method provides an approach to controlling biofouling and bacterial growth on it without elaborate surface modification procedures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of complement Factor H on anti-FHbp serum bactericidal antibody responses of infant rhesus macaques boosted with a licensed meningococcal serogroup B vaccine.

    Science.gov (United States)

    Giuntini, Serena; Beernink, Peter T; Granoff, Dan M

    2015-12-16

    FHbp is a major serogroup B meningococcal vaccine antigen. Binding of complement Factor H (FH) to FHbp is specific for human and some non-human primate FH. In previous studies, FH binding to FHbp vaccines impaired protective anti-FHbp antibody responses. In this study we investigated anti-FHbp antibody responses to a third dose of a licensed serogroup B vaccine (MenB-4C) in infant macaques vaccinated in a previous study with MenB-4C. Six macaques with high binding of FH to FHbp (FH(high)), and six with FH(low) baseline phenotypes, were immunized three months after dose 2. After dose 2, macaques with the FH(low) baseline phenotype had serum anti-FHbp antibodies that enhanced FH binding to FHbp (functionally converting them to a FH(high) phenotype). In this group, activation of the classical complement pathway (C4b deposition) by serum anti-FHbp antibody, and anti-FHbp serum bactericidal titers were lower after dose 3 than after dose 2 (pb deposition and bactericidal titers were similar after doses 2 and 3. Two macaques developed serum anti-FH autoantibodies after dose 2, which were not detected after dose 3. In conclusion, in macaques with the FH(low) baseline phenotype whose post-dose 2 serum anti-FHbp antibodies had converted them to FH(high), the anti-FHbp antibody repertoire to dose 3 was skewed to less protective epitopes than after dose 2. Mutant FHbp vaccines that eliminate FH binding may avoid eliciting anti-FHbp antibodies that enhance FH binding, and confer greater protection with less risk of inducing anti-FH autoantibodies than FHbp vaccines that bind FH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. In vitro and in vivo bactericidal activity of Tinospora sagittata (Oliv.) Gagnep. var. craveniana (S.Y.Hu) Lo and its main effective component, palmatine, against porcine Helicobacter pylori

    OpenAIRE

    Rong, Qian; Xu, Min; Dong, Qi; Zhang, Yuli; Li, Yinglun; Ye, Gang; Zhao, Ling

    2016-01-01

    Background Tinospora sagittata (Oliv.) Gagnep. var. craveniana (S.Y.Hu) Lo (TSG) is a traditional Chinese herb that has been used for the treatment of upper respiratory tract infection and has anti-bacterial and anti-ulcer activity. Our study investigated the bactericidal effects of TSG and its major component, palmatine, against a Helicobacter pylori (H. pylori) strain isolated from pig and the standard strain H. pylori SS1 in vitro and in vivo. Methods H. pylori was isolated from pig and na...

  14. Bactericidal/Permeability-increasing protein fold-containing family member A1 in airway host protection and respiratory disease.

    Science.gov (United States)

    Britto, Clemente J; Cohn, Lauren

    2015-05-01

    Bactericidal/permeability-increasing protein fold-containing family member A1 (BPIFA1), formerly known as SPLUNC1, is one of the most abundant proteins in respiratory secretions and has been identified with increasing frequency in studies of pulmonary disease. Its expression is largely restricted to the respiratory tract, being highly concentrated in the upper airways and proximal trachea. BPIFA1 is highly responsive to airborne pathogens, allergens, and irritants. BPIFA1 actively participates in host protection through antimicrobial, surfactant, airway surface liquid regulation, and immunomodulatory properties. Its expression is modulated in multiple lung diseases, including cystic fibrosis, chronic obstructive pulmonary disease, respiratory malignancies, and idiopathic pulmonary fibrosis. However, the role of BPIFA1 in pulmonary pathogenesis remains to be elucidated. This review highlights the versatile properties of BPIFA1 in antimicrobial protection and its roles as a sensor of environmental exposure and regulator of immune cell function. A greater understanding of the contribution of BPIFA1 to disease pathogenesis and activity may clarify if BPIFA1 is a biomarker and potential drug target in pulmonary disease.

  15. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Directory of Open Access Journals (Sweden)

    Guocai Li

    Full Text Available Neisseria gonorrhoeae (N. gonorrhoeae outer membrane protein reduction modifiable protein (Rmp has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  16. Anti-listerial Bactericidal Activity of Lactobacillus plantarum DM5 Isolated from Fermented Beverage Marcha.

    Science.gov (United States)

    Das, Deeplina; Goyal, Arun

    2013-09-01

    The strain Lactobacillus plantarum DM5 was isolated from fermented beverage Marcha of Sikkim and explored for its antagonistic activity against food-borne pathogens. The cell-free supernatant of L. plantarum DM5 showed antibacterial activity of 6,400 AU/mL in MRS medium (pH 6.0) against the indicator strain Staphylococcus aureus. MRS medium supplemented with 15 g/L of maltose at 37 °C under static condition yielded highest antimicrobial activity (6,400 AU/mL) with 3 % increase in specific activity when compared to 20 g/L glucose. The antimicrobial compound was heat stable (60 min at 100 °C) and was active over a wide pH range. It showed bactericidal effect on S. aureus and Listeria monocytogenes by causing 96 and 98 % of cell lysis, respectively. The cell morphology of the treated S. aureus and L. monocytogenes was completely deformed as revealed by scanning electron microscopy, suggesting the high potential of L. plantarum DM5 as natural preservatives in food industry. The antimicrobial compound was purified by 80 % ammonium sulphate precipitation and showed antimicrobial activity of 12,800 AU/mL with 19-fold purification and a molecular mass of 15.2 kDa, indicating the proteinaceous nature of the compound.

  17. Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line.

    Science.gov (United States)

    El Kassas, Hala Yassin; Attia, Azza Ahmed

    2014-01-01

    Nano-biotechnology is recognized as offering revolutionary changes in various fields of medicine. Biologically synthesized silver nanoparticles have a wide range of applications. Silver nanoparticles (AgNPs) were biosynthesized with an aqueous extract of Pterocladiella (Pterocladia) capillacea, used as a reducing and stabilizing agent, and characterized using UV-VIS spectroscopy, Fourier Transform Infra red (FT-IR) spectroscopy, transmission electron microscopy (TEM) and energy dispersive analysis (EDX). The biosynthesized AgNPs were tested for cytotoxic activity in a human hepatocellular carcinoma (HepG2) cell line cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, 1% antibiotic and antimycotic solution and 2 mM glutamine. Bacterial susceptibility to AgNPs was assessed with Staphylococcus aureus, Bacillus subtilis [Gram+ve] and Pseudomonas aeruginosa and Escherichia coli [Gram-ve]. The agar well diffusion technique was adopted to evaluate the bactericidal activity of the biosynthesized AgNPs using Ampicillin and Gentamicin as gram+ve and gram-ve antibacterial standard drugs, respectively. The biosynthesized AgNPs were 11.4±3.52 nm in diameter. FT-IR analysis showed that carbonyl groups from the amino acid residues and proteins could assist in formation and stabilization of AgNPs. The AgNPs showed potent cytotoxic activity against the human hepatocellular carcinoma (HepG2) cell line at higher concentrations. The results also showed that the biosynthesized AgNPs inhibited the entire panel of tested bacteria with a marked specificity towards Bacillus subtillus. Cytotoxic activity of the biosynthesized AgNPs may be due to the presence of alkaloids present in the algal extract. Our AgNPs appear more bactericidal against gram-positive bacteria (B. subtillus).

  18. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    Directory of Open Access Journals (Sweden)

    Ma YF

    2013-06-01

    amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion. Furthermore, the fluid liposomal encapsulated tobramycin was prepared, and the bactericidal effect occurred more quickly when bacteria were cultured with liposomal encapsulated tobramycin. Conclusion: The bactericidal potency of fluid liposomes is dramatically enhanced with respect to fusion ability when the fusogenic lipid, DOPE, is included. Regardless of changes in liposome composition, fluid liposomes-bacterium fusion is universally enhanced by calcium ions. The information obtained in this study will increase our understanding of fluid liposomal action mechanisms, and help in optimizing the new generation of fluid liposomal formulations for the treatment of pulmonary bacterial infections. Keywords: liposomes, fusion, bacteria, Pseudomonas aeruginosa, lipid composition

  19. Monoclonal antibodies against the iron regulated outer membrane Proteins of Acinetobacter baumannii are bactericidal

    Directory of Open Access Journals (Sweden)

    Goel Vikas

    2001-08-01

    Full Text Available Abstract Background Iron is an important nutrient required by all forms of life.In the case of human hosts,the free iron availability is 10-18M,which is far less than what is needed for the survival of the invading bacterial pathogen.To survive in such conditions, bacteria express new proteins in their outer membrane and also secrete iron chelators called siderophores. Results/ Discussion Acinetobacter baumannii ATCC 19606, a nosocomial pathogen which grows under iron restricted conditions, expresses four new outer membrane proteins,with molecular weight ranging from 77 kDa to 88 kDa, that are called Iron Regulated Outer Membrane Proteins (IROMPs. We studied the functional and immunological properties of IROMPs expressed by A.baumanii ATCC 19606.The bands corresponding to IROMPs were eluted from SDS-PAGE and were used to immunize BALB/c mice for the production of monoclonal antibodies. Hybridomas secreting specific antibodies against these IROMPs were selected after screening by ELISA and their reactivity was confirmed by Western Blot. The antibodies then generated belonged to IgM isotype and showed bactericidical and opsonising activities against A.baumanii in vitro.These antibodies also blocked siderophore mediated iron uptake via IROMPs in bacteria. Conclusion This proves that iron uptake via IROMPs,which is mediated through siderophores,may have an important role in the survival of A.baumanii inside the host,and helps establishing the infection.

  20. Biomimetic Synthesis of Silver Nanoparticles Using Endosymbiotic Bacterium Inhabiting Euphorbia hirta L. and Their Bactericidal Potential

    Directory of Open Access Journals (Sweden)

    Baker Syed

    2016-01-01

    Full Text Available The present investigation aims to evaluate biomimetic synthesis of silver nanoparticles using endophytic bacterium EH 419 inhabiting Euphorbia hirta L. The synthesized nanoparticles were initially confirmed with change in color from the reaction mixture to brown indicating the synthesis of nanoparticles. Further confirmation was achieved with the characteristic absorption peak at 440 nm using UV-Visible spectroscopy. The synthesized silver nanoparticles were subjected to biophysical characterization using hyphenated techniques. The possible role of biomolecules in mediating the synthesis was depicted with FTIR analysis. Further crystalline nature of synthesized nanoparticles was confirmed using X-ray diffraction (XRD with prominent diffraction peaks at 2θ which can be indexed to the (111, (200, (220, and (311 reflections of face centered cubic structure (fcc of metallic silver. Transmission electron microscopy (TEM revealed morphological characteristics of synthesized silver nanoparticles to be polydisperse in nature with size ranging from 10 to 60 nm and different morphological characteristics such as spherical, oval, hexagonal, and cubic shapes. Further silver nanoparticles exhibited bactericidal activity against panel of significant pathogenic bacteria among which Pseudomonas aeruginosa was most sensitive compared to other pathogens. To the best of our knowledge, present study forms first report of bacterial endophyte inhabiting Euphorbia hirta L. in mediating synthesizing silver nanoparticles.

  1. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Hu, Hongkai; Yang, Zhonglin; Wei, Jun; Li, Juan

    2016-04-01

    Nanocomposite hydrogels with interpenetrating polymer network (IPN) structure based on poly(ethylene glycol) methyl ether methacrylate modified ZnO (ZnO-PEGMA) and 4-azidobenzoic agarose (AG-N{sub 3}) were prepared by a one-pot strategy under UV irradiation. The hydrogels exhibited a highly macroporous spongelike structure, and the pore size decreased with the increase of the ZnO-PEGMA content. Due to the entanglement and favorable interactions between the two crosslinked networks, the IPN hydrogels exhibited excellent mechanical strength and light transmittance. The maximum compressive and tensile strengths of the IPN hydrogels reached 24.8 and 1.98 MPa respectively. The transparent IPN hydrogels transmitted more than 85% of visible light at all wavelengths (400–800 nm). The IPN hydrogels exhibited anti-adhesive property towards Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), and the bactericidal activity increased with the ZnO-PEGMA content. The incorporation of ZnO-PEGMA did not reduce the biocompatibility of the IPN hydrogels and all the IPN nanocomposites showed negligible cytotoxicity. The present study not only provided a facile method for preparing hydrogel nanocomposites with IPN structure but also developed a new hydrogel material which might be an excellent candidate for wound dressings. - Highlights: • IPN hydrogel nanocomposites were prepared by a one-pot strategy. • The maximum compressive and tensile strengths reached 24.8 and 1.98 MPa. • IPN hydrogels displayed excellent antibacterial activity and cytocompatibility. • This study provided a facile method for preparing IPN hydrogel nanocomposites.

  2. Targeting polyelectrolyte networks in purulent body fluids to modulate bactericidal properties of some antibiotics

    Directory of Open Access Journals (Sweden)

    Bucki R

    2018-01-01

    Full Text Available Robert Bucki,1,* Bonita Durnaś,2,* Marzena Wątek,2,3 Ewelina Piktel,1 Katrina Cruz,4 Przemysław Wolak,2 Paul B Savage,5 Paul A Janmey4 1Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Białystok, 2Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, 3Holy Cross Oncology Center of Kielce, Kielce, Kielce, Poland; 4Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, 5Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA *These authors contributed equally to this work Abstract: The response of the human immune system to most bacterial infections results in accumulation of neutrophils at infection sites that release a significant quantity of DNA and F-actin. Both are negatively charged polyelectrolytes that can interact with positively charged host defense molecules such as cathelicidin-delivered LL-37 peptide or other cationic antibiotic agents. Evaluation of the ability of bacterial outgrowth (using luminescence measurements or counting colony-forming units to form a biofilm (quantified by crystal violet staining and analysis of the structure of DNA/F-actin network by optical microscopy in human pus samples treated with different antibiotics in combination with plasma gelsolin, DNAse 1, and/or poly-aspartic acid revealed that bactericidal activity of most tested antibacterial agents increases in the presence of DNA/F-actin depolymerizing factors. Keywords: antibiotic activity, polyelectrolyte network, depolymerizing factors, cathelicidin, ceragenins, DNase 1, cystic fibrosis

  3. Discovery of cofactor-specific, bactericidal Mycobacterium tuberculosis InhA inhibitors using DNA-encoded library technology.

    Science.gov (United States)

    Soutter, Holly H; Centrella, Paolo; Clark, Matthew A; Cuozzo, John W; Dumelin, Christoph E; Guie, Marie-Aude; Habeshian, Sevan; Keefe, Anthony D; Kennedy, Kaitlyn M; Sigel, Eric A; Troast, Dawn M; Zhang, Ying; Ferguson, Andrew D; Davies, Gareth; Stead, Eleanor R; Breed, Jason; Madhavapeddi, Prashanti; Read, Jon A

    2016-12-06

    Millions of individuals are infected with and die from tuberculosis (TB) each year, and multidrug-resistant (MDR) strains of TB are increasingly prevalent. As such, there is an urgent need to identify novel drugs to treat TB infections. Current frontline therapies include the drug isoniazid, which inhibits the essential NADH-dependent enoyl-acyl-carrier protein (ACP) reductase, InhA. To inhibit InhA, isoniazid must be activated by the catalase-peroxidase KatG. Isoniazid resistance is linked primarily to mutations in the katG gene. Discovery of InhA inhibitors that do not require KatG activation is crucial to combat MDR TB. Multiple discovery efforts have been made against InhA in recent years. Until recently, despite achieving high potency against the enzyme, these efforts have been thwarted by lack of cellular activity. We describe here the use of DNA-encoded X-Chem (DEX) screening, combined with selection of appropriate physical properties, to identify multiple classes of InhA inhibitors with cell-based activity. The utilization of DEX screening allowed the interrogation of very large compound libraries (10 11 unique small molecules) against multiple forms of the InhA enzyme in a multiplexed format. Comparison of the enriched library members across various screening conditions allowed the identification of cofactor-specific inhibitors of InhA that do not require activation by KatG, many of which had bactericidal activity in cell-based assays.

  4. Bactericidal effect of the photocatalystic reaction of titanium dioxide using visible wavelengths on Streptococcus mutans biofilm.

    Science.gov (United States)

    Kim, Chan-Hee; Lee, Eun-Song; Kang, Si-Mook; de Josselin de Jong, Elbert; Kim, Baek-Il

    2017-06-01

    The aim of this study was to determine the effect of titanium dioxide (TiO 2 ) photocatalysis induced by the application of clinically acceptable visible light at 405nm on the growth of Streptococcus mutans biofilms. S. mutans biofilms were grown on a hydroxyapatite (HA) disk and deposited in a rutile-type TiO 2 solution at a concentration of 0.1mg/mL. TiO 2 photocatalysis was measured for exposure to visible light (405nm) and ultraviolet (UV) light (254nm) produced by light-emitting diodes for 10, 20, 30, and 40min. After two treatments, the number of colonies formed in the final S. mutans biofilm on the HA disk were measured to confirm their viability, and the morphological changes of S. mutans were evaluated using scanning electronic microscopy. The bactericidal effects of 254- and 405-nm light resulted in > 5-log and 4-log reductions, respectively (p7-log reduction after 40min of treatment in both treatment groups relative to the control group. It was confirmed that the antibacterial effect could be shown by causing the photocatalytic reaction of TiO 2 in S. mutans biofilm even at the wavelength of visible light (405nm) as at the wavelength of ultraviolet light (254nm). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bactericidal and antibiofilm activity of bactenecin-derivative peptides against the food-pathogen Listeria monocytogenes: New perspectives for food processing industry.

    Science.gov (United States)

    Palmieri, Gianna; Balestrieri, Marco; Capuano, Federico; Proroga, Yolande T R; Pomilio, Francesco; Centorame, Patrizia; Riccio, Alessia; Marrone, Raffaele; Anastasio, Aniello

    2018-08-20

    Antimicrobial peptides have received great attention for their potential benefits to extend the shelf-life of food-products. Innate defense regulator peptide-1018 (IDR-1018) represents a promising candidate for such applications, due to its broad-spectrum antimicrobial activity, although food-isolated pathogens have been poorly investigated. Herein, we describe the design and the structural-functional characterization of a new 1018-derivative peptide named 1018-K6, in which the alanine in position 6 was replaced with a lysine. Spectroscopic analysis revealed a noticeable switch from β-sheet to helical conformations of 1018-K6 respect to IDR-1018, with a faster folding kinetic and increased structural stability. Moreover, 1018-K6 evidenced a significant antibiofilm/bactericidal efficiency specifically against Listeria monocytogenes isolates from food-products and food-processing environments, belonging to serotype 4b involved in the majority of human-listeriosis cases, with EC 50 values two- five-fold lower than those measured for IDR-1018. Therefore, a single amino-acid substitution in IDR-1018 sequence produced severe changes in peptide conformation and antimicrobial performances. Published by Elsevier B.V.

  6. Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Pratibha, E-mail: rkpratibha@yahoo.com; Merwyn, S.; Agarwal, G. S.; Tripathi, B. K.; Pant, S. C. [Defence Research and Development Establishment (India)

    2012-01-15

    Copper (II) oxide multi-armed nanoparticles composed of 500-1000 nm long radiating nanospicules with 100-200 nm width near the base and 50-100 nm width at the tapered ends and {approx}25 nm thickness were synthesized by electrochemical deposition in the presence of an oxidant followed by calcination at 150 Degree-Sign C. The nanoparticles were characterized using SEM/EDX for morphology and composition, Raman spectroscopy for compound identification, and broth culture method for antibacterial efficacy. The CuO nanoparticles have shown remarkable bactericidal efficacy against Gram-positive and -negative waterborne disease causing bacteria like Escherichia coli, Salmonella typhi, staphylococcus aureus and Bacillus subtilis. E. coli has been chosen as representative species for waterborne disease causing bacteria. In antibacterial tests 500 {mu}g/mL nano CuO killed 3 Multiplication-Sign 10{sup 8} CFU/mL E. coli bacteria within 4 h of exposure. Moreover, 8.3 Multiplication-Sign 10{sup 6} CFU/mL E. coli were killed by 100 and 10 {mu}g/mL nano CuO within 15 min and 4 h of exposure, respectively. Antibacterial activity of nano CuO has been found many-fold compared with commercial bulk CuO. The fate of nanoparticles after antibacterial test has also been studied. The synthesized CuO nanoparticles are expected to have potential antibacterial applications in water purification and in paints and coatings used on frequently touched surfaces and fabrics in hospital settings.

  7. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.

    Science.gov (United States)

    Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C

    2018-06-01

    Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Detection and characterisation of Complement protein activity in bovine milk by bactericidal sequestration assay.

    Science.gov (United States)

    Maye, Susan; Stanton, Catherine; Fitzgerald, Gerald F; Kelly, Philip M

    2015-08-01

    While the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6.20 and 6.06 log CFU/ml, for raw bovine and human milks, respectively - the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer.

  9. Preparation of Ag/TiO{sub 2}/SiO{sub 2} films via photo-assisted deposition and adsorptive self-assembly for catalytic bactericidal application

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Baojuan, E-mail: baojuanxi@gmail.com [Department of Electrical and Computer Engineering, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Chu, Xiaona; Hu, Jiangyong [Department of Civil and Environmental Engineering, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Bhatia, Charanjit Singh; Danner, Aaron James; Yang, Hyunsoo [Department of Electrical and Computer Engineering, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)

    2014-08-30

    Highlights: • We prepared controlledly the silver nanoparticles on TiO{sub 2}/SiO{sub 2} film by the facile photoreduction under the aid of structure-directing agents. • We studied the effect of silver loading on the antibactierial behavior of TiO{sub 2} film and optimized the content of silver. • We extended the route to fabricate other metals on substrates. - Abstract: The deterioration of water supply quality due to the waterborne bacteria is an environmental problem requiring the urgent attention. Due to the excellent and synergic antimicrobial capability, Ag-loaded TiO{sub 2} photocatalyst emerges as a feasible measure to guard the water. In our work, Ag nanoparticles have been prepared by the photoassisted reduction of AgNO{sub 3} on the TiO{sub 2} film fabricated by solution-based adsorptive self-assembly approach. The role of surfactant on the growth rate and size controlling of particles is also studied. In this connection, different kinds of surfactants, such as PVP, Tween-20, Tween-40 and so on, are applied in the system to investigate the formation of Ag nanoparticles. The surface profile and elemental analysis of Ag/TiO{sub 2}/SiO{sub 2} films are examined by scanning electron microscopy and attached energy-dispersive X-ray spectroscopy, respectively. In the anti-bacteria detection, Ag nanoparticles are found to enhance the bactericidal efficiency strongly comparing with the pure TiO{sub 2} film under the same condition. In addition, by comparison with Ag/TiO{sub 2}/SiO{sub 2} film in the dark environment as the reference experiment, UV–visible light plays a vital role in the improved bactericidal behavior, demonstrating the more efficient charge separation induced by metal silver. Because of the versatility of the method, the present photoreductive route is also exploited for the synthesis of Au nanoparticles on TiO{sub 2}/SiO{sub 2} films. The corresponding photocatalytical detection results demonstrate the loading of Au nanoparticles can

  10. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development

    International Nuclear Information System (INIS)

    Veldhoen, Nik; Skirrow, Rachel C.; Osachoff, Heather; Wigmore, Heidi; Clapson, David J.; Gunderson, Mark P.; Van Aggelen, Graham; Helbing, Caren C.

    2006-01-01

    We investigated whether exposure to environmentally relevant concentrations of the bactericidal agent, triclosan, induces changes in the thyroid hormone-mediated process of metamorphosis of the North American bullfrog, Rana catesbeiana and alters the expression profile of thyroid hormone receptor (TR) α and β, basic transcription element binding protein (BTEB) and proliferating nuclear cell antigen (PCNA) gene transcripts. Premetamorphic tadpoles were immersed in environmentally relevant concentrations of triclosan and injected with 1 x 10 -11 mol/g body weight 3,5,3'-triiodothyronine (T 3 ) or vehicle control. Morphometric measurements and steady-state mRNA levels obtained by quantitative polymerase chain reaction were determined. mRNA abundance was also examined in Xenopus laevis XTC-2 cells treated with triclosan and/or 10 nM T 3 . Tadpoles pretreated with triclosan concentrations as low as 0.15 ± 0.03 μg/L for 4 days showed increased hindlimb development and a decrease in total body weight following T 3 administration. Triclosan exposure also resulted in decreased T 3 -mediated TRβ mRNA expression in the tadpole tail fin and increased levels of PCNA transcript in the brain within 48 h of T 3 treatment whereas TRα and BTEB were unaffected. Triclosan alone altered thyroid hormone receptor α transcript levels in the brain of premetamorphic tadpoles and induced a transient weight loss. In XTC-2 cells, exposure to T 3 plus nominal concentrations of triclosan as low as 0.03 μg/L for 24 h resulted in altered thyroid hormone receptor mRNA expression. Exposure to low levels of triclosan disrupts thyroid hormone-associated gene expression and can alter the rate of thyroid hormone-mediated postembryonic anuran development

  11. Colloidal titania-silica-iron oxide nanocomposites and the effect from silica thickness on the photocatalytic and bactericidal activities

    Energy Technology Data Exchange (ETDEWEB)

    Chanhom, Padtaraporn [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Charoenlap, Nisanart [Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Tomapatanaget, Boosayarat [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Insin, Numpon, E-mail: Numpon.I@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2017-04-01

    New types of colloidal multifunctional nanocomposites that combine superparamagnetic character and high photocatalytic activity were synthesized and investigated. The superparamagnetic nanocomposites composed of anatase titania, silica, and iron oxide nanoparticles (TSI) were synthesized using thermal decomposition method followed by microemulsion method, without calcination at high temperature. Different techniques including X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize and confirm the structure of the nanocomposites. These nanocomposites showed high photocatalytic activity when used in the photodegradation of methylene blue under irradiation with a black light lamp. Moreover, the nanocomposites exhibited high antibacterial properties. From our study, the nanocomposites can be useful in various applications such as removal of pollutants with readily separation from the environment using an external magnetic field. These composites could effectively photo-degrade the dye at least three cycles without regeneration. The effects of silica shell thickness on the photocatalytic activity was investigated, and the thickness of 6 nm of the silica interlayer is enough for the inhibition of electron translocation between titania and iron oxide nanoparticles and maintaining the efficiency of photocatalytic activity of titania nanoparticles. - Highlights: • New colloidal nanocomposites of iron oxide-silica-titania were prepared. • The nanocomposites exhibited high photocatalytic activity with magnetic response. • The effects of silica thickness on photocatalytic activity were investigated. • Bactericidal activity of the nanocomposites was demonstrated.

  12. Facile synthesis of gold nanoparticles on propylamine functionalized SBA-15 and effect of surface functionality of its enhanced bactericidal activity against gram positive bacteria

    International Nuclear Information System (INIS)

    Bhuyan, Diganta; Saikia, Mrinal; Saikia, Lakshi; Gogoi, Animesh; Saikia, Ratul

    2015-01-01

    The facile synthesis of an SBA-15-pr- + NH 3 .Au 0 nano-hybrid material by spontaneous autoreduction of aqueous chloroaurate anions on propylamine functionalized SBA-15 was successfully demonstrated. The as-synthesized SBA-15-pr- + NH 3 .Au 0 nano-hybrid material was well characterized using low and wide angle x-ray diffraction (XRD), N 2 adsorption–desorption isotherms, Fourier transform infrared (FTIR), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX), x-ray photoelectron spectroscopy (XPS), UV-Visible spectroscopy and atomic absorption spectroscopy (AAS). The activity of the nano-hybrid material as a potent bactericidal agent was successfully tested against Gram positive/negative bacteria viz. Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The colony killing percentage of Gram positive bacteria was found to be higher than Gram negative bacteria due to the stronger electrostatic interaction between the positively-charged amine functionality of SBA-15 and the negatively charged functionality of the bacterial cell wall. (paper)

  13. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development

    Energy Technology Data Exchange (ETDEWEB)

    Veldhoen, Nik [Department of Biochemistry and Microbiology, P.O. Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Skirrow, Rachel C. [Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2 (Canada); Osachoff, Heather [Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2 (Canada); Wigmore, Heidi [Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2 (Canada); Clapson, David J. [Department of Biochemistry and Microbiology, P.O. Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Gunderson, Mark P. [Department of Biochemistry and Microbiology, P.O. Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Van Aggelen, Graham [Pacific Environmental Science Centre, 2645 Dollarton Highway, North Vancouver, British Columbia V7H 1V2 (Canada); Helbing, Caren C. [Department of Biochemistry and Microbiology, P.O. Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada)]. E-mail: chelbing@uvic.ca

    2006-12-01

    We investigated whether exposure to environmentally relevant concentrations of the bactericidal agent, triclosan, induces changes in the thyroid hormone-mediated process of metamorphosis of the North American bullfrog, Rana catesbeiana and alters the expression profile of thyroid hormone receptor (TR) {alpha} and {beta}, basic transcription element binding protein (BTEB) and proliferating nuclear cell antigen (PCNA) gene transcripts. Premetamorphic tadpoles were immersed in environmentally relevant concentrations of triclosan and injected with 1 x 10{sup -11} mol/g body weight 3,5,3'-triiodothyronine (T{sub 3}) or vehicle control. Morphometric measurements and steady-state mRNA levels obtained by quantitative polymerase chain reaction were determined. mRNA abundance was also examined in Xenopus laevis XTC-2 cells treated with triclosan and/or 10 nM T{sub 3}. Tadpoles pretreated with triclosan concentrations as low as 0.15 {+-} 0.03 {mu}g/L for 4 days showed increased hindlimb development and a decrease in total body weight following T{sub 3} administration. Triclosan exposure also resulted in decreased T{sub 3}-mediated TR{beta} mRNA expression in the tadpole tail fin and increased levels of PCNA transcript in the brain within 48 h of T{sub 3} treatment whereas TR{alpha} and BTEB were unaffected. Triclosan alone altered thyroid hormone receptor {alpha} transcript levels in the brain of premetamorphic tadpoles and induced a transient weight loss. In XTC-2 cells, exposure to T{sub 3} plus nominal concentrations of triclosan as low as 0.03 {mu}g/L for 24 h resulted in altered thyroid hormone receptor mRNA expression. Exposure to low levels of triclosan disrupts thyroid hormone-associated gene expression and can alter the rate of thyroid hormone-mediated postembryonic anuran development.

  14. In vitro assessment of the bactericidal effect of low-power arsenium-gallium (AsGa laser treatment Avaliação in vitro da ação bactericida do laser de baixa potência (AsGa

    Directory of Open Access Journals (Sweden)

    Adilvania Ferreira da Costa

    2012-08-01

    Full Text Available The objective of the present study was to perform an in vitro evaluation of the bactericidal action of a low-power arsenium-gallium (AsGa laser at a wavelength of 904nm and energy density of 6 J/cm². Ten petri dishes were seeded with Pseudomonas aeruginosa and another ten with Staphylococcus aureus. The dishes were then randomly divided into four groups with five plates in each group. Two groups were treated with AsGa laser once a day for 5 days, while the other two groups received no treatment. No halo of growth inhibition was found in any of the groups. It was therefore concluded that laser treatment (AsGa, 904nm, 6J/cm² had no bactericidal effect.Verificar, in vitro, o efeito bactericida do laser de baixa potência, AsGa, 904nm, na dose 6 J/cm2. Foram semeadas 10 placas de Petri com a bactéria Pseudomonas aeruginosa e 10 placas de Petri com Staphylococcus aureus. Aleatoriamente, foram divididas em quatro grupos (5 placas cada: dois grupos foram tratados com o laser AsGa a cada 24 horas, durante cinco dias, e dois grupos não receberam tratamento. Em todos os grupos, não foi observado qualquer halo de inibição do crescimento. Assim, concluiuse que a terapia a laser (AsGa, 904nm, 6 J/cm² não produziu efeito bactericida.

  15. Study on the Bactericidal Mechanism of Atmospheric-Pressure Low-Temperature Plasma against Escherichia coli and Its Application in Fresh-Cut Cucumbers

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2018-04-01

    Full Text Available Atmospheric-pressure low-temperature plasma (APLTP was used to study the bactericidal mechanism against Escherichia coli (E. coli and its application in the sterilization of fresh-cut cucumbers. The morphological changes of E. coli cells subjected to APLTP were observed by scanning electron microscopy (SEM. Cell death was evaluated by fluorescence microscopy (FM. Cell membrane permeability was measured by conductivity changes, and the amount of soluble protein leakage in the bacterial supernatant was determined by measurement of protein concentration. Additionally, the effects of APLTP on the physicochemical and sensory quality of fresh-cut cucumber were studied by assessing the changes of moisture content, soluble solid content (SSC, pH value, color, relative conductivity, malondialdehyde (MDA level, vitamin C (Vc content, aroma composition and microstructure. The results showed that the E. coli cell morphology was changed due to the charged particles and active components produced by APLTP. The E. coli cell wall and cell membrane ruptured, cell content leaked out, cells lost the ability to reproduce and self-replicate, and the function of cell metabolism was directly affected and led to E. coli inactivation. In addition, there was no significant effect on physicochemical properties and sensory quality of fresh-cut cucumbers.

  16. Evaluation of the bactericidal characteristics of nano-copper oxide or functionalized zeolite coating for bio-corrosion control in concrete sewer pipes

    International Nuclear Information System (INIS)

    Haile, T.; Nakhla, G.; Allouche, E.; Vaidya, S.

    2010-01-01

    The bactericidal characteristics of nano-copper oxide or functionalized zeolite coated concrete pipes against Acidithiobacillus thiooxidans were studied by measuring the temporal variation of bacterial dry cell weight measurement, cellular Adenosine Triphosphate production, as well as oxygen uptake rate of the aforementioned bacterium. Uncorroded (UC), severely corroded (SC), and moderately corroded (MC) concrete pipes were electrochemically coated with a nano-copper oxide, while another uncorroded concrete pipe was used to apply functionalized zeolite coating (Z2). Specimens were characterized by field emission-scanning electron microscopy, and optical microscopy. Oxygen uptake rate of the bacterium was the highest in UC followed by the MC. Oxygen uptake rate and cellular Adenosine Triphosphate decreased progressively in Z2 and SC throughout the duration of the experiment due to decline in live bacterial cell. The maximum bacterial specific growth rate was 1.1 x 10 -2 day -1 for both UC and MC, with a decay rates varying from 1.4 x 10 -2 to 2.6 x 10 -2 day -1 . The minimum concentration limits for the inhibition of the bacterium in the nano-copper oxide coated concrete pipes ranged from 2.3 mg to 2.6 mg Cu per mg dry cell weight.

  17. Bactericidal antibody against a representative epidemiological meningococcal serogroup B panel confirms that MATS underestimates 4CMenB vaccine strain coverage.

    Science.gov (United States)

    Frosi, Giacomo; Biolchi, Alessia; Lo Sapio, Morena; Rigat, Fabio; Gilchrist, Stefanie; Lucidarme, Jay; Findlow, Jamie; Borrow, Ray; Pizza, Mariagrazia; Giuliani, Marzia Monica; Medini, Duccio

    2013-10-09

    4CMenB (Bexsero), a vaccine developed against invasive meningococcal disease caused by capsular group B strains (MenB), was recently licensed for use by the European Medicines Agency. Assessment of 4CMenB strain coverage in specific epidemiologic settings is of primary importance to predict vaccination impact on the burden of disease. The Meningococcal Antigen Typing System (MATS) was developed to predict 4CMenB strain coverage, using serum bactericidal antibody assay with human complement (hSBA) data from a diverse panel of strains not representative of any specific epidemiology. To experimentally validate the accuracy of MATS-based predictions against strains representative of a specific epidemiologic setting. We used a stratified sampling method to identify a representative sample from all MenB disease isolates collected from England and Wales in 2007-2008, tested the strains in the hSBA assay with pooled sera from infant and adolescent vaccinees, and compared these results with MATS. MATS predictions and hSBA results were significantly associated (P=0.022). MATS predicted coverage of 70% (95% CI, 55-85%) was largely confirmed by 88% killing in the hSBA (95% CI, 72-95%). MATS had 78% accuracy and 96% positive predictive value against hSBA. MATS is a conservative predictor of strain coverage by the 4CMenB vaccine in infants and adolescents. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol.

    Science.gov (United States)

    Naraginti, Saraschandra; Sivakumar, A

    2014-07-15

    The present study reports a simple and robust method for synthesis of silver and gold nanoparticles using Coleus forskohlii root extract as reducing and stabilizing agent. Stable silver nanoparticles (AgNPs) and gold nanopoarticles (AuNPs) were formed on treatment of an aqueous silver nitrate (AgNO3) and chloroauric acid (HAuCl4) solutions with the root extract. The nanoparticles obtained were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). UV-Vis and TEM analysis indicate that with higher quantities of root extract, the interaction is enhanced leading to size reduction of spherical metal nanoparticles. XRD confirms face-centered cubic phase and the diffraction peaks can be attributed to (111), (200), (222) and (311) planes for these nanoparticles. These synthesized Ag and Au nanoparticles were found to exhibit excellent bactericidal activity against clinically isolated selected pathogens such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The synthesized AgNPs were also found to function as an efficient green catalyst in the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride, which was apparent from the periodical color change from bright yellow to colorless, after the addition of AgNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Stem Bark Extract and Fraction of Persea americana (Mill. Exhibits Bactericidal Activities against Strains of Bacillus cereus Associated with Food Poisoning

    Directory of Open Access Journals (Sweden)

    David A. Akinpelu

    2014-12-01

    Full Text Available The study investigates the in vitro antibacterial potentials of stem bark extracts of Persea americana on strains of Bacillus cereus implicated in food poisoning. The crude stem bark extracts and butanolic fraction at a concentration of 25 mg/mL and 10 mg/mL, respectively, exhibited antibacterial activities against test isolates. The zones of inhibition exhibited by the crude extract and the fraction ranged between 10 mm and 26 mm, while the minimum inhibitory concentration values ranged between 0.78 and 5.00 mg/mL. The minimum bactericidal concentrations ranged between 3.12 mg/mL–12.5 mg/mL and 1.25–10 mg/mL for the extract and the fraction, respectively. The butanolic fraction killed 91.49% of the test isolates at a concentration of 2× MIC after 60 min of contact time, while a 100% killing was achieved after the test bacterial cells were exposed to the butanolic fraction at a concentration of 3× MIC after 90 min contact time. Intracellular protein and potassium ion leaked out of the test bacterial cells when exposed to certain concentrations of the fraction; this is an indication of bacterial cell wall disruptions by the extract’s butanolic fraction and, thus, caused a biocidal effect on the cells, as evident in the killing rate test results.

  20. Periowave demonstrates bactericidal activity against periopathogens and leads to improved clinical outcomes in the treatment of adult periodontitis

    Science.gov (United States)

    Street, Cale N.; Andersen, Roger; Loebel, Nicolas G.

    2009-02-01

    Periodontitis affects half of the U.S. population over 50, and is the leading cause of tooth loss after 35. It is believed to be caused by growth of complex bacterial biofilms on the tooth surface below the gumline. Photodynamic therapy, a technology used commonly in antitumor applications, has more recently been shown to exhibit antimicrobial efficacy. We have demonstrated eradication of the periopathogens Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans in vitro using PeriowaveTM; a commercial photodisinfection system. In addition, several clinical studies have now demonstrated the efficacy of this treatment. A pilot study in the U.S. showed that 68% of patients treated with PeriowaveTM adjunctively to scaling and root planing (SRP) showed clinical attachment level increase of >1 mm, as opposed to 30% with SRP alone. In a subsequent larger study, a second PeriowaveTM treatment 6 weeks after initial treatment led to pocket depth improvements of >1.5 mm in 89% of patients. Finally, in the most recent multicenter, randomized, examiner-blinded study conducted on 121 subjects in Canada, PeriowaveTM treatment produced highly significant gains in attachment level (0.88 mm vs. 0.57 mm; p=0.003) and pocket depth (0.87 mm vs. 0.63 mm; p=0.01) as compared to SRP alone. In summary, PeriowaveTM demonstrated strong bactericidal activity against known periopathogens, and treatment of periodontitis using this system produced significantly better clinical outcomes than SRP alone. This, along with the absence of any adverse events in patients treated to date demonstrates that PDT is a safe and effective treatment for adult chronic periodontitis.

  1. Enhanced bactericidal effect of enterocin A in combination with thyme essential oils against L. monocytogenes and E. coli O157:H7.

    Science.gov (United States)

    Ghrairi, Taoufik; Hani, Khaled

    2015-04-01

    The combined effects of enterocin A with Thymus vulgaris essential oils (EOs) against Listeria monocytogenes and Escherichia coli O157:H7 were investigated in vitro by enumeration of surviving populations of testing pathogens and minimal inhibitory concentration (MIC) determination. Enterocin A was purified to homogeneity by RP-HPLC from the culture fluid of Enterococcus strain and thyme EOs were extracted from local Thymus vulgaris plants. The major constituent of thyme EOs oils determined by GC-MS was thymol (78.4 %). Combination of enterocin A with thyme EOs showed an enhanced bactericidal effect against Listeria monocytogenes. Checkerboard assay and isobologram construction displayed a synergistic interaction between these compounds against Listeria (FIC index enterocin A has fallen fivefold (from 4.57 to 0.9 μg/ml), while the MIC of thyme EOs decreased threefold (from 3.6 to 1.2 μg/ml). Treatments with enterocin A alone did not affect the growth of the enteric pathogen E. coli O157:H7. However, the addition of thyme EOs and enterocin A yielded a synergistic antimicrobial effect against E. coli (MIC thyme EOs decrease from 2.2 to 0.71 μg/ml). This is the first report on the combined effect of enterocin A and thyme EOs against food pathogen bacteria. This combination could be useful in food bio-preservation.

  2. Characterization and relative photonic efficiencies of a new nanocarbon/TiO2 composite photocatalyst designed for organic dye decomposition and bactericidal activity

    International Nuclear Information System (INIS)

    Oh, Won-Chun; Jung, Ah-Reum; Ko, Weon-Bae

    2009-01-01

    Two kinds of nanocarbon/TiO 2 composite photocatalysts were synthesized using an MCPBA oxidation method, employing MWCNT (multi-wall carbon nanotubes) and C 60 as nanocarbon sources and TNB (titanium (IV) n-butoxide) as a titanium dioxide source. From the XRD patterns of the composites, structural variations revealed the C 60 /TiO 2 composite having a mixture of anatase and rutile forms, with the MWCNT/TiO 2 composite presenting only the anatase phase. Elemental analysis indicated a predominance of carbon and Ti metal peaks over any other element. From the SEM results, the TiO 2 particles were dispersed regularly on the fullerene surface with large clusters bearing irregular agglomerate dispersions. However, the MWCNT/TiO 2 showed homogenous distributions with only individual MWCNT, covered with TiO 2 and without any jam-like aggregates between the two. According to the photocatalytic results, the relationship of the -ln (c/c 0 ) of the solution products of the organic dye, methylene blue (MB), as a function of time under UV irradiation, showed linearity properties with first-order kinetics and an excellent photodegradation effect. From the measured bactericidal effects, the inhibition zone was defined by the halo method with the curves of E. coli inactivation denoting effectiveness of the nanocarbon/TiO 2 composites in the sunlight.

  3. Application of a 222-nm krypton-chlorine excilamp to control foodborne pathogens on sliced cheese surfaces and characterization of the bactericidal mechanisms.

    Science.gov (United States)

    Ha, Jae-Won; Lee, Jae-Ik; Kang, Dong-Hyun

    2017-02-21

    This study was conducted to investigate the basic spectral properties of a 222-nm krypton-chlorine (KrCl) excilamp and its inactivation efficacy against major foodborne pathogens on solid media, as well as on sliced cheese compared to a conventional 254-nm low-pressure mercury (LP Hg) lamp. Selective media and sliced cheese inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated with a KrCl excilamp and a LP Hg lamp at the same dose. The KrCl excilamp showed full radiant intensity from the outset at a wide range of working temperatures, especially at low temperatures of around 0 to 10°C. Irradiation with 222nm UV-C showed significantly (P<0.05) higher inactivation capacity against all three pathogens than 254-nm radiation on both media and sliced cheese surfaces without generating many sublethally injured cells which potentially could recover. The underlying inactivation mechanisms of 222-nm KrCl excilamp treatment were evaluated by fluorescent staining methods and damage to cellular membranes and intracellular enzyme inactivation were the primary factors contributing to the enhanced bactericidal effect. The results of this study suggest that a 222-nm UV-C surface disinfecting system can be applied as an alternative to conventional LP Hg lamp treatment by the dairy industry. Copyright © 2016. Published by Elsevier B.V.

  4. Antimycobacterial natural products from Moroccan medicinal plants: Chemical composition, bacteriostatic and bactericidal profile of Thymus satureioides and Mentha pulegium essential oils

    Institute of Scientific and Technical Information of China (English)

    Marwa Chraibi; Abdellah Farah; Sara Lebrazi; Oumaima El Amine; Mohammed Iraqui Houssaini; Kawtar Fikri-Benbrahim

    2016-01-01

    Objective: To evaluate the susceptibility of Mycobacterium aurum and Mycobacterium smegmatis in vitro to the essential oils obtained from two medicinal plants: Thymus satureioides(T. satureioides) and Mentha pulegium(M. pulegium), and to study their chemical composition.Methods: The aerial parts of T. satureioides and M. pulegium(leaves and stems) were hydro-distillated using a Clevenger-type apparatus and essential oils were analyzed and identified by gas chromatography-mass spectrometry. Antimycobacterial screening of essential oils was performed on the basis of the inhibition zone diameter by disc diffusion method against two mycobacterial strains whereas the minimal inhibitory concentration and minimal bactericidal concentration were determined by using the micro-dilution method.Results: Chemical analysis of their aerial part’s essential oils gave as major compounds,borneol(34.26%), carvacrol(31.21%) and thymol(3.71%) for T. satureioides and R(+)-pulegone(75.48%), carvone(6.66%) and dihydrocarvone(4.64%) for M. pulegium.Thereafter their antimycobacterial effect evaluation, using the micro-dilution method,indicated that minimal inhibitory concentration values of T. satureioides essential oil ranged from 0.062% to 0.015%(v/v) and from 0.125% to 0.031%(v/v) for M. pulegium respectively against Mycobacterium aurum and Mycobacterium smegmatis.Conclusions: It is clearly evident from the results obtained that the Moroccan medicinal plants have great potential to be used as anti-tuberculosis agents. These findings may help scientists to undertake several research projects to discover useful natural product as new anti-tuberculosis drug.

  5. Antimycobacterial natural products from Moroccan medicinal plants:Chemical composition, bacteriostatic and bactericidal profile of Thymus satureioides and Mentha pulegium essential oils

    Institute of Scientific and Technical Information of China (English)

    Marwa Chraibi; Abdellah Farah; Sara Lebrazi; Oumaima El Amine; Mohammed Iraqui Houssaini; Kawtar Fikri-Benbrahim

    2016-01-01

    Objective: To evaluate the susceptibility of Mycobacterium aurum and Mycobacterium smegmatis in vitro to the essential oils obtained from two medicinal plants: Thymus satureioides (T. satureioides) and Mentha pulegium (M. pulegium), and to study their chemical composition. Methods: The aerial parts of T. satureioides and M. pulegium (leaves and stems) were hydro-distillated using a Clevenger-type apparatus and essential oils were analyzed and identified by gas chromatography-mass spectrometry. Antimycobacterial screening of essential oils was performed on the basis of the inhibition zone diameter by disc diffusion method against two mycobacterial strains whereas the minimal inhibitory concentration and minimal bactericidal concentration were determined by using the micro-dilution method. Results: Chemical analysis of their aerial part's essential oils gave as major compounds, borneol (34.26%), carvacrol (31.21%) and thymol (3.71%) for T. satureioides and R(+)-pulegone (75.48%), carvone (6.66%) and dihydrocarvone (4.64%) for M. pulegium. Thereafter their antimycobacterial effect evaluation, using the micro-dilution method, indicated that minimal inhibitory concentration values of T. satureioides essential oil ranged from 0.062%to 0.015%(v/v) and from 0.125%to 0.031%(v/v) for M. pulegium respectively against Mycobacterium aurum and Mycobacterium smegmatis. Conclusions: It is clearly evident from the results obtained that the Moroccan medicinal plants have great potential to be used as anti-tuberculosis agents. These findings may help scientists to undertake several research projects to discover useful natural product as new anti-tuberculosis drug.

  6. Nitrogen gas flushing can be bactericidal: the temperature-dependent destiny of Bacillus weihenstephanensis KBAB4 under a pure N2 atmosphere.

    Science.gov (United States)

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2014-01-01

    Gram-negative Pseudomonas and Gram-positive Bacillus are the most common spoilage bacteria in raw and pasteurized milk, respectively. In previous studies, nitrogen (N2) gas flushing treatments of raw and pasteurized milk at cold chain-temperatures inhibited bacterial spoilage and highlighted different susceptibilities to the N2 treatment with the exclusion of certain bacterial types. Here, we investigated the effects of pure N2 gas flushing on representative strains of these genera grown in mono- or co-cultures at 15 and 25°C. Bacillus weihenstephanensis, a frequent inhabitant of fluid dairy products, is represented by the genome-sequenced KBAB4 strain. Among Pseudomonas, P. tolaasii LMG 2342(T) and strain C1, a raw milk psychrotroph, were selected. The N2 gas flushing treatment revealed: (1) temperature-dependent responses; (2) inhibition of the growth of both pseudomonads; (3) emergence of small colony variants (SCVs) for B. weihenstephanensis strain KBAB4 at 15°C induced by the N2 treatment or when grown in co-culture with Pseudomonas strains; (4) N2 gas flushing modulates (suppressed or stimulated) bacterial antagonistic reactions in co-cultures; (5) most importantly, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that at 25°C the majority of the KBAB4 cells were killed by pure N2 gas flushing. This observation constitutes the first evidence that N2 gas flushing has bactericidal effects.

  7. Inhibitory and bactericidal potential of crude acetone extracts of Combretum molle (Combretaceae) on drug-resistant strains of Helicobacter pylori.

    Science.gov (United States)

    Njume, Collise; Afolayan, Anthony J; Samie, Amidou; Ndip, Roland N

    2011-10-01

    Infection with Helicobacter pylori is strongly associated with a number of gastroduodenal pathologies. Antimicrobial resistance to commonly-used drugs has generated a considerable interest in the search for novel therapeutic compounds from medicinal plants. As an ongoing effort of this search, the susceptibility of 32 clinical strains of H. pylori and a reference strain-NCTC 11,638-was evaluated against five solvent extracts of Combretum molle, a plant widely used for the treatment of gastric ulcers and other stomach-related morbidities in South Africa. The extracts were screened for activity by the agar-well diffusion method, and the most active one of them was tested against the same strains by micro-broth dilution and time kill assays. Metronidazole and amoxicillin were included in these experiments as positive control antibiotics. The solvent extracts all demonstrated anti-H. pylori activity with zone diameters of inhibition between 0 and 38 mm. The most potent anti-H. pylori activity was demonstrated by the acetone extract, to which 87.5% of the clinical strains were susceptible. The minimum inhibitory concentration (MIC90) values for this extract ranged from 1.25 to 5.0 mg/mL while those for amoxicillin and metronidazole ranged from 0.001 to 0.94 mg/mL and from 0.004 to 5.0 mg/mL respectively. The acetone extract was highly bactericidal at a concentration of 2.5 and 5.0 mg/mL, with complete elimination of the test organisms in 24 hours. Its inhibitory activity was better than that of metronidazole (pmolle may contain therapeutically-useful compounds against H. pylori, which are mostly concentrated in the acetone extract.

  8. Ag loaded WO_3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation

    International Nuclear Information System (INIS)

    Zhu, Wenyu; Liu, Jincheng; Yu, Shuyan; Zhou, Yan; Yan, Xiaoli

    2016-01-01

    Highlights: • WO_3/Ag heterogeneous composites were fabricated with simply photo-reduction method. • Property changes due to Ag loading were systematically studied. • WO_3/Ag composites efficiently degraded sulfanilamide under visible light irradiation. • WO_3/Ag composites exhibited bactericidal effectS under visible light irradiation. - Abstract: Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO_3 nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO_3 nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO_3 nanoplates using a photo-reduction method to generate WO_3/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO_3 and WO_3/Ag composites was conducted under visible light irradiation. The results show that WO_3/Ag composites performed much better than pure WO_3 where the highest removal rate was 96.2% in 5 h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO_3, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2 h under visible light irradiation for all three WO_3/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO_3/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process.

  9. Agrobacterium-mediated genetic transformation of Pogostemon cablin (Blanco) Benth. Using leaf explants: bactericidal effect of leaf extracts and counteracting strategies.

    Science.gov (United States)

    Paul, Anamika; Bakshi, Souvika; Sahoo, Debee Prasad; Kalita, Mohan Chandra; Sahoo, Lingaraj

    2012-04-01

    An optimized protocol for Agrobacterium tumefaciens-mediated transformation of patchouli using leaf disk explants is reported. In vitro antibacterial activity of leaf extracts of the plants revealed Agrobacterium sensitivity to the extracts. Fluorometric assay of bacterial cell viability indicated dose-dependent cytotoxic activity of callus extract against Agrobacterium cells. Addition of 0.1% Tween 20 and 2 g/l L-glutamine to Agrobacterium infection medium counteracted the bactericidal effect and significantly increased the T-DNA delivery to explants. A short preculture of explants for 2 days followed by infection with Agrobacterium in medium containing 150 μM of acetosyringone were found essential for efficient T-DNA delivery. Cocultivation for 3 days at 22 °C in conjunction with other optimized factors resulted in maximum T-DNA delivery. The Agrobacterium-mediated transformation of leaf disk explants were found significantly related to physiological age of the explants, age and origin of the of the donor plant. Leaf explants from second node of the 3-month-old in vivo plants showed highest transformation efficiency (94.3%) revealed by transient GUS expression assay. Plants selected on medium containing 20 mg/l kanamycin showed stable GUS expression in leaves and stem. The elongated shoots readily developed roots on kanamycin-free rooting medium and on transfer to soil, plants were successfully established. Polymerase chain reaction (PCR) and reverse-transcriptase PCR analysis in putative plants confirmed their transgenic nature. The established transformation method should provide new opportunities for the genetic improvement of patchouli for desirable trait.

  10. Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry.

    Science.gov (United States)

    Wang, Y-Y; Chatzistavrou, X; Faulk, D; Badylak, S; Zheng, L; Papagerakis, S; Ge, L; Liu, H; Papagerakis, P

    2015-06-20

    The aim of this study was the fabrication and evaluation of a novel bioactive and bactericidal material, which could have applications in dentistry by supporting tissue regeneration and killing oral bacteria. Our hypothesis was that a new scaffold for pulp-dentin tissue engineering with enhanced antibacterial activity could be obtained by associating extracellular matrix derived from porcine bladder with an antibacterial bioactive glass. Our study combines in vitro approaches and ectopic implantation in scid mice. The novel material was fabricated by incorporating a sol-gel derived silver (Ag)-doped bioactive glass (BG) in a natural extracellular matrix (ECM) hydrogel in ratio 1:1 in weight % (Ag-BG/ECM). The biological properties of the Ag-BG/ECM were evaluated in culture with dental pulp stem cells (DPSCs). In particular, cell proliferation, cell apoptosis, stem cells markers profile, and cell differentiation potential were studied. Furthermore, the antibacterial activity against Streptococcus mutans and Lactobacillus casei was measured. Moreover, the capability of the material to enhance pulp/dentin regeneration in vivo was also evaluated. Our data show that Ag-BG/ECM significantly enhances DPSCs' proliferation, it does not affect cell morphology and stem cells markers profile, protects cells from apoptosis, and enhances in vitro cell differentiation and mineralisation potential as well as in vivo dentin formation. Furthermore, Ag-BG/ECM strongly inhibits S. mutans and L. casei growth suggesting that the new material has also anti-bacterial properties. This study provides foundation for future clinical applications in dentistry. It could potentially advance the currently available options of dental regenerative materials.

  11. Clinical effect of a dentifrice containing three kinds of bactericidal ingredients on periodontal disease: a pilot study in patients undergoing supportive periodontal therapy.

    Science.gov (United States)

    Kita, Daichi; Kinumatsu, Takashi; Yokomizo, Atsushi; Tanaka, Miki; Egawa, Masahiro; Makino-Oi, Asako; Tomita, Sachiyo; Saito, Atsushi

    2018-02-09

    This study aimed to evaluate clinically the effect of a novel dentifrice containing three kinds of bactericidal ingredients on periodontal disease. This was a single-arm, prospective clinical study that enrolled patients with periodontitis undergoing supportive periodontal therapy. Periodontal examination, microbiological testing of saliva samples, and evaluation of inflammatory markers (IL-1β, IL-6, IL-8, TNF-α) in gingival crevicular fluid were performed. After 4 weeks of the use of test dentifrice, these parameters were re-evaluated. The use of dentifrice was also subjectively evaluated by clinicians and participants. Among 30 participants, there were significant improvements in the periodontal and microbiological parameters, and the level of interleukin-1β in the gingival crevicular fluid, following the use of the test dentifrice. In clinicians' subjective evaluation of the overall usefulness of the dentifrice, 'mild' and 'moderate' improvement accounted for 83% of the total responses. In the participants' subjective evaluation, the majority indicated their experience of the use as favorable. Within the limitations of this study, it is suggested that the progression of periodontal disease during the supportive periodontal therapy can be prevented by the use of the test dentifrice. Trial registration UMIN Clinical Trials Registry (UMIN-CTR) 000023175. Date of formal registration: July 14, 2016 ( https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000026716 ).

  12. Bactericidal activities of the cationic steroid CSA-13 and the cathelicidin peptide LL-37 against Helicobacter pylori in simulated gastric juice

    Directory of Open Access Journals (Sweden)

    Janmey Paul A

    2009-09-01

    Full Text Available Abstract Background The worldwide appearance of drug-resistant strains of H. pylori motivates a search for new agents with therapeutic potential against this family of bacteria that colonizes the stomach, and is associated with adenocarcinoma development. This study was designed to assess in vitro the anti-H. pylori potential of cathelicidin LL-37 peptide, which is naturally present in gastric juice, its optimized synthetic analog WLBU2, and the non-peptide antibacterial agent ceragenin CSA-13. Results In agreement with previous studies, increased expression of hCAP-18/LL-37 was observed in gastric mucosa obtained from H. pylori infected subjects. MBC (minimum bactericidal concentration values determined in nutrient-containing media range from 100-800 μg/ml for LL-37, 17.8-142 μg/ml for WLBU2 and 0.275-8.9 μg/ml for ceragenin CSA-13. These data indicate substantial, but widely differing antibacterial activities against clinical isolates of H. pylori. After incubation in simulated gastric juice (low pH with presence of pepsin CSA-13, but not LL-37 or WLBU2, retained antibacterial activity. Compared to LL-37 and WLBU2 peptides, CSA-13 activity was also more resistant to inhibition by isolated host gastric mucins. Conclusion These data indicate that cholic acid-based antimicrobial agents such as CSA-13 resist proteolytic degradation and inhibition by mucin and have potential for treatment of H. pylori infections, including those caused by the clarithromycin and/or metronidazole-resistant strains.

  13. Exploring a new phenomenon in the bactericidal response of TiO{sub 2} thin films by Fe doping: Exerting the antimicrobial activity even after stoppage of illumination

    Energy Technology Data Exchange (ETDEWEB)

    Naghibi, Sanaz, E-mail: naghibi@iaush.ac.ir [Department of Metallurgy and Materials Engineering, Shahreza Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Vahed, Shohreh, E-mail: sh_vahed@iaush.ac.ir [Department of Food Science, Shahreza Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Torabi, Omid, E-mail: omid_trb@yahoo.com [Department of Materials Engineering, Najafabad Branch, Advanced Materials Research Center, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Jamshidi, Amin, E-mail: amin_jam_g@yahoo.com [Department of Materials Engineering, Najafabad Branch, Advanced Materials Research Center, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Golabgir, Mohammad Hossein, E-mail: m.hosseingolabgir@yahoo.com [Department of Materials Engineering, Najafabad Branch, Advanced Materials Research Center, Islamic Azad University, Isfahan (Iran, Islamic Republic of)

    2015-02-01

    Graphical abstract: - Highlights: • Highly uniform Fe–TiO{sub 2} thin films were deposited on glass using sol–gel hot-dipping technique. • The photocatalytic properties were studied upon UV and visible irradiation. • By Fe doping into TiO{sub 2} structure, its microbial performance was prolonged even after stopping the illumination. • Due to Fe doping, the significant improvement in bactericidal coating was evident. - Abstract: Antibacterial properties of Fe-doped TiO{sub 2} thin films prepared on glass by the sol–gel hot-dipping technique were studied. The films were characterized by X-ray diffraction, field emission scanning electron microscopy, scanning probe microscopy and X-ray photoelectron spectroscopy. The photocatalytic activities were evaluated by measuring the decomposition rate of methylene blue under ultra violet and visible light. The antibacterial properties of the coatings were investigated against Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisia and Aspergillus niger. The principle of incubation methods was also discussed. The results indicated that Fe doping of thin films eventuated in high antibacterial properties under visible light and this performance remained even after stoppage of illumination. This article tries to provide some explanation for this fact.

  14. Structural and optical characterization and efficacy of hydrothermal synthesized Cu and Ag doped zinc oxide nanoplate bactericides

    Energy Technology Data Exchange (ETDEWEB)

    Abinaya, C.; Marikkannan, M.; Manikandan, M. [Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu (India); Mayandi, J., E-mail: jeyanthinath@yahoo.co.in [Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu (India); Department of Materials Science and Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States); Suresh, P.; Shanmugaiah, V. [Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu (India); Ekstrum, C. [Department of Materials Science and Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States); Pearce, J.M. [Department of Materials Science and Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States); Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States)

    2016-12-01

    This study reports on a novel synthesis of pure zinc oxide and both Cu and Ag doped ZnO nanoplates using a simple and low-cost hydrothermal method. The structural and optical properties of the nanoplates were quantified and the materials were tested for antibacterial activity. X-ray diffraction revealed the formation of the wurtzite phase of ZnO and scanning and transmission electron microscopy showed the formation of randomly oriented ZnO nanoplates, having a thickness less than 80 nm and diameter less than 350 nm. The elemental analyses of both the pure and doped samples were evaluated by energy dispersive X-ray spectrometry. The FTIR spectra of ZnO nanomaterials showed the predictable bands at 3385 cm{sup −1} (O−H stretching), 1637 cm{sup −1} (stretching vibration of H{sub 2}O), 400 cm{sup −1}–570 cm{sup −1} (M−O stretching). The as synthesized samples showed a strong absorption peak in the UV region (∼376 nm) and a near band edge emission at 392 nm with some defect peaks in the visible region. From the XPS spectra the oxidation states of Zn, Cu and Ag were found to be +2, +2 and 0 respectively. Escherichia coli, Staphylococcus aureus and Salmonella typhi bacteria were used to evaluate the antibacterial activity of undoped and doped ZnO. Ag doped ZnO exhibited low minimum inhibitory concentration (MIC) values as 40 μg/ml for E. coli and S. aureus and 20 μg/ml for S. typhi, which are comparable to commercial antibiotics without optimization. Further, these chemically modified nanoparticles will be applicable in the development of medicine to control the spread and infection of a variety of bacterial strains. - Highlights: • Distinct ZnO nanoplates were successfully synthesized by facile hydrothermal method. • Cu and Ag doped ZnO exhibits significant destruction of bacteria with low MIC value. • Ag:ZnO has a noteworthy bactericidal effect against E. coli, S. aureus &S. typhi. • It projects that, a feasible low cost industrial process can

  15. Ag loaded WO{sub 3} nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenyu [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 (Singapore); Liu, Jincheng, E-mail: JCLIU@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Current address: Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510009 (China); Yu, Shuyan; Zhou, Yan [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 (Singapore); Yan, Xiaoli, E-mail: XLYAN@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Current address: Environmental and Water Technology Centre of Innovation, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489 (Singapore)

    2016-11-15

    Highlights: • WO{sub 3}/Ag heterogeneous composites were fabricated with simply photo-reduction method. • Property changes due to Ag loading were systematically studied. • WO{sub 3}/Ag composites efficiently degraded sulfanilamide under visible light irradiation. • WO{sub 3}/Ag composites exhibited bactericidal effectS under visible light irradiation. - Abstract: Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO{sub 3} nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO{sub 3} nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO{sub 3} nanoplates using a photo-reduction method to generate WO{sub 3}/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO{sub 3} and WO{sub 3}/Ag composites was conducted under visible light irradiation. The results show that WO{sub 3}/Ag composites performed much better than pure WO{sub 3} where the highest removal rate was 96.2% in 5 h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO{sub 3}, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2 h under visible light irradiation for all three WO{sub 3}/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO{sub 3}/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process.

  16. Nitrogen gas flushing can be bactericidal: The temperature-dependent destiny of Bacillus weihenstephanensis KBAB4 under a pure N2 atmosphere

    Directory of Open Access Journals (Sweden)

    Patricia eMunsch-Alatossava

    2014-11-01

    Full Text Available Tremendous food spoilage on one side and increased concern about the incidence of food-borne pathogens on the other side urge the development of additional steps to ensure food safety and quality. In previous studies, nitrogen (N2 gas flushing treatments of raw and pasteurized milk at cold chain-temperatures inhibited bacterial spoilage and highlighted different susceptibilities to the N2 treatment with the exclusion of certain bacterial types. Gram-negative Pseudomonas and Gram-positive Bacillus are the most common spoilage bacteria in raw and pasteurised milk, respectively. Here, we investigated the effects of pure N2 gas flushing on representative strains of these genera grown in mono- or co-cultures at 15°C and 25°C. Bacillus weihenstephanensis, which is a frequent inhabitant of fluid dairy products, is represented by the genome-sequenced KBAB4 strain. Among Pseudomonas, P. tolaasii LMG 2342T and strain C1, a raw milk psychrotroph, were selected. The N2 gas flushing treatment revealed: 1 temperature-dependent responses; 2 inhibition of the growth of both pseudomonads; 3 emergence of small colony variants for B. weihenstephanensis strain KBAB4 at 15°C induced by the N2 treatment or when grown in co-culture with Pseudomonas strains; 4 N2 gas flushing modulates (suppressed or stimulated bacterial antagonistic reactions in co-cultures; 5 most importantly, SEM and TEM analyses revealed that at 25°C the majority of the KBAB4 cells were killed by pure N2 gas flushing. This observation constitutes the first evidence that N2 gas flushing has bactericidal effects.

  17. Aqueous and Organic Solvent-Extracts of Selected South African Medicinal Plants Possess Antimicrobial Activity against Drug-Resistant Strains of Helicobacter pylori: Inhibitory and Bactericidal Potential

    Directory of Open Access Journals (Sweden)

    Collise Njume

    2011-09-01

    Full Text Available The aim of this study was to identify sources of cheap starting materials for the synthesis of new drugs against Helicobacter pylori. Solvent-extracts of selected medicinal plants; Combretum molle, Sclerocarya birrea, Garcinia kola, Alepidea amatymbica and a single Strychnos species were investigated against 30 clinical strains of H. pylori alongside a reference control strain (NCTC 11638 using standard microbiological techniques. Metronidazole and amoxicillin were included in these experiments as positive control antibiotics. All the plants demonstrated anti-H. pylori activity with zone diameters of inhibition between 0 and 38 mm and 50% minimum inhibitory concentration (MIC50 values ranging from 0.06 to 5.0 mg/mL. MIC50 values for amoxicillin and metronidazole ranged from 0.001 to 0.63 mg/mL and 0.004 to 5.0 mg/mL respectively. The acetone extracts of C. molle and S. birrea exhibited a remarkable bactericidal activity against H. pylori killing more than 50% of the strains within 18 h at 4× MIC and complete elimination of the organisms within 24 h. Their antimicrobial activity was comparable to the control antibiotics. However, the activity of the ethanol extract of G. kola was lower than amoxicillin (P < 0.05 as opposed to metronidazole (P > 0.05. These results demonstrate that S. birrea, C. molle and G. kola may represent good sources of compounds with anti-H. pylori activity.

  18. Silver-loaded nanotubular structures enhanced bactericidal efficiency of antibiotics with synergistic effect in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Xu N

    2017-01-01

    -positive Staphylococcus aureus (ATCC 25923, and methicillin-resistant Staphylococcus aureus (MRSA; ATCC 33591 and ATCC 43300. Moreover, after a relative short (3 weeks combinational treatment, animal experiments in vivo further proved the synergistic antibacterial effect by X-ray and histological and immunohistochemical analyses. These results demonstrated that the combination of Ag nanoparticles and antibiotics significantly enhanced the antibacterial effect both in vitro and in vivo through the synergistic effect. The strategy is promising for clinical application to reduce the usage of antibiotics and shorten the administration time of implant-associated infection. Keywords: implant-associated infection, silver nanoparticles, TiO2 nanotube, antibiotics, synergistic bactericidal activity

  19. The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes

    OpenAIRE

    Walczak, Maciej; Richert, Agnieszka; Burkowska-But, Aleksandra

    2014-01-01

    The present study was aimed at investigating bactericidal properties of polylactide (PLA) films containing three different polyhexamethylene guanidine hydrochloride (PHMG) derivatives and effect of the derivatives on extracellular hydrolytic enzymes and intracellular dehydrogenases. All PHMG derivatives had a slightly stronger bactericidal effect on Staphylococcus aureus than on E. coli but only PHMG granular polyethylene wax (at the concentration of at least 0.6 %) has a bactericidal effect....

  20. High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: A route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds

    International Nuclear Information System (INIS)

    Zanin, Hudson; Rodrigues, Bruno Vinícius Manzolli; Ribeiro Neto, Wilson Alves; Bretas, Rosario Elida Suman; Da-Silva, Newton Soares; Marciano, Fernanda Roberta; Oliveira Lobo, Anderson

    2016-01-01

    We have prepared a novel 3D porous biomaterial combining poly (DL-lactic acid) (PDLLA) and graphene and multi-walled carbon nanotubes oxides (MWCNTO-GO) composite. PDLLA as control and a high loading of PDLLA/MWCNTO-GO (50/50 w/w) bioscaffolds were prepared and functionalized. MWCNTs were exfoliated to form MWCNTO-GO by oxygen plasma etching. The later was also applied to enhance the scaffolds wettability, attaching oxygen-containing groups on their surfaces. This approach produced a porous architecture observed by scanning electron microscopy and semi-quantified by electrochemical analysis. The later also indicated a notable increase on the conductivity of PDLLA/MWCNTO-GO scaffold compared to MWCNTO-GO free PDLLA (about 5 orders of magnitudes at low frequencies). Thermogravimetric analysis showed that the MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. The PDLLA/MWCNTO-GO scaffolds had significant cellular adhesion, did not present cytotoxicity effect, besides reduced bactericidal proliferation and produced mineralized tissues in SBF media. The metallic MWCNTO-GO powder held together by PDLLA polymer opens a whole new branch of applications, including bioelectroanalyses, drug delivery systems and tissue engineering. - Highlights: • We produced a novel 3D porous material from PDLLA, graphene oxide and MWCNT oxide. • MWCNTO-GO loading (50/50 w/w) increased notably the conductivity of PDLLA scaffold. • MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. • PDLLA/MWCNTO-GO scaffolds did not present cytotoxicity effect. • PDLLA/MWCNTO-GO scaffolds presented bioactivity properties.

  1. In vitro bactericidal and bacteriostatic potential of ingredients of traditional medicine obtained from Kacha area (river indus) district D.I. Khan, KPK, against human bacterial pathogens

    International Nuclear Information System (INIS)

    Amin, A.; Khan, M.A.

    2011-01-01

    The aim of this study was to analyze and evaluate antimicrobial potential of medicinal plants obtained from kacha area of river indus, that are used as ingredients of traditional medicine for treatment of multiple infectious diseases. The antimicrobial activities of methanol and aqueous extracts of 5 medicinal plants of a traditional medicine were evaluated against 6 human gram positive (Staphylococcus aureus, Micrococcos luteus) and gram negative (Escherichia coli, Pseudomonas aeruginosa, Enterobacter, Klebsiella pneumoniae) pathogens. The disc diffusion and broth macro dilution assay was used to determine the zone of inhibitions and the minimum inhibitory concentration respectively. The ciprofloxacin and streptomycin were used as standard agents. Both aqueous and methanol fractions of all 5 tested plants exhibited antimicrobial activity against one or more species of microorganisms. The most active extract found wasAzadirachta indica leaves which represented widest zone of inhibition of 16(+- 0.05) mm and minimum inhibitory concentration 0.19mg/ml against Klebsie-lla pneumoniae. Calotropis procera leaves was found least active representing lowest Zones of inhibition 3.13(+- 0.05) mm and highest minimum inhibitory concentration value (20mg/ml) against test microorganisms. Over all methanol fractions of medicinal plants represented stronger biological activity against test microorganisms than aqueous extracts. A good majority of extracts were bactericidal. These results afford the ground information for potential use of crude extracts with high MIC and MBC values. Moreover a synergistic effect is expected when used in combination. For this further attempt are in progress to investigate antimicrobial potential of combination medicine. (author)

  2. High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: A route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Laboratory of Energy Storage & Supply - ES& S, Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, CEP: 12.244-000, Sao Paulo (Brazil); Rodrigues, Bruno Vinícius Manzolli [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Ribeiro Neto, Wilson Alves; Bretas, Rosario Elida Suman [Department of Materials Engineering, Federal University of Sao Carlos, Rodovia Washington Luis, km 235 – SP-310, Sao Carlos, Sao Paulo (Brazil); Da-Silva, Newton Soares [Laboratory of Cell Biology and Tissue, Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, CEP: 12244-000, Sao Paulo (Brazil); Marciano, Fernanda Roberta [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Oliveira Lobo, Anderson, E-mail: aolobo@pq.cnpq.br [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil)

    2016-07-01

    We have prepared a novel 3D porous biomaterial combining poly (DL-lactic acid) (PDLLA) and graphene and multi-walled carbon nanotubes oxides (MWCNTO-GO) composite. PDLLA as control and a high loading of PDLLA/MWCNTO-GO (50/50 w/w) bioscaffolds were prepared and functionalized. MWCNTs were exfoliated to form MWCNTO-GO by oxygen plasma etching. The later was also applied to enhance the scaffolds wettability, attaching oxygen-containing groups on their surfaces. This approach produced a porous architecture observed by scanning electron microscopy and semi-quantified by electrochemical analysis. The later also indicated a notable increase on the conductivity of PDLLA/MWCNTO-GO scaffold compared to MWCNTO-GO free PDLLA (about 5 orders of magnitudes at low frequencies). Thermogravimetric analysis showed that the MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. The PDLLA/MWCNTO-GO scaffolds had significant cellular adhesion, did not present cytotoxicity effect, besides reduced bactericidal proliferation and produced mineralized tissues in SBF media. The metallic MWCNTO-GO powder held together by PDLLA polymer opens a whole new branch of applications, including bioelectroanalyses, drug delivery systems and tissue engineering. - Highlights: • We produced a novel 3D porous material from PDLLA, graphene oxide and MWCNT oxide. • MWCNTO-GO loading (50/50 w/w) increased notably the conductivity of PDLLA scaffold. • MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. • PDLLA/MWCNTO-GO scaffolds did not present cytotoxicity effect. • PDLLA/MWCNTO-GO scaffolds presented bioactivity properties.

  3. Effect oof some antibiotics, disinfectants, and UV light on vability of vegetative cells and spores of C1. perfringend type A

    International Nuclear Information System (INIS)

    Rymkiewicz, D.

    1977-01-01

    Cells and spores of 40 strains of C1. perfringens type A, pathogenic for guinea pigs, were tested for resistance to antibiotics, drugs, disinfectants used in surgery and in bacteriological laboratories, and UV light. No correlation was found between thermoresistance of spores and their resistance to other bactericidal agents. Among the common disinfectants, iodine solution showed strong bactericidal and sporostatic activity. Good bactericidal effect was also obtained by combined action of Vescodin and UV light. Drug resistance of C1. perfringens type A strains changed clearly in the past 10 years. Strains inducing gangrene became resistant to penicillin and tetracyclines, which hitherto were commonly applied. Ampicilin can now be recommended, as the antibiotic with strong bactericidal and sporostatic action. (author)

  4. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite.

    Directory of Open Access Journals (Sweden)

    O E Jaime-Acuña

    Full Text Available The antimicrobial activity of silver nanoparticles (AgNPs is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments.

  5. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite

    Science.gov (United States)

    Vasquez-Peña, M.; Raymond-Herrera, O.; Villavicencio-García, H.; Petranovskii, V.; Vazquez-Duhalt, R.; Huerta-Saquero, A.

    2016-01-01

    The antimicrobial activity of silver nanoparticles (AgNPs) is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER) was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments. PMID:27824932

  6. Identification of a defined linear epitope in the OspA protein of the Lyme disease spirochetes that elicits bactericidal antibody responses: Implications for vaccine development.

    Science.gov (United States)

    Izac, Jerilyn R; Oliver, Lee D; Earnhart, Christopher G; Marconi, Richard T

    2017-05-31

    The lipoprotein OspA is produced by the Lyme disease spirochetes primarily in unfed ticks. OspA production is down-regulated by the blood meal and it is not produced in mammals except for possible transient production during late stage infection in patients with Lyme arthritis. Vaccination with OspA elicits antibody (Ab) that can target spirochetes in the tick midgut during feeding and inhibit transmission to mammals. OspA was the primary component of the human LYMErix™ vaccine. LYMErix™ was available from 1998 to 2002 but then pulled from the market due to declining sales as a result of unsubstantiated concerns about vaccination induced adverse events and poor efficacy. It was postulated that a segment of OspA that shares sequence similarity with a region in human LFA-1 and may trigger putative autoimmune events. While evidence supporting such a link has not been demonstrated, most efforts to move forward with OspA as a vaccine component have sought to eliminate this region of concern. Here we identify an OspA linear epitope localized within OspA amino acid residues 221-240 (OspA 221-240 ) that lacks the OspA region suggested to elicit autoimmunity. A peptide consisting of residues 221-240 was immunogenic in mice. Ab raised against OspA 221-240 peptide surface labeled B. burgdorferi in IFAs and displayed potent Ab mediated-complement dependent bactericidal activity. BLAST analyses identified several variants of OspA 221-240 and a closely related sequence in OspB. It is our hypothesis that integration of the OspA 221-240 epitope into a multivalent-OspC based chimeric epitope based vaccine antigen (chimeritope) could result in a subunit vaccine that protects against Lyme disease through synergistic mechanisms. Copyright © 2017. Published by Elsevier Ltd.

  7. Actividad opsonofagocítica contra meningococos del grupo B:¿Un correlato de protección adicional contra la enfermedad meningococica?

    Directory of Open Access Journals (Sweden)

    Audun Aase

    2009-08-01

    Full Text Available Opsonophagocytic activity and serum bactericidal activity against group B meningococci were compared in sera from three vaccine groups given two different outer membrane vesicles vaccines separately or in combination. Opsonophagocytic activity defined more responders and revealed more cross-reactivity against heterologous strains than observed with serum bactericidal activity, and it showed the highest correlation with IgG-binding to live meningococci. Determination of opsonophagocytic activity may therefore be a valuable laboratory supplement to serum bactericidal activity for monitoring protection against group B meningococcal disease.

  8. Perlakuan Panas Kering dan Bakterisida untuk Menekan Infeksi Pantoea stewartii subsp. stewartii pada Benih Jagung Manis

    Directory of Open Access Journals (Sweden)

    Suswi Nalis

    2015-09-01

    Full Text Available Stewart’s Wilt is an important bacterial disease of sweet corn caused by Pantoea stewartii subsp. stewartii (synonim Erwinia stewartii. This bacteria is a seed transmitted pathogen therefore seed treatment is one method to control stewart’s wilt. The aim of this research was to study the effectiveness of dry heat, bactericide treatment, and their combinations to eliminate P. stewartii subsp. stewartii infection on sweet corn seed without damaging seed quality. The research was conducted in 3 experiments. Experiment I was conducted to determine the treatment window of dry heat and bactericide treatment. The treatment was carried out on sweet corn seed using the P. stewartii subsp. stewartii in vitro. Experiment II was conducted to study dry heat and bactericide treatment on sweet corn seed infested by P. stewartii subsp. stewartii. Experiment III was conducted to study combination of dry heat and bactericide treatment on sweet corn seed infested by P. stewartii subsp. stewartii. The results showed that dry heat treatment at 50 °C for 24 hours was able to eliminate pathogen populations in vitro but was unable to eliminate the 128 pathogen on infected seed (in vivo. Germination tests indicated that seed treatments with dry heat up to 55 °C did not decrease the germination level. The use of bactericide treatment in 100 ppm could reduce the population of bacteria on sweet corn seeds. Bactericide concentration of 150 and 200 ppm could decrease the population of bacteria on sweet corn seeds, however it could cause phytotoxic effect. The combination of bactericide (100 ppm, w/v with dry heat treatment (55 °C for 24 hours was able to eliminate bacteria on infected seed with seed germination above 85%.

  9. Selection of an optimal antiseptic solution for intraoperative irrigation: an in vitro study.

    Science.gov (United States)

    van Meurs, S J; Gawlitta, D; Heemstra, K A; Poolman, R W; Vogely, H C; Kruyt, M C

    2014-02-19

    With increasing bacterial antibiotic resistance and an increased infection risk due to more complicated surgical procedures and patient populations, prevention of surgical infection is of paramount importance. Intraoperative irrigation with an antiseptic solution could provide an effective way to reduce postoperative infection rates. Although numerous studies have been conducted on the bactericidal or cytotoxic characteristics of antiseptics, the combination of these characteristics for intraoperative application has not been addressed. Bacteria (Staphylococcus aureus and S. epidermidis) and human cells were exposed to polyhexanide, hydrogen peroxide, octenidine dihydrochloride, povidone-iodine, and chlorhexidine digluconate at various dilutions for two minutes. Bactericidal properties were calculated by means of the quantitative suspension method. The cytotoxic effect on human fibroblasts and mesenchymal stromal cells was determined by a WST-1 metabolic activity assay. All of the antiseptics except for polyhexanide were bactericidal and cytotoxic at the commercially available concentrations. When diluted, only povidone-iodine was bactericidal at a concentration at which some cell viability remained. The other antiseptics tested showed no cellular survival at the minimal bactericidal concentration. Povidone-iodine diluted to a concentration of 1.3 g/L could be the optimal antiseptic for intraoperative irrigation. This should be established by future clinical studies.

  10. Diversity and bioactive potentials of culturable heterotrophic bacteria from the surficial sediments of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Nilayangod, C.; Jasmin, C.; Vinothkumar, S.; Parameswaran, P.S.; Nair, S.

    . Organic extracts of nearly 50% of these organisms were cytotoxic to human breast cancer MCF-7 cells and were bactericidal to human pathogens, Escherichia coli and Pseudomonas sp., while 20-30% of them were bactericidal to Vibrio sp. and Staphylococcus sp...

  11. Monoclonal antibodies to meningococcal factor H binding protein with overlapping epitopes and discordant functional activity.

    Science.gov (United States)

    Giuntini, Serena; Beernink, Peter T; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.

  12. How honey kills bacteria

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria

  13. Tolerance of staphylococcus aureus to ß-lactam antibiotics

    NARCIS (Netherlands)

    W.H.F. Goessens (Wil)

    1986-01-01

    textabstractPenicillin has a bactericidal action on actively dividing bacteria. If protein synthesis of bacteria exposed to penicillin is inhibited, for example by the addition of chloramphenicol or the omission of an essential amino acid from the medium, the bactericidal action of

  14. Sustained release of bactericidal concentrations of penicillin in the pleural space via an antibiotic-eluting pigtail catheter coated with electrospun nanofibers: results from in vivo and in vitro studies.

    Science.gov (United States)

    Chao, Yin-Kai; Lee, Cheng-Hung; Liu, Kuo-Sheng; Wang, Yi-Chuan; Wang, Chih-Wei; Liu, Shih-Jung

    2015-01-01

    Inadequate intrapleural drug concentrations caused by poor penetration of systemic antibiotics into the pleural cavity is a major cause of treatment failure in empyema. Herein, we describe a novel antibiotic-eluting pigtail catheter coated with electrospun nanofibers used for the sustained release of bactericidal concentrations of penicillin in the pleural space. Electrospun nanofibers prepared using polylactide-polyglycolide copolymer and penicillin G sodium dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol were used to coat the surface of an Fr6 pigtail catheter. The in vitro patterns of drug release were tested by placing the catheter in phosphate-buffered saline. In vivo studies were performed using rabbits treated with penicillin either intrapleurally (Group 1, 20 mg delivered through the catheter) or systemically (Group 2, intramuscular injection, 10 mg/kg). Penicillin concentrations in the serum and pleural fluid were then measured and compared. In vitro studies revealed a burst release of penicillin (10% of the total dose) occurring in the first 24 hours, followed by a sustained release in the subsequent 30 days. Intrapleural drug levels were significantly higher in Group 1 than in Group 2 (Ppenicillin concentrations remained above the minimum inhibitory concentration breakpoint throughout the entire study period. In contrast, serum penicillin levels were significantly higher in Group 2 than in Group 1 (P<0.001). Notably, all Group 2 rabbits showed signs of systemic toxicity (paralytic ileus and weight loss). We conclude that our antibiotic-eluting catheter may serve as a novel therapeutic option to treat empyema.

  15. Antibacterial Efficacy of Lytic Bacteriophages against Antibiotic-Resistant Klebsiella Species

    Directory of Open Access Journals (Sweden)

    M. Khajeh Karamoddini

    2011-01-01

    Full Text Available Bacterial resistance to antibiotics is a leading and highly prevalent problem in the treatment of infectious diseases. Bacteriophages (phages appear to be effective and safe alternatives for the treatment of resistant infections because of their specificity for bacterial species and lack of infectivity in eukaryotic cells. The present study aimed to isolate bacteriophages against Klebsiella spp. and evaluate their efficacy against antibiotic-resistant species. Seventy-two antibiotic-resistant Klebsiella spp. were isolated from samples of patients who referred to the Ghaem Hospital (Mashhad, Iran. Lytic bacteriophages against Klebsiella spp. were isolated from wastewater of the septic tank of the same hospital. Bactericidal activity of phages against resistant Klebsiella spp. was tested in both liquid (tube method; after 1 and 24 h of incubation and solid (double-layer agar plate method; after 24 h of incubation phases. In each method, three different concentrations of bacteriophages (low: 107 PFU/mL were used. Bacteriophages showed promising bactericidal activity at all assessed concentrations, regardless of the test method and duration of incubation. Overall, bactericidal effects were augmented at higher concentrations. In the tube method, higher activity was observed after 24 h of incubation compared to the 1-h incubation. The bactericidal effects were also higher in the tube method compared to the double-layer agar plate method after 24 h of incubation. The findings of the present study suggest that bacteriophages possess effective bactericidal activity against resistant Klebsiella spp. These bactericidal activities are influenced by phage concentration, duration of incubation, and test method.

  16. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Ansari, Mohammad A; Khan, Haris M; Alzohairy, Mohammad A; Jalal, Mohammad; Ali, Syed G; Pal, Ruchita; Musarrat, Javed

    2015-01-01

    The high prevalence of extended-spectrum β-lactamases (76.3 %) and metallo-β-lactamases (7.3 %) amongst the bacteria Pseudomonas aeruginosa is a critical problem that has set forth an enormous therapeutic challenge. The suggested role of nanoparticles as next generation antibiotics, and inadequate information on antibacterial activity of aluminium oxide nanoparticles has led us to investigate the green synthesis of aluminium oxide nanoparticles (Al2O3 NPs) using leaf extracts of lemongrass and its antibacterial activity against extended-spectrum β-lactamases and metallo-β-lactamases clinical isolates of P. aeruginosa. The synthesized Al2O3-NPs were characterized by scanning electron microcopy, high resolution-transmission electron microscopy, atomic force microscopy, X-ray diffraction, Zeta potential, and differential light scattering techniques. The X-ray diffraction data revealed the average size of the spherical Al2O3-NPs as 34.5 nm. The hydrodynamic size in Milli Q water and Zeta potential were determined to be 254 nm and +52.2 mV, respectively. The minimal inhibitory concentration of Al2O3-NPs was found to be in the range of 1,600-3,200 µg/ml. Treatment at concentrations >2,000 µg/ml, resulted in complete growth inhibition of extended-spectrum β-lactamases and metallo-β-lactamases isolates. Scanning electron microcopy analysis revealed the clusters of nanoparticles attached to the bacterial cell surface, causing structural deformities in treated cells. High resolution-transmission electron microscopy analysis confirmed that nanoparticles crossed the cell membrane to become intracellular. The interaction of nanoparticles with the cell membrane eventually triggered the loss of membrane integrity, most likely due to intracellular oxidative stress. The data explicitly suggested that the synthesized Al2O3-NPs can be exploited as an effective bactericidal agent against extended-spectrum β-lactamases, non-extended-spectrum β-lactamases and metallo

  17. Superhydrophilic nanopillar-structured quartz surfaces for the prevention of biofilm formation in optical devices

    Science.gov (United States)

    Han, Soo; Ji, Seungmuk; Abdullah, Abdullah; Kim, Duckil; Lim, Hyuneui; Lee, Donghyun

    2018-01-01

    Bacterial biofilm formation on optical devices such as contact lenses, optical glasses, endoscopic devices, and microscopic slides and lenses are major concerns in the field of medicine and biomedical engineering. To solve these problems, here we present the first report of superhydrophilic transparent nanopillar-structured surfaces with bactericidal properties. To construct bactericidal surfaces, we imitated a topological mechanism found in nature in which nanopillar-structured surfaces cause a mechanical disruption of the outer cell membranes of bacteria, resulting in bacterial cell death. We used nanosphere lithography to fabricate nanopillars with various sharpnesses and heights on a quartz substrate. Water contact angle and light reflectance measurements revealed superhydrophilic, antifogging and antireflective properties, which are important for use in optical devices. To determine bactericidal efficiency, the fabricated surfaces were incubated and tested against two Gram-negative bacteria associated with biofilm formation and various diseases in humans, Pseudomonas aeruginosa and Escherichia coli. The highest bactericidal activity was achieved with nanopillars that measured 300 nm in height and 10 nm in apex diameter. Quartz substrates patterned with such nanopillars killed ∼38,000 P. aeruginosa and ∼27,000 E. coli cells cm-2 min-1, respectively. Thus, the newly designed nanopillar-structured bactericidal surfaces are suitable for use in the development of superhydrophilic and transparent optical devices.

  18. Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action.

    Science.gov (United States)

    Ha, Jae-Won; Kang, Dong-Hyun

    2015-01-01

    The objective of the study described in this article was, first, to investigate the effect of the simultaneous application of near-infrared (NIR) heating and UV irradiation on inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in ready-to-eat (RTE) sliced ham and as well as its effect on product quality and, second, to elucidate the underlying mechanisms of the synergistic bactericidal action of NIR heating and UV irradiation. With the inoculation amounts used, simultaneous NIR-UV combined treatment for 70 s achieved 3.62, 4.17, and 3.43 log CFU reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. For all three pathogens, the simultaneous application of both technologies resulted in an additional log unit reduction as a result of their synergism compared to the sum of the reductions obtained after the individual treatments. To investigate the mechanisms of NIR-UV synergistic injury for a particular microorganism in a food base, we evaluated the effect of four types of metabolic inhibitors using the overlay method and confirmed that damage to cellular membranes and the inability of cells to repair these structures due to ribosomal damage were the primary factors related to the synergistic lethal effect. Additionally, NIR-UV combined treatment for a maximum of 70 s did not alter the color values or texture parameters of ham slices significantly (P > 0.05). These results suggest that a NIR-UV combined process could be an innovative antimicrobial intervention for RTE meat products. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO{sub 2}-anatase containing silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Roldán, María V. [Laboratorio de Materiales Cerámicos, FCEIA-UNR, IFIR-CONICET, Pellegrini 250, Rosario S2000BTP (Argentina); Oña, Paula de [Laboratorio de Microbiología Molecular, FCByF-UNR-CONICET, Suipacha 531, Rosario S2002LRK (Argentina); Castro, Yolanda; Durán, Alicia [Instituto de Cerámica y Vidrio (CSIC), Campus de Cantoblanco, 28049, Madrid (Spain); Faccendini, Pablo; Lagier, Claudia [IQUIR-UNR-CONICET, Suipacha 531, Rosario S2002LRK (Argentina); Grau, Roberto, E-mail: robertograu@fulbrightmail.org [Laboratorio de Microbiología Molecular, FCByF-UNR-CONICET, Suipacha 531, Rosario S2002LRK (Argentina); Pellegri, Nora S., E-mail: pellegri@fceia.unr.edu.ar [Laboratorio de Materiales Cerámicos, FCEIA-UNR, IFIR-CONICET, Pellegrini 250, Rosario S2000BTP (Argentina)

    2014-10-01

    Here we describe the development of novel nanostructured coating systems with improved photocatalytic and antibacterial activities. These systems comprise a layer of SiO{sub 2} followed by a layer of mesoporous or dense TiO{sub 2}-anatase, and doping with silver nanoparticles (Ag NPs). The coatings were synthesized via a sol–gel technique by combining colloidal Ag NPs with TiO{sub 2} and SiO{sub 2} sols. The photocatalytic activity was studied through methyl orange decomposition under UV light. Results showed a great increase of photocatalytic activity by Ag NPs doping. The most active photocatalyst corresponded to the Ag–SiO{sub 2}/TiO{sub 2} mesoporous system, associated with the porosity of the coatings and with the decrease of e–h recombination for the presence of Ag NPs. All the TiO{sub 2} coatings showed a strong bactericidal activity against planktonic forms of Gram-negative (enterohemorrhagic Escherichia coli) and Gram-positive (Listeria monocytogenes) pathogens, as well as a strong germicidal effect against deadly spores of human gas gangrene- and anthrax-producing bacteria (Clostridium perfringens and Bacillus anthracis, respectively). The bactericidal and sporocidal activity was improved by doping the coatings with Ag NPs, even more when nanoparticles were in the outer layer of TiO{sub 2}, because they are more accessible to the environment. The mechanisms responsible for the increase of photocatalytic and bactericidal behaviors related to Ag NP doping were studied by spectroscopic ellipsometry, UV–vis spectroscopy, photoluminescence and anodic stripping voltammetry. It was found that the separation of the electron–hole pair contributed to the enhancement of photocatalysis, whereas the effect of the local electric field reinforcement was probably present. A possible involvement of a decrease of band-gap energy and dispersion by silver nanoparticles is ruled out. bactericidal efficacy was increased by Ag{sup +} ion release. Overall, the results

  20. Effect of Oxygen Limitation and Starvation on the Benzalkonium Chloride Susceptibility of Escherichia coli

    DEFF Research Database (Denmark)

    Bjergbæk, L.A.; Haagensen, Janus Anders Juul; Molin, Søren

    2008-01-01

    the gfp-tagged E. coli K-12 strain MG1655[pOX38Km]. Increasing temperature from 10 degrees C to 30 degrees C increased the bactericidal effect of BAC for both starved and nonstarved E. coli under aerobic and anaerobic conditions. The lowest minimum bactericidal concentration was observed for cells...

  1. Enterococcal endocarditis - a case treated with teicoplanin and ...

    African Journals Online (AJOL)

    In vitro minimal bactericidal results and serum activity were the basis of the postoperative choice of drugs. ... found to be bactericidal in vitro at the trough levels of the antibiotics in the serum. The patient recovered fully. ... container holding Robertson's meat medium. A. Carbomedics mechanical replacement valve (size 25) ...

  2. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mushrooms.

    Science.gov (United States)

    Todorović, Biljana; Potočnik, Ivana; Rekanović, Emil; Stepanović, Miloš; Kostić, Miroslav; Ristić, Mihajlo; Milijašević-Marčić, Svetlana

    2016-12-01

    ASBTRACT Toxicity of twenty-two essential oils to three bacterial pathogens in different horticultural systems: Xanthomonas campestris pv. phaseoli (causing blight of bean), Clavibacter michiganensis subsp. michiganensis (bacterial wilt and canker of tomato), and Pseudomonas tolaasii (causal agent of bacterial brown blotch on cultivated mushrooms) was tested. Control of bacterial diseases is very difficult due to antibiotic resistance and ineffectiveness of chemical products, to that essential oils offer a promising alternative. Minimal inhibitory and bactericidal concentrations are determined by applying a single drop of oil onto the inner side of each plate cover in macrodilution assays. Among all tested substances, the strongest and broadest activity was shown by the oils of wintergreen (Gaultheria procumbens), oregano (Origanum vulgare), and lemongrass (Cymbopogon flexuosus. Carvacrol (64.0-75.8%) was the dominant component of oregano oils, while geranial (40.7%) and neral (26.7%) were the major constituents of lemongrass oil. Xanthomonas campestris pv. phaseoli was the most sensitive to plant essential oils, being susceptible to 19 oils, while 11 oils were bactericidal to the pathogen. Sixteen oils inhibited the growth of Clavibacter michiganensis subsp. michiganensis and seven oils showed bactericidal effects to the pathogen. The least sensitive species was Pseudomonas tolaasii as five oils inhibited bacterial growth and two oils were bactericidal. Wintergreen, oregano, and lemongrass oils should be formulated as potential biochemical bactericides against different horticultural pathogens.

  3. Pheochromocytoma (PC12 Cell Response on Mechanobactericidal Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Jason V. Wandiyanto

    2018-04-01

    Full Text Available Titanium is a biocompatible material that is frequently used for making implantable medical devices. Nanoengineering of the surface is the common method for increasing material biocompatibility, and while the nanostructured materials are well-known to represent attractive substrata for eukaryotic cells, very little information has been documented about the interaction between mammalian cells and bactericidal nanostructured surfaces. In this study, we investigated the effect of bactericidal titanium nanostructures on PC12 cell attachment and differentiation—a cell line which has become a widely used in vitro model to study neuronal differentiation. The effects of the nanostructures on the cells were then compared to effects observed when the cells were placed in contact with non-structured titanium. It was found that bactericidal nanostructured surfaces enhanced the attachment of neuron-like cells. In addition, the PC12 cells were able to differentiate on nanostructured surfaces, while the cells on non-structured surfaces were not able to do so. These promising results demonstrate the potential application of bactericidal nanostructured surfaces in biomedical applications such as cochlear and neuronal implants.

  4. The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes.

    Science.gov (United States)

    Walczak, Maciej; Richert, Agnieszka; Burkowska-But, Aleksandra

    2014-11-01

    The present study was aimed at investigating bactericidal properties of polylactide (PLA) films containing three different polyhexamethylene guanidine hydrochloride (PHMG) derivatives and effect of the derivatives on extracellular hydrolytic enzymes and intracellular dehydrogenases. All PHMG derivatives had a slightly stronger bactericidal effect on Staphylococcus aureus than on E. coli but only PHMG granular polyethylene wax (at the concentration of at least 0.6 %) has a bactericidal effect. PHMG derivatives introduced into PLA affected the activity of microbial hydrolases to a small extent. This means that the introduction of PHMG derivatives into PLA will not reduce its enzymatic biodegradation significantly. On the other hand, PHMG derivatives introduced into PLA strongly affected dehydrogenases activity in S. aureus than in E. coli.

  5. How about food irradiation? Its history and usefulness. (3) Irradiation effects on food and decrease in fungi

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2006-01-01

    Inhibiting germination of vegetables and grade control of maturity of fruits, destroy of insect pest and parasite, disinfection of meats and fishes, bactericidal action of dry foods such as spices, and taste and color change of irradiated foods and perfect bactericidal action are stated. Application of food irradiation contains inhibiting germination, insecticidal action, sterilization of insect pest, grade control of maturity, inhibition of food poisoning, decrease in fungi, improvement of properties, and perfect bactericidal action. Each treatment of foods is described by the effects of three exposure doses such as the low exposure dose until 1 kGy, middle exposure dose from 1 to 10 kGy and high from 10 to 75 kGy. (S.Y.)

  6. Inhibition of bacterial growth by different mixtures of propofol and thiopentone

    Directory of Open Access Journals (Sweden)

    K.E. Joubert

    2005-06-01

    Full Text Available Propofol is, as a result of its formulation, an ideal bacterial and yeast culture medium. An outbreak of sepsis in humans and an increase in wound infections in dogs has been ascribed to the use of propofol. It has been previously reported that a 1:1 mixture of propofol and thiopentone has bactericidal properties. This study was undertaken to determine if further serial mixtures of propofol and thiopentone maintained the bactericidal properties. Mixtures of 1:1 (solution A, 5:1 (solution B, 10:1 (solution C, 50:1 (solution D and 100:1 (solution E of 1 % propofol to 2.5 % thiopentone, 2.5 % thiopentone (solution T, 1 % propofol (solution P and saline (solution S were prepared and inoculated with between 105 and 106 colony-forming units of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. A sample was withdrawn from each solution at 0, 1, 6, 12, 48 and 120 hours after inoculation and a bacterial count was performed. This study showed that thiopentone and solution A behaved in similar fashion by inhibiting bacterial growth and was bactericidal after 48 hours. Solution B was not bactericidal against S. aureus and C. albicans. Propofol and solutions D and E all supported growth of all the organisms tested. These data indicate that mixtures of propofol and thiopentone at a ratio less than 1:1 do not maintain the bactericidal properties.

  7. Comparative toxicity of various ozonized olefins to bacteria suspended in air

    Energy Technology Data Exchange (ETDEWEB)

    Dark, P A; Nash, T

    1970-01-01

    Air containing olefin vapor was treated with known amounts of ozone simulating natural concentrations. The bactericidal effect of the mixture was tested using microthreads sprayed with washed cultures of Escherichia coli var. communis or Micrococcus albus, aerosol strain. With 20 different olefins a wide range of activity was found, those in which the double bond formed part of a ring being the most bactericidal; gasoline vapor was about as active as the average open-chain olefin. The two organisms behaved similarly at the experimental relative humidity of 80%. The estimated amount of bactericidal substance present was only about one hundreth of that required to give the same kill with a 'conventional' air disinfectant; a simple physical explanation is proposed for this enhanced effect.

  8. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    Science.gov (United States)

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  9. Hyperbaric oxygen sensitizes anoxic Pseudomonas aeruginosa biofilm to ciprofloxacin

    DEFF Research Database (Denmark)

    Kolpen, Mette; Lerche, Christian J; Kragh, Kasper Nørskov

    2017-01-01

    fibrosis (CF) lung. Application of HBOT resulted in enhanced bactericidal activity of ciprofloxacin at clinically relevant durations and was accompanied by indications of restored aerobic respiration, involvement of endogenous lethal oxidative stress and increased bacterial growth. The findings highlight...... that oxygenation by HBOT improves the bactericidal activity of ciprofloxacin on P. aeruginosa biofilm and suggest that bacterial biofilms is sensitized to antibiotics by supplying hyperbaric O2....

  10. Antibacterial Effect of CrO and CoFe2O4 Nanoparticles upon Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Saber Imani

    2011-12-01

    Full Text Available Background & Objectives: The use of metal oxide nanoparticles can be effective to eliminate the bacterial infections, as an alternative to antibiotics. In this study, antibacterial properties of nonmaterials of CrO and CoFe2O4 are investigated against Staphylococcus aureus as a major and prevalent pathogenic bacterium to achieve sterile nano-containers. Materials & Methods: Different concentrations of CrO and CoFe2O4 nanoparticles, (0.2, 0.4, 0.6, 0.8, and 1% of each, were examined with respect to their optical density (OD culture separately. Different percentages of each nanoparticles were also examined together for the best antibacterial combination. Kinetics of Bactericidal of nanoparticles were calculated in two-hour periods and were compared with the power of other common antibiotics. Ratios of MIC/MBC were calculated by Micro dilution method, to demonstrate the bactericidal power of nanoparticles. Results: The best concentration of the nanoparticles with the highest effect of bactericidal was obtained in the presence of 1% concentration of CrO that the OD of S. aureus culture medium had reduced 4/6 times than the control group (p<0/001.Ratio of 70% CrO to 30% CoFe2O4 was the best of the Bacteriostatic properties that OD was reduced 3/3 times than the control group (p<0/05. Best kinetics of bactericidal with survival rate in the presence of 1% CrO and CoFe2O4 were obtained in 24 and 36 hours respectively. In critical concentration of 1% CrO and CoFe2O4 bactericidal power was about 67 and 56 % respectively. The MIC/MBC rate for CrO and CoFe2O4 was obtained 0/2 and 0/4 respectively. Conclusion: The results showed that CrO nanoparticle compared with CoFe2O4 has a higher bactericidal power for S. aureus infection. Therefore, by completion of these experiments and the use of metal oxide nanoparticles complex in sensitive environments such as food storage containers, etc. are suggested.

  11. Meningococcal factor H binding proteins in epidemic strains from Africa: implications for vaccine development.

    Directory of Open Access Journals (Sweden)

    Rolando Pajon

    2011-09-01

    Full Text Available Factor H binding protein (fHbp is an important antigen for vaccines against meningococcal serogroup B disease. The protein binds human factor H (fH, which enables the bacteria to resist serum bactericidal activity. Little is known about the vaccine-potential of fHbp for control of meningococcal epidemics in Africa, which typically are caused by non-group B strains.We investigated genes encoding fHbp in 106 serogroup A, W-135 and X case isolates from 17 African countries. We determined complement-mediated bactericidal activity of antisera from mice immunized with recombinant fHbp vaccines, or a prototype native outer membrane vesicle (NOMV vaccine from a serogroup B mutant strain with over-expressed fHbp. Eighty-six of the isolates (81% had one of four prevalent fHbp sequence variants, ID 4/5 (serogroup A isolates, 9 (W-135, or 74 (X in variant group 1, or ID 22/23 (W-135 in variant group 2. More than one-third of serogroup A isolates and two-thirds of W-135 isolates tested had low fHbp expression while all X isolates tested had intermediate or high expression. Antisera to the recombinant fHbp vaccines were generally bactericidal only against isolates with fHbp sequence variants that closely matched the respective vaccine ID. Low fHbp expression also contributed to resistance to anti-fHbp bactericidal activity. In contrast to the recombinant vaccines, the NOMV fHbp ID 1 vaccine elicited broad anti-fHbp bactericidal activity, and the antibodies had greater ability to inhibit binding of fH to fHbp than antibodies elicited by the control recombinant fHbp ID 1 vaccine.NOMV vaccines from mutants with increased fHbp expression elicit an antibody repertoire with greater bactericidal activity than recombinant fHbp vaccines. NOMV vaccines are promising for prevention of meningococcal disease in Africa and could be used to supplement coverage conferred by a serogroup A polysaccharide-protein conjugate vaccine recently introduced in some sub

  12. Application of neutral electrolyzed water to disinfection of alginate impression.

    Science.gov (United States)

    Nagamatsu, Yuki; Chen, Ker-Kong; Nagamatsu, Hiroshi; Kozono, Yoshio; Shimizu, Hiroshi

    2016-01-01

    Neutral electrolyzed water was developed with new concepts of long-term good durability and minimum corrosiveness to metal in addition to its excellent bactericidal activities similar to acid type of electrolyzed waters. The present study examined the bactericidal effects of the neutral electrolyzed water on disinfection of the alginate impression of a dental arch model contaminated by bacteria. Only 1-min immersion in neutral electrolyzed water could sufficiently disinfect the alginate impression including the metallic tray under ultrasonic with no significant differences from acid electrolyzed waters. No bactericidal effects were found in any electrolyzed water when used as mixing water. Considering the advantages and disadvantages of each electrolyzed water in a comprehensive way, it was suggested that neutral electrolyzed water may be the most appropriate for the disinfection of alginate impression.

  13. Availability of the basal planes of graphene oxide determines whether it is antibacterial.

    Science.gov (United States)

    Hui, Liwei; Piao, Ji-Gang; Auletta, Jeffrey; Hu, Kan; Zhu, Yanwu; Meyer, Tara; Liu, Haitao; Yang, Lihua

    2014-08-13

    There are significant controversies on the antibacterial properties of graphene oxide (GO): GO was reported to be bactericidal in saline, whereas its activity in nutrient broth was controversial. To unveil the mechanisms underlying these contradictions, we performed antibacterial assays under comparable conditions. In saline, bare GO sheets were intrinsically bactericidal, yielding a bacterial survival percentage of planes. Using bovine serum albumin and tryptophan as well-defined model adsorbates, we found that noncovalent adsorption on GO basal planes may account for the deactivation of GO's bactericidal activity. Moreover, this deactivation mechanism was shown to be extrapolatable to GO's cytotoxicity against mammalian cells. Taken together, our observations suggest that bare GO intrinsically kills both bacteria and mammalian cells and noncovalent adsorption on its basal planes may be a global deactivation mechanism for GO's cytotoxicity.

  14. Mycobactericidal activity of sutezolid (PNU-100480 in sputum (EBA and blood (WBA of patients with pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Robert S Wallis

    Full Text Available Sutezolid (PNU-100480 is a linezolid analog with superior bactericidal activity against Mycobacterium tuberculosis in the hollow fiber, whole blood and mouse models. Like linezolid, it is unaffected by mutations conferring resistance to standard TB drugs. This study of sutezolid is its first in tuberculosis patients.Sputum smear positive tuberculosis patients were randomly assigned to sutezolid 600 mg BID (N = 25 or 1200 mg QD (N = 25, or standard 4-drug therapy (N = 9 for the first 14 days of treatment. Effects on mycobacterial burden in sputum (early bactericidal activity or EBA were monitored as colony counts on agar and time to positivity in automated liquid culture. Bactericidal activity was also measured in ex vivo whole blood cultures (whole blood bactericidal activity or WBA inoculated with M. tuberculosis H37Rv.All patients completed assigned treatments and began subsequent standard TB treatment according to protocol. The 90% confidence intervals (CI for bactericidal activity in sputum over the 14 day interval excluded zero for all treatments and both monitoring methods, as did those for cumulative WBA. There were no treatment-related serious adverse events, premature discontinuations, or dose reductions due to laboratory abnormalities. There was no effect on the QT interval. Seven sutezolid-treated patients (14% had transient, asymptomatic ALT elevations to 173±34 U/L on day 14 that subsequently normalized promptly; none met Hy's criteria for serious liver injury.The mycobactericidal activity of sutezolid 600 mg BID or 1200 mg QD was readily detected in sputum and blood. Both schedules were generally safe and well tolerated. Further studies of sutezolid in tuberculosis treatment are warranted.ClinicalTrials.gov NCT01225640.

  15. Antibacterial effects of ellagitannins from Acalypha wilkesiana var. macafeana hort.: surface morphology analysis with environmental scanning electron microscopy and synergy with antibiotics.

    Science.gov (United States)

    Din, Wardah Mustafa; Jin, Khoo Teng; Ramli, Ramliza; Khaithir, Tzar Mohd Nizam; Wiart, Christophe

    2013-09-01

    The present study served to gain further insight into the bactericidal effects of ellagitannins from Acalypha wilkesiana var. macafeana hort. against pathogenic bacteria. Ellagitannins from the aerial parts of A. wilkesiana var. macafeana hort. (EAW) inhibited the growth of Bacillus cereus (ATCC 11778), Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 11632) and Methicillin-resistant Staphylococcus aureus (MRSA) clinical strain with inhibition zones equal to 11.01 ± 1.53 mm, 16.63 ± 0.11 mm, 11.40 ± 1.10 mm and 8.22 ± 0.19 mm, respectively. The minimal inhibition concentration and the minimal bactericidal concentration of ellagitannins from A. wilkesiana var. macafeana hort. (EAW) against MRSA were 750 µg/mL and 3000 µg/mL, respectively. We then examined the synergistic effect of EAW with three antibiotics, i.e. ampicillin, streptomycin and tetracycline, via the checkerboard assay and time-kill assay and observed that EAW is synergistic with ampicillin against S. aureus (ATCC 11632). Environmental electron scanning microscopy analysis showed cell lysis against S. aureus (ATCC 11632) upon treatment with the ellagitannin fraction. The ellagitannin fraction from A. wilkesiana var. macafeana hort. is bactericidal against gram-positive bacteria tested and works synergistically with ampicillin against S. aureus. Morphology analysis of the cell suggests that the bactericidal property of the ellagitannin fraction mechanism involves lysis of the cell wall. In summary, our studies demonstrate that A. wilkesiana var. macafeana hort. produces bactericidal ellagitannins of clinical and/or cosmetological value. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Bactericidal effectiveness of modulated UV light

    International Nuclear Information System (INIS)

    Bank, H.L.; John, J.; Schmehl, M.K.; Dratch, R.J.

    1990-01-01

    Studies were designed to evaluate the effectiveness of pulsed modulated UV light waveforms for killing bacteria. Exposure of five strains of bacteria to the modulated information encoded in the light decreased the colony population from a confluent lawn to less than 20 colonies. However, approximately 2,000 colonies survived treatment with the same intensity and time of exposure to UV light lacking the modulated information

  17. The bactericidal effect of shock waves

    Science.gov (United States)

    Leighs, J. A.; Appleby-Thomas, G. J.; Wood, D. C.; Goff, M. J.; Hameed, A.; Hazell, P. J.

    2014-05-01

    There are a variety of theories relating to the origins of life on our home planet, some of which discuss the possibility that life may have been spread via inter-planetary bodies. There have been a number of investigations into the ability of life to withstand the likely conditions generated by asteroid impact (both contained in the impactor and buried beneath the planet surface). Previously published data regarding the ability of bacteria to survive such applied shockwaves has produced conflicting conclusions. The work presented here used an established and published technique in combination with a single stage gas gun, to shock and subsequently recover Escherichia coli populations suspended in a phosphate buffered saline solution. Peak pressure across the sample region was calculated via numerical modelling. Survival data against peak sample pressure for recovered samples is presented alongside control tests. SEM micrographs of shocked samples are presented alongside control sets to highlight key differences between cells in each case.

  18. The bactericidal effect of shock waves

    International Nuclear Information System (INIS)

    Leighs, J A; Appleby-Thomas, G J; Wood, D C; Goff, M J; Hameed, A; Hazell, P J

    2014-01-01

    There are a variety of theories relating to the origins of life on our home planet, some of which discuss the possibility that life may have been spread via inter-planetary bodies. There have been a number of investigations into the ability of life to withstand the likely conditions generated by asteroid impact (both contained in the impactor and buried beneath the planet surface). Previously published data regarding the ability of bacteria to survive such applied shockwaves has produced conflicting conclusions. The work presented here used an established and published technique in combination with a single stage gas gun, to shock and subsequently recover Escherichia coli populations suspended in a phosphate buffered saline solution. Peak pressure across the sample region was calculated via numerical modelling. Survival data against peak sample pressure for recovered samples is presented alongside control tests. SEM micrographs of shocked samples are presented alongside control sets to highlight key differences between cells in each case

  19. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study

    International Nuclear Information System (INIS)

    Abbaszadegan, A.; Ghahramani, Y.; Nabavizadeh, M.; Gholami, A.; Hemmateenejad, I.; Dorostkar, S.; Sharghi, H.

    2014-01-01

    The bactericidal efficiency of various positively and negatively charged silver nanoparticles has been extensively evaluated in literature, but there is no report on efficacy of neutrally charged silver nanoparticles. The goal of this study is to evaluate the role of electrical charge at the surface of silver nanoparticles on antibacterial activity against a panel of microorganisms. Three different silver nanoparticles were synthesized by different methods, providing three different electrical surface charges (positive, neutral, and negative). The antibacterial activity of these nanoparticles was tested against gram-positive (i.e., Staphylococcus aureus, Streptococcus mutans, and Streptococcus pyogenes) and gram-negative (i.e., Escherichia coli and Proteus vulgaris) bacteria. Well diffusion and micro-dilution tests were used to evaluate the bactericidal activity of the nanoparticles. According to the obtained results, the positively-charged silver nanoparticles showed the highest bactericidal activity against all microorganisms tested. The negatively charged silver nanoparticles had the least and the neutral nanoparticles had intermediate antibacterial activity. The most resistant bacteria were Proteus vulgaris. We found that the surface charge of the silver nanoparticles was a significant factor affecting bactericidal activity on these surfaces. Although the positively charged nanoparticles showed the highest level of effectiveness against the organisms tested, the neutrally charged particles were also potent against most bacterial species.

  20. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    International Nuclear Information System (INIS)

    Karasenkov, Y; Frolov, G; Gusev, A; Kuznetsov, D; Leont'ev, V; Pogorelsky, I; Latuta, N

    2015-01-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse – condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO 2 ), iron oxide (Fe 2 O 3 ), tantalum oxide (TaO), vanadium oxide (VO 2 ), cobalt oxide (CoO), tantalum dioxide TaO 2 , zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe 2 O 3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity. (paper)

  1. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    Science.gov (United States)

    Karasenkov, Y.; Frolov, G.; Pogorelsky, I.; Latuta, N.; Gusev, A.; Kuznetsov, D.; Leont'ev, V.

    2015-11-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse - condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO2), iron oxide (Fe2O3), tantalum oxide (TaO), vanadium oxide (VO2), cobalt oxide (CoO), tantalum dioxide TaO2, zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe2O3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity.

  2. Antimicrobial effect of essential oil of Citrus reticulata on Fusobacterium nucleatum associated with periodontal disease

    Directory of Open Access Journals (Sweden)

    Cindy Giohanna Pardo

    2017-07-01

    Full Text Available Chlorhexidine as a treatment of periodontal disease has achieved bactericidal effects over periodontopathogens and oral biofilm. Its use generates adverse effects; therefore natural alternatives are presented with a similar antimicrobial effect. Essential oils have proved effective in controlling dental plaque without the adverse effects of chlorhexidine. The aim of this study was to determine the bacteriostatic and bactericidal effect of essential oil of tangerine against Fusobacterium nucleatum. The extraction of the essential oil was performed by expression of tangerine peels (Arrayana and Oneco varieties. Concentrations at 20%, 40%, 60%, 80% and 100% of the essential oil diluted in 0,02% Tween were evaluated. The bacteriostatic and bactericidal effect was determined by antimicrobial susceptibility testing by disk diffusion. As a positive control 0,2% chlorhexidine and water as negative control were used. Inhibition zone (mm was measured and presence or absence of bacterial growth was determined from colony forming units.  To compare proportions of bacteriostatic and bactericidal activity, Fisher and T student test (95% CI p = 0,05 were performed. The 100% concentration zone of inhibition showed a similar behavior as chlorhexidine (p 0,05. The use of essential oils of tangerine could be a complementary alternative to treatment of periodontal disease.

  3. Phagocytosis, bacterial killing, and cytokine activation of circulating blood neutrophils in horses with severe equine asthma and control horses.

    Science.gov (United States)

    Vanderstock, Johanne M; Lecours, Marie-Pier; Lavoie-Lamoureux, Annouck; Gottschalk, Marcelo; Segura, Mariela; Lavoie, Jean-Pierre; Jean, Daniel

    2018-04-01

    OBJECTIVE To evaluate in vitro phagocytosis and bactericidal activity of circulating blood neutrophils in horses with severe equine asthma and control horses and to determine whether circulating blood neutrophils in horses with severe equine asthma have an increase in expression of the proinflammatory cytokine tumor necrosis factor (TNF)-α and the chemokine interleukin (IL)-8 and a decrease in expression of the anti-inflammatory cytokine IL-10 in response to bacteria. ANIMALS 6 horses with severe equine asthma and 6 control horses. PROCEDURES Circulating blood neutrophils were isolated from horses with severe equine asthma and control horses. Phagocytosis was evaluated by use of flow cytometry. Bactericidal activity of circulating blood neutrophils was assessed by use of Streptococcus equi and Streptococcus zooepidemicus as targets, whereas the cytokine mRNA response was assessed by use of a quantitative PCR assay. RESULTS Circulating blood neutrophils from horses with severe equine asthma had significantly lower bactericidal activity toward S zooepidemicus but not toward S equi, compared with results for control horses. Phagocytosis and mRNA expression of TNF-α, IL-8, and IL-10 were not different between groups. CONCLUSIONS AND CLINCAL RELEVANCE Impairment of bactericidal activity of circulating blood neutrophils in horses with severe equine asthma could contribute to an increased susceptibility to infections.

  4. Clemastine as Antimicrobial Agent: Effectiveness and Mechanism of Action

    Directory of Open Access Journals (Sweden)

    S.Fazli Bazaz

    1991-07-01

    Full Text Available In this investigation, the antimicrobial activity of Clemastine was studied.The Minimum Inhibitory Concentrations (MICs of this drug against some bacteria were determined using tube dilution method.To find out the bactericidal activity of Clemastine, the number of living bacteria in the presence of drug was counted by a culture method (pour plate method. Thereafter, the preservative effectiveness of Clemastine was studied in detail using standard method (USP 1985.The results show a good antibacterial but not antifungal activity."nIn considering the mechanism of action of Clemastine, it can be seen that the drug has some effect on cell membrane permeability and causes leakage of intracellular material including the K+ .Comparing the bactericidal results with the leakage of K+, shows that the leakage may be due to the bactericidal activity of the drug.

  5. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles

    Science.gov (United States)

    Li, Ping; Li, Juan; Wu, Changzhu; Wu, Qingsheng; Li, Jian

    2005-09-01

    The bactericidal action of silver (0) nanoparticles and amoxicillin on Escherichia coli is studied, respectively. Increasing concentration of both amoxicillin (0-0.525 mg ml-1) and silver nanoparticles (0-40 µg ml-1) showed a higher antibacterial effect in Luria-Bertani (LB) medium. Escherichia coli cells have different bactericidal sensitivity to them. When amoxicillin and silver nanoparticles are combined, it results in greater bactericidal efficiency on Escherichia coli cells than when they were applied separately. Dynamic tests on bacterial growth indicated that exponential and stationary phases are greatly decreased and delayed in the synergistic effect of amoxicillin and silver nanoparticles. In addition, the effect induced by a preincubation with silver nanoparticles is examined. The results show that solutions with more silver nanoparticles have better antimicrobial effects. One hypothesized mechanism is proposed to explain this phenomenon.

  6. Antistaphylococcal activity of DX-619, a new des-F(6)-quinolone, compared to those of other agents.

    Science.gov (United States)

    Bogdanovich, Tatiana; Esel, Duygu; Kelly, Linda M; Bozdogan, Bülent; Credito, Kim; Lin, Gengrong; Smith, Kathy; Ednie, Lois M; Hoellman, Dianne B; Appelbaum, Peter C

    2005-08-01

    The in vitro activity of DX-619, a new des-F(6)-quinolone, was tested against staphylococci and compared to those of other antimicrobials. DX-619 had the lowest MIC ranges/MIC(50)s/MIC(90)s (microg/ml) against 131 Staphylococcus aureus strains (32), and ciprofloxacin (>32/>32). Raised quinolone MICs were associated with mutations in GyrA (S84L) and single or double mutations in GrlA (S80F or Y; E84K, G, or V) in all S. aureus strains tested. A recent vancomycin-resistant S. aureus (VRSA) strain (Hershey) was resistant to available quinolones and was inhibited by DX-619 at 0.25 microg/ml and sitafloxacin at 1.0 microg/ml. Vancomycin (except VRSA), linezolid, ranbezolid, tigecycline, and quinupristin-dalfopristin were active against all strains, and teicoplanin was active against S. aureus but less active against coagulase-negative staphylococci. DX-619 produced resistant mutants with MICs of 1 to >32 microg/ml after 32 microg/ml for ciprofloxacin, sitafloxacin, moxifloxacin, and gatifloxacin. DX-619 and sitafloxacin were also more active than other tested drugs against selected mutants and had the lowest mutation frequencies in single-step resistance selection. DX-619 and sitafloxacin were bactericidal against six quinolone-resistant (including the VRSA) and seven quinolone-susceptible strains tested, whereas gatifloxacin, moxifloxacin, levofloxacin, and ciprofloxacin were bactericidal against 11, 10, 7, and 5 strains at 4x MIC after 24 h, respectively. DX-619 was also bactericidal against one other VRSA strain, five vancomycin-intermediate S. aureus strains, and four vancomycin-intermediate coagulase-negative staphylococci. Linezolid, ranbezolid, and tigecycline were bacteriostatic and quinupristin-dalfopristin, teicoplanin, and vancomycin were bactericidal against two, eight, and nine strains, and daptomycin and oritavancin were rapidly bactericidal against all strains, including the VRSA. DX-619 has potent in vitro activity against staphylococci, including

  7. Antipneumococcal activity of ceftobiprole, a novel broad-spectrum cephalosporin.

    Science.gov (United States)

    Kosowska, Klaudia; Hoellman, Dianne B; Lin, Gengrong; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bozdogan, Bülent; Shapiro, Stuart; Appelbaum, Peter C

    2005-05-01

    Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC(50) and MIC(90) values (microg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1x and 2x the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2x the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2x the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole.

  8. Quantitative evaluation of dermatological antiseptics.

    Science.gov (United States)

    Leitch, C S; Leitch, A E; Tidman, M J

    2015-12-01

    Topical antiseptics are frequently used in dermatological management, yet evidence for the efficacy of traditional generic formulations is often largely anecdotal. We tested the in vitro bactericidal activity of four commonly used topical antiseptics against Staphylococcus aureus, using a modified version of the European Standard EN 1276, a quantitative suspension test for evaluation of the bactericidal activity of chemical disinfectants and antiseptics. To meet the standard for antiseptic effectiveness of EN 1276, at least a 5 log10 reduction in bacterial count within 5 minutes of exposure is required. While 1% benzalkonium chloride and 6% hydrogen peroxide both achieved a 5 log10 reduction in S. aureus count, neither 2% aqueous eosin nor 1 : 10 000 potassium permanganate showed significant bactericidal activity compared with control at exposure periods of up to 1 h. Aqueous eosin and potassium permanganate may have desirable astringent properties, but these results suggest they lack effective antiseptic activity, at least against S. aureus. © 2015 British Association of Dermatologists.

  9. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.

    Science.gov (United States)

    Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan

    2016-12-05

    Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.

  10. In vitro growth inhibition of mastitis causing bacteria by phenolics and metal chelators

    Energy Technology Data Exchange (ETDEWEB)

    Chew, B.P.; Tjoelker, L.W.; Tanaka, T.S.

    1985-11-01

    Antimicrobial activities of three phenolic compounds and four metal chelators were tested at 0, 250, 500, and 1000 ppm in vitro against four major mastitis-causing bacteria, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pnuemoniae, and Escherichia coli. Overall, butylated hydroxyanisole and tert-butylhydroquinone showed the greatest antimicrobial activity. These phenolics were bactericidal at 250 to 500 ppm against all four bacteria tested. The butylated hydroxytoluene was bactericidal against the gram-positive bacteria but was ineffective against the coliforms. At 250 ppm, disodium ethylenediaminetetraacetic acid was bactericidal against the gram-positive bacteria but much less effective against the gram-negatives. However, diethylene-triaminepentaacetic acid was more growth inhibitory than ethylenediaminetetraacetic acid against the gram-negative bacteria and especially against Escherichia coli. All other compounds were generally much less effective or ineffective against all four microorganisms. Therefore, butylated hydroxyanisole, butylated hydroxytoluene, tert-butylhydroquinone, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid may have practical implications in the prevention or treatment of bovine mastitis.

  11. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    Science.gov (United States)

    Campillo Gloria, E.; Ederley, Vélez; Gladis, Morales; César, Hincapié; Jaime, Osorio; Oscar, Arnache; Uribe José, Ignacio; Franklin, Jaramillo

    2017-06-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ~ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated.

  12. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    International Nuclear Information System (INIS)

    Gloria, E. Campillo; Ederley, Vélez; César, Hincapié; Gladis, Morales; Jaime, Osorio; Oscar, Arnache; José, Ignacio Uribe; Franklin, Jaramillo

    2017-01-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO 3 ) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) – Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV–visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λ max ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. (paper)

  13. Foetal Ureaplasma parvum bacteraemia as a function of gestation-dependent complement insufficiency: Evidence from a sheep model of pregnancy.

    Science.gov (United States)

    Kemp, Matthew W; Ahmed, Shatha; Beeton, Michael L; Payne, Matthew S; Saito, Masatoshi; Miura, Yuichiro; Usuda, Haruo; Kallapur, Suhas G; Kramer, Boris W; Stock, Sarah J; Jobe, Alan H; Newnham, John P; Spiller, Owen B

    2017-01-01

    Complement is a central defence against sepsis, and increasing complement insufficiency in neonates of greater prematurity may predispose to increased sepsis. Ureaplasma spp. are the most frequently cultured bacteria from preterm blood samples. A sheep model of intrauterine Ureaplasma parvum infection was used to examine in vivo Ureaplasma bacteraemia at early and late gestational ages. Complement function and Ureaplasma killing assays were used to determine the correlation between complement potency and bactericidal activity of sera ex vivo. Ureaplasma was cultured from 50% of 95-day gestation lamb cord blood samples compared to 10% of 125-day gestation lambs. Bactericidal activity increased with increased gestational age, and a direct correlation between functional complement activity and bactericidal activity (R 2 =.86; PUreaplasma bacteraemia in vivo was confined to early preterm lambs with low complement function, but Ureaplasma infection itself did not diminish complement levels. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state

    International Nuclear Information System (INIS)

    Torgomyan, Heghine; Trchounian, Armen

    2011-01-01

    Highlights: → Low intensity 70.6 and 73 GHz electromagnetic irradiation (EMI) strongly suppressed Escherichia coli growth at 73 GHz and pH 7.3. → Reducer DL-dithiothreitol had bactericidal effect and disturbed the SH-groups number. → EMI enhanced E. coli sensitivity toward dithiothreitol. → EMI decreased the SH-groups number of membrane disturbed by ATP and N,N'-dicyclohexycarbodiimide. → The changed membrane oxidation-reduction state could be the primary mechanisms in EMI effects. -- Abstract: Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm -2 ) had bactericidal effects on Escherichia coli. This EMI (1 h) exposure suppressed the growth of E. coli K-12(λ). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies.

  15. Secretory phospholipase A2 in dromedary tears: a host defense against staphylococci and other gram-positive bacteria.

    Science.gov (United States)

    Ben Bacha, Abir; Abid, Islem

    2013-03-01

    The best known physiologic function of secreted phospholipase A2 (sPLA2) group IIA (sPLA2-IIA) is defense against bacterial infection through hydrolytic degradation of bacterial membrane phospholipids. In fact, sPLA2-IIA effectively kills Gram-positive bacteria and to a lesser extent Gram-negative bacteria and is considered a major component of the eye's innate immune defense system. The antibacterial properties of sPLA2 have been demonstrated in rabbit and human tears. In this report, we have analyzed the bactericidal activity of dromedary tears and the subsequently purified sPLA2 on several Gram-positive bacteria. Our results showed that the sPLA2 displays a potent bactericidal activity against all the tested bacteria particularly against the Staphylococcus strains when tested in the ionic environment of tears. There is a synergic action of the sPLA2 with lysozyme when added to the bacteria culture prior to sPLA2. Interestingly, lysozyme purified from dromedary tears showed a significant bactericidal activity against Listeria monocytogene and Staphylococcus epidermidis, whereas the one purified from human tears displayed no activity against these two strains. We have also demonstrated that Ca(2+) is crucial for the activity of dromedary tear sPLA2 and to a less extent Mg(2+) ions. Given the presence of sPLA2 in tears and intestinal secretions, this enzyme may play a substantial role in innate mucosal and systemic bactericidal defenses against Gram-positive bacteria.

  16. Comparison of synergism between colistin, fosfomycin and tigecycline against extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates or with carbapenem resistance

    Directory of Open Access Journals (Sweden)

    Yee-Huang Ku

    2017-12-01

    Full Text Available Purpose: To investigate the synergistic and bactericidal effects of antimicrobial combinations of any two of colistin, fosfomycin and tigecycline against the nine extended-spectrum β-lactamase (ESBL-producing Klebsiella pneumoniae (KP clinical isolates, including 4 carbapenem-susceptible strains and five imipenem and/or meropenem-resistant strains. Methods: In vitro synergism and bactericidal activity of combination of colistin, fosfomycin and tigecycline were evaluated by time-kill studies in standard inoculum of bacterial densities of a suspension containing 5 × 105 CFU/mL by using 1/2× MIC for each alone, and both 1/2× and 1/4× MIC for any two drugs. The settings of low MIC dosing were allowed to rapidly survey the most active drug combination. Results: The most active combination group was colistin plus tigecycline, showing synergy in 8 isolates and bactericidal activities in 6 isolates by using concentrations of 1/2× MIC and 1/4× MIC, respectively. The least active combination was tigecycline plus fosfomycin, which showed synergy in only 4 isolates and no bactericidal activities by using concentrations of 1/2× MIC and 1/4× MIC, respectively. Conclusions: The combination of tigecycline and colistin may be considered as a last-resort approach to the ESBL-producing KP infections, especially those isolates with carbapenem resistance. Keywords: Carbapenem resistance, Colistin, ESBL, Fosfomycin, Tigecycline

  17. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage.

    Science.gov (United States)

    Sana, Santanu; Datta, Sriparna; Biswas, Dipa; Sengupta, Dipanjan

    2018-02-01

    Besides potential surface activity and some beneficial physical properties, biosurfactants express antibacterial activity. Bacterial cell membrane disrupting ability of rhamnolipid produced by Pseudomonas aeruginosa C2 and a lipopeptide type biosurfactant, BS15 produced by Bacillus stratosphericus A15 was examined against Staphylococcus aureus ATCC 25923 and Escherichia coli K8813. Broth dilution technique was followed to examine minimum inhibitory concentration (MIC) of both the biosurfactants. The combined effect of rhamnolipid and BS15 against S. aureus and E. coli showed synergistic activity by expressing fractional inhibitory concentration (FIC) index of 0.43 and 0.5. Survival curve of both the bacteria showed bactericidal activity after treating with biosurfactants at their MIC obtained from FIC index study as it killed >90% of initial population. The lesser value of MIC than minimum bactericidal concentration (MBC) of the biosurfactants also supported their bactericidal activity against both the bacteria. Membrane permeability against both the bacteria was supported by amplifying protein release, increasing of cell surface hydrophobicity, withholding capacity of crystal violet dye and leakage of intracellular materials. Finally cell membrane disruption was confirmed by scanning electron microscopy (SEM). All these experiments expressed synergism and effective bactericidal activity of the combination of rhamnolipid and BS15 by enhancing the bacterial cell membrane permeability. Such effect of the combination of rhamnolipid and BS15 could make them promising alternatives to traditional antibiotic in near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions.

    Science.gov (United States)

    Sarjit, Amreeta; Wang, Yi; Dykes, Gary A

    2015-04-01

    Gallic acid has been suggested as a potential antimicrobial for the control of Campylobacter but its effectiveness is poorly studied. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gallic acid against Campylobacter jejuni (n = 8) and Campylobacter coli (n = 4) strains was determined. Gallic acid inhibited the growth of five C. jejuni strains and three C. coli strains (MIC: 15.63-250 μg mL(-1)). Gallic acid was only bactericidal to two C. coli strains (MBC: 125 and 62.5 μg mL(-1)). The mechanism of the bactericidal effect against these two strains (and selected non-susceptible controls) was investigated by determining decimal reduction times and by monitoring the loss of cellular content and calcium ions, and changes in cell morphology. Gallic acid did not result in a loss of cellular content or morphological changes in the susceptible strains as compared to the controls. Gallic acid resulted in a loss of calcium ions (0.58-1.53 μg mL(-1) and 0.54-1.17 μg mL(-1), respectively, over a 180 min period) from the susceptible strains but not the controls. Gallic acid is unlikely to be an effective antimicrobial against Campylobacter in a practical sense unless further interventions to ensure an effective bactericidal mode of action against all strains are developed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Structure-function characterization and optimization of a plant-derived antibacterial peptide.

    Science.gov (United States)

    Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas

    2005-09-01

    Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.

  20. Catalase expression is modulated by vancomycin and ciprofloxacin and influences the formation of free radicals in Staphylococcus aureus cultures

    DEFF Research Database (Denmark)

    Wang, Ying; Hougaard, Anni Bygvrå; Paulander, Wilhelm Erik Axel

    2015-01-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical...... that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation...... of free radicals....

  1. Ozone killing action against bacterial and fungal species; microbiological testing of a domestic ozone generator.

    Science.gov (United States)

    Dyas, A; Boughton, B J; Das, B C

    1983-10-01

    The action of ozone generated from a small domestic device was examined with a view to using it in clinical isolation units accommodating immunosuppressed patients. Over a six-hour period in an average size room the device did not generate sufficient ozone to suppress bacterial and fungal growth. A useful bactericidal action, against a variety of human pathogens was achieved with ozone concentrations between 0.3 to 0.9 ppm. Bactericidal ozone concentrations are close to the limit permitted for human exposure however and further experiments are indicated.

  2. Short communication: Unexpected findings on the physicochemical characterization of the silver nanoparticle surface

    Science.gov (United States)

    Loran, S.; Yelon, A.; Sacher, E.

    2018-01-01

    The bactericidal properties of silver nanoparticles (Ag NPs) have been variously attributed to the action of the NP surface and/or the Ag ions released therefrom. However, the published literature does not appear to contain any information on the physicochemical characterization of the NP surface. Herein, we report on the surprisingly reactive surface of the Ag NP, which has an almost total lack of free Ag on atmospheric exposure. Rather, an abundance of surface hydrocarbons, hydrides and oxides, as well as amines and oxidized N, argues for a reinterpretation of their bactericidal action.

  3. [Age changes of immunological, morphological and biochemical indices of male reproductive system].

    Science.gov (United States)

    Boĭko, O V; Akhmineeva, A Kh; Gudinskaia, N I; Boĭko, V I; Kozak, D M

    2014-01-01

    The article analyzes the dependence of bactericidal activity of sperm--natural resistance factors controlling the survival of bacteria in the urogenital tract, on the age of men. These data are compared with the results of the standard (on the recommendations of the WHO) spermogram, reflecting reproductive health. Due to the fact that one of the main etiological agents of infectious disease groups in the male reproductive system in adulthood are Staphylococcus spp., we consider the level of bactericidal activity of sperm in resident and transient carriage of S. aureus and S. epidermidis.

  4. Comparison of antimicrobial effects of titanium tetrafluoride, chlorhexidine, xylitol and sodium fluoride on streptococcus mutans: An in-vitro study.

    Science.gov (United States)

    Eskandarian, Tahereh; Motamedifar, Mohammad; Arasteh, Peyman; Eghbali, Seyed Sajad; Adib, Ali; Abdoli, Zahra

    2017-03-01

    No studies have yet documented the bactericidal effects of TiF4, and its role in the treatment of dental caries, and no definite protocol has been introduced to regulate its use. The aim of this study was to determine the antimicrobial/bactericidal effects of TiF4 on Streptococcus Mutans ( S. Mutans ) and to compare it with chlorhexidine (Chx), sodium fluoride (NaF) and xylitol. This study was conducted at the Shiraz University of Medical Sciences microbiology laboratory during March 2015 to September 2015. In this in-vitro study, first a bacterial suspension was prepared and adjusted to a 0.5 McFarland standard (equivalent to 1×10 8 CFU/ml). The minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) of TiF4, Chx, NaF and xylitol were assessed using broth microdilution assay and disk diffusion methods. In order to neutralize the acidic nature of TiF4, we used a sodium hydroxide preparation to obtain a pH of 7.2 and repeated all of the previous tests with the neutralized TiF4 solution. We reported the final results as percentages where appropriate. The MIC of TiF4, NaF and Chx for S. Mutans were 12.5%, 12.5% and 6.25%, respectively. At a concentration of 12.5% the inhibition zone diameters were 9 mm, 15mm and 14mm for TiF4, NaF and Chx, respectively. The MBC was 25%, 12.5% and 12.5% for TiF4, NaF and Chx, respectively. Xylitol failed to show any bactericidal or growth inhibitory effect in all of its concentrations. When we repeated the tests with an adjusted pH, identical results were obtained. TiF4 solutions have anti-growth and bactericidal effects on S. Mutans at a concentration of 12.5% which is comparable with chlorhexidine and NaF, indicating the possible use of this solution in dental practice as an anti-cariogenic agent, furthermore the antimicrobial activity is unaffected by pH of the environment.

  5. Differential mechanism of Escherichia coli Inactivation by (+)-limonene as a function of cell physiological state and drug's concentration.

    Science.gov (United States)

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about

  6. Developpement d'un film antibacterien ayant des proprietes de glissement pour une meilleure processabilite

    Science.gov (United States)

    Silverwood, Richard

    Product safety is of crucial importance for the food industry. The challenge of food safety is evidenced by the number of food poisoning in Canada and worldwide. An outbreak of listeriosis in 2008, having put the safety of Canadians at risk, has motivated the revision of the strategy for food safety in Canada. In this context, a collaboration between two major industrial players in Quebec and École Polytechnique de Montréal was initiated. This collaboration is supported by the creation of the Research Chair for safe, smart and sustainable food. One of the many forefront projects of this research chair is to develop a package having a bactericidal effect. Many compounds are currently available for incorporation into a finished product. Zinc Omadine™ by ArchChemicals and Irgaguard™ by BASF are some examples of products that have proven themselves. However, the incorporation of a bactericidal agent in a product having a direct contact with food must meet certain safety criteria. Thus, an overview of various antibacterial agents is made in terms of their effectiveness and their potential use in packaging a food product. To date, no technology allows easy incorporation of an antibacterial agent in a polymer matrix. Antibacterial constituents of the mixture with the polymer melt will provide the simplicity pursued. We chose nano zinc oxide as the main antibacterial agent for its mode of action, its great potential for sustainability and its ability not to migrate out of the polyethylene polymer matrix. Moreover, the effect of trace element at very low concentrations is validated. To increase efficiency, good dispersion is achieved by adding a polyethylene with maleic anhydride grafted groups. The increase in antibacterial properties by this change has been proven. Although these films exhibit a marked bactericidal effect, a lack of persistence of the antibacterial effect was noticed. This is probably due to a rearrangement of the molecular structure on the surface

  7. Use of titanium-based materials as bactericides

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, David T; Elvington, Mark C; Wataha, John; Chung, Whasun O; Rutherford, R. Bruce; Chan, Daniel C

    2013-10-01

    Compositions containing metal ions bound into a titanate are described which have demonstrated an ability to suppress bacterial growth of a number of organisms associated with periodontal disease and caries.

  8. Bactericidal, Bacteriolytic, and Antibacterial Virulence Activities of ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,. International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African. Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals.

  9. Effects of ozone nano-bubble water on periodontopathic bacteria and oral cells - in vitro studies

    Energy Technology Data Exchange (ETDEWEB)

    Hayakumo, Sae; Izumi, Yuichi [Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Arakawa, Shinichi; Kondo, Keiko [Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Takahashi, Masayoshi [National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569 (Japan); Mano, Yoshihiro [Hyperbaric Medical Center, Hospital of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan)

    2014-10-15

    The aims of the present study were to evaluate the bactericidal activity of a new antiseptic agent, ozone nano-bubble water (NBW3), against periodontopathogenic bacteria and to assess the cytotoxicity of NBW3 against human oral cells. The bactericidal activities of NBW3 against representative periodontopathogenic bacteria, Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) were evaluated using in vitro time-kill assays. The cytotoxicity of NBW3 was evaluated using three-dimensional human buccal and gingival tissue models. The numbers of colony forming units (CFUs)/mL of P. gingivalis and A. actinomycetemcomitans exposed to NBW3 dropped to below the lower limit of detection (<10 CFUs mL{sup −1}) after only 0.5 min of exposure. There were only minor decreases in the viability of oral tissue cells after 24 h of exposure to NBW3. These results suggest that NBW3 possesses potent bactericidal activity against representative periodontopathogenic bacteria and is not cytotoxic to cells of human oral tissues. The use of NBW3 as an adjunct to periodontal therapy would be promising. (paper)

  10. Effect of Punica granatum on the virulence factors of cariogenic bacteria Streptococcus mutans.

    Science.gov (United States)

    Gulube, Zandiswa; Patel, Mrudula

    2016-09-01

    Dental caries is caused by acids produced by biofilm-forming Streptococcus mutans from fermentable carbohydrates and bacterial byproducts. Control of these bacteria is important in the prevention of dental caries. This study investigated the effect of the fruit peel of Punica granatum on biofilm formation, acid and extracellular polysaccharides production (EPS) by S. mutans. Pomegranate fruit peels crude extracts were prepared. The Minimum bactericidal concentrations (MBC) were determined against S. mutans. At 3 sub-bactericidal concentrations, the effect on the acid production, biofilm formation and EPS production was determined. The results were analysed using Kruskal-Wallis and Wilcoxon Rank Sum Tests. The lowest MBC was 6.25 mg/mL. Punica granatum significantly inhibited acid production (p mutans. The crude extract of P. granatum killed cariogenic S. mutans at high concentrations. At sub-bactericidal concentrations, it reduced biofilm formation, acid and EPS production. This suggests that P. granatum extract has the potential to prevent dental caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. [The in vitro action of plants on Vibrio cholerae].

    Science.gov (United States)

    Guevara, J M; Chumpitaz, J; Valencia, E

    1994-01-01

    Natural products of several plants, according to the geographic location, are used by Peruvian people in the popular treatment of diarrhea, with good success. When cholerae cases appeared in Peru, we were interested to know the "in vitro" effect against Vibrio cholerae 01, of these useful plants to treat diarrhea. The following plants were tested: Cichorium intybus, Althaea officinalis, Psorela glandulosa, Geranium maculatum, Punica granatum, Malus sativa, Cydonia oblonga, Chenopodium ambrosoides, Krameria triandria, Tea chinensis, Daucus carota, Persea gratissima, Psidium guayaba and Lippia dulcis. Decoction or infusion of the plants were used in the "in vitro" experiments. The following plants showed no "in vitro" effect against V. cholerae: Cichorium intybus, Althaea officinalis, Psorela glandulosa, Geranium maculatum, Chenopodium ambrosoides, Krameria triandria, Psidium guayaba, Lippia dulcis and Daucus carota. Decoction of Malus sativa and Cydenia oblonga showed bactericidal effect for their acidity and stone avocado (Persea gratissima) a late bactericidal effect. Tea infusión and the decoction of Punica granatum peel, showed the best bactericidal effect and we suggest to use them as to stop cholera spreading.

  12. Bio-inspired silicon nanospikes fabricated by metal-assisted chemical etching for antibacterial surfaces

    Science.gov (United States)

    Hu, Huan; Siu, Vince S.; Gifford, Stacey M.; Kim, Sungcheol; Lu, Minhua; Meyer, Pablo; Stolovitzky, Gustavo A.

    2017-12-01

    The recently discovered bactericidal properties of nanostructures on wings of insects such as cicadas and dragonflies have inspired the development of similar nanostructured surfaces for antibacterial applications. Since most antibacterial applications require nanostructures covering a considerable amount of area, a practical fabrication method needs to be cost-effective and scalable. However, most reported nanofabrication methods require either expensive equipment or a high temperature process, limiting cost efficiency and scalability. Here, we report a simple, fast, low-cost, and scalable antibacterial surface nanofabrication methodology. Our method is based on metal-assisted chemical etching that only requires etching a single crystal silicon substrate in a mixture of silver nitrate and hydrofluoric acid for several minutes. We experimentally studied the effects of etching time on the morphology of the silicon nanospikes and the bactericidal properties of the resulting surface. We discovered that 6 minutes of etching results in a surface containing silicon nanospikes with optimal geometry. The bactericidal properties of the silicon nanospikes were supported by bacterial plating results, fluorescence images, and scanning electron microscopy images.

  13. Effects of ozone nano-bubble water on periodontopathic bacteria and oral cells - in vitro studies

    International Nuclear Information System (INIS)

    Hayakumo, Sae; Izumi, Yuichi; Arakawa, Shinichi; Kondo, Keiko; Takahashi, Masayoshi; Mano, Yoshihiro

    2014-01-01

    The aims of the present study were to evaluate the bactericidal activity of a new antiseptic agent, ozone nano-bubble water (NBW3), against periodontopathogenic bacteria and to assess the cytotoxicity of NBW3 against human oral cells. The bactericidal activities of NBW3 against representative periodontopathogenic bacteria, Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) were evaluated using in vitro time-kill assays. The cytotoxicity of NBW3 was evaluated using three-dimensional human buccal and gingival tissue models. The numbers of colony forming units (CFUs)/mL of P. gingivalis and A. actinomycetemcomitans exposed to NBW3 dropped to below the lower limit of detection (<10 CFUs mL −1 ) after only 0.5 min of exposure. There were only minor decreases in the viability of oral tissue cells after 24 h of exposure to NBW3. These results suggest that NBW3 possesses potent bactericidal activity against representative periodontopathogenic bacteria and is not cytotoxic to cells of human oral tissues. The use of NBW3 as an adjunct to periodontal therapy would be promising. (paper)

  14. Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: A morphological investigation through AFM.

    Science.gov (United States)

    Rao, Komal; Imran, Muhammad; Jabri, Tooba; Ali, Imdad; Perveen, Samina; Shafiullah; Ahmed, Shakil; Shah, Muhammad Raza

    2017-10-15

    Gold nanoparticles (AuNPs) have attracted greater scientific interests for the construction of drugs loading cargos due to their biocompatibility, safety and facile surface modifications. This study deals with the fabrication of gum tragacanth (GT) green AuNPs as carrier for Naringin, a less water soluble therapeutic molecule. The optimized AuNPs were characterized through UV-vis spectroscopy, FT-IR and atomic force microscope (AFM). Naringin loaded nanoparticles were investigated for their bactericidal potentials using Tetrazolium Microplate assay. Morphological studies conducted via AFM revealed spherical shape for AuNPs with nano-range size and stabilized by GT multi-functional groups. The AuNPs acted as carrier for increased amount of Naringin. Upon loading in AuNPs, Naringin An increased in the bactericidal potentials of Naringin was observed after loading on AuNPs against various tested bacterial strains. This was further authenticated by the surface morphological analysis, showing enhanced membrane destabilizing effects of loaded Naringin. The results suggest that GT stabilized green AuNPs can act as effective delivery vehicles for enhancing bactericidal potentials of Naringin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state

    Energy Technology Data Exchange (ETDEWEB)

    Torgomyan, Heghine [Department of Biophysics of Biology Faculty, Yerevan State University, Yerevan 0025 (Armenia); Trchounian, Armen, E-mail: Trchounian@ysu.am [Department of Biophysics of Biology Faculty, Yerevan State University, Yerevan 0025 (Armenia)

    2011-10-14

    Highlights: {yields} Low intensity 70.6 and 73 GHz electromagnetic irradiation (EMI) strongly suppressed Escherichia coli growth at 73 GHz and pH 7.3. {yields} Reducer DL-dithiothreitol had bactericidal effect and disturbed the SH-groups number. {yields} EMI enhanced E. coli sensitivity toward dithiothreitol. {yields} EMI decreased the SH-groups number of membrane disturbed by ATP and N,N'-dicyclohexycarbodiimide. {yields} The changed membrane oxidation-reduction state could be the primary mechanisms in EMI effects. -- Abstract: Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm{sup -2}) had bactericidal effects on Escherichia coli. This EMI (1 h) exposure suppressed the growth of E. coli K-12({lambda}). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies.

  16. Detection of bacterial infection of agave plants by laser-induced fluorescence

    Science.gov (United States)

    Cervantes-Martinez, Jesus; Flores-Hernandez, Ricardo; Rodriguez-Garay, Benjamin; Santacruz-Ruvalcaba, Fernando

    2002-05-01

    Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.

  17.  In Vitro Antibacterial Activity of three Indian Spices Against Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Nishith Kumar Pal

    2011-09-01

    Full Text Available  Objective: To explore the in vitro antibacterial activity of ethanolic extracts of cinnamon (Cinnamomum zeylanicum; CIN, clove (Syzygium aromaticum, CLV and cumin (Cuminum cyminum, CMN against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA, from Kolkata, India.Methods: The CIN, CLV and CMN were tested for their antibacterial activity against MRSA by in vitro methods. Minimum inhibitory concentration (MIC values of the three extracts were determined, and time-kill studies were performed in order to investigate the bactericidal activity of the extracts (at the MIC level for the isolates. The killing efficacy of the extracts was determined at various concentrations.Results: The zone diameter of inhibition (ZDI obtained due to CIN, CLV and CMN ranged between 22-27 mm, 19-23 mm and 9-15 mm, respectively; while the MICs, for the isolates, were in the range of 64-256, 64-512 and 128-512 µg/ml, respectively. When tested for their MIC levels; the CIN and CLV were found to be bactericidal after 6 hrs of incubation, while CMN showed bactericidal activity after 24 hrs. However, when tested at various concentrations; CIN, CLV and CMN displayed bactericidal activity against S. aureus, after 24 hrs of incubation, at 200, 200 and 300 µg/ml, respectively.Conclusion: The C. zeylanicum and S. aromaticum showed the strongest in vitro antibacterial activity followed by C. cyminum against MRSA, and such findings could be considered a valuable support in the treatment of infection and may contribute to the development of potential antimicrobial agents for inclusion in anti- S. aureus regimens.

  18. Endocrine-reproductive-immune interactions in female and male Galápagos marine iguanas.

    Science.gov (United States)

    Neuman-Lee, Lorin A; French, Susannah S

    2017-02-01

    Endocrine-immune interactions are variable across species and contexts making it difficult to discern consistent patterns. There is a paucity of data in non-model systems making these relationships even more nebulous, particularly in reptiles. In the present study, we have completed a more comprehensive test of the relationship among steroid hormones and ecologically relevant immune measures. We tested the relationship between baseline and stress-induced levels of sex and adrenal steroid hormones and standard ecoimmunological metrics in both female and male Galápagos marine iguanas (Amblyrhynchus cristatus). We found significant associations between adrenal activity and immunity, whereby females that mounted greater corticosterone responses to stress had lower basal and stress-induced immunity (i.e., bactericidal ability). Males showed the opposite relationship, suggesting sex-specific immunomodulatory actions of corticosterone. In both sexes, we observed a stress-induced increase in corticosterone, and in females a stress-induced increase in bactericidal ability. Consistent with other taxa, we also found that baseline corticosterone and testosterone in males was inversely related to baseline bactericidal ability. However, in females, we found a positive relationship between both testosterone and progesterone and bactericidal ability. Multivariate analysis did not discern any further endocrine-immune relationships, suggesting that interactions between adrenal, sex steroid hormones, and the immune system may not be direct and instead may be responding to other common stimuli, (i.e., reproductive status, energy). Taken together, these data illustrate significant endocrine-immune interactions that are highly dependent on sex and the stress state of the animal. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Toxicity of laser irradiated photoactive fluoride PrF3 nanoparticles toward bacteria

    International Nuclear Information System (INIS)

    Pudovkin, M S; Korableva, S L; Krasheninnicova, A O; Nizamutdinov, A S; Semashko, V V; Zelenihin, P V; Alakshin, E M; Nevzorova, T A

    2014-01-01

    The article is devoted to exploration of biological effects of crystalline PrF 3 nanoparticles toward Salmonella typhimurium TA 98 bacteria under the laser irradiation. Obtained results show bactericidal activity of PrF 3 nanoparticles and optimal parameters of laser irradiation (power of laser irradiation, wavelength, diameter of the laser spoil, and exposure time) have been found under which the effects of bactericidal activity become the most significant. Survival of bacterial cells under laser irradiation with wavelength 532 nm in colloidal solution of PrF 3 nanoparticles was 39%, 34%, 20% for exposure times 5 minutes, 15 minutes and 30 minutes, correspondingly

  20. Antimicrobial activity of polyhexamethylene guanidine phosphate in comparison to chlorhexidine using the quantitative suspension method.

    Science.gov (United States)

    Vitt, A; Sofrata, A; Slizen, V; Sugars, R V; Gustafsson, A; Gudkova, E I; Kazeko, L A; Ramberg, P; Buhlin, K

    2015-07-17

    Polyhexamethylene guanidine phosphate (PHMG-P) belongs to the polymeric guanidine family of biocides and contains a phosphate group, which may confer better solubility, a detoxifying effect and may change the kinetics and dynamics of PHMG-P interactions with microorganisms. Limited data regarding PHMG-P activity against periodontopathogenic and cariogenic microorganisms necessitates studies in this area. Aim is to evaluate polyhexamethylene guanidine phosphate antimicrobial activity in comparison to chlorhexidine. Quantitative suspension method was used enrolling Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Streptococcus mutans and Lactobacillus acidophilus. Both tested antiseptics at their clinically-used concentrations, of 0.2% (w/v) and 1% (w/v), correspondingly provided swift bactericidal effects against S. aureus, P. aeruginosa, E. coli and C. albicans, A. actinomycetemcomitans and P. gingivalis with reduction factors higher than 6.0. Diluted polyhexamethylene guanidine phosphate and chlorhexidine to 0.05% continued to display anti-bacterial activity and decreased titers of standard quality control, periopathogens to below 1.0 × 10(3) colony forming units/ml, albeit requiring prolonged exposure time. To achieve a bactericidal effect against S. mutans, both antiseptics at all concentrations required a longer exposure time. We found that a clinically-used 1% of polyhexamethylene guanidine phosphate concentration did not have activity against L. acidophilus. High RF of polyhexamethylene guanidine phosphate and retention of bactericidal effects, even at 0.05%, support the use of polyhexamethylene guanidine phosphate as a biocide with sufficient anti-microbial activity against periopathogens. Polyhexamethylene guanidine phosphate displayed bactericidal activity against periopathogens and S. mutans and could potentially be applied in the management of oral

  1. A phase 1 study of a group B meningococcal native outer membrane vesicle vaccine made from a strain with deleted lpxL2 and synX and stable expression of opcA.

    Science.gov (United States)

    Keiser, Paul B; Gibbs, Barnett T; Coster, Trinka S; Moran, E Ellen; Stoddard, Mark B; Labrie, Joseph E; Schmiel, Deborah H; Pinto, Valerian; Chen, Ping; Zollinger, Wendell D

    2010-10-08

    This phase 1 clinical trial assessed the safety and immunogenicity of a native outer membrane vesicle (NOMV) vaccine prepared from a lpxL2(-) synX(-) mutant of strain 44/76 with opcA expression stabilized. Thirty-four volunteers were assigned to one of the three dose groups (25 mcg, 25 mcg with aluminum hydroxide adjuvant, and 50 mcg) to receive three intramuscular injections at 0, 6 and 24 weeks. Specific local and systemic adverse events (AEs) were solicited by diary and at visits on days 1, 2, 7 and 14 after each vaccination and at the end of the study at 30 weeks. Blood chemistries, complete blood count, and coagulation studies were measured on each vaccination day and again two days later. Blood for antibody measurements and bactericidal assays were drawn 0, 14, and 42 days after each vaccination. The proportion of volunteers who developed a fourfold or greater increase in serum bactericidal activity (SBA) to the wild-type parent of the vaccine strain with high opcA expression at 6 weeks after the third dose was 12/26 (0.46, 95% confidence interval 0.27-0.65). Antibody levels to OpcA were significantly higher in vaccine responders than in non-responders (p=0.008), and there was a trend for higher antibody levels to the lipooligosaccharide (LOS) (p=0.059). Bactericidal depletion assays on sera from volunteers with high-titer responses also indicate a major contribution of anti-OpcA and anti-LOS antibodies to the bactericidal response.These results suggest that genetically modified NOMV vaccines can induce protection against group B meningococcus. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs) Are Unique Human Antimicrobial Peptides with a Non-αβ Structure

    Science.gov (United States)

    Lee, Judy T. Y.; Wang, Guangshun; Tam, Yu Tong; Tam, Connie

    2016-01-01

    Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs). Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS) micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics. PMID:27891122

  3. Inactivation of Candida glabrata by a humid DC argon discharge afterglow: dominant contributions of short-lived aqueous active species

    Science.gov (United States)

    Xiong, Qing; Liu, Hongbin; Lu, Weiping; Chen, Qiang; Xu, Le; Wang, Xia; Zhu, Qunlin; Zeng, Xue; Yi, Ping

    2017-05-01

    Plasma medicine applications are currently attracting significant interest all over the world. Bactericidal treatments of Candida glabrata cultured in saline suspension are performed in this study by a room-temperature reactive afterglow of a DC-driven argon discharge. Water vapor was added to the discharge to study the inactivation contributions of reactive hydrolytic species including OH and H2O2 transporting along the gas flow to the treated solutions. The inactivation results indicate that the dominant roles in the bactericidal treatments are played by the short-lived aqueous active species, but not the stable species like H2O2aq (aq indicates an aqueous species). Further analysis shows that the ·OHaq radicals play an important role in the inactivation process. The ·OHaq radicals in the suspension are mostly produced from the direct dissolution of the OH species in the reactive afterglow. With the increase of added water vapor content, the ·OHaq production increases and enhances the inactivation efficiency of C. glabrata. Furthermore, it is found that the ambient air diffusion shows essential effects on the bactericidal activity of the remote humid argon discharge. Higher bactericidal effects can be obtained in open-space treatments compared to in a controlled Ar + H2O gas atmosphere. Key active air-byproduct species are believed to be generated in the suspension during the treatments and contributing to the inactivation process. Based on chemical analysis, the peroxynitrous acid ONOOHaq is considered as the key antimicrobial air-byproduct species. These results indicate the important dependence of plasma biomedical effects on the processing environment, which finally relates to the critical contributions of the key reactive species formed therein.

  4. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs Are Unique Human Antimicrobial Peptides with a Non-αβ Structure

    Directory of Open Access Journals (Sweden)

    Judy Tsz Ying Lee

    2016-11-01

    Full Text Available Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs. Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics.

  5. Chitosan-based coatings in the prevention of intravascular catheter-associated infections.

    Science.gov (United States)

    Mendoza, Gracia; Regiel-Futyra, Anna; Tamayo, Alejandra; Monzon, Marta; Irusta, Silvia; de Gregorio, Miguel Angel; Kyzioł, Agnieszka; Arruebo, Manuel

    2018-01-01

    Central venous access devices play an important role in patients with prolonged intravenous administration requirements. In the last years, the coating of these devices with bactericidal compounds has emerged as a potential tool to prevent bacterial colonization. Our study describes the modification of 3D-printed reservoirs and silicone-based catheters, mimicking central venous access devices, through different approaches including their coating with the well known biocompatible and bactericidal polymer chitosan, with the anionic polysaccharide alginate; also, plasma treated surfaces were included in the study to promote polymer adhesion. The evaluation of the antimicrobial action of those surface modifications compared to that exerted by a model antibiotic (ciprofloxacin) adsorbed on the surface of the devices was carried out. Surface characterization was developed by different methodologies and the bactericidal effects of the different coatings were assayed in an in vitro model of Staphylococcus aureus infection. Our results showed a significant reduction in the reservoir roughness (≤73%) after coating though no changes were observed for coated catheters which was also confirmed by scanning electron microscopy, pointing to the importance of the surface device topography for the successful attachment of the coating and for the subsequent development of bactericidal effects. Furthermore, the single presence of chitosan on the reservoirs was enough to fully inhibit bacterial growth exerting the same efficiency as that showed by the model antibiotic. Importantly, chitosan coating showed low cytotoxicity against human keratinocytes, human lung adenocarcinoma epithelial cells, and murine colon carcinoma cells displaying viability percentages in the range of the control samples (>95%). Chitosan-based coatings are proposed as an effective and promising solution in the prevention of microbial infections associated to medical devices.

  6. Effectiveness of aqueous and hydroalcoholic extracts of Acanthospermum australe (Loefl. Kuntze against diarrhea-inducing bacteria

    Directory of Open Access Journals (Sweden)

    R. Mallmann

    2018-01-01

    Full Text Available Abstract Leaves and roots of Acanthospermum australe (Asteraceae have been used in Brazilian folk medicine for the treatment of various ailments including diarrhea, skin diseases, blennorrhagia, dyspepsia, parasitic worms and malaria. The aim of study was to characterize the chemical profiles of the aqueous and hydroalcoholic extracts of leaves and roots of A. australe, and to evaluate their antimicrobial activities against diarrhea-inducing bacteria (Enterococcus faecalis, Shigella dysenteriae and Yersinia enterocolitica, as well as their cytotoxic properties. Aqueous leaf extracts were obtained by infusion, while aqueous root extracts were obtained by decoction. The hydroalcoholic leaf and root extracts were prepared by maceration in 90% ethanol for 3 days. Antimicrobial activity was assessed using standard techniques and cytotoxicity was evaluated using Chinese hamster ovary cells CHO-K1. Chemical analysis revealed the presence of tannins, flavonoids, saponins and phenolic compounds in the extracts. Although root extracts were not effective against E. faecalis, leaf extracts at concentrations of 20 mg/mL exhibited bactericidal activities against this microorganism. The hydroalcoholic root extract was unique in presenting a bactericidal effect against S. dysenteriae. None of the extracts showed bacteriostatic or bactericidal activities against Y. enterocolitica. The results presented herein demonstrate that the Gram-positive E. faecalis and the Gram-negative S. dysenteriae were susceptible to A. australe extracts, although bacteriostatic/bactericidal activities were only observed at concentrations considered too high for clinical application. Our results support the ethnopharmacological use of A. australe in the treatment of gastrointestinal disorders, particularly diarrhea caused by infectious bacteria, although further studies are required to determine the anti-diarrhea effects and the toxicities of the extracts in vivo.

  7. Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities.

    Science.gov (United States)

    Ray, Ann; Schwartz, Nika; de Souza Santos, Marcela; Zhang, Junmei; Orth, Kim; Salomon, Dor

    2017-11-01

    Most type VI secretion systems (T6SSs) described to date are protein delivery apparatuses that mediate bactericidal activities. Several T6SSs were also reported to mediate virulence activities, although only few anti-eukaryotic effectors have been described. Here, we identify three T6SSs in the marine bacterium Vibrio proteolyticus and show that T6SS1 mediates bactericidal activities under warm marine-like conditions. Using comparative proteomics, we find nine potential T6SS1 effectors, five of which belong to the polymorphic MIX-effector class. Remarkably, in addition to six predicted bactericidal effectors, the T6SS1 secretome includes three putative anti-eukaryotic effectors. One of these is a MIX-effector containing a cytotoxic necrotizing factor 1 domain. We demonstrate that T6SS1 can use this MIX-effector to target phagocytic cells, resulting in morphological changes and actin cytoskeleton rearrangements. In conclusion, the V. proteolyticus T6SS1, a system homologous to one found in pathogenic vibrios, uses a suite of polymorphic effectors that target both bacteria and eukaryotic neighbors. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Song, Cunfeng [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Chang, Ying; Cheng, Ling; Xu, Yiting [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Xiaoling, E-mail: tinachen0628@163.com [Department of Endodontics, Xiamen Stomatology Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361003 (China); Zhang, Long; Zhong, Lina [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Dai, Lizong, E-mail: lzdai@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China)

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. - Highlights: • A new type of antibacterial agent (PSA/Ag-NPs nanocomposites) was synthesized. • The antibacterial activity against S. aureus and E. coli was studied. • Inhibition zone, MIC, MBC, and bactericidal kinetics were evaluated. • PSA/Ag-NPs nanocomposites showed excellent antibacterial activity.

  9. Subinhibitory quinupristin/dalfopristin attenuates virulence of Staphylococcus aureus.

    Science.gov (United States)

    Koszczol, Carmen; Bernardo, Katussevani; Krönke, Martin; Krut, Oleg

    2006-09-01

    The semi-synthetic streptogramin quinupristin/dalfopristin antibiotic exerts potent bactericidal activity against Staphylococcus aureus. We investigated whether, like other bactericidal antibiotics used at subinhibitory concentrations, quinupristin/dalfopristin enhances release of toxins by Gram-positive cocci. The activity of quinupristin/dalfopristin on exotoxin release by S. aureus was investigated by 2D SDS-PAGE combined with MALDI-TOF/MS analysis and by western blotting. We show that quinupristin/dalfopristin at subinhibitory concentrations reduces the release of S. aureus factors that induce tumour necrosis factor secretion in macrophages. Furthermore, quinupristin/dalfopristin but not linezolid attenuated S. aureus-mediated killing of infected host cells. When added to S. aureus cultures at different stages of bacterial growth, quinupristin/dalfopristin reduced in a dose-dependent manner the release of specific virulence factors (e.g. autolysin, protein A, alpha- and beta-haemolysins, lipases). In contrast, other presumably non-toxic exoproteins remained unchanged. The results of the present study suggest that subinhibitory quinupristin/dalfopristin inhibits virulence factor release by S. aureus, which might be especially helpful for the treatment of S. aureus infections, where both bactericidal as well as anti-toxin activity may be advantageous.

  10. The antimicrobial activity of bupivacaine, lidocaine and mepivacaine against equine pathogens

    DEFF Research Database (Denmark)

    Adler, D. M. T.; Damborg, P.; Verwilghen, D. R.

    2017-01-01

    Lameness is the most commonly reported health problem in horses, and lameness investigations which include local anaesthetic injections are routinely performed by equine practitioners. Through this process, bacteria can enter the tissues perforated by the needle and may cause local infections...... the antimicrobial activity of the local anaesthetics bupivacaine, lidocaine and mepivacaine against 40 equine clinical bacterial isolates of the Actinobacillus, Corynebacterium, Enterobacter, Escherichia, Pseudomonas, Rhodococcus, Staphylococcus and Streptococcus genera. Minimum inhibitory and minimum bactericidal...... also bactericidal. The tested local anaesthetics possessed antimicrobial activity against equine pathogens at concentrations that are routinely applied in clinical cases. However, this antimicrobial activity should not discourage antiseptic preparation prior to local anaesthetic injections....

  11. Synthesis and biological activity of acetates of copper (II and iron (III for the control of Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Jéssica V. Nardeli

    2012-06-01

    Full Text Available This work aimed to the synthesis of basic acetates of Cu (II and Fe(III against larvae of Aedes aegypti and Gram negative and Gram positive. The transition metal ions Cu (II and Fe (III have bactericidal activity and are toxic to Aedes aegypti larvae in the eggs and larval stages of initial, precludes the eggs hatch and slow reproductive cycle of the insect. The theme investigates the importance of carboxyl groups in complex formation, transport and cellular internalization of the toxic ions. It is known that the bactericide or insecticide activity is due to metal ions and Cu (IIor Fe (III.

  12. Mutagenesis and reparation processes in the methylotrophic bacterium Pseudomonas methanolica after UV irradiation

    International Nuclear Information System (INIS)

    Naumov, G.N.; Bokhan, I.K.; Multykh, I.G.

    1986-01-01

    High resistance of cells of methylotrophic bacterium Pseudomonas methanolica to bactericidal and mutagenous effects of ultraviolet irradiation is shown as well as activity of reparation processes after UV irradiation. The presence of low photoreactivating activity in P. methanolica is shown as well. Observed recovery in innutritious medium and decrease of irradiated cells survival rates under effect of reparation inhibitors (coffeine and acriflavine) testify to activity of excision reparation and, perhaps, recombination branch of postreplicative reparation. No manifestation of inducible reparation system is discovered. It is concluded that increased resistance of P. methanolica cells to bactericidal and mutagenous effects of short-wave ultraviolet radiation is related to activity of exact reparation systems

  13. Transcriptional Modulation of Penicillin-Binding Protein 1b, Outer Membrane Protein P2 and Efflux Pump (AcrAB-TolC during Heat Stress Is Correlated to Enhanced Bactericidal Action of Imipenem on Non-typeable Haemophilus influenzae

    Directory of Open Access Journals (Sweden)

    Abdessalam Cherkaoui

    2018-01-01

    Full Text Available Objective: The purpose of the present study was to investigate the penicillin binding proteins (PBPs, drug influx and efflux modulations during heat stress and their effects on the bactericidal action of imipenem on non-typeable Haemophilus influenzae (NTHi.Methods: The two NTHi clinical isolates (GE47 and GE88, imipenem MICs by E-test > 32 μg/mL examined in this study were collected at Geneva University Hospitals. The imipenem killing activity was assessed after incubation of the NTHi strains at either 37 or 42°C for 3 h with increasing concentrations of imipenem. The detection of PBPs was carried out by Bocillin-FL. Global transcriptional changes were monitored by RNA-seq after pre-incubation of bacterial cells at either 37 or 42°C, and the expression levels of relevant target genes were confirmed by qRT-PCR.Results: Quantitation of NTHi viable cells after incubation with 0.25 μg/mL of imipenem for 3 h revealed more than a twofold decrease in GE47 and GE88 viable cells at 42°C as compared to 37°C. Transcriptome analysis showed that under heat stress conditions, there were 141 differentially expressed genes with a | log2(fold change| > 1, including 67 up-regulated and 74 down-regulated genes. The expression levels of ponB (encoding PBP1b and acrR (regulator of AcrAB-TolC efflux pump were significantly increased at 42°C. In contrast, the transcript levels of ompP2 (encoding the outer membrane protein P2 and acrB gene (encoding AcrB were significantly lower under heat stress condition.Conclusion: This study shows that the transcriptional modulation of ponB, ompP2, acrR, and acrB in the heat stress response is correlated to enhanced antimicrobial effects of imipenem on non-typeable H. influenzae.

  14. A Novel Urinary Catheter with Tailorable Bactericidal Behavior

    Science.gov (United States)

    2017-10-01

    ethics in place to be able to undertake this work once we...these goals? We have derived animal protocols and ethics for our in vivo studies. 5 § What opportunities for training and professional...Changes that had a significant impact on expenditures § Significant changes in use or care of human subjects, vertebrate animals, biohazards,

  15. Inactivation of Candida glabrata by a humid DC argon discharge afterglow: dominant contributions of short-lived aqueous active species

    International Nuclear Information System (INIS)

    Xiong, Qing; Liu, Hongbin; Xu, Le; Wang, Xia; Zhu, Qunlin; Lu, Weiping; Chen, Qiang; Zeng, Xue; Yi, Ping

    2017-01-01

    Plasma medicine applications are currently attracting significant interest all over the world. Bactericidal treatments of Candida glabrata cultured in saline suspension are performed in this study by a room-temperature reactive afterglow of a DC-driven argon discharge. Water vapor was added to the discharge to study the inactivation contributions of reactive hydrolytic species including OH and H 2 O 2 transporting along the gas flow to the treated solutions. The inactivation results indicate that the dominant roles in the bactericidal treatments are played by the short-lived aqueous active species, but not the stable species like H 2 O 2aq (aq indicates an aqueous species). Further analysis shows that the ·OH aq radicals play an important role in the inactivation process. The ·OH aq radicals in the suspension are mostly produced from the direct dissolution of the OH species in the reactive afterglow. With the increase of added water vapor content, the ·OH aq production increases and enhances the inactivation efficiency of C. glabrata . Furthermore, it is found that the ambient air diffusion shows essential effects on the bactericidal activity of the remote humid argon discharge. Higher bactericidal effects can be obtained in open-space treatments compared to in a controlled Ar + H 2 O gas atmosphere. Key active air-byproduct species are believed to be generated in the suspension during the treatments and contributing to the inactivation process. Based on chemical analysis, the peroxynitrous acid ONOOH aq is considered as the key antimicrobial air-byproduct species. These results indicate the important dependence of plasma biomedical effects on the processing environment, which finally relates to the critical contributions of the key reactive species formed therein. (paper)

  16. Antimicrobial photodynamic therapy-a promising treatment for prosthetic joint infections.

    Science.gov (United States)

    Briggs, Timothy; Blunn, Gordon; Hislop, Simon; Ramalhete, Rita; Bagley, Caroline; McKenna, David; Coathup, Melanie

    2018-04-01

    Periprosthetic joint infection (PJI) is associated with high patient morbidity and a large financial cost. This study investigated Photodynamic Therapy (PDT) as a means of eradicating bacteria that cause PJI, using a laser with a 665-nm wavelength and methylene blue (MB) as the photosensitizer. The effectiveness of MB concentration on the growth inhibition of methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa and Acinetobacter baumannii was investigated. The effect of laser dose was also investigated and the optimized PDT method was used to investigate its bactericidal effect on species within planktonic culture and following the formation of a biofilm on polished titanium and hydroxyapatite coated titanium discs. Results showed that Staphylococci were eradicated at the lowest concentration of 0.1 mM methylene blue (MB). With P. aeruginosa and A. baumannii, increasing the MB concentration improved the bactericidal effect. When the laser dose was increased, results showed that the higher the power of the laser the more bacteria were eradicated with a laser power ≥ 35 J/cm 2 and an irradiance of 35 mW/cm 2 , eradicating all S. epidermidis. The optimized PDT method had a significant bactericidal effect against planktonic MRSA and S. epidermidis compared to MB alone, laser alone, or control (no treatment). When biofilms were formed, PDT treatment had a significantly higher bactericidal effect than MB alone and laser alone for all species of bacteria investigated on the polished disc surfaces. P. aeruginosa grown in a biofilm was shown to be less sensitive to PDT when compared to Staphylococci, and a HA-coated surface reduced the effectiveness of PDT. This study demonstrated that PDT is effective for killing bacteria that cause PJI.

  17. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    Science.gov (United States)

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery

  18. Outer membrane protein P4 is not required for virulence in the human challenge model of Haemophilus ducreyi infection.

    Science.gov (United States)

    Janowicz, Diane M; Zwickl, Beth W; Fortney, Kate R; Katz, Barry P; Bauer, Margaret E

    2014-06-24

    Bacterial lipoproteins often play important roles in pathogenesis and can stimulate protective immune responses. Such lipoproteins are viable vaccine candidates. Haemophilus ducreyi, which causes the sexually transmitted disease chancroid, expresses a number of lipoproteins during human infection. One such lipoprotein, OmpP4, is homologous to the outer membrane lipoprotein e (P4) of H. influenzae. In H. influenzae, e (P4) stimulates production of bactericidal and protective antibodies and contributes to pathogenesis by facilitating acquisition of the essential nutrients heme and nicotinamide adenine dinucleotide (NAD). Here, we tested the hypothesis that, like its homolog, H. ducreyi OmpP4 contributes to virulence and stimulates production of bactericidal antibodies. We determined that OmpP4 is broadly conserved among clinical isolates of H. ducreyi. We next constructed and characterized an isogenic ompP4 mutant, designated 35000HPompP4, in H. ducreyi strain 35000HP. To test whether OmpP4 was necessary for virulence in humans, eight healthy adults were experimentally infected. Each subject was inoculated with a fixed dose of 35000HP on one arm and three doses of 35000HPompP4 on the other arm. The overall parent and mutant pustule formation rates were 52.4% and 47.6%, respectively (P = 0.74). These results indicate that expression of OmpP4 in not necessary for H. ducreyi to initiate disease or progress to pustule formation in humans. Hyperimmune mouse serum raised against purified, recombinant OmpP4 did not promote bactericidal killing of 35000HP or phagocytosis by J774A.1 mouse macrophages in serum bactericidal and phagocytosis assays, respectively. Our data suggest that, unlike e (P4), H. ducreyi OmpP4 is not a suitable vaccine candidate. OmpP4 may be dispensable for virulence because of redundant mechanisms in H. ducreyi for heme acquisition and NAD utilization.

  19. Relativistic electron influence on sanitary-model microorganisms and antibiotics in model samples

    International Nuclear Information System (INIS)

    Antipov, V.S.; Berezhna, I.V.; Kovpik, O.F.; Babych, E.M.; Voliansky, Yu.L.; Sklar, N.I.

    2004-01-01

    A series of the investigations of the electron beam influence on sanitary-model test cultures and antibiotics in model solutions has been carried out. For each of the test objects, the authors have found the boundary doses of the absorbed radiation. The higher doses cause the sharp increase in the bactericidal influence, which becomes complete. The sanitary-bactericidal indices of the water samples remain sable during 6 days. The samples of antibiotics in various concentrations (from 100 UA) have been irradiated. It is proved that the substratum processing by the beam (in the regimes 30 kGy) causes diminution and complete neutralization of the antibacterial activity in all probes of the samples

  20. Graphene Oxide/Silver Nanohybrid as Multi-functional Material for Highly Efficient Bacterial Disinfection and Detection of Organic Dye

    DEFF Research Database (Denmark)

    Tam, L.T.; Dinh, N. X.; Cuong, N. V.

    2016-01-01

    In this work, a multi-functional hybrid system consisting of graphene oxide and silver nanoparticles (GO-Ag NPs) was successfully synthesized by using a two-step chemical process. We firstly demonstrated noticeable bactericidal ability of the GO-Ag hybrid system. We provide more chemo-physical ev......In this work, a multi-functional hybrid system consisting of graphene oxide and silver nanoparticles (GO-Ag NPs) was successfully synthesized by using a two-step chemical process. We firstly demonstrated noticeable bactericidal ability of the GO-Ag hybrid system. We provide more chemo...... media. With the aforementioned properties, the GO-Ag hybrid system is found to be very promising as a multi-functional material for advanced biomedicine and environmental monitoring applications....

  1. Immunogenicity of recombinant class 1 protein from Neisseria meningitidis refolded into phospholipid vesicles and detergent.

    Science.gov (United States)

    Niebla, O; Alvarez, A; Martín, A; Rodríguez, A; Delgado, M; Falcón, V; Guillén, G

    2001-05-14

    The possibility of eliciting bactericidal antibodies against a recombinant class 1 protein (P1) from Neisseria meningitidis, joined to the first 45 amino acids of the neisserial LpdA protein (PM82), was examined. P1 was produced in Escherichia coli as intracellular inclusion bodies, from which it was purified and reconstituted by (a) inclusion into phospholipid vesicles and detergent and (b) refolding in 0.1% SDS. When Balb/c mice were immunised, high titres of subtype-specific bactericidal antibodies against P1 were obtained in both cases. These results suggest that in spite of being a denaturing agent, it is possible to use SDS to reconstitute the P1 protein in a conformation that exposes the immunodominat regions.

  2. Antibacterial activity of Hibiscus sabdariffa L. calyces against hospital isolates of multidrug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Emad Mohamed Abdallah

    2016-11-01

    Full Text Available Objective: To evaluate the antibacterial activity of methanol extract of Hibiscus sabdariffa (H. sabdariffa calyces employed in Sudanese folk medicine against five hospital isolates of multidrug resistant Acinetobacter baumannii (MDR A. baumannii. Methods: The antibacterial activity of 80% methanol extract (v/v of H. sabdariffa calyces was evaluated by agar disc diffusion, minimum inhibitory concentration and minimum bactericidal concentration methods. Antibiotic susceptibility of selected A. baumannii strains was tested. Results: In the present investigation, the methanol extract from the calyces of H. sabdariffa exhibited significant antibacterial properties against the non-MDR A. baumannii as well as the MDR A. baumannii strains with a zone of inhibition ranging from (11.3 ± 0.3 to (13.6 ± 0.3 mm. The relative percentage inhibition of H. sabdariffa extract (10 mg/disc with respect to gentamicin (10 mg/disc had potent antibacterial properties and was much more effective than gentamicin. Values of minimum inhibitory concentration and minimum bactericidal concentration ranged from 25 to 50 and 50 to 100 mg/mL, respectively, revealing the potential bactericidal properties of the extract. Conclusions: According to the present study, the calyces of H. sabdariffa can be used as a substitute source of the current ineffective synthetic antibiotics used against MDR A. baumannii.

  3. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation.

    Science.gov (United States)

    Tung, Le Minh; Cong, Nguyen Xuan; Huy, Le Thanh; Lan, Nguyen Thi; Phan, Vu Ngoc; Hoa, Nguyen Quang; Vinh, Le Khanh; Thinh, Nguyen Viet; Tai, Le Thanh; Ngo, Duc-The; Mølhave, Kristian; Huy, Tran Quang; Le, Anh-Tuan

    2016-06-01

    In recent years, outbreaks of infectious diseases caused by pathogenic micro-organisms pose a serious threat to public health. In this work, Fe3O4-Ag hybrid nanoparticles were synthesized by simple chemistry method and these prepared nanoparticles were used to investigate their antibacterial properties and mechanism against methicilline-resistant Staphylococcus aureus (MRSA) pathogen. The formation of dimer-like nanostructure of Fe3O4-Ag hybrid NPs was confirmed by X-ray diffraction and High-resolution Transmission Electron Microscopy. Our biological analysis revealed that the Fe3O4-Ag hybrid NPs showed more noticeable bactericidal activity than that of plain Fe3O4 NPs and Ag-NPs. We suggest that the enhancement in bactericidal activity of Fe3O4-Ag hybrid NPs might be likely from main factors such as: (i) enhanced surface area property of hybrid nanoparticles; (ii) the high catalytic activity of Ag-NPs with good dispersion and aggregation stability due to the iron oxide magnetic carrier, and (iii) large direct physical contacts between the bacterial cell membrane and the hybrid nanoparticles. The superparamagnetic hybrid nanoparticles of iron oxide magnetic nanoparticles decorated with silver nanoparticles can be a potential candidate to effectively treat infectious MRSA pathogen with recyclable capability, targeted bactericidal delivery and minimum release into environment.

  4. Short communication: Determination of the ability of Thymox to kill or inhibit various species of microorganisms associated with infectious causes of bovine lameness in vitro.

    Science.gov (United States)

    Kulow, Megan; Zibaee, Fahimeh; Allard, Marianne; Döpfer, Dörte

    2015-11-01

    Infectious claw diseases continue to plague cattle in intensively managed husbandry systems. Poor foot hygiene and constant moist environments lead to the infection and spread of diseases such as digital dermatitis (hairy heel warts), interdigital dermatitis, and interdigital phlegmon (foot rot). Currently, copper sulfate and formalin are the most widely used disinfecting agents in bovine footbaths; however, the industry could benefit from more environmentally and worker friendly substitutes. This study determined the in vitro minimum inhibitory concentrations and minimum bactericidal concentrations of Thymox (Laboratoire M2, Sherbrooke, Québec, Canada) for a selection of microorganisms related to infectious bovine foot diseases. Thymox is a broad-spectrum agricultural disinfectant that is nontoxic, noncorrosive, and readily biodegradable. The values for minimum inhibitory concentration and minimum bactericidal concentration indicated that Thymox inhibited growth and killed the various species of microorganisms under study at much lower concentrations compared with the recommended working concentration of a 1% solution. Overall, the values found in this study of minimum inhibitory concentration and minimum bactericidal concentration of Thymox show its potential as an alternative antibacterial agent used in bovine footbaths; however, field trials are needed to determine its effectiveness for the control and prevention of infectious claw diseases. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens.

    Science.gov (United States)

    Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael

    2015-02-15

    The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three

  6. Antibacterial effect evaluation of moxalactam against extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae with in vitro pharmacokinetics/pharmacodynamics simulation

    Directory of Open Access Journals (Sweden)

    Huang C

    2018-01-01

    Full Text Available Chen Huang,1,* Beiwen Zheng,1,* Wei Yu,2 Tianshui Niu,1 Tingting Xiao,1 Jing Zhang,1 Yonghong Xiao1 1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; 2Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Hangzhou, China *These authors contributed equally to this work Objectives: The aim of this study was to evaluate the bactericidal effects of moxalactam (MOX, cefotaxime (CTX, and cefoperazone/sulbactam (CFZ/SBT against extended-spectrum β-lactamase (ESBL producing Escherichia coli and Klebsiella pneumoniae, using an in vitro pharmacokinetics (PK/pharmacodynamics model.Methods: Two clinical ESBL-producing strains (blaCTX-M-15 positive E. coli 3376 and blaCTX-M-14 positive K. pneumoniae 2689 and E. coli American Type Culture Collection (ATCC25922 were used in the study. The PK Auto Simulation System 400 was used to simulate the human PK procedures after intravenous administration of different doses of MOX, CTX, and CFZ/SBT. Bacterial growth recovery time (RT and the area between the control growth curve and bactericidal curves (IE were employed to assess the antibacterial efficacies of all the agents.Results: The minimum inhibitory concentrations of MOX, CTX, and CFZ/SBT against E. coli ATCC25922, 3376, and 2689 strains were 0.5, 0.5, 0.25; 0.06, >256, 256; and 0.5/0.5, 16/16, 32/32 mg/L. All the agents demonstrated outstanding bactericidal effects against E. coli ATCC25922 (RT >24 h and IE >120 log10 CFU/mL·h−1 with simulating PK procedures, especially in the multiple dose administration models. Against ESBL producers, CTX and CFZ/SBT displayed only weak bactericidal effects, and subsequent regrowth was evident. MOX exhibited potent antibacterial activity against all the strains tested. The values of effective parameters of

  7. Microbicidal effects of plain soap vs triclocarban-based antibacterial soap.

    Science.gov (United States)

    Kim, S A; Rhee, M S

    2016-11-01

    The aim of this study was to determine the bactericidal effects of plain and antibacterial soap. The bactericidal effects of plain and antibacterial soap containing 0.3% triclocarban were examined against 10 Gram-positive and 10 Gram-negative bacterial strains after exposure at 22°C and 40°C for 20 s. Gram-negative bacteria were more susceptible to both soaps than Gram-positive bacteria. However, with one exception (Enterococcus faecalis ATCC 19433 at 40°C), there was no significant difference between the effects of medicated and non-medicated soap at either temperature. Triclocarban in soap does not lead to a meaningful reduction in bacterial levels during use. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Synthesis and antibacterial properties of Fe3O4-Ag nanostructures

    Directory of Open Access Journals (Sweden)

    Pachla Anna

    2016-12-01

    Full Text Available Superparamagnetic iron oxide nanoparticles were obtained in the polyethylene glycol environment. An effect of precipitation and drying temperatures on the size of the prepared nanoparticles was observed. Superparamagnetic iron oxide Fe3O4, around of 15 nm, was obtained at a precipitation temperature of 80°C and a drying temperature of 60°C. The presence of functional groups characteristic for a polyethylene glycol surfactant on the surface of nanoparticles was confirmed by FTIR and XPS measurements. Silver nanoparticles were introduced by the impregnation. Fe3O4-Ag nanostructure with bactericidal properties against Escherichia coli species was produced. Interesting magnetic properties of these materials may be helpful to separate the bactericidal agent from the solution.

  9. Therapeutic effect of Lianbeijuqin (a Chinese herbal cocktail) on ...

    African Journals Online (AJOL)

    Additionally, the antibacterial activity of LBJQ against Porphyromonas gingivalis, Prevotella intermedius, Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum, Streptococcus sanguis and Streptococcus mutans were evaluated using minimal inhibitory concentration (MIC) and minimal bactericidal concentration ...

  10. TiO 2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications

    KAUST Repository

    Xi, Baojuan; Verma, Lalit Kumar; Li, Jing; Bhatia, Charanjit Singh; Danner, Aaron James; Yang, Hyunsoo; Zeng, Hua Chun

    2012-01-01

    oxidation processes for wastewater and bactericidal treatments, self-cleaning window glass for green intelligent buildings, dye-sensitized solar cells, solid-state semiconductor metal-oxide solar cells, self-cleaning glass for photovoltaic devices

  11. Chemical composition of water extracts from shungite and shungite water

    International Nuclear Information System (INIS)

    Charykova, M.V.; Bornyakova, I.I.; Polekhovskij, Yu.S.; Charykov, N.A.; Kustova, E.V.; Arapov, O.V.

    2006-01-01

    Chemical analysis of water extracts from shungite-3 of Zagozhino deposit (Karelia) and natural water contacting with shungite rocks are done. Chemical composition and bactericide properties of shungite water are studied [ru

  12. Bi-Layer Wound Dressing System for Combat Casualty Care

    National Research Council Canada - National Science Library

    Martineau, Lucie; Shek, Pang N

    2004-01-01

    ... dressing to address key requirements for treating external war wounds. In the present report, we assess our dressing's bactericidal efficacy, wound healing properties, and skin-cooling characteristics using various pre-clinical models...

  13. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    Science.gov (United States)

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  14. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.

    Science.gov (United States)

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki

    2014-02-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue-implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement—A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Sedira, Sofiane, E-mail: sofianebilel@gmail.com [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Ayachi, Ahmed Abdelhakim, E-mail: ayachi-med@hotmail.fr [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Lakehal, Sihem, E-mail: lakehal.lakehal@gmail.com [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Fateh, Merouane, E-mail: merouane.fateh@gmail.com [Microbiological Laboratory Engineering and Application, University of Constantine1, Constantine (Algeria); Achour, Slimane, E-mail: achourslimane11@yahoo.fr [Ceramic Laboratory, University of Constantine1, Constantine (Algeria)

    2014-08-30

    Graphical abstract: - Highlights: • Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method. • Ag NPs exert their bactericidal effect mainly by Ag{sup +} ions. • CH{sub 3}COOH addition to Ag NPs improves bactericidal effect more than ZnO Qds addition. • E. coli and P. aeruginosa are more sensitive to NPs than K. pneumonia and S. aureus. - Abstract: Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag{sup +}. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag{sup +} release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV–vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM)

  16. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.

    Directory of Open Access Journals (Sweden)

    Des Raj Kashyap

    2014-07-01

    Full Text Available Mammalian Peptidoglycan Recognition Proteins (PGRPs are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS, a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria.

  17. Applicability assessment of ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ to the eradication of Legionella in rainwater storage tanks for household use.

    Science.gov (United States)

    Oana, Kozue; Kobayashi, Michiko; Yamaki, Dai; Sakurada, Tsukasa; Nagano, Noriyuki; Kawakami, Yoshiyuki

    2015-01-01

    Water environments appear to be the habitats of Legionella species. Legionellosis is considered as a preventable illness because bacterial reservoirs can be controlled and removed. Roof-harvested rainwater has attracted significant attention not only as a groundwater recharge but also as a potential alternative source of nonpotable water. We successfully developed ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ using the thermal spraying method. The ceramic microbeads were demonstrated to have bactericidal activities against not only Legionella but also coliform and heterotrophic bacteria. Immersing the ceramic microbeads in household rainwater storage tanks was demonstrated to yield the favorable eradication of Legionella organisms. Not only rapid-acting but also long-lasting bactericidal activities of the ceramic microbead were exhibited against Legionella pneumophila. However, time-dependent attenuation of the bactericidal activities against Legionella were also noted in the sustainability appraisal experiment. Therefore, the problems to be overcome surely remain in constantly managing the Legionella-pollution by means of immersing the ceramic microbeads. The results of our investigation apparently indicate that the earthplus™-coated ceramic microbeads would become the favorable tool for Legionella measures in household rainwater storage tanks, which may become the natural reservoir for Legionella species. Our investigation would justify further research and data collection to obtain more reliable procedures to microbiologically regulate the Legionella in rainwater storage tanks.

  18. Effectiveness analyses may underestimate protection of infants after group C meningococcal immunization.

    Science.gov (United States)

    Vu, David M; Kelly, Dominic; Heath, Paul T; McCarthy, Noel D; Pollard, Andrew J; Granoff, Dan M

    2006-07-15

    Group C meningococcal conjugate-vaccine effectiveness in the United Kingdom declines from ~90% in the first year to 0% between 1 and 4 years after immunization in infants immunized at 2, 3, and 4 months of age and to 61% in toddlers given a single dose. Confidence intervals are wide, and the extent of protection is uncertain. Serum samples were obtained from children 3-5 years of age who were participants in a preschool booster-vaccine trial. Serum bactericidal activity was measured with human complement. Group C anticapsular antibody concentrations were measured by a radioantigen binding assay. Passive protection was analyzed in an infant rat bacteremia model. Serum samples from UK children who had been immunized 2-3 years earlier as infants or toddlers had higher levels of radioantigen binding, bactericidal activity, and passive protection than did historical control serum samples from unimmunized children (P or =1 : 4 (considered to be protective) than those immunized as toddlers (61% vs. 24%; Pprotection (50% and 41%, respectively; P=.4). We found no evidence of lower immunity in children immunized as infants than as toddlers. On the basis of serum bactericidal activity and/or passive protection, 40%-50% of both age groups are protected at 2-3 years after immunization, which was significantly greater than in unimmunized historical controls (<5%).

  19. In vitro antibacterial activity of tigecycline against clinical isolates of Linezolid-Intermediate (LIE and Linezolid-Resistant Enterococci (LRE by time-kill assay

    Directory of Open Access Journals (Sweden)

    Gustavo Enck Sambrano

    2014-08-01

    Full Text Available Introduction: Enterococci have become the third major leading cause of nosocomial bacteraemia, an infection which is significantly associated with the risk of developing infective endocarditis. Linezolid provides high rates of clinical cure and microbiologic success in complicated infections due to Enterococcus spp. However, several instances of emergence of resistance during linezolid treatment have been reported. The aim of this study was evaluate the activity of tigecycline against Linezolid-Intermediate (LIE and Linezolid-Resistant Enterococcus faecalis (LRE by the time-kill assay. Methods: Five isolates of LRE and two isolates of LIE were used in this study. MICs were determined by broth dilution following the CLSI (2014 guidelines. Time-kill assay was employed to access the in vitro response profile of tigecycline. Results: All seven of the isolates presented MIC of 0.125μg/mL. Tigecycline activity was individually evaluated and in three of the five isolates of LRE it presented bactericidal. Against the other isolates, tigecycline showed bacteriostatic activity. The tigecycline activity was measured according to CLSI criteria. Conclusions: Tigecycline presented both bacteriostatic and bactericidal activity against tested isolates, result not yet described in previous studies. Time and concentrations above MIC were key factors to achieving bactericidal effect. MIC and the tested concentration below it resulted in bacteriostatical effect to enterococci, corroborating previous data.

  20. In vitro activity of XF-73, a novel antibacterial agent, against antibiotic-sensitive and -resistant Gram-positive and Gram-negative bacterial species.

    Science.gov (United States)

    Farrell, David J; Robbins, Marion; Rhys-Williams, William; Love, William G

    2010-06-01

    The antibacterial activity of XF-73, a dicationic porphyrin drug, was investigated against a range of Gram-positive and Gram-negative bacteria with known antibiotic resistance profiles, including resistance to cell wall synthesis, protein synthesis, and DNA and RNA synthesis inhibitors as well as cell membrane-active antibiotics. Antibiotic-sensitive strains for each of the bacterial species tested were also included for comparison purposes. XF-73 was active [minimum inhibitory concentration (MIC) 0.25-4 mg/L] against all of the Gram-positive bacteria tested, irrespective of the antibiotic resistance profile of the isolates, suggesting that the mechanism of action of XF-73 is unique compared with the major antibiotic classes. Gram-negative activity was lower (MIC 1 mg/L to > 64 mg/L). Minimum bactericidal concentration data confirmed that the activity of XF-73 was bactericidal. Time-kill kinetics against healthcare-associated and community-associated meticillin-resistant Staphylococcus aureus isolates demonstrated that XF-73 was rapidly bactericidal, with > 5 log(10) kill obtained after 15 min at 2 x MIC, the earliest time point sampled. The post-antibiotic effect (PAE) for XF-73 under conditions where the PAE for vancomycin was 5.4 h. XF-73 represents a novel broad-spectrum Gram-positive antibacterial drug with potentially beneficial characteristics for the treatment and prevention of Gram-positive bacterial infections. 2010. Published by Elsevier B.V.

  1. Applicability assessment of ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ to the eradication of Legionella in rainwater storage tanks for household use

    Science.gov (United States)

    Oana, Kozue; Kobayashi, Michiko; Yamaki, Dai; Sakurada, Tsukasa; Nagano, Noriyuki; Kawakami, Yoshiyuki

    2015-01-01

    Water environments appear to be the habitats of Legionella species. Legionellosis is considered as a preventable illness because bacterial reservoirs can be controlled and removed. Roof-harvested rainwater has attracted significant attention not only as a groundwater recharge but also as a potential alternative source of nonpotable water. We successfully developed ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ using the thermal spraying method. The ceramic microbeads were demonstrated to have bactericidal activities against not only Legionella but also coliform and heterotrophic bacteria. Immersing the ceramic microbeads in household rainwater storage tanks was demonstrated to yield the favorable eradication of Legionella organisms. Not only rapid-acting but also long-lasting bactericidal activities of the ceramic microbead were exhibited against Legionella pneumophila. However, time-dependent attenuation of the bactericidal activities against Legionella were also noted in the sustainability appraisal experiment. Therefore, the problems to be overcome surely remain in constantly managing the Legionella-pollution by means of immersing the ceramic microbeads. The results of our investigation apparently indicate that the earthplus™-coated ceramic microbeads would become the favorable tool for Legionella measures in household rainwater storage tanks, which may become the natural reservoir for Legionella species. Our investigation would justify further research and data collection to obtain more reliable procedures to microbiologically regulate the Legionella in rainwater storage tanks. PMID:26346201

  2. The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein.

    Directory of Open Access Journals (Sweden)

    Peter T Beernink

    Full Text Available The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH, is fH-binding protein (fHbp, which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001 and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003. By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002, and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001. Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.

  3. Activities of colistin- and minocycline-based combinations against extensive drug resistant Acinetobacter baumannii isolates from intensive care unit patients

    Directory of Open Access Journals (Sweden)

    Li Jian

    2011-04-01

    Full Text Available Abstract Background Extensive drug resistance of Acinetobacter baumannii is a serious problem in the clinical setting. It is therefore important to find active antibiotic combinations that could be effective in the treatment of infections caused by this problematic 'superbug'. In this study, we analyzed the in vitro activities of three colistin-based combinations and a minocycline-based combination against clinically isolated extensive drug resistant Acinetobacter baumannii (XDR-AB strains. Methods Fourteen XDR-AB clinical isolates were collected. The clonotypes were determined by polymerase chain reaction-based fingerprinting. Susceptibility testing was carried out according to the standards of the Clinical and Laboratory Standards Institute. Activities of drug combinations were investigated against four selected strains and analyzed by mean survival time over 12 hours (MST12 h in a time-kill study. Results The time-kill studies indicated that the minimum inhibitory concentration (MIC of colistin (0.5 or 0.25 μg/mL completely killed all strains at 2 to 4 hours, but 0.5×MIC colistin showed no bactericidal activity. Meropenem (8 μg/mL, minocycline (1 μg/mL or rifampicin (0.06 μg/mL did not show bactericidal activity. However, combinations of colistin at 0.5×MIC (0.25 or 0.125 μg/mL with each of the above were synergistic and shown bactericidal activities against all test isolates. A combination of meropenem (16 μg/mL with minocycline (0.5×MIC, 4 or 2 μg/mL was synergitic to all test isolates, but neither showed bactericidal activity alone. The MST12 h values of drug combinations (either colistin- or minocycline-based combinations were significantly shorter than those of the single drugs (p Conclusions This study indicates that combinations of colistin/meropenem, colistin/rifampicin, colistin/minocycline and minocycline/meropenem are synergistic in vitro against XDR-AB strains.

  4. Removal of faecal bacteria and nutrients from domestic wastewater ...

    African Journals Online (AJOL)

    LEKEUFACK Martin

    between vegetated wetland and the non-vegetated control during the dry season of the second year. Wetlands ... leakages from the roots of macrophytes, bactericidal substances ... despite the continuous report of a water related diseases.

  5. Ethiopian Journal of Biological Sciences - Vol 10, No 1 (2011)

    African Journals Online (AJOL)

    Short Communication A study on the bactericidal effect of nisin purified from Lactococcus lactis · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Kalidoss Rajendran, Ramanathan Nagappan, Kalpana Ramamurthy ...

  6. MRSA decolonization failure—are biofilms the missing link?

    Directory of Open Access Journals (Sweden)

    Frank Günther

    2017-03-01

    Full Text Available Abstract Background Device-associated infections due to biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA have been recently associated with the failure of antibiotic treatment and decolonization measures. The goal of our study was to evaluate the extent to which the formation of biofilms influenced the efficacy of topical decolonization agents or disinfectants such as mupirocin (MUP, octenidine (OCT, chlorhexidine (CHG, polyhexanide (POL, and chloroxylenol (CLO. Methods Bacterial killing in biofilms by the disinfectants and MUP was determined as the reduction [%] in metabolic activity determined by a biofilm viability assay that uses kinetic analysis of metabolic activity. The test substances were diluted in water with standardized hardness (WSH at 25 °C at the standard concentration as well as half the standard concentration to demonstrate the dilution effects in a practical setting. The tested concentrations were: CHG 1%, 2%; OCT 0.1%, 0.05%; PH 0.04%, 0.02%; and CLO 0.12%, 0.24%. A test organism suspension, 1 mL containing ~1 × 109 bacterial cells/mL, and 1 mL of sterile WSH were mixed and incubated for six different exposure times (15 s, 1, 3, 5, 10 and 20 min after the test substance was added. Additionally, the bactericidal effects of all substances were tested on planktonic bacteria and measured as the log10 reduction. Results The disinfectants OCT and CHG showed good efficacy in inhibiting MRSA in biofilms with reduction rates of 94 ± 1% and 91 ± 1%, respectively. POL, on the other hand, had a maximum efficacy of only 81 ± 7%. Compared to the tested disinfectants, MUP showed a significantly lower efficacy with <20% inhibition (p < .05. Bactericidal effects were the greatest for CHG (log10 reduction of 9.0, followed by OCT (7.7, POL (5.1, and CLO (6.8. MUP, however, showed a very low bactericidal effect of only 2.1. Even when the exposure time was increased to 24 h, 2% MUP did not show

  7. Survival and function of phagocytes in blood culture media

    DEFF Research Database (Denmark)

    Fischer, T K; Prag, J; Kharazmi, A

    1999-01-01

    The survival and function of human phagocytes in sterile aerobic and anaerobic blood culture media were investigated using neutrophil morphology, white blood cell count in a haemoanalyser, flow cytometry, oxidative burst response, and bactericidal effect in Colorbact and Septi-Chek blood culture...... media and Bact/Alert. When comparing agitation to stationary incubation no difference in phagocytic activity was found. The methods showed the same trends demonstrating that the phagocytes' viability and activity were prolonged by oxygen and shortened by anaerobic conditions and sodium polyethanol...... sulfonate (SPS). Best preserved activity and viability were found in the aerobic media containing less than 0.5 g/l SPS, in which significant phagocyte oxidative burst and bactericidal activity were found up to 4 days after inoculation. Considering that the majority of bacteremias are due to aerobic...

  8. Effects of ozone nano-bubble water on periodontopathic bacteria and oral cells - in vitro studies

    Science.gov (United States)

    Hayakumo, Sae; Arakawa, Shinichi; Takahashi, Masayoshi; Kondo, Keiko; Mano, Yoshihiro; Izumi, Yuichi

    2014-10-01

    The aims of the present study were to evaluate the bactericidal activity of a new antiseptic agent, ozone nano-bubble water (NBW3), against periodontopathogenic bacteria and to assess the cytotoxicity of NBW3 against human oral cells. The bactericidal activities of NBW3 against representative periodontopathogenic bacteria, Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) were evaluated using in vitro time-kill assays. The cytotoxicity of NBW3 was evaluated using three-dimensional human buccal and gingival tissue models. The numbers of colony forming units (CFUs)/mL of P. gingivalis and A. actinomycetemcomitans exposed to NBW3 dropped to below the lower limit of detection (bacteria and is not cytotoxic to cells of human oral tissues. The use of NBW3 as an adjunct to periodontal therapy would be promising.

  9. African Journal of Biomedical Research - Vol 17, No 1 (2014)

    African Journals Online (AJOL)

    In-vitro Bactericidal Kinetics of Chlorhexidine Gluconate Disinfectant/ Antiseptic Formulations Containing Different Additives · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. PA Idowu, OS Idowu, 37-42 ...

  10. Optimal rate of irradiation of the organizms in cow's milk

    International Nuclear Information System (INIS)

    Filipov, Zh.

    1981-01-01

    Results showed that with increasing the time of ultra violet treatment the microbial pollution of milk dropped. With the irradiation method used by the authors best bactericidal effects were obtained at 60 min treatment. (author)

  11. IS COPPER REQUIRED FOR EASTERN OYSTER SETTING AND METAMORPHOSIS?

    Science.gov (United States)

    Recent field research with eastern oysters demonstrated higher defense activities, including hemocyte numbers, locomotion and bactericidal ability, associated with locations exhibiting relatively high contamination. Copper and zinc, found in high concentrations in tissues of oyst...

  12. BACTERICIDE IMPACT OF POLYMER-STABILIZED MULTI-FUNCTIONAL NANO-COMPOSITES

    Directory of Open Access Journals (Sweden)

    Graskova I.A.

    2012-08-01

    Full Text Available Synthesis on the basis of natural matrices in order to acquire products with the desired properties is one of the promising trends of modern science. Using polysaccharides as a matrix allowed to generate derivatives with diverse structures and new properties. Growing interest towards anti-microbe effect of selenium-containing nano-composites is induced by the phenomenon of antibiotic-resistance of contemporary pathogenic microorganisms.Clavibacter genus bacteria are the most significant and widely spread among gram-positive bacteria. Bacteria cells are static pleimorphous rods, normally singular, sometimes coupled or joined in short chains, strict anaerobes in need of certain growth factors, non-sporogenous. Clavibacter michiganensis subsp. sepedonicus cause potato ring rot. At the tuber slice the damage is shaped as a ring; growing bacteria are accumulated in the conducting vessels causing their occlusion and therefore gradual withering of leaves and stem. This disease is distributed at all the continents including Australia. Harvest loss through ring rot damage may reach 10-45%.Our work was aimed at the study of complex interaction between microbe cultivar and selenium-based nanocomposites. Bacterial strain Аs1405 was acquired from the All-Russia collection of microorganisms, IMBP RAS. This genus is not included in the classification of pathogenic microorganisms by pathogenic groups of Sanitary-Epidemiological Rules SP 1.3.2322-08. The present study was focused on characteristics of the acquired strain.Fluorescent and electronic-scanning microscope was used to acquire photographs of bacterial cells. Pathogen was identified by PCR-analysis, which confirmed the presence of DNA of desired size. The extracted DNA was sequenced with the sequenced sequence added to Gen Bank under the number HQ394204. Cellulolytic and phytotoxic activity of this strain was determined.Chemistry Institute named A.E. Favorsky provided water-soluble nano-composites containing selenium stabilized by various polymers. Nano-composites anti-microbe activity was studied on the investigated strain of potato ring rot. Nano-composites of elementary selenium (3.4% Se and Se with arabinogalactan acquired from SeO2 (1.23% Se were found to demonstrate anti-microbe effect increasing with the rise of selenium content. The work enumerates various conditions and time periods of cultivation and determination of the influence of the given water-soluble nano-composites on bacterial cells survivability.

  13. Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins

    Czech Academy of Sciences Publication Activity Database

    Panova, Natalya; Zborníková, Eva; Šimák, Ondřej; Pohl, Radek; Kolář, M.; Bogdanová, K.; Večeřová, R.; Seydlová, G.; Fišer, R.; Hadravová, Romana; Šanderová, H.; Vítovská, D.; Šiková, M.; Látal, T.; Lovecká, P.; Barvík, I.; Krásný, L.; Rejman, Dominik

    2015-01-01

    Roč. 10, č. 12 (2015), e0145918/1-e0145918/28 E-ISSN 1932-6203 R&D Projects: GA TA ČR TA02010035 Institutional support: RVO:61388963 Keywords : cationic steroid antibiotics * Bacillus subtilis * antibacterial properties Subject RIV: CC - Organic Chemistry Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145918

  14. Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins

    Czech Academy of Sciences Publication Activity Database

    Panova, Natalya; Zborníková, E.; Šimák, O.; Pohl, R.; Kolář, M.; Bogdanová, K.; Večeřová, R.; Seydlová, G.; Fišer, R.; Hadravová, R.; Šanderová, Hana; Vítovská, Dragana; Šiková, Michaela; Látal, T.; Lovecká, P.; Barvík, I.; Krásný, Libor; Rejman, D.

    2015-01-01

    Roč. 10, č. 12 (2015) E-ISSN 1932-6203 R&D Projects: GA TA ČR TA02010035; GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:61388971 Keywords : CATIONIC STEROID ANTIBIOTICS * BACILLUS-SUBTILIS * ANTIBACTERIAL PROPERTIES Subject RIV: CE - Biochemistry Impact factor: 3.057, year: 2015

  15. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds

    Directory of Open Access Journals (Sweden)

    Ixtepan-Turrent Liliana

    2011-08-01

    Full Text Available Abstract The advance in nanotechnology has enabled us to utilize particles in the size of the nanoscale. This has created new therapeutic horizons, and in the case of silver, the currently available data only reveals the surface of the potential benefits and the wide range of applications. Interactions between viral biomolecules and silver nanoparticles suggest that the use of nanosystems may contribute importantly for the enhancement of current prevention of infection and antiviral therapies. Recently, it has been suggested that silver nanoparticles (AgNPs bind with external membrane of lipid enveloped virus to prevent the infection. Nevertheless, the interaction of AgNPs with viruses is a largely unexplored field. AgNPs has been studied particularly on HIV where it was demonstrated the mechanism of antiviral action of the nanoparticles as well as the inhibition the transmission of HIV-1 infection in human cervix organ culture. This review discusses recent advances in the understanding of the biocidal mechanisms of action of silver Nanoparticles.

  16. Bactericidal paper trays doped with silver nanoparticles for egg ...

    Indian Academy of Sciences (India)

    the AgNPs-deposited paper egg trays improved the shelf-life of the eggs by more than 14 days ... In this work, we developed a new method to prepare anti- ... on an electronic balance (Sartorius). ..... significant changes with respect to physical quality param- ... Due to possible human health effects from silver exposure,.

  17. Early bactericidal activity of ethambutol, pyrazinamide and the fixed ...

    African Journals Online (AJOL)

    sputum/day, that for pyrazinamide was 0.003 ± 0.014 log". CFU/ml sputum/day and ... P. R. Donald., O.Oi~ O.T.M.&H~ MAC.?, F.C.P. (S.AJ. South African ... Department of Medical Microbiology, St George's Hospital, London, UK. D. A Mitchison ...

  18. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Bhone Myint Kyaw

    2012-09-01

    Full Text Available Methicillin resistant Staphylococcus aureus (MRSA infection is a global concern nowadays. Due to its multi-drug resistant nature, treatment with conventional antibiotics does not assure desired clinical outcomes. Therefore, there is a need to find new compounds and/or alternative methods to get arsenal against the pathogen. Combination therapies using conventional antibiotics and phytochemicals fulfill both requirements. In this study, the efficacy of different phytochemicals in combination with selected antibiotics was tested against 12 strains of S. aureus (ATCC MRSA 43300, ATCC methicillin sensitive S. aureus or MSSA 29213 and 10 MRSA clinical strains collected from National University Hospital, Singapore. Out of the six phytochemicals used, tannic acid was synergistic with fusidic acid, minocycline, cefotaxime and rifampicin against most of strains tested and additive with ofloxacin and vancomycin. Quercetin showed synergism with minocycline, fusidic acid and rifampicin against most of the strains. Gallic acid ethyl ester showed additivity against all strains in combination with all antibiotics under investigation except with vancomycin where it showed indifference effect. Eugenol, menthone and caffeic acid showed indifference results against all strains in combination with all antibiotics. Interestingly, no antagonism was observed within these interactions. Based on the fractional inhibitory concentration indices, synergistic pairs were further examined by time-kill assays to confirm the accuracy and killing rate of the combinations over time. The two methods concurred with each other with 92% accuracy and the combinatory pairs were effective throughout the 24 hours of assay. The study suggests a possible incorporation of effective phytochemicals in combination therapies for MRSA infections.

  19. Bactericidal Efficiency of Silver Nanoparticles Synthesized from Annona squamosa

    Science.gov (United States)

    Jayavardhanan, R.; Nanda, Anima

    2016-09-01

    Nanotechnology is described as an emerging technology that not only holds promise for society, but also is capable of providing novel approaches to overcome our common problems. The present study focused on the synthesis of silver nanoparticles using the metabolites of Annona squamosa seeds. The biological reduction procedure proposed in this method was considered as better one compared to chemical mediated reduction methods. The advantages include nontoxic to the environment, less energy consuming and highly suitable for further biological applications. The seeds were separated from the fruit pulp, grinded into powder and dissolved in distilled water. The suspension was used as reducing agent and treated with silver nitrate at the concentration of 1mM. The reduction reaction was continuously monitored by UV-visible photo spectrometer. Further the samples were subjected to AFM, SEM and XRD analysis for the confirmation of their size, structure, agglomerations and the arrangements of crystals. Finally the antibacterial properties of nanoparticles were tested against clinically important pathogenic microorganisms using disc diffusion method and compared with the activities of standard antibiotics. The combinational effects of nanoparticles with commercial antibiotics also were tested by the same method.

  20. BACTERICIDE IMPACT OF POLYMER-STABILIZED MULTI-FUNCTIONAL NANO-COMPOSITES

    OpenAIRE

    Graskova I.A.; М.А. Zhivet’yev; G.B. Borovskii; B.G. Sukhov

    2012-01-01

    Synthesis on the basis of natural matrices in order to acquire products with the desired properties is one of the promising trends of modern science. Using polysaccharides as a matrix allowed to generate derivatives with diverse structures and new properties. Growing interest towards anti-microbe effect of selenium-containing nano-composites is induced by the phenomenon of antibiotic-resistance of contemporary pathogenic microorganisms.Clavibacter genus bacteria are the most significant and w...

  1. Anodic oxidation as a new practical procedure for water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Kirmaier, N; Schoeberl, M

    1980-05-01

    The anodic oxidation could be developed for practical purposes by extensive scientific investigations and engineering optimization. Its safe bactericide, virucide, fungicide and bacteriostatic effect combined with engineering advantages makes it an essential component for water processing.

  2. Incidence of high-level gentamicin resistance in enterococci at ...

    African Journals Online (AJOL)

    gentamicin resistance (HLGR) in enterococcal isolates at. Johannesburg Hospital. Design. Survey of laboratory isolates. Setting. Academic hospitals. Bacterial strains. Consecutive samples of enterococcaf isolates. ... that for severe infections, particularly endocarditis and meningitis, bactericidal antimicrobial therapy is ...

  3. CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation

    NARCIS (Netherlands)

    Marcos, Veronica; Zhou, Zhe; Yildirim, Ali Onder; Bohla, Alexander; Hector, Andreas; Vitkov, Ljubomir; Wiedenbauer, Eva-Maria; Krautgartner, Wolf Dietrich; Stoiber, Walter; Belohradsky, Bernd H.; Rieber, Nikolaus; Kormann, Michael; Koller, Barbara; Roscher, Adelbert; Roos, Dirk; Griese, Matthias; Eickelberg, Oliver; Döring, Gerd; Mall, Marcus A.; Hartl, Dominik

    2010-01-01

    Upon activation, neutrophils release DNA fibers decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). Although NETs are bactericidal and contribute to innate host defense, excessive NET formation has been linked to the pathogenesis of autoinflammatory diseases.

  4. Attenuation of Porphyromonas gingivalis oral infection by α-amylase and pentamidine.

    Science.gov (United States)

    Li, Ying; Miao, Yu-Song; Fu, Yun; Li, Xi-Ting; Yu, Shao-Jie

    2015-08-01

    The Porphyromonas gingivalis bacterium is one of the most influential pathogens in oral infections. In the current study, the antimicrobial activity of α-amylase and pentamidine against Porphyromonas gingivalis was evaluated. Their in vitro inhibitory activity was investigated with the agar overlay technique, and the minimal inhibitory and bactericidal concentrations were determined. Using the bactericidal concentration, the antimicrobial actions of the inhibitors were investigated. In the present study, multiple techniques were utilized, including scanning electron microscopy (SEM), general structural analysis and differential gene expression analysis. The results obtained from SEM and bactericidal analysis indicated a notable observation; the pentamidine and α-amylase treatment destroyed the structure of the bacterial cell membranes, which led to cell death. These results were used to further explore these inhibitors and the mechanisms by which they act. Downregulated expression levels were observed for a number of genes coding for hemagglutinins and gingipains, and various genes involved in hemin uptake, chromosome replication and energy production. However, the expression levels of genes associated with iron storage and oxidative stress were upregulated by α-amylase and pentamidine. A greater effect was noted in response to pentamidine treatment. The results of the present study demonstrate promising therapeutic potential for α-amylases and pentamidine. These molecules have the potential to be used to develop novel drugs and broaden the availability of pharmacological tools for the attenuation of oral infections caused by Porphyromonas gingivalis.

  5. Antimicrobial effect of probiotics on bacterial species from dental plaque.

    Science.gov (United States)

    Zambori, Csilla; Morvay, Attila Alexandru; Sala, Claudia; Licker, Monica; Gurban, Camelia; Tanasie, Gabriela; Tirziu, Emil

    2016-03-31

    The antimicrobial role of probiotic Lactobacillus casei subspecies casei DG (L. casei DG) and of the mix culture of probiotic Lactobacillus acidophilus LA-5 and Bifidobacterium BB-12 was tested on species of Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera from supragingival sites from dogs with dental disease of different breed, age, sex, weight, and diet. The research was conducted on these four genera because of their importance in zoonotic infections after dog bites. Species from Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera were isolated and identified. To test the antimicrobial efficacy of L. casei DG and the mixed culture of probiotic L. acidophilus LA-5 and Bifidobacterium bifidum BB-12 on the pathogenic species, the agar overlay method was used. L. casei DG had a bactericidal effect on all analyzed species isolated from Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera after 24 hours of incubation. The mixed probiotic culture made up of L. acidophilus LA-5 and Bifidobacterium BB-12 species had no bactericidal effect on the species of Staphylococcus and Streptococcus genera, which were resistant. However, it had a bacteriostatic effect on several species of Pasteurella and Neisseria genera. This work highlights the antimicrobial potential of probiotics in vitro, demonstrating that the probiotic L. casei DG has a bactericidal effect on all analyzed species isolated from dental plaque and that the mix culture of probiotic L. acidophilus LA-5 and Bifidobacterium BB-12 has only a bacteriostatic effect.

  6. Alpha amylase assisted synthesis of TiO2 nanoparticles: Structural characterization and application as antibacterial agents

    International Nuclear Information System (INIS)

    Ahmad, Razi; Mohsin, Mohd; Ahmad, Tokeer; Sardar, Meryam

    2015-01-01

    Graphical abstract: - Highlights: • Green synthesis of TiO 2 nanoparticles using an enzyme alpha amylase has been described. • The morphology and shape depends upon the concentration of the alpha amylase enzyme. • The biosynthesized nanoparticles show good bactericidal effect against both gram positive and gram negative bacteria. • The bactericidal effect was further confirmed by Confocal microscopy and TEM. - Abstract: The enzyme alpha amylase was used as the sole reducing and capping agent for the synthesis of TiO 2 nanoparticles. The biosynthesized nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopic (TEM) methods. The XRD data confirms the monophasic crystalline nature of the nanoparticles formed. TEM data shows that the morphology of nanoparticles depends upon the enzyme concentration used at the time of synthesis. The presence of alpha amylase on TiO 2 nanoparticles was confirmed by FTIR. The nanoparticles were investigated for their antibacterial effect on Staphylococcus aureus and Escherichia coli. The minimum inhibitory concentration value of the TiO 2 nanoparticles was found to be 62.50 μg/ml for both the bacterial strains. The inhibition was further confirmed using disc diffusion assay. It is evident from the zone of inhibition that TiO 2 nanoparticles possess potent bactericidal activity. Further, growth curve study shows effect of inhibitory concentration of TiO 2 nanoparticles against S. aureus and E. coli. Confocal microscopy and TEM investigation confirm that nanoparticles were disrupting the bacterial cell wall

  7. Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Martin Rao

    2018-04-01

    Full Text Available Background: New tuberculosis (TB drug treatment regimens are urgently needed. This study evaluated the potential of the histone deacetylase inhibitors (HDIs valproic acid (VPA and suberoylanilide hydroxamic acid (SAHA to enhance the effects of first-line anti-TB drugs against intracellular Mycobacterium tuberculosis. Methods: M. tuberculosis H37Rv cultures were exposed to VPA or SAHA over 6 days, in the presence or absence of isoniazid (INH and rifampicin (RIF. The efficacy of VPA and SAHA against intracellular M. tuberculosis with and without INH or RIF was tested by treating infected macrophages. Bactericidal activity was assessed by counting mycobacterial colony-forming units (CFU. Results: VPA treatment exhibited superior bactericidal activity to SAHA (2-log CFU reduction, while both HDIs moderately improved the activity of RIF against extracellular M. tuberculosis. The bactericidal effect of VPA against intracellular M. tuberculosis was greater than that of SAHA (1-log CFU reduction and equalled that of INH (1.5-log CFU reduction. INH/RIF and VPA/SAHA combination treatment inhibited intracellular M. tuberculosis survival in a shorter time span than monotherapy (3 days vs. 6 days. Conclusions: VPA and SAHA have adjunctive potential to World Health Organization-recommended TB treatment regimens. Clinical evaluation of the two drugs with regard to reducing the treatment duration and improving treatment outcomes in TB is warranted. Keywords: Mycobacterium tuberculosis, Adjunct host-directed therapy, Tuberculosis, Histone deacetylase inhibitors, Repurposed drugs

  8. Potential antibiotic and anti-infective effects of rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. on Streptococcus pyogenes as revealed by proteomics

    NARCIS (Netherlands)

    Limsuwan, Surasak; Voravuthikunchai, Supayang Piyawan; van Dijl, Jan Maarten; Kayser, Oliver; Meinders, Hesseling A.

    2011-01-01

    Rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. leaf extract has a strong antibacterial activity against the bacterial pathogen Streptococcus pyogenes. Our previous studies indicated that the bactericidal activity of rhodomyrtone might involve intracellular targets. In the present studies we

  9. SYNTHESIS OF SUBSTITUTED FLAVONE DERIVATIVES AS ...

    African Journals Online (AJOL)

    Preferred Customer

    Flavone (2-phenylchromone) derivatives are naturally occurring heterocyclic compound belongs to the flavanoid group. It showed significant role in pharmaceutical effects [1] including leishmanicidal activity, oviposter stimulant phytoalexins, anti-HIV, vasodilator, antiviral, anti- oxidants, bactericidal, DNA cleavage, ...

  10. Vitamin C Pretreatment Enhances the Antibacterial Effect of Cold Atmospheric Plasma

    DEFF Research Database (Denmark)

    Helgadottir, Saga; Pandit, Santosh; Mokkapati, Venkata R. S. S.

    2017-01-01

    intervals and to evaluate the effect of combined treatment with vitamin C. We demonstrate that CAP is not very effective against 48 h mature bacterial biofilms of several common opportunistic pathogens: Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. However, if bacterial biofilms...... are pre-treated with vitamin C for 15 min before exposure to CAP, a significantly stronger bactericidal effect can be obtained. Vitamin C pretreatment enhances the bactericidal effect of cold plasma by reducing the viability from 10 to 2% in E. coli biofilm, 50 to 11% in P. aeruginosa, and 61 to 18% in S....... epidermidis biofilm. Since it is not feasible to use extended CAP treatments in medical practice, we argue that the pre-treatment of infectious lesions with vitamin C prior to CAP exposure can be a viable route for efficient eradication of bacterial biofilms in many different applications....

  11. Chitooligosaccharides--preparation with the aid of pectinase isozyme from Aspergillus niger and their antibacterial activity.

    Science.gov (United States)

    Kittur, Farooqahamed S; Vishu Kumar, Acharya B; Varadaraj, Mandyam C; Tharanathan, Rudrapatnam N

    2005-05-02

    An isozyme of pectinase from Aspergillus niger with polygalacturonase activity caused chitosanolysis at pH 3.5, resulting in low-molecular weight chitosan (86%), chitooligosaccharides (COs, 4.8%) and monomers (2.2%). HPLC showed the presence of COs with DP ranging from 2 to 6. Charcoal-Celite chromatography and re-N-acetylation of the COs followed by CD, IR, MALDI-TOF-MS and FAB-MS analyses revealed an abundance of chitobiose, chitotriose and chitotetraose. The COs-monomeric mixture showed a bactericidal effect towards Bacillus cereus and Escherichia coli more efficiently than native chitosan. Among the chitooligomers, the hexamer showed maximum antibacterial effect followed by the penta-, tetra-, tri- and dimers. Of the two monomers, only GlcN showed slight bacterial growth inhibition. SEM revealed bactericidal action patterns of COs-monomeric mixture towards B. cereus and E. coli.

  12. Er:YAG laser for endodontics: efficiency and safety

    Science.gov (United States)

    Hibst, Raimund; Stock, Karl; Gall, Robert; Keller, Ulrich

    1997-12-01

    Recently it has been shown that bacterias can be sterilized by Er:YAG laser irradiation. By optical fiber transmission the bactericidal effect can also be used in endodontics. In order to explore potential laser parameters, we further investigated sterilization of caries and measured temperatures in models simulating endodontic treatment. It was found out that the bactericidal effect is cumulative, with single pulses being active. This offers to choose all laser parameters except pulse energy (radiant exposure) from technical, practical or safety considerations. For clinical studies the following parameter set is proposed for efficient and safe application (teeth with a root wall thickness > 1 mm, and prepared up to ISO 50): pulse energy: 50 mJ, repetition rate: 15 Hz, fiber withdrawal velocity: 2 mm/s. With these settings 4 passes must be performed to accumulate the total dose for sterilization.

  13. A novel thermal decomposition approach to synthesize hydroxyapatite-silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli.

    Science.gov (United States)

    Sahni, Geetika; Gopinath, P; Jeevanandam, P

    2013-03-01

    A novel thermal decomposition approach to synthesize hydroxyapatite-silver (Hap-Ag) nanocomposites has been reported. The nanocomposites were characterized by X-ray diffraction, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and diffuse reflectance spectroscopy techniques. Antibacterial activity studies for the nanocomposites were explored using a new rapid access method employing recombinant green fluorescent protein (GFP) expressing antibiotic resistant Escherichia coli (E. coli). The antibacterial activity was studied by visual turbidity analysis, optical density analysis, fluorescence spectroscopy and microscopy. The mechanism of bactericidal action of the nanocomposites on E. coli was investigated using atomic force microscopy, and TEM analysis. Excellent bactericidal activity at low concentration of the nanocomposites was observed which may allow their use in the production of microbial contamination free prosthetics. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Gamma-Irradiation modified polypropylene and nano silver hybrid films: antibacterial activity

    International Nuclear Information System (INIS)

    Oliani, Washigton L.; Alcantara, Mara T.S.; Lima, Luis F.C.P. de; Bueno, Nelson R.; Rogero, Sizue O.; Lugao, Ademar B.; Parra, Duclerc F.; Huenuman, Nilton E.L.; Santos, Priscila M. dos

    2013-01-01

    This paper presents a study of films based on blends of polypropylene (PP) with radiation modified PP and insertion of silver nanoparticles aiming bactericide effect. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. The blend of 50/50 PP and gamma irradiated PP was processed in a twin screw extruder. The polypropylene was processed for five PP-Nanocomposite AgNPs in different concentrations of 0.25%; 0.5%; 1.0%; 2.0% and 4.0% in wt%. The material was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), cytotoxicity assay and reduction colony-forming unit (CFU). The analyzed films showed agglomeration of silver particles and regions with homogeneous distribution of the particles. The interactions of the nano silver bactericidal effect with E. coli and S. aureus were assessed. (author)

  15. Gamma-Irradiation modified polypropylene and nano silver hybrid films: antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, Washigton L.; Alcantara, Mara T.S.; Lima, Luis F.C.P. de; Bueno, Nelson R.; Rogero, Sizue O.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: washoliani@usp.br [Instituto de Pesquisas Energeticas Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Huenuman, Nilton E.L.; Santos, Priscila M. dos [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Dept. of Microbiologia; Riella, Humberto G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2013-07-01

    This paper presents a study of films based on blends of polypropylene (PP) with radiation modified PP and insertion of silver nanoparticles aiming bactericide effect. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. The blend of 50/50 PP and gamma irradiated PP was processed in a twin screw extruder. The polypropylene was processed for five PP-Nanocomposite AgNPs in different concentrations of 0.25%; 0.5%; 1.0%; 2.0% and 4.0% in wt%. The material was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), cytotoxicity assay and reduction colony-forming unit (CFU). The analyzed films showed agglomeration of silver particles and regions with homogeneous distribution of the particles. The interactions of the nano silver bactericidal effect with E. coli and S. aureus were assessed. (author)

  16. INFLUENCE OF SEASONAL FACTORS ON OYSTER HEMOCYTE KILLING OF VIBRIO PARAHEMOLYTICUS

    Science.gov (United States)

    Seasonal variation of cellular defenses of oyster Crassostrea virginica against Vibrio parahaemolyticus were examined from June 1997 to December 1998 using a recently developed bactericidal assay that utilizes a tetrazolium dye. Mean hemocyte numbers, plasma lysozyme, and P. mari...

  17. The diarylquinoline TMC207 for multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Diacon, Andreas H.; Pym, Alexander; Grobusch, Martin; Patientia, Ramonde; Rustomjee, Roxana; Page-Shipp, Liesl; Pistorius, Christoffel; Krause, Rene; Bogoshi, Mampedi; Churchyard, Gavin; Venter, Amour; Allen, Jenny; Palomino, Juan Carlos; de Marez, Tine; van Heeswijk, Rolf P. G.; Lounis, Nacer; Meyvisch, Paul; Verbeeck, Johan; Parys, Wim; de Beule, Karel; Andries, Koen; Mc Neeley, David F.

    2009-01-01

    BACKGROUND: The diarylquinoline TMC207 offers a new mechanism of antituberculosis action by inhibiting mycobacterial ATP synthase. TMC207 potently inhibits drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro and shows bactericidal activity in patients who have drug-susceptible

  18. Detection of metallo-beta-lactamase producing Pseudomonas ...

    African Journals Online (AJOL)

    sunny t

    2016-02-24

    Feb 24, 2016 ... A big concern with using these methods is the direct bactericidal effect of EDTA on .... comparison; it was about 20 mm (data not shown). The diminution ... disadvantages of the DDST is the subjective interpretation of results ...

  19. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella Enteritidis

    Science.gov (United States)

    We studied the antimicrobial effects of berry extracts obtained from four cultivars (Elliott, Darrow, Bluecrop and Duke) of blueberry (Vaccinium corymbosum L.) on the growth of Listeria monocytogenes and Salmonella Enteritidis. The minimal inhibitory concentration (MIC) and minimal bactericidal conc...

  20. Evaluation of fusidic acid in therapy of experimental Staphylococcus aureus meningitis

    DEFF Research Database (Denmark)

    Østergaard, Christian; Yieng-Kow, Runa Vavia; Knudsen, Jenny Dahl

    2003-01-01

    Combination therapy that includes fusidic acid, an antimicrobial agent highly active against staphylococci, has been recommended in the treatment of patients with Staphylococcus aureus meningitis. The aim of this study was to evaluate the pharmacokinetic, CSF bactericidal and anti-inflammatory pr...

  1. Butterfly extracts show antibacterial activity

    Science.gov (United States)

    Extracts of several British butterfly species were tested and shown to possess powerful bactericidal activity against the gram-positive bacteria Staphylococcus aureus (S. aureus). The active compounds were identified as hydroxylated pyrrolizidine alkaloids (PAs) related to loline with nitrogen at C-...

  2. GLYOXAL - DISINFECTANT OF WIDE RANGE OF ANTIMICROBIAL ACTION Глиоксаль – дезинфектант широкого спектра антимикробного действия

    OpenAIRE

    Kolytchev N. M.; Arzhakov V. N.; Arzhakov P. V.; Serikbaev R. Y.; Kuchkina M. A.

    2013-01-01

    The article gives brief information about the development of the domestic technology of industrial synthesis of glyoxal and presents the results of the bactericidal properties of it on various micro-organisms and depending on the structure of the treated surface

  3. to view fulltext PDF

    Indian Academy of Sciences (India)

    Evaluation of biodegradation and biocompatibility of collagen/ chitosan/alkaline ... phosphate from oral bacteria and their adhesion studies on ... Toxicity of ZnO nanoparticles on germinating Sesamum ... Photocatalytic reactor for organic compound removal using .... Bactericidal paper trays doped with silver nanoparticles.

  4. Membrane-active mechanism of LFchimera against Burkholderia pseudomallei and Burkholderia thailandensis

    NARCIS (Netherlands)

    Kanthawong, S.; Puknun, A.; Bolscher, J.G.M.; Nazmi, K.; van Marle, J.; de Soet, J.J.; Veerman, E.C.I.; Wongratanacheewin, S.; Taweechaisupapong, S.

    2014-01-01

    LFchimera, a construct combining two antimicrobial domains of bovine lactoferrin, lactoferrampin265-284 and lactoferricin17-30, possesses strong bactericidal activity. As yet, no experimental evidence was presented to evaluate the mechanisms of LFchimera against Burkholderia isolates. In this study

  5. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function

    DEFF Research Database (Denmark)

    Yang, Jason H.; Bhargava, Prerna; McCloskey, Douglas

    2017-01-01

    Bactericidal antibiotics alter microbial metabolism as part of their lethality and can damage mitochondria in mammalian cells. In addition, antibiotic susceptibility is sensitive to extracellular metabolites, but it remains unknown whether metabolites present at an infection site can affect eithe...

  6. Efficacy of HOCl scavenging by sulfur-containing compounds: antioxidant activity of glutathione disulfide?

    NARCIS (Netherlands)

    den Hartog, G.J.M.; Haenen, G.R.M.M.; Vegt, E.; van der Vijgh, W.J.F.; Bast, A.

    2002-01-01

    Efficacy of HOCl scavenging by sulfur-containing compounds: antioxidant activity of glutathione disulfide? den Hartog GJ, Haenen GR, Vegt E, van der Vijgh WJ, Bast A. Department of Pharmacology and Toxicology, Maastricht University, The Netherlands. Hypochlorous acid (HOCl) is a bactericidal

  7. Pharmacodynamics of beta-lactam antibiotics. Studies on the paradoxical and postantibiotic effects in vitro and in an animal model.

    Science.gov (United States)

    Odenholt-Tornqvist, I

    1989-01-01

    The pharmacodynamics of antibiotics, i.e. the rate of killing and the time before regrowth of surviving bacteria, may be important factors for determination of the dosage interval. In the present study the effect of protein binding, antibiotic concentrations, bacterial growth phase and bacterial inoculum on the rate of bacterial killing was investigated. The postantibiotic effect (PAE) was also studied in vitro and in vivo. The killing rate of S. aureus did not differ when the bacteria were exposed to the same free concentrations of dicloxacillin in medium with and without albumin. Protein binding per se did thus not diminish the bactericidal activity. A paradoxically reduced bactericidal effect was noted when S. aureus was exposed to high concentrations of dicloxacillin, cloxacillin and benzylpenicillin. For determination of PAE of imipenem on Ps. aeruginosa, counts of viable bacteria were compared with assay of bacterial intracellular ATP. Both methods demonstrated a PAE for the strains tested at an inoculum of 10(6) cfu/ml. At an inoculum of 10(8) cfu/ml no PAE was found, which coincided with a lack of bactericidal effect. Both the PAE and the bactericidal effect were restored with aeration of the cultures, indicating insufficient penetration of imipenem to the target sites at low oxygen tension. An in vivo model in rabbits with implanted tissue cages was developed for evaluation of the PAE. Group A beta-hemolytic streptococci showed a PAE of approximately 2 h in vivo, which correlated well with the PAE found in vitro. Despite that streptococci in postantibiotic phase (PA-phase) were non-multiplying, such bacteria were killed as efficiently as previously untreated controls when exposed to 10xMIC of penicillin both in vitro and in vivo. However, streptococci in PA-phase were much more sensitive to the repeated challenge to subinhibitory concentrations of penicillin than previously untreated controls. In vivo, no difference in sensitivity to sub-MIC penicillin

  8. A polysaccharide isolated from the liquid culture of Lentinus edodes (shiitake) mushroom mycelia containing black rice bran protects mice against Salmonellosis through up-regulation of the Th1 immune reaction

    Science.gov (United States)

    The present study investigated the antibacterial effect of a bioprocessed polysaccharide (BPP) isolated from Lentinus edodes liquid mycelial culture supplemented with black rice bran against murine salmonellosis. BPP was not bactericidal in vitro, but did, however stimulate uptake of the bacteria i...

  9. Antimicrobial activity of Diospyros melanoxylon bark from Similipal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... Phytomedicines have been an integral part of traditional .... inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of D. melanoxylon bark extracts on bacterial strains. S. aureusa. S. epidermidisa. B. licheniformisa. E. colia ... wrappers in the bidi (cigarette) industry (Mallavadhani et.

  10. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens

    NARCIS (Netherlands)

    Kwakman, P.H.S.; Boer, den L.; Ruyter-Spira, C.; Creemers-Molenaar, T.; Helsper, J.P.F.G.; Vandenbroucke-Grauls, C.M.J.E.; Zaat, S.A.J.; Velde, te A.A.

    2011-01-01

    Honey has potent activity against both antibioticsensitive and -resistant bacteria, and is an interesting agent for topical antimicrobial application to wounds. As honey is diluted by wound exudate, rapid bactericidal activity up to high dilution is a prerequisite for its successful application. We

  11. Enzymatic removal and disinfection of bacterial biofilms

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Falholt, Per; Gram, Lone

    1997-01-01

    -coated hydroxyapatite. The activity of enzymes against bacterial cells in biofilm was measured by fluorescence microscopy and an indirect conductance test in which evolution of carbon dioxide was measured. Glucose oxidase combined with lactoperoxidase was bactericidal against biofilm bacteria but did not remove...

  12. Comparative antimicrobial activity of clove and fennel essential oils ...

    African Journals Online (AJOL)

    Bactericidal activity of culinary spices was evaluated against five food spoilage bacteria namely: Pseudomonas syringae, Bacillus subtilis, Escherichia coli, Staphylococcus sp., and Aeromicrobium erythreum. Fennel oil was found fairly active against bacterial strains as compared to clove oil with highest antibacterial activity ...

  13. Legionella pneumophila transcriptional response following exposure to CuO nanoparticles

    Science.gov (United States)

    Copper ions are an effective antimicrobial agent used to control Legionnaires’ disease and Pontiac fever arising from institutional drinking water systems. Here we present data on an alternative bactericidal agent, CuO nanoparticles (CuO-NPs), and test its efficacy at three conce...

  14. Effect of Carvacrol on Salmonella Saintpaul Biofilms on Stainless ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of carvacrol against Salmonella Saintpaul biofilms on stainless steel surface. Methods: The effects of carvacrol on planktonic cells were evaluated by determining the minimum inhibitory concentration and minimal bactericidal concentration. The action of carvacrol on Salmonella Saintpaul ...

  15. Kinetic studies of the action of Lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane.

    NARCIS (Netherlands)

    Abee, T.; Klaenhammer, T.R.; Letellier, L.

    1994-01-01

    The bacteriocin lactacin F is bactericidal against Lactobacillus delbrueckii, Lactobacillus helveticus, and Enterococcus faecalis. Activity against L. delbrueckii was recently shown to be dependent on two peptides, LafA and LafX, which are encoded within the lactacin F operon (T. R. Klaenhammer,

  16. Diminished in vitro antibacterial activity of oxacillin against clinical isolates of borderline oxacillin-resistant Staphylococcus aureus

    NARCIS (Netherlands)

    Croes, S; Beisser, P S; Terporten, P H; Neef, C; Deurenberg, R H; Stobberingh, E E

    Since it is unknown whether β-lactam antimicrobial agents can be used effectively against borderline oxacillin-resistant Staphylococcus aureus (BORSA) with oxacillin MICs ≥4 mg/L, the in vitro bactericidal activity and pharmacodynamic effect of oxacillin against clinical BORSA isolates was

  17. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria.

    Science.gov (United States)

    Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L

    2015-01-01

    The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.

  18. The pharmacodynamic effect of amoxycillin and danofloxacin against Actinobacillus pleuropneumoniae in an in-vitro pharmacodynamic model

    DEFF Research Database (Denmark)

    Lindecrona, R.H.; Friis, C.; Jensen, N.E.

    1999-01-01

    The pharmacodynamic effect of amoxycillin and danofloxacin against two strains of Actinobacillus pleuropneumoniae was evaluated in an in-vitro pharmacodynamic model. For amoxycillin peak concentrations of 0.5, 1, and 4 mu g ml(-1) and half-lives of 3 and 15 hours were examined. For danofloxacin...... peak concentrations of 0.125, 0.5, and 1.5 mu g ml(-1) and half-lives of 1.5 and 7 hours were evaluated. The initial bactericidal effect was measured as the reduction in colony count (log CFU ml(-1)) during the first three hours, and the overall pharmacodynamic effect as the area under the bacterial...... growth versus time curve (AUBC). The initial bactericidal effect of amoxycillin was maximal at peak concentrations of two to four times the hnc. Peak concentration and half-life only influenced the pharmacodynamic effect of amoxycillin if the antibiotic concentration fell below the MIC during...

  19. Alpha amylase assisted synthesis of TiO{sub 2} nanoparticles: Structural characterization and application as antibacterial agents

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Razi; Mohsin, Mohd [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmad, Tokeer [Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Sardar, Meryam, E-mail: msardar@jmi.ac.in [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India)

    2015-02-11

    Graphical abstract: - Highlights: • Green synthesis of TiO{sub 2} nanoparticles using an enzyme alpha amylase has been described. • The morphology and shape depends upon the concentration of the alpha amylase enzyme. • The biosynthesized nanoparticles show good bactericidal effect against both gram positive and gram negative bacteria. • The bactericidal effect was further confirmed by Confocal microscopy and TEM. - Abstract: The enzyme alpha amylase was used as the sole reducing and capping agent for the synthesis of TiO{sub 2} nanoparticles. The biosynthesized nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopic (TEM) methods. The XRD data confirms the monophasic crystalline nature of the nanoparticles formed. TEM data shows that the morphology of nanoparticles depends upon the enzyme concentration used at the time of synthesis. The presence of alpha amylase on TiO{sub 2} nanoparticles was confirmed by FTIR. The nanoparticles were investigated for their antibacterial effect on Staphylococcus aureus and Escherichia coli. The minimum inhibitory concentration value of the TiO{sub 2} nanoparticles was found to be 62.50 μg/ml for both the bacterial strains. The inhibition was further confirmed using disc diffusion assay. It is evident from the zone of inhibition that TiO{sub 2} nanoparticles possess potent bactericidal activity. Further, growth curve study shows effect of inhibitory concentration of TiO{sub 2} nanoparticles against S. aureus and E. coli. Confocal microscopy and TEM investigation confirm that nanoparticles were disrupting the bacterial cell wall.

  20. A phase 1 study of a meningococcal native outer membrane vesicle vaccine made from a group B strain with deleted lpxL1 and synX, over-expressed factor H binding protein, two PorAs and stabilized OpcA expression.

    Science.gov (United States)

    Keiser, P B; Biggs-Cicatelli, S; Moran, E E; Schmiel, D H; Pinto, V B; Burden, R E; Miller, L B; Moon, J E; Bowden, R A; Cummings, J F; Zollinger, W D

    2011-02-04

    This phase I clinical trial assessed the safety and immunogenicity of a native outer membrane vesicle (NOMV) vaccine prepared from an lpxL1(-) synX(-) mutant of strain 8570(B:4:P1.19,15:L8-5) of Neisseria meningitidis. Additional mutations enhance the expression of factor H binding protein variant 1 (fHbp v.1), stabilize expression of OpcA and introduce a second PorA (P1.22,14). Thirty-six volunteers were assigned to one of four dose groups (10, 25, 50 and 75 mcg, based on protein content) to receive three intramuscular injections at six week intervals with aluminum hydroxide adjuvant. Specific local and systemic adverse events were solicited by diary and at visits on days 2, 7, and 14 after each vaccination. Blood chemistries, complete blood count, and coagulation studies were measured on each vaccination day and again 2 and 14 days later. Blood for ELISA and serum bactericidal assays was drawn two and six weeks after each vaccination. The proportion of volunteers who developed a fourfold or greater increase in bactericidal activity to the wild type parent of the vaccine strain at two weeks after the third dose was 27 out of 34 (0.79, 95% C.I. 0.65-0.93). Against four other group B strains the response rate ranged from 41% to 82% indicating a good cross reactive antibody response. Depletion assays show contributions to bactericidal activity from antibodies to lipooligosaccharide (LOS), fHbp v.1 and OpcA. Published by Elsevier Ltd.

  1. [Effectiveness and limits of the cleaners steam in hospitals].

    Science.gov (United States)

    Meunier, O; Meistermann, C; Schwebel, A

    2009-05-01

    We assessed bactericidal activity of the cleaners steam used for the bio-cleaning of the hospital surfaces. We performed of samples (Rodac) before and after use of cleaner steam and compared with bactericidal effect of disinfecting detergent used in hospital for surfaces. We studied this effectiveness for different time of steam contact. Finally, we wanted to prove, by air sampling, that aero-bio-contamination was possible generated by using cleaners steam. We show that bactericidal effect of the cleaner steam is superior of some tested disinfecting detergent, for the treatment of one square meter till 2 min. This effectiveness diminishes to be just identical in that some disinfecting detergent when use of the cleaner steam is up to two or four square meters surfaces till 2 min. On the other hand, the cleaner steam is less efficient in terms of bacterial destruction when the time of contact steam-soil is superior in 2 min for six square meter surface. The air bacterial pollution, generated by the use of the cleaner steam, is restricted and not significantly augmented if measured in 44 cm above the soil in the course of cleaning. The cleaner steam is indeed a very good equipment for the cleaning of surfaces but it is necessary to respect a time of minimal contact of 2 min for four square meters surfaces treaties to acquire an antibacterial effect at least so important as that acquired with used disinfecting detergent. The disinfection of surfaces is then user-dependent and the time of requested contact is can be not compatible with hospital obligations.

  2. Susceptibility of Salmonella Biofilm and Planktonic Bacteria to Common Disinfectant Agents Used in Poultry Processing.

    Science.gov (United States)

    Chylkova, Tereza; Cadena, Myrna; Ferreiro, Aura; Pitesky, Maurice

    2017-07-01

    Poultry contaminated with Salmonella enterica subsp. enterica are a major cause of zoonotic foodborne gastroenteritis. Salmonella Heidelberg is a common serotype of Salmonella that has been implicated as a foodborne pathogen associated with the consumption of improperly prepared chicken. To better understand the effectiveness of common antimicrobial disinfectants (i.e., peroxyacetic acid [PAA], acidified hypochlorite [aCH], and cetylpyridinium chloride [CPC]), environmental isolates of nontyphoidal Salmonella were exposed to these agents under temperature, concentration, and contact time conditions consistent with poultry processing. Under simulated processing conditions (i.e., chiller tank and dipping stations), the bacteriostatic and bactericidal effects of each disinfectant were assessed against biofilm and planktonic cultures of each organism in a disinfectant challenge. Log reductions, planktonic MICs, and mean biofilm eradication concentrations were computed. The biofilms of each Salmonella isolate were more resistant to the disinfectants than were their planktonic counterparts. Although PAA was bacteriostatic and bactericidal against the biofilm and planktonic Salmonella isolates tested at concentrations up to 64 times the concentrations commonly used in a chiller tank during poultry processing, aCH was ineffective against the same isolates under identical conditions. At the simulated 8-s dipping station, CPC was bacteriostatic against all seven and bactericidal against six of the seven Salmonella isolates in their biofilm forms at concentrations within the regulatory range. These results indicate that at the current contact times and concentrations, aCH and PAA are not effective against these Salmonella isolates in their biofilm state. The use of CPC should be considered as a tool for controlling Salmonella biofilms in poultry processing environments.

  3. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki, E-mail: denkbas@hacettepe.edu.tr

    2014-02-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue–implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. - Highlights: • Titanium surfaces were anodized and a nanotubular titania layer was obtained. • Drug eluting time was found to be increasing with anodizaton time. • Varying nanotube diameters has no effect in drug elution time but amount of incorporated drug.

  4. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites.

    Science.gov (United States)

    Cao, Weiwei; Zhang, Yu; Wang, Xi; Chen, Yinyan; Li, Qiang; Xing, Xiaodong; Xiao, Yuhong; Peng, Xuefeng; Ye, Zhiwen

    2017-07-01

    Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag + ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag + ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag + ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.

  5. Effects of low-molecular weight alcohols on bacterial viability

    Directory of Open Access Journals (Sweden)

    Man Adrian

    2017-10-01

    Full Text Available Alcohol based solutions are among the most convenient and wide spread aid in the prevention of nosocomial infections. The current study followed the efficacy of several types and isomers of alcohols on different bacterial species. Seven alcohols (ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl alcohol, and ethylene glycol were used to evaluate their minimal inhibitory and bactericidal effects by microdilution method on bacteria that express many phenotypical characteristics: different cell-wall structure (Gram positive/negative bacteria, capsule production (Klebsiella pneumoniae, antibiotic resistance (MRSA vs MSSA or high environmental adaptability (Pseudomonas aeruginosa. Results: The best inhibitory effect was noticed for n-propyl, followed by iso-propyl, n-butyl, and iso-butyl alcohols with equal values. Ethylene glycol was the most inefficient alcohol on all bacteria. In K. pneumoniae and P. aeruginosa, the bactericidal concentrations were higher than the inhibitory one, and to a level similar to that encountered for most of the Gram-positive bacteria. Among Gram-positive cocci, E. faecalis presented the lowest susceptibility to alcohols. Conclusions: All alcohols presented good effect on bacteria, even in low concentrations. Compared to ethanol as standard, there are better alternatives that can be used as antimicrobials, namely longer-chain alcohols such as propyl or butyric alcohols and their iso- isomers. Ethylene glycol should be avoided, due to its toxicity hazard and low antimicrobial efficacy. Bacterial phenotype (highly adaptable bacteria, biofilm formation and structure (cell wall structure, presence of capsule may drastically affect the responsiveness to the antimicrobial activity of alcohols, leading to higher bactericidal than inhibitory concentrations.

  6. Antimicrobial potential of Casearia sylvestris against oral bacteria

    Directory of Open Access Journals (Sweden)

    Amanda Henriques CAVALHEIRO

    Full Text Available Abstract Aim The aim of this study was to obtain Casearia sylvestris leave extracts by different extractive methods, including the obtention of essential oil, in order to compare their antimicrobial activities to conventional mouthwash chlorhexidine against oral bacteria. Material and method For this evaluation, extracts from the leaves were obtained by different methods of extraction (infusion, decoction, maceration and percolation using different solvent systems: water 100%, ethanol 100%, methanol 100%, water: ethanol 3:7; water: ethanol 7:3; water: methanol 7:3 and water: methanol 3:7. The essential oil, which corresponds to a volatile fraction, was obtained by hydrodistillation using Clevenger modified apparatus. The microdilution broth method was used to determine the values of minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC for the following microorganisms: Streptococcus mutans ATCC 25175, S. mitis ATCC 49456, S. sanguinis ATCC 10556, S. salivarius ATCC 25975, Lactobacillus casei ATCC 11578 and Enterococcus faecalis ATCC4082. Chlorhexidine gluconate was used as a positive control. Result All extracts evaluated in the used protocol displayed MIC values higher than 400 µg/mL and few showed bactericidal activity. The antimicrobial activity of essential oil was higher than the activity of the extracts, and the best minimum inhibitory concentration and minimum bactericidal concentration values were obtained against L. casei (MIC of 0.023 µg/mL and MBC of 0.046 µg/mL and S. mutans (MIC of 25 µg/mL and MBC of 50 µg/mL, respectively. Conclusion The essential oil of Casearia sylvestris has significant antimicrobial activity against oral microorganisms.

  7. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Huang, Huei Tsz

    2012-01-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: ► Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. ► The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. ► Modified SBS membrane for wound dressing is evaluated. ► Membranes are sterile semipermeable with bactericidal activity and transparent. ► Membranes can be considered for shallow wound with low exudates.

  8. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion

    International Nuclear Information System (INIS)

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki

    2014-01-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue–implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. - Highlights: • Titanium surfaces were anodized and a nanotubular titania layer was obtained. • Drug eluting time was found to be increasing with anodizaton time. • Varying nanotube diameters has no effect in drug elution time but amount of incorporated drug

  9. In vitro profiling of antimethicillin-resistant Staphylococcus aureus activity of thymoquinone against selected type and clinical strains.

    Science.gov (United States)

    Hariharan, P; Paul-Satyaseela, M; Gnanamani, A

    2016-03-01

    This study explores antimethicillin-resistant Staphylococcus aureus (MRSA) activity of a bioactive phytochemical constituent, thymoquinone obtained from the medicinal herb, Nigella sativa Linn. Based on initial assessment on crude extract of seeds of Nigella sativa Linn, the pure active constituent was employed in the study. A total of 99 MRSA strains which comprised of 40 types and 59 clinical strains were selected for the study. Minimum inhibitory concentration (MIC), bactericidal activity, postantibiotic effect (PAE) and propensity to select resistant mutants were determined using standard protocols. Results revealed that thymoquinone exhibited MIC in the range of 8-16 μg ml(-1) and MIC90 of 16 μg ml(-1) against MRSA strains. It was bactericidal to MRSA by demonstrating >3 log kill. It showed a longer PAE of 3·2 ± 0·2 h. Upon exposure to high-density inoculum of MRSA, it did not select resistant mutants. Transmission electron microscopy of thymoquinone-treated MRSA showed no lysis but damage to cell wall and cell membrane which corroborated well with the salt tolerance and bacteriolysis assays. In conclusion, MIC90 , bactericidal property, longer PAE, absence of resistant mutant selection and damages in cell membrane and cell wall imply a promising anti-MRSA activity of thymoquinone. This is the first detailed report on anti-MRSA activity of thymoquinone. The assessment was made with both type and clinical strains. Thymoquinone may be a potential lead compound which can be further optimized to discover novel anti-MRSA agents. © 2016 The Society for Applied Microbiology.

  10. Effect of Punica granatum L. Flower Water Extract on Five Common Oral Bacteria and Bacterial Biofilm Formation on Orthodontic Wire.

    Science.gov (United States)

    Vahid Dastjerdi, Elahe; Abdolazimi, Zahra; Ghazanfarian, Marzieh; Amdjadi, Parisa; Kamalinejad, Mohammad; Mahboubi, Arash

    2014-12-01

    Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire. Antibacterial property of P. granatum L. water extract was primarily evaluated in brain heart infusion agar medium using well-plate method. The minimum inhibitory concentration and minimum bactericidal concentration were determined by macro-dilution method. The inhibitory effect on orthodontic wire bacterial biofilm formation was evaluated using viable cell count in biofilm medium. At the final phase, samples were fixed and analyzed by Scanning Electron Microscopy. The growth inhibition zone diameter was proportional to the extract concentration. The water extract demonstrated the maximum antibacterial effect on Streptococcus sanguinis ATCC 10556 with a minimum inhibitory concentration of 6.25 mg/ml and maximum bactericidal effect on S. sanguinis ATCC 10556 and S. sobrinus ATCC 27607 with minimum bactericidal concentration of 25 mg/ml. The water extract decreased bacterial biofilm formation by S. sanguinis, S. sobrinus, S. salivarius, S. mutans ATCC 35608 and E. faecalis CIP 55142 by 93.7-100%, 40.6-99.9%, 85.2-86.5%, 66.4-84.4% and 35.5-56.3% respectively. Punica granatum L. water extract had significant antibacterial properties against 5 oral bacteria and prevented orthodontic wire bacterial biofilm formation. However, further investigations are required to generalize these results to the clinical setting.

  11. Beneficial antimicrobial effect of the addition of an aminoglycoside to a β-lactam antibiotic in an E. coli porcine intensive care severe sepsis model.

    Science.gov (United States)

    Skorup, Paul; Maudsdotter, Lisa; Lipcsey, Miklós; Castegren, Markus; Larsson, Anders; Jonsson, Ann-Beth; Sjölin, Jan

    2014-01-01

    This study aimed to determine whether the addition of an aminoglycoside to a ß-lactam antibiotic increases the antimicrobial effect during the early phase of Gram-negative severe sepsis/septic shock. A porcine model was selected that considered each animal's individual blood bactericidal capacity. Escherichia coli, susceptible to both antibiotics, was given to healthy pigs intravenously during 3 h. At 2 h, the animals were randomized to a 20-min infusion with either cefuroxime alone (n = 9), a combination of cefuroxime+tobramycin (n = 9), or saline (control, n = 9). Blood samples were collected hourly for cultures and quantitative polymerase chain reaction (PCR). Bacterial growth in the organs after 6 h was chosen as the primary endpoint. A blood sample was obtained at baseline before start of bacterial infusion for ex vivo investigation of the blood bactericidal capacity. At 1 h after the administration of the antibiotics, a second blood sample was taken for ex vivo investigation of the antibiotic-induced blood killing activity. All animals developed severe sepsis/septic shock. Blood cultures and PCR rapidly became negative after completed bacterial infusion. Antibiotic-induced blood killing activity was significantly greater in the combination group than in the cefuroxime group (pantibiotic groups compared with the controls (pantibiotic groups. Bacterial growth in the liver was significantly less in the combination group than in the cefuroxime group (pantibiotic-induced blood killing activity and less bacteria in the liver than cefuroxime alone. Individual blood bactericidal capacity may have a significant effect on antimicrobial outcome.

  12. Antibacterial activity of the stem bark of Tieghemella Heckelii Pierre ex. A Chev against methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Kipre, B G; Guessennd, N K; Koné, M W; Gbonon, V; Coulibaly, J K; Dosso, M

    2017-03-27

    Tieghemella heckelii (Sapotaceae) is a medicinal plant used in Africa, particularly in Côte d'Ivoire for treating various diseases including infections. Identification of prospective antibacterial compounds from stem bark of this plant as a result of its medicinal virtue, led to screening activity against methicillin resistant bacteria. Six extracts (hexane, chloroform, ethyl acetate, ethanol, methanol and sterile distilled water) were prepared and tested on methicillin resistant Staphylococcus aureus (MRSA) using broth microdilution method for activity assessment. From this experiment, the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of the plant extracts were determined in sterile 96-well microplates in order to search for both bacteriostatic and bactericidal effects. Afterwards, data analysis was performed using GraphPad Prism5 software (One-way ANOVA and Turkey Multiple Comparison test). The results were then presented as Mean ± SD for experiment repeated three times. Four extracts (ethyl acetate, methanol, ethanol and sterile distilled water) showed credible potency, with strong, significant, and moderate growth inhibition of the MRSA tested. The MIC values which varied from 45 μg/mL to 97 μg/mL according to microbial phenotype, resolutely established the activity of the plant extracts. Additionally, the MBC values which varied, depending on the type of bacteria strain, revealed the bacteriostatic and bactericidal effects of the active extracts against Methicillin-resistant Staphylococcus aureus. The present study is a confirmation of the therapeutic potential of Tieghemella heckelii and its promising contribution to the discovery of a novel antibacterial drug pertaining to these resistant strains.

  13. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens

    NARCIS (Netherlands)

    Kwakman, P. H. S.; de Boer, L.; Ruyter-Spira, C. P.; Creemers-Molenaar, T.; Helsper, J. P. F. G.; Vandenbroucke-Grauls, C. M. J. E.; Zaat, S. A. J.; te Velde, A. A.

    2011-01-01

    Honey has potent activity against both antibiotic-sensitive and -resistant bacteria, and is an interesting agent for topical antimicrobial application to wounds. As honey is diluted by wound exudate, rapid bactericidal activity up to high dilution is a prerequisite for its successful application. We

  14. Antibacterial and Cytotoxic Activities of Acacia nilotica Lam ...

    African Journals Online (AJOL)

    Erah

    that had maximum bactericidal activity against all the tested isolates, but showed < 30 % host cell cytotoxicity. Conclusion: The lysate of Acacia nilotica ... cytotoxic effects on human cells. EXPERIMENTAL. Plant material. Acacia nilotica Lam .... a detergent that permeabilizes eukaryotic cells and results in HBMEC damage.

  15. The effect of a honey based gel and silver sulphadiazine on bacterial infections of in vitro burn wounds

    NARCIS (Netherlands)

    Boekema, B.K.H.L.; Pool, L.; Ulrich, M.

    2013-01-01

    Bacterial contamination remains a constant threat in burn wound care. Topical treatments to combat contaminations have good bactericidal effects but can have detrimental effects for the healing process. Treatments with for example silver can increase healing times. Honey based products can be a good

  16. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells

    NARCIS (Netherlands)

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-01-01

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely

  17. Antimicrobial activity of Phoenix dactylifera (date palm) on some ...

    African Journals Online (AJOL)

    The use of medicinal plants in Africa for therapeutic purpose has been quite a common practice. However, most of these plants are used indiscriminately without proper knowledge of their chemical constituents, spectrum of activity, inhibitory or bactericidal concentrations. Moreover, the widespread and often indiscriminate ...

  18. Isolation of bacteriophages against non-O157 and O157 Shiga toxin-producing Escherichia coli (STEC) from composting of non-fecal materials and the potential impact on produce safety

    Science.gov (United States)

    Composting is a complex process to produce fertilizers used to improve crop yields. A complete composting process usually confers bactericidal effect due to change of temperature and pH However, some produce outbreaks associated with Shiga toxin-producing E. coli (STEC) contamination were linked to ...

  19. Evaluation of resistance to asiatic citrus canker among selections of pera sweet orange (Citrus sinensis)

    Science.gov (United States)

    Asiatic citrus canker (ACC, caused by the bacterium Xanthomonas citri subsp. citri) is a destructive disease of citrus in Brazil and in several other citrus-producing countries. ACC management is problematic, and bactericides such as copper can be reasonably efficacious but do not completely control...

  20. Bacteriostasis and bacteriocidy; Bacteriostase et bacteriocidie

    Energy Technology Data Exchange (ETDEWEB)

    Magot, M. [SANOFI Recherche, Groupe Elf Aquitaine, Unite de Microbiologie, 31 - Labege (France)

    1998-11-01

    Biocides are antibacterial products used in industry to control the microbial contaminations. In this work, the main terms defining the activity of these products are recalled and some examples of techniques allowing to measure their bacteriostatic and bactericidal activities are given. (O.M.) 5 refs.

  1. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection

    DEFF Research Database (Denmark)

    Hengzhuang, Wang; Wu, Hong; Ciofu, Oana

    2012-01-01

    ) and pharmacodynamics (PDs) of antimicrobials can reliably be used to predict whether antimicrobial regimens will achieve the maximum bactericidal effect against infections. Unfortunately, however, most PK/PD studies of antimicrobials have been done on planktonic cells and very few PK/PD studies have been done...

  2. Re-evaluating the role of bacteria in gerbera vase life

    NARCIS (Netherlands)

    Schouten, Rob E.; Verdonk, Julian C.; Meeteren, van Uulke

    2018-01-01

    The relation between bacteria numbers in vase water and vase life of gerbera cut flowers has recently been challenged because of reported negative effects of bactericidal compounds. This relation is investigated using two types of experiments that do not rely on antimicrobial compounds. The first

  3. Author Details

    African Journals Online (AJOL)

    Compositions and comparisons of antimicrobial potencies of some essential oils and antibiotics against selected bacteria. Abstract PDF · Vol 8, No 7 (2009) - Articles The proposed mechanism of bactericidal action of eugenol, ∝-terpineol and g-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus ...

  4. Bactericidal studies of saponins from the stem-bark of Adenium ...

    African Journals Online (AJOL)

    pc

    carbon sites (Haralampidis et al., 2002). Adenium obesum (Apocynaceae), commonly kno as 'karya' among hausa tribe of northern Nigeria small deciduous succulent shrublet that can gr shrub or small tree that belongs to plant fam. Apocynaceae (Codd, 1987). The plant, to the genus Adenium, occurs in savanna, dry bu.

  5. Flexible bactericidal graphene oxide-chitosan layers for stem cell proliferation

    Science.gov (United States)

    Mazaheri, M.; Akhavan, O.; Simchi, A.

    2014-05-01

    Graphene oxide (GO)-chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ˜1 μm and thickness of ˜1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ˜80% and 45%, respectively. Similar to the chitosan layer, the GO-chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)-chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs.

  6. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation

    International Nuclear Information System (INIS)

    Mazaheri, M.; Akhavan, O.; Simchi, A.

    2014-01-01

    Highlights: • Fabrication of flexible graphene oxide–chitosan nanocomposite layers was reported. • The flexibility of the chitosan layers were improved by adding graphene oxide sheets. • The nanocomposite layers with 1.5 wt% graphene oxide content showed yielded flexible and antibacterial surfaces for stem cell proliferation. - Abstract: Graphene oxide (GO)–chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ∼1 μm and thickness of ∼1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ∼80% and 45%, respectively. Similar to the chitosan layer, the GO–chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)–chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs

  7. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Mazaheri, M. [Department of Materials Science and Engineering, Sharif University of Technology, PO Box 11365-9466, Tehran (Iran, Islamic Republic of); Akhavan, O., E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, PO Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, PO Box 14588-89694, Tehran (Iran, Islamic Republic of); Simchi, A. [Department of Materials Science and Engineering, Sharif University of Technology, PO Box 11365-9466, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, PO Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2014-05-01

    Highlights: • Fabrication of flexible graphene oxide–chitosan nanocomposite layers was reported. • The flexibility of the chitosan layers were improved by adding graphene oxide sheets. • The nanocomposite layers with 1.5 wt% graphene oxide content showed yielded flexible and antibacterial surfaces for stem cell proliferation. - Abstract: Graphene oxide (GO)–chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ∼1 μm and thickness of ∼1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ∼80% and 45%, respectively. Similar to the chitosan layer, the GO–chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)–chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs.

  8. Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Pawinee Siritongsuk

    Full Text Available Silver nanoparticles (AgNPs have a strong antimicrobial activity against a variety of pathogenic bacteria. The killing mechanism of AgNPs involves direct physical membrane destruction and subsequent molecular damage from both AgNPs and released Ag+. Burkholderia pseudomallei is the causative agent of melioidosis, an endemic infectious disease primarily found in northern Australia and Southeast Asia. B. pseudomallei is intrinsically resistant to most common antibiotics. In this study, the antimicrobial activity and mechanism of AgNPs (10-20 nm against B. pseudomallei were investigated. The MIC and MBC for nine B. pseudomallei strains ranged from 32-48 μg/mL and 96-128 μg/mL, respectively. Concentrations of AgNPs less than 256 μg/mL were not toxic to human red blood cells. AgNPs exhibited a two-phase mechanism: cell death induction and ROS induction. The first phase was a rapid killing step within 5 min, causing the direct damage of the cytoplasmic membrane of the bacterial cells, as observed by a time-kill assay and fluorescence microscopy. During the period of 5-30 min, the cell surface charge was rapidly neutralized from -8.73 and -7.74 to 2.85 and 2.94 mV in two isolates of B. pseudomallei, as revealed by zeta potential measurement. Energy-dispersive X-ray (EDX spectroscopy showed the silver element deposited on the bacterial membrane, and TEM micrographs of the AgNP-treated B. pseudomallei cells showed severe membrane damage and cytosolic leakage at 1/5 MIC and cell bursting at MBC. During the killing effect the released Ag+ from AgNPs was only 3.9% from the starting AgNPs concentration as observed with ICP-OES experiment. In the second phase, the ROS induction occurred 1-4 hr after the AgNP treatment. Altogether, we provide direct kinetic evidence of the AgNPs killing mechanism, by which cell death is separable from the ROS induction and AgNPs mainly contributes in the killing action. AgNPs may be considered a potential candidate to develop a novel alternative agent for melioidosis treatment with fast action.

  9. Disclosure of the Quackery: Testing of the Bactericidal Action of ...

    African Journals Online (AJOL)

    AJTCAM

    ... supposed to have an effect on the ''structure, vitality and memory of water''. .... 8 h, including the effect on the initial microbial load (0 interval) of samples of water, ..... Consciousness: 3rd Int. Conf. on Cognitive Science- ISBN 961-6303-27-9 ...

  10. Bactericidal effects of bioactive glasses on clinically important aerobic bacteria.

    Science.gov (United States)

    Munukka, Eveliina; Leppäranta, Outi; Korkeamäki, Mika; Vaahtio, Minna; Peltola, Timo; Zhang, Di; Hupa, Leena; Ylänen, Heimo; Salonen, Jukka I; Viljanen, Matti K; Eerola, Erkki

    2008-01-01

    Bioactive glasses (BAGs) have been studied for decades for clinical use, and they have found many dental and orthopedic applications. BAGs have also been shown to have an antibacterial effect e.g., on some oral microorganisms. In this extensive work we show that six powdered BAGs and two sol-gel derived materials have a clear antibacterial effect on 29 clinically important bacterial species. We also incorporated a rapid and accurate flow cytometric (FCM) method to calculate and standardize the numbers of viable bacteria inoculated in the suspensions used in the tests for antibacterial activity. In all materials tested growth inhibition could be demonstrated, although the concentration and time needed for the effect varied depending on the BAG. The most effective glass was S53P4, which had a clear growth-inhibitory effect on all pathogens tested. The sol-gel derived materials CaPSiO and CaPSiO II also showed a strong antibacterial effect. In summary, BAGs were found to clearly inhibit the growth of a wide selection of bacterial species causing e.g., infections on the surfaces of prostheses in the body after implantation.

  11. Fosfomycin: Uses and potentialities in veterinary medicine | Pérez ...

    African Journals Online (AJOL)

    Bactericidal activity is evident against Gram positive and Gram negative bacteria and can also act synergistically with other antibiotics. Bacterial resistance to FOS may be natural or acquired. ... Pharmacokinetic profiles have been described in humans, chickens, rabbits, cows, dogs, horses and weaning piglets. The low ...

  12. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut

    DEFF Research Database (Denmark)

    Singh, Vishal; Yeoh, Beng San; Xiao, Xia

    2015-01-01

    During an inflammatory response in the gut, some commensal bacteria such as E. coli can thrive and contribute to disease. Here we demonstrate that enterobactin (Ent), a catecholate siderophore released by E. coli, is a potent inhibitor of myeloperoxidase (MPO), a bactericidal enzyme of the host. ...

  13. Iron chelation excludes protein synthesis inhibition in the ...

    African Journals Online (AJOL)

    Ribonucleotide reductase, an iron requiring enzyme necessary in the production of deoxyribonucleotides required for replication in cell division and proliferation is induced during the S phase of the cell cycle. We have compared the trypanocidal properties of four antibiotics that show bactericidal activities by destabilizing ...

  14. Cinnamaldehyde, Carvacrol and Organic Acids Affect Gene Expression of Selected Oxidative Stress and Inflammation Markers in IPEC-J2 Cells Exposed to Salmonella typhimurium

    NARCIS (Netherlands)

    Burt, Sara A; Adolfse, Simone J M; Ahad, Dina S A; Tersteeg-Zijderveld, Monique H G; Jongerius-Gortemaker, Betty G M; Post, Jan A; Brüggemann, Holger; Santos, Regiane R

    2016-01-01

    Essential oils and organic acids are used as feed additives to improve health status and reduce colonization with pathogens. Although bactericidal in vitro, concentrations achieved in the animal gut are probably not lethal to pathogens. The aim of this study was to investigate the effects of

  15. Antimicrobial activities of red wine-based formulations containing plant extracts against Escherichia coli O157:H7 and Salmonella enterica serovar Hadar

    Science.gov (United States)

    We evaluated the bactericidal activities of red wine and red wine solutions containing a commercial olive extract called Hydrox-12, oregano oil, or a mixture of both in red wine against the following foodborne pathogens: Escherichia coli O157:H7, Salmonella enterica, Listeria monocytogenes, and Stap...

  16. The germicidal effect of the open air in different parts of The Netherlands

    NARCIS (Netherlands)

    Mik, G. de; Groot, I. de

    1977-01-01

    Using the microthread technique the survival of Escherichia coli MRE 162 in open air was measured in different parts of The Netherlands. The presence of bactericidal compounds (open air factor=OAF) could be demonstrated on several days and quantitated in relative units of OAF concentration. In the

  17. Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents

    International Nuclear Information System (INIS)

    Chakraborty, Subhankari Prasad; Mahapatra, Santanu Kar; Roy, Somenath; Sahu, Sumanta Kumar; Santra, Susmita; Pramanik, Panchanan; Bal, Manjusri

    2010-01-01

    More than 90% of Staphylococcus strains are resistant to penicillin. In 1961 S. aureus developed resistance to methicillin (MRSA), invalidating almost all antibiotics, including the most potent β-lactams. Vancomycin, a glycopeptide antibiotic, was used for the treatment of MRSA in 1980. Vancomycin inhibits the bio-synthesis of peptidoglycan and the assembly of NAM-NAG-polypeptide into the growing peptidoglycan chain. Vancomycin resistant S. aureus (VRSA) first appeared in the USA in 2002. Folic acid tagged chitosan nanoparticles are used as Trojan horses to deliver vancomycin into bacterial cells. These nanoparticles are biocompatible and biodegradable semisynthetic polymers. These nanosized vehicles enhance the transport of vancomycin across epithelial surfaces and show its efficient drug action, which has been understood from studies of the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles of a chitosan derivative loaded with vancomycin. Tolerance values distinctly show that vancomycin loaded into nanoconjugate is very effective and has a strong bactericidal effect on VRSA.

  18. Persistence of the immune response after MenACWY-CRM vaccination and response to a booster dose, in adolescents, children and infants.

    Science.gov (United States)

    Baxter, Roger; Keshavan, Pavitra; Welsch, Jo Anne; Han, Linda; Smolenov, Igor

    2016-05-03

    Persistence of bactericidal antibodies following vaccination is extremely important for protection against invasive meningococcal disease, given the epidemiology and rapid progression of meningococcal infection. We present an analysis of antibody persistence and booster response to MenACWY-CRM, in adolescents, children and infants, from 7 clinical studies. Immunogenicity was assessed using the serum bactericidal assay with both human and rabbit complement. Post-vaccination hSBA titers were high, with an age- and serogroup-specific decline in titers up to 1 y and stable levels up to 5 y The waning of hSBA titers over time was more pronounced among infants and toddlers and the greatest for serogroup A. However, rSBA titers against serogroup A were consistently higher and showed little decline over time, suggesting that protection against this serogroup may be sustained. A single booster dose of MenACWY-CRM administered at 3 to 5 y induced a robust immune response in all age groups.

  19. [Antibacterial and anti-hemolysin activities of tea catechins and their structural relatives].

    Science.gov (United States)

    Toda, M; Okubo, S; Ikigai, H; Shimamura, T

    1990-03-01

    Among catechins tested, (-)epigallocatechin (EGC), (-)epicatechin gallate (ECg), (-) epigallocatechin gallate (EGCg) inhibited the growth of Staphylococcus aureus, Vibrio cholerae O1 classical Inaba 569B and El Tor Inaba V86. S. aureus was more sensitive than V. cholerae O1 to these compounds. EGCg showed also a bactericidal activity against V. cholerae O1 569B. Pyrogallol showed a stronger antibacterial activity against S. aureus and V. cholerae O1 than tannic and gallic acid. Rutin or caffein had no effect on them. ECg and EGCg showed the most potent anti-hemolysin activity against S. aureus alpha-toxin, Vibrio parahaemolyticus thermostable direct hemolysin (Vp-TDH) and cholera hemolysin. Among catechin relatives, only tannic acid had a potent anti-hemolysin activity against alpha-toxin. These results suggest that the catechol and pyrogallol groups are responsible for the antibacterial and bactericidal activities, while the conformation of catechins might play an important role in the anti-hemolysin activity.

  20. Recent advances in engineering topography mediated antibacterial surfaces

    Science.gov (United States)

    Hasan, Jafar; Chatterjee, Kaushik

    2015-09-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.

  1. Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Subhankari Prasad; Mahapatra, Santanu Kar; Roy, Somenath [Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721102 (India); Sahu, Sumanta Kumar; Santra, Susmita; Pramanik, Panchanan [Nanomaterials Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur, Pin-721302 (India); Bal, Manjusri, E-mail: panchanan_123@yahoo.com [Department of Human Physiology, Calcutta University, Kolkata (India)

    2010-03-12

    More than 90% of Staphylococcus strains are resistant to penicillin. In 1961 S. aureus developed resistance to methicillin (MRSA), invalidating almost all antibiotics, including the most potent {beta}-lactams. Vancomycin, a glycopeptide antibiotic, was used for the treatment of MRSA in 1980. Vancomycin inhibits the bio-synthesis of peptidoglycan and the assembly of NAM-NAG-polypeptide into the growing peptidoglycan chain. Vancomycin resistant S. aureus (VRSA) first appeared in the USA in 2002. Folic acid tagged chitosan nanoparticles are used as Trojan horses to deliver vancomycin into bacterial cells. These nanoparticles are biocompatible and biodegradable semisynthetic polymers. These nanosized vehicles enhance the transport of vancomycin across epithelial surfaces and show its efficient drug action, which has been understood from studies of the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles of a chitosan derivative loaded with vancomycin. Tolerance values distinctly show that vancomycin loaded into nanoconjugate is very effective and has a strong bactericidal effect on VRSA.

  2. Differential Susceptibility of Bacteria to Mouse Paneth Cell a-Defensins under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Jennifer R. Mastroianni

    2014-10-01

    Full Text Available Small intestinal Paneth cells secrete a-defensin peptides, termed cryptdins (Crps in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse a-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2-4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that a-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension.

  3. Pulsed-Plasma Disinfection of Water Containing Escherichia coli

    Science.gov (United States)

    Satoh, Kohki; MacGregor, Scott J.; Anderson, John G.; Woolsey, Gerry A.; Fouracre, R. Anthony

    2007-03-01

    The disinfection of water containing the microorganism, Escherichia coli (E. coli) by exposure to a pulsed-discharge plasma generated above the water using a multineedle electrode (plasma-exposure treatment), and by sparging the off-gas of the pulsed plasma into the water (off-gas-sparging treatment), is performed in the ambient gases of air, oxygen, and nitrogen. For the off-gas-sparging treatment, bactericidal action is observed only when oxygen is used as the ambient gas, and ozone is found to generate the bactericidal action. For the plasma-exposure treatment, the density of E. coli bacteria decreases exponentially with plasma-exposure time for all the ambient gases. It may be concluded that the main contributors to E. coli inactivation are particle species produced by the pulsed plasma. For the ambient gases of air and nitrogen, the influence of acidification of the water in the system, as a result of pulsed-plasma exposure, may also contribute to the decay of E. coli density.

  4. Inhibitory effect of Ti-Ag alloy on artificial biofilm formation.

    Science.gov (United States)

    Nakajo, Kazuko; Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo; Okuno, Osamu; Sasaki, Keiichi; Takahashi, Nobuhiro

    2014-01-01

    Titanium-silver (Ti-Ag) alloy has been improved for machinability and mechanical properties, but its anti-biofilm properties have not been elucidated yet. Thus, this study aimed to evaluate the effects of Ti-Ag alloy on biofilm formation and bacterial viability in comparison with pure Ti, pure Ag and silver-palladium (Ag-Pd) alloy. Biofilm formation on the metal plates was evaluated by growing Streptococcus mutans and Streptococcus sobrinus in the presence of metal plates. Bactericidal activity was evaluated using a film contact method. There were no significant differences in biofilm formation between pure Ti, pure Ag and Ag-Pd alloy, while biofilm amounts on Ti-20% Ag and Ti-25% Ag alloys were significantly lower (p<0.05). In addition, Ti-Ag alloys and pure Ti were not bactericidal, although pure Ag and Ag-Pd alloy killed bacteria. These results suggest that Ti-20% Ag and Ti-25% Ag alloys are suitable for dental material that suppresses biofilm formation without disturbing healthy oral microflora.

  5. Chlorine dioxide as a disinfectant for Ralstonia solanacearum control in water, storage and equipment

    Directory of Open Access Journals (Sweden)

    Popović Tatjana

    2016-01-01

    Full Text Available Brown rot or bacterial wilt caused by bacterium Ralstonia solanacearum is the main limiting factor in potato production. Quarantine measures are necessary to avoid spread of disease to disease-free areas. R. solanacearum has been shown to contaminate watercourses from which crop irrigation is then prohibited causing further potential losses in yield and quality. The bacteria also spread via surfaces that diseased seed potatoes come into contact with. This study showed bactericidal activity of chlorine dioxide (CIO2 on R. solanacearum for disinfection of water, surface and equipment. The results showed that CIO2 solution at concentration of 2 ppm at 30 minutes of exposure time had bactericidal effect for disinfection of water. For surface and equipment disinfection, concentration of 50 ppm showed total efficacy at 30 min and 5 sec exposure time, respectively. Results suggest that use of CIO2 as a disinfectant has a potential for control of brown rot pathogen in water, storage and equipment.

  6. In vitro antimicrobial activity of pistachio (Pistacia vera L.) polyphenols.

    Science.gov (United States)

    Bisignano, Carlo; Filocamo, Angela; Faulks, Richard M; Mandalari, Giuseppina

    2013-04-01

    We investigated the antimicrobial properties of polyphenol-rich fractions derived from raw shelled and roasted salted pistachios. American Type Culture Collection (ATCC), food and clinical isolates, of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Pseudomonas mirabilis), Gram-positive bacteria (Listeria monocytogenes, Enterococcus hirae, Enterococcus faecium, Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus), the yeasts Candida albicans and Candida parapsilosis and the fungus Aspergillus niger were used. Pistachio extracts were active against Gram-positive bacteria with a bactericidal effect observed against L. monocytogenes (ATCC strains and food isolates), S. aureus and MRSA clinical isolates. Extracts from raw shelled pistachios were more active than those from roasted salted pistachios. The bactericidal activity of pistachio extracts could be used to help control the growth of some microorganisms in foods to improve safety and may find application as a topical treatment for S. aureus. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections

    Directory of Open Access Journals (Sweden)

    Fernanda Villas Boas Petrolini

    2013-09-01

    Full Text Available In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC. The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212 and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections.

  8. Bacteriophage prehistory: Is or is not Hankin, 1896, a phage reference?

    Science.gov (United States)

    Abedon, Stephen T; Thomas-Abedon, Cameron; Thomas, Anne; Mazure, Hubert

    2011-05-01

    We identified 30 actual or presumptive "bacteriophage" references dating between the years 1895 and 1917 and have further explored one of the oldest: Hankin's 1896 study of a bactericidal action associated with the waters of the Ganges and Jumna rivers in India. As Hankin's work took place approximately 20 years prior to the actual discovery of bacteriophages, no claims were made as to a possible phage nature of the phenomenon. Here we suggest that it may be imprudent to assume nevertheless that it represents an early observation of phagemediated bactericidal activity. Our principal argument is that the antibacterial aspect of these river waters was able to retain full potency following "heating" for one-half hour in hermetically sealed tubes, where heating in "open" tubes resulted in loss of antibacterial activity. We also suggest that environmental phage counts would have had to have been unusually high-greater than 10(6)/ml impacting a single host strain-to achieve the rates of bacterial loss that Hankin observed.

  9. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    Science.gov (United States)

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Thermoresponsive chitosan-agarose hydrogel for skin regeneration.

    Science.gov (United States)

    Miguel, Sónia P; Ribeiro, Maximiano P; Brancal, Hugo; Coutinho, Paula; Correia, Ilídio J

    2014-10-13

    Healing enhancement and pain control are critical issues on wound management. So far, different wound dressings have been developed. Among them, hydrogels are the most applied. Herein, a thermoresponsive hydrogel was produced using chitosan (deacetylation degree 95%) and agarose. Hydrogel bactericidal activity, biocompatibility, morphology, porosity and wettability were characterized by confocal microscopy, MTS assay and SEM. The performance of the hydrogel in the wound healing process was evaluated through in vivo assays, during 21 days. The attained results revealed that hydrogel has a pore size (90-400 μm) compatible with cellular internalization and proliferation. A bactericidal activity was observed for hydrogels containing more than 188 μg/mL of chitosan. The improved healing and the lack of a reactive or a granulomatous inflammatory reaction in skin lesions treated with hydrogel demonstrate its suitability to be used in a near future as a wound dressing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections

    Science.gov (United States)

    Chu, Ming; Zhang, Ming-Bo; Liu, Yan-Chen; Kang, Jia-Rui; Chu, Zheng-Yun; Yin, Kai-Lin; Ding, Ling-Yu; Ding, Ran; Xiao, Rong-Xin; Yin, Yi-Nan; Liu, Xiao-Yan; Wang, Yue-Dan

    2016-04-01

    Berberine is an isoquinoline alkaloid widely used in the treatment of microbial infections. Recent studies have shown that berberine can enhance the inhibitory efficacy of antibiotics against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). However, the underlying mechanisms are poorly understood. Here, we demonstrated that sub-minimum inhibitory concentrations (MICs) of berberine exhibited no bactericidal activity against MRSA, but affected MRSA biofilm development in a dose dependent manner within the concentration ranging from 1 to 64 μg/mL. Further study indicated that berberine inhibited MRSA amyloid fibrils formation, which consist of phenol-soluble modulins (PSMs). Molecular dynamics simulation revealed that berberine could bind with the phenyl ring of Phe19 in PSMα2 through hydrophobic interaction. Collectively, berberine can inhibit MRSA biofilm formation via affecting PSMs’ aggregation into amyloid fibrils, and thereby enhance bactericidal activity of antibiotics. These findings will provide new insights into the multiple pharmacological properties of berberine in the treatment of microbial-generated amyloid involved diseases.

  12. Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2.

    Science.gov (United States)

    Gavrish, Ekaterina; Sit, Clarissa S; Cao, Shugeng; Kandror, Olga; Spoering, Amy; Peoples, Aaron; Ling, Losee; Fetterman, Ashley; Hughes, Dallas; Bissell, Anthony; Torrey, Heather; Akopian, Tatos; Mueller, Andreas; Epstein, Slava; Goldberg, Alfred; Clardy, Jon; Lewis, Kim

    2014-04-24

    Languishing antibiotic discovery and flourishing antibiotic resistance have prompted the development of alternative untapped sources for antibiotic discovery, including previously uncultured bacteria. Here, we screen extracts from uncultured species against Mycobacterium tuberculosis and identify lassomycin, an antibiotic that exhibits potent bactericidal activity against both growing and dormant mycobacteria, including drug-resistant forms of M. tuberculosis, but little activity against other bacteria or mammalian cells. Lassomycin is a highly basic, ribosomally encoded cyclic peptide with an unusual structural fold that only partially resembles that of other lasso peptides. We show that lassomycin binds to a highly acidic region of the ClpC1 ATPase complex and markedly stimulates its ATPase activity without stimulating ClpP1P2-catalyzed protein breakdown, which is essential for viability of mycobacteria. This mechanism, uncoupling ATPase from proteolytic activity, accounts for the bactericidal activity of lassomycin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Detection of Carbendazim Residues with a Colorimetric Sensor Based on Gold Nanoparticles

    Science.gov (United States)

    Ma, Y.; Jiang, H.; Shen, C.; Hou, Ch.; Huo, D.; Wu, H.; Yang, M.

    2017-07-01

    Carbendazim is among the most popular benzimidazole bactericides that are widely used to boost food production, and its residue poses a great threat to human health and the environment. In this paper, we presented a colorimetric sensor based on gold nanoparticles (Au-NPs) for the detection of carbendazim residues. The Au-NPs were stabilized by citric acid synthesized by chloroauric acid and sodium citrate with a diameter of about 13 nm. Upon reaction with carbendazim, the sensor gave a clear color change that could be distinguished with the naked eye. Thus we elaborated a new method for rapid determination of this benzimidazole bactericide. After optimization of the detection conditions, the sensor showed a very good linear relationship with the carbendazim concentrations varying from 10 to 600 ppb with a detection limit down to 3.4 ppb (S/N = 3). These preliminary results demonstrate that the presented sensor is promising for fast carbendazim analysis.

  14. Acute lymphoblastic leukemia in a patient with chronic granulomatous disease and a novel mutation in CYBB: First report

    NARCIS (Netherlands)

    Wolach, Baruch; Ash, Shifra; Gavrieli, Ronit; Stark, Batia; Yaniv, Isaac; Roos, Dirk

    2005-01-01

    We report for the first time a child with chronic granulomatous disease (CGD) who developed acute lymphoblastic leukemia (ALL). The diagnosis of CGD was made at the age of 4 months, by studies of his neutrophil functions. The superoxide production of the cells was negligible, as was the bactericidal

  15. Antimicrobial action of purified raspberry flavonoid

    African Journals Online (AJOL)

    user

    2012-02-07

    Feb 7, 2012 ... numerous research groups have sought to elucidate the antibacterial mechanisms of action of selected flavonoids. *Corresponding author. E-mail: bdsunjinxu@163.com. (Cushnie et al., 2005), but there have been no reports on the bacteriostatic and bactericidal action of raspberry flavonoid. In this paper ...

  16. Synthesis and characterization of TiO2–SiO2 nanoparticles as ...

    Indian Academy of Sciences (India)

    (Karki 2010) or for treatment of atherosclerosis and other coronary diseases, respectively (Bischhoff et al 1997). The oxidation of Hantzsch 1,4-DHPs provides an easy access to the pyridine derivatives with anti-hypoxic and anti-ischemic activities. Some of these derivatives also exhibit acaricidal, insecticidal, bactericidal ...

  17. Cross-reactivity of antibodies against PorA after vaccination with a meningococcal B outer membrane vesicle vaccine

    NARCIS (Netherlands)

    Vermont, C. L.; van Dijken, H. H.; Kuipers, A. J.; van Limpt, C. J. P.; Keijzers, W. C. M.; van der Ende, A.; de Groot, R.; van Alphen, L.; van den Dobbelsteen, G. P. J. M.

    2003-01-01

    The cross-reactivity of PorA-specific antibodies induced by a monovalent P1.7-2,4 (MonoMen) and/or a hexavalent (HexaMen) meningococcal B outer membrane vesicle vaccine (OMV) in toddlers and school children was studied by serum bactericidal assays (SBA). First, isogenic vaccine strains and

  18. Tuberculous Pericarditis is Multibacillary and Bacterial Burden Drives High Mortality

    Directory of Open Access Journals (Sweden)

    Jotam G. Pasipanodya

    2015-11-01

    Interpretation: Patients with culture confirmed tuberculous pericarditis have a high bacillary burden, and this bacterial burden drives mortality. Thus proven tuberculosis pericarditis is not a paucibacillary disease. Moreover, the severe immunosuppression suggests limited inflammation. There is a need for the design of a highly bactericidal regimen for this condition.

  19. Enterococcal endocarditis - a case treated with teicoplanin and ...

    African Journals Online (AJOL)

    The patient was known to have had an aortic valve defect since childhood and had recently undergone splenectomy following trauma. Blood cultures were negative prior to valve replacement. A perivalvular abscess was noted at operation. In vitro minimal bactericidal results and serum activity were the basis of the ...

  20. Formulation and evaluation of two-pulse drug delivery system of ...

    African Journals Online (AJOL)

    Purpose: To develop a pH-controlled two-pulse drug delivery system of amoxicillin in order to overcome the snag of biological tolerance and to improve bactericidal activity. Methods: The core tablets were compressed and coated with hydroxylpropyl methylcellulose (HPMC) of different viscosities with spray-dried lactose ...