WorldWideScience

Sample records for bacterial strains involved

  1. Pyroprinting: a rapid and flexible genotypic fingerprinting method for typing bacterial strains.

    Science.gov (United States)

    Black, Michael W; VanderKelen, Jennifer; Montana, Aldrin; Dekhtyar, Alexander; Neal, Emily; Goodman, Anya; Kitts, Christopher L

    2014-10-01

    Bacterial strain typing is commonly employed in studies involving epidemiology, population ecology, and microbial source tracking to identify sources of fecal contamination. Methods for differentiating strains generally use either a collection of phenotypic traits or rely on some interrogation of the bacterial genotype. This report introduces pyroprinting, a novel genotypic strain typing method that is rapid, inexpensive, and discriminating compared to the most sensitive methods already in use. Pyroprinting relies on the simultaneous pyrosequencing of polymorphic multicopy loci, such as the intergenic transcribed spacer regions of rRNA operons in bacterial genomes. Data generated by sequencing combinations of variable templates are reproducible and intrinsically digitized. The theory and development of pyroprinting in Escherichia coli, including the selection of similarity thresholds to define matches between isolates, are presented. The pyroprint-based strain differentiation limits and phylogenetic relevance compared to other typing methods are also explored. Pyroprinting is unique in its simplicity and, paradoxically, in its intrinsic complexity. This new approach serves as an excellent alternative to more cumbersome or less phylogenetically relevant strain typing methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Comparison of Bacterial Cellulose Production among Different Strains and Fermented Media

    Directory of Open Access Journals (Sweden)

    Maryam Jalili Tabaii

    2015-12-01

    Full Text Available The effect of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus (PTCC 1734 and two newly isolated strains (from vinegar under static culture conditions was studied. The production of bacterial cellulose was examined in modified Hestrin-Shramm medium by replacing D-glucose with other carbon sources. The results showed that the yield and characteristics of bacterial cellulose were influenced by the type of carbon source. Glycerol gave the highest yield in all of the studied strains (6%, 9.7% and 3.8% for S, A2 strain and Gluconacetobacter xylinus (PTCC 1734, respectively. The maximum dry bacterial cellulose weight in the glycerol containing medium is due to A2 strain (1.9 g l-1 in comparison to Gluconacetobacter xylinus as reference strain (0.76 g l-1. Although all of the studied strains were in Gluconacetobacter family, each used different sugars for maximum production after glycerol (mannitol and fructose for two newly isolated strains and glucose for Gluconacetobacter xylinus. The maximum moisture content was observed when sucrose and food-grade sucrose were used as carbon source. Contrary to expectations, while the maximum thickness of bacterial cellulose membrane was attained when glycerol was used, bacterial cellulose from glycerol had less moisture content than the others. The oxidized cellulose showed antibacterial activities, which makes it as a good candidate for food-preservatives.

  3. Isolation of Bacterial Strain for Biodegradation of Fats, Oil and Grease

    International Nuclear Information System (INIS)

    Alkhatib, M.F.; Mohd Zahangir Alam; Shabana, H.F.M.

    2015-01-01

    Fat, oil and grease (FOG) deposition is one of the major problems that harm the environment and cause dissatisfaction for human. Uncontrolled and un-pre-treated FOG removal from the kitchen could lead to its accumulation in the piping system. Problems include the interference of fat with the aerobic microorganisms that are responsible in treating the wastewater by reducing oxygen transfer rates and for anaerobic microorganisms; their efficiency could also be reduced due to the reduction of the transport of soluble substrates to the bacterial biomass. Biodegradation could be one of the effective means to treat FOG. The main objective of this study is to isolate bacterial strains from the FOG waste and identify the strains that are capable in biodegrading FOG waste. FOG sample was collected from a sewer manhole. Enrichment technique was applied, followed by isolation of bacterial strains to determine which strain is able to degrade the FOG deposition. Some morphology for the bacterial strain was done to determine its characteristics. (author)

  4. Colonization of Tomato Root by Antagonistic Bacterial Strains to Fusarium Wilt of Tomato

    Directory of Open Access Journals (Sweden)

    Arif Wibowo

    2005-12-01

    Full Text Available Fusarium wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici (Fol is an important disease in tomato which cause a significant loss of yield in major growing regions of the world. This study examined the ability of bacterial strains antagonistic to F. oxysporum f.sp. lycopersici (H5, H22, H63, H71, Burkholderia cepacia strain 65 and 526 to colonize tomato seedlings and the effect of plant growth. The effect of bacterial population size and air temperature on the bacterial colonization and their spread along the root systems was also assessed.The results of this study showed that the bacterial population at 28°/23° C day/night temperature 14 days after planting was significantly greater than 23°/18° C for 4 of 6 strains tested. Although there was no significant effect of temperature on bacterial population observed in this study, the ability of the baacterial strains to colonize the rhizosphere was significantly different. Three strains (H5, B. cepacia strain 65 and 526 survived well in the rhizosphere and at 4 weeks after planting rhizosphere populations per gram fresh root were not significantly different from those recovered 2 weeks after planting. The largest population of the bacterial inoculants developed in the basal region of the roots and this differed between strains by log10 2.7 cfu/cm root. The bacterial populations in other parts of the root were also strain dependent. Strain H71, for example, was able to colonize the root segments at a high population level. However strain H63 was recovered only in small number in all root segments.

  5. Bacterial strain changes during chronic otitis media surgery.

    Science.gov (United States)

    Kim, G J; Yoo, S; Han, S; Bu, J; Hong, Y; Kim, D-K

    2017-09-01

    Cultures obtained from pre-operative middle-ear swabs from patients with chronic otitis media have traditionally been used to guide antibiotic selection. This study investigated changes in the bacterial strains of the middle ear during chronic otitis media surgery. Pre-operative bacterial cultures of otorrhoea, and peri-operative cultures of the granulation tissue in either the middle ear or mastoid cavity, were obtained. Post-operative cultures were selectively obtained when otorrhoea developed after surgery. Bacterial growth was observed in 45.5 per cent of pre-operative cultures, 13.5 per cent of peri-operative cultures and 4.5 per cent of post-operative cultures. Methicillin-resistant Staphylococcus aureus was identified as the most common bacteria in all pre-operative (32.4 per cent), peri-operative (52.4 per cent) and post-operative (71.4 per cent) tests, and the percentage of Methicillin-resistant S aureus increased from the pre- to the post-operative period. The bacterial culture results for post-operative otorrhoea showed low agreement with those for pre-operative or peri-operative culture, and strain re-identification was required.

  6. StrainSeeker: fast identification of bacterial strains from raw sequencing reads using user-provided guide trees.

    Science.gov (United States)

    Roosaare, Märt; Vaher, Mihkel; Kaplinski, Lauris; Möls, Märt; Andreson, Reidar; Lepamets, Maarja; Kõressaar, Triinu; Naaber, Paul; Kõljalg, Siiri; Remm, Maido

    2017-01-01

    Fast, accurate and high-throughput identification of bacterial isolates is in great demand. The present work was conducted to investigate the possibility of identifying isolates from unassembled next-generation sequencing reads using custom-made guide trees. A tool named StrainSeeker was developed that constructs a list of specific k -mers for each node of any given Newick-format tree and enables the identification of bacterial isolates in 1-2 min. It uses a novel algorithm, which analyses the observed and expected fractions of node-specific k -mers to test the presence of each node in the sample. This allows StrainSeeker to determine where the isolate branches off the guide tree and assign it to a clade whereas other tools assign each read to a reference genome. Using a dataset of 100 Escherichia coli isolates, we demonstrate that StrainSeeker can predict the clades of E. coli with 92% accuracy and correct tree branch assignment with 98% accuracy. Twenty-five thousand Illumina HiSeq reads are sufficient for identification of the strain. StrainSeeker is a software program that identifies bacterial isolates by assigning them to nodes or leaves of a custom-made guide tree. StrainSeeker's web interface and pre-computed guide trees are available at http://bioinfo.ut.ee/strainseeker. Source code is stored at GitHub: https://github.com/bioinfo-ut/StrainSeeker.

  7. Laboratory-Cultured Strains of the Sea Anemone Exaiptasia Reveal Distinct Bacterial Communities

    KAUST Repository

    Herrera Sarrias, Marcela; Ziegler, Maren; Voolstra, Christian R.; Aranda, Manuel

    2017-01-01

    Exaiptasia is a laboratory sea anemone model system for stony corals. Two clonal strains are commonly used, referred to as H2 and CC7, that originate from two genetically distinct lineages and that differ in their Symbiodinium specificity. However, little is known about their other microbial associations. Here, we examined and compared the taxonomic composition of the bacterial assemblages of these two symbiotic Exaiptasia strains, both of which have been cultured in the laboratory long-term under identical conditions. We found distinct bacterial microbiota for each strain, indicating the presence of host-specific microbial consortia. Putative differences in the bacterial functional profiles (i.e., enrichment and depletion of various metabolic processes) based on taxonomic inference were also detected, further suggesting functional differences of the microbiomes associated with these lineages. Our study contributes to the current knowledge of the Exaiptasia holobiont by comparing the bacterial diversity of two commonly used strains as models for coral research.

  8. Laboratory-Cultured Strains of the Sea Anemone Exaiptasia Reveal Distinct Bacterial Communities

    KAUST Repository

    Herrera Sarrias, Marcela

    2017-05-02

    Exaiptasia is a laboratory sea anemone model system for stony corals. Two clonal strains are commonly used, referred to as H2 and CC7, that originate from two genetically distinct lineages and that differ in their Symbiodinium specificity. However, little is known about their other microbial associations. Here, we examined and compared the taxonomic composition of the bacterial assemblages of these two symbiotic Exaiptasia strains, both of which have been cultured in the laboratory long-term under identical conditions. We found distinct bacterial microbiota for each strain, indicating the presence of host-specific microbial consortia. Putative differences in the bacterial functional profiles (i.e., enrichment and depletion of various metabolic processes) based on taxonomic inference were also detected, further suggesting functional differences of the microbiomes associated with these lineages. Our study contributes to the current knowledge of the Exaiptasia holobiont by comparing the bacterial diversity of two commonly used strains as models for coral research.

  9. Isolation and identification of biocellulose-producing bacterial strains from Malaysian acidic fruits.

    Science.gov (United States)

    Voon, W W Y; Rukayadi, Y; Meor Hussin, A S

    2016-05-01

    Biocellulose (BC) is pure extracellular cellulose produced by several species of micro-organisms that has numerous applications in the food, biomedical and paper industries. However, the existing biocellulose-producing bacterial strain with high yield was limited. The aim of this study was to isolate and identify the potential biocellulose-producing bacterial isolates from Malaysian acidic fruits. One hundred and ninety-three bacterial isolates were obtained from 19 local acidic fruits collected in Malaysia and screened for their ability to produce BC. A total of 15 potential bacterial isolates were then cultured in standard Hestrin-Schramm (HS) medium statically at 30°C for 2 weeks to determine the BC production. The most potent bacterial isolates were identified using 16S rRNA gene sequence analysis, morphological and biochemical characteristics. Three new and potent biocellulose-producing bacterial strains were isolated from soursop fruit and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. Stenotrophomonas maltophilia WAUPM42 was the most potent biocellulose-producing bacterial strain that produced the highest amount of BC 0·58 g l(-1) in standard HS medium. Whereas, the isolates P. vagans WAUPM45 and B. fluminensis WAUPM53 showed 0·50 and 0·52 g l(-1) of BC production, respectively. Biocellulose (BC) is pure extracellular cellulose that is formed by many micro-organisms in the presence of carbon source and acidic condition. It can replace plant-based cellulose in multifarious applications due to its unique characteristics. In this study, three potential biocellulose-producing bacterial strains were obtained from Malaysian acidic fruits and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. This study reports for the first time the new biocellulose-producing bacterial strains isolated from Malaysian acidic fruits. © 2016 The

  10. Effects of Bacterial Strains to Inhibit Growth of Phytophthora pistaciae under Different Electrical Conductivities

    Directory of Open Access Journals (Sweden)

    Moslem Hajabdolahi

    2018-06-01

    Full Text Available Root and crown rot (gummosis is known as the most destructive disease affecting pistachio in Iran. The efficiency of bacterial strains to reduce the growth rate of Phytophthora pistaciae was studied under different electrical conductivities (EC, 0, 2, 4, 8, 12 ds/m. Soil and rhizosphere samples were collected from pistachio growing regions in Kerman province, Iran, during 2011 - 2012. Overall, the strains of bacteria were presented in all sampling areas in both infected and uninfected orchards. Out of 400 bacterial isolates, 63% and 37% were collected from soil and rhizosphere samples, respectively. Among 400 bacterial isolates, 19 exhibited the highest ability to reduce the growth of P. pistaciae in dual culture, volatile and non-volatile compounds, though by different degrees. The degrees of inhibitory activities against mycelial growth of P. pistaciae by Pseudomonas fluorescens strains ranged from 40 to 97.5%, 8 to 97.5% and 7.5 to 90% in dual culture, non-volatile and volatile assays, respectively. The Bacillus subtilis strains reduced the growth of P. pistaciae by 22-92.5%, 17-85%, 21-92.5% in dual culture, non-volatile and volatile assays, respectively. The negative effects of ECs on the growth of P. pistaciae in modified CMA were observed in 8 and 12 ECs. ECs had no effect until 8 ds/m on the growth of P. pistaciae, while the mycelial growth decreased by ECs higher than 8 ds/m. No mycelial growth was observed at EC 14 ds/m. There were significant differences between different bacterial isolates, ECs and their interactions on the mycelial growth of P. pistaciae. The highest mycelial suppression belonged to isolates Nos. 123 and 112 in dual culture, volatile and non-volatile compounds test. More research is required to understand the native mechanisms involved in biological control under natural conditions in pistachio orchards

  11. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, N.P.; Norde, W.; Meil, H.C.; Busscher, H.J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F-prev) and to detach adhering bacteria (F-det) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  12. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  13. Identification and characterisation of potential biofertilizer bacterial strains

    Science.gov (United States)

    Karagöz, Kenan; Kotan, Recep; Dadaşoǧlu, Fatih; Dadaşoǧlu, Esin

    2016-04-01

    In this study we aimed that isolation, identification and characterizations of PGPR strains from rhizosphere of legume plants. 188 bacterial strains isolated from different legume plants like clover, sainfoin and vetch in Erzurum province of Turkey. These three plants are cultivated commonly in the Erzurum province. It was screen that 50 out of 188 strains can fix nitrogen and solubilize phosphate. These strains were identified via MIS (Microbial identification system). According to MIS identification results, 40 out of 50 strains were identified as Bacillus, 5 as Pseudomonas, 3 as Paenibacillus, 1 as Acinetobacter, 1 as Brevibacterium. According to classical test results, while the catalase test result of all isolates are positive, oxidase, KOH and starch hydrolysis rest results are variable.

  14. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    Directory of Open Access Journals (Sweden)

    Drevinek Pavel

    2009-12-01

    Full Text Available Abstract Background The Lactic Acid Bacteria (LAB are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i the initial cultivable LAB strain diversity in the human gut, and (ii the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156 contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be

  15. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    Science.gov (United States)

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose

    Directory of Open Access Journals (Sweden)

    S. Farjana

    2013-01-01

    Full Text Available This paper reports the strain sensitivity of flexible, electrically conductive, and nanostructured cellulose which was prepared by modification of bacterial cellulose with double-walled carbon nanotubes (DWCNTs and multiwalled carbon nanotubes (MWCNTs. The electrical conductivity depends on the modifying agent and its dispersion process. The conductivity of the samples obtained from bacterial cellulose (BNC pellicles modified with DWCNT was in the range from 0.034 S·cm−1 to 0.39 S·cm−1, and for BNC pellicles modified with MWCNTs it was from 0.12 S·cm−1 to 1.6 S·cm−1. The strain-induced electromechanical response, resistance versus strain, was monitored during the application of tensile force in order to study the sensitivity of the modified nanocellulose. A maximum gauge factor of 252 was found from the highest conductive sample treated by MWCNT. It has been observed that the sensitivity of the sample depends on the conductivity of the modified cellulose.

  17. Characterization and optimization of antibiotic resistant bacterial strains for polyhydroxyalkanoates (phas) production

    International Nuclear Information System (INIS)

    Rehman, S. U.; Jamil, N.; Hussain, S.

    2005-01-01

    In this investigation, sugarcane soil, sewage water and soil containing long chain hydrocarbons was screened to obtain bacterial strains that were able to synthesize poly-beta-hydroxyalkanoates (PHA). The potential to synthesize PHA was tested qualitatively by Sudan Black staining of colonies growing in glucose and sucrose. Sixteen bacterial strains were isolated, purified and characterized for Gram reaction, biochemical analysis and PHA production. Isolates showed a wide range of tolerance to different commonly used antibiotics. PHA extraction was done by solvent extraction and hypochlorite digestion method. PHA production was optimized for different nitrogen concentrations. (author)

  18. Carbazole degradation in the soil microcosm by tropical bacterial strains

    Directory of Open Access Journals (Sweden)

    Lateef B. Salam

    2015-01-01

    Full Text Available In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonassp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg, 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg, 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments.

  19. Regional analysis of potential polychlorinated biphenyl degrading bacterial strains from China

    Directory of Open Access Journals (Sweden)

    Jianjun Shuai

    Full Text Available ABSTRACT Polychlorinated biphenyls (PCBs, the chlorinated derivatives of biphenyl, are one of the most prevalent, highly toxic and persistent groups of contaminants in the environment. The objective of this study was to investigate the biodegradation of PCBs in northeastern (Heilongjiang Province, northern (Shanxi Province and eastern China (Shanghai municipality. From these areas, nine soil samples were screened for PCB-degrading bacteria using a functional complementarity method. The genomic 16S rDNA locus was amplified and the products were sequenced to identify the bacterial genera. Seven Pseudomonas strains were selected to compare the capacity of bacteria from different regions to degrade biphenyl by HPLC. Compared to the biphenyl content in controls of 100%, the biphenyl content went down to 3.7% for strain P9-324, 36.3% for P2-11, and 20.0% for the other five strains. These results indicate that a longer processing time led to more degradation of biphenyl. PCB-degrading bacterial strains are distributed differently in different regions of China.

  20. Endolymphatic sac involvement in bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Brandt, Christian; Østergaard, Christian

    2015-01-01

    The commonest sequelae of bacterial meningitis are related to the inner ear. Little is known about the inner ear immune defense. Evidence suggests that the endolymphatic sac provides some protection against infection. A potential involvement of the endolymphatic sac in bacterial meningitis...... is largely unaccounted for, and thus the object of the present study. A well-established adult rat model of Streptococcus pneumoniae meningitis was employed. Thirty adult rats were inoculated intrathecally with Streptococcus pneumoniae and received no additional treatment. Six rats were sham...... days. Bacteria invaded the inner ear through the cochlear aquaduct. On days 5-6, the bacteria invaded the endolymphatic sac through the endolymphatic duct subsequent to invasion of the vestibular endolymphatic compartment. No evidence of direct bacterial invasion of the sac through the meninges...

  1. Antifungal activity of bacterial strains from the rhizosphere of ...

    African Journals Online (AJOL)

    This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was assessed with a ...

  2. ANTIMICROBIAL POTENTIAL OF GARLIC AND OREGANO EXTRACTS AND ESSENTIAL OILS AGAINST DIFFERENT BACTERIAL STRAINS

    Directory of Open Access Journals (Sweden)

    Ionica Deliu

    2017-12-01

    Full Text Available The modern world is often concerned about the bacterial diseases and the diversity of treatment possibilities. The herbal medicines overreach the medical world because the less number of side effects than synthetic drugs and their low costs. In addition to conventional drugs, the natural remedies can solve exceptional health problems. In this study the antibacterial actions of ethanolic, methanolic and aqueous plant extracts (Allium sativum L. and Origanum vulgare L. were tested. Also, we tested the antimicrobial effects of garlic and oregano essential oils against three bacterial strains. The extracts were tested by diffusion method and certain variants were used. The antibacterial effects were read after 24h of incubation at 37°C. The most obvious effect was observed for oregano essential oil and the smallest growth inhibition was registered for aqueous extracts. The alcoholic extracts were more efficient after concentration by evaporation. The most sensitive bacterial strain was Staphylococcus aureus strain. However the Citrobacter freundii clinical strain had not so high sensitivity at plant extracts, we shall consider the plant extracts as a good alternative to synthetic drugs.

  3. [3H] Thymidine incorporation to estimate growth rates of anaerobic bacterial strains

    International Nuclear Information System (INIS)

    Winding, A.

    1992-01-01

    The incorporation of [ 3 H] thymidine by axenic cultures of anaerobic bacteria was investigated as a means to measure growth. The three fermentative strains and one of the methanogenic strains tested incorporated [ 3 H] thymidine during growth. It is concluded that the [ 3 H] thymidine incorporation method underestimates bacterial growth in anaerobic environments

  4. Synergism between hydrogen peroxide and seventeen acids against six bacterial strains.

    Science.gov (United States)

    Martin, H; Maris, P

    2012-09-01

    The objective of this study was to evaluate the bactericidal efficacy of hydrogen peroxide administered in combination with 17 mineral and organic acids authorized for use in the food industry. The assays were performed on a 96-well microplate using a microdilution technique based on the checkerboard titration method. The six selected strains were reference strains and strains representative of contaminating bacteria in the food industry. Each synergistic hydrogen peroxide/acid combination found after 5-min contact time at 20°C in distilled water was then tested in conditions simulating four different use conditions. Thirty-two combinations were synergistic in distilled water; twenty-five of these remained synergistic with one or more of the four mineral and organic interfering substances selected. Hydrogen peroxide/formic acid combination was synergistic for all six bacterial strains in distilled water and remained synergistic with interfering substances. Six other combinations maintained their synergistic effect in the presence of an organic load but only for one or two bacterial strains. Synergistic combinations of disinfectants were revealed, among them the promising hydrogen peroxide/formic acid combination. A rapid screening method was proposed and used to reveal the synergistic potential of disinfectant and/or sanitizer combinations. © 2012 ANSES Fougères Laboratory Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  5. Probiotic features of Lactobacillus plantarum mutant strains.

    Science.gov (United States)

    Bove, Pasquale; Gallone, Anna; Russo, Pasquale; Capozzi, Vittorio; Albenzio, Marzia; Spano, Giuseppe; Fiocco, Daniela

    2012-10-01

    In this study, the probiotic potential of Lactobacillus plantarum wild-type and derivative mutant strains was investigated. Bacterial survival was evaluated in an in vitro system, simulating the transit along the human oro-gastro-intestinal tract. Interaction with human gut epithelial cells was studied by assessing bacterial adhesive ability to Caco-2 cells and induction of genes involved in innate immunity. L. plantarum strains were resistant to the combined stress at the various steps of the simulated gastrointestinal tract. Major decreases in the viability of L. plantarum cells were observed mainly under drastic acidic conditions (pH ≤ 2.0) of the gastric compartment. Abiotic stresses associated to small intestine poorly affected bacterial viability. All the bacterial strains significantly adhered to Caco-2 cells, with the ΔctsR mutant strain exhibiting the highest adhesion. Induction of immune-related genes resulted higher upon incubation with heat-inactivated bacteria rather than with live ones. For specific genes, a differential transcriptional pattern was observed upon stimulation with different L. plantarum strains, evidencing a possible role of the knocked out bacterial genes in the modulation of host cell response. In particular, cells from Δhsp18.55 and ΔftsH mutants strongly triggered immune defence genes. Our study highlights the relevance of microbial genetic background in host-probiotic interaction and might contribute to identify candidate bacterial genes and molecules involved in probiosis.

  6. Volatile emissions from Mycobacterium avium subsp. paratuberculosis mirror bacterial growth and enable distinction of different strains.

    Directory of Open Access Journals (Sweden)

    Phillip Trefz

    Full Text Available Control of paratuberculosis in livestock is hampered by the low sensitivity of established direct and indirect diagnostic methods. Like other bacteria, Mycobacterium avium subsp. paratuberculosis (MAP emits volatile organic compounds (VOCs. Differences of VOC patterns in breath and feces of infected and not infected animals were described in first pilot experiments but detailed information on potential marker substances is missing. This study was intended to look for characteristic volatile substances in the headspace of cultures of different MAP strains and to find out how the emission of VOCs was affected by density of bacterial growth. One laboratory adapted and four field strains, three of MAP C-type and one MAP S-type were cultivated on Herrold's egg yolk medium in dilutions of 10(-0, 10(-2, 10(-4 and 10(-6. Volatile substances were pre-concentrated from the headspace over the MAP cultures by means of Solid Phase Micro Extraction (SPME, thermally desorbed from the SPME fibers and separated and identified by means of GC-MS. Out of the large number of compounds found in the headspace over MAP cultures, 34 volatile marker substances could be identified as potential biomarkers for growth and metabolic activity. All five MAP strains could clearly be distinguished from blank culture media by means of emission patterns based on these 34 substances. In addition, patterns of volatiles emitted by the reference strain were significantly different from the field strains. Headspace concentrations of 2-ethylfuran, 2-methylfuran, 3-methylfuran, 2-pentylfuran, ethyl acetate, 1-methyl-1-H-pyrrole and dimethyldisulfide varied with density of bacterial growth. Analysis of VOCs emitted from mycobacterial cultures can be used to identify bacterial growth and, in addition, to differentiate between different bacterial strains. VOC emission patterns may be used to approximate bacterial growth density. In a perspective volatile marker substances could be used to

  7. Volatile emissions from Mycobacterium avium subsp. paratuberculosis mirror bacterial growth and enable distinction of different strains.

    Science.gov (United States)

    Trefz, Phillip; Koehler, Heike; Klepik, Klaus; Moebius, Petra; Reinhold, Petra; Schubert, Jochen K; Miekisch, Wolfram

    2013-01-01

    Control of paratuberculosis in livestock is hampered by the low sensitivity of established direct and indirect diagnostic methods. Like other bacteria, Mycobacterium avium subsp. paratuberculosis (MAP) emits volatile organic compounds (VOCs). Differences of VOC patterns in breath and feces of infected and not infected animals were described in first pilot experiments but detailed information on potential marker substances is missing. This study was intended to look for characteristic volatile substances in the headspace of cultures of different MAP strains and to find out how the emission of VOCs was affected by density of bacterial growth. One laboratory adapted and four field strains, three of MAP C-type and one MAP S-type were cultivated on Herrold's egg yolk medium in dilutions of 10(-0), 10(-2), 10(-4) and 10(-6). Volatile substances were pre-concentrated from the headspace over the MAP cultures by means of Solid Phase Micro Extraction (SPME), thermally desorbed from the SPME fibers and separated and identified by means of GC-MS. Out of the large number of compounds found in the headspace over MAP cultures, 34 volatile marker substances could be identified as potential biomarkers for growth and metabolic activity. All five MAP strains could clearly be distinguished from blank culture media by means of emission patterns based on these 34 substances. In addition, patterns of volatiles emitted by the reference strain were significantly different from the field strains. Headspace concentrations of 2-ethylfuran, 2-methylfuran, 3-methylfuran, 2-pentylfuran, ethyl acetate, 1-methyl-1-H-pyrrole and dimethyldisulfide varied with density of bacterial growth. Analysis of VOCs emitted from mycobacterial cultures can be used to identify bacterial growth and, in addition, to differentiate between different bacterial strains. VOC emission patterns may be used to approximate bacterial growth density. In a perspective volatile marker substances could be used to diagnose MAP

  8. Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology

    Science.gov (United States)

    2017-01-01

    ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that

  9. Effect of Aqueous Garlic Extract (AGE) and gamma irradiation on some Bacterial Strains

    International Nuclear Information System (INIS)

    Awny, N.M; Tawfik, Z.S; Abu Nor, S.M; El-Saled, K.M.

    2005-01-01

    In the present study the sensitivity of four bacterial strains; Salmonella typhimurium, Escherichia coli, Bacillus subtilis and Bacillus pumilus were tested towards the antibacterial effect of aqueous garlic extract (AGE) with different concentration. The results indicated that, the Gram positive spore forming strains, Bacillus subtilis and Bacillus pumilus treated with AGE from 0 to 70μ1/m1 were more resistant than Gram negative non-spore forming ones, Salmonella typhimurium and Escherichia coli treated with AGE from 0 to 24 μ1/m1. The effect of AGE treatment on the radiosensitivity of the tested bacterial strains showed that, AGE treatment before γ-irradiation induced a higher protection than treatment immediately after γ-irradiation. The ultrastructure configuration of untreated strains, treated with AGE or irradiation and combination between AGE and Irradiation, were investigated using transmission electron microscope (TEM). The results indicated that, ultra-structures configuration of the cells treated with AGE before irradiation appeared with less damage than those of cells irradiated without AGE treatment

  10. [Co-occurence of indol-producing bacterial strains in the vagina of women infected with Chlamydia trachomatis].

    Science.gov (United States)

    Romanik, Małgorzata; Martirosian, Gayane; Wojciechowska-Wieja, Anna; Cieślik, Katarzyna; Kaźmierczak, Wojciech

    2007-08-01

    The aim of this study was to determine if cervicitis, caused by Chlamydia trachomatis (C. trachomatis), has an influence on the frequency of occurrence of selected aerobic and anaerobic bacterial strains, connected with etiology of aerobic vaginitis (AV) and bacterial vaginosis (BV). Indole-producing bacteria have received particular attention due to their possibly inductive role in chronic cervicitis caused by C. trachomatis. The swabs from vagina and cervical canal have been obtained from 122 women (aged 18-40). The presence of C. trachomatis antigen had been detected and diagnosed with the help of direct immunofluorescence, BV with Amesl and Nugent criteria, whereas the AV with Donders criteria. The identification of the bacterial strains isolated from vagina has been performed according to classical microbiological diagnostics. Disruption of vaginal microflora (4-10 in Nugent score) was determined in 11,5% of observed women. AV was diagnosed in 4.5% women with chlamydial cervicitis, BV was diagnosed in 10.9% and 5.45% of these women, on the basis of Amsel and Nugent criteria respectively. Indole-producing bacterial strains connected with BV and AV (Peptostreptococcus anaerobius, Propionibacterium acnes, Escherichia coli) have been isolated significantly more often from vagina of women infected with C trachomatis (p = 0.0405, chi2 = 4.20) and these findings confirm co-importance of indole-producing bacterial strains in cervicitis caused by C trachomatis .

  11. Occurrence of Antibiotic resistance in some bacterial strains due to gamma radiation, heavy metals or food preservatives

    International Nuclear Information System (INIS)

    Mattar, Z.A.; Bashandy, A.S.

    2006-01-01

    The susceptibility of bacterial strains (B. cereus, Staph. aureus, Escherichia coli and Salmonella) against 10 different antibiotics that are commonly used against food borne pathogens was studied. All the tested strains were observed to tolerate up to 100 mg/l copper sulphate or lead acetate, and there was a positive correlations between the tolerance to high levels of Cu or Pb and multiple antibiotic resistance was investigated. When the food preservatives (potassium sorbate or sodium benzoate) were added to the growth medium at different concentrations, the bacterial strains were able to tolerate up to 1000 ppm potassium sorbate or sodium benzoate (MIC). The antibiotic resistance of these strains was increased when grown on media supplemented with the MIC of sodium sorbate or potassium benzoate. When these bacterial strains were irradiated at dose levels of 1 or 3 or 5 KGy and examined for antibiotic sensitivity, a correlation was observed between the increases of radiation dose up to 5 KGy and the antibiotic resistance in all the studied strains

  12. Eradication of the corrosion-causing bacterial strains Desulfovibrio vulgaris and Desulfovibrio desulfuricans using photodisinfection

    Energy Technology Data Exchange (ETDEWEB)

    Street, C.N.; Gibbs, A.J. [Biocorrosion Solutions Inc., Edmonton, AB (Canada)

    2010-07-01

    Microbiologically influenced corrosion (MIC) can cause oil and gas pipelines to fail prematurely. The free-floating bacteria collects on the inner pipeline surface to form complex adherent biofilms. This study evaluated the use of photodisinfection as a means of treating 2 sulfate-reducing bacterial strains known to contribute to MIC. The sulfate-reducing strains Desulfovibrio vulgaris and Desulfovibrio desulfuricans were studied experimentally to a concentration of 10{sup 7} colony-forming units per millimeter. Bacterial inocula was made to an optical density of 0.150 at 420 nm in order to assess biofilm growth. The study showed that photodisinfection was able to eradicate more than 99 per cent of the bacterial populations prepared in the study. The method was highly effective in removing the biofilms known to cause MIC in oil and gas pipelines. A close-loop dynamic flow system model will be prepared to evaluate the ability of photodisinfection to inhibit bacterially-influenced corrosion of steel coupons. 24 refs., 3 tabs., 1 fig.

  13. Distinct Bacterial Composition Associated with Different Laboratory-cultured Aiptasia Strains Across Two Thermal Conditions

    KAUST Repository

    Ahmed, Hanin

    2018-05-01

    Coral reefs are crucial for the ecological sustainability of the oceans, yet, increasing sea surface temperature is threatening these ecosystems globally. Microbial communities associated with corals have become a recent research focus, as the associated microbiome may contribute to coral resilience to environmental stressors, e.g., heat stress. However, research in this area is hampered by the difficulty of working with corals. This study aims to use Aiptasia, a sea anemone, as a tractable laboratory model system to study the role of the coral microbiome. Analyses of the bacterial compositions associated with different Aiptasia strains across two temperatures (25 °C and 32 °C), based on 16S rRNA gene sequencing. This study aims also to identify a “core” microbiome associated with heat stress acclimation, as well as host-specific differences. In general, results showed that bacterial composition associated with Aiptasia strains differs significantly with temperature. Higher bacterial diversity and richness were observed when all Aiptasia strains were placed under heat stress. Moreover, results showed an increase in beta diversity and dispersion of bacterial communities in response to heat stress. These changes in the bacterial composition are in line with the recently described “Anna Karenina principle” for animal microbiomes, which suggests that the microbiomes of unhealthy individuals vary more than healthy and stable individuals. This study further shows that while temperature had the greatest effect on structuring the bacterial compositions, there were some variations better attributed to batch and host effects. This suggests that technical aspects have to be carefully addressed in the framework of microbiome studies. Members of a putative “core” microbiome associated with 32 °C Aiptasia have been identified as indicator species of heat stress (i.e., Francisella sp.,). Previous reports have shown that these indicator taxa are associated with

  14. Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes

    International Nuclear Information System (INIS)

    Gentili, A.R.; Cubitto, M.A.; Ferrero, M.; Rodriguez, M.S.

    2006-01-01

    In this laboratory-scale study, we examined the potential of chitin and chitosan flakes obtained from shrimp wastes as carrier material for a hydrocarbon-degrading bacterial strain. Flakes decontamination, immobilization conditions and the survival of the immobilized bacterial strain under different storage temperatures were evaluated. The potential of immobilized hydrocarbon-degrading bacterial strain for crude oil polluted seawater bioremediation was tested in seawater microcosms. In terms of removal percentage of crude oil after 15 days, the microcosms treated with the immobilized inoculants proved to be the most successful. The inoculants formulated with chitin and chitosan as carrier materials improved the survival and the activity of the immobilized strain. It is important to emphasize that the inoculants formulated with chitin showed the best performance during storage and seawater bioremediation. (author)

  15. Antimicrobial sensitivity and frequency of DRUG resistance among bacterial strains isolated from cancer patients

    International Nuclear Information System (INIS)

    Faiz, M.; Bashir, T.

    2004-01-01

    Blood stream infections (bacteremia) is potentially life threatening. Concomitant with a change in the incidence and epidemiology of infecting organisms, there has been an increase in resistance to many antibiotic compounds. The widespread emergence of resistance among bacterial pathogens has an impact on our ability to treat patients effectively. The changing spectrum of microbial pathogens and widespread emergence of microbial resistance to antibiotic drugs has emphasized the need to monitor the prevalence of resistance in these strains. In the present study frequency of isolation of clinically significant bacteria and their susceptibility and resistance pattern against a wide range of antimicrobial drugs from positive blood cultures collected during 2001-2003 was studied. A total of 102 consecutive isolates were found with 63% gram positive and 44% gram negative strains. The dominating pathogens were Staphylococcus aureus (51%), Streptococci (31%), Pseudomonas (40%), Proteus (13%), Klebsiella (13%). The isolated strains were tested against a wide range of antibiotics belonging to cephalosporins, aminoglycosides and quinolone derivative group by disk diffusion method. It has been observed that isolated strains among gram positive and negative strains showed different level of resistance against aminoglycosides and cephalosporin group of antibiotics with gram positives showing highest number and frequency of resistance against aminoglycosides (40-50%) and cephalosporins.(35-45%) whereas cephalosporins were found to be more effective against gram negatives with low frequency of resistant strains. Cabapenem and quinolone derivative drugs were found to be most effective among other groups in both gram positive and negative strains with 23-41% strains found sensitive to these two drugs. The frequency of sensitive strains against aminoglycoside and cephalosporin in gram negative and gram positive strains were found to be decreasing yearwise with a trend towards an

  16. A rapid colorimetric screening method for vanillic acid and vanillin-producing bacterial strains.

    Science.gov (United States)

    Zamzuri, N A; Abd-Aziz, S; Rahim, R A; Phang, L Y; Alitheen, N B; Maeda, T

    2014-04-01

    To isolate a bacterial strain capable of biotransforming ferulic acid, a major component of lignin, into vanillin and vanillic acid by a rapid colorimetric screening method. For the production of vanillin, a natural aroma compound, we attempted to isolate a potential strain using a simple screening method based on pH change resulting from the degradation of ferulic acid. The strain Pseudomonas sp. AZ10 UPM exhibited a significant result because of colour changes observed on the assay plate on day 1 with a high intensity of yellow colour. The biotransformation of ferulic acid into vanillic acid by the AZ10 strain provided the yield (Yp/s ) and productivity (Pr ) of 1·08 mg mg(-1) and 53·1 mg L(-1) h(-1) , respectively. In fact, new investigations regarding lignin degradation revealed that the strain was not able to produce vanillin and vanillic acid directly from lignin; however, partially digested lignin by mixed enzymatic treatment allowed the strain to produce 30·7 mg l(-1) and 1·94 mg l(-1) of vanillic acid and biovanillin, respectively. (i) The rapid colorimetric screening method allowed the isolation of a biovanillin producer using ferulic acid as the sole carbon source. (ii) Enzymatic treatment partially digested lignin, which could then be utilized by the strain to produce biovanillin and vanillic acid. To the best of our knowledge, this is the first study reporting the use of a rapid colorimetric screening method for bacterial strains producing vanillin and vanillic acid from ferulic acid. © 2013 The Society for Applied Microbiology.

  17. The Mechanism for Type I Interferon Induction by Mycobacterium tuberculosis is Bacterial Strain-Dependent.

    Directory of Open Access Journals (Sweden)

    Kirsten E Wiens

    2016-08-01

    Full Text Available Type I interferons (including IFNαβ are innate cytokines that may contribute to pathogenesis during Mycobacterium tuberculosis (Mtb infection. To induce IFNβ, Mtb must gain access to the host cytosol and trigger stimulator of interferon genes (STING signaling. A recently proposed model suggests that Mtb triggers STING signaling through bacterial DNA binding cyclic GMP-AMP synthase (cGAS in the cytosol. The aim of this study was to test the generalizability of this model using phylogenetically distinct strains of the Mtb complex (MTBC. We infected bone marrow derived macrophages with strains from MTBC Lineages 2, 4 and 6. We found that the Lineage 6 strain induced less IFNβ, and that the Lineage 2 strain induced more IFNβ, than the Lineage 4 strain. The strains did not differ in their access to the host cytosol and IFNβ induction by each strain required both STING and cGAS. We also found that the three strains shed similar amounts of bacterial DNA. Interestingly, we found that the Lineage 6 strain was associated with less mitochondrial stress and less mitochondrial DNA (mtDNA in the cytosol compared with the Lineage 4 strain. Treating macrophages with a mitochondria-specific antioxidant reduced cytosolic mtDNA and inhibited IFNβ induction by the Lineage 2 and 4 strains. We also found that the Lineage 2 strain did not induce more mitochondrial stress than the Lineage 4 strain, suggesting that additional pathways contribute to higher IFNβ induction. These results indicate that the mechanism for IFNβ by Mtb is more complex than the established model suggests. We show that mitochondrial dynamics and mtDNA contribute to IFNβ induction by Mtb. Moreover, we show that the contribution of mtDNA to the IFNβ response varies by MTBC strain and that additional mechanisms exist for Mtb to induce IFNβ.

  18. Systematic determination of the mosaic structure of bacterial genomes: species backbone versus strain-specific loops

    Directory of Open Access Journals (Sweden)

    Gendrault-Jacquemard A

    2005-07-01

    Full Text Available Abstract Background Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops. Results Here, we generalize this approach and propose a strategy that allows systematic and non-biased genome segmentation based on multiple genome alignments. Segmentation analyses, as applied to 13 different bacterial species, confirmed the feasibility of our approach to discern the 'mosaic' organization of bacterial genomes. Segmentation results are available through a Web interface permitting functional analysis, extraction and visualization of the backbone/loops structure of documented genomes. To illustrate the potential of this approach, we performed a precise analysis of the mosaic organization of three E. coli strains and functional characterization of the loops. Conclusion The segmentation results including the backbone/loops structure of 13 bacterial species genomes are new and available for use by the scientific community at the URL: http://genome.jouy.inra.fr/mosaic.

  19. Limited diffusive fluxes of substrate facilitate coexistence of two competing bacterial strains

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Or, D.; Smets, Barth F.

    2008-01-01

    . It has been proposed, but never unambiguously experimentally tested, that a low substrate diffusive flux would impact bacterial diversity, by promoting the coexistence between slow-growing bacteria and their potentially faster-growing competitors. We used a simple experimental system, based on a Petri...... dish and a perforated Teflon((R)) membrane to control diffusive fluxes of substrate (benzoate) whilst permitting direct observation of bacterial colonies. The system was inoculated with prescribed strains of Pseudomonas, whose growth was quantified by microscopic monitoring of the fluorescent proteins...

  20. Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae

    Science.gov (United States)

    Amruta, Narayanappa; Prasanna Kumar, M. K.; Puneeth, M. E.; Sarika, Gowdiperu; Kandikattu, Hemanth Kumar; Vishwanath, K.; Narayanaswamy, Sonnappa

    2018-01-01

    Rice blast caused by Magnaporthe oryzae is a major disease. In the present study, we aimed to identify and evaluate the novel bacterial isolates from rice rhizosphere for biocontrol of M. oryzae pathogen. Sixty bacterial strains from the rice plant’s rhizosphere were tested for their biocontrol activity against M. oryzae under in vitro and in vivo. Among them, B. amyloliquefaciens had significant high activity against the pathogen. The least disease severity and highest germination were recorded in seeds treated with B. amyloliquefaciens UASBR9 (0.96 and 98.00%) compared to untreated control (3.43 and 95.00%, respectively) under in vivo condition. These isolates had high activity of enzymes in relation to growth promoting activity upon challenge inoculation of the pathogen. The potential strains were identified based on 16S rRNA gene sequencing and dominance of these particular genes were associated in Bacillus strains. These strains were also confirmed for the presence of antimicrobial peptide biosynthetic genes viz., srfAA (surfactin), fenD (fengycin), spaS (subtilin), and ituC (iturin) related to secondary metabolite production (e.g., AMPs). Overall, the results suggested that application of potential bacterial strains like B. amyloliquefaciens UASBR9 not only helps in control of the biological suppression of one of the most devastating rice pathogens, M. grisea but also increases plant growth along with a reduction in application of toxic chemical pesticides. PMID:29628819

  1. Evaluation of different lactic acid bacterial strains for probiotic characteristics

    OpenAIRE

    B. Srinu,; T. Madhava Rao,; P. V. Mallikarjuna Reddy; K. Kondal Reddy

    2013-01-01

    Objective: The objective of the present study was to collect different Lactic acid bacterial strains from culture collection centers and screen their functional probiotic characteristics such as acid tolerance, bile tolerance, antibacterial activity and antibiotic sensitivity for their commercial use. Materials and Methods: Acid and bile tolerence of selected LAB(Lactic acid bacteria) was determined. The antibiotic resistance of Lactobacillus species was assessed using different antibiotic di...

  2. Antibacterial activity of fumaria indica (hausskn.) pugsley against selected bacterial strains

    International Nuclear Information System (INIS)

    Toor, Y.; Nawaz, K.; Hussain, K.

    2015-01-01

    Antibacterial properties of methanolic extracts of F. indica prepared in different doses against seven Gram-positive and Gram-negative bacterial strains i.e. Streptococcus pyogenes, Staphylococcus aureus (1), Staphylococcus aureus (2), Shigella sonnei, Escherichia coli (1), Escherichia coli (2) and Neisseria gonorrhoeae using agar well diffusion method (inhibition zone measurements) compared to gentamicin as standard antibiotic. Results showed significant activities against the test organisms with overall satisfactory statistics. Streptococcus pyogenes, Staphylococcus aureus strains as well as Neisseria gonorrhoeae showed more inhibition to methanolic extracts of F. indica. Minimum inhibitory as well as minimum bactericidal concentrations against all strains except Shigella sonnei were also recorded. Studies showed promising horizons for the use of F. indica as an active antibacterial component in modern drug formulations. (author)

  3. Evaluation of indigenous bacterial strains for biocontrol of the frogeye leaf spot of soya bean caused by Cercospora sojina.

    Science.gov (United States)

    Simonetti, E; Carmona, M A; Scandiani, M M; García, A F; Luque, A G; Correa, O S; Balestrasse, K B

    2012-08-01

    Assessment of biological control of Cercospora sojina, causal agent of frogeye leaf spot (FLS) of soya bean, using three indigenous bacterial strains, BNM297 (Pseudomonas fluorescens), BNM340 and BNM122 (Bacillus amyloliquefaciens). From cultures of each bacterial strain, cell suspensions and cell-free supernatants were obtained and assayed to determine their antifungal activity against C. sojina. Both mycelial growth and spore germination in vitro were more strongly inhibited by bacterial cell suspensions than by cell-free supernatants. The Bacillus strains BNM122 and BNM340 inhibited the fungal growth to a similar degree (I ≈ 52-53%), while cells from P. fluorescens BNM297 caused a lesser reduction (I ≈ 32-34%) in the fungus colony diameter. The foliar application of the two Bacillus strains on soya bean seedlings, under greenhouse conditions, significantly reduced the disease severity with respect to control soya bean seedlings and those sprayed with BNM297. This last bacterial strain was not effective in controlling FLS in vivo. Our data demonstrate that the application of antagonistic bacteria may be a promising and environmentally friendly alternative to control the FLS of soya bean.   To our knowledge, this is the first report of biological control of C. sojina by using native Bacillus strains. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  4. Detection of antibiotic resistance in clinical bacterial strains from pets

    OpenAIRE

    Poeta, P.; Rodrigues, J.

    2008-01-01

    The identification of different bacterial strains and the occurrence of antibiotic resistance were investigated in several infection processes of pets as skin abscess with purulent discharge, bronco alveolar fluid, earwax, urine, mammary, and eye fluid. Streptococcus spp. and Staphylococcus spp. were the most detected in the different samples. A high frequency of antimicrobial resistance has been observed and this could reflect the wide use of antimicrobials in pets, making the effectiveness ...

  5. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    Science.gov (United States)

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  6. Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth.

    Science.gov (United States)

    Jeong, Hyung Uk; Mun, Hye Yeon; Oh, Hyung Keun; Kim, Seung Bum; Yang, Kwang Yeol; Kim, Iksoo; Lee, Hyang Burm

    2010-08-01

    To identify novel bioinsecticidal agents, a bacterial strain, Serratia sp. EML-SE1, was isolated from a dead larva of the lepidopteran diamondback moth (Plutella xylostella) collected from a cabbage field in Korea. In this study, the insecticidal activity of liquid cultures in Luria-Bertani broth (LBB) and nutrient broth (NB) of a bacterial strain, Serratia sp. EML-SE1 against thirty 3rd and 4th instar larvae of the diamondback moth was investigated on a Chinese cabbage leaf housed in a round plastic cage (Ø 10 x 6 cm). 72 h after spraying the cabbage leaf with LBB and NB cultures containing the bacterial strain, the mortalities of the larvae were determined to be 91.7% and 88.3%, respectively. In addition, the insecticidal activity on potted cabbage containing 14 leaves in a growth cage (165 x 83 x 124 cm) was found to be similar to that of the plastic cage experiment. The results of this study provided valuable information on the insecticidal activity of the liquid culture of a Serratia species against the diamondback moth.

  7. Metabolic fingerprinting of bacterial strains isolated from northern areas of Pakistan

    International Nuclear Information System (INIS)

    Zaheer, A.; Latif, Z.

    2017-01-01

    The diversity of Plant Growth Promoting Rhizobacteria (PGPR) in the rhizosphere plays a key role in the maintenance of sustainable agricultural system. In this study, samples were obtained from northern areas of Pakistan. Thirty bacterial strains were isolated, purified, characterized biochemically and subjected to the metabolic fingerprinting by performing nitrogen fixation, phosphate solubilization, protease, indole acetic acid (IAA) production, antibiotic susceptibility and heavy metal resistance test, lead acetate assay for the H2S production. Strains showing distinct characteristics were further characterized by 16S rDNA sequencing and characterized as Bacillus pumilus (KT273321), Acinetobacter baumanii (KT273323), Acinetobacter junii (KT273324), Pseudomonas aeruginosa (KT273325), Bacillus circulans (KT273326) and Bacillus cereus (KT273327). As most of the strains show positive results for resistance against heavy metals, phosphate solubilization, nitrogen fixation, IAA production, and so these strains might be utilized for the removal of heavy metals from the ecosystem as well as biofertilizer in agriculture lands of northern areas. (author)

  8. Effect of CuO Nanoparticles over Isolated Bacterial Strains from Agricultural Soil

    International Nuclear Information System (INIS)

    Concha-Guerrero, S.I.; Pinon-Castillo, H.A.; Luna-Velasco, A.; Orrantia-Borunda, E.; Brito, E.M.S.; Tarango-Rivero, S.H.; Caretta, C.A.; Duran, R.

    2014-01-01

    The increased use of the nanoparticles (NPs) on several processes is notorious. In contrast the eco toxicological effects of NPs have been scarcely studied. The main current researches are related to the oxide metallic NPs. In the present work, fifty-six bacterial strains were isolated from soil, comprising 17 different OTUs distributed into 3 classes: Bacilli (36 strains), Flavobacteria (2 strains), and Gamma proteobacteria (18 strains). Copper oxide nanoparticles (CuONPs) were synthesized using a process of chemical precipitation. The obtained CuONPs have a spherical shape and primary size less than 17 nm. Twenty-one strains were used to evaluate the cytotoxicity of CuONPs and 11 of these strains showed high sensibility. Among those 11 strains, 4 (Brevibacillus later osporus strain CSS8, Chryseobacterium indoltheticum strain CSA28, and Pantoea ananatis strains CSA34 and CSA35) were selected to determine the kind of damage produced. The CuONPs toxic effect was observed at expositions over 25 mg·L -1 and the damage to cell membrane above 160 mg·L -1 . The electron microscopy showed the formation of cavities, holes, membrane degradation, blebs, cellular collapse, and lysis. These toxic effects may probably be due to the ions interaction, the oxide-reduction reactions, and the generation of reactive species

  9. Beneficial role of hydrophytes in removing Cr(VI) from wastewater in association with chromate-reducing bacterial strains Ochrobactrum intermedium and Brevibacterium.

    Science.gov (United States)

    Faisal, Muhammad; Hasnain, Shahida

    2005-01-01

    This study deals with the use of three chromium-resistant bacterial strains (Ochrobactrum intermedium CrT-1, Brevibacterium CrT-13, and CrM-1) in conjunction with Eichornia crassipes for the removal of toxic chromium from wastewater. Bacterial strains resulted in reduced uptake of chromate into inoculated plants as compared to noninoculated control plants. In the presence of different heavy metals, chromium uptake into the plants was 28.7 and 7.15% less at an initial K2CrO4 concentration of 100 and 500 microg ml(-1) in comparison to a metal free chromium solution. K2CrO4 uptake into the plant occurred at different pHs tested, but maximum uptake was observed at pH 5. Nevertheless, the bacterial strains caused some decrease in chromate uptake into the plants, but the combined effect of plants and bacterial strains conduce more removal of Cr(VI) from the solution.

  10. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.

    Science.gov (United States)

    Gomaa, Ahmed A; Klumpe, Heidi E; Luo, Michelle L; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L

    2014-01-28

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of "smart" antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. Controlling the composition of microbial populations is a critical aspect in medicine, biotechnology, and environmental cycles. While different antimicrobial strategies, such as antibiotics, antimicrobial peptides, and lytic bacteriophages, offer partial solutions

  11. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater.

    Science.gov (United States)

    Vasileva-Tonkova, Evgenia; Sotirova, Anna; Galabova, Danka

    2011-02-01

    In this study, the effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on bacterial strains, laboratory strains, and isolates from industrial wastewater was investigated. It was shown that biosurfactant, depending on the concentration, has a neutral or detrimental effect on the growth and protein release of model Gram (+) strain Bacillus subtilis 168. The growth and protein release of model Gram (-) strain Pseudomonas aeruginosa 1390 was not influenced by the presence of biosurfactant in the medium. Rhamnolipid biosurfactant at the used concentrations supported the growth of some slow growing on hexadecane bacterial isolates, members of the microbial community. Changes in cell surface hydrophobicity and permeability of some Gram (+) and Gram (-) isolates in the presence of rhamnolipid biosurfactant were followed in experiments in vitro. It was found that bacterial cells treated with biosurfactant became more or less hydrophobic than untreated cells depending on individual characteristics and abilities of the strains. For all treated strains, an increase in the amount of released protein was observed with increasing the amount of biosurfactant, probably due to increased cell permeability as a result of changes in the organization of cell surface structures. The results obtained could contribute to clarify the relationships between members of the microbial community as well as suggest the efficiency of surface properties of rhamnolipid biosurfactant from Pseudomonas fluorescens making it potentially applicable in bioremediation of hydrocarbon-polluted environments.

  12. Simultaneous Microcystis Algicidal and Microcystin Degrading Capability by a Single Acinetobacter Bacterial Strain.

    Science.gov (United States)

    Li, Hong; Ai, Hainan; Kang, Li; Sun, Xingfu; He, Qiang

    2016-11-01

    Measures for removal of toxic harmful algal blooms often cause lysis of algal cells and release of microcystins (MCs). In this study, Acinetobacter sp. CMDB-2 that exhibits distinct algal lysing activity and MCs degradation capability was isolated. The physiological response and morphological characteristics of toxin-producing Microcystis aeruginosa, the dynamics of intra- and extracellular MC-LR concentration were studied in an algal/bacterial cocultured system. The results demonstrated that Acinetobacter sp. CMDB-2 caused thorough decomposition of algal cells and impairment of photosynthesis within 24 h. Enhanced algal lysis and MC-LR release appeared with increasing bacterial density from 1 × 10 3 to 1 × 10 7 cells/mL; however, the MC-LR was reduced by nearly 94% within 14 h irrespective of bacterial density. Measurement of extracellular and intracellular MC-LR revealed that the toxin was decreased by 92% in bacterial cell incubated systems relative to control and bacterial cell-free filtrate systems. The results confirmed that the bacterial metabolite caused 92% lysis of Microcystis aeruginosa cells, whereas the bacterial cells were responsible for approximately 91% reduction of MC-LR. The joint efforts of the bacterium and its metabolite accomplished the sustainable removal of algae and MC-LR. This is the first report of a single bacterial strain that achieves these dual actions.

  13. Radioprotective effect of garlic extract on some bacterial strains with different radiation sensitivities

    International Nuclear Information System (INIS)

    Tawfik, Z.S.; Abushady, M.R.

    1992-01-01

    The radioprotective effect of garlic on four bacterial strains with different degrees of radiation sensitivities was investigated. The presence of garlic led to an increase in d-10 value of Ps. Aeruginosa, S. aureus and S. typhimurium by 160%, 50%, and 30% respectively. The protective efficiency of garlic against radiation was noticed to be proportional to its concentration in a given inoculum size. Garlic extract up to 180 micro liter per 10 8 inoculum size of B. cereus showed no protective effect. This fact was attributed to the existence of sulphur compounds in the given strain. Higher garlic concentrations appeared to affect the cloning efficiency of a given strain. 4fig., 2tab

  14. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    Science.gov (United States)

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs.

  15. Transforming microbial genotyping: a robotic pipeline for genotyping bacterial strains.

    Directory of Open Access Journals (Sweden)

    Brian O'Farrell

    Full Text Available Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of 200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost.

  16. A nonluminescent and highly virulent Vibrio harveyi strain is associated with "bacterial white tail disease" of Litopenaeus vannamei shrimp.

    Directory of Open Access Journals (Sweden)

    Junfang Zhou

    Full Text Available Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by "white tail" and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905 was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN, white tail disease (WTD or penaeid white tail disease (PWTD. To differentiate from such diseases as with a sign of "white tail" but of non-bacterial origin, the present disease was named as "bacterial white tail disease (BWTD". Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system.

  17. Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts

    DEFF Research Database (Denmark)

    Rasch, Maria; Andersen, Jens Bo; Nielsen, Kristian Fog

    2005-01-01

    Bacterial communication signals, acylated homoserine lactones (AHLs), were extracted from samples of commercial bean sprouts undergoing soft-rot spoilage. Bean sprouts produced in the laboratory did not undergo soft-rot spoilage and did not contain AHLs or AHL-producing bacteria, although...... the bacterial population reached levels similar to those in the commercial sprouts, 10(8) to 10(9) CFU/g. AHL-producing bacteria (Enterobacteriaceae and pseudomonads) were isolated from commercial sprouts, and strains that were both proteolytic and pectinolytic were capable of causing soft-rot spoilage in bean...... sprouts. Thin-layer chromatography and liquid chromatography-high-resolution mass spectrometry revealed the presence of N-3-oxo-hexanoyl-l-homoserine lactone in spoiled bean sprouts and in extracts from pure cultures of bacteria. During normal spoilage, the pH of the sprouts increased due to proteolytic...

  18. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    Science.gov (United States)

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Distinct Bacterial Composition Associated with Different Laboratory-cultured Aiptasia Strains Across Two Thermal Conditions

    KAUST Repository

    Ahmed, Hanin

    2018-01-01

    laboratory model system to study the role of the coral microbiome. Analyses of the bacterial compositions associated with different Aiptasia strains across two temperatures (25 °C and 32 °C), based on 16S rRNA gene sequencing. This study aims also to identify

  20. Bacterial strains diversity in Musa spp. phyllosphere with antifungal activity against Mycosphaerella fijiensis Morelet

    Directory of Open Access Journals (Sweden)

    Mileidy Cruz-Martín

    2016-01-01

    Full Text Available The search for alternatives to agricultural pesticides used for the management of black Sigatoka (Mycosphaerella fijiensis Morelet includes the selection of microorganisms strains with potential for the control of this pathogen. The objective of the work was to characterize bacterial strains isolated from the phylosphere of Musa spp. with antifungal effect against M. fijiensis. A morphological, cultural, physiological and molecular characterization of the strains was performed and the antifungal activity of these strains was quantified by dual culture. It was verified the diversity of bacteria with antifungal properties against M. fijiensis present in the phylosphere of Musa spp.  In addition, it was found that the phyllosphere of these crops can be used as a source of obtaining possible biological controls of M. fijiensis.   Keywords: bacteria, biocontrol, Black Sigatoka, epiphytes

  1. The Genomic Sequence of the Oral Pathobiont Strain NI1060 Reveals Unique Strategies for Bacterial Competition and Pathogenicity.

    Directory of Open Access Journals (Sweden)

    Youssef Darzi

    Full Text Available Strain NI1060 is an oral bacterium responsible for periodontitis in a murine ligature-induced disease model. To better understand its pathogenicity, we have determined the complete sequence of its 2,553,982 bp genome. Although closely related to Pasteurella pneumotropica, a pneumonia-associated rodent commensal based on its 16S rRNA, the NI1060 genomic content suggests that they are different species thriving on different energy sources via alternative metabolic pathways. Genomic and phylogenetic analyses showed that strain NI1060 is distinct from the genera currently described in the family Pasteurellaceae, and is likely to represent a novel species. In addition, we found putative virulence genes involved in lipooligosaccharide synthesis, adhesins and bacteriotoxic proteins. These genes are potentially important for host adaption and for the induction of dysbiosis through bacterial competition and pathogenicity. Importantly, strain NI1060 strongly stimulates Nod1, an innate immune receptor, but is defective in two peptidoglycan recycling genes due to a frameshift mutation. The in-depth analysis of its genome thus provides critical insights for the development of NI1060 as a prime model system for infectious disease.

  2. A Nonluminescent and Highly Virulent Vibrio harveyi Strain Is Associated with “Bacterial White Tail Disease” of Litopenaeus vannamei Shrimp

    Science.gov (United States)

    Zhou, Junfang; Fang, Wenhong; Yang, Xianle; Zhou, Shuai; Hu, Linlin; Li, Xincang; Qi, Xinyong; Su, Hang; Xie, Layue

    2012-01-01

    Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by “white tail” and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905) was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN), white tail disease (WTD) or penaeid white tail disease (PWTD). To differentiate from such diseases as with a sign of “white tail” but of non-bacterial origin, the present disease was named as “bacterial white tail disease (BWTD)”. Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system. PMID:22383954

  3. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  4. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome.

    Directory of Open Access Journals (Sweden)

    Tim van Opijnen

    2016-09-01

    Full Text Available The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable.

  5. Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation.

    Science.gov (United States)

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-10-03

    Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.

  6. Bio-degradation of oily food waste employing thermophilic bacterial strains.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Chan, Man Ting; Wong, Jonathan W C

    2018-01-01

    The objective of this work was to isolate a novel thermophilic bacterial strain and develop a bacterial consortium (BC) for efficient degradation oily food waste. Four treatments were designed: 1:1 mixture of pre-consumption food wastes (PrCFWs) and post-consumption food wastes (PCFWs) (T-1), 1:2 mixture of PrCFWs and PCFWs mixture (T-2), PrCFWs (T-3) and PCFWs (T-4). Equal quantity of BC was inoculated into each treatment to compare the oil degradation efficiency. Results showed that after 15days of incubation, a maximum oil reduction of 65.12±0.08% was observed in treatment T-4, followed by T-2 (55.44±0.12%), T-3 (54.79±0.04%) and T-1 (52.52±0.02%), while oil reduction was negligible in control. Results indicate that the development of oil utilizing thermophilic BC was more cost-effective in solving the degradation of oily food wastes and conversion into a stable end product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    Science.gov (United States)

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  8. ‘Olegusella massiliensis’ strain KHD7, a new bacterial genus isolated from the female genital tract

    Directory of Open Access Journals (Sweden)

    K. Diop

    2016-07-01

    Full Text Available We report the main characteristics of ‘Olegusella massiliensis’ gen. nov., sp. nov., strain KHD7 (= CSUR P2268=DSM 101849, a new member of the Coriobacteriaceae family isolated from the vaginal flora of a patient with bacterial vaginosis.

  9. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.

    Science.gov (United States)

    Gugala, Natalie; Lemire, Joe A; Turner, Raymond J

    2017-06-01

    The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.

  10. Strains of bacterial species induce a greatly varied acute adaptive immune response: The contribution of the accessory genome.

    Directory of Open Access Journals (Sweden)

    Uri Sela

    2018-01-01

    Full Text Available A fundamental question in human susceptibility to bacterial infections is to what extent variability is a function of differences in the pathogen species or in individual humans. To focus on the pathogen species, we compared in the same individual the human adaptive T and B cell immune response to multiple strains of two major human pathogens, Staphylococcus aureus and Streptococcus pyogenes. We found wide variability in the acute adaptive immune response induced by various strains of a species, with a unique combination of activation within the two arms of the adaptive response. Further, this was also accompanied by a dramatic difference in the intensity of the specific protective T helper (Th response. Importantly, the same immune response differences induced by the individual strains were maintained across multiple healthy human donors. A comparison of isogenic phage KO strains, demonstrated that of the pangenome, prophages were the major contributor to inter-strain immune heterogeneity, as the T cell response to the remaining "core genome" was noticeably blunted. Therefore, these findings extend and modify the notion of an adaptive response to a pathogenic bacterium, by implying that the adaptive immune response signature of a bacterial species should be defined either per strain or alternatively to the species' 'core genome', common to all of its strains. Further, our results demonstrate that the acquired immune response variation is as wide among different strains within a single pathogenic species as it is among different humans, and therefore may explain in part the clinical heterogeneity observed in patients infected with the same species.

  11. In vitro antibacterial activity of methanol and water extracts of adiantum capillus veneris and tagetes patula against multidrug resistant bacterial strains

    International Nuclear Information System (INIS)

    Hussain, M.M.; Ahmad, B.; Bashid, E.; Hashim, S.

    2014-01-01

    The aim of present study was to screen the antimicrobial activities of extracts of leaves and stems of Adiantum capillus veneris and Tagetes patula against multidrug-resistant (MDR) bacterial strains. Extracts from the leaves and stems of these plants were extracted with methanol and water and tested for their antibacterial activity by disc diffusion method against ten MDR bacterial strains i.e., Citrobacter freundii, Escherichia coli, Providencia, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi, Shigella and Vibrio cholerae. Leaves methanol extract (LME) of Adiantum showed maximum Zone of Inhibition (ZI) against Providencia, Klebsiella pneumoniae, Shigella, Vibrio cholerae, Staphylococcus aureus, Proteus vulgaris and Salmonella typhi, whereas its stem methanol extract (SME) was very active against Escherichia coli, Klebsiella pneumoniae and Salmonella typhi. Similarly LME of Tagetes showed highest ZI against Escherichia coli and Vibrio cholerae while SME showed highest ZI to Escherichia coli, Vibrio cholerae, Providencia, Shigella and Klebsiella pneumoniae. Leaves water extract (LWE) of Adiantum was very active against all ten bacterial strains while its stem water extract (SWE) showed maximum ZI against Escherichia coli, Klebsiella pneumoniae and Salmonella typhi, Shigella, Proteus vulgaris and Providencia. LWE of Tagetes was only active against Vibrio cholerae whereas SWE was very active against Salmonella typhi and active against P. vulgaris, Citrobacter freundii and Vibrio cholerae. It was concluded from this study that extracts of both Adiantum and Tagetes have prominent activities against most of the MDR bacterial strains and needs further studies for utmost benefits. (author)

  12. Screening of bacterial strains for pectinolytic activity: characterization of the polygalacturonase produced by Bacillus sp

    Directory of Open Access Journals (Sweden)

    Soares Márcia M.C.N.

    1999-01-01

    Full Text Available One hundred sixty eight bacterial strains, isolated from soil and samples of vegetable in decomposition, were screened for the use of citrus pectin as the sole carbon source. 102 were positive for pectinase depolymerization in assay plates as evidenced by clear hydrolization halos. Among them, 30% presented considerable pectinolytic activity. The cultivation of these strains by submerged and semi-solid fermentation for polygalacturonase production indicated that five strains of Bacillus sp produced high quantities of the enzyme. The physico-chemical characteristics, such as optimum pH of 6.0 - 7.0, optimum temperatures between 45oC and 55oC, stability at temperatures above 40oC and in neutral and alkaline pH, were determined.

  13. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    Science.gov (United States)

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Bacterial Feeders, the Nematode Caenorhabditis elegans and the Flagellate Cercomonas longicauda, have different Effects on Outcome of Competition among the Pseudomonas Biocontrol Strains CHA0 and DSS73

    DEFF Research Database (Denmark)

    Pedersen, Annette; Nybroe, Ole; Winding, Anne

    2009-01-01

    How bacterial feeding fauna affects colonization and survival of bacteria in soil is not well understood, which constrains the applicability of bacterial inoculants in agriculture. This study aimed to unravel how food quality of bacteria and bacterial feeders with different feeding habits (the......50090 or one of two biocontrol strains P. fluorescens CHA0 or Pseudomonas sp. DSS73) or combinations of two bacterial strains. DSM50090 is a suitable food bacterium, DSS73 is of intermediate food quality, and CHA0 is inedible to the bacterial feeders. Bacterial and protozoan cell numbers were measured...... predation pressure. Hence, the results suggested that the outcome of competition among bacteria depended on their ability to cope with the prevailing bacterial predator....

  15. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains

    Directory of Open Access Journals (Sweden)

    Christine Rohde

    2018-04-01

    Full Text Available Phage therapy is increasingly put forward as a “new” potential tool in the fight against antibiotic resistant infections. During the “Centennial Celebration of Bacteriophage Research” conference in Tbilisi, Georgia on 26–29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application.

  16. Are grazer-induced adaptations of bacterial abundance and morphology timedependent?

    Directory of Open Access Journals (Sweden)

    Gianluca CORNO

    2006-02-01

    predators belong to two voracious species: Spumella sp. and Ochromonas sp., strictly heterotrophic and mixotrophic, respectively. For all the treatments, it was impossible to find any clear evidence of a morphological adaptation stimulated by the mere presence of flagellates. On the other hand, for all bacterial strains the enrichment of the media due to the release of exudates, resulted in higher growth rates and higher abundances, confirming that grazers are fundamental actors involved in the inner recycling of the microbial loop.

  17. Identification of electrode respiring, hydrocarbonoclastic bacterial strain Stenotrophomonas maltophilia MK2 highlights the untapped potential for environmental bioremediation

    Directory of Open Access Journals (Sweden)

    Krishnaveni Venkidusamy

    2016-12-01

    Full Text Available Electrode respiring bacteria (ERB possess a great potential for many biotechnological applications such as microbial electrochemical remediation systems (MERS because of their exoelectrogenic capabilities to degrade xenobiotic pollutants. Very few ERB have been isolated from MERS, those exhibited a bioremediation potential towards organic contaminants. Here we report once such bacterial strain, Stenotrophomonas maltophilia MK2, a facultative anaerobic bacterium isolated from a hydrocarbon fed MERS, showed a potent hydrocarbonoclastic behavior under aerobic and anaerobic environments. Distinct properties of the strain MK2 were anaerobic fermentation of the amino acids, electrode respiration, anaerobic nitrate reduction and the ability to metabolize n-alkane components (C8-C36 of petroleum hydrocarbons including the biomarkers, pristine and phytane. The characteristic of diazoic dye decolorization was used as a criterion for pre-screening the possible electrochemically active microbial candidates. Bioelectricity generation with concomitant dye decolorization in MERS showed that the strain is electrochemically active. In acetate fed microbial fuel cells, maximum current density of 273±8 mA/m2 (1000Ω was produced (power density 113±7 mW/m2 by strain MK2 with a coulombic efficiency of 34.8 %. Further, the presence of possible alkane hydroxylase genes (alkB and rubA in the strain MK2 indicated that the genes involved in hydrocarbon degradation are of diverse origin. Such observations demonstrated the potential of facultative hydrocarbon degradation in contaminated environments. Identification of such a novel petrochemical hydrocarbon degrading ERB is likely to offer a new route to the sustainable bioremedial process of source zone contamination with simultaneous energy generation through MERS.

  18. Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperus laxus rhizosphere soil in a contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Ramirez, I. J.; Gutierrez-Rojas, M.; Favela-Torres, E. [Autonomous Metropolitan University (UAM)- Iztapalapa, Dept. of Biotechnology, Federal District (Mexico); Ramirez-Sada, H. [Autonomous Metropolitan University (UAM)-Xochimilco, Dept. of Biological Systems, Federal District (Mexico)

    2003-12-01

    Biodegradation of aliphatic, aromatic, and polar constituents of Maya crude oil by a set of isolated bacterial strains and a defined mixed culture made up with all isolated strains, was evaluated. The bacterial strains were obtained from the rhizosphere of Cyperus laxus, a native plant on a highly hydrocarbon-polluted site. Oxygen uptake rate was used to determine the culture transfer timing during the enrichment culture. Results showed that five of the isolated strains were able to degrade 50 per cent of the aliphatic fractions of Maya crude oil. With the defined mixed culture the level of biodegradation was 47 per cent for aliphatics and 6 per cent of the aromatic-polar mixture. When grown in the presence of total hydrocarbons, the defined mixed culture was able to degrade 40 per cent of the aliphatic fraction and 26 per cent of the aromatic fraction. By combining enrichment cultures with oxygen uptake rate to determine the culture transfer timing during the enrichment cultures allowed the isolation of bacterial strains that are able to degrade specific hydrocarbon fractions at high consumption rates. 28 refs., 4 tabs., 1 fig.

  19. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  20. Construction of a stable GFP-tagged Vibrio harveyi strain for bacterial dynamics analysis of abalone infection.

    Science.gov (United States)

    Travers, Marie-Agnès; Barbou, Annaïck; Le Goïc, Nelly; Huchette, Sylvain; Paillard, Christine; Koken, Marcel

    2008-12-01

    Vibrio harveyi is a bacterial marine pathogen that can cause fatal disease in a large range of vertebrates and invertebrates, including the commercially important marine gastropod, Haliotis tuberculata. Since 1997, strains of this bacterium have regularly been causing high mortalities in farmed and wild abalone populations. The way in which the pathogen enters into abalone and the disease transmission mechanisms are thus far unknown. Therefore, a pathogenic strain, ORM4, was green fluorescent protein-tagged and validated both for its growth characteristics and for its virulence as a genuine model for abalone disease. The strain allows V. harveyi quantification by flow cytometry in seawater and in abalone haemolymph as well as the in situ detection of the parasite inside abalone tissues.

  1. Streptomyces sporulation - Genes and regulators involved in bacterial cell differentiation

    OpenAIRE

    Larsson, Jessica

    2010-01-01

    Streptomycetes are Gram-positive bacteria with a complex developmental life cycle. They form spores on specialized cells called aerial hyphae, and this sporulation involves alterations in growth, morphogenesis and cell cycle processes like cell division and chromosome segregation. Understanding the developmental mechanisms that streptomycetes have evolved for regulating for example cell division is of general interest in bacterial cell biology. It can also be valuable in the design of new dru...

  2. Anti-bacterial Efficacy of Bacteriocin Produced by Marine Bacillus subtilis Against Clinically Important Extended Spectrum Beta-Lactamase Strains and Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Suresh Mickymaray

    2018-02-01

    Full Text Available Objective: To investigate the anti-bacterial efficacy of bacteriocin produced by Bacillus subtilis SM01 (GenBank accession no: KY612347, a Gram-positive marine bacterium, against Extended Spectrum Beta-Lactamase (ESBL producing Gram-negative pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli, and Gram-positive pathogen Methicillin-Resistant Staphylococcus aureus (MRSA. Methods: A marine bacterium was isolated from mangrove sediment from the Red Sea coast of Jeddah, Kingdom of Saudi Arabia, and identified based on its morphological, biochemical, and molecular characteristics. The bacteriocin production using this isolate was carried out in brain heart infusion broth (BHIB medium. The Anti-bacterial activity of bacteriocin was evaluated against selected ESBL strains and MRSA by the well agar method. The effects of incubation time, pH, and temperature on the Anti-bacterial activity were studied. Results: The bacteriocin Bac-SM01 produced by B. subtilis SM01 demonstrated broad-spectrum Anti-bacterial activity against both Gram-negative and -positive bacteria. The present study is the first report that the bacteriocin Bac-SM01 inhibits the growth of ESBL producing Gram-negative strains A. baumannii, P. aeruginosa, and E. coli, and a Gram-positive MRSA strain. The optimum incubation time, pH, and temperature for the Anti-bacterial activity of Bac-SM01 was 24 h, 7, and 37°C respectively. Conclusion: The overall investigation can conclude that the bacteriocin Bac-SM01 from the marine isolate Bacillus subtilis SM01 could be used as an alternative Anti-bacterial agent in pharmaceutical products.

  3. Cooked meat products made of coarsely ground pork: the main bacterial strains of bacterial flora, their heat resistance and effect on spoilage

    Directory of Open Access Journals (Sweden)

    Esko Petäjä

    1993-09-01

    Full Text Available This study was conducted to investigate the bacterial flora of the surface layer and the core of meat products made of coarsely ground pork at the moment of spoilage when stored at 7°C or 4°C. The dominating strains were isolated, their heat resistance was studied in APT-broth, on APT-agar and in coarsely ground cured pork, and their growth after heating and effect on spoilage were followed in coarsely ground cured pork. The first signs of spoilage appeared in the surface layer of the products. The strains were coccoid lactic acid bacteria with counts ranging from 3,5 to 7.8 log cfu (colony forming units/g. They survived only accidentally after heating for 15 minutes at 72°C in APT-broth. The core of the products contained only coccoid lactic acid bacteria or only pseudomonads or both as the main bacterial strains. The counts ranged from 2.6 to 6.0 log cfu/g. Most of the strains isolated from the core survived after heating for 30 minutes at 72°C in APT-broth in at least three tests out of six. The most noticeable result of the study was the occurence of heat-resistant pseudomonads in the core. It must be pointed out that all pseudomonads found survived after heating for 60 minutes at 72°C in APT-broth, and often after heating for 15 minutes at 72°C in coarsely ground cured pork (core 72°C. The cfu number of the two most heat-resistant streptococcus strains decreased only 1 log unit over 15 minutes at 72°C in coarsely ground cured pork. The numbers of inoculated pseudomonads decreased but those of streptococci rose by a maximum of 1 log unit when the experimental porks were kept at 4°C after heating. This indicates that streptococci and pseudomonads probably do not constitute a serious spoilage factor in cooked meat products, but spoilage is generally effected by bacteria which have contaminated the surface layer of the products after heat treatment.

  4. Identification of bacterial strains isolated from the Mediterranean Sea exhibiting different abilities of biofilm formation.

    Science.gov (United States)

    Brian-Jaisson, Florence; Ortalo-Magné, Annick; Guentas-Dombrowsky, Linda; Armougom, Fabrice; Blache, Yves; Molmeret, Maëlle

    2014-07-01

    The Mediterranean Sea has rarely been investigated for the characterization of marine bacteria as compared to other marine environments such as the Atlantic or Pacific Ocean. Bacteria recovered from inert surfaces are poorly studied in these environments, when it has been shown that the community structure of attached bacteria can be dissimilar from that of planktonic bacteria present in the water column. The objectives of this study were to identify and characterize marine bacteria isolated from biofilms developed on inert surfaces immersed in the Mediterranean Sea and to evaluate their capacity to form a biofilm in vitro. Here, 13 marine bacterial strains have been isolated from different supports immersed in seawater in the Bay of Toulon (France). Phylogenetic analysis and different biological and physico-chemical properties have been investigated. Among the 13 strains recovered, 8 different genera and 12 different species were identified including 2 isolates of a novel bacterial species that we named Persicivirga mediterranea and whose genus had never been isolated from the Mediterranean Sea. Shewanella sp. and Pseudoalteromonas sp. were the most preponderant genera recovered in our conditions. The phenotypical characterization revealed that one isolate belonging to the Polaribacter genus differed from all the other ones by its hydrophobic properties and poor ability to form biofilms in vitro. Identifying and characterizing species isolated from seawater including from Mediterranean ecosystems could be helpful for example, to understand some aspects of bacterial biodiversity and to further study the mechanisms of biofilm (and biofouling) development in conditions approaching those of the marine environment.

  5. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.

    Science.gov (United States)

    Tong, Meiping; Camesano, Terri A; Johnson, William P

    2005-05-15

    The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.

  6. Mutagenic and antimutagenic activities of Artemisia absinthium volatile oil by the bacterial reverse mutation assay in Salmonella typhimurium strains TA98 and TA100

    Directory of Open Access Journals (Sweden)

    Mahboubeh Taherkhani

    2014-09-01

    Full Text Available Objective: To investigate the mutagenic and antimutagenic activities of Artemisia absinthium L. (A. absinthium essential oil by the bacterial reverse mutation assay in Salmonella typhimurium (S. typhimurium strains. Methods: Water-distilled essential oil of A. absinthium collected from Ardabil, NorthWestern Iran, was investigated for mutagenic and antimutagenic activities. In present study, the mutagenic and antimutagenic activities of A. absinthium oil were investigated by the bacterial revere mutation assay in S. typhimurium TA98 and TA100 strains with and without S9 (microsomal mutagenesis assay. Results: The comparative mutagenicity effect was seen in 1.5 mg/plate by the bacterial reverse mutation assay in S. typhimurium TA98 strains, without S9 and the excellent antimutagenicity effect was seen in 1.5 mg/plate against S. typhimurium TA100, without S9. Conclusions: The mutagenicity and antimutagenicity effects of the volatile oil of A. absinthium were seen without the presence of metabolic activation.

  7. Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Metsoviti, Maria; Paramithiotis, Spiros; Drosinos, Eleftherios H.; Galiotou-Panayotou, Maria; Nychas, George-John E.; Papanikolaou, Seraphim [Department of Food Science and Technology, Agricultural University of Athens, Athens (Greece); Zeng, An-Ping [Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology (TUHH), Hamburg (Germany)

    2012-02-15

    The ability of bacterial strains to assimilate glycerol derived from biodiesel facilities to produce metabolic compounds of importance for the food, textile and chemical industry, such as 1,3-propanediol (PD), 2,3-butanediol (BD) and ethanol (EtOH), was assessed. The screening of 84 bacterial strains was performed using glycerol as carbon source. After initial trials, 12 strains were identified capable of consuming raw glycerol under anaerobic conditions, whereas 5 strains consumed glycerol under aerobiosis. A plethora of metabolic compounds was synthesized; in anaerobic batch-bioreactor cultures PD in quantities up to 11.3 g/L was produced by Clostridium butyricum NRRL B-23495, while the respective value was 10.1 g/L for a newly isolated Citrobacter freundii. Adaptation of Cl. butyricum at higher initial glycerol concentration resulted in a PD{sub max} concentration of {proportional_to}32 g/L. BD was produced by a new Enterobacter aerogenes isolate in shake-flask experiments, under fully aerobic conditions, with a maximum concentration of {proportional_to}22 g/L which was achieved at an initial glycerol quantity of 55 g/L. A new Klebsiella oxytoca isolate converted waste glycerol into mixtures of PD, BD and EtOH at various ratios. Finally, another new C. freundii isolate converted waste glycerol into EtOH in anaerobic batch-bioreactor cultures with constant pH, achieving a final EtOH concentration of 14.5 g/L, a conversion yield of 0.45 g/g and a volumetric productivity of {proportional_to}0.7 g/L/h. As a conclusion, the current study confirmed the utilization of biodiesel-derived raw glycerol as an appropriate substrate for the production of PD, BD and EtOH by several newly isolated bacterial strains under different experimental conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea)

    KAUST Repository

    Amer, Ranya A.

    2015-02-01

    Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.

  9. Experimental infection with different bacterial strains in larvae and juvenile Litopenaeus vannamei reared in Santa Catarina State, Brazil - doi: 10.4025/actascibiolsci.v32i3.5471 Experimental infection with different bacterial strains in larvae and juvenile Litopenaeus vannamei reared in Santa Catarina State, Brazil - doi: 10.4025/actascibiolsci.v32i3.5471

    Directory of Open Access Journals (Sweden)

    Adolfo Jatoba

    2010-09-01

    Full Text Available This study evaluated the pathogenic characteristics of bacteria isolated from Litopenaeus vannamei during an outbreak at the Laboratory of Marine Shrimp, UFSC, Santa Catarina State, Brazil. Their virulence potential in larvae and juvenile shrimp and the effects on the total haemocyte count, phenoloxidase activity and serum agglutinate titre were examined after experimental infection. Bacterial strains were isolated from larvae and adult shrimps, identified by the AP120E biochemical system as: two strains of Vibrio alginolyticus, three of Aeromonas salmonicida and one of Pasteurella multocida sp. and Pasteurella sp. All the bacterial strains isolated in this study caused mortality in shrimp. One strain of V. alginolyticus was responsible for 97.3 and 88.7% mortality in larvae and juvenil shrimps, respectively. The shrimp immunological system was influenced by experimental infection with V. alginolyticus. Decrease in the total haemocyte count and increase in the phenoloxidase activity and the serum agglutinate titre (p V. alginolyticus isolated from larvae and juvenile reared marine shrimp.This study evaluated the pathogenic characteristics of bacteria isolated from Litopenaeus vannamei during an outbreak at the Laboratory of Marine Shrimp, UFSC, Santa Catarina State, Brazil. Their virulence potential in larvae and juvenile shrimp and the effects on the total haemocyte count, phenoloxidase activity and serum agglutinate titre were examined after experimental infection. Bacterial strains were isolated from larvae and adult shrimps, identified by the AP120E biochemical system as: two strains of Vibrio alginolyticus, three of Aeromonas salmonicida and one of Pasteurella multocida sp. and Pasteurella sp. All the bacterial strains isolated in this study caused mortality in shrimp. One strain of V. alginolyticus was responsible for 97.3 and 88.7% mortality in larvae and juvenil shrimps, respectively. The shrimp immunological system was influenced by

  10. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Science.gov (United States)

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L.; Huber, Steven C.; Zhao, Youfu

    2015-01-01

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  11. Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2

    Directory of Open Access Journals (Sweden)

    Md. Mahidul Islam Masum

    2017-09-01

    Full Text Available The Type VI secretion system (T6SS is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2 and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations ΔpppA, ΔclpB, Δhcp, ΔdotU, ΔicmF, ΔimpJ, and ΔimpM caused similar virulence characteristics as RS-2. Moreover, the mutant ΔpppA, ΔclpB, ΔicmF, ΔimpJ and ΔimpM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants ΔpppA, ΔclpB, ΔicmF and Δhcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa.

  12. Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2.

    Science.gov (United States)

    Masum, Md Mahidul Islam; Yang, Yingzi; Li, Bin; Olaitan, Ogunyemi Solabomi; Chen, Jie; Zhang, Yang; Fang, Yushi; Qiu, Wen; Wang, Yanli; Sun, Guochang

    2017-09-21

    The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2) and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations Δ pppA , Δ clpB , Δ hcp , Δ dotU , Δ icmF , Δ impJ , and Δ impM caused similar virulence characteristics as RS-2. Moreover, the mutant Δ pppA , Δ clpB , Δ icmF , Δ impJ and Δ impM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants Δ pppA , Δ clpB , Δ icmF and Δ hcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa.

  13. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  14. New Parameters to Quantitatively Express the Invasiveness of Bacterial Strains from Implant-Related Orthopaedic Infections into Osteoblast Cells.

    Science.gov (United States)

    Campoccia, Davide; Montanaro, Lucio; Ravaioli, Stefano; Cangini, Ilaria; Testoni, Francesca; Visai, Livia; Arciola, Carla Renata

    2018-04-03

    Complete eradication of bacterial infections is often a challenging task, especially in presence of prosthetic devices. Invasion of non-phagocytic host cells appears to be a critical mechanism of microbial persistence in host tissues. Hidden within host cells, bacteria elude host defences and antibiotic treatments that are intracellularly inactive. The intracellular invasiveness of bacteria is generally measured by conventional gentamicin protection assays. The efficiency of invasion, however, markedly differs across bacterial species and adjustments to the titre of the microbial inocula used in the assays are often needed to enumerate intracellular bacteria. Such changes affect the standardisation of the method and hamper a direct comparison of bacteria on a same scale. This study aims at investigating the precise relation between inoculum, in terms of multiplicity of infection (MOI), and internalised bacteria. The investigation included nine Staphylococcus aureus , seven Staphylococcus epidermidis , five Staphylococcus lugdunensis and two Enterococcus faecalis clinical strains, which are co-cultured with MG63 human osteoblasts. Unprecedented insights are offered on the relations existing between MOI, number of internalised bacteria and per cent of internalised bacteria. New parameters are identified that are of potential use for qualifying the efficiency of internalization and compare the behaviour of bacterial strains.

  15. New Parameters to Quantitatively Express the Invasiveness of Bacterial Strains from Implant-Related Orthopaedic Infections into Osteoblast Cells

    Directory of Open Access Journals (Sweden)

    Davide Campoccia

    2018-04-01

    Full Text Available Complete eradication of bacterial infections is often a challenging task, especially in presence of prosthetic devices. Invasion of non-phagocytic host cells appears to be a critical mechanism of microbial persistence in host tissues. Hidden within host cells, bacteria elude host defences and antibiotic treatments that are intracellularly inactive. The intracellular invasiveness of bacteria is generally measured by conventional gentamicin protection assays. The efficiency of invasion, however, markedly differs across bacterial species and adjustments to the titre of the microbial inocula used in the assays are often needed to enumerate intracellular bacteria. Such changes affect the standardisation of the method and hamper a direct comparison of bacteria on a same scale. This study aims at investigating the precise relation between inoculum, in terms of multiplicity of infection (MOI, and internalised bacteria. The investigation included nine Staphylococcus aureus, seven Staphylococcus epidermidis, five Staphylococcus lugdunensis and two Enterococcus faecalis clinical strains, which are co-cultured with MG63 human osteoblasts. Unprecedented insights are offered on the relations existing between MOI, number of internalised bacteria and per cent of internalised bacteria. New parameters are identified that are of potential use for qualifying the efficiency of internalization and compare the behaviour of bacterial strains.

  16. Antibiotic Resistance and Virulence Phenotypes of Recent Bacterial Strains Isolated from Urinary Tract Infections in Elderly Patients with Prostatic Disease

    Directory of Open Access Journals (Sweden)

    Cristina Delcaru

    2017-05-01

    Full Text Available Acute bacterial prostatitis is one of the frequent complications of urinary tract infection (UTI. From the approximately 10% of men having prostatitis, 7% experience a bacterial prostatitis. The purpose of this study was to investigate the prevalence of uropathogens associated with UTIs in older patients with benign prostatic hyperplasia and to assess their susceptibility to commonly prescribed antibiotics as well as the relationships between microbial virulence and resistance features. Uropathogenic Escherichia coli was found to be the most frequent bacterial strain isolated from patients with benign prostatic hyperplasia, followed by Enterococcus spp., Enterobacter spp., Klebsiella spp., Proteus spp., Pseudomonas aeruginosa, and Serratia marcescens. Increased resistance rates to tetracyclines, quinolones, and sulfonamides were registered. Besides their resistance profiles, the uropathogenic isolates produced various virulence factors with possible implications in the pathogenesis process. The great majority of the uropathogenic isolates revealed a high capacity to adhere to HEp-2 cell monolayer in vitro, mostly exhibiting a localized adherence pattern. Differences in the repertoire of soluble virulence factors that can affect bacterial growth and persistence within the urinary tract were detected. The Gram-negative strains produced pore-forming toxins—such as hemolysins, lecithinases, and lipases—proteases, siderophore-like molecules resulted from the esculin hydrolysis and amylases, while Enterococcus sp. strains were positive only for caseinase and esculin hydrolase. Our study demonstrates that necessity of investigating the etiology and local resistance patterns of uropathogenic organisms, which is crucial for determining appropriate empirical antibiotic treatment in elderly patients with UTI, while establishing correlations between resistance and virulence profiles could provide valuable input about the clinical evolution and

  17. Identification of an Endophytic Antifungal Bacterial Strain Isolated from the Rubber Tree and Its Application in the Biological Control of Banana Fusarium Wilt.

    Directory of Open Access Journals (Sweden)

    Deguan Tan

    Full Text Available Banana Fusarium wilt (also known as Panama disease is one of the most disastrous plant diseases. Effective control methods are still under exploring. The endophytic bacterial strain ITBB B5-1 was isolated from the rubber tree, and identified as Serratia marcescens by morphological, biochemical, and phylogenetic analyses. This strain exhibited a high potential for biological control against the banana Fusarium disease. Visual agar plate assay showed that ITBB B5-1 restricted the mycelial growth of the pathogenic fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4. Microscopic observation revealed that the cell wall of the FOC4 mycelium close to the co-cultured bacterium was partially decomposed, and the conidial formation was prohibited. The inhibition ratio of the culture fluid of ITBB B5-1 against the pathogenic fungus was 95.4% as estimated by tip culture assay. Chitinase and glucanase activity was detected in the culture fluid, and the highest activity was obtained at Day 2 and Day 3 of incubation for chitinase and glucanase, respectively. The filtrated cell-free culture fluid degraded the cell wall of FOC4 mycelium. These results indicated that chitinase and glucanase were involved in the antifungal mechanism of ITBB B5-1. The potted banana plants that were inoculated with ITBB B5-1 before infection with FOC4 showed 78.7% reduction in the disease severity index in the green house experiments. In the field trials, ITBB B5-1 showed a control effect of approximately 70.0% against the disease. Therefore, the endophytic bacterial strain ITBB B5-1 could be applied in the biological control of banana Fusarium wilt.

  18. Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS-1 from soil and assessment of its biodegradation potential.

    Science.gov (United States)

    Dwivedi, S; Singh, B R; Al-Khedhairy, A A; Alarifi, S; Musarrat, J

    2010-07-01

    Isolation, characterization and assessment of butachlor-degrading potential of bacterial strain JS-1 in soil. Butachlor-degrading bacteria were isolated using enrichment culture technique. The morphological, biochemical and genetic characteristics based on 16S rDNA sequence homology and phylogenetic analysis confirmed the isolate as Stenotrophomonas acidaminiphila strain JS-1. The strain JS-1 exhibited substantial growth in M9 mineral salt medium supplemented with 3.2 mmol l(-1) butachlor, as a sole source of carbon and energy. The HPLC analysis revealed almost complete disappearance of butachlor within 20 days in soil at a rate constant of 0.17 day(-1) and half-life (t((1/2))) of 4.0 days, following the first-order rate kinetics. The strain JS-1 in stationary phase of culture also produced 21.0 microg ml(-1) of growth hormone indole acetic acid (IAA) in the presence of 500 microg ml(-1) of tryptophan. The IAA production was stimulated at lower concentrations of butachlor, whereas higher concentrations above 0.8 mmol l(-1) were found inhibitory. The isolate JS-1 characterized as Stenotrophomonas acidaminiphila was capable of utilizing butachlor as sole source of carbon and energy. Besides being an efficient butachlor degrader, it substantially produces IAA. The bacterial strain JS-1 has a potential for butachlor remediation with a distinctive auxiliary attribute of plant growth stimulation.

  19. MALDI-TOF-MS with PLS Modeling Enables Strain Typing of the Bacterial Plant Pathogen Xanthomonas axonopodis

    Science.gov (United States)

    Sindt, Nathan M.; Robison, Faith; Brick, Mark A.; Schwartz, Howard F.; Heuberger, Adam L.; Prenni, Jessica E.

    2018-02-01

    Matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) is a fast and effective tool for microbial species identification. However, current approaches are limited to species-level identification even when genetic differences are known. Here, we present a novel workflow that applies the statistical method of partial least squares discriminant analysis (PLS-DA) to MALDI-TOF-MS protein fingerprint data of Xanthomonas axonopodis, an important bacterial plant pathogen of fruit and vegetable crops. Mass spectra of 32 X. axonopodis strains were used to create a mass spectral library and PLS-DA was employed to model the closely related strains. A robust workflow was designed to optimize the PLS-DA model by assessing the model performance over a range of signal-to-noise ratios (s/n) and mass filter (MF) thresholds. The optimized parameters were observed to be s/n = 3 and MF = 0.7. The model correctly classified 83% of spectra withheld from the model as a test set. A new decision rule was developed, termed the rolled-up Maximum Decision Rule (ruMDR), and this method improved identification rates to 92%. These results demonstrate that MALDI-TOF-MS protein fingerprints of bacterial isolates can be utilized to enable identification at the strain level. Furthermore, the open-source framework of this workflow allows for broad implementation across various instrument platforms as well as integration with alternative modeling and classification algorithms.

  20. Characterization of Staphylococcus aureus strains involved in human and bovine mastitis.

    Science.gov (United States)

    Delgado, Susana; García, Pilar; Fernández, Leonides; Jiménez, Esther; Rodríguez-Baños, Mercedes; del Campo, Rosa; Rodríguez, Juan M

    2011-07-01

    Staphylococcus aureus is one of the main etiological agents of mastitis in different mammalian species. At present, it is unknown whether strains isolated from human mastitis cases share phenotypic properties and genetic background with those obtained from animal mastitis cases. Therefore, the objective of this study was to characterize S. aureus strains isolated from women with lactational mastitis and to compare them with the strains responsible for bovine mastitis and noninfectious strains. All the strains were genotyped by both pulsed field gel electrophoresis and multilocus sequence typing and submitted to a characterization scheme that included diverse assays related to pathogenic potential and antibiotic resistance. Apart from siderophore production, no significant association was observed between the strains from bovine and human mastitis. Statistical differences between human- and bovine-mastitis-associated strains were detected for some traits and virulence determinants, such as the presence of prophages and cna and hlb genes, which were more frequently found within the bovine group. On the contrary, resistance to penicillin was significantly higher among strains isolated from human lactational mastitis, probably related to the common presence of the blaZ gene. A high genetic diversity was found among the strains involved in mastitis in breastfeeding women. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. [Characterization of a bacterial biocontrol strain 1404 and its efficacy in controlling postharvest citrus anthracnose].

    Science.gov (United States)

    Wang, Qian; Hu, Chunjin; Ke, Fanggang; Huang, Siliang; Li, Qiqin

    2010-09-01

    Anthracnose caused by Colletotrichum gloeosporioides (Penz.) Sacc. is a main disease in citrus production. To develop an effective biocontrol measure against citrus postharvest anthracnose, we screened antagonistic microbes and obtained a bacterial strain 1404 from the rhizospheric soil of chili plants in Nanning city, Guangxi, China. The objectives of the present study were to: (1) identify and characterize the antagonistic bacterium; and (2) to evaluate the efficacy of the antagonistic strain in controlling citrus postharvest anthracnose disease. Strain 1404 was identified by comparing its 16S rDNA sequence with related bacteria from GenBank database, as well as analyzing its morphological, physiological and biochemical characters. The antagonistic stability of the strain 1404 was determined by continuously transferring it on artificial media. The effect of the strain on suppressing citrus anthracnose at postharvest stage was tested by stab inoculation method. The 16S rDNA of strain 1404 was amplified with primers PF1 (5'-AGAGTTTGATCATGGCTCAG-3') and PR1 (5'-TACGGTTACCTTGTTACGACTT-3') and its sequence submitted to GenBank (accession number: GU361113). Strain 1404 clustered with the GenBank-derived Brevibacillus brevis strains in the 16S-rDNA-sequence-based phylogenetic tree at 100% bootstrap level. The morphological traits, physiological and biochemical characters of strain 1404 agreed with that of Brevibacillus brevis. Less change in the suppressive ability of antagonist against growth of Colletotrichum gloeosporioides was observed during four continuous transfers on artificial media. The average control efficacy of the strain was 64. 9 % against the disease 20 days after the antagonist application. Strain 1404 was identified as Brevibacillus brevis based on its morphological traits, phyiological and biochemical characters as well as 16S rDNA sequence analysis. The antagonist was approved to be a promising biocontrol agent. This is the first report of

  2. Characterization of rumen bacterial strains isolated from enrichments of rumen content in the presence of propolis.

    Science.gov (United States)

    de Aguiar, Sílvia Cristina; Zeoula, Lucia Maria; do Prado, Odimari Pricila Pires; Arcuri, Pedro Braga; Forano, Evelyne

    2014-11-01

    Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml(-1). C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.

  3. Draft Genome Sequence of Halomonas elongata Strain K4, an Endophytic Growth-Promoting Bacterium Enhancing Salinity Tolerance In Planta

    KAUST Repository

    Lafi, Feras Fawzi; Ramirez Prado, Juan Sebastian; Alam, Intikhab; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2016-01-01

    Halomonas elongata strain K4 is an endophytic bacterial strain that was isolated from roots of Cyperus conglomeratus collected at the Red Sea coast in Thuwal, Saudi Arabia. Here, we present a draft genome sequence of this strain, highlighting a number of pathways involved in plant growth promotion under salt stress.

  4. Draft Genome Sequence of Halomonas elongata Strain K4, an Endophytic Growth-Promoting Bacterium Enhancing Salinity Tolerance In Planta

    KAUST Repository

    Lafi, Feras Fawzi

    2016-11-04

    Halomonas elongata strain K4 is an endophytic bacterial strain that was isolated from roots of Cyperus conglomeratus collected at the Red Sea coast in Thuwal, Saudi Arabia. Here, we present a draft genome sequence of this strain, highlighting a number of pathways involved in plant growth promotion under salt stress.

  5. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent.

    Science.gov (United States)

    Piñón-Castillo, H A; Brito, E M S; Goñi-Urriza, M; Guyoneaud, R; Duran, R; Nevarez-Moorillon, G V; Gutiérrez-Corona, J F; Caretta, C A; Reyna-López, G E

    2010-12-01

    To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T-RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Bacterial communities from chromium-contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to Mexican Government works.

  6. Isolation, screening and molecular identification of novel bacterial strain removing methylene blue from water solutions

    Science.gov (United States)

    Kilany, Mona

    2017-11-01

    The potentially deleterious effects of methylene blue (MB) on human health drove the interest in its removal promptly. Bioremediation is an effective and eco friendly for removing MB. Soil bacteria were isolated and examined for their potential to remove MB. The most potent bacterial candidate was characterized and identified using 16S rRNA sequence technique. The evolutionary history of the isolate was conducted by maximum likelihood method. Some physiochemical parameters were optimized for maximum decolorization. Decolorization mechanism and microbial toxicity study of MB (100 mg/l) and by-products were investigated. Participation of heat killed bacteria in color adsorption have been investigated too. The bacterial isolate was identified as Stenotrophomonas maltophilia strain Kilany_MB 16S ribosomal RNA gene with 99% sequence similarity. The sequence was submitted to NCBI (Accession number = KU533726). Phylogeny depicted the phylogenetic relationships between 16S ribosomal RNA gene, partial sequence (1442 bp), of the isolated strain and other strains related to Stenotrophomonas maltophilia in the GenBank database. The optimal conditions were investigated to be pH 5 at 30 °C, after 24 h using 5 mg/l MB showing optimum decolorization percentage (61.3%). Microbial toxicity study demonstrated relative reduction in the toxicity of MB decolorized products on test bacteria. Mechanism of color removal was proved by both biosorption and biodegradation, where heat-killed and live cells showed 43 and 52% of decolorization, respectively, as a maximum value after 24-h incubation. It was demonstrated that the mechanism of color removal is by adsorption. Therefore, good performance of S maltophilia in MB color removal reinforces the exploitation of these bacteria in environmental clean-up and restoration of the ecosystem.

  7. Printing Multistrain Bacterial Patterns with a Piezoelectric Inkjet Printer

    Science.gov (United States)

    Merrin, Jack; Leibler, Stanislas; Chuang, John S.

    2007-01-01

    Many studies involving interacting microorganisms would benefit from simple devices able to deposit cells in precisely defined patterns. We describe an inexpensive bacterial piezoelectric inkjet printer (adapted from the design of the POSaM oligonucleotide microarrayer) that can be used to “print out” different strains of bacteria or chemicals in small droplets onto a flat surface at high resolution. The capabilities of this device are demonstrated by printing ordered arrays comprising two bacterial strains labeled with different fluorescent proteins. We also characterized several properties of this piezoelectric printer, such as the droplet volume (of the order of tens of pl), the distribution of number of cells in each droplet, and the dependence of droplet volume on printing frequency. We established the limits of the printing resolution, and determined that the printed viability of Escherichia coli exceeded 98.5%. PMID:17653283

  8. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences

    NARCIS (Netherlands)

    Kurm, Viola; van der Putten, W.H.; Pineda, A.M.; Hol, W.H.G.

    2018-01-01

    • Background and Aims Plant growth-promoting rhizobacteria (PGPR) strains can influence plant–insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence

  9. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences

    NARCIS (Netherlands)

    Kurm, Viola; Putten, Van Der Wim H.; Pineda, Ana; Hol, G.W.H.

    2018-01-01

    • Background and Aims: Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence

  10. Putative bacterial interactions from metagenomic knowledge with an integrative systems ecology approach.

    Science.gov (United States)

    Bordron, Philippe; Latorre, Mauricio; Cortés, Maria-Paz; González, Mauricio; Thiele, Sven; Siegel, Anne; Maass, Alejandro; Eveillard, Damien

    2016-02-01

    Following the trend of studies that investigate microbial ecosystems using different metagenomic techniques, we propose a new integrative systems ecology approach that aims to decipher functional roles within a consortium through the integration of genomic and metabolic knowledge at genome scale. For the sake of application, using public genomes of five bacterial strains involved in copper bioleaching: Acidiphilium cryptum, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans, we first reconstructed a global metabolic network. Next, using a parsimony assumption, we deciphered sets of genes, called Sets from Genome Segments (SGS), that (1) are close on their respective genomes, (2) take an active part in metabolic pathways and (3) whose associated metabolic reactions are also closely connected within metabolic networks. Overall, this SGS paradigm depicts genomic functional units that emphasize respective roles of bacterial strains to catalyze metabolic pathways and environmental processes. Our analysis suggested that only few functional metabolic genes are horizontally transferred within the consortium and that no single bacterial strain can accomplish by itself the whole copper bioleaching. The use of SGS pinpoints a functional compartmentalization among the investigated species and exhibits putative bacterial interactions necessary for promoting these pathways. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  11. Identification of thermophilic bacterial strains producing thermotolerant hydrolytic enzymes from manure compost.

    Science.gov (United States)

    Charbonneau, David M; Meddeb-Mouelhi, Fatma; Boissinot, Maurice; Sirois, Marc; Beauregard, Marc

    2012-03-01

    Ten thermophilic bacterial strains were isolated from manure compost. Phylogenetic analysis based on 16S rRNA genes and biochemical characterization allowed identification of four different species belonging to four genera: Geobacillus thermodenitrificans, Bacillus smithii, Ureibacillus suwonensis and Aneurinibacillus thermoaerophilus. PCR-RFLP profiles of the 16S-ITS-23S rRNA region allowed us to distinguish two subgroups among the G. thermodenitrificans isolates. Isolates were screened for thermotolerant hydrolytic activities (60-65°C). Thermotolerant lipolytic activities were detected for G. thermodenitrificans, A. thermoaerophilus and B. smithii. Thermotolerant protease, α-amylase and xylanase activities were also observed in the G. thermodenitrificans group. These species represent a source of potential novel thermostable enzymes for industrial applications.

  12. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Ranya A. Amer

    2015-01-01

    Full Text Available Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt. Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.

  13. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea)

    Science.gov (United States)

    Amer, Ranya A.; El Gendi, Hamada M.; Goda, Doaa A.; Corsini, Anna; Cavalca, Lucia; Fusi, Marco; Daffonchio, Daniele; Abdel-Fattah, Yasser R.

    2015-01-01

    Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed. PMID:26273661

  14. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  15. Possible involvement of ROS generation in vorinostat pretreatment induced enhancement of the antibacterial activity of ciprofloxacin

    Directory of Open Access Journals (Sweden)

    Masadeh MM

    2017-10-01

    Full Text Available Majed M Masadeh,1 Karem H Alzoubi,2 Sayer I Al-azzam,2 Ahlam M Al-buhairan3 1Department of Pharmaceutical Technology, 2Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan; 3Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia Abstract: The mechanism underlying ciprofloxacin action involves interference with transcription and replication of bacterial DNA and, thus, the induction of double-strand breaks in DNA. It also involves elevated oxidative stress, which might contribute to bacterial cell death. Vorinostat was shown to induce oxidative DNA damage. The current work investigated a possible interactive effect of vorinostat on ciprofloxacin-induced cytotoxicity against a number of reference bacteria. Standard bacterial strains were Escherichia coli ATCC 35218, Staphylococcus aureus ATCC29213, Pseudomonas aeruginosa ATCC 9027, Staphylococcus epidermidis ATCC 12228, Acinetobacter baumannii ATCC 17978, Proteus mirabilis ATCC 12459, Klebsiella pneumoniae ATCC 13883, methicillin-resistant Staphylococcus aureus (MRSA (ATCC 43300, and Streptococcus pneumoniae (ATCC 25923. The antibacterial activity of ciprofloxacin, with or without pretreatment of bacterial cells by vorinostat, was examined using the disc diffusion procedure and determination of the minimum inhibitory concentration (MIC and zones of inhibition of bacterial growth. All tested bacterial strains showed sensitivity to ciprofloxacin. When pretreated with vorinostat, significantly larger zones of inhibition and smaller MIC values were observed in all bacterial strains compared to those treated with ciprofloxacin alone. In correlation, generation of reactive oxygen species (ROS induced by the antibacterial action of ciprofloxacin was enhanced by treatment of bacterial cells with vorinostat. Results showed the possible agonistic properties of vorinostat when used together with ciprofloxacin. This could be related to the

  16. Functional and Evolutionary Characterization of a UDP-Xylose Synthase Gene from the Plant Pathogen Xylella fastidiosa, Involved in the Synthesis of Bacterial Lipopolysaccharide.

    Science.gov (United States)

    Alencar, Valquíria Campos; Jabes, Daniela Leite; Menegidio, Fabiano Bezerra; Sassaki, Guilherme Lanzi; de Souza, Lucas Rodrigo; Puzer, Luciano; Meneghetti, Maria Cecília Zorél; Lima, Marcelo Andrade; Tersariol, Ivarne Luis Dos Santos; de Oliveira, Regina Costa; Nunes, Luiz R

    2017-02-07

    Xylella fastidiosa is a plant-infecting bacillus, responsible for many important crop diseases, such as Pierce's disease of vineyards, citrus variegated chlorosis, and coffee leaf scorch (CLS), among others. Recent genomic comparisons involving two CLS-related strains, belonging to X. fastidiosa subsp. pauca, revealed that one of them carries a frameshift mutation that inactivates a gene encoding an oxidoreductase of the short-chain dehydrogenase/reductase (SDR) superfamily, which may play important roles in determining structural variations in bacterial glycans and glycoconjugates. However, the exact nature of this SDR has been a matter of controversy, as different annotations of X. fastidiosa genomes have implicated it in distinct reactions. To confirm the nature of this mutated SDR, a comparative analysis was initially performed, suggesting that it belongs to a subgroup of SDR decarboxylases, representing a UDP-xylose synthase (Uxs). Functional assays, using a recombinant derivative of this enzyme, confirmed its nature as XfUxs, and carbohydrate composition analyses, performed with lipopolysaccharide (LPS) molecules obtained from different strains, indicate that inactivation of the X. fastidiosa uxs gene affects the LPS structure among CLS-related X. fastidiosa strains. Finally, a comparative sequence analysis suggests that this mutation is likely to result in a morphological and evolutionary hallmark that differentiates two subgroups of CLS-related strains, which may influence interactions between these bacteria and their plant and/or insect hosts.

  17. Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion.

    Science.gov (United States)

    Kohler, Sylvia; Voß, Franziska; Gómez Mejia, Alejandro; Brown, Jeremy S; Hammerschmidt, Sven

    2016-11-01

    Streptococcus pneumoniae (pneumococcus) has evolved sophisticated strategies to survive in several niches within the human body either as a harmless commensal or as a serious pathogen causing a variety of diseases. The dynamic interaction between pneumococci and resident host cells during colonization of the upper respiratory tract and at the site of infection is critical for bacterial survival and the development of disease. Pneumococcal lipoproteins are peripherally anchored membrane proteins and have pivotal roles in bacterial fitness including envelope stability, cell division, nutrient acquisition, signal transduction, transport (as substrate-binding proteins of ABC transporter systems), resistance to oxidative stress and antibiotics, and protein folding. In addition, lipoproteins are directly involved in virulence-associated processes such as adhesion, colonization, and persistence through immune evasion. Conversely, lipoproteins are also targets for the host response both as ligands for toll-like receptors and as targets for acquired antibodies. This review summarizes the multifaceted roles of selected pneumococcal lipoproteins and how this knowledge can be exploited to combat pneumococcal infections. © 2016 Federation of European Biochemical Societies.

  18. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    Directory of Open Access Journals (Sweden)

    Aisha Waheed Qurashi

    2012-09-01

    Full Text Available To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98 growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

  19. Characterization of CRISPR-Cas system in clinical Staphylococcus epidermidis strains revealed its potential association with bacterial infection sites

    DEFF Research Database (Denmark)

    Li, Qiuchun; Xie, Xiaolei; Yin, Kequan

    2016-01-01

    Staphylococcus epidermidis is considered as a major cause of nosocomial infections, bringing an immense burden to healthcare systems. Virulent phages have been confirmed to be efficient in combating the pathogen, but the prensence of CRISPR-Cas system, which is a bacterial immune system eliminating...... phages was reported in few S. epidermidis strains. In this study, the CRISPR-Cas system was detected in 12 from almost 300 published genomes in GenBank and by PCR of cas6 gene in 18 strains out of 130 clinical isolates obtained in Copenhagen. Four strains isolated in 1965-1966 harboured CRISPR elements...... spacers located in the CRISPR1 locus with homolgy to virulent phage 6ec DNA sequences, and 19 strains each carrying 2 or 3 different spacers recognizing this phage, implied that the CRISPR-Cas immunity could be abrogated by nucleotide mismatch between the spacer and its target phage sequence, while new...

  20. Molecular methods for bacterial genotyping and analyzed gene regions

    Directory of Open Access Journals (Sweden)

    İbrahim Halil Yıldırım1, Seval Cing Yıldırım2, Nadir Koçak3

    2011-06-01

    Full Text Available Bacterial strain typing is an important process for diagnosis, treatment and epidemiological investigations. Current bacterial strain typing methods may be classified into two main categories: phenotyping and genotyping. Phenotypic characters are the reflection of genetic contents. Genotyping, which refers discrimination of bacterial strains based on their genetic content, has recently become widely used for bacterial strain typing. The methods already used in genotypingof bacteria are quite different from each other. In this review we tried to summarize the basic principles of DNA-based methods used in genotyping of bacteria and describe some important DNA regions that are used in genotyping of bacteria. J Microbiol Infect Dis 2011;1(1:42-46.

  1. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1.

    Science.gov (United States)

    Leng, Yifei; Bao, Jianguo; Chang, Gaofeng; Zheng, Han; Li, Xingxing; Du, Jiangkun; Snow, Daniel; Li, Xu

    2016-11-15

    Although several abiotic processes have been reported that can transform antibiotics, little is known about whether and how microbiological processes may degrade antibiotics in the environment. This work isolated one tetracycline degrading bacterial strain, Stenotrophomonas maltophilia strain DT1, and characterized the biotransformation of tetracycline by DT1 under various environmental conditions. The biotransformation rate was the highest when the initial pH was 9 and the reaction temperature was at 30°C, and can be described using the Michaelis-Menten model under different initial tetracycline concentrations. When additional substrate was present, the substrate that caused increased biomass resulted in a decreased biotransformation rate of tetracycline. According to disk diffusion tests, the biotransformation products of tetracycline had lower antibiotic potency than the parent compound. Six possible biotransformation products were identified, and a potential biotransformation pathway was proposed that included sequential removal of N-methyl, carbonyl, and amine function groups. Results from this study can lead to better estimation of the fate and transport of antibiotics in the environment and has the potential to be utilized in designing engineering processes to remove tetracycline from water and soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Seaweed as source of energy. 1: effect of a specific bacterial strain on biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasa R.P.; Tarwade, S.J.; Sarma, K.S.R.

    1980-09-01

    Only certain marine bacteria capable of digesting the special type of polysaccharide - agar and alginic acid can bring about the biodegradation of these substances and utilise them as carbon source to produce the organics which will be utilised by the methane bacteria to produce methane. When bacterial strain was used in conjunction with cowdung as a source of methane bacteria in seaweed digester, production of biogas from seaweed was accelerated. Adding of small amount of Ulva to seaweed digester increased the output of gas. (Refs. 4).

  3. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Science.gov (United States)

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  4. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Directory of Open Access Journals (Sweden)

    Dalia Molina-Romero

    Full Text Available Plant growth-promoting rhizobacteria (PGPR increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440 and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02 strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  5. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    of the bacterial genes. We have investigated the invasiveness of primary chicken embryo intestinal cells (CEICs) by C. jejuni strains of human and chicken origins and the production of pro-inflammatory cytokines as well as the expression of the bacterial virulence-associated genes during co-cultivation. Results C......-free media from another co-cultivation experiment also increased the expression of the virulence-associated genes in the C. jejuni chicken isolate, indicating that the expression of bacterial genes is regulated by component(s) secreted upon co-cultivation of bacteria and CEICs. Conclusion We show that under...... in vitro culture condition C. jejuni strains of both human and chicken origins can invade avian host cells with a pro-inflammatory response and that the virulence-associated genes of C. jejuni may play a role in this process....

  6. New Genome Sequence of an Echinaceapurpurea Endophyte, Arthrobacter sp. Strain EpSL27, Able To Inhibit Human-Opportunistic Pathogens.

    Science.gov (United States)

    Miceli, Elisangela; Presta, Luana; Maggini, Valentina; Fondi, Marco; Bosi, Emanuele; Chiellini, Carolina; Fagorzi, Camilla; Bogani, Patrizia; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Firenzuoli, Fabio; Perrin, Elena; Fani, Renato

    2017-06-22

    We announce here the draft genome sequence of Arthrobacter sp. strain EpSL27, isolated from the stem and leaves of the medicinal plant Echinacea purpurea and able to inhibit human-pathogenic bacterial strains. The genome sequencing of this strain may lead to the identification of genes involved in the production of antimicrobial molecules. Copyright © 2017 Miceli et al.

  7. Involvement of hrpX and hrpG in the Virulence of Acidovorax citrulli Strain Aac5, Causal Agent of Bacterial Fruit Blotch in Cucurbits

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Zhang

    2018-03-01

    Full Text Available Acidovorax citrulli causes bacterial fruit blotch, a disease that poses a global threat to watermelon and melon production. Despite its economic importance, relatively little is known about the molecular mechanisms of pathogenicity and virulence of A. citrulli. Like other plant-pathogenic bacteria, A. citrulli relies on a type III secretion system (T3SS for pathogenicity. On the basis of sequence and operon arrangement analyses, A. citrulli was found to have a class II hrp gene cluster similar to those of Xanthomonas and Ralstonia spp. In the class II hrp cluster, hrpG and hrpX play key roles in the regulation of T3SS effectors. However, little is known about the regulation of the T3SS in A. citrulli. This study aimed to investigate the roles of hrpG and hrpX in A. citrulli pathogenicity. We found that hrpG or hrpX deletion mutants of the A. citrulli group II strain Aac5 had reduced pathogenicity on watermelon seedlings, failed to induce a hypersensitive response in tobacco, and elicited higher levels of reactive oxygen species in Nicotiana benthamiana than the wild-type strain. Additionally, we demonstrated that HrpG activates HrpX in A. citrulli. Moreover, transcription and translation of the type 3-secreted effector (T3E gene Aac5_2166 were suppressed in hrpG and hrpX mutants. Notably, hrpG and hrpX appeared to modulate biofilm formation. These results suggest that hrpG and hrpX are essential for pathogenicity, regulation of T3Es, and biofilm formation in A. citrulli.

  8. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens.

    Science.gov (United States)

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-06-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis ( Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis ( Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment.

  9. Colonization of Vitis vinifera by a green fluorescence protein-labeled, gfp-marked strain of Xylophilus ampelinus, the causal agent of bacterial necrosis of grapevine.

    Science.gov (United States)

    Grall, Sophie; Manceau, Charles

    2003-04-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development.

  10. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Klausen, Mikkel; Aaes-Jorgensen, A.; Molin, Søren

    2003-01-01

    development, we have performed an investigation with time-lapse confocal laser scanning microscopy of biofilms formed by various combinations of colour-coded P. aeruginosa wild type and motility mutants. We show that mushroom-shaped multicellular structures in P. aeruginosa biofilms can form in a sequential...... process involving a non-motile bacterial subpopulation and a migrating bacterial subpopulation. The non-motile bacteria form the mushroom stalks by growth in certain foci of the biofilm. The migrating bacteria form the mushroom caps by climbing the stalks and aggregating on the tops in a process which...

  11. Ultraviolet radiation response of two heterotropy Antarctic marine bacterial

    International Nuclear Information System (INIS)

    Hernandez, Edgardo A.; Ferreyra, Gustavo A.; Mac Cormack, Walter P.

    2004-01-01

    Two Antarctic marine bacterial strains, were exposed to different irradiance of ultraviolet (UV) solar radiation using several experimental protocols and interferential filters. Results showed that both, UV-A and UV-B radiation produce deleterious effects on two tested bacterial strains. The mortality values under UVB treatments were higher than those observed under UVA treatments. UVvi strain proved to be more resistant to UV radiation than the UVps strain. (author) [es

  12. Resistance and Inactivation Kinetics of Bacterial Strains Isolated from the Non-Chlorinated and Chlorinated Effluents of a WWTP

    Directory of Open Access Journals (Sweden)

    Claudia Coronel-Olivares

    2013-08-01

    Full Text Available The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains, Enterobacter cloacae, Kluyvera cryocrescens (three strains, Kluyvera intermedia, Citrobacter freundii (two strains, Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L−1, contact time (0, 15 and 30 min and water temperature (20, 25 and 30 °C. The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L−1 dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L−1 with various retention times (0, 10, 20, 30, 60 and 90 min. The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments.

  13. Voice Prosthetic Biofilm Formation and Candida Morphogenic Conversions in Absence and Presence of Different Bacterial Strains and Species on Silicone-Rubber

    NARCIS (Netherlands)

    van der Mei, Henny C.; Buijssen, Kevin J. D. A.; van der Laan, Bernard F. A. M.; Ovchinnikova, Ekatarina; Geertsema-Doornbusch, Gesinda I.; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J.

    2014-01-01

    Morphogenic conversion of Candida from a yeast to hyphal morphology plays a pivotal role in the pathogenicity of Candida species. Both Candida albicans and Candida tropicalis, in combination with a variety of different bacterial strains and species, appear in biofilms on silicone-rubber voice

  14. Antibiotics promote aggregation within aquatic bacterial communities

    Directory of Open Access Journals (Sweden)

    Gianluca eCorno

    2014-07-01

    Full Text Available The release of antibiotics (AB into the environment poses several threats for human health due to potential development of ABresistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold.These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of

  15. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  16. Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil.

    Science.gov (United States)

    Salam, Lateef B; Ilori, Mathew O; Amund, Olukayode O; LiiMien, Yee; Nojiri, Hideaki

    2018-04-01

    The bacterial community structure in a hydrocarbon-contaminated Mechanical Engineering Workshop (MWO) soil was deciphered using 16S rRNA gene clone library analysis. Four hundred and thirty-seven clones cutting across 13 bacterial phyla were recovered from the soil. The representative bacterial phyla identified from MWO soil are Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, Ignavibacteriae, Spirochaetes, Chlamydiae, Candidatus Saccharibacteria and Parcubacteria. Proteobacteria is preponderant in the contaminated soil (51.2%) with all classes except Epsilonproteobacteria duly represented. Rarefaction analysis indicates 42%, 52% and 77% of the clone library is covered at the species, genus and family/class delineations with Shannon diversity (H') and Chao1 richness indices of 5.59 and 1126, respectively. A sizeable number of bacterial phylotypes in the clone library shared high similarities with strains previously described to be involved in hydrocarbon biodegradation. Novel uncultured genera were identified that have not been previously reported from tropical African soil to be associated with natural attenuation of hydrocarbon pollutants. This study establishes the involvement of a wide array of physiologically diverse bacterial groups in natural attenuation of hydrocarbon pollutants in soil.

  17. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151.

    Science.gov (United States)

    Arrieta-Ortiz, Mario L; Rodríguez-R, Luis M; Pérez-Quintero, Álvaro L; Poulin, Lucie; Díaz, Ana C; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D; Ortiz Quiñones, Juan F; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P; Tabima, Javier; Urrego Morales, Oscar G; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo; Koebnik, Ralf; Bernal, Adriana

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  18. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica.

    Directory of Open Access Journals (Sweden)

    Maria J López-Sánchez

    2009-11-01

    Full Text Available Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state.

  19. Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica

    Science.gov (United States)

    López-Sánchez, Maria J.; Neef, Alexander; Peretó, Juli; Patiño-Navarrete, Rafael; Pignatelli, Miguel; Latorre, Amparo; Moya, Andrés

    2009-01-01

    Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state. PMID:19911043

  20. Instrumental analysis of bacterial cells using vibrational and emission Moessbauer spectroscopic techniques

    International Nuclear Information System (INIS)

    Kamnev, Alexander A.; Tugarova, Anna V.; Antonyuk, Lyudmila P.; Tarantilis, Petros A.; Kulikov, Leonid A.; Perfiliev, Yurii D.; Polissiou, Moschos G.; Gardiner, Philip H.E.

    2006-01-01

    In biosciences and biotechnology, the expanding application of physicochemical approaches using modern instrumental techniques is an efficient strategy to obtain valuable and often unique information at the molecular level. In this work, we applied a combination of vibrational (Fourier transform infrared (FTIR), FT-Raman) spectroscopic techniques, useful in overall structural and compositional analysis of bacterial cells of the rhizobacterium Azospirillum brasilense, with 57 Co emission Moessbauer spectroscopy (EMS) used for sensitive monitoring of metal binding and further transformations in live bacterial cells. The information obtained, together with ICP-MS analyses for metals taken up by the bacteria, is useful in analysing the impact of the environmental conditions (heavy metal stress) on the bacterial metabolism and some differences in the heavy metal stress-induced behaviour of non-endophytic (Sp7) and facultatively endophytic (Sp245) strains. The results show that, while both strains Sp7 and Sp245 take up noticeable and comparable amounts of heavy metals from the medium (0.12 and 0.13 mg Co, 0.48 and 0.44 mg Cu or 4.2 and 2.1 mg Zn per gram of dry biomass, respectively, at a metal concentration of 0.2 mM in the medium), their metabolic responses differ essentially. Whereas for strain Sp7 the FTIR measurements showed significant accumulation of polyhydroxyalkanoates as storage materials involved in stress endurance, strain Sp245 did not show any major changes in cellular composition. Nevertheless, EMS measurements showed rapid binding of cobalt(II) by live bacterial cells (chemically similar to metal binding by dead bacteria) and its further transformation in the live cells within an hour

  1. Instrumental analysis of bacterial cells using vibrational and emission Moessbauer spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, Alexander A. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation)]. E-mail: aakamnev@ibppm.sgu.ru; Tugarova, Anna V. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation); Antonyuk, Lyudmila P. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation); Tarantilis, Petros A. [Laboratory of Chemistry, Department of Science, Agricultural University of Athens, 11855 Athens (Greece); Kulikov, Leonid A. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Perfiliev, Yurii D. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Polissiou, Moschos G. [Laboratory of Chemistry, Department of Science, Agricultural University of Athens, 11855 Athens (Greece); Gardiner, Philip H.E. [Division of Chemistry, School of Science and Mathematics, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2006-07-28

    In biosciences and biotechnology, the expanding application of physicochemical approaches using modern instrumental techniques is an efficient strategy to obtain valuable and often unique information at the molecular level. In this work, we applied a combination of vibrational (Fourier transform infrared (FTIR), FT-Raman) spectroscopic techniques, useful in overall structural and compositional analysis of bacterial cells of the rhizobacterium Azospirillum brasilense, with {sup 57}Co emission Moessbauer spectroscopy (EMS) used for sensitive monitoring of metal binding and further transformations in live bacterial cells. The information obtained, together with ICP-MS analyses for metals taken up by the bacteria, is useful in analysing the impact of the environmental conditions (heavy metal stress) on the bacterial metabolism and some differences in the heavy metal stress-induced behaviour of non-endophytic (Sp7) and facultatively endophytic (Sp245) strains. The results show that, while both strains Sp7 and Sp245 take up noticeable and comparable amounts of heavy metals from the medium (0.12 and 0.13 mg Co, 0.48 and 0.44 mg Cu or 4.2 and 2.1 mg Zn per gram of dry biomass, respectively, at a metal concentration of 0.2 mM in the medium), their metabolic responses differ essentially. Whereas for strain Sp7 the FTIR measurements showed significant accumulation of polyhydroxyalkanoates as storage materials involved in stress endurance, strain Sp245 did not show any major changes in cellular composition. Nevertheless, EMS measurements showed rapid binding of cobalt(II) by live bacterial cells (chemically similar to metal binding by dead bacteria) and its further transformation in the live cells within an hour.

  2. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    Directory of Open Access Journals (Sweden)

    E. Romo

    2013-01-01

    Full Text Available The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control.

  3. Identification of genetic components involved in Lotus-endophyte interactions

    DEFF Research Database (Denmark)

    Zgadzaj, Rafal Lukasz

    of growth hormones or nitrogen fixation. However, the genes involved in plant-endophyte interactions and bacterial accomodation within plant tissues are not known. In order to shed some light on such processes, an approach “one host-one endophyte” was chosen. The focus on a single plant species and a single......Endophytes are microorganisms capable of colonising plant tissues without inducing host defense responses. They have a large impact on plants, since they can modulate plant responses to pathogens, herbivores and environmental stress. They can also induce plant growth promotion through synthesis...... bacterial strain aimed at obtaining a reliable and easy to handle system for plant-microsymbiont interaction research. Two different methods were tested for their usefulness in identification of genetic components involved in plant-endophyte interactions. The first method was based on measuring growth...

  4. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Bacterial community analysis in chlorpyrifos enrichment cultures via DGGE and use of bacterial consortium for CP biodegradation.

    Science.gov (United States)

    Akbar, Shamsa; Sultan, Sikander; Kertesz, Michael

    2014-10-01

    The organophosphate pesticide chlorpyrifos (CP) has been used extensively since the 1960s for insect control. However, its toxic effects on mammals and persistence in environment necessitate its removal from contaminated sites, biodegradation studies of CP-degrading microbes are therefore of immense importance. Samples from a Pakistani agricultural soil with an extensive history of CP application were used to prepare enrichment cultures using CP as sole carbon source for bacterial community analysis and isolation of CP metabolizing bacteria. Bacterial community analysis (denaturing gradient gel electrophoresis) revealed that the dominant genera enriched under these conditions were Pseudomonas, Acinetobacter and Stenotrophomonas, along with lower numbers of Sphingomonas, Agrobacterium and Burkholderia. Furthermore, it revealed that members of Bacteroidetes, Firmicutes, α- and γ-Proteobacteria and Actinobacteria were present at initial steps of enrichment whereas β-Proteobacteria appeared in later steps and only Proteobacteria were selected by enrichment culturing. However, when CP-degrading strains were isolated from this enrichment culture, the most active organisms were strains of Acinetobacter calcoaceticus, Pseudomonas mendocina and Pseudomonas aeruginosa. These strains degraded 6-7.4 mg L(-1) day(-1) of CP when cultivated in mineral medium, while the consortium of all four strains degraded 9.2 mg L(-1) day(-1) of CP (100 mg L(-1)). Addition of glucose as an additional C source increased the degradation capacity by 8-14 %. After inoculation of contaminated soil with CP (200 mg kg(-1)) disappearance rates were 3.83-4.30 mg kg(-1) day(-1) for individual strains and 4.76 mg kg(-1) day(-1) for the consortium. These results indicate that these organisms are involved in the degradation of CP in soil and represent valuable candidates for in situ bioremediation of contaminated soils and waters.

  6. Evaluation of bacterial flora during the ripening of Kedong sufu, a typical Chinese traditional bacteria-fermented soybean product.

    Science.gov (United States)

    Feng, Zhen; Gao, Wei; Ren, Dan; Chen, Xi; Li, Juan-juan

    2013-04-01

    Kedong sufu is a typical bacteria-fermented sufu in China. Isolation and identification of the autochthonous bacteria involved would allow the design of specific starters for this speciality. The purpose of the present study was to evaluate the bacterial flora during the ripening of Kedong sufu using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and culturing. In terms of bacterial diversity, 22 strains were isolated and identified and 27 strains were detected by DGGE. Regarding bacterial dynamics, the results of culturing and PCR-DGGE exhibited a similar trend towards dominant strains. Throughout the fermentation of sufu, Enterococcus avium, Enterococcus faecalis and Staphylococcus carnosus were the dominant microflora, while the secondary microflora comprised Leuconostoc mesenteroides, Staphylococcus saprophyticus, Streptococcus lutetiensis, Kocuria rosea, Kocuria kristinae, Bacillus pumilus, Bacillus cereus and Bacillus subtilis. This study is the first to reveal the bacterial flora during the ripening of Kedong sufu using both culture-dependent and culture-independent methods. This information will help in the design of autochthonous starter cultures for the production of Kedong sufu with desirable characteristic sensory profiles and shorter ripening times. © 2012 Society of Chemical Industry.

  7. Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG{sub 5} of Alcaligenes faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Santal, Anita Rani, E-mail: anita.gangotra@gmail.com [Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana (India); Singh, N.P. [Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana (India); Saharan, Baljeet Singh [Department of Microbiology, Kurukshetra University, Kurukshetra-136119, Haryana (India)

    2011-10-15

    Highlights: {yields} The Alcaligenes faecalis strain SAG{sub 5} decolorizes 72.6 {+-} 0.56% of melanoidins. {yields} The decolorization was achieved at pH 7.5 and temperature 37 {sup o}C on 5th day. {yields} The distillery effluent after biological treatment is environmentally safe. - Abstract: Distillery effluent retains very dark brown color even after anaerobic treatment due to presence of various water soluble, recalcitrant and coloring compounds mainly melanoidins. In laboratory conditions, melanoidin decolorizing bacteria was isolated and optimized the cultural conditions at various incubation temperatures, pH, carbon sources, nitrogen sources and combined effect of both carbon and nitrogen sources. The optimum decolorization (72.6 {+-} 0.56%) of melanoidins was achieved at pH 7.5 and temperature 37 {sup o}C on 5th day of cultivation. The toxicity evaluation with mung bean (Vigna radiata) revealed that the raw distillery effluent was environmentally highly toxic as compared to biologically treated distillery effluent, which indicated that the effluent after bacterial treatment is environmentally safe. This proves to be novel biological treatment technique for biodegradation and detoxification of melanoidin from distillery effluent using the bacterial strain SAG{sub 5}.

  8. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  9. Construction of a full-length infectious bacterial artificial chromosome clone of duck enteritis virus vaccine strain

    Science.gov (United States)

    2013-01-01

    Background Duck enteritis virus (DEV) is the causative agent of duck viral enteritis, which causes an acute, contagious and lethal disease of many species of waterfowl within the order Anseriformes. In recent years, two laboratories have reported on the successful construction of DEV infectious clones in viral vectors to express exogenous genes. The clones obtained were either created with deletion of viral genes and based on highly virulent strains or were constructed using a traditional overlapping fosmid DNA system. Here, we report the construction of a full-length infectious clone of DEV vaccine strain that was cloned into a bacterial artificial chromosome (BAC). Methods A mini-F vector as a BAC that allows the maintenance of large circular DNA in E. coli was introduced into the intergenic region between UL15B and UL18 of a DEV vaccine strain by homologous recombination in chicken embryoblasts (CEFs). Then, the full-length DEV clone pDEV-vac was obtained by electroporating circular viral replication intermediates containing the mini-F sequence into E. coli DH10B and identified by enzyme digestion and sequencing. The infectivity of the pDEV-vac was validated by DEV reconstitution from CEFs transfected with pDEV-vac. The reconstructed virus without mini-F vector sequence was also rescued by co-transfecting the Cre recombinase expression plasmid pCAGGS-NLS/Cre and pDEV-vac into CEF cultures. Finally, the in vitro growth properties and immunoprotection capacity in ducks of the reconstructed viruses were also determined and compared with the parental virus. Results The full genome of the DEV vaccine strain was successfully cloned into the BAC, and this BAC clone was infectious. The in vitro growth properties of these reconstructions were very similar to parental DEV, and ducks immunized with these viruses acquired protection against virulent DEV challenge. Conclusions DEV vaccine virus was cloned as an infectious bacterial artificial chromosome maintaining full

  10. Colonization of Vitis vinifera by a Green Fluorescence Protein-Labeled, gfp-Marked Strain of Xylophilus ampelinus, the Causal Agent of Bacterial Necrosis of Grapevine

    OpenAIRE

    Grall, Sophie; Manceau, Charles

    2003-01-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-...

  11. Effectiveness of Origanum vulgare L. and Origanum majorana L. essential oils in inhibiting the growth of bacterial strains isolated from the patients with conjunctivitis

    OpenAIRE

    Oliveira, Jana Luíza Toscano Mendes de; Diniz, Margareth de Fátima Melo; Lima, Edeltrudes de Oliveira; Souza, Evandro Leite de; Trajano, Vinícius Nogueira; Santos, Bernadete Helena Cavalcante

    2009-01-01

    This study aimed to evaluate the antibacterial activity of Origanum vulgare L. and O. majorana L. essential oils on Staphylococcus aureus, S. coagulase negative, Enterobacter spp., Proteus spp., Acinetobacter spp., Klebsiella spp. isolated from the patients with conjunctivitis. The results showed a prominent inhibitory effect of both the essential oils on all the bacterial strains, noted by the large bacterial growth inhibition zones (15-32mm). The Minimum Inhibitory Concentrations (MIC) valu...

  12. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042.

    Science.gov (United States)

    Prieto, A; Bernabeu, M; Aznar, S; Ruiz-Cruz, S; Bravo, A; Queiroz, M H; Juárez, A

    2018-01-01

    Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae , cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli , out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue ( hns2 ). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae . IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool.

  13. Biopesticide activity of sugarcane associated rhizobacteria: Ochrobactrum intermedium strain NH-5 and Stenotrophomonas maltophilia strain NH-300 against red rot under field conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem HASSAN

    2014-09-01

    Full Text Available Colletotrichum falcatum is the major fungal pathogen causing sugarcane red rot. Four antagonistic bacterial strains exhibiting biocontrol activity against this pathogen in greenhouse conditions were characterized for production of different antifungal metabolites and biocontrol determinants to elucidate the mechanism of action involved in their antagonistic activity. The strains were also evaluated under field conditions to assess their biocontrol potential. All the strains produced hydrogen cyanide (HCN, and volatile and diffusible antibiotics. In addition, the Ochrobactrum intermedium strain NH-5 produced siderophores and the broad spectrum antibiotic 2, 4-diacetylphloroglucinol (2,4-DAPG; Pseudomonas sp. NH-203 produced siderophores, and Pseudomonas sp. NH-276 produced protease. Two strains, Ochrobactrum intermedium NH-5 and Stenotrophomonas maltophilia NH-300, exhibited good biocontrol activity, suppressing red rot by 44–52% on two sugarcane varieties, SPF-234 and Co-1148, in field experiments. The strains gave consistent results in three consecutive years and showed potential to be used as biopesticides.

  14. The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections.

    Science.gov (United States)

    Potter, Amina; Ceotto, Hilana; Giambiagi-Demarval, Marcia; dos Santos, Kátia Regina Netto; Nes, Ingolf F; Bastos, Maria do Carmo de Freire

    2009-06-01

    This study analyzed ten strains of coagulase-negative staphylococci (CNS) involved in nosocomial infections in three Brazilian hospitals. Their antibiotic susceptibility profile showed that most strains exhibited multiple antibiotic resistance and possessed the mecA gene. The ability of these strains to adhere to polystyrene microtiter plates was also tested and nine of them proved to be biofilm producers at least in one of the three conditions tested: growth in TSB, in TSB supplemented with NaCl, or in TSB supplemented with glucose. The presence of the bap gene, which codes for the biofilm-associated protein (Bap), was investigated in all ten strains by PCR. AU strains were bop-positive and DNA sequencing experiments confirmed that the fragments amplified were indeed part of a bap gene. The presence of the icaA gene, one of the genes involved in polysaccharide intercellular adhesin (PIA) formation, was also detected by PCR in eight of the ten strains tested. The two icaA-negative strains were either weak biofilm producer or no biofilm producer, although they were bop-positive. To our knowledge, this is the first report demonstrating the presence of the bap gene in nosocomial isolates of CNS, being also the first report on the presence of this gene in Staphylococcus haemolyticus and S. cohnii.

  15. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches.

    Science.gov (United States)

    Schürch, A C; Arredondo-Alonso, S; Willems, R J L; Goering, R V

    2018-04-01

    Whole genome sequence (WGS)-based strain typing finds increasing use in the epidemiologic analysis of bacterial pathogens in both public health as well as more localized infection control settings. This minireview describes methodologic approaches that have been explored for WGS-based epidemiologic analysis and considers the challenges and pitfalls of data interpretation. Personal collection of relevant publications. When applying WGS to study the molecular epidemiology of bacterial pathogens, genomic variability between strains is translated into measures of distance by determining single nucleotide polymorphisms in core genome alignments or by indexing allelic variation in hundreds to thousands of core genes, assigning types to unique allelic profiles. Interpreting isolate relatedness from these distances is highly organism specific, and attempts to establish species-specific cutoffs are unlikely to be generally applicable. In cases where single nucleotide polymorphism or core gene typing do not provide the resolution necessary for accurate assessment of the epidemiology of bacterial pathogens, inclusion of accessory gene or plasmid sequences may provide the additional required discrimination. As with all epidemiologic analysis, realizing the full potential of the revolutionary advances in WGS-based approaches requires understanding and dealing with issues related to the fundamental steps of data generation and interpretation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Bacterial community affects toxin production by Gymnodinium catenatum.

    Directory of Open Access Journals (Sweden)

    Maria E Albinsson

    Full Text Available The paralytic shellfish toxin (PST-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01 and grown with: 1 complex bacterial communities derived from each of the two parent cultures; 2 simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3 a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell of clonal offspring (134-197 fmol STX cell(-1 was similar to the parent cultures (169-206 fmol STX cell(-1, however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1 than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1. Specific toxin production rate (fmol STX day(-1 was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1 day(-1 did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  17. Bacterial community affects toxin production by Gymnodinium catenatum.

    Science.gov (United States)

    Albinsson, Maria E; Negri, Andrew P; Blackburn, Susan I; Bolch, Christopher J S

    2014-01-01

    The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134-197 fmol STX cell(-1)) was similar to the parent cultures (169-206 fmol STX cell(-1)), however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1)) than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1)). Specific toxin production rate (fmol STX day(-1)) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1) day(-1)) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  18. Biodegradation of petroleum oil by certain bacterial strains

    International Nuclear Information System (INIS)

    Zakaria, A.E.M.

    1998-01-01

    Balaeam base oil was chosen as a model oil in the present study through which some abiotic treatments were implemented aiming at attenuating its naphthenic and aromatic contents; such as the adsorptive technique and the gamma-irradiation technique . In an attempt to apply the biodegrading bacteria as oil pollutant bio indicators upon coastal water samples, a correlation between hydrocarbon concentration and the relative enumeration of the bacterial oil degraders was detected for some litter locations along the mediterranean Sea shore west and east Delta, Suez canal. and suez gulf. 24 petroleum utilizing bacterial isolates were isolated from El-Zayteia port (suez) and identified by morphological, physiological and environmental examination . the biodegradation capacity of the isolates towards the chosen model oil and its separate components was studied in comparison with the standard isolate pseudomonas aeruginosa. Further, the role of the bacterial plasmids taking part in the biodegradation process was investigated as well

  19. Analysis of bacterial strains from contaminated and non ...

    African Journals Online (AJOL)

    Administrator

    2007-05-02

    May 2, 2007 ... A total 18 strains were collected from non-contaminated and contaminated environments, and were purified. All purified strains were characterized for Gram reaction and biochemical analysis. Screening for bioplastic production was done by Sudan black staining. Strains isolated from non-contaminated.

  20. Entrance and Survival of Brucella pinnipedialis Hooded Seal Strain in Human Macrophages and Epithelial Cells

    Science.gov (United States)

    Briquemont, Benjamin; Sørensen, Karen K.; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary. PMID:24376851

  1. Evaluation of different lactic acid bacterial strains for probiotic characteristics

    Directory of Open Access Journals (Sweden)

    B. Srinu,

    2013-08-01

    Full Text Available Objective: The objective of the present study was to collect different Lactic acid bacterial strains from culture collection centers and screen their functional probiotic characteristics such as acid tolerance, bile tolerance, antibacterial activity and antibiotic sensitivity for their commercial use. Materials and Methods: Acid and bile tolerence of selected LAB(Lactic acid bacteria was determined. The antibiotic resistance of Lactobacillus species was assessed using different antibiotic discs on de Mann Rogosa Sharpe broth (MRS agar plates seeded with the test probiotic organism. The antibacterial activity of LAB was assessed by using well diffusion method.Results: Among the six probiotic strains tested, all showed good survivability at high bile salt concentration (0.3 to 2.0 % oxgall and good growth at a low pH of 1.5 to 3.5. These probiotic species showed good survival abilities in acidic pH of 2.0 to 3.5 except Lactobacillus delbrueckii subspp. bulgaricus 281 which did not grown at pH of 2.0. Lactobacillus fermentum 141 was able to grow even at pH of 1.5 also. Among the six lactic acid species, Lactobacillus fermentum 141 (except Tetracycline, Lactobacillus delbrueckii subspp. Bulgaricus 281 except (Cefpodoxime and all other LAB were resistant to all the antibiotics tested (Ampicillin, Nalidixic acid , Ciprofloxacin ,Co-Trimoxazole, Gentamicin and Cefpodoxime. All these probiotic organisms were screened for their in vitro inhibition ability against pathogenic microorganisms namely, E.coli ATCC (American type culture collection centre, Pseudomonas aeruginosa, Salmonella paratyphi, Staphylococcus aureus. Lactobacillus delbrueckii subspp. bulgaricus 281, Lactobacillus casei 297 and Lactobacillus fermentum 141 inhibited the growth of all the pathogenic bacteria used in the study. Conclusion: The study indicated Lactobacillus fermentum 141 and Lactobacillus casei 297 as potential functional probiotics for future in vivo studies for

  2. ‘Khoudiadiopia massiliensis’ gen. nov., sp. nov., strain Marseille-P2746TT, a new bacterial genus isolated from the female genital tract

    Directory of Open Access Journals (Sweden)

    A. Diop

    2017-09-01

    Full Text Available We report the main characteristics of ‘Khoudiadiopia massiliensis’ gen. nov., sp. nov., strain Marseille-P2746T (= CSUR P2746, a new member of the Peptoniphilaceae family isolated from a vaginal swab of a patient suffering from bacterial vaginosis.

  3. The use of 14C-FIAU to predict bacterial thymidine kinase presence: Implications for radiolabeled FIAU bacterial imaging

    International Nuclear Information System (INIS)

    Peterson, Kristin L.; Reid, William C.; Freeman, Alexandra F.; Holland, Steven M.; Pettigrew, Roderic I.; Gharib, Ahmed M.; Hammoud, Dima A.

    2013-01-01

    Currently available infectious disease imaging techniques cannot differentiate between infection and sterile inflammation or between different types of infections. Recently, radiolabeled FIAU was found to be a substrate for the thymidine kinase (TK) enzyme of multiple pathogenic bacteria, leading to its translational use in the imaging of bacterial infections. Patients with immunodeficiencies, however, are susceptible to a different group of pathogenic bacteria when compared to immunocompetent subjects. In this study, we wanted to predict the usefulness of radiolabeled FIAU in the detection of bacterial infections commonly occurring in patients with immunodeficiencies, in vitro, prior to attempting in vivo imaging with 124 I-FIAU-PET. Methods: We obtained representative strains of bacterial pathogens isolated from actual patients with genetic immunodeficiencies. We evaluated the bacterial susceptibility of different strains to the effect of incubation with FIAU, which would implicate the presence of the thymidine kinase (TK) enzyme. We also incubated the bacteria with 14 C-FIAU and consequently measured its rate of incorporation in the bacterial DNA using a liquid scintillation counter. Results: Unlike the other bacterial strains, the growth of Pseudomonas aeruginosa was not halted by FIAU at any concentration. All the tested clinical isolates demonstrated different levels of 14 C-FIAU uptake, except for P. aeruginosa. Conclusion: Radiolabeled FIAU has been successful in delineating bacterial infections, both in preclinical and pilot translational studies. In patients with immunodeficiencies, Pseudomonas infections are commonly encountered and are usually difficult to differentiate from fungal infections. The use of radiolabeled FIAU for in vivo imaging of those patients, however, would not be useful, considering the apparent lack of TK enzyme in Pseudomonas. One has to keep in mind that not all pathogenic bacteria possess the TK enzyme and as such will not all

  4. Brucella abortus strain 2308 Wisconsin genome: importance of the definition of reference strains

    Directory of Open Access Journals (Sweden)

    Marcela Suárez-Esquivel

    2016-09-01

    Full Text Available Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing (WGS analysis of the reference strain Brucella abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version at www.wikipedia.Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised.

  5. Morphological characterization of several strains of the rice-pathogenic bacterium Burkholderia glumae in North Sumatra

    Science.gov (United States)

    Hasibuan, M.; Safni, I.; Lisnawita; Lubis, K.

    2018-02-01

    Burkholderia glumae is a quarantine seed-borne bacterial pathogen causing panicle blight disease on rice. This pathogen has been detected in some locations in Java, and recently, farmers in North Sumatra have reported rice yield loss with symptoms similar with those on rice infeced by the rice-pathogenic bacterium B. glumae. This research was aimed to isolate several bacterial strains from several rice varieties in various locations in North Sumatra and characterize the morphology of the strains to detect and identify the unknown bacterial strains presumably B. glumae. Several rice seed varieties were collected from Medan and Deli Serdang Districts. The seed samples were extracted, isolated and purified, then grown in semi-selective media PPGA. The morphological characteristics of the bacterial strains were determined including Gram staining, bacterial colony’s and bacterial cell’s morphology. The results showed that of eleven strains isolated, two strains were Gram negative and nine strains were Gram positive. On the basis of colony morphology, all strains had circular form, flat elevation and cream colour while the colony margin varied, i.e. entire and undulate. Most strains had bacillus/rod shape (8 strains) and only 3 strains were coccus.

  6. [Features of interaction bacterial strains Micrococcus luteus LBK1 from plants varieties/hybrids cucumber and sweet pepper and with fungus Fusarium oxysporum Scelecht].

    Science.gov (United States)

    Parfeniuk, A; Sterlikova, O; Beznosko, I; Krut', V

    2014-01-01

    The article presents the results of studying the impact of bacterial strain M. luteus LBK1, stimulating the growth and development of plant varieties/hybrids of cucumber and sweet pepper on the intensity of sporulation of the fungus F. oxysporum Scelecht--fusariose rot pathogen.

  7. Evaluation of antifungal activity from Bacillus strains against ...

    African Journals Online (AJOL)

    In this study, 30 bacterial strains isolated from marine biofilms were screened for their antifungal activity against Rhizoctonia solani by dual culture assay. Two bacterial strains, Bacillus subtilis and Bacillus cereus, showed a clear antagonism against R. solani on potato dextrose agar (PDA) medium. The antagonistic activity ...

  8. Novel Accurate Bacterial Discrimination by MALDI-Time-of-Flight MS Based on Ribosomal Proteins Coding in S10-spc-alpha Operon at Strain Level S10-GERMS

    Science.gov (United States)

    Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki

    2013-08-01

    Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.

  9. Streptomyces lunalinharesii Strain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes

    OpenAIRE

    Pacheco da Rosa, Juliana; Korenblum, Elisa; Franco-Cirigliano, Marcella Novaes; Abreu, Fernanda; Lins, Ulysses; Soares, Rosângela M. A.; Macrae, Andrew; Seldin, Lucy; Coelho, Rosalie R. R.

    2013-01-01

    Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with...

  10. Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis.

    Science.gov (United States)

    Skarin, A; Sylwan, J

    1986-12-01

    On a solid agar medium the growth-inhibitory effect of 9 Lactobacillus strains cultured from vaginal content was tested on bacteria cultured from vaginal content of women with bacterial vaginosis: Mobiluncus, Gardnerella vaginalis, Bacteroides and anaerobic cocci. Inhibition zones were observed in the growth of all of the strains isolated from women with bacterial vaginosis around all lactobacilli. The inhibitory effect of the lactobacilli was further tested on various anaerobic and facultatively anaerobic species, both type strains and fresh extragenitally cultured strains. Four Bacteroides fragilis strains as well as 2 out of 4 Staphylococcus aureus strains were clearly inhibited by the lactobacilli. The inhibition zones were generally wider at pH 5.5 than at 6.0. For all inhibited strains, (the S. aureus excepted) a low pH on the agar around the lactobacilli correlated to wider growth-inhibition zones.

  11. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection.

    Directory of Open Access Journals (Sweden)

    Samuel A Shelburne

    2010-03-01

    Full Text Available Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS suggested that the transcriptional regulator catabolite control protein A (CcpA influences many of the same genes as the control of virulence (CovRS two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both DeltaccpA and DeltacovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection.

  12. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains

    Directory of Open Access Journals (Sweden)

    Sara eScandorieiro

    2016-05-01

    Full Text Available Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare essential oil (OEO and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP, produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all seventeen strains tested, with minimal inhibitory concentrations (MIC ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 µM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min, while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA cells exposed to three different treatments (OEO, bio-AgNP and combination of the two, which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds

  13. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    Science.gov (United States)

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  14. Bacterial cheating limits antibiotic resistance

    Science.gov (United States)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  15. Brucella abortus Strain 2308 Wisconsin Genome: Importance of the Definition of Reference Strains

    Science.gov (United States)

    Suárez-Esquivel, Marcela; Ruiz-Villalobos, Nazareth; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Roop II, R. Martin; Comerci, Diego J.; Barquero-Calvo, Elías; Chacón-Díaz, Carlos; Caswell, Clayton C.; Baker, Kate S.; Chaves-Olarte, Esteban; Thomson, Nicholas R.; Moreno, Edgardo; Letesson, Jean J.; De Bolle, Xavier; Guzmán-Verri, Caterina

    2016-01-01

    Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing analysis of the reference strain B. abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version through a link at https://en.wikipedia.org/wiki/Brucella#Genomics. Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised. PMID:27746773

  16. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil.

    Science.gov (United States)

    Afzal, Muhammad; Yousaf, Sohail; Reichenauer, Thomas G; Sessitsch, Angela

    2012-01-01

    Plants in combination with microorganisms can remediate soils, which are contaminated with organic pollutants such as petroleum hydrocarbons. Inoculation of plants with degrading bacteria is one approach to improve remediation processes, but is often not successful due to the competition with resident microorganisms. It is therefore of high importance to address the persistence and colonization behavior of inoculant strains. The objective of this study was to determine whether the inoculation method (seed imbibement and soil inoculation) influences bacterial colonization, plant growth promotion and hydrocarbon degradation. Italian ryegrass was grown in non-sterilized soil polluted with diesel and inoculated with different alkane-degrading strains Pantoea sp. ITSI10, Pantoea sp. BTRH79 and Pseudomonas sp. MixRI75 individually as well as in combination. Inoculation generally had a beneficial effect on plant biomass production and hydrocarbon degradation, however, strains inoculated in soil performed better than applied by seed imbibement. Performance correlated with the colonization efficiency of the inoculated strains. The highest hydrocarbon degradation was observed in the treatment, in which all three strains were inoculated in combination into soil. Our study revealed that besides the degradation potential and competitive ability of inoculant strains the inoculation method plays an important role in determining the success of microbial inoculation.

  17. The bacterial diversity associated with bacterial diseases on Mud Crab (Scylla serrata Fab.) from Pemalang Coast, Indonesia

    Science.gov (United States)

    Sarjito; Desrina; Haditomo, AHC; Budi Prayitno, S.

    2018-05-01

    Bacterial disease is a problem in mud crab culture in Pemalang, Indonesia. The purpose of this study was to find out the bacteria associated with bacterial diseases on mud crab based on the molecular approach. Exploratory methods were conducted in this reserach. Twenty two bacteria (SJP 01 – SJP 22) were isolated from carapace and gills and hepathopancreas of moribound mud crab with TCBS and TSA medium. Based on rep PCR, five isolates (SJP 01, SJP 02, SJP 04, SJP 10 and SJP 11) were choosen for further investigation. Result from 16S rDNA sequence analysis, SJP 01, SJP 02, SJP 04, SJP 10 and SJP 11 were closely related to Exiguobacterium sp. ZJ2505 (99%), V. harveyi strain NCIMB1280 (98%), V. alginolyticus strain ATCC 17749(98%.), B. marisflavi strain TF-11 (97%) and E. aestuarii strain TF-16 (99%) respectively.

  18. Seaweed as source of energy. I: effect of a specific bacterial strain on biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.S.; Tarwade, S.J.; Sarma, K.S.R.

    1980-01-01

    Biogas was produced from seaweed by making use of alginate-digesting marine bacteria that were isolated from decomposing seaweed and can digest seaweed carbohydrates (agar and alginic acid). Laboratory digesters containing 100 g seaweed were inoculated with 50 mL broth cultures of different seaweed-derived bacterial strains, and the maximum amount of degradation obtained was 28% (compared with 13% for a bacteria-free digestion). Cow dung was added as a source of methanogenic bacteria, and the amount of biogas produced was more than double the amount obtained when seaweed and cow dung were digested in the absence of the seaweed-derived bacteria. Adding a small amount of Ulva to the seaweed digester increased the production of biogas.

  19. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  20. Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B.

    Science.gov (United States)

    Naik, Milind Mohan; Pandey, Anju; Dubey, Santosh Kumar

    2012-09-01

    A lead resistant bacterial strain isolated from effluent of lead battery manufacturing company of Goa, India has been identified as Enterobacter cloacae strain P2B based on morphological, biochemical characters, FAME profile and 16S rDNA sequence data. This bacterial strain could resist lead nitrate up to 1.6 mM. Significant increase in exopolysaccharide (EPS) production was observed as the production increased from 28 to 108 mg/L dry weight when exposed to 1.6 mM lead nitrate in Tris buffered minimal medium. Fourier-transformed infrared spectroscopy of this EPS revealed presence of several functional groups involved in metal binding viz. carboxyl, hydroxyl and amide groups along with glucuronic acid. Gas chromatography coupled with mass spectrometry analysis of alditol-acetate derivatives of acid hydrolysed EPS produced in presence of 1.6 mM lead nitrate demonstrated presence of several neutral sugars such as rhamnose, arabinose, xylose, mannose, galactose and glucose, which contribute to lead binding hydroxyl groups. Scanning electron microscope coupled with energy dispersive X-ray spectrometric analysis of this lead resistant strain exposed to 1.6 mM lead nitrate interestingly revealed mucous EPS surrounding bacterial cells which sequestered 17 % lead (as weight %) extracellularly and protected the bacterial cells from toxic effects of lead. This lead resistant strain also showed multidrug resistance. Thus these results significantly contribute to better understanding of structure, function and environmental application of lead-enhanced EPSs produced by bacteria. This lead-enhanced biopolymer can play a very important role in bioremediation of several heavy metals including lead.

  1. Selection of potent bacterial strain for over-production of PHB by using low cost carbon source for eco-friendly bioplastics

    Directory of Open Access Journals (Sweden)

    Rahat Abdul Rehman

    2015-11-01

    Full Text Available Background: The microbial PHB production is a promising tool for the plastic industry for the synthesis of environmental friendly, biodegradable plastic in contrast to the conventional petro-chemical based non-degradable plastics. The selection of potent bacterial strains, inexpensive carbon source, efficient fermentation and recovery processes are important aspects that were taken into account during this study. Methods: Different bacterial strains i.e. Bacillus Spp, P. putida and P. fluorescens were screened for maximum PHB production. Under media optimization, various carbon and nitrogen sources (alone or in combination were used to achieve the maximum PHB production. Finally the degradation tests of the PHB sheet were also performed to test its biodegradability potential. Results: Shake flask studies have shown the PHB concentrations upto 7.02, 4.50 and 34.4 mg/g of dry cell mass of P. putida, P. fluorescens and Bacillus Spp. respectively. Almost same results were observed at laboratory scale production of PHB in 10 L fermenter i.e. 6.28, 6.23 and 39.5 mg/g of dry cell mass by P. putida, P. fluorescens and Bacillus Spp. respectively. On the basis of these observations, Bacillus Spp. was chosen for laboratory scale PHB production. Corn steep liquor (4% was chosen as the best medium to achieve the highest PHB contents. Isolated PHB has shown biodegradation in soil up to 86.7% at 37oC. Conclusion: The Bacillus Spp. Proved to be the best strain for PHB production on only 4% CSL which is cheapest and easily available.

  2. Bacterial transport in heterogeneous porous media: Observations from laboratory experiments

    Science.gov (United States)

    Silliman, S. E.; Dunlap, R.; Fletcher, M.; Schneegurt, M. A.

    2001-11-01

    Transport of bacteria through heterogeneous porous media was investigated in small-scale columns packed with sand and in a tank designed to allow the hydraulic conductivity to vary as a two-dimensional, lognormally distributed, second-order stationary, exponentially correlated random field. The bacteria were Pseudomonas ftuorescens R8, a strain demonstrating appreciable attachment to surfaces, and strain Ml, a transposon mutant of strain R8 with reduced attachment ability. In bench top, sand-filled columns, transport was determined by measuring intensity of fluorescence of stained cells in the effluent or by measuring radiolabeled cells that were retained in the sand columns. Results demonstrated that strain Ml was transported more efficiently than strain R8 through columns packed with either a homogeneous silica sand or a more heterogeneous sand with iron oxide coatings. Two experiments conducted in the tank involved monitoring transport of bacteria to wells via sampling from wells and sample ports in the tank. Bacterial numbers were determined by direct plate count. At the end of the first experiment, the distribution of the bacteria in the sediment was determined by destructive sampling and plating. The two experiments produced bacterial breakthrough curves that were quite similar even though the similarity between the two porous media was limited to first- and second-order statistical moments. This result appears consistent with the concept of large-scale, average behavior such as has been observed for the transport of conservative chemical tracers. The transported bacteria arrived simultaneously with a conservative chemical tracer (although at significantly lower normalized concentration than the tracer). However, the bacterial breakthrough curves showed significant late time tailing. The concentrations of bacteria attached to the sediment surfaces showed considerably more spatial variation than did the concentrations of bacteria in the fluid phase. This

  3. Factors influencing bacterial adhesion to contact lenses.

    Science.gov (United States)

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.

  4. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivative for bacterial skin infection

    Science.gov (United States)

    Chen, Zhuo; Zhang, Yaxin; Li, Linsen; Zhou, Shanyong; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2014-09-01

    Folliculitis, furunculosis and acne vulgaris are very common skin disorders of the hair follicles and are associated with large grease-producing (sebaceous) glands. Although the detailed mechanisms involved these skin disorders are not fully understood, it is believed that the bacteria Propionibacterium acnes and Staphylococcus aureus are the key pathogenic factors involved. Conventional treatments targeting the pathogenic factors include a variety of topical and oral medications such as antibiotics. The wide use of antibiotics leads to bacterial resistance, and hence there is a need for new alternatives in above bacterial skin treatment. Photodynamic antimicrobial chemotherapy (PACT) is based on an initial photosensitization of the infected area, followed by irradiation with visible light, producing singlet oxygen which is cytotoxic to bacteria. Herein we reported a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5) and its PACT effect for the bacteria involved in these skin infections. Our results demonstrated strong bactericidal effects of this photosensitizer on both strains of the bacteria, suggesting ZnPc-(Lys)5 as a promising antimicrobial photosensitizer for the treatment of infectious diseases caused by these bacteria.

  5. In Vitro and In Vivo Survival and Transit Tolerance of Potentially Probiotic Strains Carried by Artichokes in the Gastrointestinal Tract

    OpenAIRE

    Valerio, Francesca; De Bellis, Palmira; Lonigro, Stella Lisa; Morelli, Lorenzo; Visconti, Angelo; Lavermicocca, Paola

    2006-01-01

    The ability of potentially probiotic strains of Lactobacillus plantarum and Lactobacillus paracasei to survive on artichokes for at least 90 days was shown. The anchorage of bacterial strains to artichokes improved their survival in simulated gastrointestinal digestion. L. paracasei IMPC2.1 was further used in an artichoke human feeding study involving four volunteers, and it was shown that the organism could be recovered from stools.

  6. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    Directory of Open Access Journals (Sweden)

    Sahar Hasim

    2018-02-01

    Full Text Available The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.

  7. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    Science.gov (United States)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-11-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  8. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains.

    Science.gov (United States)

    Sharp, Jonathan O; Wood, Thomas K; Alvarez-Cohen, Lisa

    2005-03-05

    The water contaminant N-nitrosodimethylamine (NDMA) is a probable human carcinogen whose appearance in the environment is related to the release of rocket fuel and to chlorine-based disinfection of water and wastewater. Although this compound has been shown to be biodegradable, there is minimal information about the organisms capable of this degradation, and little is understood of the mechanisms or biochemistry involved. This study shows that bacteria expressing monooxygenase enzymes functionally similar to those demonstrated to degrade NDMA in eukaryotes have the capability to degrade NDMA. Specifically, induction of the soluble methane monooxygenase (sMMO) expressed by Methylosinus trichosporium OB3b, the propane monooxygenase (PMO) enzyme of Mycobacterium vaccae JOB-5, and the toluene 4-monooxygenases found in Ralstonia pickettii PKO1 and Pseudomonas mendocina KR1 resulted in NDMA degradation by these strains. In each of these cases, brief exposure to acetylene gas, a suicide substrate for certain monooxygenases, inhibited the degradation of NDMA. Further, Escherichia coli TG1/pBS(Kan) containing recombinant plasmids derived from the toluene monooxygenases found in strains PKO1 and KR1 mimicked the behavior of the parent strains. In contrast, M. trichosporium OB3b expressing the particulate form of MMO, Burkholderia cepacia G4 expressing the toluene 2-monooxygenase, and Pseudomonas putida mt-2 expressing the toluene sidechain monooxygenase were not capable of NDMA degradation. In addition, bacteria expressing aromatic dioxygenases were not capable of NDMA degradation. Finally, Rhodococcus sp. RR1 exhibited the ability to degrade NDMA by an unidentified, constitutively expressed enzyme that, unlike the confirmed monooxygenases, was not inhibited by acetylene exposure. 2005 Wiley Periodicals, Inc.

  9. Pathogenicity of a Very Virulent Strain of Marek's Disease Herpesvirus Cloned as Infectious Bacterial Artificial Chromosomes

    Directory of Open Access Journals (Sweden)

    Lorraine P. Smith

    2011-01-01

    Full Text Available Bacterial artificial chromosome (BAC vectors containing the full-length genomes of several herpesviruses have been used widely as tools to enable functional studies of viral genes. Marek's disease viruses (MDVs are highly oncogenic alphaherpesviruses that induce rapid-onset T-cell lymphomas in chickens. Oncogenic strains of MDV reconstituted from BAC clones have been used to examine the role of viral genes in inducing tumours. Past studies have demonstrated continuous increase in virulence of MDV strains. We have previously reported on the UK isolate C12/130 that showed increased virulence features including lymphoid organ atrophy and enhanced tropism for the central nervous system. Here we report the construction of the BAC clones (pC12/130 of this strain. Chickens were infected with viruses reconstituted from the pC12/130 clones along with the wild-type virus for the comparison of the pathogenic properties. Our studies show that BAC-derived viruses induced disease similar to the wild-type virus, though there were differences in the levels of pathogenicity between individual viruses. Generation of BAC clones that differ in the potential to induce cytolytic disease provide the opportunity to identify the molecular determinants of increased virulence by direct sequence analysis as well as by using reverse genetics approaches on the infectious BAC clones.

  10. Role of overexpressed CFA/I fimbriae in bacterial swimming.

    Science.gov (United States)

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, Sangmu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 CFA/I fimbriae on bacterial swimming motility.

  11. Evaluation of biofilm formation by bacterial strains isolated from milking equipment and milk samples from cows with mastitis

    Directory of Open Access Journals (Sweden)

    Laura Gonçalves da Silva Chagas

    2017-08-01

    Full Text Available The presence of biofilm-forming bacteria from the mammary gland of dairy cows adhered to equipment in the milking environment represents one of the major causes of bacterial resistance during mastitis treatment. The aim of this study was to identify strains of Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli in milk samples from cows with mastitis, as well as in the expansion tank and milking set liners. We aimed to quantify the extracellular proteins and polysaccharides in the biofilm produced by each strain. A total of 294 samples were collected from a dairy farm in the municipality of Uberlândia, Minas Gerais. To identify the S. aureus, S. epidermidis and E. coli isolates responsible for biofilm production, we tested the phenotype using the Congo red agar (CRA and microplate adhesion tests. Protein quantification was performed with a Bicinchoninic Acid Protein Assay Kit (BCA kit, and polysaccharides were quantified by the phenol sulfuric acid method. We identified eight strains of S. aureus, one strain of S. epidermidis and 11 strains of E. coli responsible for biofilm production, all of which showed a higher concentration of polysaccharides than proteins in the matrix. Escherichia coli was considered the most prevalent bacterium among the samples, and S. aureus was determined to be the largest biofilm producer. The results of the CRA and microplate adhesion tests were similar in regard to identification of the biofilm-producing strains according to their phenotype and matrix composition. The classification of S. aureus strains as major biofilm producers is of great concern for producers, as such bacteria are considered one of the predominant contagious etiological agents that cause bovine mastitis. In addition, our observation that E. coli and S. epidermidis can produce biofilms highlights the need to reassess prophylactic measures to avoid the adhesion of biofilm-producing bacteria.

  12. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion

    NARCIS (Netherlands)

    Younes, Jessica A.; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J.; Reid, Gregor; van der Mei, Henny C.

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether

  13. Methods for analysis of bacterial autoinducer-2 production.

    Science.gov (United States)

    Taga, Michiko E

    2005-07-01

    The quorum-sensing signal molecule autoinducer-2 (AI-2) is produced by over 50 diverse bacterial species and controls many different processes, including antibiotic production, biofilm formation, and virulence. AI-2 production often varies according to growth phase, media conditions, and the presence of specific factors. This unit describes a biological assay for AI-2 activity produced by a bacterial strain of interest. The assay employs an AI-2 reporter strain, Vibrio harveyi BB170, which produces light in response to AI-2. In the first stage of the assay, culture fluids of the bacterial strain of interest are collected over a time course of growth and filtered to remove cells. In the next stage, these culture fluids are mixed with BB170, and the light produced in response to AI-2 in the culture fluids is measured using a luminometer. BB170 is exquisitely sensitive to AI-2, and therefore, even low amounts of AI-2 can be detected using this bioassay.

  14. DNA microarray-based genome comparison of a pathogenic and a nonpathogenic strain of Xylella fastidiosa delineates genes important for bacterial virulence.

    Science.gov (United States)

    Koide, Tie; Zaini, Paulo A; Moreira, Leandro M; Vêncio, Ricardo Z N; Matsukuma, Adriana Y; Durham, Alan M; Teixeira, Diva C; El-Dorry, Hamza; Monteiro, Patrícia B; da Silva, Ana Claudia R; Verjovski-Almeida, Sergio; da Silva, Aline M; Gomes, Suely L

    2004-08-01

    Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.

  15. The SOS response is permitted in Escherichia coli strains deficient in the expression of the mazEF pathway.

    Science.gov (United States)

    Kalderon, Ziva; Kumar, Sathish; Engelberg-Kulka, Hanna

    2014-01-01

    The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage. It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage is inhibited by various elements involved in the expression of the E. coli toxin-antitoxin mazEF pathway. Since the mazEF module is present on the chromosomes of most E. coli strains, here we asked: Why is the SOS response found in so many E. coli strains? Is the mazEF module present but inactive in those strains? We examined three E. coli strains used for studies of the SOS response, strains AB1932, BW25113, and MG1655. We found that each of these strains is either missing or inhibiting one of several elements involved in the expression of the mazEF-mediated death pathway. Thus, the SOS response only takes place in E. coli cells in which one or more elements of the E. coli toxin-antitoxin module mazEF or its downstream pathway is not functioning.

  16. Bacterial biodiversity analysis of a contaminated soil from the Chernobyl exclusion zone and characterization of the committed interaction of a Microbacterium strain with uranium

    International Nuclear Information System (INIS)

    Theodorakopoulos, Nicolas

    2013-01-01

    The nuclear power plants accidents of Chernobyl and Fukushima demonstrate the importance of the understanding of the transfer of the radioactive contamination in the environment and its ecological consequences. Although certain studies have been realized on superior organisms of the food chain, studies on telluric bacterial communities are scarce. The latter play nevertheless an essential role in the mobility of contaminants in soils by decreasing or improving their transfer towards other compartments (water, vegetables and animals). Moreover radionuclides (RNs) can have toxic effects on bacteria, leading to an inhibition of their participation in such transfer. The objectives of this study were (1) to estimate the impact of the radioactive contamination on bacterial communities belonging to a soil of the Chernobyl exclusion zone (trench T22) and (2) to study the uranium-bacteria interactions of a resistant strain, isolated from this soil. The various techniques used to characterize the bacterial diversity (culture of bacteria, DGGE, 454 pyro-sequencing) all testified of the multiplicity and the abundance of the bacterial communities in spite of the contamination. An impact on the community structure was difficult to assess by DGGE or cultural approach, but was nevertheless highlighted by the use of pyro-sequencing, suggesting the presence of species more adapted to the contaminated soil conditions. A specific molecular tool dedicated to the search of bacteria affiliated to the known radiation resistant Deinococcus-Thermus phylum (for example the Deinococcus radiodurans specie survives after an irradiation of several kGy) was developed. However it did not reveal the presence of bacteria affiliated to such a phylum in the studied soil. In parallel to the study of the bacterial biodiversity, about fifty culturable bacteria were isolated from this site and were used as a support to select a species (Microbacterium) capable to survive strong U(VI) concentrations. The

  17. Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa.

    Science.gov (United States)

    Iqbal, Aneela; Arshad, Muhammad; Hashmi, Imran; Karthikeyan, Raghupathy; Gentry, Terry J; Schwab, Arthur Paul

    2017-06-13

    The presence of benzene and phenol in the environment can lead to serious health effects in humans and warrant development of efficient cleanup strategies. The aim of the present work was to assess the potential of indigenous endophytic bacterial strains to degrade benzene and phenol. Seven strains were successfully isolated from Cannabis sativa plants irrigated with oil refinery wastewater. Molecular characterization was performed by 16S rRNA gene sequencing. Phenol was biodegraded almost completely with Achromobacter sp. (AIEB-7), Pseudomonas sp. (AIEB-4), and Alcaligenes sp. (AIEB-6) at 250, 500, and 750 mg L -1 ; however, the degradation was only 81%, 72%, and 69%, respectively, when exposed to 1000 mg L -1 . Bacillus sp. (AIEB-1), Enterobacter sp. (AIEB-3), and Acinetobacter sp. (AIEB-2) degraded benzene significantly at 250, 500, and 750 mg L -1 . However, these strains showed 80%, 72%, and 68% benzene removal at 1000 mg L -1 exposure, respectively. Rates of degradation could be modeled with first-order kinetics with rate constant values of 1.86 × 10 -2 for Pseudomonas sp. (AIEB-4) and 1.80 × 10 -2  h -1 for Bacillus sp. (AIEB-1) and half-lives of 1.5 and 1.6 days, respectively. These results establish a foundation for further testing of the phytoremediation of hydrocarbon-contaminated soils in the presence of these endophytic bacteria.

  18. Response to gaseous NO2 air pollutant of P. fluorescens airborne strain MFAF76a and clinical strain MFN1032

    Directory of Open Access Journals (Sweden)

    Tatiana eKondakova

    2016-03-01

    Full Text Available Human exposure to nitrogen dioxide (NO2, an air pollutant of increasing interest in biology, results in several toxic effects to human health and also to the air microbiota. The aim of this study was to investigate the bacterial response to gaseous NO2. Two Pseudomonas fluorescens strains, namely the airborne strain MFAF76a and the clinical strain MFN1032 were exposed to 0.1, 5 or 45 ppm concentrations of NO2, and their effects on bacteria were evaluated in terms of motility, biofilm formation, antibiotic resistance, as well as expression of several chosen target genes. While 0.1 and 5 ppm of NO2 did not lead to any detectable modification in the studied phenotypes of the two bacteria, several alterations were observed when the bacteria were exposed to 45 ppm of gaseous NO2. We thus chose to focus on this high concentration. NO2-exposed P. fluorescens strains showed reduced swimming motility, and decreased swarming in case of the strain MFN1032. Biofilm formed by NO2-treated airborne strain MFAF76a showed increased maximum thickness compared to non-treated cells, while NO2 had no apparent effect on the clinical MFN1032 biofilm structure. It is well known that biofilm and motility are inversely regulated by intracellular c-di-GMP level. The c-di-GMP level was however not affected in response to NO2 treatment. Finally, NO2-exposed P. fluorescens strains were found to be more resistant to ciprofloxacin and chloramphenicol. Accordingly, the resistance nodulation cell division (RND MexEF-OprN efflux pump encoding genes were highly upregulated in the two P. fluorescens strains. Noticeably, similar phenotypes had been previously observed following a NO treatment. Interestingly, an hmp-homologue gene in P. fluorescens strains MFAF76a and MFN1032 encodes a NO dioxygenase that is involved in NO detoxification into nitrites. Its expression was upregulated in response to NO2, suggesting a possible common pathway between NO and NO2 detoxification. Taken

  19. Antimicrobial and Anti-Swarming Effects of Bacteriocins and Biosurfactants from Probiotic Bacterial Strains against Proteus spp.

    Directory of Open Access Journals (Sweden)

    Laila Goudarzi

    2017-02-01

    Full Text Available Background:   Proteus spp. belongs to the family of Enterobacteriaceae. These bacteria are Gram-negative and motile microorganisms and known as the third most common causes of urinary tract infections. The aim of the current study was to investigate the effects of some secondary metabolites from probiotic strains of Lactobacillus spp. on swarming and growth of Proteus mirabilis and P. vulgaris. Methods:   After determination of optimal conditions for the growth and production of antimicrobials, bacteriocins and biosurfactants were partially purified from Lactobacillus culture supernatants. Then, effects of the purified compounds on growth and swarming migration of Proteus spp. were examined in the presence of various concentrations of semi-purified compounds. Results:  Results showed that the partially purified bacteriocins inhibited Proteus spp. swarming distance and had a significant reduction on the bacterial growth curves. Biosurfactants in a solvent form did not have any considerable effects on factors produced by Proteus spp. Conclusion:  According to the results, the secondary metabolites, especially bacteriocins or bacteriocin-like substances derived from Lactobacillus strains, can inhibit or reduce growth and swarming migration of Proteus spp. which are considered as the bacteria major virulence factors.

  20. Comparative genomics of Helicobacter pylori strains of China associated with different clinical outcome.

    Directory of Open Access Journals (Sweden)

    Yuanhai You

    Full Text Available In this study, a whole-genome CombiMatrix Custom oligonucleotide tiling microarray with 90,000 probes covering six sequenced Helicobacter pylori (H. pylori genomes was designed. This microarray was used to compare the genomic profiles of eight unsequenced strains isolated from patients with different gastroduodenal diseases in Heilongjiang province of China. Since significant genomic variation was found among these strains, an additional 76 H. pylori strains associated with different clinical outcomes were isolated from various provinces of China. These strains were tested by polymerase chain reaction to demonstrate this distinction. We identified several highly variable regions in strains associated with gastritis, gastric ulceration, and gastric cancer. These regions are associated with genes involved in the bacterial type I, type II, and type III R-M systems. They were also associated with the virB gene, which lies on the well-studied cag pathogenic island. While previous studies have reported on the diverse genetic characterization of this pathogenic island, in this study, we find that it is conserved in all strains tested by microarray. Moreover, a number of genes involved in the type IV secretion system, which is related to horizontal DNA transfer between H. pylori strains, were identified in the comparative analysis of the strain-specific genes. These findings may provide insight into new biomarkers for the prediction of gastric diseases.

  1. Role of the PhoP-PhoQ system in the virulence of Erwinia chrysanthemi strain 3937: involvement in sensitivity to plant antimicrobial peptides, survival at acid Hh, and regulation of pectolytic enzymes.

    Science.gov (United States)

    Llama-Palacios, Arancha; López-Solanilla, Emilia; Rodríguez-Palenzuela, Pablo

    2005-03-01

    Erwinia chrysanthemi is a phytopathogenic bacterium that causes soft-rot diseases in a broad number of crops. The PhoP-PhoQ system is a key factor in pathogenicity of several bacteria and is involved in the bacterial resistance to different factors, including acid stress. Since E. chrysanthemi is confronted by acid pH during pathogenesis, we have studied the role of this system in the virulence of this bacterium. In this work, we have isolated and characterized the phoP and phoQ mutants of E. chrysanthemi strain 3937. It was found that: (i) they were not altered in their growth at acid pH; (ii) the phoQ mutant showed diminished ability to survive at acid pH; (iii) susceptibility to the antimicrobial peptide thionin was increased; (iv) the virulence of the phoQ mutant was diminished at low and high magnesium concentrations, whereas the virulence of the phoP was diminished only at low magnesium concentrations; (v) in planta Pel activity of both mutant strains was drastically reduced; and (vi) both mutants lagged behind the wild type in their capacity to change the apoplastic pH. These results suggest that the PhoP-PhoQ system plays a role in the virulence of this bacterium in plant tissues, although it does not contribute to bacterial growth at acid pH.

  2. Effect of dissolved oxygen on two bacterial pathogens examined using ATR-FTIR spectroscopy, microelectrophoresis, and potentiometric titration.

    Science.gov (United States)

    Castro, Felipe D; Sedman, Jacqueline; Ismail, Ashraf A; Asadishad, Bahareh; Tufenkji, Nathalie

    2010-06-01

    The effects of dissolved oxygen tension during bacterial growth and acclimation on the cell surface properties and biochemical composition of the bacterial pathogens Escherichia coli O157:H7 and Yersinia enterocolitica are characterized. Three experimental techniques are used in an effort to understand the influence of bacterial growth and acclimation conditions on cell surface charge and the composition of the bacterial cell: (i) electrophoretic mobility measurements; (ii) potentiometric titration; and (iii) ATR-FTIR spectroscopy. Potentiometric titration data analyzed using chemical speciation software are related to measured electrophoretic mobilities at the pH of interest. Titration of bacterial cells is used to identify the major proton-active functional groups and the overall concentration of these cell surface ligands at the cell membrane. Analysis of titration data shows notable differences between strains and conditions, confirming the appropriateness of this tool for an overall charge characterization. ATR-FTIR spectroscopy of whole cells is used to further characterize the bacterial biochemical composition and macromolecular structures that might be involved in the development of the net surficial charge of the organisms examined. The evaluation of the integrated intensities of HPO(2)(-) and carbohydrate absorption bands in the IR spectra reveals clear differences between growth protocols. Taken together, the three techniques seem to indicate that the dissolved oxygen tension during cell growth or acclimation can noticeably influence the expression of cell surface molecules and the measurable cell surface charge, though in a strain-dependent fashion.

  3. Proof of Principle for a Real-Time Pathogen Isolation Media Diagnostic: The Use of Laser-Induced Breakdown Spectroscopy to Discriminate Bacterial Pathogens and Antimicrobial-Resistant Staphylococcus aureus Strains Grown on Blood Agar

    Directory of Open Access Journals (Sweden)

    Rosalie A. Multari

    2013-01-01

    Full Text Available Laser-Induced Breakdown Spectroscopy (LIBS is a rapid, in situ, diagnostic technique in which light emissions from a laser plasma formed on the sample are used for analysis allowing automated analysis results to be available in seconds to minutes. This speed of analysis coupled with little or no sample preparation makes LIBS an attractive detection tool. In this study, it is demonstrated that LIBS can be utilized to discriminate both the bacterial species and strains of bacterial colonies grown on blood agar. A discrimination algorithm was created based on multivariate regression analysis of spectral data. The algorithm was deployed on a simulated LIBS instrument system to demonstrate discrimination capability using 6 species. Genetically altered Staphylococcus aureus strains grown on BA, including isogenic sets that differed only by the acquisition of mutations that increase fusidic acid or vancomycin resistance, were also discriminated. The algorithm successfully identified all thirteen cultures used in this study in a time period of 2 minutes. This work provides proof of principle for a LIBS instrumentation system that could be developed for the rapid discrimination of bacterial species and strains demonstrating relatively minor genomic alterations using data collected directly from pathogen isolation media.

  4. Bacterial communities potentially involved in iron-cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing

    DEFF Research Database (Denmark)

    Reyes, Carlen; Dellwig, Olaf; Dähnke, K.

    2016-01-01

    To gain insight into the bacterial communities involved in iron-(Fe) cycling under marine conditions, we analysed sediments with Fe-contents (0.5-1.5 wt %) from the suboxic zone at a marine site in the Skagerrak (SK) and a brackish site in the Bothnian Bay (BB) using 16S rRNA gene pyrosequencing....

  5. Vibrio vulnificus Type 6 Secretion System 1 Contains Anti-Bacterial Properties.

    Directory of Open Access Journals (Sweden)

    Selina R Church

    Full Text Available Vibrio vulnificus is a bacterium responsible for severe gastroenteritis, sepsis and wound infections. Gastroenteritis and sepsis are commonly associated with the consumption of raw oysters, whereas wound infection is often associated with the handling of contaminated fish. Although classical virulence factors of this emerging pathogen are well characterised, there remains a paucity of knowledge regarding the general biology of this species. To investigate the presence of previously unreported virulence factors, we applied whole genome sequencing to a panel of ten V. vulnificus strains with varying virulence potentials. This identified two novel type 6 secretion systems (T6SSs, systems that are known to have a role in bacterial virulence and population dynamics. By utilising a range of molecular techniques and assays we have demonstrated the functionality of one of these T6SSs. Furthermore, we have shown that this system is subject to thermoregulation and is negatively regulated by increasing salinity concentrations. This secretion system was also shown to be involved in the killing of V. vulnificus strains that did not possess this system and a model is proposed as to how this interaction may contribute to population dynamics within V. vulnificus strains. In addition to this intra-species killing, this system also contributes to the killing of inter bacterial species and may have a role in the general composition of Vibrio species in the environment.

  6. Enzymes produced by halotolerant spore-forming gram-positive bacterial strains isolated from a resting habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: focus on proteases.

    Science.gov (United States)

    D Santos, Anderson Fragoso; Pacheco, Clarissa Almeida; Valle, Roberta D Santos; Seldin, Lucy; D Santos, André Luis Souza

    2014-12-01

    The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n = 2), Oceanobacillus picturae (n = 5), and Oceanobacillus iheyensis (n = 15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological

  7. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates.

    Science.gov (United States)

    Sultana, Reshma; McBain, Andrew J; O'Neill, Catherine A

    2013-08-01

    In this study, we investigated whether probiotic lysates can modify the tight-junction function of human primary keratinocytes. The keratinocytes were grown on cell culture inserts and treated with lysates from Bifidobacterium longum, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus fermentum, or Lactobacillus rhamnosus GG. With the exception of L. fermentum (which decreased cell viability), all strains markedly enhanced tight-junction barrier function within 24 h, as assessed by measurements of transepithelial electrical resistance (TEER). However, B. longum and L. rhamnosus GG were the most efficacious, producing dose-dependent increases in resistance that were maintained for 4 days. These increases in TEER correlated with elevated expression of tight-junction protein components. Neutralization of Toll-like receptor 2 abolished both the increase in TEER and expression of tight-junction proteins induced by B. longum, but not L. rhamnosus GG. These data suggest that some bacterial strains increase tight-junction function via modulation of protein components but the different pathways involved may vary depending on the bacterial strain.

  8. Biodegradation of carcinogenic textile azo dyes using bacterial isolates of mangrove sediment

    Directory of Open Access Journals (Sweden)

    Guru Prasad Srinivasan

    2014-02-01

    Full Text Available Objective: To evaluate the biodegrading property against carcinogenic azo dyes using bacterial isolates of mangrove sediment. Methods: The bacterial isolates were subjected to submerged fermentation and their growth kinetics were studied. The potential strain was characterized using 16S rDNA sequencing. Results: In the present study, dye degrading bacterial colonies were isolated from the mangrove sediment samples of Parangipettai estuarine area, Tamil Nadu. Of the 30 morphologically different strains isolated, 5 showed antagonistic property. The growth kinetics of the two strains, P1 and G1, which showed potent activity were calculated. One particular isolate (P1 showing promising dye degrading potential in the submerged fermentation was further characterized. The strain was identified as Paenibacillus sp. by 16S rDNA sequencing. Conclusions: This study reveals the less explored microflora of mangrove sediments. The novel strain may further be analyzed and used in the treatment of effluent from dye industry so as to reduce the impact of carcinogenic contaminants.

  9. Antibacterial activity of curcuma long varieties against different strains of bacteria

    International Nuclear Information System (INIS)

    Naz, S.; Jabeen, S.; Ilyas, S.; Aslam, F.; Manzoor, F.; Ali, A.

    2010-01-01

    Crude extracts of curcuminoids and essential oil of Curcuma long varieties Kasur, Faisalabad and Bannu were studied for their antibacterial activity against 4 bacterial strains viz., Bacillus subtilis, Bacillus macerans, Bacillus licheniformis and Azotobacter using agar well diffusion method. Solvents used to determine antibacterial activity were ethanol and methanol. Ethanol was used for the extraction of curcuminoids. Essential oil was extracted by hydrodistillation and diluted in methanol by serial dilution method. Both Curcuminoids and oil showed zone of inhibition against all tested strains of bacteria. Among all the three turmeric varieties, Kasur variety had the most inhibitory effect on the growth of all bacterial strains tested as compared to Faisalabad and Bannu varieties. Among all the bacterial strains B. subtilis was the most sensitive to turmeric extracts of curcuminoids and oil. The MIC value for different strains and varieties ranged from 3.0 to 20.6 mm in diameter. (author)

  10. Extractable Bacterial Surface Proteins in Probiotic–Host Interaction

    Directory of Open Access Journals (Sweden)

    Fillipe L. R. do Carmo

    2018-04-01

    Full Text Available Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp, this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs, and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines.

  11. Contribution of the Chromosomal ccdAB Operon to Bacterial Drug Tolerance.

    Science.gov (United States)

    Gupta, Kritika; Tripathi, Arti; Sahu, Alishan; Varadarajan, Raghavan

    2017-10-01

    One of the first identified and best-studied toxin-antitoxin (TA) systems in Escherichia coli is the F-plasmid-based CcdAB system. This system is involved in plasmid maintenance through postsegregational killing. More recently, ccdAB homologs have been found on the chromosome, including in pathogenic strains of E. coli and other bacteria. However, the functional role of chromosomal ccdAB genes, if any, has remained unclear. We show that both the native ccd operon of the E. coli O157 strain ( ccd O157 ) and the ccd operon from the F plasmid ( ccd F ), when inserted on the E. coli chromosome, lead to protection from cell death under multiple antibiotic stress conditions through formation of persisters, with the O157 operon showing higher protection. While the plasmid-encoded CcdB toxin is a potent gyrase inhibitor and leads to bacterial cell death even under fully repressed conditions, the chromosomally encoded toxin leads to growth inhibition, except at high expression levels, where some cell death is seen. This was further confirmed by transiently activating the chromosomal ccd operon through overexpression of an active-site inactive mutant of F-plasmid-encoded CcdB. Both the ccd F and ccd O157 operons may share common mechanisms for activation under stress conditions, eventually leading to multidrug-tolerant persister cells. This study clearly demonstrates an important role for chromosomal ccd systems in bacterial persistence. IMPORTANCE A large number of free-living and pathogenic bacteria are known to harbor multiple toxin-antitoxin systems, on plasmids as well as on chromosomes. The F-plasmid CcdAB system has been extensively studied and is known to be involved in plasmid maintenance. However, little is known about the function of its chromosomal counterpart, found in several pathogenic E. coli strains. We show that the native chromosomal ccd operon of the E. coli O157 strain is involved in drug tolerance and confers protection from cell death under multiple

  12. Thin-layer chromatographic technique for rapid detection of bacterial phospholipases.

    Science.gov (United States)

    Legakis, N J; Papavassiliou, J

    1975-11-01

    Silica gel thin-layer chromatography was employed to detect lecithinase activity induced from bacterial resting cell preparations induced from bacterial resting cell preparations incubated at 37 C for 4 h in the presence of purified egg yolk lecithin. Bacillus subtilis, Bacillus cereus, Serratia marcescens, and Pseudomonas aeruginosa hydrolyzed lecithin with the formation of free fatty acids as the sole lipid-soluble product. In none of the Escherichia coli and Citrobacter freundii strains tested could lecithinase activity be detected. Four among eight strains of Enterobacter aerogenes and one among 12 strains of Proteus tested produced negligible amounts of free fatty acid.

  13. An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72.

    Science.gov (United States)

    Reinhold-Hurek, Barbara; Maes, Tamara; Gemmer, Sabrina; Van Montagu, Marc; Hurek, Thomas

    2006-02-01

    The nitrogen-fixing endophyte Azoarcus sp. strain BH72 infects roots of Kallar grass and rice inter- and intra-cellularly and can spread systemically into shoots without causing symptoms of plant disease. Although cellulose or its breakdown products do not support growth, this strain expresses an endoglucanase, which might be involved in infection. Sequence analysis of eglA places the secreted 34-kDa protein into the glycosyl hydrolases family 5, with highest relatedness (40% identity) to endoglucanases of the phytopathogenic bacteria Xanthomonas campestris and Ralstonia solanacearum. Transcriptional regulation studied by eglA:: gusA fusion was not significantly affected by cellulose or its breakdown products or by microaerobiosis. Strongest induction (threefold) was obtained in bacteria grown in close vicinity to rice roots. Visible sites of expression were the emergence points of lateral roots and root tips, which are the primary regions of ingress into the root. To study the role in endophytic colonization, eglA was inactivated by transposon mutagenesis. Systemic spreading of the eglA mutant and of a pilAB mutant into the rice shoot could no longer be detected by polymerase chain reaction. Microscopic inspection of infection revealed that the intracellular colonization of root epidermis cells was significantly reduced in the eglA- mutant BHE6 compared with the wild type and partially restored in the complementation mutant BHRE2 expressing eglA. This provides evidence that Azoarcus sp. endoglucanase is an important determinant for successful endophytic colonization of rice roots, suggesting an active bacterial colonization process.

  14. Involvement of β-carbonic anhydrase (β-CA) genes in bacterial genomic islands and horizontal transfer to protists.

    Science.gov (United States)

    Zolfaghari Emameh, Reza; Barker, Harlan R; Hytönen, Vesa P; Parkkila, Seppo

    2018-05-25

    Genomic islands (GIs) are a type of mobile genetic element (MGE) that are present in bacterial chromosomes. They consist of a cluster of genes which produce proteins that contribute to a variety of functions, including, but not limited to, regulation of cell metabolism, anti-microbial resistance, pathogenicity, virulence, and resistance to heavy metals. The genes carried in MGEs can be used as a trait reservoir in times of adversity. Transfer of genes using MGEs, occurring outside of reproduction, is called horizontal gene transfer (HGT). Previous literature has shown that numerous HGT events have occurred through endosymbiosis between prokaryotes and eukaryotes.Beta carbonic anhydrase (β-CA) enzymes play a critical role in the biochemical pathways of many prokaryotes and eukaryotes. We have previously suggested horizontal transfer of β-CA genes from plasmids of some prokaryotic endosymbionts to their protozoan hosts. In this study, we set out to identify β-CA genes that might have transferred between prokaryotic and protist species through HGT in GIs. Therefore, we investigated prokaryotic chromosomes containing β-CA-encoding GIs and utilized multiple bioinformatics tools to reveal the distinct movements of β-CA genes among a wide variety of organisms. Our results identify the presence of β-CA genes in GIs of several medically and industrially relevant bacterial species, and phylogenetic analyses reveal multiple cases of likely horizontal transfer of β-CA genes from GIs of ancestral prokaryotes to protists. IMPORTANCE The evolutionary process is mediated by mobile genetic elements (MGEs), such as genomic islands (GIs). A gene or set of genes in the GIs are exchanged between and within various species through horizontal gene transfer (HGT). Based on the crucial role that GIs can play in bacterial survival and proliferation, they were introduced as the environmental- and pathogen-associated factors. Carbonic anhydrases (CAs) are involved in many critical

  15. Proteins involved in difference of sorbitol fermentation rates of the toxigenic and nontoxigenic Vibrio cholerae El Tor strains revealed by comparative proteome analysis

    Science.gov (United States)

    2009-01-01

    Background The nontoxigenic V. cholerae El Tor strains ferment sorbitol faster than the toxigenic strains, hence fast-fermenting and slow-fermenting strains are defined by sorbitol fermentation test. This test has been used for more than 40 years in cholera surveillance and strain analysis in China. Understanding of the mechanisms of sorbitol metabolism of the toxigenic and nontoxigenic strains may help to explore the genome and metabolism divergence in these strains. Here we used comparative proteomic analysis to find the proteins which may be involved in such metabolic difference. Results We found the production of formate and lactic acid in the sorbitol fermentation medium of the nontoxigenic strain was earlier than of the toxigenic strain. We compared the protein expression profiles of the toxigenic strain N16961 and nontoxigenic strain JS32 cultured in sorbitol fermentation medium, by using fructose fermentation medium as the control. Seventy-three differential protein spots were found and further identified by MALDI-MS. The difference of product of fructose-specific IIA/FPR component gene and mannitol-1-P dehydrogenase, may be involved in the difference of sorbitol transportation and dehydrogenation in the sorbitol fast- and slow-fermenting strains. The difference of the relative transcription levels of pyruvate formate-lyase to pyruvate dehydrogenase between the toxigenic and nontoxigenic strains may be also responsible for the time and ability difference of formate production between these strains. Conclusion Multiple factors involved in different metabolism steps may affect the sorbitol fermentation in the toxigenic and nontoxigenic strains of V. cholerae El Tor. PMID:19589152

  16. Colistin-Resistant, Lipopolysaccharide-Deficient Acinetobacter baumannii Responds to Lipopolysaccharide Loss through Increased Expression of Genes Involved in the Synthesis and Transport of Lipoproteins, Phospholipids, and Poly-β-1,6-N-Acetylglucosamine

    Science.gov (United States)

    Henry, Rebekah; Vithanage, Nuwan; Harrison, Paul; Seemann, Torsten; Coutts, Scott; Moffatt, Jennifer H.; Nation, Roger L.; Li, Jian; Harper, Marina; Adler, Ben

    2012-01-01

    We recently demonstrated that colistin resistance in Acinetobacter baumannii can result from mutational inactivation of genes essential for lipid A biosynthesis (Moffatt JH, et al., Antimicrob. Agents Chemother. 54:4971–4977). Consequently, strains harboring these mutations are unable to produce the major Gram-negative bacterial surface component, lipopolysaccharide (LPS). To understand how A. baumannii compensates for the lack of LPS, we compared the transcriptional profile of the A. baumannii type strain ATCC 19606 to that of an isogenic, LPS-deficient, lpxA mutant strain. The analysis of the expression profiles indicated that the LPS-deficient strain showed increased expression of many genes involved in cell envelope and membrane biogenesis. In particular, upregulated genes included those involved in the Lol lipoprotein transport system and the Mla-retrograde phospholipid transport system. In addition, genes involved in the synthesis and transport of poly-β-1,6-N-acetylglucosamine (PNAG) also were upregulated, and a corresponding increase in PNAG production was observed. The LPS-deficient strain also exhibited the reduced expression of genes predicted to encode the fimbrial subunit FimA and a type VI secretion system (T6SS). The reduced expression of genes involved in T6SS correlated with the detection of the T6SS-effector protein AssC in culture supernatants of the A. baumannii wild-type strain but not in the LPS-deficient strain. Taken together, these data show that, in response to total LPS loss, A. baumannii alters the expression of critical transport and biosynthesis systems associated with modulating the composition and structure of the bacterial surface. PMID:22024825

  17. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1,6-N-acetylglucosamine.

    Science.gov (United States)

    Henry, Rebekah; Vithanage, Nuwan; Harrison, Paul; Seemann, Torsten; Coutts, Scott; Moffatt, Jennifer H; Nation, Roger L; Li, Jian; Harper, Marina; Adler, Ben; Boyce, John D

    2012-01-01

    We recently demonstrated that colistin resistance in Acinetobacter baumannii can result from mutational inactivation of genes essential for lipid A biosynthesis (Moffatt JH, et al., Antimicrob. Agents Chemother. 54:4971-4977). Consequently, strains harboring these mutations are unable to produce the major Gram-negative bacterial surface component, lipopolysaccharide (LPS). To understand how A. baumannii compensates for the lack of LPS, we compared the transcriptional profile of the A. baumannii type strain ATCC 19606 to that of an isogenic, LPS-deficient, lpxA mutant strain. The analysis of the expression profiles indicated that the LPS-deficient strain showed increased expression of many genes involved in cell envelope and membrane biogenesis. In particular, upregulated genes included those involved in the Lol lipoprotein transport system and the Mla-retrograde phospholipid transport system. In addition, genes involved in the synthesis and transport of poly-β-1,6-N-acetylglucosamine (PNAG) also were upregulated, and a corresponding increase in PNAG production was observed. The LPS-deficient strain also exhibited the reduced expression of genes predicted to encode the fimbrial subunit FimA and a type VI secretion system (T6SS). The reduced expression of genes involved in T6SS correlated with the detection of the T6SS-effector protein AssC in culture supernatants of the A. baumannii wild-type strain but not in the LPS-deficient strain. Taken together, these data show that, in response to total LPS loss, A. baumannii alters the expression of critical transport and biosynthesis systems associated with modulating the composition and structure of the bacterial surface.

  18. Towards Spectral Library-free MALDI-TOF MS Bacterial Identification.

    Science.gov (United States)

    Cheng, Ding; Qiao, Liang; Horvatovich, Péter

    2018-05-11

    Bacterial identification is of great importance in clinical diagnosis, environmental monitoring and food safety control. Among various strategies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has drawn significant interests, and has been clinically used. Nevertheless, current bioinformatics solutions use spectral libraries for the identification of bacterial strains. Spectral library generation requires acquisition of MALDI-TOF spectra from monoculture bacterial colonies, which is time-consuming and not possible for many species and strains. We propose a strategy for bacterial typing by MALDI-TOF using protein sequences from public database, i.e. UniProt. Ten genes were identified to encode proteins most often observed by MALD-TOF from bacteria through 500 times repeated a 10-fold double cross-validation procedure, using 403 MALDI-TOF spectra corresponding to 14 genera, 81 species and 403 strains, and the protein sequences of 1276 species in UniProt. The 10 genes were then used to annotate peaks on MALDI-TOF spectra of bacteria for bacterial identification. With the approach, bacteria can be identified at the genus level by searching against a database containing the protein sequences of 42 genera of bacteria from UniProt. Our approach identified 84.1% of the 403 spectra correctly at the genus level. Source code of the algorithm is available at https://github.com/dipcarbon/BacteriaMSLF.

  19. Probabilistic analysis of structures involving random stress-strain behavior

    Science.gov (United States)

    Millwater, H. R.; Thacker, B. H.; Harren, S. V.

    1991-01-01

    The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.

  20. Effect of temperature, pH and detergents on the antifungal activity of bacterial culture filtrates against Mycosphaerella fijiensis

    Directory of Open Access Journals (Sweden)

    Eilyn Mena

    2014-01-01

    Full Text Available The bacteria associated to crops have been studied as potential biocontrol agents. However, few investigations on the interaction Musa spp. - Mycosphaerella fijiensis-Musa associated bacteria have been developed. Consequently, bacterial metabolites involved and the effect on them of physical and chemical factors remain unknown. Therefore, this study aimed to determine the effect of temperature, pH and detergents on bacterial culture filtrates with antifungal activity in vitro against Mycosphaerella fijiensis. The pathogen growth inhibition was assessed by absorbance reading at OD 565nm. It was found that the antifungal activity of the bacterial culture filtrates against M. fijiensis, varied in the presence of different values of temperature, pH, and types of detergents and this was related to the bacterial strain. The results suggested the possible protein nature of the metabolites with antifungal activity. Keywords: bacteria, biological control, antifungal metabolites

  1. Factors influencing production of lipase under metal supplementation by bacterial strain, Bacillus subtilis BDG-8.

    Science.gov (United States)

    Dhevahi, B; Gurusamy, R

    2014-11-01

    Lipases are biocatalyst having wide applications in industries due to their versatile properties. In the present study, a lipolytic bacterial strain, Bacillus subtilis BDG-8 was isolated from an oil based industrial soil. The effect of selenium and nickel as a media supplement on enhancement of lipase production, was studied individually with the isolated strain by varying the concentration of selected metal. 60 μg l(-1) selenium enhanced lipase production to an enzyme activity measuring 7.8 U ml(-1) while 40 μgI(-1) nickel gave the maximum enzyme activity equivalent to 7.5 U ml(-1). However, nickel and selenium together at a range of concentration with an equal w/v ratio, at 60 μg l(-1) each, showed the maximum lipase activity of 8.5 U ml(-1). The effect of pH and temperature on lipase production showed maximum enzyme activity in the presence of each of the metals at pH 7 and 35°C among the other tested ranges. After optimisation of the parameters such as metal concentration, pH and temperature lipase production by Bacillus subtilis BDG-8 had increased several folds. This preliminary investigation may consequently lead as to various industrial applications such as treatment of wastewater contaminated with metal or oil with simultaneous lipase production.

  2. Isolation and characterization of a bacterial strain for aniline ...

    African Journals Online (AJOL)

    STORAGESEVER

    which the microbes enzymatically decompose and utilize in cellular ... dioxygenases, liberating ammonia and subsequently ... others). MATERIALS AND METHODS ... results were then interpreted for bacterial identification according to.

  3. Procedures involving lipid media for detection of bacterial contamination in breweries.

    Science.gov (United States)

    Van Vuuren, H J; Louw, H A; Loos, M A; Meisel, R

    1977-02-01

    The liquid equivalent of universal beer agar, designated universal beer liquid medium, and its beer-free equivalent, universal liquid medium (UL), were equally effective in demonstrating bacterial contamination in 120 of 200 samples from different stages of commercial brewing process. Growth of the contaminants after 3 days was consistently more luxuriant in the UL medium. A yeast-water substrate medium failed to reveal many contaminants detected with UL in 392 samples from three breweries and revealed only a few not detected with UL. The use of UL and a lactose-peptone medium, with microscope examination of the media for bacterial growth, permitted detection of 93% of the known contaminants compared to 87%, detected with UL alone; this combination or universal beer liquid medium plus lactose-peptone medium can therefore be recommended for the detection of bacterial contaminants in brewery samples. Bacterial contamination of pitching yeasts appeared to be a particular problem in the breweries investigated.

  4. Determination of dehydrogenase activities involved in D-glucose oxidation in Gluconobacter and Acetobacter strains

    Directory of Open Access Journals (Sweden)

    Florencia Sainz

    2016-08-01

    Full Text Available Acetic acid bacteria (AAB are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane bound dehydrogenases. In the present study, the enzyme activity of the membrane bound dehydrogenases (membrane-bound PQQ-glucose dehydrogenase (mGDH, D-gluconate dehydrogenase (GADH and membrane-bound glycerol dehydrogenase (GLDH involved in the oxidation of D-glucose and D-gluconic acid (GA was determined in six strains of three different species of AAB (three natural and three type strains. Moreover, the effect of these activities on the production of related metabolites (GA, 2-keto-D-gluconic acid (2KGA and 5-keto-D-gluconic acid (5KGA was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the A. malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h, which coincided with glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of G. oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition.Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter were

  5. Wpływ szczepów bakterii wyizolowanych z hydroponicznej uprawy sałaty (Lactuca sativa L. na wzrost siewek sałaty, rosnących w obecnosci rożnych form pożywienia azotowego [Influence of bacterial strains isolated from hydroponic cultures of lettuce (Lactuca sativa L. on the growth of lettuce seedlings growing in the presence of various forms of nitrogen nutrition

    Directory of Open Access Journals (Sweden)

    Z. Kobierzyńska-Gołąb

    2015-06-01

    Full Text Available 320 bacterial strains isolated from the surface of cultivated plants, as well as from other parts of hydroponic cultures showed stimulating (49 bacterial strains or inhibitory (9 bacterial strains properties in respect to the investigated plant. The following bacteria were isolated: Pseudomonas, Flavobacterium, Agrobacterium, Achromobacter and Chromobacterium. The effects of active bacterial strains on the growth of seedlings were investigated in dependence on the kind of inorganic form of nitrogen present in the nutrient solutions. The same bacterial strains exerted a stimulating effect on seedlings growing on nitrates, weaker stimulation was observed in cultures with ammonium nitrate; the growth of lettuce seedlings on nutrient solution with ammonium only, was, as a rule, inhibited by the bacteria.

  6. Bacterial diversity in agricultural soils during litter decomposition

    NARCIS (Netherlands)

    Dilly, O.; Bloem, J.; Vos, A.; Munch, J.C.

    2004-01-01

    Denaturing gradient gel electrophoresis (DGGE) of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of crop residues in agricultural soils. Ten strains were tested, and eight of these strains produced a single band.

  7. Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis

    Directory of Open Access Journals (Sweden)

    Matt S. Conover

    2016-04-01

    Full Text Available Uropathogenic Escherichia coli (UPEC is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs. Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly, lacZ was highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A ΔlacZ strain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, a galK mutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated gene yeaR revealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies.

  8. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35.

    Science.gov (United States)

    Moretti, Marino; Grunau, Alexander; Minerdi, Daniela; Gehrig, Peter; Roschitzki, Bernd; Eberl, Leo; Garibaldi, Angelo; Gullino, Maria Lodovica; Riedel, Kathrin

    2010-09-01

    Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.

  9. Revealing differences in metabolic flux distributions between a mutant strain and its parent strain Gluconacetobacter xylinus CGMCC 2955.

    Directory of Open Access Journals (Sweden)

    Cheng Zhong

    Full Text Available A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955 using DEC (diethyl sulfate and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA cycle was obtained in mutant strain (57.0% compared with parent strain (17.0%. It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH, which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53-6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain.

  10. Involvement of the efflux pumps in chloramphenicol selected strains of Burkholderia thailandensis: proteomic and mechanistic evidence.

    Directory of Open Access Journals (Sweden)

    Fabrice V Biot

    Full Text Available Burkholderia is a bacterial genus comprising several pathogenic species, including two species highly pathogenic for humans, B. pseudomallei and B. mallei. B. thailandensis is a weakly pathogenic species closely related to both B. pseudomallei and B. mallei. It is used as a study model. These bacteria are able to exhibit multiple resistance mechanisms towards various families of antibiotics. By sequentially plating B. thailandensis wild type strains on chloramphenicol we obtained several resistant variants. This chloramphenicol-induced resistance was associated with resistance against structurally unrelated antibiotics including quinolones and tetracyclines. We functionally and proteomically demonstrate that this multidrug resistance phenotype, identified in chloramphenicol-resistant variants, is associated with the overexpression of two different efflux pumps. These efflux pumps are able to expel antibiotics from several families, including chloramphenicol, quinolones, tetracyclines, trimethoprim and some β-lactams, and present a partial susceptibility to efflux pump inhibitors. It is thus possible that Burkholderia species can develop such adaptive resistance mechanisms in response to antibiotic pressure resulting in emergence of multidrug resistant strains. Antibiotics known to easily induce overexpression of these efflux pumps should be used with discernment in the treatment of Burkholderia infections.

  11. Molecular analysis of an integrative conjugative element, ICEH, present in the chromosome of different strains of Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Paulo Marcos Pinto

    2007-01-01

    Full Text Available Diversification of bacterial species and pathotypes is largely caused by lateral gene transfer (LGT of diverse mobile DNA elements such as plasmids, phages, transposons and genomic islands. Thus, acquisition of new phenotypes by LGT is very important for bacterial evolution and relationship with hosts. This paper reports a 23 kb region containing fourteen CDSs with similarity to the previous described Integrative Conjugal Element of Mycoplasma fermentans (ICEF. This element, named ICEH, is present as one copy at distinct integration sites in the chromosome of 7448 and 232 pathogenic strains and is absent in the type strain J (non-pathogenic. Notable differences in the nucleotide composition of the insertion sites were detected, and could be correlated to a lack of specificity of the ICEH integrase. Although present in strains of the same organism, the ICEH elements are more divergent than the typical similarity between other chromosomal locus of Mycoplasma hyopneunomiae, suggesting an accelerated evolution of these constins or an ongoing process of degeneration, while maintaining conservation of the tra genes. An extrachromosomal form of this element had been detected in the 7448 strain, suggesting a possible involvement in its mobilization and transference of CDSs to new hosts.

  12. An Endophytic Bacterial Strain Isolated from Eucommia ulmoides Inhibits Southern Corn Leaf Blight

    Directory of Open Access Journals (Sweden)

    Ting Ding

    2017-05-01

    Full Text Available Bacillus subtilis DZSY21 isolated from the leaves of Eucommia ulmoides oliv. was labeled by antibiotic marker and found to effectively colonize the leaves of maize plant. Agar diffusion assays and biocontrol effect experiments showed that strain DZSY21 and its lipopeptides had antagonistic activity against Bipolaris maydis, as well as high biocontrol effects on southern corn leaf blight caused by B. maydis. Using MALDI-TOF-MS analysis, we detected the presence of antimicrobial surfactin A, surfactin B, and fengycin in the strain DZSY21. Signaling pathways mediated by DZSY21 were analyzed by testing the expression of key plant genes involved in regulation of salicylic acid (SA or JA/ET pathways, the defense-related genes PR1 and LOX were concurrently expressed in the leaves of DZSY21-treated plants; this corresponded to slight increase in the expression level of PDF1.2 and decreases in ERF gene transcription levels. The results indicated an induced systemic response that is dependent on the SA and jasmonic acid (JA pathways. Thus, we hypothesized that the strain DZSY21 inhibits B. maydis by producing antifungal lipopeptides and activating an induced systemic response through SA- and JA-dependent signaling pathways. This work describes a mechanism behind reduced disease severity in plants inoculated with the endophytic bacteria DZSY21.

  13. Genomic characterization, phylogenetic analysis, and identification of virulence factors in Aerococcus sanguinicola and Aerococcus urinae strains isolated from infection episodes

    DEFF Research Database (Denmark)

    Carkaci, Derya; Højholt, Katrine; Nielsen, Xiaohui Chen

    2017-01-01

    Aerococcus sanguinicola and Aerococcus urinae are emerging pathogens in clinical settings mostly being causative agents of urinary tract infections (UTIs), urogenic sepsis and more seldomly complicated infective endocarditis (IE). Limited knowledge exists concerning the pathogenicity of these two...... species. Eight clinical A. sanguinicola (isolated from 2009 to 2015) and 40 clinical A. urinae (isolated from 1984 to 2015) strains from episodes of UTIs, bacteremia, and IE were whole-genome sequenced (WGS) to analyze genomic diversity and characterization of virulence genes involved in the bacterial....... In conclusion, this is the first study dealing with WGS and comparative genomics of clinical A. sanguinicola and A. urinae strains from episodes of UTIs, bacteremia, and IE. Gene homologs associated with antiphagocytosis and bacterial adherence were identified and genetic variability was observed within A...

  14. Incorporation of Listeria monocytogenes strains in raw milk biofilms.

    Science.gov (United States)

    Weiler, Christiane; Ifland, Andrea; Naumann, Annette; Kleta, Sylvia; Noll, Matthias

    2013-02-01

    Biofilms develop successively on devices of milk production without sufficient cleaning and originate from the microbial community of raw milk. The established biofilm matrices enable incorporation of pathogens like Listeria monocytogenes, which can cause a continuous contamination of food processing plants. L. monocytogenes is frequently found in raw milk and non-pasteurized raw milk products and as part of a biofilm community in milk meters and bulk milk tanks. The aim of this study was to analyze whether different L. monocytogenes strains are interacting with the microbial community of raw milk in terms of biofilm formation in the same manner, and to identify at which stage of biofilm formation a selected L. monocytogenes strain settles best. Bacterial community structure and composition of biofilms were analyzed by a cloning and sequencing approach and terminal restriction fragment length polymorphism analysis (T-RFLP) based on the bacterial 16S rRNA gene. The chemical composition of biofilms was analyzed by Fourier transform infrared spectroscopy (FTIR), while settled L. monocytogenes cells were quantified by fluorescence in situ hybridization (FISH). Addition of individual L. monocytogenes strains to raw milk caused significant shifts in the biofilm biomass, in the chemical as well as in the bacterial community composition. Biofilm formation and attachment of L. monocytogenes cells were not serotype but strain specific. However, the added L. monocytogenes strains were not abundant since mainly members of the genera Citrobacter and Lactococcus dominated the bacterial biofilm community. Overall, added L. monocytogenes strains led to a highly competitive interaction with the raw milk community and triggered alterations in biofilm formation. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Exploiting the aerobic endospore-forming bacterial diversity in saline and hypersaline environments for biosurfactant production.

    Science.gov (United States)

    de Almeida Couto, Camila Rattes; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Azevedo Jurelevicius, Diogo; Seldin, Lucy

    2015-10-28

    Biosurfactants are surface-active biomolecules with great applicability in the food, pharmaceutical and oil industries. Endospore-forming bacteria, which survive for long periods in harsh environments, are described as biosurfactant producers. Although the ubiquity of endospore-forming bacteria in saline and hypersaline environments is well known, studies on the diversity of the endospore-forming and biosurfactant-producing bacterial genera/species in these habitats are underrepresented. In this study, the structure of endospore-forming bacterial communities in sediment/mud samples from Vermelha Lagoon, Massambaba, Dois Rios and Abraão Beaches (saline environments), as well as the Praia Seca salterns (hypersaline environments) was determined via denaturing gradient gel electrophoresis. Bacterial strains were isolated from these environmental samples and further identified using 16S rRNA gene sequencing. Strains presenting emulsification values higher than 30 % were grouped via BOX-PCR, and the culture supernatants of representative strains were subjected to high temperatures and to the presence of up to 20 % NaCl to test their emulsifying activities in these extreme conditions. Mass spectrometry analysis was used to demonstrate the presence of surfactin. A diverse endospore-forming bacterial community was observed in all environments. The 110 bacterial strains isolated from these environmental samples were molecularly identified as belonging to the genera Bacillus, Thalassobacillus, Halobacillus, Paenibacillus, Fictibacillus and Paenisporosarcina. Fifty-two strains showed emulsification values of at least 30%, and they were grouped into 18 BOX groups. The stability of the emulsification values varied when the culture supernatants of representative strains were subjected to high temperatures and to the presence of up to 20% NaCl. The presence of surfactin was demonstrated in one of the most promising strains. The environments studied can harbor endospore

  16. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor.

    Science.gov (United States)

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-01-01

    Duckweed (family Lemnaceae ) has recently been recognized as an ideal biomass feedstock for biofuel production due to its rapid growth and high starch content, which inspired interest in improving their productivity. Since microbes that co-exist with plants are known to have significant effects on their growth according to the previous studies for terrestrial plants, this study has attempted to understand the plant-microbial interactions of a duckweed, Lemna minor , focusing on the growth promotion/inhibition effects so as to assess the possibility of accelerated duckweed production by modifying co-existing bacterial community. Co-cultivation of aseptic L. minor and bacterial communities collected from various aquatic environments resulted in changes in duckweed growth ranging from -24 to +14% compared to aseptic control. A number of bacterial strains were isolated from both growth-promoting and growth-inhibitory communities, and examined for their co-existing effects on duckweed growth. Irrespective of the source, each strain showed promotive, inhibitory, or neutral effects when individually co-cultured with L. minor . To further analyze the interactions among these bacterial strains in a community, binary combinations of promotive and inhibitory strains were co-cultured with aseptic L. minor , resulting in that combinations of promotive-promotive or inhibitory-inhibitory strains generally showed effects similar to those of individual strains. However, combinations of promotive-inhibitory strains tended to show inhibitory effects while only Aquitalea magnusonii H3 exerted its plant growth-promoting effect in all combinations tested. Significant change in biomass production was observed when duckweed was co-cultivated with environmental bacterial communities. Promotive, neutral, and inhibitory bacteria in the community would synergistically determine the effects. The results indicate the possibility of improving duckweed biomass production via regulation of co

  17. The Relation Between Ocular/Nasal Bacterial Distribution, Staphylococcus aureus Colonization and Ocular and Nasal Involvement in Atopic Dermatitis Patients

    Directory of Open Access Journals (Sweden)

    Nida Kaçar

    2008-12-01

    Full Text Available Objective: It was aimed to determine bacteria distribution and S.aureus colonization in nares, fornix and eyelid margin of patients with atopic dermatitis (AD compared to controls and to investigate it?s relationship with skin and eye involvement. Methods: Patients dermatological and opthalmologic examinations were done. The standart tear break-up time and Schirmer tests were performed. Samples were taken from fornix, eyelid margin and nares for bacterial culture. Results: Tweenty seven patients and 28 controls were included. There was no difference between the patients with and without eye involvement with respect to dry eye (p>0.05. The bacteria was more frequently isolated in patients (85.2% than controls (60.7%, however S.aureus colonization (51.9%, 50.0% respectively didn?t differ in both groups (p=0.042, p>0.05. The disease severity was positively correlated with S.aureus colonization (p=0.031. There was no difference between the patients with and without eye involvement with respect to S.aureus colonization and presence of bacteria (p>0.05. No bacteria was isolated from patients whom tear function analyses were performed. Conclusions: It wasn?t established an increased percent of S.aureus colonization in AD patients compared with controls. There was no association between dry eye and eye involvement. No comment could be remarked about the possible relation between dry eye and bacterial colonization.

  18. Dielectrophoretic assay of bacterial resistance to antibiotics

    International Nuclear Information System (INIS)

    Johari, Juliana; Huebner, Yvonne; Hull, Judith C; Dale, Jeremy W; Hughes, Michael P

    2003-01-01

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  19. Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.

    Science.gov (United States)

    Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna

    2015-07-01

    Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Clostridial Strain-Specific Characteristics Associated with Necrotizing Enterocolitis.

    Science.gov (United States)

    Schönherr-Hellec, Sophia; Klein, Geraldine L; Delannoy, Johanne; Ferraris, Laurent; Rozé, Jean Christophe; Butel, Marie José; Aires, Julio

    2018-04-01

    We aimed at identifying potential bacterial factors linking clostridia with necrotizing enterocolitis (NEC). We compared the phenotypic traits, stress responses, cellular cytotoxicity, and inflammatory capabilities of the largest collection of Clostridium butyricum and Clostridium neonatale strains isolated from fecal samples of NEC preterm neonates (PN) and control PNs. When strain characteristics were used as explanatory variables, a statistical discriminant analysis allowed the separation of NEC and control strains into separate groups. Strains isolated from NEC PN were characterized by a higher viability at 30°C ( P = 0.03) and higher aerotolerance ( P = 0.01), suggesting that NEC strains may have a competitive and/or survival advantage in the environmental gastrointestinal tract conditions of NEC PN. Heat-treated NEC bacteria induced higher production of interleukin-8 in Caco-2 cells ( P = 0.03), suggesting proinflammatory activity. In vitro , bacteria, bacterial components, and fecal filtrates showed variable cytotoxic effects affecting the cellular network and/or cell viability, without specific association with NEC or control samples. Altogether, our data support the existence of a specific clostridial strain signature associated with NEC. IMPORTANCE Clostridia are part of the commensal microbiota in preterm neonates (PN). However, microbiota analyses by culture and metagenomics have linked necrotizing enterocolitis (NEC) and intestinal colonization with clostridial species. Nevertheless, little is known about the specific characteristics that may be shared by clostridia associated with NEC compared to commensal clostridia. Therefore, our goal was to identify specific bacterial factors linking clostridial strains with NEC. We report the existence of a specific bacterial signature associated with NEC and propose that activation of the innate immune response may be a unifying causative mechanism for the development of NEC independent of a specific pathogenic

  1. Study of 138 Neisseria meningitidis strains isolated from blood or cerebrospinal fluid in Lombardy between 2007 and 2010

    Directory of Open Access Journals (Sweden)

    Laura Daprai

    2012-06-01

    Full Text Available Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae type b cause the majority of cases of bacterial septicaemia in children and young adults. Disease epidemiology is evolving rapidly due to the introduction of vaccines and changing in bacterial antibiotic-resistance patterns. (Asymptomatic nasopharyngeal colonization with Neisseria meningitides occurs in 5-10% of adult. The aim of this study was to calculate the frequency of each serogroup of this pathogens involved in invasive infection and to study susceptibility to antibiotics of these strains. Between March 2007 and June 2010 we received, from 43 hospitals of Lombardy, 138 strains of Neisseria meningitidis, from 138 patients aged (2-80yrs. The most frequent serogroup was B (58%, followed by serogroup C (34%, serogroup G (4% and W 135 (2%. Serogroup A end X accounted for 1% of invasive infection, each. We observed a decrease in susceptibility towards penicillin in 38% of strains. In addition we studied, by REP- PCR, genotype of 9 strains selected on the basis of epidemiological data.Among these strains, 3 different clusters according to the 3 small epidemic outbreaks occurred between June and September 2009, were recognised. Seven of these strains, although belonged to the same serogroup, brought about two different clusters. The present findings demonstrated that phenotypic data are not sufficient to define epidemic clusters, therefore molecular genotyping is required.

  2. Evaluation of Anti-adherent Activity of Excretions of Irradiated Lucilia sericata Maggot and Certain Essential Oils against Some Pathogenic Bacterial Strains

    International Nuclear Information System (INIS)

    Eltablawy, S.Y.; Amin, M.M.

    2011-01-01

    Essential Oils are widely used for their medicinal properties. They block adhesion and colonization of pathogenic microbes to epithelial cells which associated with bacterial resistance to antibiotics. So, this study investigates the effect of Lu cilia sacarato (flesh fly-an ectoparasitic) excretions of non-irradiated and irradiated maggot and some essential oils on biofilm formation by tube method, antimicrobial susceptibility by agar disc diffusion method as well as on their anti-adherent activity by spectrophotometric method. The results showed that excretions and secretions (E/S) of non-irradiated and irradiated maggots (at 20 Gy), as well as (clove and cinnamon oils) did not have antibacterial activity against the tested bacterial strains Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (St. aureus) and Staphylococcus epidermidis (St. epidermidis) except marjoram oil which has low antimicrobial activity against all the tested strains. The results also showed that the most potent oil was clove which decrease biofilm of P. aeruginosa by 83%, followed by marjoram (69%), then E/S of non-irradiated maggots (66%). Whiles, biofilm was less affected by cinnamon oil and E/S of irradiated maggots by 50 % and 36%, respectively. In addition, clove oil and E/S of non-irradiated maggots affect the pre-adhered biofilm of P. aeruginosa by 57 and 45 %, respectively. Conclusion: Clove oil flowed by marjoram had anti-adherent effect on P. aeruginosa. Greater inhibition of adhesion was observed by excretions of non-irradiated lucilia sericata.

  3. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat.

    Science.gov (United States)

    Dholakiya, Riddhi N; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H; Jha, Bhavanath

    2017-01-01

    Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15-C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria ( Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria ( Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H 2 O 2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria , isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising

  4. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat

    Directory of Open Access Journals (Sweden)

    Riddhi N. Dholakiya

    2017-12-01

    Full Text Available Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655 similarity with Streptomyces variabilis (EU841661 and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development, heat-map and PCA (principal component analysis. The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15–C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria (Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM, and Gram-positive bacteria (Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96. Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H2O2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II, an enzyme complex that produces polyketides, the encoding gene(s detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s. In conclusion, a novel bacterial strain of Actinobacteria, isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat, India showed promising

  5. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat

    Science.gov (United States)

    Dholakiya, Riddhi N.; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H.; Jha, Bhavanath

    2017-01-01

    Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15–C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria (Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria (Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H2O2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria, isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising

  6. Organic metabolites produced by Vibrio parahaemolyticus strain ...

    African Journals Online (AJOL)

    Identification and action of several antibacterial metabolites produced by a fish pathogen Vibrio parahaemolyticus strain An3 from marine ecosystem of Goa has been demonstrated. Antibacterial activity of the crude cell extract of the test bacterium has been evaluated against indicator pathogenic bacterial strains such as ...

  7. The longitudinal effect of a multi-strain probiotic on the intestinal bacterial microbiota of neonatal foals

    DEFF Research Database (Denmark)

    Schoster, Angelika; Guardabassi, Luca; Staempfli, H. R.

    2016-01-01

    REASONS FOR PERFORMING THE STUDY: The microbiota plays a key role in health and disease. Probiotics are a potential way to therapeutically modify the intestinal microbiota and prevent disease. OBJECTIVES: The aim of this study was to investigate the effects of probiotics on the bacterial microbiota...... of foals during and after administration. STUDY DESIGN: Randomised placebo controlled field trial. METHODS: Thirty-eight healthy neonatal foals enrolled in a prior study were selected. The foals had received a multi-strain probiotic (four Lactobacillus spp 3-4x10(3) cfu/g each, Bifidobacterium animalis spp...... or class level between treatment groups at any age (all p>0.08) but some significant changes in relative abundance of families. Probiotic administration did not result in an increased relative abundance of lactobacilli or bifidobacteria at any age (Lactobacillus: p = 0.95, p = 0.1 and p = 0...

  8. Preliminary data on antibacterial activity of Echinacea purpurea-associated bacterial communities against Burkholderia cepacia complex strains, opportunistic pathogens of Cystic Fibrosis patients.

    Science.gov (United States)

    Chiellini, Carolina; Maida, Isabel; Maggini, Valentina; Bosi, Emanuele; Mocali, Stefano; Emiliani, Giovanni; Perrin, Elena; Firenzuoli, Fabio; Mengoni, Alessio; Fani, Renato

    2017-03-01

    Burkholderia cepacia complex bacteria (Bcc) represent a serious threat for immune-compromised patient affected by Cystic Fibrosis (CF) since they are resistant to many substances and to most antibiotics. For this reason, the research of new natural compounds able to inhibit the growth of Bcc strains has raised new interest during the last years. A source of such natural compounds is represented by medicinal plants and, in particular, by bacterial communities associated with these plants able to produce molecules with antimicrobial activity. In this work, a panel of 151 (endophytic) bacteria isolated from three different compartments (rhizospheric soil, roots, and stem/leaves) of the medicinal plant Echinacea purpurea were tested (using the cross-streak method) for their ability to inhibit the growth of 10 Bcc strains. Data obtained revealed that bacteria isolated from the roots of E. purpurea are the most active in the inhibition of Bcc strains, followed by bacteria isolated from the rhizospheric soil, and endophytes from stem/leaf compartment. At the same time, Bcc strains of environmental origin showed a higher resistance toward inhibition than the Bcc strains with clinical (i.e. CF patients) origin. Differences in the inhibition activity of E. purpurea-associated bacteria are mainly linked to the environment -the plant compartment- rather than to their taxonomical position. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes.

    Science.gov (United States)

    Pacheco da Rosa, Juliana; Korenblum, Elisa; Franco-Cirigliano, Marcella Novaes; Abreu, Fernanda; Lins, Ulysses; Soares, Rosângela M A; Macrae, Andrew; Seldin, Lucy; Coelho, Rosalie R R

    2013-01-01

    Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with proteinase K and trypsin. The antimicrobial substances present in the concentrated supernatant from growth media were partially characterized by SDS-PAGE and extracellular polypeptides were seen. Bands in the size range of 12 to 14.4 kDa caused antimicrobial activity. Transmission electron microscopy of D. alaskensis cells treated with the concentrated supernatant containing the antimicrobial substances revealed the formation of prominent bubbles, the spherical double-layered structures on the cell membrane, and the periplasmic space completely filled with electron-dense material. This is the first report on the production of antimicrobial substances by actinomycetes against bacteria involved in biocorrosion processes, and these findings may be of great relevance as an alternative source of biocides to those currently employed in the petroleum industry.

  10. Involvement of T6 pili in biofilm formation by serotype M6 Streptococcus pyogenes.

    Science.gov (United States)

    Kimura, Keiji Richard; Nakata, Masanobu; Sumitomo, Tomoko; Kreikemeyer, Bernd; Podbielski, Andreas; Terao, Yutaka; Kawabata, Shigetada

    2012-02-01

    The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections.

  11. Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.

    Science.gov (United States)

    Witschel, M; Egli, T; Zehnder, A J; Wehrli, E; Spycher, M

    1999-04-01

    In the bacterial strain DSM 9103, which is able to grow with the complexing agent EDTA as the sole source of carbon, nitrogen and energy, the transport of EDTA into whole cells was investigated. EDTA uptake was found to be dependent on speciation: free EDTA and metal-EDTA complexes with low stability constants were readily taken up, whereas those with stability constants higher than 1016 were not transported. In EDTA-grown cells, initial transport rates of CaEDTA showed substrate-saturation kinetics with a high apparent affinity for CaEDTA (affinity constant Kt= 0.39 microM). Several uncouplers had an inhibitory effect on CaEDTA transport. CaEDTA uptake was also significantly reduced in the presence of an inhibitor of ATPase and the ionophore nigericin, which dissipates the proton gradient. Valinomycin, however, which affects the electrical potential, had little effect on uptake, indicating that EDTA transport is probably driven by the proton gradient. Of various structurally related compounds tested only Ca2+-complexed diethylenetriaminepentaacetate (CaDTPA) competitively inhibited CaEDTA transport. Uptake in fumarate-grown cells was low compared to that measured in EDTA-grown bacteria. These results strongly suggest that the first step in EDTA degradation by strain DSM 9103 consists of transport by an inducible energy-dependent carrier. Uptake experiments with 45Ca2+ in the presence and absence of EDTA indicated that Ca2+ is transported together with EDTA into the cells. In addition, these transport studies and electron-dispersive X-ray analysis of electron-dense intracellular bodies present in EDTA-grown cells suggest that two mechanisms acting simultaneously allow the cells to cope with the large amounts of metal ions taken up together with EDTA. In one mechanism the metal ions are excreted, in the other they are inactivated intracellularly in polyphosphate granules.

  12. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation

    DEFF Research Database (Denmark)

    Ren, Dawei; Madsen, Jonas Stenløkke; Sørensen, Søren Johannes

    2015-01-01

    of single-species biofilms, indicating that all the individual strains benefit from inclusion in the multispecies community. Our results show a high prevalence of synergy in biofilm formation in multispecies consortia isolated from a natural bacterial habitat and suggest that interspecific cooperation...

  13. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx.

    Science.gov (United States)

    Shak, Joshua R; Vidal, Jorge E; Klugman, Keith P

    2013-03-01

    Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Characterisation of the thermostable protease AprX in strains of Pseudomonas fluorescens and impact on the shelf-life of dairy products: preliminary results

    Directory of Open Access Journals (Sweden)

    Nadia Andrea Andreani

    2016-12-01

    Full Text Available Bacterial proteases are involved in food spoilage and shelf-life reduction. Among the bacterial proteases, a predominant role in spoilage of dairy products seems to be played by the thermostable metallo-protease AprX, which is produced by various strains of Pseudomonas fluorescens. Differences in AprX enzyme activity among different strains were highlighted, but the most proteolytic strains were not identified. In this study, the presence of the aprX gene was evaluated in 69 strains isolated from food matrices and 18 reference strains belonging to the P. fluorescens group, which had been previously typed by the multi locus sequence typing method. Subsequently, a subset of reference strains was inoculated in ultra-high temperature milk, and the expression of the aprX gene was evaluated at 22 and 6°C. On the same milk samples, the proteolytic activity was then evaluated through Azocasein and trinitrobenzenesulfonic acid solution assays. Finally, to assess the applicability of the former assay directly on dairy products the proteolityc activity was tested on industrial ricotta samples using the Azocasein assay. These results demonstrate the spread of aprX gene in most strains tested and the applicability of Azocasein assay to monitor the proteolytic activity in dairy products.

  15. DNA-mediated bacterial aggregation is dictated by acid-base interactions

    NARCIS (Netherlands)

    Das, Theerthankar; Krom, Bastiaan P.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2011-01-01

    Extracellular DNA (eDNA) plays a significant role in bacterial biofilm formation and aggregation. Here, for the first time, we present a physico-chemical analysis of the DNA-mediated aggregation for three bacterial strains (Streptococcus mutans LT11, Pseudomonas aeruginosa PAO1 and Staphylococcus

  16. Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5.

    Science.gov (United States)

    Shariati J, Vahid; Malboobi, Mohammad Ali; Tabrizi, Zeinab; Tavakol, Elahe; Owilia, Parviz; Safari, Maryam

    2017-11-15

    In this study, we provide a comparative genomic analysis of Pantoea agglomerans strain P5 and 10 closely related strains based on phylogenetic analyses. A next-generation shotgun strategy was implemented using the Illumina HiSeq 2500 technology followed by core- and pan-genome analysis. The genome of P. agglomerans strain P5 contains an assembly size of 5082485 bp with 55.4% G + C content. P. agglomerans consists of 2981 core and 3159 accessory genes for Coding DNA Sequences (CDSs) based on the pan-genome analysis. Strain P5 can be grouped closely with strains PG734 and 299 R using pan and core genes, respectively. All the predicted and annotated gene sequences were allocated to KEGG pathways. Accordingly,  genes involved in plant growth-promoting (PGP) ability, including phosphate solubilization, IAA and siderophore production, acetoin and 2,3-butanediol synthesis and bacterial secretion, were assigned. This study provides an in-depth view of the PGP characteristics of strain P5, highlighting its potential use in agriculture as a biofertilizer.

  17. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  18. Role of overexpressed CFA/I fimbriae in bacterial swimming

    International Nuclear Information System (INIS)

    Cao, Ling; Lim, Timothy; Jun, SangMu; Riccardi, Carol; Yang, Xinghong; Suo, Zhiyong; Deliorman, Muhammedin; Kellerman, Laura; Avci, Recep

    2012-01-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility. (paper)

  19. Induction of bacteriocin production by coculture is widespread among plantaricin-producing Lactobacillus plantarum strains with different regulatory operons.

    Science.gov (United States)

    Maldonado-Barragán, Antonio; Caballero-Guerrero, Belén; Lucena-Padrós, Helena; Ruiz-Barba, José Luis

    2013-02-01

    We describe the bacteriocin-production phenotype in a group of eight singular bacteriocinogenic Lactobacillus plantarum strains with three distinct genotypes regarding the plantaricin locus. Genotyping of these strains revealed the existence of two different plantaricin-production regulatory operons, plNC8-plNC8HK-plnD or plnABCD, involving three-component systems controlled each of them by a specific autoinducer peptide (AIP), i.e. PLNC8IF or PlnA. While all of the strains produced antimicrobial activity when growing on solid medium, most of them halted this production when cultured in broth, thus reflecting the functionality of regulatory mechanisms. Antimicrobial activity in broth cultures was re-established or enhanced when the specific AIP was added to the culture or by coculturing with specific bacterial strains. The latter trait appeared to be widespread in bacteriocinogenic L. plantarum strains independently of the regulatory system used to regulate bacteriocin production or the specific bacteriocins produced. The induction spectrum through coculture, i.e. the pattern of bacterial strains able to induce bacteriocin production, was characteristic of each individual L. plantarum strain. Also, the ability of some bacteria to induce bacteriocin production in L. plantarum by coculture appeared to be strain specific. The fact that induction of bacteriocin production by coculturing appeared to be a common feature in L. plantarum can be exploited accordingly to enhance the viability of this species in food and feed fermentations, as well as to contribute to probiotic functionality when colonising the gastrointestinal tract. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The effect of iatrogenic Staphylococcus epidermidis intercellar adhesion operon on the formation of bacterial biofilm on polyvinyl chloride surfaces.

    Science.gov (United States)

    Lianhua, Ye; Yunchao, Huang; Guangqiang, Zhao; Kun, Yang; Xing, Liu; Fengli, Guo

    2014-12-01

    The intercellular adhesion gene (ica) of Staphylococcus epidermidis is a key factor for bacterial aggregation. This study explored the effect of ica on the formation of bacterial biofilm on polyvinyl chloride (PVC) surfaces. Genes related to bacterial biofilm formation, including 16S rRNA, autolysin (atlE), fibrinogen binding protein gene (fbe), and ica were identified and sequenced from 112 clinical isolates of iatrogenic S. epidermidis by polymerase chain reaction (PCR) and gene sequencing. Based on the sequencing result, ica operon-positive (icaADB+/atlE+/fbe+) and ica operon-negative (icaADB-/atlE+/fbe+) strains were separated and co-cultivated with PVC material. After 6, 12, 18, 24, and 30 h of co-culture, the thickness of the bacterial biofilm and quantity of bacterial colony on the PVC surface were measured under the confocal laser scanning microscope and scanning electron microscope. The positive rate of S. epidermidis-specific 16SrRNA in 112 iatrogenic strains was 100% (112/112). The genotype of ica-positive (icaADB+/atlE+/fbe+) strains accounted for 57.1% (64/112), and genotype of ica-negative (icaADB-/atlE+/fbe+) strains accounted for 37.5% (42/112). During 30 h of co-culture, no obvious bacterial biofilm formed on the surface of PVC in the ica-positive group, however, mature bacterial biofilm structure formed after 24 h. For all time points, thickness of bacterial biofilm and quantity of bacterial colony on PVC surfaces in the ica operon-positive group were significantly higher than those in ica operon-negative group (poperon-negative and ica operon-positive strains. The ica operon plays an important role in bacterial biofilm formation and bacterial multiplication on PVC material.

  1. Bacterially Induced Weathering of Ultramafic Rock and Its Implications for Phytoextraction

    Science.gov (United States)

    Kidd, Petra; Kuffner, Melanie; Prieto-Fernández, Ángeles; Hann, Stephan; Monterroso, Carmela; Sessitsch, Angela; Wenzel, Walter; Puschenreiter, Markus

    2013-01-01

    The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants. PMID:23793627

  2. Streptomyces lunalinharesii Strain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes

    Directory of Open Access Journals (Sweden)

    Juliana Pacheco da Rosa

    2013-01-01

    Full Text Available Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with proteinase K and trypsin. The antimicrobial substances present in the concentrated supernatant from growth media were partially characterized by SDS-PAGE and extracellular polypeptides were seen. Bands in the size range of 12 to 14.4 kDa caused antimicrobial activity. Transmission electron microscopy of D. alaskensis cells treated with the concentrated supernatant containing the antimicrobial substances revealed the formation of prominent bubbles, the spherical double-layered structures on the cell membrane, and the periplasmic space completely filled with electron-dense material. This is the first report on the production of antimicrobial substances by actinomycetes against bacteria involved in biocorrosion processes, and these findings may be of great relevance as an alternative source of biocides to those currently employed in the petroleum industry.

  3. Yersinia enterocolitica YopH-Deficient Strain Activates Neutrophil Recruitment to Peyer's Patches and Promotes Clearance of the Virulent Strain.

    Science.gov (United States)

    Dave, Mabel N; Silva, Juan E; Eliçabe, Ricardo J; Jeréz, María B; Filippa, Verónica P; Gorlino, Carolina V; Autenrieth, Stella; Autenrieth, Ingo B; Di Genaro, María S

    2016-11-01

    Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. [Behavior of different strains of Staphylococcus aureus against root canal filling cements].

    Science.gov (United States)

    Pumarola, J; Berástegui, E; Canalda, C; Brau, E

    1991-01-01

    The mean goal of this study is the determination of the conduct of 120 strains of Staphylococcus aureus against seven root canal sealers: Traitement Spad, Endométhasone, N2 Universal, AH26 with silver, Diaket-A, Tubli Seal and Sealapex. The agar diffusion test was employed in the determination of its bacterial growth inhibition. The results obtained have demonstrated values very different between the tested strains. Therefore we recommended to employ strains with reference in the investigation of the bacterial growth inhibition in order to repeat equal experimentation conditions.

  5. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    Science.gov (United States)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  6. Characterization of CCN and IN activity of bacterial isolates collected in Atlanta, GA

    Science.gov (United States)

    Purdue, Sara; Waters, Samantha; Karthikeyan, Smruthi; Konstantinidis, Kostas; Nenes, Athanasios

    2016-04-01

    Characterization of CCN activity of bacteria, other than a few select types such as Pseudomonas syringae, is limited, especially when looked at in conjunction with corresponding IN activity. The link between these two points is especially important for bacteria as those that have high CCN activity are likely to form an aqueous phase required for immersion freezing. Given the high ice nucleation temperature of bacterial cells, especially in immersion mode, it is important to characterize the CCN and IN activity of many different bacterial strains. To this effect, we developed a droplet freezing assay (DFA) which consists of an aluminum cold plate, cooled by a continuous flow of an ethylene glycol-water mixture, in order to observe immersion freezing of the collected bacteria. Here, we present the initial results on the CCN and IN activities of bacterial samples we have collected in Atlanta, GA. Bacterial strains were collected and isolated from rainwater samples taken from different storms throughout the year. We then characterized the CCN activity of each strain using a DMT Continuous Flow Streamwise Thermal Gradient CCN Counter by exposing the aerosolized bacteria to supersaturations ranging from 0.05% to 0.6%. Additionally, using our new DFA, we characterized the IN activity of each bacterial strain at temperatures ranging from -20oC to 0oC. The combined CCN and IN activity gives us valuable information on how some uncharacterized bacteria contribute to warm and mixed-phase cloud formation in the atmosphere.

  7. Comparative genomics of Wolbachia and the bacterial species concept.

    Directory of Open Access Journals (Sweden)

    Kirsten Maren Ellegaard

    2013-04-01

    Full Text Available The importance of host-specialization to speciation processes in obligate host-associated bacteria is well known, as is also the ability of recombination to generate cohesion in bacterial populations. However, whether divergent strains of highly recombining intracellular bacteria, such as Wolbachia, can maintain their genetic distinctness when infecting the same host is not known. We first developed a protocol for the genome sequencing of uncultivable endosymbionts. Using this method, we have sequenced the complete genomes of the Wolbachia strains wHa and wNo, which occur as natural double infections in Drosophila simulans populations on the Seychelles and in New Caledonia. Taxonomically, wHa belong to supergroup A and wNo to supergroup B. A comparative genomics study including additional strains supported the supergroup classification scheme and revealed 24 and 33 group-specific genes, putatively involved in host-adaptation processes. Recombination frequencies were high for strains of the same supergroup despite different host-preference patterns, leading to genomic cohesion. The inferred recombination fragments for strains of different supergroups were of short sizes, and the genomes of the co-infecting Wolbachia strains wHa and wNo were not more similar to each other and did not share more genes than other A- and B-group strains that infect different hosts. We conclude that Wolbachia strains of supergroup A and B represent genetically distinct clades, and that strains of different supergroups can co-exist in the same arthropod host without converging into the same species. This suggests that the supergroups are irreversibly separated and that barriers other than host-specialization are able to maintain distinct clades in recombining endosymbiont populations. Acquiring a good knowledge of the barriers to genetic exchange in Wolbachia will advance our understanding of how endosymbiont communities are constructed from vertically and horizontally

  8. Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel se-bioassay.

    Science.gov (United States)

    Dwivedi, Sourabh; Alkhedhairy, Abdulaziz A; Ahamed, Maqusood; Musarrat, Javed

    2013-01-01

    Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO3(2-)) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO3(2-) to insoluble red elemental selenium (Se(0)) at 37°C. Characterization of red Se° product by use of UV-Vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectrum (EDX) analysis revealed the presence of stable, predominantly monodispersed and spherical selenium nanoparticles (Se-NPs) of an average size of 21 nm. Most likely, the metabolite phenazine-1-carboxylic acid (PCA) released by strain JS-11 in culture supernatant along with the known redox agents like NADH and NADH dependent reductases are responsible for biomimetic reduction of SeO3(2-) to Se° nanospheres. Based on the bioreduction of a colorless solution of SeO3(2-) to elemental red Se(0), a high throughput colorimetric bioassay (Se-Assay) was developed for parallel detection and quantification of nanoparticles (NPs) cytotoxicity in a 96 well format. Thus, it has been concluded that the reducing power of the culture supernatant of strain JS-11 could be effectively exploited for developing a simple and environmental friendly method of Se-NPs synthesis. The results elucidated that the red colored Se° nanospheres may serve as a biosensor for nanotoxicity assessment, contemplating the inhibition of SeO3(2-) bioreduction process in NPs treated bacterial cell culture supernatant, as a toxicity end point.

  9. Emergence of hyper-resistant Escherichia coli MG1655 derivative strains after applying sub-inhibitory doses of individual constituents of essential oils

    Directory of Open Access Journals (Sweden)

    Beatriz eChueca

    2016-03-01

    Full Text Available The improvement of food preservation by using essential oils (EOs and their individual constituents (ICs is attracting enormous interest worldwide. Until now, researchers considered that treatments with such antimicrobial compounds did not induce bacterial resistance via a phenotypic (i.e. transient response. Nevertheless, the emergence of genotypic (i.e. stable resistance after treatment with these compounds had not been previously tested. Our results confirm that growth of Escherichia coli MG1655 in presence of sub-inhibitory concentrations of the ICs carvacrol, citral, and (+-limonene oxide do not increase resistance to further treatments with either the same IC (direct resistance or with other preservation treatments (cross-resistance such as heat or pulsed electric fields (PEF. Bacterial mutation frequency was likewise lower when those IC’s were applied; however, after 10 days of re-culturing cells in presence of sub-inhibitory concentrations of the ICs, we were able to isolate several derivative strains (i.e. mutants displaying an increased minimum inhibitory concentration to those ICs. Furthermore, when compared to the wild type (WT strain, they also displayed direct resistance and cross-resistance. Derivative strains selected with carvacrol and citral also displayed morphological changes involving filamentation along with cell counts at late-stationary growth phase that were lower than the WT strain. In addition, co-cultures of each derivative strain with the WT strain resulted in a predominance of the original strain in absence of ICs, indicating that mutants would not out-compete WT cells under optimal growth conditions. Nevertheless, growth in the presence of ICs facilitated the selection of these resistant mutants. Thus, as a result, subsequent food preservation treatments of these bacterial cultures might be less effective than expected for WT cultures. In conclusion, this study recommends that treatment with ICs at sub

  10. Emergence of Hyper-Resistant Escherichia coli MG1655 Derivative Strains after Applying Sub-Inhibitory Doses of Individual Constituents of Essential Oils.

    Science.gov (United States)

    Chueca, Beatriz; Berdejo, Daniel; Gomes-Neto, Nelson J; Pagán, Rafael; García-Gonzalo, Diego

    2016-01-01

    The improvement of food preservation by using essential oils (EOs) and their individual constituents (ICs) is attracting enormous interest worldwide. Until now, researchers considered that treatments with such antimicrobial compounds did not induce bacterial resistance via a phenotypic (i.e., transient) response. Nevertheless, the emergence of genotypic (i.e., stable) resistance after treatment with these compounds had not been previously tested. Our results confirm that growth of Escherichia coli MG1655 in presence of sub-inhibitory concentrations of the ICs carvacrol, citral, and (+)-limonene oxide do not increase resistance to further treatments with either the same IC (direct resistance) or with other preservation treatments (cross-resistance) such as heat or pulsed electric fields (PEF). Bacterial mutation frequency was likewise lower when those IC's were applied; however, after 10 days of re-culturing cells in presence of sub-inhibitory concentrations of the ICs, we were able to isolate several derivative strains (i.e., mutants) displaying an increased minimum inhibitory concentration to those ICs. Furthermore, when compared to the wild type (WT) strain, they also displayed direct resistance and cross-resistance. Derivative strains selected with carvacrol and citral also displayed morphological changes involving filamentation along with cell counts at late-stationary growth phase that were lower than the WT strain. In addition, co-cultures of each derivative strain with the WT strain resulted in a predominance of the original strain in absence of ICs, indicating that mutants would not out-compete WT cells under optimal growth conditions. Nevertheless, growth in the presence of ICs facilitated the selection of these resistant mutants. Thus, as a result, subsequent food preservation treatments of these bacterial cultures might be less effective than expected for WT cultures. In conclusion, this study recommends that treatment with ICs at sub

  11. Proanthocyanidins-Will they effectively restrain conspicuous bacterial strains devolving on urinary tract infection?

    Science.gov (United States)

    Jagannathan, Venkataseshan; Viswanathan, Pragasam

    2018-05-18

    Struvite or infection stones are one of the major clinical burdens among urinary tract infection, which occur due to the interaction between microbes and urine mineral components. Numerous urinary tract infection (UTI) causing microbes regulate through biofilm formation for survival from host defense, it is often found difficult in its eradication with simple anti-microbial agents and also the chance of recurrence and resistance development is significantly high. Cranberry consumption and maintenance of urinary tract health have been supported by clinical, epidemiological, and mechanistic studies. It predominantly contains proanthocyanidins that belong to the class of polyphenols with repeating catechin and epicatechin monomeric units. Numerous studies have correlated proanthocyanidin consumption and prevention of bacterial adhesion to uroepithelial cells. Quorum sensing (QS) is the prime mechanism that drives bacteria to coordinate biofilm development and virulence expression. Reports have shown that proanthocyanidins are effective in disrupting cell-cell communication by quenching signal molecules. Overall, this review assesses the merits of proanthocyanidins and its effective oppression on adherence, motility, QS, and biofilm formation of major UTI strains such as Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis by comparing and evaluating results from many significant findings. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation.

    Science.gov (United States)

    Paisio, Cintia E; Quevedo, María R; Talano, Melina A; González, Paola S; Agostini, Elizabeth

    2014-08-01

    The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.

  13. Encyclopedia of bacterial gene circuits whose presence or absence correlate with pathogenicity--a large-scale system analysis of decoded bacterial genomes.

    Science.gov (United States)

    Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin

    2015-10-13

    Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex

  14. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    Directory of Open Access Journals (Sweden)

    Dnyanada S. Khanolkar

    2014-12-01

    Full Text Available A bacterial isolate capable of utilizing tributyltin chloride (TBTCl as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM. Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2 through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites.

  15. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    Science.gov (United States)

    Khanolkar, Dnyanada S.; Naik, Milind Mohan; Dubey, Santosh Kumar

    2014-01-01

    A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites. PMID:25763027

  16. Identification of pathogenic factors potentially involved in Staphylococcus aureus keratitis using proteomics.

    Science.gov (United States)

    Khan, Shamila; Cole, Nerida; Hume, Emma B H; Garthwaite, Linda L; Nguyen-Khuong, Terry; Walsh, Bradley J; Willcox, Mark D P

    2016-10-01

    Staphylococcus is a leading cause of microbial keratitis, characterized by destruction of the cornea by bacterial exoproteins and host-associated factors. The aim of this study was to compare extracellular and cell-associated proteins produced by two different isolates of S. aureus, a virulent clinical isolate (Staph 38) and a laboratory strain (Staphylococcus aureus 8325-4) of weaker virulence in the mouse keratitis model. Proteins were analyzed using 2D polyacrylamide gel electrophoresis and identified by subsequent mass spectrometry. Activity of staphylococcal adhesins was assessed by allowing strains to bind to various proteins adsorbed onto polymethylmethacrylate squares. Thirteen proteins in the extracellular fraction and eight proteins in the cell-associated fractions after bacterial growth were produced in increased amounts in the clinical isolate Staph 38. Four of these proteins were S. aureus virulence factor adhesins, fibronectin binding protein A, staphopain, glyceraldehyde-3-phosphate dehydrogenase 2 and extracellular adherence protein. The clinical isolate Staph 38 adhered to a greater extent to all mammalian proteins tested, indicating the potential of the adhesins to be active on its surface. Other proteins with increased expression in Staph 38 included potential moonlighting proteins and proteins involved in transcription or translation. This is the first demonstration of the proteome of S. aureus isolates from keratitis. These results indicate that the virulent clinical isolate produces more potentially important virulence factors compared to the less virulent laboratory strain and these may be associated with the ability of a S. aureus strain to cause more severe keratitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Bacterial Cheating Limits the Evolution of Antibiotic Resistance

    Science.gov (United States)

    Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff

    2012-02-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.

  18. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  19. Strain-Specific Features of Extracellular Polysaccharides and Their Impact on Lactobacillus plantarum-Host Interactions.

    Science.gov (United States)

    Lee, I-Chiao; Caggianiello, Graziano; van Swam, Iris I; Taverne, Nico; Meijerink, Marjolein; Bron, Peter A; Spano, Giuseppe; Kleerebezem, Michiel

    2016-07-01

    Lactobacilli are found in diverse environments and are widely applied as probiotic, health-promoting food supplements. Polysaccharides are ubiquitously present on the cell surface of lactobacilli and are considered to contribute to the species- and strain-specific probiotic effects that are typically observed. Two Lactobacillus plantarum strains, SF2A35B and Lp90, have an obvious ropy phenotype, implying high extracellular polysaccharide (EPS) production levels. In this work, we set out to identify the genes involved in EPS production in these L. plantarum strains and to demonstrate their role in EPS production by gene deletion analysis. A model L. plantarum strain, WCFS1, and its previously constructed derivative that produced reduced levels of EPS were included as reference strains. The constructed EPS-reduced derivatives were analyzed for the abundance and sugar compositions of their EPS, revealing cps2-like gene clusters in SF2A35B and Lp90 responsible for major EPS production. Moreover, these mutant strains were tested for phenotypic characteristics that are of relevance for their capacity to interact with the host epithelium in the intestinal tract, including bacterial surface properties as well as survival under the stress conditions encountered in the gastrointestinal tract (acid and bile stress). In addition, the Toll-like receptor 2 (TLR2) signaling and immunomodulatory capacities of the EPS-negative derivatives and their respective wild-type strains were compared, revealing strain-specific impacts of EPS on the immunomodulatory properties. Taken together, these experiments illustrate the importance of EPS in L. plantarum strains as a strain-specific determinant in host interaction. This study evaluates the role of extracellular polysaccharides that are produced by different strains of Lactobacillus plantarum in the determination of the cell surface properties of these bacteria and their capacity to interact with their environment, including their

  20. Antagonistic interactions are sufficient to explain self-assemblage of bacterial communities in a homogeneous environment: a computational modeling approach

    Directory of Open Access Journals (Sweden)

    Román eZapién-Campos

    2015-05-01

    Full Text Available Most of the studies in Ecology have been devoted to analyzing the effects the environment has on individuals, populations, and communities, thus neglecting the effects of biotic interactions on the system dynamics. In the present work we study the structure of bacterial communities in the oligotrophic shallow water system of Churince, Cuatro Cienegas, Mexico. Since the physicochemical conditions of this water system are homogeneous and quite stable in time, it is an excellent candidate to study how biotic factors influence the structure of bacterial communities. In a previous study, the binary antagonistic interactions of 78 bacterial strains, isolated from Churince, were experimentally determined. We employ these data to develop a computer algorithm to simulate growth experiments in a cellular grid representing the pond. Remarkably, in our model, the dynamics of all the simulated bacterial populations is determined solely by antagonistic interactions. Our results indicate that all bacterial strains (even those that are antagonized by many other bacteria survive in the long term, and that the underlying mechanism is the formation of bacterial community patches. Patches corresponding to less antagonistic and highly susceptible strains are consistently isolated from the highly-antagonistic bacterial colonies by patches of neutral strains. These results concur with the observed features of the bacterial community structure previously reported. Finally, we study how our findings depend on factors like initial population size, differential population growth rates, homogeneous population death rates, and enhanced bacterial diffusion.

  1. Bacterial adhesion to unworn and worn silicone hydrogel lenses.

    Science.gov (United States)

    Vijay, Ajay Kumar; Zhu, Hua; Ozkan, Jerome; Wu, Duojia; Masoudi, Simin; Bandara, Rani; Borazjani, Roya N; Willcox, Mark D P

    2012-08-01

    The objective of this study was to determine the bacterial adhesion to various silicone hydrogel lens materials and to determine whether lens wear modulated adhesion. Bacterial adhesion (total and viable cells) of Staphylococcus aureus (31, 38, and ATCC 6538) and Pseudomonas aeruginosa (6294, 6206, and GSU-3) to 10 commercially available different unworn and worn silicone hydrogel lenses was measured. Results of adhesion were correlated to polymer and surface properties of contact lenses. S. aureus adhesion to unworn lenses ranged from 2.8 × 10 to 4.4 × 10 colony forming units per lens. The highest adhesion was to lotrafilcon A lenses, and the lowest adhesion was to asmofilcon A lenses. P. aeruginosa adhesion to unworn lenses ranged from 8.9 × 10 to 3.2 × 10 colony forming units per lens. The highest adhesion was to comfilcon A lenses, and the lowest adhesion was to asmofilcon A and balafilcon A lenses. Lens wear altered bacterial adhesion, but the effect was specific to lens and strain type. Adhesion of bacteria, regardless of genera/species or lens wear, was generally correlated with the hydrophobicity of the lens; the less hydrophobic the lens surface, the greater the adhesion. P. aeruginosa adhered in higher numbers to lenses in comparison with S. aureus strains, regardless of the lens type or lens wear. The effect of lens wear was specific to strain and lens. Hydrophobicity of the silicone hydrogel lens surface influenced the adhesion of bacterial cells.

  2. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  3. Biotreatment of industrial wastewater by selected algal-bacterial consortia

    Energy Technology Data Exchange (ETDEWEB)

    Safonova, E.; Kvitko, K.V. [St. Petersburg State University, Biological Institute, Oranienbaum Chaussee 2, Old Peterhof, 198504 St. Petersburg (Russian Federation); Iankevitch, M.I.; Surgko, L.F.; Afti, I.A. [Ecoprom Ltd., Gruzovoi Proezd 13, Obukhovo, 192289 St. Petersburg (Russian Federation); Reisser, W. [Universitaet Leipzig, Botanisches Institut, Johannisallee 21-23, D-04103 Leipzig (Germany)

    2004-08-01

    A new approach for remediation processes in highly polluted environments is presented. The efficiency of algal-bacterial associations for the remediation of industrial wastewater of a pond in Samara, Russia, was investigated. After screening of algae and bacteria for the resistance to the wastewater the following strains were selected: the algal strains Chlorella sp. ES-13, Chlorella sp. ES-30, Scenedesmus obliquus ES-55, several Stichococcus strains (ES-19, ES-85, ES-86, ES-87, ES-88), and Phormidium sp. ES-90 and the bacterial strains Rhodococcus sp. Ac-1267, Kibdelosporangium aridum 754 as well as two unidentified bacterial strains (St-1, St-2) isolated from the collector pond. All the strains listed above were immobilized onto various solid carriers (capron fibers for algae; ceramics, capron and wood for bacteria) and used for biotreatment in a pilot installation. The results showed that the selected algae and bacteria formed stable consortia during the degradation of the waste, which was demonstrated for the first time for the green alga Stichococcus. Stichococcus and Phormidium cells attached to capron fibers with the help of slime and formed a matrix. This matrix fixed the bacteria and eukaryotic algae and prevented them from being washed off. A significant decrease in the content of the pollutants was observed: phenols were removed up to 85 %, anionic surface active substances (anionic SAS) up to 73 %, oil spills up to 96 %, copper up to 62 %, nickel up to 62 %, zinc up to 90 %, manganese up to 70 %, and iron up to 64 %. The reduction of the biological oxygen demand (BOD{sub 25}) and the chemical oxygen demand COD amounted to 97 % and 51 %, respectively. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  4. Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials.

    Science.gov (United States)

    Kodjikian, Laurent; Casoli-Bergeron, Emmanuelle; Malet, Florence; Janin-Manificat, Hélène; Freney, Jean; Burillon, Carole; Colin, Joseph; Steghens, Jean-Paul

    2008-02-01

    As bacterial adhesion to contact lenses may contribute to the pathogenesis of keratitis, the aim of our study was to investigate in vitro adhesion of clinically relevant bacteria to conventional hydrogel (standard HEMA) and silicone-hydrogel contact lenses using a bioluminescent ATP assay. Four types of unworn contact lenses (Etafilcon A, Galyfilcon A, Balafilcon A, Lotrafilcon B) were incubated with Staphylococcus epidermidis (two different strains) and Pseudomonas aeruginosa suspended in phosphate buffered saline (PBS). Lenses were placed with the posterior surface facing up and were incubated in the bacterial suspension for 4 hours at 37 degrees C. Bacterial binding was then measured and studied by bioluminescent ATP assay. Six replicate experiments were performed for each lens and strain. Adhesion of all species of bacteria to standard HEMA contact lenses (Etafilcon A) was found to be significantly lower than that of three types of silicone-hydrogel contact lenses, whereas Lotrafilcon B material showed the highest level of bacterial binding. Differences between species in the overall level of adhesion to the different types of contact lenses were observed. Adhesion of P. aeruginosa was typically at least 20 times greater than that observed with both S. epidermidis strains. Conventional hydrogel contact lenses exhibit significantly lower bacterial adhesion in vitro than silicone-hydrogel ones. This could be due to the greater hydrophobicity but also to the higher oxygen transmissibility of silicone-hydrogel lenses.

  5. Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules.

    Science.gov (United States)

    Stukalov, Oleg; Korenevsky, Anton; Beveridge, Terry J; Dutcher, John R

    2008-09-01

    Bacteria can possess an outermost assembly of polysaccharide molecules, a capsule, which is attached to their cell wall. We have used two complementary, high-resolution microscopy techniques, atomic force microscopy (AFM) and transmission electron microscopy (TEM), to study bacterial capsules of four different gram-negative bacterial strains: Escherichia coli K30, Pseudomonas aeruginosa FRD1, Shewanella oneidensis MR-4, and Geobacter sulfurreducens PCA. TEM analysis of bacterial cells using different preparative techniques (whole-cell mounts, conventional embeddings, and freeze-substitution) revealed capsules for some but not all of the strains. In contrast, the use of AFM allowed the unambiguous identification of the presence of capsules on all strains used in the present study, including those that were shown by TEM to be not encapsulated. In addition, the use of AFM phase imaging allowed the visualization of the bacterial cell within the capsule, with a depth sensitivity that decreased with increasing tapping frequency.

  6. Bacterial Population Genetics in a Forensic Context

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S P

    2009-11-02

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population genetics by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations

  7. Modeling bacterial contamination of fuel ethanol fermentation.

    Science.gov (United States)

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  8. Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample.

    Science.gov (United States)

    Illeghems, Koen; Weckx, Stefan; De Vuyst, Luc

    2015-09-01

    A high-resolution functional metagenomic analysis of a representative single sample of a Brazilian spontaneous cocoa bean fermentation process was carried out to gain insight into its bacterial community functioning. By reconstruction of microbial meta-pathways based on metagenomic data, the current knowledge about the metabolic capabilities of bacterial members involved in the cocoa bean fermentation ecosystem was extended. Functional meta-pathway analysis revealed the distribution of the metabolic pathways between the bacterial members involved. The metabolic capabilities of the lactic acid bacteria present were most associated with the heterolactic fermentation and citrate assimilation pathways. The role of Enterobacteriaceae in the conversion of substrates was shown through the use of the mixed-acid fermentation and methylglyoxal detoxification pathways. Furthermore, several other potential functional roles for Enterobacteriaceae were indicated, such as pectinolysis and citrate assimilation. Concerning acetic acid bacteria, metabolic pathways were partially reconstructed, in particular those related to responses toward stress, explaining their metabolic activities during cocoa bean fermentation processes. Further, the in-depth metagenomic analysis unveiled functionalities involved in bacterial competitiveness, such as the occurrence of CRISPRs and potential bacteriocin production. Finally, comparative analysis of the metagenomic data with bacterial genomes of cocoa bean fermentation isolates revealed the applicability of the selected strains as functional starter cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Relation Between Ocular/Nasal Bacterial Distribution, Staphylococcus aureus Colonization and Ocular and Nasal Involvement in Atopic Dermatitis Patients - Original Article

    Directory of Open Access Journals (Sweden)

    Berna Şanlı Erdoğan

    2008-12-01

    Full Text Available Objective: It was aimed to determine bacteria distribution and S.aureus colonization in nares, fornix and eyelid margin of patients with atopic dermatitis (AD compared to controls and to investigate it’s relationship with skin and eye involvement. Methods: Patients dermatological and opthalmologic examinations were done. The standart tear break-up time and Schirmer tests were performed. Samples were taken from fornix, eyelid margin and nares for bacterial culture. Results: Tweenty seven patients and 28 controls were included. There was no difference between the patients with and without eye involvement with respect to dry eye (p>0.05. The bacteria was more frequently isolated in patients (85.2% than controls (60.7%, however S.aureus colonization (51.9%, 50.0% respectively didn’t differ in both groups (p=0.042, p>0.05. The disease severity was positively correlated with S.aureus colonization (p=0.031. There was no difference between the patients with and without eye involvement with respect to S.aureus colonization and presence of bacteria (p>0.05. No bacteria was isolated from patients whom tear function analyses were performed. Conclusions: It wasn’t established an increased percent of S.aureus colonization in AD patients compared with controls. There was no association between dry eye and eye involvement. No comment could be remarked about the possible relation between dry eye and bacterial colonization.

  10. CRISPR technologies for bacterial systems: Current achievements and future directions.

    Science.gov (United States)

    Choi, Kyeong Rok; Lee, Sang Yup

    2016-11-15

    Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now revolutionizing biotechnology as well as biology. Diverse technologies have been derived from CRISPR/Cas systems in bacteria, yet the applications unfortunately have not been actively employed in bacteria as extensively as in eukaryotic organisms. A recent trend of engineering less explored strains in industrial microbiology-metabolic engineering, synthetic biology, and other related disciplines-is demanding facile yet robust tools, and various CRISPR technologies have potential to cater to the demands. Here, we briefly review the science in CRISPR/Cas systems and the milestone inventions that enabled numerous CRISPR technologies. Next, we describe CRISPR/Cas-derived technologies for bacterial strain development, including genome editing and gene expression regulation applications. Then, other CRISPR technologies possessing great potential for industrial applications are described, including typing and tracking of bacterial strains, virome identification, vaccination of bacteria, and advanced antimicrobial approaches. For each application, we note our suggestions for additional improvements as well. In the same context, replication of CRISPR/Cas-based chromosome imaging technologies developed originally in eukaryotic systems is introduced with its potential impact on studying bacterial chromosomal dynamics. Also, the current patent status of CRISPR technologies is reviewed. Finally, we provide some insights to the future of CRISPR technologies for bacterial systems by proposing complementary techniques to be developed for the use of CRISPR technologies in even wider range of applications. Copyright © 2016. Published by Elsevier Inc.

  11. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression.

    Science.gov (United States)

    Chung, Jeong Min; Lee, Sangmin; Jung, Hyun Suk

    2017-05-01

    Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression. Copyright © 2016. Published by Elsevier Inc.

  12. Bacterial Biosensors for Measuring Availability of Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Jan Roelof van der Meer

    2008-07-01

    Full Text Available Traditionally, pollution risk assessment is based on the measurement of a pollutant’s total concentration in a sample. The toxicity of a given pollutant in the environment, however, is tightly linked to its bioavailability, which may differ significantly from the total amount. Physico-chemical and biological parameters strongly influence pollutant fate in terms of leaching, sequestration and biodegradation. Bacterial sensorreporters, which consist of living micro-organisms genetically engineered to produce specific output in response to target chemicals, offer an interesting alternative to monitoring approaches. Bacterial sensor-reporters detect bioavailable and/or bioaccessible compound fractions in samples. Currently, a variety of environmental pollutants can be targeted by specific biosensor-reporters. Although most of such strains are still confined to the lab, several recent reports have demonstrated utility of bacterial sensing-reporting in the field, with method detection limits in the nanomolar range. This review illustrates the general design principles for bacterial sensor-reporters, presents an overview of the existing biosensor-reporter strains with emphasis on organic compound detection. A specific focus throughout is on the concepts of bioavailability and bioaccessibility, and how bacteria-based sensing-reporting systems can help to improve our basic understanding of the different processes at work.

  13. Diversity of pufM genes, involved in aerobic anoxygenic photosynthesis, in the bacterial communities associated with colonial ascidians.

    Science.gov (United States)

    Martínez-García, Manuel; Díaz-Valdés, Marta; Antón, Josefa

    2010-03-01

    Ascidians are invertebrate filter feeders widely distributed in benthic marine environments. A total of 14 different ascidian species were collected from the Western Mediterranean and their bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene. Results showed that ascidian tissues harbored Bacteria belonging to Gamma- and Alphaproteobacteria classes, some of them phylogenetically related to known aerobic anoxygenic phototrophs (AAPs), such as Roseobacter sp. In addition, hierarchical cluster analysis of DGGE patterns showed a large variability in the bacterial diversity among the different ascidians analyzed, which indicates that they would harbor different bacterial communities. Furthermore, pufM genes, involved in aerobic anoxygenic photosynthesis in marine and freshwater systems, were widely detected within the ascidians analyzed, because nine out of 14 species had pufM genes inside their tissues. The pufM gene was only detected in those specimens that inhabited shallow waters (<77 m of depth). Most pufM gene sequences were very closely related to that of uncultured marine bacteria. Thus, our results suggest that the association of ascidians with bacteria related to AAPs could be a general phenomenon and that ascidian-associated microbiota could use the light that penetrates through the tunic tissue as an energy source.

  14. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  15. MapA, an iron-regulated, cytoplasmic membrane protein in the cyanobacterium Synechococcus sp. strain PCC7942.

    Science.gov (United States)

    Webb, R; Troyan, T; Sherman, D; Sherman, L A

    1994-08-01

    Growth of Synechococcus sp. strain PCC 7942 in iron-deficient media leads to the accumulation of an approximately 34-kDa protein. The gene encoding this protein, mapA (membrane-associated protein A), has been cloned and sequenced (GenBank accession number, L01621). The mapA transcript is not detectable in normally grown cultures but is stably accumulated by cells grown in iron-deficient media. However, the promoter sequence for this gene does not resemble other bacterial iron-regulated promoters described to date. The carboxyl-terminal region of the derived amino acid sequence of MapA resembles bacterial proteins involved in iron acquisition, whereas the amino-terminal end of MapA has a high degree of amino acid identity with the abundant, chloroplast envelope protein E37. An approach employing improved cellular fractionation techniques as well as electron microscopy and immunocytochemistry was essential in localizing MapA protein to the cytoplasmic membrane of Synechococcus sp. strain PCC 7942. When these cells were grown under iron-deficient conditions, a significant fraction of MapA could also be localized to the thylakoid membranes.

  16. Bacterial adherence on UHMWPE doped with Vitamin E: an in vitro study

    International Nuclear Information System (INIS)

    Molina-Manso D; Gomez-Barrena E; Esteban J; Adames H; Martinez M J; Cordero J; Fernandez-Roblas R; Puertolas J A

    2010-01-01

    Biomaterials may improve its capacity to resist bacterial adherence, and subsequent infection through material changes. Our aim was to test the bacterial adherence to vitamin E (VE) doped UHMWPE with S. aureus and S. epidermidis (collection and clinical strains), compared to virgin material. Experimental UHMWPE with 3%, 0.4%, and commercial 0.1% VE concentration (1000 ppm) were tested. The biofilm-developing ability was used as a covariable. The collection strain of S. aureus showed significantly less adherence to the commercial VE UHMWPE (p=0.036) but the clinical strains did not significantly modified its adhesion to UHMWPE in presence of VE. The collection strain of S. epidermidis showed significantly less adherence to experimental UHMWPE with VE, independently of the concentration used (p=0.008). However, only 1 of the 4 clinical strains under study clearly confirmed these results in commercial VE polyethylene. Vitamin E doped UHMWPE affects the adherence of some S. aureus and S. epidermidis strains, independently of the concentration in use, but the results showed important intraspecies differences.

  17. Bacterial adaptation to the gut environment favors successful colonization: microbial and metabonomic characterization of a simplified microbiota mouse model.

    Science.gov (United States)

    Rezzonico, Enea; Mestdagh, Renaud; Delley, Michèle; Combremont, Séverine; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy; Bibiloni, Rodrigo

    2011-01-01

    Rodent models harboring a simple yet functional human intestinal microbiota provide a valuable tool to study the relationships between mammals and their bacterial inhabitants. In this study, we aimed to develop a simplified gnotobiotic mouse model containing 10 easy-to-grow bacteria, readily available from culture repositories, and of known genome sequence, that overall reflect the dominant commensal bacterial makeup found in adult human feces. We observed that merely inoculating a mix of fresh bacterial cultures into ex-germ free mice did not guarantee a successful intestinal colonization of the entire bacterial set, as mice inoculated simultaneously with all strains only harbored 3 after 21 d. Therefore, several inoculation procedures were tested and levels of individual strains were quantified using molecular tools. Best results were obtained by inoculating single bacterial strains into individual animals followed by an interval of two weeks before allowing the animals to socialize to exchange their commensal microbes. Through this procedure, animals were colonized with almost the complete bacterial set (9/10). Differences in the intestinal composition were also reflected in the urine and plasma metabolic profiles, where changes in lipids, SCFA, and amino acids were observed. We conclude that adaptation of bacterial strains to the host's gut environment (mono-colonization) may predict a successful establishment of a more complex microbiota in rodents.

  18. The effect of new probiotic strain Lactobacillus plantarum on counts of coliforms, lactobacilli and bacterial enzyme activities in rats exposed to N,N-dimethylhydrazine (chemical carcinogen

    Directory of Open Access Journals (Sweden)

    Denisa Čokášová

    2012-01-01

    Full Text Available The aim of the present study was to evaluate the effect of the new probiotic strain Lactobacillus plantarum on chemically induced carcinogenesis in rats. Sprague dowley rats (n = 33 were divided into control and experimental groups and were fed a conventional laboratory diet. In the experimental group, rats were treated with the probiotic at the dose of 1 × 109 CFU (colony-forming units/ml. Two weeks after the beginning of the trial, N,N-dimethylhydrazine (chemical carcinogen injections were applied s.c. at the dose of 21 mg/kg b.w., 5 × weekly. At the end of the 8-month experimental period, faeces samples were taken from the rats and used for laboratory analysis. The counts of lactobacilli and coliforms and bacterial enzyme activity were determined. The probiotic strain L. plantarum as single species or in combination with oil (Lini oleum virginale decreased the count of total coliforms and increased lactobacilli in faeces of rats. Application of probiotic microorganisms significantly (P < 0.05 decreased the activities of bacterial enzymes (β-galactosidase and β-glucuronidase compared to the control group rats. The results of this study indicate that probiotic microorganisms could exert a preventive effect on colon carcinogenesis induced by N,N-dimethylhydrazine.

  19. Insights from the Genome Sequence of Acidovorax citrulli M6, a Group I Strain of the Causal Agent of Bacterial Fruit Blotch of Cucurbits.

    Science.gov (United States)

    Eckshtain-Levi, Noam; Shkedy, Dafna; Gershovits, Michael; Da Silva, Gustavo M; Tamir-Ariel, Dafna; Walcott, Ron; Pupko, Tal; Burdman, Saul

    2016-01-01

    Acidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major groups based on DNA fingerprint analyses and biochemical properties. Group I strains have been generally isolated from non-watermelon cucurbits, while group II strains are closely associated with watermelon. In the present study, we report the genome sequence of M6, a group I model A. citrulli strain, isolated from melon. We used comparative genome analysis to investigate differences between the genome of strain M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of A. citrulli M6 harbors 139 contigs, with an overall approximate size of 4.85 Mb. The genome of M6 is ∼500 Kb shorter than that of strain AAC00-1. Comparative analysis revealed that this size difference is mainly explained by eight fragments, ranging from ∼35-120 Kb and distributed throughout the AAC00-1 genome, which are absent in the M6 genome. In agreement with this finding, while AAC00-1 was found to possess 532 open reading frames (ORFs) that are absent in strain M6, only 123 ORFs in M6 were absent in AAC00-1. Most of these M6 ORFs are hypothetical proteins and most of them were also detected in two group I strains that were recently sequenced, tw6 and pslb65. Further analyses by PCR assays and coverage analyses with other A. citrulli strains support the notion that some of these fragments or significant portions of them are discriminative between groups I and II strains of A. citrulli. Moreover, GC content, effective number of codon values and cluster of orthologs' analyses indicate that these fragments were introduced into group II strains by horizontal gene transfer events. Our study reports the genome sequence of a model group I strain of A. citrulli, one of the most important pathogens of cucurbits. It also provides the first comprehensive comparison at the genomic level between the

  20. Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.

    Science.gov (United States)

    Rehan, Medhat; Furnholm, Teal; Finethy, Ryan H; Chu, Feixia; El-Fadly, Gomaah; Tisa, Louis S

    2014-09-01

    Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.

  1. Draft genome sequences of eight bacteria isolated from the indoor environment: Staphylococcus capitis strain H36, S. capitis strain H65, S. cohnii strain H62, S. hominis strain H69, Microbacterium sp. strain H83, Mycobacterium iranicum strain H39, Plantibacter sp. strain H53, and Pseudomonas oryzihabitans strain H72

    OpenAIRE

    Lymperopoulou, Despoina S.; Coil, David A.; Schichnes, Denise; Lindow, Steven E.; Jospin, Guillaume; Eisen, Jonathan A.; Adams, Rachel I.

    2017-01-01

    We report here the draft genome sequences of eight bacterial strains of the genera Staphylococcus, Microbacterium, Mycobacterium, Plantibacter, and Pseudomonas. These isolates were obtained from aerosol sampling of bathrooms of five residences in the San Francisco Bay area. Taxonomic classifications as well as the genome sequence and gene annotation of the isolates are described. As part of the ?Built Environment Reference Genome? project, these isolates and associated genome data provide val...

  2. Carbon and Hydrogen Stable Isotope Fractionation during Aerobic Bacterial Degradation of Aromatic Hydrocarbons†

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Schink, Bernhard; Vieth, Andrea; Meckenstock, Rainer U.

    2002-01-01

    13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation. PMID:12324375

  3. Screening and selection of wild strains for L-arabinose isomerase production

    Directory of Open Access Journals (Sweden)

    R. M. Manzo

    2013-12-01

    Full Text Available The majority of L-arabinose isomerases have been isolated by recombinant techniques, but this methodology implies a reduced technological application. For this reason, 29 bacterial strains, some of them previously characterized as L-arabinose isomerase producers, were assayed as L-arabinose fermenting strains by employing conveniently designed culture media with 0.5% (w/v L-arabinose as main carbon source. From all evaluated bacterial strains, Enterococcus faecium DBFIQ ID: E36, Enterococcus faecium DBFIQ ID: ETW4 and Pediococcus acidilactici ATCC ID: 8042 were, in this order, the best L-arabinose fermenting strains. Afterwards, to assay L-arabinose metabolization and L-arabinose isomerase activity, cell-free extract and saline precipitated cell-free extract of the three bacterial cultures were obtained and the production of ketoses was determined by the cysteine carbazole sulfuric acid method. Results showed that the greater the L-arabinose metabolization ability, the higher the enzymatic activity achieved, so Enterococcus faecium DBFIQ ID: E36 was selected to continue with production, purification and characterization studies. This work thus describes a simple microbiological method for the selection of L-arabinose fermenting bacteria for the potential production of the enzyme L-arabinose isomerase.

  4. Effects of liposomal-curcumin on five opportunistic bacterial strains found in the equine hindgut - preliminary study

    Directory of Open Access Journals (Sweden)

    S. D. Bland

    2017-06-01

    Full Text Available Abstract Background The horse intestinal tract is sensitive and contains a highly complex microbial population. A shift in the microbial population can lead to various issues such as inflammation and colic. The use of nutraceuticals in the equine industry is on the rise and curcumin is thought to possess antimicrobial properties that may help to minimize the proliferation of opportunistic bacteria. Methods Four cecally-cannulated horses were utilized to determine the optimal dose of liposomal-curcumin (LIPC on reducing Streptococcus bovis/equinus complex (SBEC, Escherichia coli K-12, Escherichia coli general, Clostridium difficile, and Clostridium perfringens in the equine hindgut without adversely affecting cecal characteristics. In the first study cecal fluid was collected from each horse and composited for an in vitro, 24 h batch culture to examine LIPC at four different dosages (15, 20, 25, and 30 g in a completely randomized design. A subsequent in vivo 4 × 4 Latin square design study was conducted to evaluate no LIPC (control, CON or LIPC dosed at 15, 25, and 35 g per day (dosages determined from in vitro results for 9 days on the efficacy of LIPC on selected bacterial strains, pH, and volatile fatty acids. Each period was 14 days with 9 d for acclimation and 5 d withdrawal period. Results In the in vitro study dosage had no effect (P ≥ 0.42 on Clostridium strains, but as the dose increased SBEC concentrations increased (P = 0.001. Concentrations of the E. coli strain varied with dose. In vivo, LIPC’s antimicrobial properties, at 15 g, significantly decreased (P = 0.02 SBEC when compared to 25 and 35 g dosages. C. perfringens decreased linearly (P = 0.03 as LIPC dose increased. Butyrate decreased linearly (P = 0.01 as LIPC dose increased. Conclusion Further studies should be conducted with a longer dosing period to examine the antimicrobial properties of curcumin without adversely affecting cecal characteristics.

  5. Biogenic amine formation and bacterial contribution in Natto products.

    Science.gov (United States)

    Kim, Bitna; Byun, Bo Young; Mah, Jae-Hyung

    2012-12-01

    Twenty-one Natto products currently distributed in Korea were analysed for biogenic amine contents and tested to determine physicochemical and bacterial contributions to biogenic amine formation. Among them, nine products (about 43%) had β-phenylethylamine or tyramine contents greater than the toxic dose (30mg/kg and 100mg/kg, respectively) of each amine, although no products showed total amounts of biogenic amines above the harmful level (1000mg/kg), which indicates that the amounts of biogenic amines in some Natto products are not within the safe level for human health. From four different Natto products, that contained noticeable levels of β-phenylethylamine and tyramine, 80 bacterial strains were isolated. All the strains were identified to be Bacillus subtilis and highly capable of producing β-phenylethylamine and tyramine. Therefore, it seems likely that the remarkable contents of β-phenylethylamine and tyramine in Natto predominantly resulted from the strains highly capable of producing those amines present in the food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. ‘Corynebacterium fournierii,’ a new bacterial species isolated from the vaginal sample of a patient with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    K. Diop

    2017-07-01

    Full Text Available Here we describe briefly ‘Corynebacterium fournierii’ strain Marseille P2948 (= CSUR P2948 = DSM103271, a new bacterium that was isolated from the vaginal sample of a 21-year-old woman with bacterial vaginosis.

  7. [Effect of the 10 kb sequence of piscine Streptococcus agalactiae on bacterial virulence].

    Science.gov (United States)

    Liu, Guangjin; Zhu, Jielian; Shi, Ziwei; Ding, Ming; Wang, Ruyi; Yao, Huochun; Lu, Chengping; Xu, Pao

    2016-01-04

    From the previous comparative genomic analysis, we found a specific unknown 10 kb sequence (including 11 Open reading Frames) in Chinese piscine strain GD201008-001 genome. To study the role of 10 kb in the pathogenicity of piscine S. agalactiae, the 10 kb sequence was deleted from the GD201008-001 genome. The isogenic mutant Δ10 kb was constructed by using the temperature-sensitive Streptococcus-E. coli shuttle vector pSET4s. We compared the growth characteristics, adherence to HEp-2 cell and bacterial virulence in a zebrafish infection model between wild strain and mutant. Meanwhile the expressions of the known virulence genes from GD201008-001 and Δ10 kb were also quantified by real-time PCR. The Δ10 kb showed no significant differences in bacterial morphology and adherence to HEp-2 cells compared with the wild-type strain, but the speed of growth was slightly slower than the wild strain. Furthermore the 50% lethal dose of Δ10 kb was decreased up to 10-fold (P kb sequence of piscine Streptococcus agalactiae exerts a significant effect on bacterial virulence and probably regulates the virulence genes expression of GD20 1008-001.

  8. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae).

    Science.gov (United States)

    Dupont, S; Carré-Mlouka, A; Descarrega, F; Ereskovsky, A; Longeon, A; Mouray, E; Florent, I; Bourguet-Kondracki, M L

    2014-01-01

    The diversity of the cultivable microbiota of the marine sponge Phorbas tenacior frequently found in the Mediterranean Sea was investigated, and its potential as a source of antimicrobial, antioxidant and antiplasmodial compounds was evaluated. The cultivable bacterial community was studied by isolation, cultivation and 16S rRNA gene sequencing. Twenty-three bacterial strains were isolated and identified in the Proteobacteria (α or γ classes) and Actinobacteria phyla. Furthermore, three different bacterial morphotypes localized extracellularly within the sponge tissues were revealed by microscopic observations. Bacterial strains were assigned to seven different genera, namely Vibrio, Photobacterium, Shewanella, Pseudomonas, Ruegeria, Pseudovibrio and Citricoccus. The strains affiliated to the same genus were differentiated according to their genetic dissimilarities using random amplified polymorphic DNA (RAPD) analyses. Eleven bacterial strains were selected for evaluation of their bioactivities. Three isolates Pseudovibrio P1Ma4, Vibrio P1MaNal1 and Citricoccus P1S7 revealed antimicrobial activity; Citricoccus P1S7 and Vibrio P1MaNal1 isolates also exhibited antiplasmodial activity, while two Vibrio isolates P1Ma8 and P1Ma5 displayed antioxidant activity. These data confirmed the importance of Proteobacteria and Actinobacteria associated with marine sponges as a reservoir of bioactive compounds. This study presents the first report on the diversity of the cultivable bacteria associated with the marine sponge Phorbas tenacior, frequently found in the Mediterranean Sea. Evaluation of the antiplasmodial, antimicrobial and antioxidant activities of the isolates has been investigated and allowed to select bacterial strains, confirming the importance of Proteobacteria and Actinobacteria as sources of bioactive compounds. © 2013 The Society for Applied Microbiology.

  9. Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent.

    Science.gov (United States)

    Mac Conell, E F A; Almeida, P G S; Martins, K E L; Araújo, J C; Chernicharo, C A L

    2015-01-01

    The bacterial community composition of a down-flow sponge-based trickling filter treating upflow anaerobic sludge blanket (UASB) effluent was investigated by pyrosequencing. Bacterial community composition considerably changed along the reactor and over the operational period. The dominant phyla detected were Proteobacteria, Verrucomicrobia, and Planctomycetes. The abundance of denitrifiers decreased from the top to the bottom and it was consistent with the organic matter concentration gradients. At lower loadings (organic and nitrogen loading rates), the abundance of anammox bacteria was higher than that of the ammonium-oxidizing bacteria in the upper portion of the reactor, suggesting that aerobic and anaerobic ammonium oxidation occurred. Nitrification occurred in all the compartments, while anammox bacteria prominently appeared even in the presence of high organic carbon to ammonia ratios (around 1.0-2.0 gCOD gN(-1)). The results suggest that denitrifiers, nitrifiers, and anammox bacteria coexisted in the reactor; thus, different metabolic pathways were involved in ammonium removal in the post-UASB reactor sponge-based.

  10. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential.

    Science.gov (United States)

    Arnold, Jason W; Simpson, Joshua B; Roach, Jeffrey; Kwintkiewicz, Jakub; Azcarate-Peril, M Andrea

    2018-01-01

    Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010) of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains ( L. rhamnosus GG, Lc705, and HN001) at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress) showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene ( bsh ) revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143), while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  11. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential

    Directory of Open Access Journals (Sweden)

    Jason W. Arnold

    2018-02-01

    Full Text Available Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010 of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains (L. rhamnosus GG, Lc705, and HN001 at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene (bsh revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143, while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  12. Experimental infection with different bacterial strains in larvae and juvenile Litopenaeus vannamei reared in Santa Catarina State, Brazil - doi: 10.4025/actascibiolsci.v32i3.5471

    OpenAIRE

    Buglione, Celso Carlos; UFSC; Vieira, Felipe do Nascimento; UFSC; Mouriño, José Luiz Pedreira; UFSC; Pedrotti, Fabiola Santiago; UFSC; Jatoba, Adolfo; UFSC; Martins, Maurício Laterça; UFSC

    2010-01-01

    This study evaluated the pathogenic characteristics of bacteria isolated from Litopenaeus vannamei during an outbreak at the Laboratory of Marine Shrimp, UFSC, Santa Catarina State, Brazil. Their virulence potential in larvae and juvenile shrimp and the effects on the total haemocyte count, phenoloxidase activity and serum agglutinate titre were examined after experimental infection. Bacterial strains were isolated from larvae and adult shrimps, identified by the AP120E biochemical system as:...

  13. Biodegradation of orange G by a novel isolated bacterial strain ...

    African Journals Online (AJOL)

    At these optimum levels of parameters, bacterial decolorization of orange G by 94.48% was obtained under static conditions. Biodegradation and decolorization of azo dye, orange G, was confirmed using UV-VIS spectrophotometry, thin layer chromatography (TLC) and fourier transform infrared spectroscopy (FTIR) and ...

  14. Inactivation of carbenicillin by some radioresistant mutant strains

    International Nuclear Information System (INIS)

    Zahiera, T.S.; Mahmoud, M.I.; Bashandy, A.A.

    1990-01-01

    Sensitivity test of five bacterial species to carbenicillin was performed microbiologically. The bacterial species were previously isolated from high level radiation environment. All the studied species could either highly decrease the antibiotic activity or even inactivate it completely. Detailed study of the inactivation of carbenicillin by the radioresistant mutant strains B. Laterosporus, B. firmus and M. roseus was performed, in the present study. Using high performace liquid chromatography technique. The gram-positive m. roseus mutant strain seemed to be the most active mutant in degrading the antibiotic. The left over of the antibiotic attained a value of 9% of the original amount after 14 day incubation of the antibiotic with this mutant strain, while the value of the left over reached 36% and 32% after the same period of incubation with the mutants B. laterosporus and B. firmus respectively. In the case of bacillus species, the degradation of the antibiotic started at the same moment when it was added to the bacterial cultures. This fact may indicate that the inactivation of the studied antibiotic by these bacillus species was due to extracellular enzymes extracted rapidly in the surrounding medium. In the case of M. roseus the inactivation process started later. after the addition of the antibiotic to the mutant culture

  15. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  16. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.

    Directory of Open Access Journals (Sweden)

    Young Shin Ryu

    Full Text Available Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.

  17. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  18. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  19. Attached and planktonic Listeria monocytogenes global proteomic responses and associated influence of strain genetics and temperature.

    Science.gov (United States)

    Mata, Marcia M; da Silva, Wladimir P; Wilson, Richard; Lowe, Edwin; Bowman, John P

    2015-02-06

    Contamination of industrial and domestic food usage environments by the attachement of bacterial food-borne pathogen Listeria monocytogenes has public health and economic implications. Comprehensive proteomics experiments using label-free liquid chromatography/tandem mass spectrometry were used to compare the proteomes of two different L. monocytogenes strains (Siliken_1/2c and F2365_4b), which show very different capacities to attach to surfaces. Growth temperature and strain type were highly influential on the proteomes in both attached and planktonic cells. On the basis of the proteomic data, it is highly unlikely that specific surface proteins play a direct role in adherence to inanimate surfaces. Instead, strain-dependent responses related to cell envelope polymer biosynthesis and stress response regulation likely contribute to a different ability to attach and also to survive external stressors. Collectively, the divergent proteome-level responses observed define strain- and growth-temperature-dependent differences relevant to attachment efficacy, highlight relevant proteins involved in stress protection in attached cells, and suggest that strain differences and growth conditions are important in relation to environmental persistence.

  20. Role of Streptococcus sanguinis sortase A in bacterial colonization.

    Science.gov (United States)

    Yamaguchi, Masaya; Terao, Yutaka; Ogawa, Taiji; Takahashi, Toshihito; Hamada, Shigeyuki; Kawabata, Shigetada

    2006-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, has low cariogenicity, though colonization on tooth surfaces by this bacterium initiates aggregation by other oral bacteria and maturation of dental plaque. Additionally, S. sanguinis is frequently isolated from infective endocarditis patients. We investigated the functions of sortase A (SrtA), which cleaves LPXTG-containing proteins and anchors them to the bacterial cell wall, as a possible virulence factor of S. sanguinis. We identified the srtA gene of S. sanguinis by searching a homologous gene of Streptococcus mutans in genome databases. Next, we constructed an srtA-deficient mutant strain of S. sanguinis by insertional inactivation and compared it to the wild type strain. In the case of the mutant strain, some surface proteins could not anchor to the cell wall and were partially released into the culture supernatant. Furthermore, adherence to saliva-coated hydroxyapatite beads and polystyrene plates, as well as adherence to and invasion of human epithelial cells were reduced significantly in the srtA-deficient strain when compared to the wild type. In addition, antiopsonization levels and bacterial survival of the srtA-deficient mutant were decreased in human whole blood. This is the first known study to report that SrtA contributes to antiopsonization in streptococci. Our results suggest that SrtA anchors surface adhesins as well as some proteins that function as antiopsonic molecules as a means of evading the human immune system. Furthermore, they demonstrate that SrtA of S. sanguinis plays important roles in bacterial colonization.

  1. Preliminary Study on Bacterial Pathogenic in Grouper Culture and Its Inhibitor Bacteria in Lampung Bay

    Directory of Open Access Journals (Sweden)

    A. Hatmanti

    2008-01-01

    Full Text Available Investigation of pathogenic bacteria and its inhibitor on grouper culture in some places of Lampung Bay had been carried out. Six strains of pathogenic bacteria and 28 strains of inhibitior bacteria were found in grouper and its habitat.  By inhibition test, 4 strains inhibited pathogenic bacteria were obtained. Inhibition test for Vibrio harveyi had also been performed using a bacterial collection of Marine Microbiology Laboratory of Research Center of Oceanography-LIPI.  The result showed that 3 strains could be used against bacterial infection. This study offers a positive prospect to prevent outbreak of bacterial diseases in grouper culture. Keywords: grouper culture, Lampung, inhibitor bacteria, pathogenic bacteria, inhibition test   ABSTRAK Penelitian penyakit bakterial dan bakteri penghambatnya pada budidaya ikan kerapu di beberapa tempat di perairan Teluk Lampung telah dilakukan. Enam strain bakteri patogen dan 28 strain bakteri penghambat telah berhasil diisolasi dari ikan kerapu dan habitat tempat hidupnya.  Dari hasil uji tantang (inhibition test yang dilakukan, diperoleh 4 strain bakteri penghambat yang mampu menekan pertumbuhan bakteri patogen. Selain itu, uji tantang terhadap bakteri patogen Vibrio harveyi, menggunakan bakteri penghambat koleksi Laboratorium Mikrobiologi Laut Puslit Oseanografi LIPI juga telah dilakukan.  Hasil penelitian menunjukkan bahwa 3 strain bakteri mampu memberikan hambatan terhadap pertumbuhan Vibrio harveyi.  Studi ini memberikan prospek positif terhadap penanggulangan penyakit bakterial pada budidaya ikan kerapu. Kata kunci: budidaya kerapu, Lampung, bakteri penghambat, bakteri patogen, uji tantang

  2. Molecular characterization of Mycobacterium bovis strains isolated from cattle slaughtered at two abattoirs in Algeria

    Directory of Open Access Journals (Sweden)

    Ouzrout Rachid

    2009-01-01

    Full Text Available Abstract Background Bovine Tuberculosis is prevalent in Algeria despite governmental attempts to control the disease. The objective of this study was to conduct, for the first time, molecular characterization of a population sample of Mycobacterium bovis strains isolated from slaughter cattle in Algeria. Between August and November 2007, 7250 animals were consecutively screened at the abattoirs of Algiers and Blida. In 260 animals, gross visible granulomatous lesions were detected and put into culture. Bacterial isolates were subsequently analysed by molecular methods. Results Altogether, 101 bacterial strains from 100 animals were subjected to molecular characterization. M. bovis was isolated from 88 animals. Other bacteria isolated included one strain of M. caprae, four Rhodococcus equi strains, three Non-tuberculous Mycobacteria (NTM and five strains of other bacterial species. The M. bovis strains isolated showed 22 different spoligotype patterns; four of them had not been previously reported. The majority of M. bovis strains (89% showed spoligotype patterns that were previously observed in strains from European cattle. Variable Number of Tandem Repeat (VNTR typing supported a link between M. bovis strains from Algeria and France. One spoligotype pattern has also been shown to be frequent in M. bovis strains from Mali although the VNTR pattern of the Algerian strains differed from the Malian strains. Conclusion M. bovis infections account for a high amount of granulomatous lesions detected in Algerian slaughter cattle during standard meat inspection at Algiers and Blida abattoir. Molecular typing results suggested a link between Algerian and European strains of M. bovis.

  3. Differential impact of some Aspergillus species on Meloidogyne javanica biocontrol by Pseudomonas fluorescens strain CHA0.

    Science.gov (United States)

    Siddiqui, I A; Shaukat, S S; Khan, A

    2004-01-01

    The aim was to determine the influence of some Aspergillus species on the production of nematicidal agent(s) in vitro and biocontrol of Meloidogyne javanica in tomato by Pseudomonas fluorescens strains CHA0 and CHA0/pME3424. Six species of Aspergillus, isolated from the rhizosphere of certain crops, produced a variety of secondary metabolites in vitro. Culture filtrate (CF) obtained from Ps. fluorescens strain CHA0 and its2,4-diacetylphloroglucinol overproducing mutant CHA0/pME3424 grown in King's B liquid medium caused significant mortality of M. javanica juveniles in vitro. Bacterial growth medium amended with CF of A. niger enhanced nematicidal and beta-galactosidase activities of fluorescent pseudomonads while A. quadrilineatus repressed such activities. Methanol or ethyl acetate extracts of the CF of A. niger markedly optimized bacterial efficacy to cause nematode deaths while hexane extract of the fungus had no influence on the nematicidal activity of the bacterial strains. A. niger applied alone or in conjunction with the bacterial inoculants inhibited root-knot nematode galling in tomato. On the other hand, A. quadrilineatus used alone or together with CHA0 did not inhibit nematode galling but when used in combination with strain CHA0/pME3424 did reduce galling intensity. Aspergillus niger enhances the production of nematicidal compounds by Ps. fluorescensin vitro and improves biocontrol potential of the bacterial inoculants in tomato while A. quadrilineatus reduces bacterial performance to suppress root-knot nematodes. Rhizosphere harbours a variety of micro-organisms including bacteria, fungi and viruses. Aspergillus species are ubiquitous in most agricultural soils and generally produce a variety of secondary metabolites. Such metabolites synthesized by Aspergillus species may influence the production of nematicidal agents and subsequent biocontrol performance of the bacterial inoculants against plant-parasitic nematodes. This fact needs to be taken into

  4. Frequency of isolation and antibiotic resistance patterns of bacterial isolates from wound infections

    Directory of Open Access Journals (Sweden)

    Stojanović-Radić, Z.

    2016-12-01

    Full Text Available Six hundred and thirteen bacterial strains were isolated from wound swabs and the isolates were identified on the basis of growth on differential and selective media. In order to test the sensitivity of isolated strains to different antibiotics, the disc diffusion method, according to EUCAST protocol v 5.0 was used. The most common species isolated from wound swabs was Staphylococcus epidermidis (18.4%, followed by Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis (16.8%, 12.7% and 10.4%, respectively. The maximum resistance of Gram-positive cocci was observed to penicillin and the lowest to linezolid. Gram-negative bacteria showed the highest resistance to tetracyclines, while the same strains demonstrated the highest sensitivity to polypeptide antibiotics. Comparison of the resistance patterns of Gramnegative and Gram-positive bacterial strains showed significant difference in the tetracycline efficiency.

  5. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture.

    Science.gov (United States)

    Radzki, W; Gutierrez Mañero, F J; Algar, E; Lucas García, J A; García-Villaraco, A; Ramos Solano, B

    2013-09-01

    Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.

  6. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C.

    Science.gov (United States)

    Harris, Jordan Lee; Balci, Yilmaz

    2015-01-01

    Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.

  7. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C.

    Directory of Open Access Journals (Sweden)

    Jordan Lee Harris

    Full Text Available Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.

  8. Assessing Niche Separation among Coexisting Limnohabitans Strains through Interactions with a Competitor, Viruses, and a Bacterivore ▿

    OpenAIRE

    Šimek, Karel; Kasalický, Vojtěch; Horňák, Karel; Hahn, Martin W.; Weinbauer, Markus G.

    2009-01-01

    We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality....

  9. Biodegradation of hexavalent chromium (Cr+6) in wastewater using Pseudomonas sp. and Bacillus sp. bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [Department of Chemical Engineering, American University of Sharjah (United Arab Emirates)

    2013-07-01

    The recovery of toxic metal compounds is a deep concern in all industries. Hexavalent chromium is particularly worrying because of its toxic influence on human health. In this paper, biodegradation of hexavalent chromium (Cr+6) present in wastewater has been studied using two different bacterial strains; Pseudomonas sp. and Bacillus sp. A chemostat (with and without recycle of cells) with 10 L liquid culture volume was used to study the substrate and the biomass cell concentrations with time. Also, the degree of substrate conversion was studied by the varying the dilution rate as an independent parameter. The dilution rate (ratio of feed flow rate to the culture volume) was varied by varying the feed volumetric rate from 110-170 mL/h for inlet hexavalent chromium concentrations of 70 mg/dm3. The results show that a chemostat with recycle gives a better performance in terms of substrate conversion than a chemostat without a recycle. Moreover, the degree of substrate conversion decreases as the dilution rate is increased. Also, Bacillus sp. was found to give higher conversions compared to pseudomonas sp.

  10. Mur Ligase Inhibitors as Anti-bacterials: A Comprehensive Review.

    Science.gov (United States)

    Sangshetti, Jaiprakash N; Joshi, Suyog S; Patil, Rajendra H; Moloney, Mark G; Shinde, Devanand B

    2017-01-01

    Exploring a new target for antibacterial drug discovery has gained much attention because of the emergence of Multidrug Resistance (MDR) strains of bacteria. To overcome this problem the development of novel antibacterial was considered as highest priority task and was one of the biggest challenge since multiple factors were involved. The bacterial peptidoglycan biosynthetic pathway has been well documented in the last few years and has been found to be imperative source for the development of novel antibacterial agents with high target specificity as they are essential for bacterial survival and have no homologs in humans. We have therefore reviewed the process of peptidoglycan biosynthesis which involves various steps like formation of UDP-Nacetylglucosamine (GlcNAc), UDP-N-acetylmuramic acid (MurNAc) and lipid intermediates (Lipid I and Lipid II) which are controlled by various enzymes like GlmS, GlmM, GlmU enzyme, followed by Mur Ligases (MurAMurF) and finally by MraY and MurG respectively. These four amide ligases MurC-MurF can be used as the source for the development of novel multi-target antibacterial agents as they shared and conserved amino acid regions, catalytic mechanisms and structural features. This review begins with the need for novel antibacterial agents and challenges in their development even after the development of bacterial genomic studies. An overview of the peptidoglycan monomer formation, as a source of disparity in this process is presented, followed by detailed discussion of structural and functional aspects of all Mur enzymes and different chemical classes of their inhibitors along with their SAR studies and inhibitory potential. This review finally emphasizes on different patents and novel Mur inhibitors in the development phase. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Isolation and identification of Aeromonas caviae strain KS-1 as TBTC- and lead-resistant estuarine bacteria.

    Science.gov (United States)

    Shamim, Kashif; Naik, Milind Mohan; Pandey, Anju; Dubey, Santosh Kumar

    2013-06-01

    Tributyltin chloride (TBTC)- and lead-resistant estuarine bacterium from Mandovi estuary, Goa, India was isolated and identified as Aeromonas caviae strain KS-1 based on biochemical characteristics and FAME analysis. It tolerates TBTC and lead up to 1.0 and 1.4 mM, respectively, in the minimal salt medium (MSM) supplemented with 0.4 % glucose. Scanning electron microscopy clearly revealed a unique morphological pattern in the form of long inter-connected chains of bacterial cells on exposure to 1 mM TBTC, whereas cells remained unaltered in presence of 1.4 mM Pb(NO₃)₂ but significant biosorption of lead (8 %) on the cell surface of this isolate was clearly revealed by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. SDS-PAGE analysis of whole-cell proteins of this lead-resistant isolate interestingly demonstrated three lead-induced proteins with molecular mass of 15.7, 16.9 and 32.4 kDa, respectively, when bacterial cells were grown under the stress of 1.4 mM Pb (NO₃)₂. This clearly demonstrated their possible involvement exclusively in lead resistance. A. caviae strain KS-1 also showed tolerance to several other heavy metals, viz. zinc, cadmium, copper and mercury. Therefore, we can employ this TBTC and lead-resistant bacterial isolate for lead bioremediation and also for biomonitoring TBTC from lead and TBTC contaminated environment.

  12. Bio sorption of strontium from aqueous solution by the new strain of bacillus sp. strain GT-83

    International Nuclear Information System (INIS)

    Tajer Mohammad Ghazvini, P.; Ghorbanzadeh Mashkani, S.; Mazaheri, M.

    2009-01-01

    An attempt was made to isolate bacterial strains capable of removing strontium biologically. In this study ten different water samples collected from Neydasht spring in the north of Iran and then the bacterial species were isolated from the water samples. The initial screening of a total of 50 bacterial isolates resulted in selection of one strain.The isolated strain showed a maximum adsorption capacity with 55 milligrams strontium/g dry wt. It was tentatively identified as Bacillus sp. According to the morphological and biochemical properties, and called strain GT-83. Our studies indicated that Bacillus sp. GT-83 is able to grow aerobically in the presence of 50 mM SrCl 2 , but its growth was inhibited at high levels of strontium concentrations. The bio sorption capacity of Bacillus sp. GT-83 depends strongly on the p H solution. Hence the maximum strontium sorption capacity of Bacillus sp. GT-83 was obtained at pah 10, independent of absence or presence of MgCl 2 of different concentrations. Strontium-salt bio sorption studies were also performed at this p H values. The equilibrium bio sorption of strontium was elevated by increasing the strontium concentration, up to 250 milligrams/l for Bacillus sp. GT-83. The maximum bio sorption of strontium was obtained at temperatures in the range of 30-35 d eg C . The Bacillus sp. GT-83 bio sorbed 97 milligrams strontium/g dry wt at 100 milligrams/l initial strontium concentration without MgCl 2 . When MgCl 2 concentration increased to 15%(w/v), these values dropped to 23.6 milligrams strontium/g dry wt at the same conditions. Uptake of strontium within 5 min of incubation was relatively rapid and the absorption continued slowly thereafter

  13. LATERAL GENE TRANSFER AND THE HISTORY OF BACTERIAL GENOMES

    Energy Technology Data Exchange (ETDEWEB)

    Howard Ochman

    2006-02-22

    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  14. Isolation and characterization of bacterial endophytes of Curcuma longa L.

    OpenAIRE

    Kumar, Ajay; Singh, Ritu; Yadav, Akhilesh; Giri, D. D.; Singh, P. K.; Pandey, Kapil D.

    2016-01-01

    Fourteen endophytic bacterial isolates were isolated from the rhizome of Curcuma longa L. were characterized on the basis of morphology, biochemical characteristics and 16S rRNA gene sequence analysis. The isolates were identified to six strains namely Bacillus cereus (ECL1), Bacillus thuringiensis (ECL2), Bacillus sp. (ECL3), Bacillus pumilis (ECL4), Pseudomonas putida (ECL5), and Clavibacter michiganensis (ECL6). All the strains produced IAA and solubilized phosphate and only two strains pr...

  15. Characterization of a mouse-adapted Staphylococcus aureus strain.

    Directory of Open Access Journals (Sweden)

    Silva Holtfreter

    Full Text Available More effective antibiotics and a protective vaccine are desperately needed to combat the 'superbug' Staphylococcus aureus. While in vivo pathogenicity studies routinely involve infection of mice with human S. aureus isolates, recent genetic studies have demonstrated that S. aureus lineages are largely host-specific. The use of such animal-adapted S. aureus strains may therefore be a promising approach for developing more clinically relevant animal infection models. We have isolated a mouse-adapted S. aureus strain (JSNZ which caused a severe outbreak of preputial gland abscesses among male C57BL/6J mice. We aimed to extensively characterize this strain on a genomic level and determine its virulence potential in murine colonization and infection models. JSNZ belongs to the MLST type ST88, rare among human isolates, and lacks an hlb-converting phage encoding human-specific immune evasion factors. Naive mice were found to be more susceptible to nasal and gastrointestinal colonization with JSNZ than with the human-derived Newman strain. Furthermore, naïve mice required antibiotic pre-treatment to become colonized with Newman. In contrast, JSNZ was able to colonize mice in the absence of antibiotic treatment suggesting that this strain can compete with the natural flora for space and nutrients. In a renal abscess model, JSNZ caused more severe disease than Newman with greater weight loss and bacterial burden. In contrast to most other clinical isolates, JSNZ can also be readily genetically modified by phage transduction and electroporation. In conclusion, the mouse-adapted strain JSNZ may represent a valuable tool for studying aspects of mucosal colonization and for screening novel vaccines and therapies directed at preventing colonization.

  16. Antibacterial activity of the essential oil of Origanum vulgare L. (Lamiaceae against bacterial multiresistant strains isolated from nosocomial patients

    Directory of Open Access Journals (Sweden)

    Adalberto Coelho da Costa

    Full Text Available Antibiotics are considered the main therapeutic option to treat bacterial infections; however, there is the disadvantage of increasing bacterial resistance. Thus, the research of antimicrobials of plant origin has been an important alternative. This work aimed at determining the in vitro antibacterial activity of the essential oil of Origanum vulgare L. (Lamiaceae on multiresistant bacteria isolated from biological materials. 24 strains of nosocomial bacteria were used and divided into six different species that were inhibited by the essential oil in the preliminary "screening" which was accomplished by the diffusion technique in agar. MIC was determined by the microdilution method, beginning with solutions with the final concentrations: 8 up to 0.125% with the following results: The four samples (100% of Escherichia coli, Enterococcus faecalis and MRSA were inhibited by the essential oil at the concentration of 0.125%. Three samples (75% of Acinetobacter baumannii at 0.125% and a sample (25% at 0.5%; Klebsiella pneumoniae (75% at 0.125% and 25% at 0.25%; Pseudomonas aeruginosa (75% at 0.5% and 25% at 0.25%. MIC varied from 78 to 83%. It was concluded through the obtained data that there was not difference in the minimum bactericidal concentration (0.5% of the referred oil for Gram positive as well for Gram negative microorganisms.

  17. An Inducible Operon Is Involved in Inulin Utilization in Lactobacillus plantarum Strains, as Revealed by Comparative Proteogenomics and Metabolic Profiling.

    Science.gov (United States)

    Buntin, Nirunya; Hongpattarakere, Tipparat; Ritari, Jarmo; Douillard, François P; Paulin, Lars; Boeren, Sjef; Shetty, Sudarshan A; de Vos, Willem M

    2017-01-15

    The draft genomes of Lactobacillus plantarum strains isolated from Asian fermented foods, infant feces, and shrimp intestines were sequenced and compared to those of well-studied strains. Among 28 strains of L. plantarum, variations in the genomic features involved in ecological adaptation were elucidated. The genome sizes ranged from approximately 3.1 to 3.5 Mb, of which about 2,932 to 3,345 protein-coding sequences (CDS) were predicted. The food-derived isolates contained a higher number of carbohydrate metabolism-associated genes than those from infant feces. This observation correlated to their phenotypic carbohydrate metabolic profile, indicating their ability to metabolize the largest range of sugars. Surprisingly, two strains (P14 and P76) isolated from fermented fish utilized inulin. β-Fructosidase, the inulin-degrading enzyme, was detected in the supernatants and cell wall extracts of both strains. No activity was observed in the cytoplasmic fraction, indicating that this key enzyme was either membrane-bound or extracellularly secreted. From genomic mining analysis, a predicted inulin operon of fosRABCDXE, which encodes β-fructosidase and many fructose transporting proteins, was found within the genomes of strains P14 and P76. Moreover, pts1BCA genes, encoding sucrose-specific IIBCA components involved in sucrose transport, were also identified. The proteomic analysis revealed the mechanism and functional characteristic of the fosRABCDXE operon involved in the inulin utilization of L. plantarum The expression levels of the fos operon and pst genes were upregulated at mid-log phase. FosE and the LPXTG-motif cell wall anchored β-fructosidase were induced to a high abundance when inulin was present as a carbon source. Inulin is a long-chain carbohydrate that may act as a prebiotic, which provides many health benefits to the host by selectively stimulating the growth and activity of beneficial bacteria in the colon. While certain lactobacilli can catabolize

  18. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    Science.gov (United States)

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  19. A Retrospective Study on Genetic Heterogeneity within Treponema Strains: Subpopulations Are Genetically Distinct in a Limited Number of Positions.

    Directory of Open Access Journals (Sweden)

    Darina Čejková

    Full Text Available Pathogenic uncultivable treponemes comprise human and animal pathogens including agents of syphilis, yaws, bejel, pinta, and venereal spirochetosis in rabbits and hares. A set of 10 treponemal genome sequences including those of 4 Treponema pallidum ssp. pallidum (TPA strains (Nichols, DAL-1, Mexico A, SS14, 4 T. p. ssp. pertenue (TPE strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc, 1 T. p. ssp. endemicum (TEN strain (Bosnia A and one strain (Cuniculi A of Treponema paraluisleporidarum ecovar Cuniculus (TPLC were examined with respect to the presence of nucleotide intrastrain heterogeneous sites.The number of identified intrastrain heterogeneous sites in individual genomes ranged between 0 and 7. Altogether, 23 intrastrain heterogeneous sites (in 17 genes were found in 5 out of 10 investigated treponemal genomes including TPA strains Nichols (n = 5, DAL-1 (n = 4, and SS14 (n = 7, TPE strain Samoa D (n = 1, and TEN strain Bosnia A (n = 5. Although only one heterogeneous site was identified among 4 tested TPE strains, 16 such sites were identified among 4 TPA strains. Heterogeneous sites were mostly strain-specific and were identified in four tpr genes (tprC, GI, I, K, in genes involved in bacterial motility and chemotaxis (fliI, cheC-fliY, in genes involved in cell structure (murC, translation (prfA, general and DNA metabolism (putative SAM dependent methyltransferase, topA, and in seven hypothetical genes.Heterogeneous sites likely represent both the selection of adaptive changes during infection of the host as well as an ongoing diversifying evolutionary process.

  20. A Retrospective Study on Genetic Heterogeneity within Treponema Strains: Subpopulations Are Genetically Distinct in a Limited Number of Positions.

    Science.gov (United States)

    Čejková, Darina; Strouhal, Michal; Norris, Steven J; Weinstock, George M; Šmajs, David

    2015-01-01

    Pathogenic uncultivable treponemes comprise human and animal pathogens including agents of syphilis, yaws, bejel, pinta, and venereal spirochetosis in rabbits and hares. A set of 10 treponemal genome sequences including those of 4 Treponema pallidum ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14), 4 T. p. ssp. pertenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), 1 T. p. ssp. endemicum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPLC) were examined with respect to the presence of nucleotide intrastrain heterogeneous sites. The number of identified intrastrain heterogeneous sites in individual genomes ranged between 0 and 7. Altogether, 23 intrastrain heterogeneous sites (in 17 genes) were found in 5 out of 10 investigated treponemal genomes including TPA strains Nichols (n = 5), DAL-1 (n = 4), and SS14 (n = 7), TPE strain Samoa D (n = 1), and TEN strain Bosnia A (n = 5). Although only one heterogeneous site was identified among 4 tested TPE strains, 16 such sites were identified among 4 TPA strains. Heterogeneous sites were mostly strain-specific and were identified in four tpr genes (tprC, GI, I, K), in genes involved in bacterial motility and chemotaxis (fliI, cheC-fliY), in genes involved in cell structure (murC), translation (prfA), general and DNA metabolism (putative SAM dependent methyltransferase, topA), and in seven hypothetical genes. Heterogeneous sites likely represent both the selection of adaptive changes during infection of the host as well as an ongoing diversifying evolutionary process.

  1. Enterobacter Strains Might Promote Colon Cancer.

    Science.gov (United States)

    Yurdakul, Dilşad; Yazgan-Karataş, Ayten; Şahin, Fikrettin

    2015-09-01

    Many studies have been performed to determine the interaction between bacterial species and cancer. However, there has been no attempts to demonstrate a possible relationship between Enterobacter spp. and colon cancer so far. Therefore, in the present study, it is aimed to investigate the effects of Enterobacter strains on colon cancer. Bacterial proteins were isolated from 11 Enterobacter spp., one Morganella morganii, and one Escherichia coli strains, and applied onto NCM460 (Incell) and CRL1790 (ATCC) cell lines. Cell viability and proliferation were determined in MTS assay. Flow Cytometry was used to detect CD24 level and apoptosis. Real-Time PCR studies were performed to determine NFKB and Bcl2 expression. Graphpad Software was used for statistical analysis. The results showed that proteins, isolated from the Enterobacter spp., have significantly increased cell viability and proliferation, while decreasing the apoptosis of the cell lines tested. The data in the present study indicated that Enterobacter strains might promote colon cancer. Moreover, Enterobacter spp. could be a clinically important factor for colon cancer initiation and progression. Studies can be extended on animal models in order to develop new strategies for treatment.

  2. Microbial interactions chapter: binding and entry of DNA in bacterial transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1977-01-01

    Genetic transformation of bacteria by DNA released from cells of a related strain is discussed. The mechanism by which the giant information-bearing molecules of DNA are transported into the bacterial cell was investigated. It was concluded that the overall process of DNA uptake consists of two main steps, binding of donor DNA to the outside of the cell and entry of the bound DNA into the cell. Each step is discussed in detail. Inasmuch as these phenomena occur at the cell surface, they are related to structures and functions of the cell wall and membrane. In addition, the development of competence, that is the formation of cell surface structures allowing DNA uptake, is examined from both a physiological and evolutionary point of view. Genetic transfer mediated by free DNA is an obvious and important form of cellular interaction. The development of competence involves another, quite distinct system of interaction between bacterial cells. Streptococcus pneumoniae, Bacillus subtilis, and Hemophilus influenzae were used as the test organisms. 259 references.

  3. Host imprints on bacterial genomes--rapid, divergent evolution in individual patients.

    Directory of Open Access Journals (Sweden)

    Jaroslaw Zdziarski

    Full Text Available Bacteria lose or gain genetic material and through selection, new variants become fixed in the population. Here we provide the first, genome-wide example of a single bacterial strain's evolution in different deliberately colonized patients and the surprising insight that hosts appear to personalize their microflora. By first obtaining the complete genome sequence of the prototype asymptomatic bacteriuria strain E. coli 83972 and then resequencing its descendants after therapeutic bladder colonization of different patients, we identified 34 mutations, which affected metabolic and virulence-related genes. Further transcriptome and proteome analysis proved that these genome changes altered bacterial gene expression resulting in unique adaptation patterns in each patient. Our results provide evidence that, in addition to stochastic events, adaptive bacterial evolution is driven by individual host environments. Ongoing loss of gene function supports the hypothesis that evolution towards commensalism rather than virulence is favored during asymptomatic bladder colonization.

  4. SNIT: SNP identification for strain typing

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2011-09-01

    Full Text Available Abstract With ever-increasing numbers of microbial genomes being sequenced, efficient tools are needed to perform strain-level identification of any newly sequenced genome. Here, we present the SNP identification for strain typing (SNIT pipeline, a fast and accurate software system that compares a newly sequenced bacterial genome with other genomes of the same species to identify single nucleotide polymorphisms (SNPs and small insertions/deletions (indels. Based on this information, the pipeline analyzes the polymorphic loci present in all input genomes to identify the genome that has the fewest differences with the newly sequenced genome. Similarly, for each of the other genomes, SNIT identifies the input genome with the fewest differences. Results from five bacterial species show that the SNIT pipeline identifies the correct closest neighbor with 75% to 100% accuracy. The SNIT pipeline is available for download at http://www.bhsai.org/snit.html

  5. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    Directory of Open Access Journals (Sweden)

    Linda Jabari

    2016-03-01

    Full Text Available Abstract Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens, and msbl6 (candidate division were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published.

  6. Degradation of 4-fluorophenol by Arthrobacter sp strain IF1

    NARCIS (Netherlands)

    Ferreira, Maria Isabel M.; Marchesi, Julian R.; Janssen, Dick B.

    A Gram-positive bacterial strain capable of aerobic biodegradation of 4-fluorophenol (4-FP) as the sole source of carbon and energy was isolated by selective enrichment from soil samples collected near an industrial site. The organism, designated strain IF1, was identified as a member of the genus

  7. Comparing insertion libraries in two Pseudomonas aeruginosa strains to assess gene essentiality.

    Science.gov (United States)

    Liberati, Nicole T; Urbach, Jonathan M; Thurber, Tara K; Wu, Gang; Ausubel, Frederick M

    2008-01-01

    Putative essential genes can be identified by comparing orthologs not disrupted in multiple near-saturated transposon insertion mutation libraries in related strains of the same bacterial species. Methods for identifying all orthologs between two bacterial strains and putative essential orthologs are described. In addition, protocols detailing near-saturation transposon insertion mutagenesis of bacteria are presented, including (1) conjugation-mediated mutagenesis, (2) automated colony picking and liquid handling of mutant cultures, and (3) arbitrary polymerase chain reaction amplification and sequencing of genomic DNA adjacent to transposon insertion sites.

  8. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    Science.gov (United States)

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  9. Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea.

    Science.gov (United States)

    Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng

    2015-09-01

    Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.

  10. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  11. Genes but not genomes reveal bacterial domestication of Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Delphine Passerini

    Full Text Available BACKGROUND: The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE. METHODOLOGY/PRINCIPAL FINDINGS: The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST differing by up to 230 kb in genome size. CONCLUSION/SIGNIFICANCE: The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between "environmental" strains, the main contributors to the genetic diversity within the subspecies, and "domesticated" strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the "domesticated" strains essentially arose through substantial genomic flux within the dispensable

  12. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  13. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites

    Directory of Open Access Journals (Sweden)

    Kaustuvmani Patowary

    2016-07-01

    Full Text Available The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia towards total petroleum hydrocarbons (TPH with special emphasis to poly aromatic hydrocarbons (PAHs were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples 5 isolates, namely KS2, PG1, PG5, R1 and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1 and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and Bacillus cereus R2 (identified by 16s rRNA sequencing has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of total petroleum hydrocarbon (TPH after five weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared and GCMS (Gas chromatography-mass spectrometer analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  14. A model of antibiotic-resistant bacterial epidemics in hospitals

    OpenAIRE

    Webb, Glenn F.; D'Agata, Erika M. C.; Magal, Pierre; Ruan, Shigui

    2005-01-01

    The emergence of drug-resistant strains of bacteria is an increasing threat to society, especially in hospital settings. Many antibiotics that were formerly effective in combating bacterial infections in hospital patients are no longer effective because of the evolution of resistant strains, which compromises medical care worldwide. In this article, we formulate a two-level population model to quantify key elements in nosocomial (hospital-acquired) infections. At the bacteria level, patients ...

  15. Selective propensity of bovine jugular vein material to bacterial adhesions: An in-vitro study.

    Science.gov (United States)

    Jalal, Zakaria; Galmiche, Louise; Lebeaux, David; Villemain, Olivier; Brugada, Georgia; Patel, Mehul; Ghigo, Jean-Marc; Beloin, Christophe; Boudjemline, Younes

    2015-11-01

    Percutaneous pulmonary valve implantation (PPVI) using Melody valve made of bovine jugular vein is safe and effective. However, infective endocarditis has been reported for unclear reasons. We sought to assess the impact of valvular substrates on selective bacterial adhesion. Three valved stents (Melody valve, homemade stents with bovine and porcine pericardium) were tested in-vitro for bacterial adhesion using Staphylococcus aureus and Streptococcus sanguinis strains. Bacterial adhesion was higher on bovine jugular venous wall for S. aureus and on Melody valvular leaflets for S. sanguinis in control groups and significantly increased in traumatized Melody valvular leaflets with both bacteria (traumatized vs non traumatized: p=0.05). Bacterial adhesion was lower on bovine pericardial leaflets. Selective adhesion of S. aureus and S. sanguinis pathogenic strains to Melody valve tissue was noted on healthy tissue and increased after implantation procedural steps. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Shekhawat G

    2009-07-01

    Full Text Available Abstract Background The synthesis of gold nanoparticles (GNPs has received considerable attention with their potential applications in various life sciences related applications. Recently, there has been tremendous excitement in the study of nanoparticles synthesis by using some natural biological system, which has led to the development of various biomimetic approaches for the growth of advanced nanomaterials. In the present study, we have demonstrated the synthesis of gold nanoparticles by a novel bacterial strain isolated from a site near the famous gold mines in India. A promising mechanism for the biosynthesis of GNPs by this strain and their stabilization via charge capping was investigated. Results A bacterial isolate capable of gold nanoparticle synthesis was isolated and identified as a novel strain of Stenotrophomonas malophilia (AuRed02 based on its morphology and an analysis of its 16S rDNA gene sequence. After 8 hrs of incubation, monodisperse preparation of gold nanoparticles was obtained. Gold nanoparticles were characterized and found to be of ~40 nm size. Electrophoresis, Zeta potential and FTIR measurements confirmed that the particles are capped with negatively charged phosphate groups from NADP rendering them stable in aqueous medium. Conclusion The process of synthesis of well-dispersed nanoparticles using a novel microorganism isolated from the gold enriched soil sample has been reported in this study, leading to the development of an easy bioprocess for synthesis of GNPs. This is the first study in which an extensive characterization of the indigenous bacterium isolated from the actual gold enriched soil was conducted. Promising mechanism for the biosynthesis of GNPs by the strain and their stabilization via charge capping is suggested, which involves an NADPH-dependent reductase enzyme that reduces Au3+ to Au0 through electron shuttle enzymatic metal reduction process.

  17. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Science.gov (United States)

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  18. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Directory of Open Access Journals (Sweden)

    Dhaneshwaree Asem

    Full Text Available The gastrointestinal (GI habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk and a domesticated goat (Black Bengal were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF of D2 (alkaline pretreated pulpy biomass using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL and FPase (0.5 U/mL activities (55°C, pH 8. The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  19. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae.

    Science.gov (United States)

    Pecenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-09-01

    Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root

  20. LETHALITY OF PSEUDOMONAS FLUORESCENS STRAIN CLO145A TO THE 2 ZEBRA MUSSEL SPECIES PRESENT IN NORTH AMERICA

    International Nuclear Information System (INIS)

    Molloy, Daniel P.

    2001-01-01

    These experiments indicated that bacterial strain CL0145A of Pseudomonas fluorescens is equally lethal to the 2 zebra mussel species present in North America, Dreissena polymorpha and Dreissena bugensis. Thus, this bacterial strain should be equally effective at killing zebra mussels in power plant pipes, irrespective of which species is present

  1. LETHALITY OF PSEUDOMONAS FLUORESCENS STRAIN CLO145A TO THE 2 ZEBRA MUSSEL SPECIES PRESENT IN NORTH AMERICA

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2001-10-28

    These experiments indicated that bacterial strain CL0145A of Pseudomonas fluorescens is equally lethal to the 2 zebra mussel species present in North America, Dreissena polymorpha and Dreissena bugensis. Thus, this bacterial strain should be equally effective at killing zebra mussels in power plant pipes, irrespective of which species is present.

  2. Conjunctival sac bacterial flora isolated prior to cataract surgery

    Directory of Open Access Journals (Sweden)

    Suto C

    2012-01-01

    Full Text Available Chikako Suto1,2, Masahiro Morinaga1,2, Tomoko Yagi1,2, Chieko Tsuji3, Hiroshi Toshida41Department of Ophthalmology, Saiseikai Kurihashi Hospital, Saitama; 2Department of Ophthalmology, Tokyo Women's Medical University, Tokyo; 3Department of Clinical Laboratory, Saiseikai Kurihashi Hospital, Saitama; 4Department of Ophthalmology, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, JapanObjective: To determine the trends of conjunctival sac bacterial flora isolated from patients prior to cataract surgery.Subjects and methods: The study comprised 579 patients (579 eyes who underwent cataract surgery. Specimens were collected by lightly rubbing the inferior palpebral conjunctival sac with a sterile cotton swab 2 weeks before surgery, and then cultured for isolation of bacteria and antimicrobial sensitivity testing. The bacterial isolates and percentage of drug-resistant isolates were compared among age groups and according to whether or not patients had diabetes mellitus, hyperlipidemia, dialysis therapy, oral steroid use, dry eye syndrome, or allergic conjunctivitis.Results: The bacterial isolation rate was 39.2%. There were 191 strains of Gram-positive cocci, accounting for the majority of all isolates (67.0%, among which methicillin-sensitive coagulase-negative staphylococci was the most frequent (127 strains, 44.5%, followed by methicillin-resistant coagulase-negative staphylococci (37 strains, 12.7%. All 76 Gram-positive bacillary isolates (26.7% were from the genus Corynebacterium. Among the 16 Gram-negative bacillary isolates (5.9%, the most frequent was Escherichia coli (1.0%. The bacterial isolation rate was higher in patients >60 years old, and was lower in patients with dry eye syndrome, patients under topical treatment for other ocular disorders, and patients with hyperlipidemia. There was no significant difference in bacterial isolation rate with respect to the presence/absence of diabetes mellitus, steroid therapy, dialysis, or

  3. Effect of cholesterol deposition on bacterial adhesion to contact lenses.

    Science.gov (United States)

    Babaei Omali, Negar; Zhu, Hua; Zhao, Zhenjun; Ozkan, Jerome; Xu, Banglao; Borazjani, Roya; Willcox, Mark D P

    2011-08-01

    To examine the effect of cholesterol on the adhesion of bacteria to silicone hydrogel contact lenses. Contact lenses, collected from subjects wearing Acuvue Oasys or PureVision lenses, were extracted in chloroform:methanol (1:1, v/v) and amount of cholesterol was estimated by thin-layer chromatography. Unworn lenses were soaked in cholesterol, and the numbers of Pseudomonas aeruginosa strains or Staphylococcus aureus strains that adhered to the lenses were measured. Cholesterol was tested for effects on bacterial growth by incubating bacteria in medium containing cholesterol. From ex vivo PureVision lenses, 3.4 ± 0.3 μg/lens cholesterol was recovered, and from Acuvue Oasys lenses, 2.4 ± 0.2 to 1.0 ± 0.1 μg/lens cholesterol was extracted. Cholesterol did not alter the total or viable adhesion of any strain of P. aeruginosa or S. aureus (p > 0.05). However, worn PureVision lenses reduced the numbers of viable cells of P. aeruginosa (5.8 ± 0.4 log units) compared with unworn lenses (6.4 ± 0.2 log units, p = 0.001). Similarly, there were fewer numbers of S. aureus 031 adherent to worn PureVision (3.05 ± 0.8 log units) compared with unworn PureVision (4.6 ± 0.3 log units, p = 0.0001). Worn Acuvue Oasys lenses did not affect bacterial adhesion. Cholesterol showed no effect on the growth of any test strain. Although cholesterol has been shown to adsorb to contact lenses during wear, this lipid does not appear to modulate bacterial adhesion to a lens surface.

  4. Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation.

    Science.gov (United States)

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Jariyavidyanont, Katalee; Kaunzner, Jennifer; Juncheed, Kantida; Uengwetwanit, Tanaporn; Rudloff, Renate; Schulz, Elke; Hofrichter, Martin; Schloter, Michael; Krüger, Dirk; Buscot, François

    2015-05-01

    Forest management practices (FMPs) significantly influence important ecological processes and services in Central European forests, such as leaf litter decomposition and nutrient cycling. Changes in leaf litter diversity, and thus, its quality as well as microbial community structure and function induced by different FMPs were hypothesized to be the main drivers causing shifts in decomposition rates and nutrient release in managed forests. In a litterbag experiment lasting 473 days, we aimed to investigate the effects of FMPs (even-aged timber management, selective logging and unmanaged) on bacterial and fungal communities involved in leaf litter degradation over time. Our results showed that microbial communities in leaf litter were strongly influenced by both FMPs and sampling date. The results from nonmetric multidimensional scaling (NMDS) ordination revealed distinct patterns of bacterial and fungal successions over time in leaf litter. We demonstrated that FMPs and sampling dates can influence a range of factors, including leaf litter quality, microbial macronutrients, and pH, which significantly correlate with microbial community successions.

  5. Identification and Characterization of Novel Biocontrol Bacterial

    Directory of Open Access Journals (Sweden)

    Young Cheol Kim

    2014-09-01

    Full Text Available Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera

  6. View of the bacterial strains of Escherichia coli M-17 and its interaction with the nanoparticles of zinc oxide by means of atomic force microscopy

    International Nuclear Information System (INIS)

    Sagitova, A; Yaminsky, I; Meshkov, G

    2016-01-01

    Visualization of the structure of biological objects plays a key role in medicine, biotechnology, nanotechnology and IT-technology. Atomic force microscopy (AFM) is a promising method of studying of objects’ morphology and structure. In this work, AFM was used to determine the size and shape of the bacterial strains of Escherichia coli M-17 and visualization its interaction with the nanoparticles of zinc oxide. The suspension of E.coli bacteria was applied to natural mica and studied by contact mode using the FemtoScan multifunctional scanning probe microscope. (paper)

  7. View of the bacterial strains of Escherichia coli M-17 and its interaction with the nanoparticles of zinc oxide by means of atomic force microscopy

    Science.gov (United States)

    Sagitova, A.; Yaminsky, I.; Meshkov, G.

    2016-08-01

    Visualization of the structure of biological objects plays a key role in medicine, biotechnology, nanotechnology and IT-technology. Atomic force microscopy (AFM) is a promising method of studying of objects’ morphology and structure. In this work, AFM was used to determine the size and shape of the bacterial strains of Escherichia coli M-17 and visualization its interaction with the nanoparticles of zinc oxide. The suspension of E.coli bacteria was applied to natural mica and studied by contact mode using the FemtoScan multifunctional scanning probe microscope.

  8. A locked nucleic acid (LNA-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture.

    Directory of Open Access Journals (Sweden)

    Lingxiang Zhu

    Full Text Available Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA-based quantitative real-time PCR (LNA-qPCR method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1-10 colony forming units (CFU per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4% were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates.

  9. Alternatives to overcoming bacterial resistances: State-of-the-art.

    Science.gov (United States)

    Rios, Alessandra C; Moutinho, Carla G; Pinto, Flávio C; Del Fiol, Fernando S; Jozala, Angela; Chaud, Marco V; Vila, Marta M D C; Teixeira, José A; Balcão, Victor M

    2016-10-01

    Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies

  10. Identification of Key Factors Involved in the Biosorption of Patulin by Inactivated Lactic Acid Bacteria (LAB Cells.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available The purpose of this study was to identify the key factors involved in patulin adsorption by heat-inactivated lactic acid bacteria (LAB cells. For preventing bacterial contamination, a sterilization process was involved in the adsorption process. The effects of various physical, chemical, and enzymatic pre-treatments, simultaneous treatments, and post-treatments on the patulin adsorption performances of six LAB strains were evaluated. The pre-treated cells were characterized by scanning electron microscopy (SEM. Results showed that the removal of patulin by viable cells was mainly based on adsorption or degradation, depending on the specific strain. The adsorption abilities were widely increased by NaOH and esterification pre-treatments, and reduced by trypsin, lipase, iodate, and periodate pre-treatments. Additionally, the adsorption abilities were almost maintained at pH 2.2-4.0, and enhanced significantly at pH 4.0-6.0. The effects of sodium and magnesium ions on the adsorption abilities at pH 4 were slight and strain-specific. A lower proportion of patulin was released from the strain with higher adsorption ability. Analyses revealed that the physical structure of peptidoglycan was not a principal factor. Vicinal OH and carboxyl groups were not involved in patulin adsorption, while alkaline amino acids, thiol and ester compounds were important for patulin adsorption. Additionally, besides hydrophobic interaction, electrostatic interaction also participated in patulin adsorption, which was enhanced with the increase in pH (4.0-6.0.

  11. Identification of Key Factors Involved in the Biosorption of Patulin by Inactivated Lactic Acid Bacteria (LAB) Cells.

    Science.gov (United States)

    Wang, Ling; Wang, Zhouli; Yuan, Yahong; Cai, Rui; Niu, Chen; Yue, Tianli

    2015-01-01

    The purpose of this study was to identify the key factors involved in patulin adsorption by heat-inactivated lactic acid bacteria (LAB) cells. For preventing bacterial contamination, a sterilization process was involved in the adsorption process. The effects of various physical, chemical, and enzymatic pre-treatments, simultaneous treatments, and post-treatments on the patulin adsorption performances of six LAB strains were evaluated. The pre-treated cells were characterized by scanning electron microscopy (SEM). Results showed that the removal of patulin by viable cells was mainly based on adsorption or degradation, depending on the specific strain. The adsorption abilities were widely increased by NaOH and esterification pre-treatments, and reduced by trypsin, lipase, iodate, and periodate pre-treatments. Additionally, the adsorption abilities were almost maintained at pH 2.2-4.0, and enhanced significantly at pH 4.0-6.0. The effects of sodium and magnesium ions on the adsorption abilities at pH 4 were slight and strain-specific. A lower proportion of patulin was released from the strain with higher adsorption ability. Analyses revealed that the physical structure of peptidoglycan was not a principal factor. Vicinal OH and carboxyl groups were not involved in patulin adsorption, while alkaline amino acids, thiol and ester compounds were important for patulin adsorption. Additionally, besides hydrophobic interaction, electrostatic interaction also participated in patulin adsorption, which was enhanced with the increase in pH (4.0-6.0).

  12. Draft genome sequences of eight bacteria isolated from the indoor environment: Staphylococcus capitis strain H36, S. capitis strain H65, S. cohnii strain H62, S. hominis strain H69, Microbacterium sp. strain H83, Mycobacterium iranicum strain H39, Plantibacter sp. strain H53, and Pseudomonas oryzihabitans strain H72.

    Science.gov (United States)

    Lymperopoulou, Despoina S; Coil, David A; Schichnes, Denise; Lindow, Steven E; Jospin, Guillaume; Eisen, Jonathan A; Adams, Rachel I

    2017-01-01

    We report here the draft genome sequences of eight bacterial strains of the genera Staphylococcus , Microbacterium, Mycobacterium, Plantibacter, and Pseudomonas . These isolates were obtained from aerosol sampling of bathrooms of five residences in the San Francisco Bay area. Taxonomic classifications as well as the genome sequence and gene annotation of the isolates are described. As part of the "Built Environment Reference Genome" project, these isolates and associated genome data provide valuable resources for studying the microbiology of the built environment.

  13. Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides

    NARCIS (Netherlands)

    van der Heijden, I. M.; Wilbrink, B.; Tchetverikov, I.; Schrijver, I. A.; Schouls, L. M.; Hazenberg, M. P.; Breedveld, F. C.; Tak, P. P.

    2000-01-01

    The continuous presence of bacteria or their degraded antigens in the synovium may be involved in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to determine the presence of bacterial nucleic acids and bacterial cell wall constituents in the joints of patients with RA and

  14. Complete genome sequence of community-associated methicillin-resistant Staphylococcus aureus (strain USA400-0051, a prototype of the USA400 clone

    Directory of Open Access Journals (Sweden)

    Marina Farrel Côrtes

    Full Text Available Staphylococcus aureus subsp. aureus, commonly referred as S. aureus, is an important bacterial pathogen frequently involved in hospital- and community-acquired infections in humans, ranging from skin infections to more severe diseases such as pneumonia, bacteraemia, endocarditis, osteomyelitis, and disseminated infections. Here, we report the complete closed genome sequence of a community-acquired methicillin-resistant S. aureus strain, USA400-0051, which is a prototype of the USA400 clone.

  15. Modelling within-host spatiotemporal dynamics of invasive bacterial disease.

    Directory of Open Access Journals (Sweden)

    Andrew J Grant

    2008-04-01

    Full Text Available Mechanistic determinants of bacterial growth, death, and spread within mammalian hosts cannot be fully resolved studying a single bacterial population. They are also currently poorly understood. Here, we report on the application of sophisticated experimental approaches to map spatiotemporal population dynamics of bacteria during an infection. We analyzed heterogeneous traits of simultaneous infections with tagged Salmonella enterica populations (wild-type isogenic tagged strains [WITS] in wild-type and gene-targeted mice. WITS are phenotypically identical but can be distinguished and enumerated by quantitative PCR, making it possible, using probabilistic models, to estimate bacterial death rate based on the disappearance of strains through time. This multidisciplinary approach allowed us to establish the timing, relative occurrence, and immune control of key infection parameters in a true host-pathogen combination. Our analyses support a model in which shortly after infection, concomitant death and rapid bacterial replication lead to the establishment of independent bacterial subpopulations in different organs, a process controlled by host antimicrobial mechanisms. Later, decreased microbial mortality leads to an exponential increase in the number of bacteria that spread locally, with subsequent mixing of bacteria between organs via bacteraemia and further stochastic selection. This approach provides us with an unprecedented outlook on the pathogenesis of S. enterica infections, illustrating the complex spatial and stochastic effects that drive an infectious disease. The application of the novel method that we present in appropriate and diverse host-pathogen combinations, together with modelling of the data that result, will facilitate a comprehensive view of the spatial and stochastic nature of within-host dynamics.

  16. Bacterial and fungal microflora in surgically removed lung cancer samples

    Directory of Open Access Journals (Sweden)

    Toloudi Maria

    2011-10-01

    Full Text Available Abstract Background Clinical and experimental data suggest an association between the presence of bacterial and/or fungal infection and the development of different types of cancer, independently of chemotherapy-induced leukopenia. This has also been postulated for the development of lung cancer, however the prevalence and the exact species of the bacteria and fungi implicated, have not yet been described. Aim To determine the presence of bacterial and fungal microflora in surgically extracted samples of patients with lung cancer. Materials and methods In this single-center prospective, observational study, tissue samples were surgically extracted from 32 consecutive patients with lung cancer, and reverse-transcription polymerase chain reaction (RT-PCR was used to identify the presence of bacteria and fungi strains. Results The analysis of the electrophoresis data pointed out diversity between the samples and the strains that were identified. Mycoplasma strains were identified in all samples. Strains that appeared more often were Staphylococcus epidermidis, Streptococcus mitis and Bacillus strains, followed in descending frequency by Chlamydia, Candida, Listeria, and Haemophilus influenza. In individual patients Legionella pneumophila and Candida tropicalis were detected. Conclusions A diversity of pathogens could be identified in surgically extracted tissue samples of patients with lung cancer, with mycoplasma strains being present in all samples. These results point to an etiologic role for chronic infection in lung carcinogenesis. Confirmation of these observations and additional studies are needed to further characterize the etiologic role of inflammation in lung carcinogenesis.

  17. Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells

    Science.gov (United States)

    de Vos, Paul; Mujagic, Zlatan; de Haan, Bart J.; Siezen, Roland J.; Bron, Peter A.; Meijerink, Marjolein; Wells, Jerry M.; Masclee, Ad A. M.; Boekschoten, Mark V.; Faas, Marijke M.; Troost, Freddy J.

    2017-01-01

    host immunity is strain dependent and involves responses against bacterial cell components. Some strains may enhance specific responses against pathogens by enhancing antigen presentation and leukocyte maintenance in mucosa. In future studies and clinical settings, caution should be taken in selecting beneficial bacteria as closely related strains can have different effects. Our data show that specific bacterial strains can prevent immune stress induced by commonly consumed painkillers such as NSAID and can have enhancing beneficial effects on immunity of consumers by stimulating antigen presentation and memory responses. PMID:28878772

  18. Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells

    Directory of Open Access Journals (Sweden)

    Paul de Vos

    2017-08-01

    . plantarum on host immunity is strain dependent and involves responses against bacterial cell components. Some strains may enhance specific responses against pathogens by enhancing antigen presentation and leukocyte maintenance in mucosa. In future studies and clinical settings, caution should be taken in selecting beneficial bacteria as closely related strains can have different effects. Our data show that specific bacterial strains can prevent immune stress induced by commonly consumed painkillers such as NSAID and can have enhancing beneficial effects on immunity of consumers by stimulating antigen presentation and memory responses.

  19. The presence of embedded bacterial pure cultures in agar plates stimulate the culturability of soil bacteria

    DEFF Research Database (Denmark)

    Burmølle, Mette; Johnsen, Kaare; Abu Al-Soud, Waleed Mohamad Abdel F

    2009-01-01

    Traditional methods for bacterial cultivation recover only a small fraction of bacteria from all sorts of natural environments, and attempts have been made to improve the bacterial culturability. Here we describe the development of a cultivation method, based on the embedment of pure bacterial...... cultures in between two layers of agar. Plates containing either embedded Pseudomonas putida or Arthrobacter globiformis resulted in higher numbers of CFUs of soil bacteria (21% and 38%, respectively) after 833 h of incubation, compared to plates with no embedded strain. This indicates a stimulatory effect...... of the bacterial pure cultures on the cultivation of soil bacteria. Analysis of partial 16S rRNA gene sequences revealed a phylogenetical distribution of the soil isolates into 7 classes in 4 phyla. No difference was observed at the phylum or class level when comparing isolates grouped according to embedded strain...

  20. Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination.

    Science.gov (United States)

    Lejon, David P H; Nowak, Virginie; Bouko, Sabrina; Pascault, Noémie; Mougel, Christophe; Martins, Jean M F; Ranjard, Lionel

    2007-09-01

    A molecular fingerprinting assay was developed to assess the diversity of copA genes, one of the genetic determinants involved in bacterial resistance to copper. Consensus primers of the copA genes were deduced from an alignment of sequences from proteobacterial strains. A PCR detection procedure was optimized for bacterial strains and allowed the description of a novel copA genetic determinant in Pseudomonas fluorescens. The copA DNA fingerprinting procedure was optimized for DNA directly extracted from soils differing in their physico-chemical characteristics and in their organic status (SOS). Particular copA genetic structures were obtained for each studied soil and a coinertia analysis with soil physico-chemical characteristics revealed the strong influence of pH, soil texture and the quality of soil organic matter. The molecular phylogeny of copA gene confirmed that specific copA genes clusters are specific for each SOS. Furthermore, this study demonstrates that this approach was sensitive to short-term responses of copA gene diversity to copper additions to soil samples, suggesting that community adaptation is preferentially controlled by the diversity of the innate copA genes rather than by the bioavailability of the metal.

  1. High-Throughput Screening for a Moderately Halophilic Phenol-Degrading Strain and Its Salt Tolerance Response

    Science.gov (United States)

    Lu, Zhi-Yan; Guo, Xiao-Jue; Li, Hui; Huang, Zhong-Zi; Lin, Kuang-Fei; Liu, Yong-Di

    2015-01-01

    A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC). The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg·L−1 starting concentration) over a range of 3%–10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH) and catechol 1,2-dioxygenase (C12O) were active in the phenol degradation process. PMID:26020478

  2. Identification of resistance and virulence factors in an epidemic Enterobacter hormaechei outbreak strain

    NARCIS (Netherlands)

    Paauw, A.; Caspers, M.P.M.; Leverstein-van Hall, M.A.; Schuren, F.H.J.; Montijn, R.C.; Verhoef, J.; Fluit, A.C.

    2009-01-01

    Bacterial strains differ in their ability to cause hospital outbreaks. Using comparative genomic hybridization, Enterobacter cloacae complex isolates were studied to identify genetic markers specific for Enterobacter cloacae complex outbreak strains. No outbreak-specific genes were found that were

  3. Physico-chemical characterization and antibacterial activity of different types of honey tested on strains isolated from hospitalized patients

    Directory of Open Access Journals (Sweden)

    Junie Lia M.

    2016-06-01

    Full Text Available The first aim of the study was to compare the antibacterial activity of several types of honey of different origins, against some bacterial resistant strains. The strains had been isolated from patients. The second aim was to discover the correlations between the antibacterial character of honey and the physico-chemical properties of the honey. Ten honey samples (polyfloral, linden, acacia, manna, and sunflower from the centre of Romania were tested to determine their antibacterial properties against the following bacterial species: Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enterica serovar Typhimurium, Bacillus cereus, Bacillus subtilis, and Listeria monocytogenes. Bacterial cultures in nutrient broth and the culture medium Mueller-Hinton agar were used. The susceptibility to antibiotics was performed using the disk diffusion method. All honey samples showed antibacterial activity on the isolated bacterial strains, in particular polyfloral (inhibition zone 13-21 mm in diameter - because it is the source of several plants, and manna (inhibition zone 13-19.5 mm in diameter, and sunflower (inhibition zone 14-18.5 mm in diameter. Pure honey has a significant antibacterial activity against some bacteria which are resistant to antibiotics. Bacterial strains differed in their sensitivity to honeys. Pseudomonas aeruginosa and Staphylococcus aureus were the most sensitive. The present study revealed that honey antibacterial activity depends on the origin of the honey. We also found that there was a significant correlation between antibacterial activity of honeys and the colour of the honey but not between acidity and pH. The statistical analysis showed that the honey type influences the antibacterial activity (diameter of the bacterial strains inhibition zones.

  4. Comparison of protease production from newly isolated bacterial ...

    African Journals Online (AJOL)

    Nasir

    2016-10-12

    Oct 12, 2016 ... Protease has gained a very important position in many industries such as food, pharmaceutical, chemical and leather industries. In this research, protease was obtained from bacteria. The bacterial strain was obtained from soil which was collected from different areas of Lahore, Pakistan. Fermentation ...

  5. Detection of bacterial soft-rot of crown imperial caused by Pectobacterium carotovorum subsp. carotovorum using specific PCR primers

    Directory of Open Access Journals (Sweden)

    E. Mahmoudi

    2007-08-01

    Full Text Available Pectobacterium is one of the major destructive causal agent in most crop plants throughout the world. During a survey in spring of 2005 in the rangeland of Kermanshah and Isfahan, provinces of Iran, samples of bulbs and stems of crown imperial with brown spot and soft rot were collected. Eight strains of pectolytic Erwinia were isolated and purified from these samples. Phenotypic tests indicated that the strains were gram-negative, facultative anaerobic, rod shaped, motile with peritrichous flagella. They were oxidase negative, catalase positive and also able to macerate potato slices. Pathogenicity of all the strains were confirmed on corn, philodendron and crown imperial by inoculation of these crops with a bacterial suspension and reisolation of the strain from symptomatic tissues. A pair of specific PCR primers was used to detect these bacterial strains. The primer set (EXPCCF/EXPCCR amplified a single fragment of the expected size (0.55 kb from genomic DNA of all strains used in this study. In nested PCR, the primer set (INPCCR/INPCCF amplified the expected single fragment (0.4 kb from the PCR product of first PCR amplification. On the basis of the biochemical and phenotypic characteristics and PCR amplification by the specific PCR primers, these strains were identified as Pectobacterium carotovorum subsp. carotovorum. This is the first report of occurrence of crown imperial bacterial soft-rot in Iran.

  6. Short communication: Antiproliferative effect of wild Lactobacillus strains isolated from fermented foods on HT-29 cells.

    Science.gov (United States)

    Tuo, Y F; Zhang, L W; Yi, H X; Zhang, Y C; Zhang, W Q; Han, X; Du, M; Jiao, Y H; Wang, S M

    2010-06-01

    In vitro studies, animal models, epidemiology, and human intervention studies provide evidence that some lactic acid bacteria can reduce the risk of certain cancers. In this study, heat-killed bacterial cells, genomic DNA, and cell wall of 7 wild Lactobacillus strains isolated from traditional fermented foods in western China were tested in vitro for cytotoxicity on colonic cancer cell line HT-29 by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The heat-killed bacterial cells, genomic DNA, and cell wall of the 7 strains exhibited direct antiproliferative activities against HT-29 cells. Among the strains, the cellular components of Lactobacillus coryniformis ssp. torquens T3L exerted marked antiproliferative activities against HT-29 cells. The maximum inhibition rates of HT-29 cells by the heat-killed bacterial cells (1x10(7) cfu/mL), cell wall (20 microg of protein/mL) and genomic DNA (100 microg/mL) of L. coryniformis ssp. torquens T3L were 30, 44.9, and 35.9%, respectively. The results indicate that the heat-killed bacterial cells, cell wall, and genomic DNA of the 7 wild Lactobacillus strains could inhibit the growth of HT-29 cells. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. [Ecological treatment of bacterial vaginosis and vaginitis with Bio-three].

    Science.gov (United States)

    Chimura, T

    1998-12-01

    Ecological treatment of bacterial vaginosis and vaginitis with a Bio-three was studied, and the following results were obtained. 1. A total of 16 women with bacterial vaginosis and vaginitis were treated with intravaginal application of 2 g of Bio-three (E. faecalis T-110, C. butyricum TO-A, B. mesentericus TO-A, pH 6.9 +/- 0.3). The effect of the treatment was evaluated 3 days after administration by monitoring the vaginal discharge and bacteriological assessment. 2. The clinical improvement was evaluated and the decreases of vaginal discharge and vaginal redness were significant and vaginal pH was lowered significantly (5.29 +/- 0.24 vs. 4.31 +/- 0.37, p vaginal discharge 35 strains of bacteria were detected, but 3 days after administration, 16/30 strains of Gram-positive bacteria, and 2 strains of Gram-negative bacteria disappeared. As for the overall bacteriological effects, 7/16 cases were eradicated, 1 case was partly eradicated, 6 cases were replaced. These findings indicated that the Bio-three therapy was effective in both clinical and bacteriological responses.

  8. Oral bacterial DNA findings in pericardial fluid

    Directory of Open Access Journals (Sweden)

    Anne-Mari Louhelainen

    2014-11-01

    Full Text Available Background: We recently reported that large amounts of oral bacterial DNA can be found in thrombus aspirates of myocardial infarction patients. Some case reports describe bacterial findings in pericardial fluid, mostly done with conventional culturing and a few with PCR; in purulent pericarditis, nevertheless, bacterial PCR has not been used as a diagnostic method before. Objective: To find out whether bacterial DNA can be measured in the pericardial fluid and if it correlates with pathologic–anatomic findings linked to cardiovascular diseases. Methods: Twenty-two pericardial aspirates were collected aseptically prior to forensic autopsy at Tampere University Hospital during 2009–2010. Of the autopsies, 10 (45.5% were free of coronary artery disease (CAD, 7 (31.8% had mild and 5 (22.7% had severe CAD. Bacterial DNA amounts were determined using real-time quantitative PCR with specific primers and probes for all bacterial strains associated with endodontic disease (Streptococcus mitis group, Streptococcus anginosus group, Staphylococcus aureus/Staphylococcus epidermidis, Prevotella intermedia, Parvimonas micra and periodontal disease (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatus, and Dialister pneumosintes. Results: Of 22 cases, 14 (63.6% were positive for endodontic and 8 (36.4% for periodontal-disease-associated bacteria. Only one case was positive for bacterial culturing. There was a statistically significant association between the relative amount of bacterial DNA in the pericardial fluid and the severity of CAD (p=0.035. Conclusions: Oral bacterial DNA was detectable in pericardial fluid and an association between the severity of CAD and the total amount of bacterial DNA in pericardial fluid was found, suggesting that this kind of measurement might be useful for clinical purposes.

  9. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia solanacearum

    Science.gov (United States)

    Yuliar; Nion, Yanetri Asi; Toyota, Koki

    2015-01-01

    Previous studies have described the development of control methods against bacterial wilt diseases caused by Ralstonia solanacearum. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of R. solanacearum, Pseudomonas spp., Bacillus spp., and Streptomyces spp. are well-known BCAs. New or uncommon BCAs have also been identified such as Acinetobacter sp., Burkholderia sp., and Paenibacillus sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases. PMID:25762345

  10. SERS-based detection methods for screening of genetically modified bacterial strains

    DEFF Research Database (Denmark)

    Morelli, Lidia

    factories vary largely, including industrial production of valuable compounds for biofuels, polymer synthesis and food, cosmetic and pharmaceutical industry. The improvement of computational and biochemical tools has revolutionized the synthesis of novel modified microbial strains, opening up new......The importance of metabolic engineering has been growing over the last decades, establishing the use of genetically modified microbial strains for overproduction of metabolites at industrial scale as an innovative, convenient and biosustainable method. Nowadays, application areas of microbial...

  11. Comparative Genomic and Functional Analysis of 100 Lactobacillus rhamnosus Strains and Their Comparison with Strain GG

    Science.gov (United States)

    Pietilä, Taija E.; Järvinen, Hanna M.; Messing, Marcel; Randazzo, Cinzia L.; Paulin, Lars; Laine, Pia; Ritari, Jarmo; Caggia, Cinzia; Lähteinen, Tanja; Brouns, Stan J. J.; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; Palva, Airi; de Vos, Willem M.

    2013-01-01

    Lactobacillus rhamnosus is a lactic acid bacterium that is found in a large variety of ecological habitats, including artisanal and industrial dairy products, the oral cavity, intestinal tract or vagina. To gain insights into the genetic complexity and ecological versatility of the species L. rhamnosus, we examined the genomes and phenotypes of 100 L. rhamnosus strains isolated from diverse sources. The genomes of 100 L. rhamnosus strains were mapped onto the L. rhamnosus GG reference genome. These strains were phenotypically characterized for a wide range of metabolic, antagonistic, signalling and functional properties. Phylogenomic analysis showed multiple groupings of the species that could partly be associated with their ecological niches. We identified 17 highly variable regions that encode functions related to lifestyle, i.e. carbohydrate transport and metabolism, production of mucus-binding pili, bile salt resistance, prophages and CRISPR adaptive immunity. Integration of the phenotypic and genomic data revealed that some L. rhamnosus strains possibly resided in multiple niches, illustrating the dynamics of bacterial habitats. The present study showed two distinctive geno-phenotypes in the L. rhamnosus species. The geno-phenotype A suggests an adaptation to stable nutrient-rich niches, i.e. milk-derivative products, reflected by the alteration or loss of biological functions associated with antimicrobial activity spectrum, stress resistance, adaptability and fitness to a distinctive range of habitats. In contrast, the geno-phenotype B displays adequate traits to a variable environment, such as the intestinal tract, in terms of nutrient resources, bacterial population density and host effects. PMID:23966868

  12. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG.

    Directory of Open Access Journals (Sweden)

    François P Douillard

    Full Text Available Lactobacillus rhamnosus is a lactic acid bacterium that is found in a large variety of ecological habitats, including artisanal and industrial dairy products, the oral cavity, intestinal tract or vagina. To gain insights into the genetic complexity and ecological versatility of the species L. rhamnosus, we examined the genomes and phenotypes of 100 L. rhamnosus strains isolated from diverse sources. The genomes of 100 L. rhamnosus strains were mapped onto the L. rhamnosus GG reference genome. These strains were phenotypically characterized for a wide range of metabolic, antagonistic, signalling and functional properties. Phylogenomic analysis showed multiple groupings of the species that could partly be associated with their ecological niches. We identified 17 highly variable regions that encode functions related to lifestyle, i.e. carbohydrate transport and metabolism, production of mucus-binding pili, bile salt resistance, prophages and CRISPR adaptive immunity. Integration of the phenotypic and genomic data revealed that some L. rhamnosus strains possibly resided in multiple niches, illustrating the dynamics of bacterial habitats. The present study showed two distinctive geno-phenotypes in the L. rhamnosus species. The geno-phenotype A suggests an adaptation to stable nutrient-rich niches, i.e. milk-derivative products, reflected by the alteration or loss of biological functions associated with antimicrobial activity spectrum, stress resistance, adaptability and fitness to a distinctive range of habitats. In contrast, the geno-phenotype B displays adequate traits to a variable environment, such as the intestinal tract, in terms of nutrient resources, bacterial population density and host effects.

  13. DAYA HAMBAT SARI TANAMAN OBAT TERHADAP PERTUMBUHAN BAKTERI STRAIN Methicillin Resistant Staphylococcus aureus (MRSA

    Directory of Open Access Journals (Sweden)

    Dwi Hilda Putri

    2016-09-01

    Full Text Available Staphylococcus aureus infection can be treated with Methicilin, β lactam class of antibiotics that have drug targets in the cell wall. Bacteria S. aureus that is resistant to methicillin called methicillin-resistant Staphylococcus aureus (MRSA. One alternative that can be used in strains of antibiotic-resistant bacteria that have this is to use medicinal plants. This study aimed to know the ability of medicinal plant extracts inhibit the growth of bacterial strains of MRSA. This kind of research is experimental research. Medicinal plants tested were Garlic, Turmeric, Aloe Vera, Daun Salam, Curcuma, Ginger, Betel Leaf and Alpinia galanga. As a control, which is used Amphicillin, β lactam antibiotic class. The method used to determine the diameter of inhibition area of medicinal plant extracts is paper diffusion method. The results showed that all medicinal plants can inhibit bacterial growth of MRSA strains characterized by the inhibition zone formed on each treatment. The ability of garlic and turmeric extract better than Amphicillin and other medicinal plants to inhibit bacterial growth of MRSA strains. Kata kunci: inhibit,  growth, bacteria, methicillin resistant staphylococcus aureus (MRSA

  14. Effects of copper supplement on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture.

    Science.gov (United States)

    Rodríguez, L Mato; Alatossava, T

    2008-10-01

    To determine the effects of supplemented copper (Cu2+) on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture. Thirteen strains belonging to Lactobacillus delbrueckii, Lactobacillus helveticus, Lactobacillus rhamnosus, Streptococcus thermophilus or Propionibacterium freudenreichii species were exposed to various copper concentrations in the proper growth medium at relevant growth temperatures, and the effects of supplemented copper on bacterial growth and cell viability were determined by optical density and pH measurements, also by platings. Among the species considered, L. delbrueckii was the most copper resistant and S. thermophilus the most sensitive to copper. Anaerobic conditions increased this sensitivity significantly. There was also a considerable amount of variation in copper resistance at strain level. Copper resistance is both a species- and strain-dependent property and may reflect variability in copper-binding capacities by cell wall components among species and strains. In addition, the chemical state of copper may be involved. This study revealed that copper resistance is a highly variable property among starter and adjunct strains, and this variability should be considered when strains are selected for Emmental cheese manufacture.

  15. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon ...

  16. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr). Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and ...

  17. Multiple antimicrobial resistance in bacterial isolates from clinical ...

    African Journals Online (AJOL)

    A total of 545 clinical specimens (pus, blood, urine, and stool) and environmental specimens (air sample, saline solution, nasal swabs etc) were cultured for isolation and identification of aerobic bacteria and antimicrobial susceptibility testing. Out of these, 356(65%) specimens yielded one or more bacterial strains. Frequent ...

  18. Draft Genome Sequence of the Antagonistic Rhizosphere Bacterium Serratia plymuthica Strain PRI-2C

    NARCIS (Netherlands)

    Garbeva, P.; van Elsas, J.D.; de Boer, W.

    Serratia plymuthica strain PRI-2C is a rhizosphere bacterial strain with antagonistic activity against different plant pathogens. Here we present the 5.39-Mb (G+C content, 55.67%) draft genome sequence of S. plymuthica strain PRI-2C with the aim of providing insight into the genomic basis of its

  19. Live bacterial delivery systems for development of mucosal vaccines

    NARCIS (Netherlands)

    Thole, J.E.R.; Dalen, P.J. van; Havenith, C.E.G.; Pouwels, P.H.; Seegers, J.F.M.L.; Tielen, F.D.; Zee, M.D. van der; Zegers, N.D.; Shaw, M.

    2000-01-01

    By expression of foreign antigens in attenuated strains derived from bacterial pathogens and in non-pathogenic commensal bacteria, recombinant vaccines are being developed that aim to stimulate mucosal immunity. Recent advances in the pathogenesis and molecular biology of these bacteria have allowed

  20. Antimicrobial activity of Lactobacillus strains of chicken origin against bacterial pathogenss.

    Science.gov (United States)

    Dec, Marta; Puchalski, Andrzej; Nowaczek, Anna; Wernicki, Andrzej

    2016-03-01

    This study was conducted to identify and evaluate the antimicrobial activity of some Lactobacillus isolates of chicken origin. Among 90 isolates 14 Lactobacillus species were distinguished using MALDI-TOF mass spectrometry and 16S-ARDRA. The dominant species was L. salivarius (34.4%), followed by L. johnsonii (23.3%), L. crispatus (13.3%) and L. reuteri (11.1%). All lactobacilli were screened for antimicrobial activity against wild-type strains of Salmonella enterica, Escherichia coli, and Clostridium perfringens. Results from the agar slab method showed that all Lactobacillus isolates were able to produce active compounds on solid media with antagonistic properties against these pathogens. The highest sensitivity to lactobacilli was observed in C. perfringens strains, and the lowest in E. coli. Lactobacillus salivarius exhibited particularly strong antagonism towards all of the indicator bacteria. Strains of L. ingluviei and L. johnsonii and one strain of L. salivarius (10d) selectively inhibited the growth of C. perfringens. No antimicrobial activity of many Lactobacillus isolates was observed when cell-free culture supernatant was used in a well diffusion assay. All Lactobacillus isolates exhibited the ability to produce H2O2 and proved to be hydrophobic (excluding one of L. salivarius). [Int Microbiol 19(1):57-67 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  1. In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains

    DEFF Research Database (Denmark)

    Schoster, A.; Kokotovic, Branko; Permin, Anders

    2013-01-01

    of this study was to examine the in vitro inhibitory effects of selected commercial bacterial strains on pathogenic clostridia and their growth characteristics under simulated gastrointestinal conditions.The inhibitory effects of 17 commercial strains of Lactobacillus (n = 16) and Bifidobacterium (n = 1...

  2. Differential mRNA expression of seven genes involved in cholesterol metabolism and transport in the liver of atherosclerosis-susceptible and -resistant Japanese quail strains

    Directory of Open Access Journals (Sweden)

    Li Xinrui

    2012-06-01

    Full Text Available Abstract Background Two atherosclerosis-susceptible and -resistant Japanese quail (Coturnix japonica strains obtained by divergent selection are commonly used as models to study atherosclerosis, but no genetic characterization of their phenotypic differences has been reported so far. Our objective was to examine possible differences in the expression of genes involved in cholesterol metabolism and transport in the liver between these two strains and to evaluate the value of this model to analyze the gene system affecting cholesterol metabolism and transport. Methods A factorial study with both strains (atherosclerosis-susceptible versus atherosclerosis-resistant and two diets (control versus cholesterol was carried out. The mRNA concentrations of four genes involved in cholesterol biosynthesis (HMGCR, FDFT1, SQLE and DHCR7 and three genes in cholesterol transport (ABCG5, ABCG8 and APOA1 were assayed using real-time quantitative PCR. Plasma lipids were also assayed. Results Expression of ABCG5 (control diet and ABCG8 (regardless of dietary treatment and expression of HMGCR, FDFT1 and SQLE (regardless of dietary treatment were significantly higher in the atherosclerosis-resistant than in the atherosclerosis-susceptible strain. Plasma triglyceride and LDL levels, and LDL/HDL ratio were significantly higher in the atherosclerosis-susceptible than in the atherosclerosis-resistant strain fed the cholesterol diet. In the atherosclerosis-susceptible strain, ABCG5 expression regressed significantly and positively on plasma LDL level, whereas DHCR7 and SQLE expression regressed significantly and negatively on plasma triglyceride level. Conclusions Our results provide support for the hypothesis that the atherosclerosis-resistant strain metabolizes and excretes cholesterol faster than the atherosclerosis-susceptible strain. We have also demonstrated that these quail strains are a useful model to study cholesterol metabolism and transport in relation with

  3. Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B.

    Science.gov (United States)

    Rao, Minxi; Smith, Brian C; Marletta, Michael A

    2015-05-05

    Nitric oxide (NO) plays an important signaling role in all domains of life. Many bacteria contain a heme-nitric oxide/oxygen binding (H-NOX) protein that selectively binds NO. These H-NOX proteins often act as sensors that regulate histidine kinase (HK) activity, forming part of a bacterial two-component signaling system that also involves one or more response regulators. In several organisms, NO binding to the H-NOX protein governs bacterial biofilm formation; however, the source of NO exposure for these bacteria is unknown. In mammals, NO is generated by the enzyme nitric oxide synthase (NOS) and signals through binding the H-NOX domain of soluble guanylate cyclase. Recently, several bacterial NOS proteins have also been reported, but the corresponding bacteria do not also encode an H-NOX protein. Here, we report the first characterization of a bacterium that encodes both a NOS and H-NOX, thus resembling the mammalian system capable of both synthesizing and sensing NO. We characterized the NO signaling pathway of the marine alphaproteobacterium Silicibacter sp. strain TrichCH4B, determining that the NOS is activated by an algal symbiont, Trichodesmium erythraeum. NO signaling through a histidine kinase-response regulator two-component signaling pathway results in increased concentrations of cyclic diguanosine monophosphate, a key bacterial second messenger molecule that controls cellular adhesion and biofilm formation. Silicibacter sp. TrichCH4B biofilm formation, activated by T. erythraeum, may be an important mechanism for symbiosis between the two organisms, revealing that NO plays a previously unknown key role in bacterial communication and symbiosis. Bacterial nitric oxide (NO) signaling via heme-nitric oxide/oxygen binding (H-NOX) proteins regulates biofilm formation, playing an important role in protecting bacteria from oxidative stress and other environmental stresses. Biofilms are also an important part of symbiosis, allowing the organism to remain in a

  4. Isolation of non-sulphur photosynthetic bacterial strains efficient in hydrogen production at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1991-01-01

    Four strains of non-sulphur photosynthetic bacteria were isolated from root zone associations of aquatic plants like Azolla, Salvinia and Eichhornia, as well as the deep-water rice. Based on the gross cell morphology and pigmentation, the isolates resembled Rhodopseudomonas sp. and have been designated as BHU strains 1 to 4, respectively. When subjected to elevated temperature (from 33-45{sup o}C), substantial growth/hydrogen production could be observed only in strains 1 and 4. Strains 2 and 3 on the other hand, showed diminished growth and negligible hydrogen photoproduction. The BHU strains 1 and 4 have been selected as the most active (thermostable) hydrogen producing strains of local origin as far as the Indian tropical climate is concerned. (author).

  5. Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution

    Directory of Open Access Journals (Sweden)

    Li Pin Lee

    2015-01-01

    Full Text Available Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.

  6. Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules

    Directory of Open Access Journals (Sweden)

    Nina Yusrina Muhamad Yunos

    2014-06-01

    Full Text Available Quorum sensing (QS is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs. We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-l-homoserine lactone (C8-HSL and N-decanoyl-l-homoserine lactone (C10-HSL. To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07.

  7. Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections

    International Nuclear Information System (INIS)

    Le, Anh-Tuan; Le, Thi Tam; Nguyen, Van Quy; Tran, Huy Hoang; Dang, Duc Anh; Tran, Quang Huy; Vu, Dinh Lam

    2012-01-01

    In this work we have demonstrated a powerful disinfectant ability of colloidal silver nanoparticles (NPs) for the prevention of gastrointestinal bacterial infections. The silver NPs colloid was synthesized by a UV-enhanced chemical precipitation. Two gastrointestinal bacterial strains of Escherichia coli (ATCC 43888-O157:k-:H7) and Vibrio cholerae (O1) were used to verify the antibacterial activity of the as-prepared silver NPs colloid by means of surface disinfection assay in agar plates and turbidity assay in liquid media. Transmission electron microscopy was also employed to analyze the ultrastructural changes of bacterial cells caused by silver NPs. Noticeably, our silver NPs colloid displayed a highly effective bactericidal effect against two tested gastrointestinal bacterial strains at a silver concentration as low as ∼3 mg l −1 . More importantly, the silver NPs colloid showed an enhancement of antibacterial activity and long-lasting disinfectant effect as compared to conventional chloramin B (5%) disinfection agent. These advantages of the as-prepared colloidal silver NPs make them very promising for environmental treatments contaminated with gastrointestinal bacteria and other infectious pathogens. Moreover, the powerful disinfectant activity of silver-containing materials can also help in controlling and preventing further outbreak of diseases. (paper)

  8. Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction.

    Science.gov (United States)

    Araújo, Welington Luiz; Santos, Daiene Souza; Dini-Andreote, Francisco; Salgueiro-Londoño, Jennifer Katherine; Camargo-Neves, Aline Aparecida; Andreote, Fernando Dini; Dourado, Manuella Nóbrega

    2015-10-01

    The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in

  9. Screening of Acetic Acid Bacteria from Pineapple Waste for Bacterial Cellulose Production using Sago Liquid Waste

    Directory of Open Access Journals (Sweden)

    Nur Arfa Yanti

    2017-12-01

    Full Text Available Bacterial cellulose is a biopolymer produced by fermentation process with the help of bacteria. It has numerous applications in industrial sector with its characteristic as a biodegradable and nontoxic compound in nature. The potential application of BC is limited by its production costs, because BC is produced from expensive culture media. The use of cheap carbon and nutrient sources such as sago liquid waste is an interesting strategy to overcome this limitation. The objective of this study was to obtain the AAB strain that capable to produce bacterial cellulose from sago liquid waste. Isolation of AAB strains was conducted using CARR media and the screening of BC production was performed on Hestrin-Schramm (HS media with glucose as a carbon source. The strains of AAB then were evaluated for their cellulose-producing capability using sago liquid waste as a substrate. Thirteen strains of AAB producing BC were isolated from pineapple waste (pineapple core and peel and seven of them were capable to produce BC using sago liquid waste substrate. One of the AAB strains produced a relatively high BC, i.e. isolate LKN6. The result of morphological and biochemical test was proven that the bacteria was Acetobacter xylinum. The result of this study showed that A. xylinum LKN6 can produce a high yield of BC, therefore this strain is potentially useful for its utilization as a starter in bacterial cellulose production. 

  10. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    Science.gov (United States)

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  11. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages

    Directory of Open Access Journals (Sweden)

    Koo Mi-Sun

    2012-01-01

    Full Text Available Abstract Background Tuberculosis (TB, a bacterial infection caused by Mycobacterium tuberculosis (Mtb remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB. Results In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878. Conclusions In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of

  12. [An Efficient Method for Genetic Certification of Bacillus subtilis strains, Prospective Producers of Biopreparations].

    Science.gov (United States)

    Terletskiy, V P; Tyshenko, V I; Novikova, I I; Boikova, I V; Tyulebaev, S D; Shakhtamirov, I Ya

    2016-01-01

    Genetic certification of commercial strains of bacteria antagonistic to phytopathogenic microorganisms guarantees their unequivocal identification and confirmation of safety. In Russia, unlike EU countries, genetic certification of Bacillus subtilis strains is not used. Based on the previously proposed double digestion selective label (DDSL) fingerprinting, a method for genetic identification and certification of B. subtilis strains was proposed. The method was tested on several strains differing in their physiological and biochemical properties and in the composition of secondary metabolites responsible for the spectrum of antibiotic activity. High resolving power of this approach was shown. Optimal restriction endonucleases (SgsI and Eco32I) were determined and validated. A detailed protocol for genetic certification of this bacterial species was developed. DDSL is a universal method, which may be adapted for genetic identification and certification of other bacterial species.

  13. New Paenibacillus larvae bacterial isolates from honey bee colonies infected with American foulbrood disease in Egypt.

    Science.gov (United States)

    Masry, Saad Hamdy Daif; Kabeil, Sanaa Soliman; Hafez, Elsayed Elsayed

    2014-03-04

    The American foulbrood disease is widely distributed all over the world and causes a serious problem for the honeybee industry. Different infected larvae were collected from different apiaries, ground in phosphate saline buffer (PSB) and bacterial isolation was carried out on nutrient agar medium. Different colonies were observed and were characterized biologically. Two bacterial isolates (SH11 and SH33) were subjected to molecular identification using 16S rRNA gene and the sequence analysis revealed that the two isolates are Paenibacillus larvae with identity not exceeding 83%. The DNA sequence alignment between the other P. larvae bacterial strains and the two identified bacterial isolates showed that all the examined bacterial strains have the same ancestor, i.e. they have the same origin. The SH33 isolate was closely related to the P. larvae isolated from Germany, whereas the isolate SH11 was close to the P. larvae isolated from India. The phylogenetic tree constructed for 20 different Bacillus sp. and the two isolates SH11 and SH33 demonstrated that the two isolates are Bacillus sp. and they are new isolates. The bacterial isolates will be subjected to more tests for more confirmations.

  14. Influence of Biopreparations on the Bacterial Community of Oily Waste

    Science.gov (United States)

    Biktasheva, L. R.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Oil pollution is reported to be one the most serious environmental problems nowadays. Therefore, methods of remediation of oily polluted soils and oily wastes are of great importance. Bioremediation being a perspective method of sanitation of oil pollutions, includes biostimulation of the polluted sites’ indigenous microflora, and in some cases additional introduction of active strains able to decompose hydrocarbon. The efficacy of introducing such biopreparations depends on the interactions between the introduced microbes and the indigenous ones. In this study, the influence of bacterial consortium (Rhodococcus jialingiae, Stenotrophomonas rhizophila and Pseudomonas gessardii) introduction on the bioremediation of an oily waste sampled from a refinery situated in the Mari El region (Russia) was estimated. Single and multiple inoculations of the consortium in addition to moistening and aeration were compared with a control sample, which included only aeration and moistening of the waste. It was shown, that two of the three introduced strains (Rh. jialingiae and Ps.gessardii) gene copy numbers were higher in the inoculated variants than in the control sample and with their initial counts, which meant that these strains survived and included into the bacterial community of the wastes. At the same time, bacterial counts were significantly lower, and the physiological profile of waste microflora slightly altered in the inoculated remediation variants as compared with the control sample. Interestingly, no difference in the degradation rates of hydrocarbons was revealed in the inoculated remediation variants and the control sample.

  15. The periplasmic enzyme, AnsB, of Shigella flexneri modulates bacterial adherence to host epithelial cells.

    Directory of Open Access Journals (Sweden)

    Divya T George

    Full Text Available S. flexneri strains, most frequently linked with endemic outbreaks of shigellosis, invade the colonic and rectal epithelium of their host and cause severe tissue damage. Here we have attempted to elucidate the contribution of the periplasmic enzyme, L-asparaginase (AnsB to the pathogenesis of S. flexneri. Using a reverse genetic approach we found that ansB mutants showed reduced adherence to epithelial cells in vitro and attenuation in two in vivo models of shigellosis, the Caenorhabditis elegans and the murine pulmonary model. To investigate how AnsB affects bacterial adherence, we compared the proteomes of the ansB mutant with its wild type parental strain using two dimensional differential in-gel electrophoresis and identified the outer membrane protein, OmpA as up-regulated in ansB mutant cells. Bacterial OmpA, is a prominent outer membrane protein whose activity has been found to be required for bacterial pathogenesis. Overexpression of OmpA in wild type S. flexneri serotype 3b resulted in decreasing the adherence of this virulent strain, suggesting that the up-regulation of OmpA in ansB mutants contributes to the reduced adherence of this mutant strain. The data presented here is the first report that links the metabolic enzyme AnsB to S. flexneri pathogenesis.

  16. “Collinsella vaginalis” sp. nov., a new bacterial species cultivated from human female genital tract

    Directory of Open Access Journals (Sweden)

    Khoudia Diop

    2016-12-01

    Full Text Available We present a brief description of “Collinsella vaginalis” strain P2666 (=CSUR P2666, a new bacterium that was cultivated from the vaginal sample of a 26-year-old woman affected from bacterial vaginosis. Keywords: “Collinsella vaginalis”, Culturomics, Vaginal flora, Bacterial vaginosis, Human microbiota

  17. Evaluation of various pesticides-degrading pure bacterial cultures ...

    African Journals Online (AJOL)

    Due to the intensive use of pesticides within the greenhouse-rose production, remediation of polluted soils has become a hot topic for researchers in recent decades. Several bacterial strains having the ability to utilize various pesticides as a sole source of carbon and energy were isolated from pesticidecontaminated soils ...

  18. Bacterial endophytes enhance competition by invasive plants.

    Science.gov (United States)

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  19. Analysis of the genetic variation in Mycobacterium tuberculosis strains by multiple genome alignments

    Directory of Open Access Journals (Sweden)

    Morales Juan

    2008-11-01

    Full Text Available Abstract Background The recent determination of the complete nucleotide sequence of several Mycobacterium tuberculosis (MTB genomes allows the use of comparative genomics as a tool for dissecting the nature and consequence of genetic variability within this species. The multiple alignment of the genomes of clinical strains (CDC1551, F11, Haarlem and C, along with the genomes of laboratory strains (H37Rv and H37Ra, provides new insights on the mechanisms of adaptation of this bacterium to the human host. Findings The genetic variation found in six M. tuberculosis strains does not involve significant genomic rearrangements. Most of the variation results from deletion and transposition events preferentially associated with insertion sequences and genes of the PE/PPE family but not with genes implicated in virulence. Using a Perl-based software islandsanalyser, which creates a representation of the genetic variation in the genome, we identified differences in the patterns of distribution and frequency of the polymorphisms across the genome. The identification of genes displaying strain-specific polymorphisms and the extrapolation of the number of strain-specific polymorphisms to an unlimited number of genomes indicates that the different strains contain a limited number of unique polymorphisms. Conclusion The comparison of multiple genomes demonstrates that the M. tuberculosis genome is currently undergoing an active process of gene decay, analogous to the adaptation process of obligate bacterial symbionts. This observation opens new perspectives into the evolution and the understanding of the pathogenesis of this bacterium.

  20. Comparison of adhesive gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two different Lactobacillus strains.

    Science.gov (United States)

    Liu, Wenshu; Ren, Pengfei; He, Suxu; Xu, Li; Yang, Yaling; Gu, Zemao; Zhou, Zhigang

    2013-07-01

    This study compares the effects of two Lactobacillus strains, highly adhesive Lactobacillus brevis JCM 1170 (HALB) and less-adhesive Lactobacillus acidophilus JCM 1132 (LALB), on the survival and growth, adhesive gut bacterial communities, immunity, and protection against pathogenic bacterial infection in juvenile hybrid tilapia. During a 5-week feeding trial the fish were fed a diet containing 0 to 10(9) cells/g feed of the two Lactobacillus strains. Samples of intestine, kidney, and spleen were taken at the start and at 10, 20, and 35 days for analysis of stress tolerance and cytokine gene mRNA levels and to assess the diversity of adhesive gut bacterial communities. A 14-day immersion challenge with Aeromonas hydrophila NJ-1 was also performed following the feeding trial. The results showed no significant differences in survival rate, weight gain, or feed conversion in the different dietary treatments. The adhesive gut bacterial communities were strikingly altered in the fish fed either the HALB or the LALB, but the response was more rapid and substantial with the adhesive strain. The two strains induced similar changes in the patterns (upregulation or downregulation) of intestinal, splenic or kidney cytokine expression, but they differed in the degree of response for these genes. Changes in intestinal HSP70 expression levels coincided with changes in the similarity coefficient of the adhesive gut bacterial communities between the probiotic treatments. The highest dose of the HALB appeared to protect against the toxic effects of immersion in A. hydrophila (P Lactobacillus strains adhere to the gut may be a favorable criterion in selecting probiotic strain for aquaculture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization.

    Science.gov (United States)

    Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan

    2017-03-01

    Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. SEXUAL DYSFUNCTION ASSOCIATION WITH THE CHRONIC BACTERIAL PROSTATITIS

    Directory of Open Access Journals (Sweden)

    H. S. Ibishev

    2013-01-01

    Full Text Available The study involved 230 patients aged 20 to 45 years with a diagnosis of chronic bacterial prostatitis. The study found that in patients with chronic bacterial prostatitis clinical picture, in addition to pain, is a lower urinary tract symptoms, neuro-vegetative and sexual dysfunction. In patients with chronic bacterial prostatitis, recorded various sexual disorders, most of which are normalized after antibiotic therapy. Erectile dysfunction, which are recorded in patients with chronic bacterial prostatitis is psychogenic in nature dysfunction.

  3. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2008-10-01

    Full Text Available Abstract Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells-1 h-1 compared with 0.01 g (g cells-1 h-1

  4. [Processes of plant colonization by Methylobacterium strains and some bacterial properties ].

    Science.gov (United States)

    Romanovskaia, V A; Stoliar, S M; Malashenko, Iu R; Dodatko, T N

    2001-01-01

    The pink-pigmented facultative methylotrophic bacteria (PPFMB) of the genus Methylobacterium are indespensible inhabitants of the plant phyllosphere. Using maize Zea mays as a model, the ways of plant colonization by PPFMB and some properties of the latter that might be beneficial to plants were studied. A marked strain, Methylobacterium mesophilicum APR-8 (pULB113), was generated to facilitate the detection of the methylotrophic bacteria inoculated into the soil or applied to the maize leaves. Colonization of maize leaves by M. mesophilicum APR-8 (pULB113) occurred only after the bacteria were applied onto the leaf surface. In this case, the number of PPFMB cells on inoculated leaves increased with plant growth. During seed germination, no colonization of maize leaves with M. mesophilicum cells occurred immediately from the soil inoculated with the marked strain. Thus, under natural conditions, colonization of plant leaves with PPFMB seems to occur via soil particle transfer to the leaves by air. PPFMB monocultures were not antagonistic to phytopathogenic bacteria. However, mixed cultures of epiphytic bacteria containing Methylobacterium mesophilicum or M. extorquens did exhibit an antagonistic effect against the phytopathogenic bacteria studied (Xanthomonas camprestris, Pseudomonas syringae, Erwinia carotovora, Clavibacter michiganense, and Agrobacterium tumifaciens). Neither epiphytic and soil strains of Methylobacterium extorquens, M. organophillum, M. mesophilicum, and M. fujisawaense catalyzed ice nucleation. Hence, they cause no frost injury to plants. Thus, the results indicate that the strains of the genus Methylobacterium can protect plants against adverse environmental factors.

  5. [Changes of chlorine isotope composition characterize bacterial dehalogenation of dichloromethane].

    Science.gov (United States)

    Ziakun, A M; Firsova, Iu E; Torgonskaia, M L; Doronina, N V; Trotsenko, Iu A

    2007-01-01

    Fractionation of dichloromethane (DCM) molecules with different chlorine isotopes by aerobic methylobacteria Methylobacterium dichloromethanicum DM4 and Albibacter nethylovorans DM10; cell-free extract of strain DM4; and transconjugant Methylobacterium evtorquens Al1/pME 8220, expressing the dcmA gene for DCM dehalogenase but unable to grow on DCM, was studied. Kinetic indices of DCM isotopomers for chlorine during bacterial dehalogenation and diffusion were compared. A two-step model is proposed, which suggests diffusional DCM transport to bacterial cells.

  6. M13 virus based detection of bacterial infections in living hosts.

    Science.gov (United States)

    Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M

    2014-08-01

    We report a first method for using M13 bacteriophage as a multifunctional scaffold for optically imaging bacterial infections in vivo. We demonstrate that M13 virus conjugated with hundreds of dye molecules (M13-Dye) can target and distinguish pathogenic infections of F-pili expressing and F-negative strains of E. coli. Further, in order to tune this M13-Dye complex suitable for targeting other strains of bacteria, we have used a 1-step reaction for creating an anti-bacterial antibody-M13-Dye probe. As an example, we show anti-S. aureus-M13-Dye able to target and image infections of S. aureus in living hosts, with a 3.7× increase in fluorescence over background. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CMEIAS-Aided Microscopy of the Spatial Ecology of Individual Bacterial Interactions Involving Cell-to-Cell Communication within Biofilms

    Directory of Open Access Journals (Sweden)

    Frank B. Dazzo

    2012-05-01

    Full Text Available This paper describes how the quantitative analytical tools of CMEIAS image analysis software can be used to investigate in situ microbial interactions involving cell-to-cell communication within biofilms. Various spatial pattern analyses applied to the data extracted from the 2-dimensional coordinate positioning of individual bacterial cells at single-cell resolution indicate that microbial colonization within natural biofilms is not a spatially random process, but rather involves strong positive interactions between communicating cells that influence their neighbors’ aggregated colonization behavior. Geostatistical analysis of the data provide statistically defendable estimates of the micrometer scale and interpolation maps of the spatial heterogeneity and local intensity at which these microbial interactions autocorrelate with their spatial patterns of distribution. Including in situ image analysis in cell communication studies fills an important gap in understanding the spatially dependent microbial ecophysiology that governs the intensity of biofilm colonization and its unique architecture.

  8. Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Shubhi; Singh, Namrata; Singh, Nandita [CSIR - National Botanical Research Institute, Lucknow, UP (India). Eco-auditing Lab.; Verma, Praveen C.; Singh, Ankit; Mishra, Manisha [CSIR - National Botanical Research Institute, Lucknow, UP (India). Plant Molecular Biology and Genetic Engineering; Sharma, Neeta [Lucknow Univ., UP (India). Plant Pathology Lab.

    2012-09-15

    Arsenic contaminated rhizospheric soils of West Bengal, India were sampled for arsenic resistant bacteria that could transform different arsenic forms. Staphylococcus sp. NBRIEAG-8 was identified by16S rDNA ribotyping, which was capable of growing at 30,000 mg l{sup -1} arsenate [As(V)] and 1,500 mg l{sup -1} arsenite [As(III)]. This bacterial strain was also characterized for arsenical resistance (ars) genes which may be associated with the high-level resistance in the ecosystems of As-contaminated areas. A comparative proteome analysis was conducted with this strain treated with 1,000 mg l{sup -1} As(V) to identify changes in their protein expression profiles. A 2D gel analysis showed a significant difference in the proteome of arsenic treated and untreated bacterial culture. The change in pH of cultivating growth medium, bacterial growth pattern (kinetics), and uptake of arsenic were also evaluated. After 72 h of incubation, the strain was capable of removing arsenic from the culture medium amended with arsenate and arsenite [12% from As(V) and 9% from As(III)]. The rate of biovolatilization of As(V) was 23% while As(III) was 26%, which was determined indirectly by estimating the sum of arsenic content in bacterial biomass and medium. This study demonstrates that the isolated strain, Staphylococcus sp., is capable for uptake and volatilization of arsenic by expressing ars genes and 8 new upregulated proteins which may have played an important role in reducing arsenic toxicity in bacterial cells and can be used in arsenic bioremediation. (orig.)

  9. A Perfect Storm: Increased Colonization and Failure of Vaccination Leads to Severe Secondary Bacterial Infection in Influenza Virus-Infected Obese Mice

    Directory of Open Access Journals (Sweden)

    Erik A. Karlsson

    2017-09-01

    Full Text Available Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae. Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population.

  10. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard.

    Science.gov (United States)

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.

  11. Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis

    Directory of Open Access Journals (Sweden)

    Carlos Molina-Ramírez

    2017-06-01

    Full Text Available Bacterial cellulose (BC is a polymer obtained by fermentation with microorganism of different genera. Recently, new producer species have been discovered, which require identification of the most important variables affecting cellulose production. In this work, the influence of different carbon sources in BC production by a novel low pH-resistant strain Komagataeibacter medellinensis was established. The Hestrin-Schramm culture medium was used as a reference and was compared to other media comprising glucose, fructose, and sucrose, used as carbon sources at three concentrations (1, 2, and 3% w/v. The BC yield and dynamics of carbon consumption were determined at given fermentation times during cellulose production. While the carbon source did not influence the BC structural characteristics, different production levels were determined: glucose > sucrose > fructose. These results highlight considerations to improve BC industrial production and to establish the BC property space for applications in different fields.

  12. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor.

    Science.gov (United States)

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Protection of honeybee Apis mellifera by its endogenous and exogenous lactic flora against bacterial infections

    Directory of Open Access Journals (Sweden)

    Irakli Janashia

    2016-09-01

    Three exogenous bacteriocin-producing LAB strains were tested against the same pathogens and against 25 endogenous bacterial isolates representing 11 different LAB species. The screening showed that all the tested exogenous bacteriocin-producing strains inhibited the tested P. larvae strains. The endogenous LAB strains exhibited varied sensitivity profiles when treated with bacteriocin-producing strains. This raises similar challenges to those observed in antibiotic applications leading to dysbacteriosis, even though the efficacy of these bacteriocins against P. larvae in an in vitro system is evident.

  14. Computational Analysis of Uncharacterized Proteins of Environmental Bacterial Genome

    Science.gov (United States)

    Coxe, K. J.; Kumar, M.

    2017-12-01

    Betaproteobacteria strain CB is a gram-negative bacterium in the phylum Proteobacteria and are found naturally in soil and water. In this complex environment, bacteria play a key role in efficiently eliminating the organic material and other pollutants from wastewater. To investigate the process of pollutant removal from wastewater using bacteria, it is important to characterize the proteins encoded by the bacterial genome. Our study combines a number of bioinformatics tools to predict the function of unassigned proteins in the bacterial genome. The genome of Betaproteobacteria strain CB contains 2,112 proteins in which function of 508 proteins are unknown, termed as uncharacterized proteins (UPs). The localization of the UPs with in the cell was determined and the structure of 38 UPs was accurately predicted. These UPs were predicted to belong to various classes of proteins such as enzymes, transporters, binding proteins, signal peptides, transmembrane proteins and other proteins. The outcome of this work will help better understand wastewater treatment mechanism.

  15. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    Science.gov (United States)

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  16. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    Science.gov (United States)

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  17. Rapid Identification of Bacterial Virulence Factors

    Science.gov (United States)

    2014-04-15

    protein sorting and transport. F/’/wyi-deletion mutants had decreased invasiveness of HeLa cells when compared to their parental strain, and it has...mileux. Bacteria with intracellular life styles and have reductive genomes often have many different ABC transporters. This is certainly the case in...34 Microbiology 151:2975-2986. Newman , R.M., P. Salunkhe, A. Godzik, J.C. Reed. 2006. Identification and Characterization of a Novel Bacterial

  18. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    Science.gov (United States)

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  19. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-07-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response.

  20. Bacterial Transport in Heterogeneous Porous Media: Laboratory and Field Experiments

    Science.gov (United States)

    Fuller, M. E.

    2001-12-01

    A fully instrumented research site for examining field-scale bacterial transport has been established on the eastern shore of Virginia. Studies employing intact sediment cores from the South Oyster site have been performed to examine the effects of physical and chemical heterogeneity, to derive transport parameters, and to aid in the selection of bacterial strains for use in field experiments. A variety of innovative methods for tracking bacteria were developed and evaluated under both laboratory and field conditions, providing the tools to detect target cell concentrations in groundwater down to effects of physical and chemical heterogeneity on field-scale bacterial transport. The results of this research not only contribute to the development of more effective bioremediation strategies, but also have implications for a better understanding of bacterial movement in the subsurface as it relates to public health microbiology and general microbial ecology.

  1. Bacterial bioeffectors modify bioactive profile and increase isoflavone content in soybean sprouts (Glycine max var Osumi).

    Science.gov (United States)

    Algar, Elena; Ramos-Solano, Beatriz; García-Villaraco, Ana; Sierra, M Dolores Saco; Gómez, M Soledad Martín; Gutiérrez-Mañero, F Javier

    2013-09-01

    The effect of two bacterial strains to enhance bioactive contents (total phenolic compounds, total flavonoid compounds and isoflavones) and antioxidant activity on 3-day-old soybean sprouts were investigated. To identify bacterial determinants responsible for these effects, viable and UV-treated strains were delivered to wounded seeds at different concentration. Multivariate analysis performed with all the evaluated parameters indicated the different effectiveness of Stenotrophomonas maltophilia N5.18 and Pseudomonas fluorescens N21.4 based on different structural and metabolic determinants for each. N21.4 increased total phenolics and isoflavones from the genistein family, while N5.18 triggered biosynthesis of daidzein and genistein families coupled to a decrease in total phenolics, suggesting different molecular targets in the phenilpropanoid pathway. Only extracts from N5.18 treated seeds showed an improved antioxidant activity according to the β-carotene bleaching prevention method. In summary, bioeffectors from both bacterial strains are effective tools to improve soybean sprouts quality; structural elicitors from N5.18 also enhanced antioxidant activity, being the best alternative for further development of a biotechnological procedure.

  2. Improving Phylogeny Reconstruction at the Strain Level Using Peptidome Datasets.

    Directory of Open Access Journals (Sweden)

    Aitor Blanco-Míguez

    2016-12-01

    Full Text Available Typical bacterial strain differentiation methods are often challenged by high genetic similarity between strains. To address this problem, we introduce a novel in silico peptide fingerprinting method based on conventional wet-lab protocols that enables the identification of potential strain-specific peptides. These can be further investigated using in vitro approaches, laying a foundation for the development of biomarker detection and application-specific methods. This novel method aims at reducing large amounts of comparative peptide data to binary matrices while maintaining a high phylogenetic resolution. The underlying case study concerns the Bacillus cereus group, namely the differentiation of Bacillus thuringiensis, Bacillus anthracis and Bacillus cereus strains. Results show that trees based on cytoplasmic and extracellular peptidomes are only marginally in conflict with those based on whole proteomes, as inferred by the established Genome-BLAST Distance Phylogeny (GBDP method. Hence, these results indicate that the two approaches can most likely be used complementarily even in other organismal groups. The obtained results confirm previous reports about the misclassification of many strains within the B. cereus group. Moreover, our method was able to separate the B. anthracis strains with high resolution, similarly to the GBDP results as benchmarked via Bayesian inference and both Maximum Likelihood and Maximum Parsimony. In addition to the presented phylogenomic applications, whole-peptide fingerprinting might also become a valuable complementary technique to digital DNA-DNA hybridization, notably for bacterial classification at the species and subspecies level in the future.

  3. Improving Phylogeny Reconstruction at the Strain Level Using Peptidome Datasets.

    Science.gov (United States)

    Blanco-Míguez, Aitor; Meier-Kolthoff, Jan P; Gutiérrez-Jácome, Alberto; Göker, Markus; Fdez-Riverola, Florentino; Sánchez, Borja; Lourenço, Anália

    2016-12-01

    Typical bacterial strain differentiation methods are often challenged by high genetic similarity between strains. To address this problem, we introduce a novel in silico peptide fingerprinting method based on conventional wet-lab protocols that enables the identification of potential strain-specific peptides. These can be further investigated using in vitro approaches, laying a foundation for the development of biomarker detection and application-specific methods. This novel method aims at reducing large amounts of comparative peptide data to binary matrices while maintaining a high phylogenetic resolution. The underlying case study concerns the Bacillus cereus group, namely the differentiation of Bacillus thuringiensis, Bacillus anthracis and Bacillus cereus strains. Results show that trees based on cytoplasmic and extracellular peptidomes are only marginally in conflict with those based on whole proteomes, as inferred by the established Genome-BLAST Distance Phylogeny (GBDP) method. Hence, these results indicate that the two approaches can most likely be used complementarily even in other organismal groups. The obtained results confirm previous reports about the misclassification of many strains within the B. cereus group. Moreover, our method was able to separate the B. anthracis strains with high resolution, similarly to the GBDP results as benchmarked via Bayesian inference and both Maximum Likelihood and Maximum Parsimony. In addition to the presented phylogenomic applications, whole-peptide fingerprinting might also become a valuable complementary technique to digital DNA-DNA hybridization, notably for bacterial classification at the species and subspecies level in the future.

  4. Intraspecies diversity of Lactobacillus sakei response to oxidative stress and variability of strain performance in mixed strains challenges.

    Science.gov (United States)

    Guilbaud, Morgan; Zagorec, Monique; Chaillou, Stéphane; Champomier-Vergès, Marie-Christine

    2012-04-01

    Lactobacillus sakei is a meat-borne lactic acid bacterium species exhibiting a wide genomic diversity. We have investigated the diversity of response to various oxidative compounds, between L. sakei strains, among a collection representing the genomic diversity. We observed various responses to the different compounds as well as a diversity of response depending on the aeration conditions used for cell growth. A principal component analysis revealed two main phenotypic groups, partially correlating with previously described genomic clusters. We designed strains mixes composed of three different strains, in order to examine the behavior of each strain, when cultured alone or in the presence of other strains. The strains composing the mixtures were chosen as diverse as possible, i.e. exhibiting diverse responses to oxidative stress and belonging to different genomic clusters. Growth and survival rates of each strain were monitored under various aeration conditions, with or without heme supplementation. The results obtained suggest that some strains may act as "helper" or "burden" strains depending on the oxidative conditions encountered during incubation. This study confirms that resistance to oxidative stress is extremely variable within the L. sakei species and that this property should be considered when investigating starter performance in the complex meat bacterial ecosystems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Isolation and characterization of bacterial endophytes of Curcuma longa L.

    Science.gov (United States)

    Kumar, Ajay; Singh, Ritu; Yadav, Akhilesh; Giri, D D; Singh, P K; Pandey, Kapil D

    2016-06-01

    Fourteen endophytic bacterial isolates were isolated from the rhizome of Curcuma longa L. were characterized on the basis of morphology, biochemical characteristics and 16S rRNA gene sequence analysis. The isolates were identified to six strains namely Bacillus cereus (ECL1), Bacillus thuringiensis (ECL2), Bacillus sp. (ECL3), Bacillus pumilis (ECL4), Pseudomonas putida (ECL5), and Clavibacter michiganensis (ECL6). All the strains produced IAA and solubilized phosphate and only two strains produced siderophore (ECL3 and ECL5) during plant growth promoting trait analysis. All the endophytic strains utilized glucose, sucrose and yeast extract as a carbon source where as glycine, alanine, cystine and glutamine as nitrogen source. The strains were mostly sensitive to antibiotic chloramphenicol followed by erythromycin while resistant to polymixin B. The endophytic strains effectively inhibit the growth of Escherichia coli, Klebsiella pneumoniae and some of the fungal strain like Fusarium solani and Alterneria alternata. The strain ECL2 and ECL4 tolerated maximum 8 % of NaCl concentration where as strains ECL5 and ECL6 6 % in salinity tolerance.

  6. Bacterial translocation: impact of probiotics

    OpenAIRE

    Jeppsson, Bengt; Mangell, Peter; Adawi, Diya; Molin, Göran

    2004-01-01

    There is a considerable amount of data in humans showing that patients who cannot take in nutrients enterally have more organ failure in the intensive care unit, a less favourable prognosis, and a higher frequency of septicaemia, in particular involving bacterial species from the intestinal tract. However, there is little evidence that this is connected with translocation of bacterial species in humans. Animal data more uniformly imply the existence of such a connection. The main focus of thi...

  7. Aggregative adherent strains of Corynebacterium pseudodiphtheriticum enter and survive within HEp-2 epithelial cells

    Directory of Open Access Journals (Sweden)

    Monica Cristina de Souza

    2012-06-01

    Full Text Available Corynebacterium pseudodiphtheriticum is a well-known human pathogen that mainly causes respiratory disease and is associated with high mortality in compromised hosts. Little is known about the virulence factors and pathogenesis of C. pseudodiphtheriticum. In this study, cultured human epithelial (HEp-2 cells were used to analyse the adherence pattern, internalisation and intracellular survival of the ATCC 10700 type strain and two additional clinical isolates. These microorganisms exhibited an aggregative adherence-like pattern to HEp-2 cells characterised by clumps of bacteria with a "stacked-brick" appearance. The differences in the ability of these microorganisms to invade and survive within HEp-2 cells and replicate in the extracellular environment up to 24 h post infection were evaluated. The fluorescent actin staining test demonstrated that actin polymerisation is involved in the internalisation of the C. pseudodiphtheriticum strains. The depolymerisation of microfilaments by cytochalasin E significantly reduced the internalisation of C. pseudodiphtheriticum by HEp-2 cells. Bacterial internalisation and cytoskeletal rearrangement seemed to be partially triggered by the activation of tyrosine kinase activity. Although C. pseudodiphtheriticum strains did not demonstrate an ability to replicate intracellularly, HEp-2 cells were unable to fully clear the pathogen within 24 h. These characteristics may explain how some C. pseudodiphtheriticum strains cause severe infection in human patients.

  8. Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague.

    Directory of Open Access Journals (Sweden)

    Françoise Guinet

    2015-10-01

    Full Text Available Activation and/or recruitment of the host plasmin, a fibrinolytic enzyme also active on extracellular matrix components, is a common invasive strategy of bacterial pathogens. Yersinia pestis, the bubonic plague agent, expresses the multifunctional surface protease Pla, which activates plasmin and inactivates fibrinolysis inhibitors. Pla is encoded by the pPla plasmid. Following intradermal inoculation, Y. pestis has the capacity to multiply in and cause destruction of the lymph node (LN draining the entry site. The closely related, pPla-negative, Y. pseudotuberculosis species lacks this capacity. We hypothesized that tissue damage and bacterial multiplication occurring in the LN during bubonic plague were linked and both driven by pPla. Using a set of pPla-positive and pPla-negative Y. pestis and Y. pseudotuberculosis strains in a mouse model of intradermal injection, we found that pPla is not required for bacterial translocation to the LN. We also observed that a pPla-cured Y. pestis caused the same extensive histological lesions as the wild type strain. Furthermore, the Y. pseudotuberculosis histological pattern, characterized by infectious foci limited by inflammatory cell infiltrates with normal tissue density and follicular organization, was unchanged after introduction of pPla. However, the presence of pPla enabled Y. pseudotuberculosis to increase its bacterial load up to that of Y. pestis. Similarly, lack of pPla strongly reduced Y. pestis titers in LNs of infected mice. This pPla-mediated enhancing effect on bacterial load was directly dependent on the proteolytic activity of Pla. Immunohistochemistry of Pla-negative Y. pestis-infected LNs revealed extensive bacterial lysis, unlike the numerous, apparently intact, microorganisms seen in wild type Y. pestis-infected preparations. Therefore, our study demonstrates that tissue destruction and bacterial survival/multiplication are dissociated in the bubo and that the primary action of Pla

  9. Detecting bacterial endophytes in tropical grasses of the Brachiaria ...

    African Journals Online (AJOL)

    Plant-growth-promoting (PGP) bacteria include a diverse group of soil bacteria thought to stimulate plant growth by various mechanisms. Brachiaria forage grasses, of African origin, are perennials that often grow under low-input conditions and are likely to harbour unique populations of PGP bacteria. Three bacterial strains ...

  10. [New antibiotics produced by Bacillus subtilis strains].

    Science.gov (United States)

    Malanicheva, I A; Kozlov, D G; Efimenko, T A; Zenkova, V A; Kastrukha, G S; Reznikova, M I; Korolev, A M; Borshchevskaia, L N; Tarasova, O D; Sineokiĭ, S P; Efremenkova, O V

    2014-01-01

    Two Bacillus subtilis strains isolated from the fruiting body of a basidiomycete fungus Pholiota squarrosa exhibited a broad range of antibacterial activity, including those against methicillin-resistant Staphylococcus aureus INA 00761 (MRSA) and Leuconostoc mes6nteroides VKPM B-4177 resistant to glycopep-> tide antibiotics, as well as antifungal activity. The strains were identified as belonging to the "B. subtilis" com- plex based on their morphological and physiological characteristics, as well as by sequencing of the 16S rRNA gene fragments. Both strains (INA 01085 and INA 01086) produced insignificant amounts of polyene antibiotics (hexaen and pentaen, respectively). Strain INA 01086 produced also a cyclic polypeptide antibiotic containing Asp, Gly, Leu, Pro, Tyr, Thr, Trp, and Phe, while the antibiotic of strain INA 01085 contained, apart from these, two unidentified nonproteinaceous amino acids. Both polypeptide antibiotics were new compounds efficient against gram-positive bacteria and able to override the natural bacterial antibiotic resistance.

  11. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota.

    Science.gov (United States)

    Yunes, R A; Poluektova, E U; Dyachkova, M S; Klimina, K M; Kovtun, A S; Averina, O V; Orlova, V S; Danilenko, V N

    2016-12-01

    Gamma-amino butyric acid (GABA) is an active biogenic substance synthesized in plants, fungi, vertebrate animals and bacteria. Lactic acid bacteria are considered the main producers of GABA among bacteria. GABA-producing lactobacilli are isolated from food products such as cheese, yogurt, sourdough, etc. and are the source of bioactive properties assigned to those foods. The ability of human-derived lactobacilli and bifidobacteria to synthesize GABA remains poorly characterized. In this paper, we screened our collection of 135 human-derived Lactobacillus and Bifidobacterium strains for their ability to produce GABA from its precursor monosodium glutamate. Fifty eight strains were able to produce GABA. The most efficient GABA-producers were Bifidobacterium strains (up to 6 g/L). Time profiles of cell growth and GABA production as well as the influence of pyridoxal phosphate on GABA production were studied for L. plantarum 90sk, L. brevis 15f, B. adolescentis 150 and B. angulatum GT102. DNA of these strains was sequenced; the gadB and gadC genes were identified. The presence of these genes was analyzed in 14 metagenomes of healthy individuals. The genes were found in the following genera of bacteria: Bacteroidetes (Bacteroides, Parabacteroides, Alistipes, Odoribacter, Prevotella), Proteobacterium (Esherichia), Firmicutes (Enterococcus), Actinobacteria (Bifidobacterium). These data indicate that gad genes as well as the ability to produce GABA are widely distributed among lactobacilli and bifidobacteria (mainly in L. plantarum, L. brevis, B. adolescentis, B. angulatum, B. dentium) and other gut-derived bacterial species. Perhaps, GABA is involved in the interaction of gut microbiota with the macroorganism and the ability to synthesize GABA may be an important feature in the selection of bacterial strains - psychobiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms

    Directory of Open Access Journals (Sweden)

    Joaquín eCaro-Astorga

    2015-01-01

    Full Text Available Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed i the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and ii the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog.

  13. Chitosanase purified from bacterial isolate Bacillus licheniformis of ruined vegetables displays broad spectrum biofilm inhibition.

    Science.gov (United States)

    Muslim, Sahira Nsayef; Al-Kadmy, Israa M S; Hussein, Nadheema Hammood; Mohammed Ali, Alaa Naseer; Taha, Buthainah Mohammed; Aziz, Sarah Naji; Kheraif, Abdulaziz Abdullah Al; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar

    2016-11-01

    A number of bacterial species produces chitosanases which has variety of applications because of its high biodegradability, non-toxicity and antimicrobial assets. In the present study chitosanase is purified from new bacterial species Bacillus licheniformis from spoiled vegetable. This novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples has the ability to produce the chitosanase enzyme when grown on chitosan substrate. Study also examined its antibiofilm properties against diverse bacterial species with biofilm forming ability. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria [biofilm producers] tested in this study in congo red agar and microtiter plate's methods. Highly antibiofilm activity of chitosanase was recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation upto 22 and 29%, respectively compared with [100] % of control. Biofilm formation has multiple role including ability to enhance resistance and self-protection from external stress. This chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug resistant pathogen-associated infections, especially in situation where biofilms are involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Evaluation of penicylinders used in disinfectant testing: bacterial attachment and surface texture.

    Science.gov (United States)

    Cole, E C; Rutala, W A; Carson, J L

    1987-01-01

    Two possible deficiencies in the AOAC use-dilution method for registration of chemical disinfectants by the Environmental Protection Agency are examined: (1) the physical disparities among brands of penicylinders and (2) the variability of bacterial numbers on penicylinders depending upon test strain and penicylinder surface texture. Textural differences of 2 brands of stainless steel penicylinders, one brand of porcelain, and one brand of glass were assessed by scanning electron microscopy. A considerable variation in smoothness of both inner and outer surfaces of stainless steel and porcelain penicylinders was observed. Glass penicylinders were very smooth. Numbers of bacteria attached to a penicylinder were assessed by vortexing the penicylinders 30 s at No. 4 after using the AOAC method of bacterial inoculation and drying 40 min at 37 degrees C. With this methodology, stainless steel carriers retained the 3 AOAC-recommended bacterial test strains differentially: ca 10(7) for Pseudomonas aeruginosa, 5 X 10(6) for Staphylococcus aureus, and 10(6) for Salmonella choleraesuis; glass retained 10(6)-10(7) organisms of all 3 test strains; porcelain retained about that amount of S. aureus but 10(5)-10(6) P. aeruginosa and 10(3)-10(4) S. choleraesuis. These data suggest that disinfectants are not similarly challenged with the AOAC-recommended test bacteria and that an alternative method should be considered to ensure comparable numbers of bacteria on penicylinders.

  15. Comparison of some indigenous bacterial strains of pseudomonas ssp. for production of biosurfactants

    International Nuclear Information System (INIS)

    Sahafeeq, M.; Kokub, D.; Khalid, Z.M.; Malik, K.A.

    1991-01-01

    Some indigenous pseudomonas spp. were found to have the ability of emulsification, lowering the surface and interfacial tensions, and formation of high reciprocal CMCs. Six strains of Pseudomonas spp were compared for biosurfactant production grown on hexadecane. Supernatant from whole culture broth of these strains could lower surface tension from 65 mN/m to 28-32 nM/m, interfacial tension from 40 nM/m to 1-3 mN/m and had high reciprocal CMCs. When compared for emulsification ability by the culture broth of these strains, the emulsification index (E24) was found to range between 60-65. Biosurfactant containing culture broth of some strains could retain the property up to 80 C, pH of 13 and sodium chloride concentration for 17% which indicates their possible role in some depleted oil well. (author)

  16. Choanal and cloacal aerobic bacterial flora in captive green iguanas: a comparative analysis

    Directory of Open Access Journals (Sweden)

    Silvia Barazorda Romero

    2015-01-01

    Full Text Available The aims of this study were to characterize the choanal and cloacal aerobic bacterial flora in healthy captive green iguanas and to compare it with the bacterial flora of the biofilm present in the water container of each terrarium. Samples were collected from the choana and the cloaca of 20 healthy captive adult green iguanas and from the biofilm of 15 water containers. The final identification of aerobic bacteria was performed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Salmonella positive samples were serotyped. The most common strains observed at each test location were from 1 choanae: Staphylococcus spp., Enterobacter cloacae and Comamonas testosteroni; 2 cloacae: Citrobacter spp., Salmonella spp. and Corynebacterium spp.; and 3 biofilms: Pseudomonas spp., Salmonella spp. and Acidovorax spp. We showed that apart from Salmonella spp., the choanal and cloacal bacterial flora differed from the microorganisms present in the biofilm of the animal’s water container. These data revealed that healthy captive adult green iguanas harbored several aerobic bacterial strains that in immunosuppressed reptiles may act as opportunistic pathogens. Also, several of the aerobic bacteria identified in samples are potential zoonotic agents. Characterization of the normal background flora in captive reptiles and their environment can contribute to an understanding of the spread of bacterial contamination and the risk of potential zoonotic diseases for people in contact with these animals.

  17. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sneha; Sudhakaran, Anu K.; Sarma, Priyangshu Manab; Subudhi, Sanjukta; Mandal, Ajoy Kumar; Lal, Banwari [Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), Habitat Place, Darbari Seth Block, Lodhi Road, New Delhi 110003 (India); Gandham, Ganesh [Hindustan Petroleum Corporation Limited, Mumbai Refinery, B. D. Patil Marg, Mahul, Mumbai 400074 (India)

    2010-10-15

    Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0-2.3 mol H{sub 2}/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans. (author)

  18. Enterobacter gergoviae membrane modifications are involved in the adaptive response to preservatives used in cosmetic industry.

    Science.gov (United States)

    Périamé, Marina; Pagès, Jean-Marie; Davin-Regli, Anne

    2015-01-01

    The objective of this study was to understand the adaptive mechanisms in Enterobacter gergoviae which are involved in recurrent contaminations in cosmetic products that are incorporated with preservatives. Bacterial strains from two backgrounds were examined for a profound understanding of the mechanisms of adaptation against preservatives. It included a series of Ent. gergoviae strain-ATCC 33028 derivatives, isolated using increasing methylisothiazolinone-chloromethylisothiazolinone (MIT-CMIT) and triclosan concentrations. The other series was of Ent. gergoviae isolates from cosmetic products exhibiting MIT-CMIT and triclosan resistance. We evaluated the outer membrane protein modifications and efflux mechanisms activities responsible for the resistant trait via immunoblotting assays. Additionally, for understanding the efflux activity real-time efflux, experiments were performed. A cross-insusceptibility between preservatives and some disinfectants was observed in MIT-CMIT-resistant derivative isolates, but antibiotics susceptibility was not altered. Resistance to EDTA was significant in all preservatives insusceptible derivative strains, indicating modifications in the LPS layer. Furthermore, an array of real-time efflux assays indicated different activity levels while no variations were detected in porins and AcrAB-TolC pumps production. Overexpression of a specific flagellin-type protein was observed in one of the MIT-CMIT- and triclosan-resistant strains. Another candidate, a 25-kDa peroxiredoxin enzyme involved in oxidative detoxification, was identified to be overexpressed in MIT-CMIT derivative. A similar profile was also observed among strains isolated from cosmetic products. Our study highlights the existence of adaptive mechanisms such as overexpression of detoxifying enzymes, flagellin, modification of membrane structure/function in Ent. gergoviae. They might be involved in recurrent episodes of contaminations occurring in the cosmetic production

  19. Biodegradation of furfural by Bacillus subtilis strain DS3.

    Science.gov (United States)

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Lv, Quanxi

    2015-07-01

    An aerobic bacterial strain DS3, capable of growing on furfural as sole carbon source, was isolated from actived sludge of wastewater treatment plant in a diosgenin factory after enrichment. Based on morphological physiological tests as well as 16SrDNA sequence and Biolog analyses it was identified as Bacillus subtilis. The study revealed that strain DS3 utilized furfural, as analyzed by high-performance liquid chromatography (HPLC). Under following conditions: pH 8.0, temperature 35 degrees C, 150 rpm and 10% inoculum, strain DS3 showed 31.2% furfural degradation. Furthermore, DS3 strain was found to tolerate furfural concentration as high as 6000 mg(-1). The ability of Bacillus subtilis strain DS3 to degrade furfural has been demonstrated for the first time in the present study.

  20. BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringae: P. viridiflava group

    Directory of Open Access Journals (Sweden)

    Abi S.A. Marques

    2008-01-01

    Full Text Available The phenotypic characteristics and genetic fingerprints of a collection of 120 bacterial strains, belonging to Pseudomonas syringae sensu lato group, P. viridiflava and reference bacteria were evaluated, with the aim of species identification. The numerical analysis of 119 nutritional characteristics did not show patterns that would help with identification. Regarding the genetic fingerprinting, the results of the present study supported the observation that BOX-PCR seems to be able to identify bacterial strains at species level. After numerical analyses of the bar-codes, all pathovars belonging to each one of the nine described genomospecies were clustered together at a distance of 0.72, and could be separated at genomic species level. Two P. syringae strains of unknown pathovars (CFBP 3650 and CFBP 3662 and the three P. syringae pv. actinidiae strains were grouped in two extra clusters and might eventually constitute two new species. This genomic species clustering was particularly evident for genomospecies 4, which gathered P. syringae pvs. atropurpurea, coronafaciens, garçae, oryzae, porri, striafaciens, and zizaniae at a noticeably low distance.

  1. Antimicrobial effects of zero-valent iron nanoparticles on gram-positive Bacillus strains and gram-negative Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    2017-11-01

    Full Text Available Abstract Background Zero-valent iron nanoparticles (ZVI NPs have been used extensively for the remediation of contaminated soil and groundwater. Owing to their large active surface area, they serve as strong and effective reductants. However, the ecotoxicity and bioavailability of ZVI NPs in diverse ecological media have not been evaluated in detail and most studies have focused on non-nano ZVI or Fe0. In addition, the antimicrobial properties of ZVI NPs have rarely been investigated, and the underlying mechanism of their toxicity remains unknown. Results In the present study, we demonstrate that ZVI NPs exhibited significant toxicity at 1000 ppm against two distinct gram-positive bacterial strains (Bacillus subtilis 3610 and Bacillus thuringiensis 407 but not against two gram-negative strains (Escherichia coli K12 and ATCC11634. Specifically, ZVI NPs caused at least a 4-log and 1-log reductions in cell numbers, respectively, in the two Bacillus strains, whereas no change was detected in the two E. coli strains. X-ray photoelectron spectroscopy, X-ray absorption near-edge, and extended X-ray absorption fine structure spectra confirmed that Bacillus cells exposed to ZVI NPs contained mostly Fe2O3 with some detectable FeS. This finding indicated that Fe0 nanoparticles penetrated the bacterial cells, where they were subsequently oxidized to Fe2O3 and FeS. RedoxSensor analysis and propidium iodide (PI staining showed decreased reductase activity and increased PI in both Bacillus strains treated with a high (1000 ppm concentration of ZVI NPs. Conclusion Taken together, these data show that the toxicity of ZVI NPs was derived from their oxidative properties, which may increase the levels of reactive oxygen species and lead to cell death.

  2. Endosulfan Resistance Profile of Soil Bacteria and Potential Application of Resistant Strains in Bioremediation

    Directory of Open Access Journals (Sweden)

    Chandini P.K.

    2014-05-01

    Full Text Available In the present study, bacterial strains were isolated from the soils of Wayanad District, Kerala, India and the isolates were tested for their tolerance to endosulfan and potential in bioremediation technology. Pesticide contamination in the soils, soil physico-chemical characteristics and socio-economic impacts of pesticide application were also analyzed. 28 pesticide compounds in the soil samples were analyzed and the results revealed that there was no pesticide residues in the soils. As per the survey conducted the pesticide application is very high in the study area and the level of awareness among the farmers was very poor regarding the method of application and its socio-economic and ecological impacts. A total of 9 bacterial strains were isolated with 50μg/ml of endosulfan in the isolating media and the results showed that most of the bacterial strains were highly resistance to endosulfan. Out of the 9 strains isolated 6 were highly resistant to endosulfan (500- 700μg/ml and the other 3 isolates showed the resistance of 250-500μg/ml. From the studied isolate, isolate 9 demonstrating prolific growth and high resistance was selected to check their capability to degrade endosulfan over time. Identification of the selected strain reveals that it belongs to the genus Bacillus. Results of endosulfan removal studies showed that with increase in time, the biomass of the bacterial strains increased. The complete disappearance of endosulfan from the spiked and inoculated broth during the first day of incubation (24 hour interval was observed. While the control flask showed the presence of endosulfan during the experimental period. Pesticide resistant bacteria are widely distributed in the soils of selected study area and the tolerance varied between bacteria even though they were isolated from the soils of the same area. The selected Bacillus species carry the ability to degrade endosulfan at accelerated rates and it could be useful in framing a

  3. Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients.

    Science.gov (United States)

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-04-01

    Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.

  4. Root bacterial endophytes alter plant phenotype, but not physiology

    DEFF Research Database (Denmark)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    2016-01-01

    (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf...... growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did......Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant...

  5. The clinical impact of bacterial biofilms

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Johansen, Helle Krogh

    2011-01-01

    Bacteria survive in nature by forming biofilms on surfaces and probably most, if not all, bacteria (and fungi) are capable of forming biofilms. A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and extracellular DNA....... Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation....... Likewise, chronic Pseudomonas aeruginosa lung infections in cystic fibrosis patients are caused by biofilm growing mucoid strains. Gradients of nutrients and oxygen exist from the top to the bottom of biofilms and the bacterial cells located in nutrient poor areas have decreased metabolic activity...

  6. How different is the proteome of the extended spectrum β-lactamase producing Escherichia coli strains from seagulls of the Berlengas natural reserve of Portugal?

    Science.gov (United States)

    Monteiro, R; Hébraud, M; Chafsey, I; Poeta, P; Igrejas, G

    2016-08-11

    β-Lactam antibiotics like cefotaxime are the most commonly used antibacterial agents. Escherichia coli strains 5A, 10A, 12A and 23B isolated from Seagulls feces, are cefotaxime-resistant strains that produces extended-spectrum beta-lactamases. Bacterial resistance to these antibiotics occurs predominantly through structural modification on the penicillin-binding proteins and enzymatic inactivation by extended-spectrum β-lactamases. Using classical proteomic techniques (2D-GE) coupled to mass spectrometry and bioinformatics extended analysis, in this study, we report several significant differences in cytoplasmic proteins expression when the strains were submitted to antibiotic stress and when the resistant strains were compared with a non-resistant strain. A total of 79 differentially expressed spots were collected for protein identification. Significant level of expression was found in antibiotic resistant proteins like β-lactamase CTX-M-1 and TEM and also in proteins related with oxidative stress. This approach might help us understand which pathways form barriers for antibiotics, another possible new pathways involved in antibiotic resistance to devise appropriate strategies for their control already recognized by the World Health Organization and the European Commission. This study highlights the protein differences when a resistant strain is under antibiotic pressure and how different can be a sensible and resistant strain at the protein level. This survey might help us to understand the specifics barriers for antibiotics and which pathways are involved in its resistance crosswise the wildlife. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses.

    Science.gov (United States)

    Qu, Wenwen; Busscher, Henk J; van der Mei, Henny C; Hooymans, Johanna M M

    2013-03-01

    To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Adhesion forces of bacterial strains to Ag-impregnated and polypropylene lens cases and a rigid CL were measured using atomic force microscopy. Adhesion forces were used to calculate Weibull distributions, from which transmission probabilities from lens case to CL were derived. Transmission probabilities were compared with actual transmission of viable bacteria from a lens case to the CL in 0.9% NaCl and in an antimicrobial lens care solution. Bacterial transmission probabilities from polypropylene lens cases based on force analysis coincided well for all strains with actual transmission in 0.9% NaCl. Bacterial adhesion forces on Ag-impregnated lens cases were much smaller than that on polypropylene and CLs, yielding a high probability of transmission. Comparison with actual bacterial transmission indicated bacterial killing due to Ag ions during colony-forming unit transmission from an Ag-impregnated lens case, especially for P. aeruginosa. Transmission of viable bacteria from Ag-impregnated lens cases could be further decreased by use of an antimicrobial lens care solution instead of 0.9% NaCl. Bacterial transmission probabilities are higher from Ag-impregnated lens cases than from polypropylene lens cases because of small adhesion forces, but this is compensated for by enhanced bacterial killing due to Ag impregnation, especially when in combination with an antimicrobial lens care solution. This calls for a balanced combination of antimicrobial lens care solutions and surface properties of a lens case and CL.

  8. Bacterial survival following shock compression in the GigaPascal range

    Science.gov (United States)

    Hazael, Rachael; Fitzmaurice, Brianna C.; Foglia, Fabrizia; Appleby-Thomas, Gareth J.; McMillan, Paul F.

    2017-09-01

    The possibility that life can exist within previously unconsidered habitats is causing us to expand our understanding of potential planetary biospheres. Significant populations of living organisms have been identified at depths extending up to several km below the Earth's surface; whereas laboratory experiments have shown that microbial species can survive following exposure to GigaPascal (GPa) pressures. Understanding the degree to which simple organisms such as microbes survive such extreme pressurization under static compression conditions is being actively investigated. The survival of bacteria under dynamic shock compression is also of interest. Such studies are being partly driven to test the hypothesis of potential transport of biological organisms between planetary systems. Shock compression is also of interest for the potential modification and sterilization of foodstuffs and agricultural products. Here we report the survival of Shewanella oneidensis bacteria exposed to dynamic (shock) compression. The samples examined included: (a) a "wild type" (WT) strain and (b) a "pressure adapted" (PA) population obtained by culturing survivors from static compression experiments to 750 MPa. Following exposure to peak shock pressures of 1.5 and 2.5 GPa the proportion of survivors was established as the number of colony forming units (CFU) present after recovery to ambient conditions. The data were compared with previous results in which the same bacterial samples were exposed to static pressurization to the same pressures, for 15 minutes each. The results indicate that shock compression leads to survival of a significantly greater proportion of both WT and PA organisms. The significantly shorter duration of the pressure pulse during the shock experiments (2-3 μs) likely contributes to the increased survival of the microbial species. One reason for this can involve the crossover from deformable to rigid solid-like mechanical relaxational behavior that occurs for

  9. Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins.

    Science.gov (United States)

    Dziga, Dariusz; Zielinska, Gabriela; Wladyka, Benedykt; Bochenska, Oliwia; Maksylewicz, Anna; Strzalka, Wojciech; Meriluoto, Jussi

    2016-03-16

    Bacterial degradation of toxic microcystins produced by cyanobacteria is a common phenomenon. However, our understanding of the mechanisms of these processes is rudimentary. In this paper several novel discoveries regarding the action of the enzymes of the mlr cluster responsible for microcystin biodegradation are presented using recombinant proteins. In particular, the predicted active sites of the recombinant MlrB and MlrC were analyzed using functional enzymes and their inactive muteins. A new degradation intermediate, a hexapeptide derived from linearized microcystins by MlrC, was discovered. Furthermore, the involvement of MlrA and MlrB in further degradation of the hexapeptides was confirmed and a corrected biochemical pathway of microcystin biodegradation has been proposed.

  10. Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins

    Directory of Open Access Journals (Sweden)

    Dariusz Dziga

    2016-03-01

    Full Text Available Bacterial degradation of toxic microcystins produced by cyanobacteria is a common phenomenon. However, our understanding of the mechanisms of these processes is rudimentary. In this paper several novel discoveries regarding the action of the enzymes of the mlr cluster responsible for microcystin biodegradation are presented using recombinant proteins. In particular, the predicted active sites of the recombinant MlrB and MlrC were analyzed using functional enzymes and their inactive muteins. A new degradation intermediate, a hexapeptide derived from linearized microcystins by MlrC, was discovered. Furthermore, the involvement of MlrA and MlrB in further degradation of the hexapeptides was confirmed and a corrected biochemical pathway of microcystin biodegradation has been proposed.

  11. Independent behavior of bacterial laccases to inducers and metal ...

    African Journals Online (AJOL)

    Valued Acer Customer

    2012-05-15

    May 15, 2012 ... The medium for production was a high nitrogen medium containing ... effects of metal ions on either laccase production or laccase activity were not clear. ... this study was to isolate bacterial strains that produce ... The growth of cell culture was measured by using optical ... Conditions of laccase production.

  12. Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) adapted to saline-alkaline soils and their effect on wheat growth.

    Science.gov (United States)

    Liu, Xiaolin; Li, Xiangyue; Li, Yan; Li, Runzhi; Xie, Zhihong

    2017-03-01

    The Jerusalem artichoke (JA; Helianthus tuberosus), known to be tolerant to saline-alkaline soil conditions, has been cultivated for many years in the Yellow River delta, Shandong Province coastal zone, in China. The aim of our study was to isolate nitrogen-fixing bacteria colonizing the rhizosphere of JA and to characterize other plant growth promotion properties. The ultimate goal was to identify isolates that could be used as inoculants benefiting an economic crop, in particular for improving wheat growth production in the Yellow River delta. Bacterial strains were isolated from the rhizosphere soil of JA on the basis of growth on nitrogen-free Ashby medium. Identification and phylogenetic analysis was performed after nucleotide sequencing of 16S rRNA gene. Plant-growth-promoting traits, such as nitrogen fixation activity, phosphate solubilization activity, indole-3-acetic acid production, were determined using conventional methods. Eleven strains were isolated and 6 of them were further examined for their level of salt tolerance and their effect on plant growth promotion. Inoculation of Enterobacter sp. strain N10 on JA and wheat led to significant increases in both root and shoot dry mass and shoot height. Enterobacter sp. strain N10 appeared to be the best plant-growth-promoting rhizobacteria to increase wheat productivity in future field applications.

  13. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    be considered. We have therefore developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion with atomic force microscopy (AFM).[1] A single-cell probe was readily made by picking up a bacterial cell from a glass surface using a tipless AFM cantilever coated...... random immobilization is obtained by submerging the cantilever in a bacterial suspension. The reported method provides a general platform for investigating single cell interactions of bacteria with different surfaces and other cells by AFM force spectroscopy, thus improving our understanding....... The strain-dependent susceptibility to bacterial colonization on conventional PLL-g-PEG illustrates how bacterial diversity challenges development of “universal” antifouling coatings, and AFM single-cell force spectroscopy was proven to be a powerful tool to provide insights into the molecular mechanisms...

  14. Biodegradation of Chlorpyrifos by Pseudomonas Resinovarans Strain AST2.2 Isolated from Enriched Cultures.

    OpenAIRE

    Anish Sharma*,; Jyotsana Pandit; Ruchika Sharma and; Poonam Shirkot

    2016-01-01

    A bacterial strain AST2.2 with chlorpyrifos degrading ability was isolated by enrichment technique from apple orchard soil with previous history of chlorpyrifos use. Based on the morphological, biochemical tests and 16S rRNA sequence analysis, AST2.2 strain was identified as Pseudomonas resinovarans. The strain AST2.2 utilized chlorpyrifos as the sole source of carbon and energy. This strain exhibited growth upto 400mg/l concentration of chlorpyrifos and exhibited high extracellular organopho...

  15. Conserved Bacterial-Binding Peptides of the Scavenger-Like Human Lymphocyte Receptor CD6 Protect From Mouse Experimental Sepsis

    Directory of Open Access Journals (Sweden)

    Mario Martínez-Florensa

    2018-04-01

    Full Text Available Sepsis is an unmet clinical need constituting one of the most important causes of death worldwide, a fact aggravated by the appearance of multidrug resistant strains due to indiscriminate use of antibiotics. Host innate immune receptors involved in pathogen-associated molecular patterns (PAMPs recognition represent a source of broad-spectrum therapies alternative or adjunctive to antibiotics. Among the few members of the ancient and highly conserved scavenger receptor cysteine-rich superfamily (SRCR-SF sharing bacterial-binding properties there is CD6, a lymphocyte-specific surface receptor. Here, we analyze the bacterial-binding properties of three conserved short peptides (11-mer mapping at extracellular SRCR domains of human CD6 (CD6.PD1, GTVEVRLEASW; CD6.PD2 GRVEMLEHGEW; and CD6.PD3, GQVEVHFRGVW. All peptides show high binding affinity for PAMPs from Gram-negative (lipopolysaccharide; Kd from 3.5 to 3,000 nM and Gram-positive (lipoteichoic acid; Kd from 36 to 680 nM bacteria. The CD6.PD3 peptide possesses broad bacterial-agglutination properties and improved survival of mice undergoing polymicrobial sepsis in a dose- and time-dependent manner. Accordingly, CD6.PD3 triggers a decrease in serum levels of both pro-inflammatory cytokines and bacterial load. Interestingly, CD6.PD3 shows additive survival effects on septic mice when combined with Imipenem/Cilastatin. These results illustrate the therapeutic potential of peptides retaining the bacterial-binding properties of native CD6.

  16. The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil

    Directory of Open Access Journals (Sweden)

    M.E El-Hadad

    2011-03-01

    Full Text Available In a greenhouse experiment, the nematicidal effect of some bacterial biofertilizers including the nitrogen fixing bacteria (NFB Paenibacillus polymyxa (four strains, the phosphate solubilizing bacteria (PSB Bacillus megaterium (three strains and the potassium solubilizing bacteria (KSB B. circulans (three strains were evaluated individually on tomato plants infested with the root-knot nematode Meloidogyne incognita in potted sandy soil. Comparing with the uninoculated nematode-infested control, the inoculation with P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2, increased the counts of total bacteria and total bacterial spores in plants potted soil from 1.2 to 2.6 folds estimated 60 days post-inoculation. Consequently, the inoculation with P. polymyxa NFB7 increased significantly the shoot length (cm, number of leaves / plant, shoot dry weight (g / plant and root dry weight (g / plant by 32.6 %, 30.8 %, 70.3 % and 14.2 %, respectively. Generally, the majority treatments significantly reduced the nematode multiplication which was more obvious after 60 days of inoculation. Among the applied strains, P. polymyxa NFB7, B. megaterium PSB2 and B. circulans KSB2 inoculations resulted in the highest reduction in nematode population comparing with the uninoculated nematode-infested control. They recorded the highest reduction in numbers of hatched juveniles/root by 95.8 %, females/root by 63.75 % and juveniles/1kg soil by 57.8 %. These results indicated that these bacterial biofertilizers are promising double purpose microorganisms for mobilizing of soil nutrients (nitrogen, phosphate and potassium and for the biological control of M. incognita.

  17. X-ray sensitive strains of CHO cells show decreased frequency of stable transfection

    International Nuclear Information System (INIS)

    Jeggo, P.; Smith, J.

    1987-01-01

    Six X-ray sensitive (xrs) strains of the Chinese hamster ovary cell line have previously been isolated and shown to have a defect in double strand break rejoining. In this study, these strains have been investigated for their ability to take up and integrate foreign DNA. All the xrs strains investigated so far have shown a decreased frequency of stable transfectants compared to their parent line, in experiments using the plasmid pSV2gpt, which contains the selectable bacterial gene, guanine phosphoribosyl transferase. This decreased frequency is observed over a wide range of DNA concentrations (0.1 to 20 μg DNA) but is more pronounced at higher DNA concentrations. In contrast, these xrs strains show the same level of transfection proficiency as the wild type parent using a transient transfection system with a plasmid containing the bacterial CAT (chloramphenicol acetyl transferase) gene. Since the level of CAT activity does not depend on integration of foreign DNA, this suggests that the xrs strains are able to take up the same amount of DNA as the parent strains, but have a defect in the integration of foreign DNA. Since this integration of foreign DNA probably occurs by non-homologous recombination, this may indicate a role of the xrs gene product in this process

  18. Phytoplankton and bacterial community structures and their interaction during red-tide phenomena

    Science.gov (United States)

    Ismail, Mona Mohamed; Ibrahim, Hassan Abd Allah

    2017-09-01

    Phytoplankton and bacteria diversity were studied before, during and after red tide phenomena during spring season 2015 in the Eastern Harbour (E.H.) of Alexandria, Egypt. Fifty five species of phytoplankton were identified and represented different distinct classes "Bacillariophyceae; Dinophyceae, Chlorophyceae, Cyanophyceae and Eugelenophyceae". Also, Diatom formed the most dominant group. The average number of the phytoplankton density varied from 4.8 × 104 to 1.1 × 106 cell l-1 during the study period and Skeletonema costatum was the agent causing the red tide. The existence percentages of bacteria ranged from 2.6 to 17.9% on all media tested. The bacterial isolates on the nutrient agar medium represented the highest existence with a total percentage of 43.6%, followed by MSA medium (25.7%), while the lowest percentage was for the AA medium at 7.8%. However, twelve isolates were selected as representative for bacterial community during study interval. Based on the morphological, biochemical, physiological and enzymatic characteristics, the bacterial strains were described. Depending on the 16S rDNA gene sequence, three common antagonists were aligned as: Vibrio toranzoniae strain Vb 10.8, Ruegeria pelagia strain NBRC 102038 and Psychrobacter adeliensis strain DSM 15333. The interaction between these bacteria and S. costatum was studied. The growth of S. costatum was significantly lower whenever each bacterium was present as compared to axenic culture. More specifically, 30% (v/v) of the all tested bacteria showed the strongest algicidal activities, as all S. costatum cells were killed after two days. 10% of R. pelagia and P. adeliensis also showed significant algicidal activities within six days.

  19. Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Merroun, Mohamed L., E-mail: merroun@ugr.es [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany); Departamento de Microbiologia, Universidad de Granada, Campus Fuentenueva s/n 18071, Granada (Spain); Nedelkova, Marta [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany); Ojeda, Jesus J. [Cell-Mineral Interface Research Programme, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Experimental Techniques Centre, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Reitz, Thomas [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany); Fernandez, Margarita Lopez; Arias, Jose M. [Departamento de Microbiologia, Universidad de Granada, Campus Fuentenueva s/n 18071, Granada (Spain); Romero-Gonzalez, Maria [Cell-Mineral Interface Research Programme, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Selenska-Pobell, Sonja [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Precipitation of uranium as U phosphates by natural bacterial isolates. Black-Right-Pointing-Pointer The uranium biomineralization involves the activity of acidic phosphatase. Black-Right-Pointing-Pointer Uranium bioremediation could be achieved via the biomineralization of U(VI) in phosphate minerals. - Abstract: This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase.

  20. Community-acquired bacterial meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; Brouwer, Matthijs; Hasbun, Rodrigo; Koedel, Uwe; Whitney, Cynthia G.; Wijdicks, Eelco

    2016-01-01

    Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma

  1. Assessing genetic heterogeneity within bacterial species isolated from gastrointestinal and environmental samples: How many isolates does it take?

    NARCIS (Netherlands)

    Dopfer, D.; Buist, W.; Soyer, Y.; Munoz, M.A.; Zadoks, R.N.; Geue, L.; Engel, B.

    2008-01-01

    Strain typing of bacterial isolates is increasingly used to identify sources of infection or product contamination and to elucidate routes of transmission of pathogens or spoilage organisms. Usually, the number of bacterial isolates belonging to the same species that is analyzed per sample is

  2. Genome-centric evaluation of Burkholderia sp. strain SRS-W-2-2016 resistant to high concentrations of uranium and nickel isolated from the Savannah River Site (SRS, USA

    Directory of Open Access Journals (Sweden)

    Ashish Pathak

    2017-06-01

    Full Text Available Savannah River Site (SRS, an approximately 800-km2 former nuclear weapons production facility located near Aiken, SC remains co-contaminated by heavy metals and radionuclides. To gain a better understanding on microbially-mediated bioremediation mechanisms, several bacterial strains resistant to high concentrations of Uranium (U and Nickel (Ni were isolated from the Steeds Pond soils located within the SRS site. One of the isolated strains, designated as strain SRS-W-2-2016, grew robustly on both U and Ni. To fully understand the arsenal of metabolic functions possessed by this strain, a draft whole genome sequence (WGS was obtained, assembled, annotated and analyzed. Genome-centric evaluation revealed the isolate to belong to the Burkholderia genus with close affiliation to B. xenovorans LB400, an aggressive polychlorinated biphenyl-degrader. At a coverage of 90×, the genome of strain SRS-W-2-2016 consisted of 8,035,584 bases with a total number of 7071 putative genes assembling into 191 contigs with an N50 contig length of 134,675 bases. Several gene homologues coding for resistance to heavy metals/radionuclides were identified in strain SRS-W-2-2016, such as a suite of outer membrane efflux pump proteins similar to nickel/cobalt transporter regulators, peptide/nickel transport substrate and ATP-binding proteins, permease proteins, and a high-affinity nickel-transport protein. Also noteworthy were two separate gene fragments in strain SRS-W-2-2016 homologous to the spoT gene; recently correlated with bacterial tolerance to U. Additionally, a plethora of oxygenase genes were also identified in the isolate, potentially involved in the breakdown of organic compounds facilitating the strain's successful colonization and survival in the SRS co-contaminated soils. The WGS project of Burkholderia sp. strain SRS-W-2-2016 is available at DDBJ/ENA/GenBank under the accession #MSDV00000000.

  3. Diversity and morphological structure of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (Budapest, Hungary).

    Science.gov (United States)

    Anda, Dóra; Büki, Gabriella; Krett, Gergely; Makk, Judit; Márialigeti, Károly; Erőss, Anita; Mádl-Szőnyi, Judit; Borsodi, Andrea K

    2014-09-01

    The Buda Thermal Karst System is an active hypogenic karst area that offers possibility for the analysis of biogenic cave formation. The aim of the present study was to gain information about morphological structure and genetic diversity of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (DHTS). Using scanning electron microscopy, metal accumulating and unusual reticulated filaments were detected in large numbers in the DHTS biofilm samples. The phyla Actinobacteria, Firmicutes and Proteobacteria were represented by both bacterial strains and molecular clones but phyla Acidobacteria, Chlorobi, Chlorofexi, Gemmatimonadetes, Nitrospirae and Thermotogae only by molecular clones which showed the highest similarity to uncultured clone sequences originating from different environmental sources. The biofilm bacterial community proved to be somewhat more diverse than that of the water sample and the distribution of the dominant bacterial clones was different between biofilm and water samples. The majority of biofilm clones was affiliated with Deltaproteobacteria and Nitrospirae while the largest group of water clones was related to Betaproteobacteria. Considering the metabolic properties of known species related to the strains and molecular clones from DHTS, it can be assumed that these bacterial communities may participate in the local sulphur and iron cycles, and contribute to biogenic cave formation.

  4. Delignification and Enhanced Gas Release from Soil Containing Lignocellulose by Treatment with Bacterial Lignin Degraders.

    Science.gov (United States)

    Rashid, Goran M M; Duran-Pena, Maria Jesus; Rahmanpour, Rahman; Sapsford, Devin; Bugg, Timothy D H

    2017-04-10

    The aim of the study was to isolate bacterial lignin-degrading bacteria from municipal solid waste soil, and to investigate whether they could be used to delignify lignocellulose-containing soil, and enhance methane release. A set of 20 bacterial lignin degraders, including 11 new isolates from municipal solid waste soil, were tested for delignification and phenol release in soil containing 1% pine lignocellulose. A group of 7 strains were then tested for enhancement of gas release from soil containing 1% lignocellulose in small-scale column tests. Using an aerobic pre-treatment, aerobic strains such as Pseudomonas putida showed enhanced gas release from the treated sample, but four bacterial isolates showed 5-10 fold enhancement in gas release in an in situ experiment under microanaerobic conditions: Agrobacterium sp., Lysinibacillus sphaericus, Comamonas testosteroni, and Enterobacter sp.. The results show that facultative anaerobic bacterial lignin degraders found in landfill soil can be used for in situ delignification and enhanced gas release in soil containing lignocellulose. The study demonstrates the feasibility of using an in situ bacterial treatment to enhance gas release and resource recovery from landfill soil containing lignocellulosic waste. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Isolation and characterization of copper tolerant bacterial isolates

    International Nuclear Information System (INIS)

    Farooq, S.; Shoeb, E.; Badar, U.; Akhtar, J.

    2008-01-01

    Twelve bacterial strains were isolated from metal contaminated sites close to the chemical factory, Purification and characterization of these strains was done. Maximum tolerable concentration (MTC) of all the isolated strains was determined against heavy metals cadmium chloride (CdCl/sub 2/), copper sulphate (CuSO/sub 4/), and nickel chloride (NiCI/sub 2/) and antibiotics kanamycin (Km), streptomycin (Sm), and chloramphenicol (Cm). Most promising strain was found to be GESSF012 which showed MTC of 4.5 mM and 1.6 mM against CdCI/sub 2/ in enriched and minimal media respectively; whereas MTC of 750 micro g/ml was against Sm. GESSF012 demonstrated the occurrence of multiple stress tolerance as this strain showed considerable tolerance against other heavy metals including CuSO/sub 4/, (3.0 mM in enriched media and 1.8 mM in minimal media) and NiCl/sub 2/, (2.0 mM in enriched media and 1.8 mM in minimal media) as well as other antibiotics Cm and Km (150 and 125 micro g/ml respectively). Plasmids were detected in most of the strains including GESSF012. (author)

  6. Efficacy of selected Pseudomonas strains for biocontrol of Rhizoctonia solani in potato

    Directory of Open Access Journals (Sweden)

    Moncef MRABET

    2014-01-01

    Full Text Available Thirty seven bacterial isolates from faba bean (Vicia faba L. root-nodules were screened for their antagonistic activity against eight Rhizoctonia solani strains isolated from infected potato (Solanum tuberosum L. tubers. Two bacterial strains (designated as Kl.Fb14 and S8.Fb11 gave 50% in vitro inhibition of R. solani mycelial growth. 16S rDNA sequence analysis indicated that strain Kl.Fb14 exhibited 99.5% identity with Pseudomonas moraviensis, and that S8.Fb11 exhibited 99.8% identity with Pseudomonas reinekei. Greenhouse trials in soil showed that strain S8.Fb11 reduced the percentage of sclerotia on potato tubers and amounts of tuber infection for the potato cultivars Spunta and Nicola. In a field trial conducted in South Tunisia, infection with R. solani reduced potato yield by approximately 40% for ‘Spunta’ and 17% for ‘Nicola’; about 20% of the total tuber production was severely infected. However, when potato tubers were treated with strain S8.Fb11 prior to sowing, disease incidence was reduced to 6% of total production with low infection levels; potato yield was enhanced by about 6 kg per 10 m row in comparison to R. solani infected plants. The second selected Pseudomonas sp. (strain Kl.Fb14 did not affect either the levels of sclerotia on tubers or potato yield.

  7. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Belén Álvarez

    2017-07-01

    Full Text Available Bacterial wilt diseases caused by Ralstonia solanacearum, R. pseudosolanacearum, and R. syzygii subsp. indonesiensis (former R. solanacearum species complex are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis, not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta. Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  8. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture.

    Science.gov (United States)

    Álvarez, Belén; Biosca, Elena G

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum , R. pseudosolanacearum , and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis , not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta . Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  9. [Antagonism against Beauveria bassiana by lipopeptide metabolites produced by entophyte Bacillus amyloliquefaciens strain SWB16].

    Science.gov (United States)

    Wang, Jingjie; Zhao, Dongyang; Liu, Yonggui; Ao, Xiang; Fan, Rui; Duan, Zhengqiao; Liu, Yanping; Chen, Qianqian; Jin, Zhixiong; Wan, Yongji

    2014-07-04

    We screened bacterial strains that have strong antagonism against Beauveria bassiana, an important pathogen of silkworm industry, and detected the antagonistic activity of lipopeptide metabolites. We identified bacterium SWB16 by morphological observation, physiological and biochemical experiments, 16SrRNA, and gyrA gene sequence analysis, tested antagonistic activity of strain SWB16 against Beauveria bassiana by measuring the inhibition zone diameter using filter paper diffusion method (Kirby-Bauer method), obtained lipopeptide metabolites of the strain using methanol extraction and observed the antagonism of strain SWB16 lipopeptide extracts against the conidia and hyphae of Beauveria bassiana, detected main ingredients and genes of lipopeptide metabolites by high-performance liquid chromatography-mass spectrometry and PCR amplification. SWB16 isolated from tissue of plant Dioscorea zingiberensis C. H. Wright belongs to Bacillus amyloliquefaciens and showed high antagonistic activity to Beauveria bassiana, and the lipopeptide extracts of isolate SWB16 exhibited significant inhibition to conidial germination and mycelial growth of Beauveria bassiana. The result of mass spectrometric detection indicated main component of the lipopeptide metabolites were fengcin and iturin, and genes fenB, ituA involved in the synthesis of them were amplified in the genome. Bacillus amyloliquefaciens strain SWB16 could produce lipopeptide antibiotics with strong antagonism to the entomopathogenic fungus Beauveria bassiana, and the results suggested that strain SWB16 has potential application value for controlling white muscardine of economic insects including silkworm.

  10. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    Science.gov (United States)

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-02-16

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  11. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate.

    Science.gov (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    1997-01-01

    The gene loci vdh, vanA, and vanB, which are involved in the bioconversion of vanillin to protocatechuate by Pseudomonas sp. strain HR199 (DSM 7063), were identified as the structural genes of a novel vanillin dehydrogenase (vdh) and the two subunits of a vanillate demethylase (vanA and vanB), respectively. These genes were localized on an EcoRI fragment (E230), which was cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The vdh gene was identified on a subfragment (HE35) of E230, and the vanA and vanB genes were localized on a different subfragment (H110) of E230. The nucleotide sequences of fragment HE35 and part of fragment H110 were determined, revealing open reading frames of 1062, 951, and 1446 bp, representing vanA, vanB, and vdh, respectively. The vdh gene was organized in one operon together with a fourth open reading frame (ORF2), of 735 bp, which was located upstream of vdh. The deduced amino acid sequences of vanA and vanB exhibited 78.8 and 62.1% amino acid identity, respectively, to the corresponding gene products from Pseudomonas sp. strain ATCC 19151 (F. Brunel and J. Davison, J. Bacteriol. 170:4924-4930, 1988). The deduced amino acid sequence of the vdh gene exhibited up to 35.3% amino acid identity to aldehyde dehydrogenases from different sources. The deduced amino acid sequence of ORF2 exhibited up to 28.4% amino acid identity to those of enoyl coenzyme A hydratases. Escherichia coli strains harboring fragment E230 cloned in pBluescript SK- converted vanillin to protocatechuate via vanillate, indicating the functional expression of vdh, vanA, and vanB in E. coli. High expression of vdh in E. coli was achieved with HE35 cloned in pBluescript SK-. The resulting recombinant strains converted vanillin to vanillate at a rate of up to 0.3 micromol per min per ml of culture. Transfer of vanA, vanB, and vdh to Alcaligenes eutrophus and to different Pseudomonas strains, which were unable to utilize vanillin or vanillate as

  12. The involvement of tetA and tetE tetracycline resistance genes in plasmid and chromosomal resistance of Aeromonas in Brazilian strains

    Directory of Open Access Journals (Sweden)

    Ilana Teruszkin Balassiano

    2007-11-01

    Full Text Available This study analyzed the involvement of tetA and tetE genes in the tetracycline resistance of 16 strains of genus Aeromonas, isolated from clinical and food sources. Polymerase chain reactions revealed that 37.5% of the samples were positive for tetA, and also 37.5% were tetE positive. One isolate was positive for both genes. Only the isolate A. caviae 5.2 had its resistance associated to the presence of a plasmid, pSS2. The molecular characterization of pSS2 involved the construction of its restriction map and the determination of its size. The digestion of pSS2 with HindIII originated two fragments (A and B that were cloned separately into the pUC18 vector. The tetA gene was shown to be located on the HindIII-A fragment by PCR. After transforming a tetracycline-sensitive strain with pSS2, the transformants expressed the resistance phenotype and harbored a plasmid whose size was identical to that of pSS2. The results confirmed the association between pSS2 and the tetracycline resistance phenotype, and suggest a feasible dissemination of tetA and tetE among strains of Aeromonas. This study suggests the spreading tetA and tetE genes in Aeromonas in Brazil and describes a resistance plasmid that probably contributes to the dissemination of the resistance.

  13. Development of method for evaluating cell hardness and correlation between bacterial spore hardness and durability

    Directory of Open Access Journals (Sweden)

    Nakanishi Koichi

    2012-06-01

    Full Text Available Abstract Background Despite the availability of conventional devices for making single-cell manipulations, determining the hardness of a single cell remains difficult. Here, we consider the cell to be a linear elastic body and apply Young’s modulus (modulus of elasticity, which is defined as the ratio of the repulsive force (stress in response to the applied strain. In this new method, a scanning probe microscope (SPM is operated with a cantilever in the “contact-and-push” mode, and the cantilever is applied to the cell surface over a set distance (applied strain. Results We determined the hardness of the following bacterial cells: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and five Bacillus spp. In log phase, these strains had a similar Young’s modulus, but Bacillus spp. spores were significantly harder than the corresponding vegetative cells. There was a positive, linear correlation between the hardness of bacterial spores and heat or ultraviolet (UV resistance. Conclusions Using this technique, the hardness of a single vegetative bacterial cell or spore could be determined based on Young’s modulus. As an application of this technique, we demonstrated that the hardness of individual bacterial spores was directly proportional to heat and UV resistance, which are the conventional measures of physical durability. This technique allows the rapid and direct determination of spore durability and provides a valuable and innovative method for the evaluation of physical properties in the field of microbiology.

  14. Restructuring of Endophytic Bacterial Communities in Grapevine Yellows-Diseased and Recovered Vitis vinifera L. Plants ▿

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-01-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response. PMID:21622794

  15. Establishment of pseudomonas putida strains for sensitive detection of heavy metals in effluents

    International Nuclear Information System (INIS)

    Genthe, B.

    1987-09-01

    The objective of this study was to isolate a mutant of Pseudomonas putida that is more sensitive to heavy metal toxicants in water than the wild type. P. putida was the organism chosen in this study as it occurs naturally in unpolluted waters, is nonpathogenic, aerobic and because it is commonly applied in bacterial toxicity assays due to its sensitivity to toxicants. Three methods of mutagenesis were employed, which included N-methyl-N'-nitro-N-nitrosoguanidine (NG) ; ultraviolet light and transposon-mediated mutagenesis in order to generate as wide a range of mutants as possible. Four mutants, which were more sensitive to mercury, copper, lead, zinc, cadmium and silver were isolated using the NG method of mutagenesis. These mutants were designated strains 53, 56, 60 and 61 and were characterized as P. putida strains on the basis of Gram staining, biochemical reactions and immunological properties. The sensitivity of the mutants to a variety of industrial effluents was compared to that of the parent strain using a bacterial growth test. Using industrial effluents, one of the mutants, namely strain 56 was found to be more sensitive than the parent strain on 71.4% of the tests. Strains 60 and 61 were also both more sensitive than the parent strain on 42.9% of the occasions using industrial effluents. The uptake rates of radioactive mercury were measured for the parent strain of P. putida and the mutants that were found to be more sensitive to mercury

  16. Cholesterol gallstones and bile host diverse bacterial communities with potential to promote the formation of gallstones.

    Science.gov (United States)

    Peng, Yuhong; Yang, Yang; Liu, Yongkang; Nie, Yuanyang; Xu, Peilun; Xia, Baixue; Tian, Fuzhou; Sun, Qun

    2015-01-01

    The prevalence of cholesterol gallstones has increased in recent years. Bacterial infection correlates with the formation of gallstones. We studied the composition and function of bacterial communities in cholesterol gallstones and bile from 22 cholesterol gallstone patients using culture-dependent and culture-independent methods. Altogether fourteen and eight bacterial genera were detected in cholesterol gallstones and bile, respectively. Pseudomonas spp. were the dominant bacteria in both cholesterol gallstones and bile. As judged by diversity indices, hierarchical clustering and principal component analysis, the bacterial communities in gallstones were different from those in bile. The gallstone microbiome was considered more stable than that of bile. The different microbial communities may be partially explained by differences in their habitats. We found that 30% of the culturable strains from cholesterol gallstones secreted β-glucuronidase and phospholipase A2. Pseudomonas aeruginosa strains showed the highest β-glucuronidase activity and produced the highest concentration of phospholipase A2, indicating that Ps. aeruginosa may be a major agent in the formation of cholesterol gallstones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  18. PFGE and antibiotic susceptibility phenotype analysis of Pseudomonas aeruginosa strain chronically infecting Cystic Fibrosis patients

    Directory of Open Access Journals (Sweden)

    Giovanna Pulcrano

    2008-09-01

    Full Text Available Pseudomonas aeruginosa is the leading cause of chronic lung infection and following pulmonary worsening of cystic fibrosis patients. To verify whether bacterial modifications regarding motility, mucoidy, and serum susceptibility proceeded from an adaptation to chronic infection or a replacement with a new strain, sequential P. aeruginosa isolates of known phenotype collected from 5 cystic fibrosis patients were typed by pulsed-field gel electophoresis (PFGE. Antimicrobial susceptibility testing of all isolates was performed by the disc diffusion method. PFGE typing demonstrated that strains dissimilar in colony morphotype and of different antibiotic susceptibility patterns could be of the same genotype. Some patients were colonized with a rather constant P. aeruginosa flora, with strains of different phenotypes but of one genotype. Instead, some patients may be colonized by more than one genotype. Secretion of mucoid exopolysaccharide and acquisition of a new antibiotic susceptibility phenotype in these strain appear to evolve during chronic colonization in cystic fibrosis patients from specific adaptation to infection rather than from acquisition of new bacterial strains.

  19. Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce

    Science.gov (United States)

    Schreiter, Susanne; Sandmann, Martin; Smalla, Kornelia; Grosch, Rita

    2014-01-01

    Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 106 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected

  20. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce.

    Directory of Open Access Journals (Sweden)

    Susanne Schreiter

    Full Text Available Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they